
Exploring supermagnetism in patterned
thin films of La0.7Sr0.3MnO3

Hans Henrik S Urdahl

Nanotechnology

Supervisor: Erik Folven, IET
Co-supervisor: Samuel Dingeman Slöetjes, IET

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology



 



Abstract

Supermagnetism refers to the collective magnetic ordering of superparamagnetic nanopar-
ticles. The phenomenon may be used to engineer novel magnetic materials. To investigate
how supermagnetism may be manifest in patterned thin films of the ferromagnetic com-
plex oxide La0.7Sr0.3MnO3 (LSMO), we used GPU-accelerated micromagnetic simulations
to investigate the magnetic properties of single LSMO nanomagnets and ordered arrays
of such nanomagnets. We found superparamagnetism in 5 nm thick, cylindrical LSMO
nanomagnets at diameters of 20 nm to 140nm. We then investigated the supermagnetic
ground states of ordered arrays of LSMO nanomagnets, and found that by controlling the
stacking of the arrays, the supermagnetic ground state could be tuned. Square stacking
lead to superantiferromagnetic ground states and hexagonal stacking to superferromag-
netic ground states. Effects of finite size and tuning the ground state by an applied field
were discussed. We explored the hysteretic properties of the arrays, and found a step-like
hysteresis curve for the square lattice. It was explained in terms of dipolar lattices and
supermagnetic phase transitions, and compared with 2D Ising spin-lattices. The hexag-
onal array exhibited hysteresis similar to that of conventional soft magnetic materials.
Spin-glass properties of the arrays were explored by looking at quenched disorder, and
field-cooled and zero-field cooled magnetization of the arrays. Magnetic irreversibility
was found, which was suggestive of spin-glass behavior. We conclude that ordered su-
permagnetic systems are excellent candidates for engineering artifical spin systems and
magnetic metamaterials, either for technological or fundamental research purposes, and
that such systems can be realized in patterned LSMO thin films.



Sammendrag

Supermagnetisme henviser til den kollektive magnetiske ordningen av superparamagne-
tiske nanopartikler. Fenomenet kan muligens brukes til å overkomme den superparamag-
netiske effekten relatert til å skape nye magnetiske materialer. For å undersøke hvordan
supermagnetisme manifesteres i mønstrede tynnfilmer av det ferromagnetiske komplekse
oksidet La0.7Sr0.3MnO3 (LSMO), brukte vi GPU-akselererte mikromagnetiske simulerin-
ger for å undersøke de magnetiske egenskapene til enkelte LSMO nanomagneter og ordne-
de gitter av slike nanomagneter. Vi fant at ved å kontrollere gitterstrukturen, kunne den
supermagnetiske grunntilstanden påvirkes. Kvadratiske gitter gav superantiferromagne-
tisk grunntilstand, og heksagonale gitter gav superferromagnetisk grunntilstand. Effekten
av endelig størrelse og manipulering av grunntiltanden ved hjelp av et ytre felt ble disku-
tert. Vi utforsket de hysteretiske egenskapene til gitrene, og fant en trappetrinns-lignende
hysteresekurve for det kvadratiske gitteret. Det ble forklart ved hjelp av dipol-gitter samt
supermagnetiske faseoverganger, og sammenlignet med 2D Ising spinn-gitter. Det heksa-
gonale gitteret hadde hysteretiske egenskaper som vanlige myke magnetiske materialer.
Spinn-glass-egenskaper ble utforsket ved å se på uorden som følge av bråkjøling, samt felt-
avkjølt og null-felt-avkjølt magnetisering. Magnetisk irreversibilitet ble funnet, hvilket var
en indikasjon på spin-glass-oppførsel. Vi konkluderer med at ordnede, supermagnetiske
systemer er utmerkede kandidater for å skape kunstige spinn-systemer og magnetiske
metamaterialer, enten for teknologiske eller forskningsanvendelser, og at slike systemer
kan realiseres i mønstrede tynnfilmer av LSMO.
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Chapter 1

Introduction

1.1 Motivation and background

Magnetism as a phenomenon has sparked excitement and interest among mankind ever
since it was first described approximately 2500 years ago [55]. Since its discovery, mag-
netism has been utilized in a vast range of technological applications, from navigation to
high tech applications such as modern digital data storage.

In todays society, magnetism is perhaps most prevalently encountered in electronic ap-
plications. Electronics have formed a backbone in modern society, especially since the
invention of the transistor in 1947 [59], which ushered in a new era of modern radio and
computer technology. The evolution of microelectronics has been a driving force for both
research and economic growth all over the world. Today, information is stored, manipu-
lated and transferred mainly via charge. Most transistors are found in highly integrated
circuits. One of the main reasons for why integrated electronics have been so successful,
is the concept of scaling. Scaling down physical dimensions has led to density, speed
and power improvements [59], but a limit to scalability is quickly approaching, as the
physical dimensions of components are approaching the atomic scale. The newest line
of commercialized CPUs from Intel already have critical dimensions of 14 nm, and there
have been difficulties in further downscaling [11].

As the microelectronic research roadmap nears its end, new venues must be explored.
Spintronics (derived from the expression spin electronics) is one of the emerging con-
cepts, that may possibly push the boundaries of state-of-the-art technology. Opposed to
common belief, spintronics is more an augmentation of electronics, than it is a competi-
tor. The fundamental concept of spintronics lies in the ability to sense and manipulate
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the spin degree of freedom in solid state systems [68]. Since the spin degree of freedom
is intimately connected to magnetism, there is reason to believe that magnetic materials
will become ever more ubiquitous than what currently is the case.

A relatively new direction in magnetic spintronics and magnetoelectronics is called magnon-
ics [44]. Magnonics focuses on the transfer of magnetic moment, or spin, by so-called spin
waves. The aim is to be able to use spin waves as basis for devices for data processing,
communications and storage. Using spin waves is a possible new route to processing
information at the nanoscale [32].

The study of nanoscale magnetic materials has shown that such materials possess prop-
erties that are not present in their macroscopic bulk counterparts, such as the giant mag-
netoresistance (GMR) effect used in magnetic memory. GMR is a phenomenon where
the electrical resistance of a thin film heterojunction consisting of a ferromagnetic layer,
a metallic layer and another ferromagnetic layer can be tuned by controlling the mag-
netization directions of the thin films. The phenomenon can easily be understood from
a semiclassical transport picture, where the transport is governed by the Boltzmann
equation, in combination with spin-dependent scattering [16]. The phenomenon was dis-
covered independently by two research groups in 1988 [3] and 1989 [9], and yielded the
discoverers the Nobel Prize in Physics in 2007. This effect is widely used for instance in
read heads for magnetic memory devices. Research on nanoscale magnetic materials may
lead to the discovery of new and exciting properties.

One of the largest challenges of modern magnetic memory is related to thermal stability
of recorded data [43]. In order to further improve on data storage density, the super-
paramagnetic effect (i.e. thermally activated switching of magnetic logic elements) must
be mediated, either through engineering of more thermally stable magnetic materials for
memory applications, or through entirely new approaches to data storage.

A possible new take on how to beat the superparamagnetic effect could be through use
of the phenomenon referred to as supermagnetism. The essence of supermagnetism is the
collective ordering of superparamagnetic nanoparticles [5]. In a sense, supermagnetism is
an approach to exploit superparamagnetism and may lead to a whole new paradigm for
engineering of magnetic materials [53].

An efficient way to learn more about supermagnetism in nanostructures is by use of
computer simulations. By numerically solving dynamical equations for the magnetization
of ferromagnetic materials, predictions can be made on how the magnetic properties of
these materials are. Recent advances in GPU-accelerated parallel computing have allowed
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simulation of systems that are orders of magnitude larger than what was previously
possible. The speed up of modern, GPU-based simulation software as compared to older
CPU-based software may be as much as two orders of magnitude [62]. Until recently,
simulating supermagnetic systems using CPU-based computing has been unfeasible due
to the computational costs, hence this work would not have been possible only a few
years ago.

1.2 Project outline

In this project, we will explore supermagnetism in patterned thin films of La0.7Sr0.3MnO3

(LSMO) using micromagnetic simulations as our tool. The main goal of the investigations
is to find out if it is possible to fabricate supermagnetic structures based on LSMO thin
film systems.

LSMO is an itinerant ferromagnetic metallic oxide with a bulk Curie temperature of ap-
proximately 380K [40]. While several studies have looked at supermagnetic ordering be-
tween nanoparticles [41, 51, 18, 50, 47, 42] using analytical and experimental approaches,
and substantial research has been done on the magnetic properties of LSMO thin films
and nanoparticles or -islands [54, 57, 49, 29, 67], using micromagnetic simulations to
explore the magnetic properties of nanoscale LSMO structures in connection with super-
magnetic ordering has not been done. Inspired by recent studies [64, 63, 26], we will
investigate the magnetic properties of both single-particle nanoscale LSMO, as well as
ordered arrays of LSMO nanomagnets.

More specifically, we will explore the magnetic phase diagram of single LSMO nanomag-
nets. Based on the findings of the explorations, we will investigate how supermagnetic
ordering can be tuned by varying coordination and geometry of regular nanomagnet lat-
tices. To elucidate the magnetic properties of supermagnetic lattices, we will perform
hysteresis simulations, and investigations of magnetic phase transitions due to tempera-
ture change.

1.3 Structure of thesis

The structure of the thesis is as follows. Chapter 2 is dedicated to developing the nec-
essary theoretical framework. We will give a review of magnetism, the micromagnetic
model and supermagnetism. In Chapter 3, we describe how micromagnetic simulations

3



are performed, the model system and the software used. Chapters 4 and 5 will be used to
present and discuss the results from the simulations. Finally, in Chapter 6 we summarize
our findings, present our conclusions and make suggestions for further work. Supplemen-
tary results and information can be found in Appendices A and B.
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Chapter 2

Theory

In this chapter we will shortly review the necessary theoretical background for this work.
In Section 2.1, we will give a brief description of classic magnetism. Section 2.2 is ded-
icated to the micromagnetic model, while Section 2.3 describes the relatively new field
of supermagnetism. Our review of classic magnetism in solid materials will follow the
general outline of Spaldin [52]. For a thorough description of the theory of magnetism,
the reader is referred to the work of Stöhr and Siegmann [55].

2.1 Magnetism in solid materials

2.1.1 The microscopic origin of magnetism

A natural starting point for explaining magnetism in materials is with the discovery and
formulation of Ampère’s circuital law of magnetism, which relates the magnetic field to
the angular momentum of an electrically charged body. Ampère did indeed hypothesize
that all magnetic effects were a result of circulating molecular currents. This hypothesis
turned out to be remarkably accurate, since later discoveries showed that magnetism
arises mainly from the orbital angular momentum of electrons, in addition to the spin
angular momentum of the electrons. The latter contribution was not identified until
after Niels Bohr in 1913 postulated that the orbital angular momentum of the electron
is quantized [10], which was confirmed by the famous Stern-Gerlach experiment in 1922
[25]. Although the electron spin was postulated already in 1921 by A. Compton [17]
(albeit based on the wrong reasons), it was not before Uhlenbeck and Goudsmit in 1926
hypothesized the electron spin based on the fine structure of atomic spectra [61], that
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the idea gained traction.

Hence, the magnetic moment of a free atom can be found through the use of Ampère’s
law and the total angular momentum of the electron. By vector addition of the magnetic
moments of the electrons in a free atom, the total magnetic moment of the atom can be
found. The picture is somewhat more complicated, since the atomic nuclei also has a
small magnetic moment, but this is largely ignored, since the electronic contribution is
far greater. For a material, comprised of atoms, the magnetic properties of the material
is determined by the sum of the magnetic moments of each atom. Depending on the
configurations of these moments, the material can be classified as ferro-, antiferro-, ferri-,
dia- or paramagnetic. This will be further explained in Sections 2.1.2 and 2.1.3.

2.1.2 Magnetic materials and magnetization

The magnetization of a material, M , is determined by the addition of all the magnetic
moments of the atoms (or ions) of the material, as well as how these magnetic moments
interact. The magnetization is defined as magnetic moment per unit volume, or M =

m/V , and is a material specific property. Here, m is the total magnetic moment of
volume element V . The response of a magnetic material to an applied magnetic field,H ,
is called the magnetic induction (or magnetic flux density) B. The relationship between
B, H and M is given by

B = µ0 (H +M ) , (2.1)

where µ0 is the permeability of free space. The units ofH andM are A/m, B has units
T and µ0 H/m. Another important property of a magnetic material is defined by how
the magnetization varies with the applied field. This property is called the susceptibility,
and can be defined as

χ =
M

H
. (2.2)

It is important to note that this definition is valid only for so-called linear materials. By
combining Equations 2.1 and 2.2, we can write

B = µ0 (1 + χ)H = µ0µrH , (2.3)

where µr = 1+χ is the relative permeability of the magnetic material. We see that while
the susceptibility describes the relation between the applied field and the magnetization
of the material, the permeability relates the magnetic flux density in the material to the
applied field. In linear materials these quantities are related.
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2.1.3 Magnetization curves and hysteresis loops

One of the most common tools for determining and classifying the magnetic properties of a
material is by plottingM versusH for the material. Such plots are called magnetization
curves (or hysteresis loops, if the magnetization curve is performed over a full cycle of
H). By examining Eq. 2.2, we see that the slope of the magnetization curve, M (H),
is the susceptibility. For para-, dia- and antiferromagnetic materials, the magnetization
curve is linear, at least for small to intermediate applied fields, as illustrated in Figure
2.1. The atomic spin structure of para- and antiferromagnetic materials are illustrated
in Figure 2.2. By considering the spin structure of these materials, the magnetization
curves can be further understood. When an external field is applied, the spins of the
para- or antiferromagnetic material will slowly align with the applied field, but when it
is removed again, the atomic spins will relax to a similar structure to those exhibited in
Figure 2.2.

M

H

para- or ant iferromagnet ic

diamagnet ic

Figure 2.1: An illustration of typical magnetization curves for dia-, para- and antiferro-
magnetic materials.

The susceptibility of para- and antiferromagnetic materials is quite small if compared
to ferromagnetic materials, and for diamagnetic materials, the susceptibility is in fact
negative. The relative permeability of such materials is therefore also small. For para- and
antiferromagnetic materials, µr & 1, whereas for diamagnetic materials, µr . 1. What
this means for the magnetization of these materials is that para- and antiferromagnets
require quite large applied fields to achieve significant magnetization of the material. In
addition, when the field is removed, the magnetization will vanish. Diamagnetic materials
will actually oppose an applied field, so that the induced magnetization in the material
is opposite to the applied field, but weak.

The magnetization curves for ferro- and ferrimagnetic materials are quite different from
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(a) (b)

Figure 2.2: Illustrations of typical ground state atomic spin structures of (a) a param-
agnetic material and (b) an antiferromagnetic material. Both materials have zero net
magnetization when no magnetic field is applied.

M

H

Ms

-Hc
(a)

(b)

(c)

(d)

Figure 2.3: An illustration of a typical hysteresis loop for a ferro- or ferrimagnetic mate-
rial. MS is the saturation magnetization andHc the coercive field. The magnetization at
point (d) is often called the remanent magnetization, Mr. Illustrations of the magnetic
microstructure of a typical ferromagnet at points (a) through (d) are shown in Figure
2.4.

the before-mentioned materials. An illustration of a typical hysteresis loop is shown
in Figure 2.3. The difference between a magnetization curve and a hysteresis loop is
illustrated well by this figure. Whereas the magnetization curve only consists of the parts
of the curve starting at point (a) and ending at point (d), the hysteresis loop provides more
information. It is important to note that as opposed to the curves illustrated in Figure
2.1, the magnetization curves of ferro- and ferrimagnetic materials will exhibit orders of
magnitude larger magnetization for small applied fields. Hence, both the susceptibility
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(a) (b)

(c) (d)

Figure 2.4: Illustrations of the magnetic microstructure of a ferromagnet at points (a)
through (d) in the hysteresis loop shown in Figure 2.3. In (a), the material is demag-
netized. The magnetic regions point in all directions, so that the total magnetization
vanishes. In (b), some additional regions have become magnetized to the right, leading
to a positive net magnetization. In (c), the magnetization is completely saturated and
in (d), the material has relaxed slightly to the remanent state. In a real magnetic ma-
terial, the picture is more complicated, as the magnetization process would also involve
deformation and motion of the different magnetic regions.

and relative permeability of such materials are large and positive. In addition, they are
not constant, but are in fact dependent on H . This is apparent from the saturation of
the magnetization and the non-linear nature of the magnetization curve.

Another important aspect of these materials is the apparent “memory effect” of the mag-
netization, meaning that the current magnetization depends on whether the material has
been previously exposed to a magnetic field or not, and how this field was applied. The
magnetic microstructure at points (a) through (d) are shown in Figure 2.4, and illustrates
the memory effect. In the demagnetized state, point (a), the material has not been ex-
posed to any external fields of considerable strength, and the macroscopic magnetization
is approximately zero. As the material is exposed to stronger fields, we see that some
regions switch their direction of magnetization, illustrated in (b). Complete saturation
is reached at point (c), and when the field is removed again, we end up at point (d),
the remanent state, which is distinctly different from the state at point (a). In order to
get back to a state of zero magnetization, a reverse field must be applied. This is called
the coercive field, Hc. This picture is consistent with our understanding of ferro- and
ferrimagnetic materials as materials that can retain some magnetization in the absence
of a field, as illustrated in Figure 2.5, making them suitable as permanent magnets. Of
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course, the processes are more complex in a real material, as the mechanism of magne-
tization switching would also involve deformation and motion of the magnetic regions,
commonly referred to as domains.

(a) (b)

Figure 2.5: Illustrations of typical atomic spin structures of (a) a ferromagnetic material
and (b) a ferrimagnetic material after they have been magnetized. Both materials have
a net magnetization, even when no external field is applied.

2.1.4 Ferromagnetic ordering and exchange coupling

The high value of χ for ferromagnetic materials leads to long-range ordering of atomic
spins. In order to explain this ordering, we need to examine the driving force behind the
phenomenon. The most significant driving force responsible for atomic spin alignment
is the quantum mechanical effect known as exchange coupling, which happens between
neighboring spins in a material.

Exchange coupling as a phenomenon can be directly inferred from the Pauli exclusion
principle, which states that no two fermions (of which electrons are a subgroup) can
occupy the same quantum state of a system. A quantum state can be considered as the
configuration space composed of both the orbital degree of freedom as well as the spin
degree of freedom for the electrons. If two electrons have the same orbital configuration,
their spins must be antiparallel, roughly leading to a net spin of zero. In the opposite
case, two electrons with different orbital configurations can have parallel spins. This
collective configuration would lead to nonzero net spin for the system. The exchange
coupling effect arises from the fact that the configuration in which the spins are parallel
lead to less Coloumbic repulsion between the electrons (since they do not possess the same
orbital configuration), which can lower the total energy of the system, making a state
with parallel spins the favored ground state of the system. This picture is of course vastly
simplified compared to the complex interactions that happen in real systems, but provides
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an intuitive understanding of exchange coupling. In real materials, the exchange coupling
can also favor antiparallel spins, leading to antiferromagnetic ordering. The mechanisms
behind these interactions are however more complex, and will not be discussed here.

2.1.5 Ferromagnetic domain formation

A ferromagnetic domain is a small region in a ferromagnetic material, where the magnetic
dipoles are all aligned in the same direction. In a demagnetized ferromagnet, the net
magnetization is zero. This happens because the net magnetization of each domain points
in different directions, so that the magnetization of the entire ferromagnet vanishes. If
we only considered exchange coupling as a driving force behind ferromagnetic ordering,
we would expect the entire ferromagnet to consist of a single domain. Single-domain
ferromagnets do in fact minimize the exchange energy, i.e. the free energy associated with
the exchange coupling of the magnetic dipoles in the system. The ground state of the
system will however be the state that minimizes the total free energy of the system. There
is for instance a large energy cost associated with supporting a magnetic field outside the
ferromagnetic material. This kind of field is known as a stray field, or sometimes as
the demagnetizing field. An illustration of how domains may form is shown in Figure
2.6. For ferromagnets of macroscopic size, the ground state will typically consist of many
domains, and generally not in an ordered fashion, as portrayed in the figure.

Figure 2.6: Illustrations of how domains may be formed in a ferromagnetic material
in order to reduce the stray magnetic field, illustrated by the field lines outside the
ferromagnet. To the left, the exchange energy is minimized by having all spins in a
collinear fashion. By forming domains, as illustrated in the middle and to the right, the
stray field is greatly reduced. In the flux-closed state to the right, there is hardly any
stray magnetic field.
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2.2 The micromagnetic model

2.2.1 The fundamental micromagnetic constraint

The micromagnetic model is a continuum model first proposed by W. F. Brown in 1959 as
a successor to domain theory [12]. Brown recognized that domain theory was incomplete
in the sense that it assumed magnetic domains and domain walls as fundamental concepts,
not as phenomena arising from a full, self-consistent treatment of magnetism. The mi-
cromagnetic framework has not proved to be as successful as Brown hoped, due to severe
mismatches between calculated properties and experimental values in early work [2]. One
of the most notable failures of early work in micromagnetism was the attempt at approx-
imating, or even ignoring, magnetostatic interactions, which are inherently long-range,
and arguably the dominant energy term for many magnetic structures. The long-range
nature of magnetostatic interactions means that calculating accurate values of the mag-
netostatic energy is a computationally expensive problem. An efficient way of doing this
was not discovered until LaBonte, a student of Brown, developed an algorithm for doing
this in one dimension [15] and then in two dimensions [35]. These methods can be viewed
as the basis of modern micromagnetic computational algorithms.

The fundamental assumption of micromagnetism can be formulated as

M (r) = MS m̂(r), (2.4)

i.e. that the magnetization can be expressed as a product of the saturation magnetiza-
tion, MS, and a continuous vector field of unit length, m̂(r), often called the reduced
magnetization. By modeling the magnetic structure of materials as a continuous vec-
tor field, we ignore the discrete nature of atoms, and assume that the magnetization is
smooth on the atomic scale.

2.2.2 The Landau-Lifshitz equation

The differential equation which governs dynamical behavior of the magnetization (and
hence also the reduced magnetism) is

∂tm̂ = τ , (2.5)

where m̂ ≡ m̂(r), and equivalently for τ , which is the “dimensionless torque” (units
s−1). By using the following expression for τ , we recover the equation known as the
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Landau-Lifshitz (LL) equation [36, 55]. The expression for the torque can be formulated
as

τ =
γ

1 + α2

(
m̂×H − α m̂× (m̂×H)

)
, (2.6)

where H ≡ H(r, t) implicitly, γ is the gyromagnetic ratio determining the rate of pre-
cession of the magnetic moment about the magnetic field and α is the dimensionless
Landau-Lifshitz damping constant.

By examining Eqs. 2.5 and 2.6, we see that the rate of change of the reduced magneti-
zation is determined by two terms. The first term is simply the torque exerted on the
magnetization by the field H . If there was no damping, α = 0, the energy of the sys-
tem would be constant and the magnetization would precess infinitely about H at the
Larmor frequency, ω = γ|H|. We know that real systems will relax to a steady-state,
where the magnetization follows the field, meaning that there must be some dissipation
of energy. A natural way of introducing energy dissipation, is by introducing a damping
torque, which must be perpendicular to both the torque exerted on the magnetization
by H , as well as the magnetization itself. The reason for this is that we must require
the damping torque to not induce or reduce precession about H , also it cannot alter the
magnitude of the magnetization, hence it must be perpendicular to both. We see that
this is the second term of the Landau-Lifshitz equation. The damping constant α must
be determined empirically.

At first glance, it seems like Eq. 2.6 is too simple to capture the subtleties of magnetism at
the submicron length scale, where effects like exchange coupling and magnetocrystalline
anisotropy become obvious. This is however not the case, if we make the definition

H(r, t) ≡Heff(r, t) = − 1

µ0

δU [m̂(r, t)]

δm̂(r, t)
, (2.7)

where U [m(r, t)] is the potential functional and Heff(r, t) ≡Heff the effective field. The
potential functional is related to the total free energy functional through

U [m(r, t)] =
dE[m̂(r, t)]

dV
. (2.8)

An important aspect of the effective field is that contributions arising from different
physical phenomena add, meaning that the effective field is the vector sum of all the
individual contributions. The reason for this is that energy adds, and differentiation is
a linear operation. In the next section we will show explicit expressions for the energy
contributions that make up E[m̂(r, t)]. For the sake of keeping notation simple, we will
just write E for the total free energy.
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A valid question is whether the LL equation is the only dynamical equation that de-
scribes magnetization in a material. In fact, the LL equation is universally valid. It can
be shown that any first order dynamical equation for the magnetization subject to the
micromagnetic constraint, Eq. 2.4, is equivalent to the LL equation [6].

2.2.3 Total energy and the effective field

In the previous section, we defined the total energy functional, and its relation to the
effective field. The total energy is composed of the following contributions.

• Eext, the energy of the external, applied field, also called the Zeeman energy.

• Edemag, the magnetostatic energy, also called demagnetization energy.

• Eexch, the exchange energy.

• Eanis, the magnetocrystalline anisotropy energy.

• Ethermal, the thermal energy.

2.2.3.1 External energy

The external energy is simply the interaction energy between an external, applied field,
Hext, and the magnetization, M = MS m̂. It is given by

Eext = −µ0MS

∫
V

m̂ ·Hext dV. (2.9)

The integral is carried out over the volume element V .

2.2.3.2 Magnetostatic energy

A monodomain ferromagnet will have a macroscopic magnetization, which leads to the
formation of a magnetic field outside (and inside) the ferromagnet. This field is often
called the demagnetizing field or stray magnetic field, Hd, due to the fact that this field
opposes the magnetization inside the ferromagnet. For this reason, the magnetostatic
energy is sometimes referred to as demagnetization energy. Supporting a large magnetic
field outside the ferromagnet is associated with high magnetostatic energy stored in the
ferromagnetic sample. Hence, formation of domains in order to minimize Hd leads to a
minimization of the magnetostatic energy. Of course, introducing domains increases the
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exchange energy. The formation of domains can therefore be considered as a competition
between exchange and magnetostatic energy minimization.

An explicit expression for the magnetostatic energy can be written as

Edemag = −µ0MS

2

∫
V

m̂ ·Hd dV. (2.10)

One of the effects of magnetostatic energy minimization is the phenomenon known as
shape anisotropy, where the lowest energy magnetic configuration is directly related to
the shape of the magnetic material. Consider a ferromagnetic nanowire. By having the
magnetization of the nanowire aligned with the long axis of the wire, the stray field is
greatly reduced. If the magnetization instead was perpendicular to the long axis, the
stray field would be much larger. Generally, the effect of shape anisotropy is a perceived
uniaxial magnetic anisotropy which favors magnetic alignment along the largest dimension
of the ferromagnet. The effect is however entirely accounted for by the demagnetization
energy.

2.2.3.3 Exchange energy

As mentioned above, exchange coupling is an important effect responsible for ferromag-
netic ordering. The exchange energy is minimized when all magnetic dipoles point the
same way. Conversely, by having domains with different magnetization, the exchange
energy of the system is raised. The expression for the exchange energy is given by

Eexch = −µ0MS

2

∫
V

m̂ ·Hexch dV, (2.11)

where
Hexch =

2Aex

M2
S

∇2m̂. (2.12)

Aex is known as the exchange stiffness, where Aex > 0 signifies that neighboring spins
want to align. The units of Aex are J/m.

2.2.3.4 Magnetocrystalline energy

In ferromagnetic crystals, magnetization tends to align along certain crystallographic
directions, known as the easy axes. The least favorable crystallographic directions are
conversely named the hard axes. This effect can be contributed to the spin-orbit inter-
action, which couples the electronic spin to the orbit of the electron. The orbit is of
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course coupled to the atomic nuclei, which make up the crystal lattice. Different crystal
structures will often exhibit different easy and hard axes.

The most simple form for magnetocrystalline anisotropy is called uniaxial anisotropy.
Such systems have a single axis of high symmetry, along which the magnetization would
prefer to align. The anisotropy energy of such a system can be expressed to the first
order as

Eanis =

∫
V

Ku1 sin2 θ dV, (2.13)

where θ is the polar angle between the easy axis and the magnetization, and Ku1 is the
first order uniaxial magnetocrystalline anisotropy constant.

More complex magnetocrystalline anisotropy exists, for instance the biaxial magnetocrys-
talline anisotropy exhibited by thin films of LSMO. In such systems there can be several
easy axes and hard axes. For LSMO, the easy axes are the 〈110〉-directions and the hard
axes the 〈100〉-directions.

2.2.3.5 Thermal energy

The thermal energy is usually defined as Ethermal = kBT , where kB is the Boltzmann
constant and T the temperature. It is however difficult to incorporate thermal excitation
in simulations, as the effect of temperature is inherently random. Instead, Ethermal can
be used as a reference in order to assess the relative magnitude of the other energies that
comprise the total free energy of the system.

2.3 Supermagnetism

2.3.1 The basics of supermagnetism

Supermagnetism as a phenomenon refers to collective magnetic ordering of ensembles
of magnetic structures or particles that are in a state called the superparamagnetic
state.

Before we define the different classes of supermagnetic ordering, it is instructive to ex-
amine superparamagnetism closer. The fact that when ferromagnetic particles become
sufficiently small, they become monodomain was first predicted in 1930 by Frenkel and
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Dorfman [5], and further explored analytically by Kittel [30] and Brown [14]. Below the
critical size the particle does indeed have ferromagnetic ordering, thus behaving like a
single spin, a superspin, which is orders of magnitude larger than a single atomic spin.
The particle is said to be superparamagnetic if the thermal energy is sufficient to switch
the direction of magnetization, i.e. the direction of the superspin. If the particle exhibits
magnetic anisotropy, the thermal energy must be sufficiently large to overcome the energy
barrier associated with switching the magnetization.

2.3.2 Supermagnetic ordering

When two superparamagnetic particles are brought in proximity of each other, they will
experience the dipole-dipole interactions between themselves. The potential energy of
two magnetic dipoles m1 and m2 (not to be confused with the reduced magnetization
m̂) separated by a distance vector r [5] is given by

Edipole =
µ0

4πr3

(
m1 ·m2 −

3

r2
(m1 · r)(m2 · r)

)
. (2.14)

By inspection, we see that the dipolar interaction is both long range and inherently
anisotropic. It is this interaction that is responsible for supermagnetic ordering, as-
suming that the superparamagnetic particles are sufficiently separated so that exchange
coupling can be ignored. When the dipole-dipole interactions become significant, an en-
semble of superparamagnetic particles may form collective, “frozen” states [18]. The three
collectively ordered phases are called the superferromagnetic (SFM) state, the superan-
tiferromagnetic (SAF) state and the superspin-glass (SSG) state. The SFM and SAF
states are both characterized by certain, specific magnetic order, whereas the SSG state
is related to disorder, frustration and randomness.

2.3.3 Superspin-glass

The SSG state, while not ordered, is characterized by a collective freezing of the superspins
in the ensemble, at a distinct temperature, known as the glass temperature Tg. Each
superspin in the superparamagnetic particle ensemble becomes increasingly aware of its
neighboring superspins as the temperature approaches Tg, and at Tg the fluctuations in
the superspin structure of the ensemble come to a halt. This marks the transition into
the SSG regime. The fluctuations above Tg were a consequence of e.g. finite temperature,
and the transition into the SSG phase marks where the interparticle interactions begin to
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dominate over random external and internal perturbations. An illustration of a possible
SSG configuration is shown in Figure 2.7. Interestingly, the transition (or relaxation) into
the SSG phase takes place asymptotically, and temperature changes below Tg also induce
changes in the superspin structure. These changes also happen asymptotically. This gives
rise to the memory effect upon aging, i.e. that the superspin structure changes as it is
aged, due to the slow relaxation dynamics [38]. This effect is often taken as evidence of
spin glass behavior.

Figure 2.7: An illustration of the SSG phase. The superspin structure is chaotic and
frustrated.

A prerequisite for obtaining the SSG state is the possibility of frustrated disorder in the
system. One way of obtaining this is by having randomly distributed superspins [42].
If the superspins are regularly distributed in e.g. a 2D lattice, the stacking must allow
multiple metastable superspin structures, leading to frustration, otherwise other collective
states like the SFM or SAF states might be realized instead.

2.3.4 Superferromagnetism and superantiferromagnetism

The SFM state is an ordered state. The ensemble of superspins collectively form one
or more ferromagnetically ordered domains, similar to the way atomic spins align in
ordinary ferromagnetic materials. An important difference is that magnetic ordering
between superspins will be induced by the dipole-dipole interaction, not the exchange
interaction (assuming sufficient spacing between superspins). According to Bedanta [5],
SFM order requires stronger inter-particle interaction than SSG systems.

For a 2D lattice of superspins, the dipole-dipole interaction does not generally lead to SFM
ordering. For disordered 2D lattices, SSG behavior may arise. For infinite ordered 2D
dipole lattices, lattices with sixfold symmetry are expected to have a uniform SFM ground
state [50, 47], whereas lattices with fourfold symmetry should have zero net magnetization
in the ground state. In fact, the vast majority of rhombic dipole lattices (of which the
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square and hexagonal ones are special cases) have been shown to form SFM ordered
ground states [23]. For finite lattices, the expected ground state is non-uniform, i.e. with
for instance domains and vortices. In some cases, SFM ordering may also exist as a
metastable state in lattices that should generally present SAF ordering, and vice versa
[23, 31]. The SAF state is similar to an ordinary antiferromagnetic state, where the
atomic spins are replaced by the superspins. SAF domains are defined as regions of the
superspin lattice that exhibit perfect AF ordering. Both SFM and SAF ordering are
illustrated in Figure 2.8.

(a) (b)

Figure 2.8: The figure shows illustrations of typical superspin structures of (a) a SFM
ordered array and (b) a SAF ordered array. Each circle represents a superparamagnetic
particle, acting as a superspin. Typical dimensions of each particle is 1 nm to 100nm.

Due to the exchange decoupling between superspins, the domain structure of SFM and
SAF lattices is expected to be different from the domain structure found in regular
ferromagnetic or antiferromagnetic materials. Recalling that exchange coupling is one of
the most significant driving forces behind domain formation, and responsible for extended
domain walls, we expect domains in SFM and SAF materials to be comparatively smaller
than in FM and AF materials, with more abrupt domain walls [64, 63, 26].

Most theoretical work on supermagnetism, more specifically on dipolar lattices, only
treats highly idealized systems. In order to further elcudiate how supermagnetism may
be manifest in realistic systems, use of the micromagnetic model in conjunction with
numerical approaches is warranted.
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Chapter 3

Modeling and simulations

This chapter focuses on the practicalities of micromagnetic simulations, and some of the
specifics of the simulations carried out as part of this work. Section 3.1 outlines different
approaches to micromagnetic simulations, as well as some considerations that must be
taken. In Section 3.2, we will describe the specific software used to carry out simulations.
The model system will be described in Section 3.3. Finally, in Section 3.4, we discuss
some of the universal simulation considerations that applied to all our simulations. We
emphasize that specific details relating to the individual simulations will be presented in
conjunction with results and discussion in Chapters 4 and 5.

3.1 Micromagnetic simulations

The Landau-Lifshitz equation, Eqs. 2.5 and 2.6, can only be solved analytically for a
limited number of systems [28, 39, 8]. In order to explore realistic systems, the equation
must be solved numerically.

One of the most common ways of numerically evaluating the LL equation is through the
use of the finite-difference method. In this approach, the system of interest is spatially
discretized in a 2D (or 3D) array of cells. The underlying assumption is that the mag-
netization is uniform in each cell. This assumption leads to a coupled set of ordinary
differential equations that can be numerically integrated using appropriate time-stepping
techniques. The alternative approach is the finite-element method, which offers greater
flexibility, but is more computationally expensive.

In order to ensure that the magnetization can indeed be assumed uniform in the dis-
cretization cells, one must assure that the spatial dimensions of the cell are sufficiently
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small. In order to determine a reasonable threshold for the cell size, we use the exchange
length. The exchange length, lex, measures the relative strength of the exchange and
demagnetizing energies [1]. For length scales smaller than lex, the exchange energy dom-
inates, so that magnetization can be assumed uniform. The exchange length is defined
as

lex =

√
2Aex

µ0M2
S

. (3.1)

By keeping the cell size smaller than lex, the underlying assumption holds.

It is important that the finite-difference scheme utilized preserves the magnetization
magnitude, as this is the fundamental micromagnetic constraint. This can be achieved
through choosing appropriate numerical integration schemes [7].

In this work, simulations were carried out using MuMax3 [62], an open-source GPU-
accelerated micromagnetic simulation program, developed by the DyNaMat group of
Prof. Van Waeyenberge at Ghent University. GPU computing offers a speed-up of ap-
proximately two orders of magnitude compared to CPU-based simulations, enabling sim-
ulations of larger and more complex systems without the use of a supercomputer. These
advances have opened up the possibility of efficiently exploring and simulating the mag-
netic microstructure of magnetic materials at length scales that are also experimentally
available.

3.2 MuMax3

MuMax3 uses the finite-difference method, as described in Section 3.1, to model the
magnetization dynamics of a specified system. The geometry of the system is discretized
into a 2D (or 3D) mesh of orthorhombic cells. The program uses material regions in
order to limit memory usage. This means that each cell is assigned to a region, with its
own specific material parameters. Up to 257 different regions can be defined, providing
great flexibility. Geometries are defined through the “Constructive Solid Geometry”-
method, where basic shapes like ellipsoids and cuboids are used, together with translation,
rotation, scaling and boolean combination.

The type of material that is modeled is realized through the material parameters shown
in Table 3.1. As before-mentioned, different material regions can have different material
parameters so that systems consisting of different materials can be modeled.

When doing energy minimization problems (i.e. finding magnetic ground state config-
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Table 3.1: The table shows the material parameters used in MuMax3 to define the type
of material being modeled.

Material parameter Symbol Units

Exchange stiffness Aex J/m
Saturation magnetization MS A/m

Landau-Lifshitz damping constant α 1
Uniaxial anisotropy constant Ku1 J/m3

Cubic anisotropy constant Kc1 J/m3

Uniaxial anisotropy direction U 1
Cubic anisotropy directions C1 & C2 1

urations), the value of α is unimportant, as damping only affects the dynamics of the
system. The values of the anisotropy constants are defined so that Ku1, Kc1 > 0 leads to
U , C1, C2 and C1×C2 being easy axes, while the opposite leads to the axes being hard
axes.

The cell size must be defined in all three spatial directions. We generally use the exchange
length, Eq. 3.1, as upper bound for the cell size. Since there must be an integer number
of cells in every direction, the cell size may deviate from the exchange length, in which
case one should choose a smaller cell size than the exchange length. In addition, MuMax3
has been shown to run significantly faster when the number of cells in every direction is
a power-of-two integer. Hence, for large simulations, it may be beneficial to use smaller
cell dimensions in order have a power-of-two number of cells in every direction.

For the case of 2D simulations of e.g. thin films, it is common to use the exchange length
as guide for cell size for the in-plane dimensions, while setting the number of cells in
the out-of-plane dimension to one. By doing this, we assume the magnetization to be
constant in the out-of-plane dimension. This assumption is based on the fact that the
out-of-plane magnetization of thin films is generally close to zero, due to the very large
demagnetizing field created by having out-of-plane magnetization [55]. In such cases,
using an out-of-plane cell size larger than the exchange length can be justified, and is the
conventional way of simulating thin films.

One of the problems of micromagnetic simulations is implementing finite temperature.
Although MuMax3 has a module to emulate temperature, through a stochastically vary-
ing thermal field based on work by Brown [13], this module will often in practice lead to
convergence problems when doing energy minimizations. Therefore, the most common
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way to simulate different temperatures, at least when energy minimization is concerned,
is by tuning the material parameters.

The results of simulations can be saved in tabular format, in which case spatial averages
are saved. Quantities such as average magnetization, energy densities, effective field,
magnetic torque and error estimates are readily available as output parameters. In addi-
tion, spatially varying output quantities such as the magnetization profile can be saved in
the “OVF” data format, and converted to image format. An example is shown in Figure
3.1.

Figure 3.1: An example of how output images from MuMax3 looks. This structure is a
circular disk of LSMO, with diameter 150nm and thickness 10 nm. The structure exhibits
the characteristic vortex ground state, a fully flux-closed magnetic profile. The arrows
and color profile indicate the direction of magnetization. The gray areas outside the
circular magnet are non-magnetic.

As can be seen in Figure 3.1, the circular shape has step-like edges, which is a result of the
fact that each discretization cell belongs to a single material region. These discrete edges
would lead to issues when structures are sufficiently small, if it was not for the possibility
to introduce edge smoothing. MuMax3 allows the user to control volume sampling in
each cell, so that the volume of structures such as this circle is accurately calculated,
even if edges appear jagged. This means that energy densities are accurately calculated,
so that the effective field is correct. In this project, we used the value 3 for the edge
smoothing variable. This means that each cell was sampled 23 = 8 times in order to
determine the volume of the magnetic region.
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3.3 The model system

In this work, we have explored magnetism in patterned (100)-oriented thin films of LSMO
using micromagnetic simulations as our tool. LSMO is a half-metallic oxide, with a bulk
Curie temperature around 380K, and can be grown in thin films using e.g. pulsed-laser
deposition (PLD) [49]. Experiments on epitaxial thin films of LSMO have shown that the
magnetic anisotropy is dominated by stress effects at room temperature [54], with biaxial
easy axes in the 〈110〉-directions and hard axes in the 〈100〉-directions. The system has
been modeled as 2D, as described in the previous section.

Patterning of LSMO thin films can be achieved through the use of electron beam lithog-
raphy in combination with ion implantation [57], so that ferromagnetic nanometer-sized
LSMO islands can be formed, embedded in a paramagnetic LSMO matrix. This method
allows for vastly different geometries and high precision, and is made possible because
the magnetic properties of LSMO are so interconnected with the atomic structure of the
material.

3.3.1 Material parameters

As shown in Table 3.1, only a few parameters are needed in order to carry out micro-
magnetic simulations. Since LSMO thin films exhibit biaxial magnetic anisotropy, the
uniaxial anisotropy constant as well as direction can be set to zero. This leaves only five
parameters needed to accurately simulate our model system. Of these five parameters,
two are temperature dependent, namely MS and Kc1.

When doing energy minimization, the value of α, the Landau-Lifshitz damping constant,
is unimportant, since this constant only governs the dynamical behavior of the system.
The value used for the temperature-independent exchange stiffness was 1.7× 10−12 J/m.
The values of MS and Kc1 were chosen according to Figures 3.2 and 3.3 respectively, and
the values of Kc1 were chosen based on the blue curve in Figure 3.3. For temperatures
above the range of the data portrayed in the graph, Kc1 was chosen to be 100 J/m3. For
temperatures below 50K, MS was fixed at 600 kA/m.
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Figure 3.2: The figure shows the value of MS for a thin film of LSMO as function of
temperature, as measured on a Versalab vibrating sample magnetometer.

Figure 3.3: The figure shows the value of Kc1 for a thin film of LSMO as function
of temperature. The anisotropy constant was measured along the [100]-direction. The
graph is taken from work by Lee et. al [37]. For this work, the blue line was chosen as
reference.

3.4 Simulation procedures

In this work, we have only been concerned with energy minimization problems, hence no
dynamical simulations were carried out. When performing energy minimizations to find
magnetic ground states, the general approach can be summarized as follows.
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• Define the system by choosing appropriate material parameters and geometry.

• Initialize the system to the wanted magnetic configuration. We often choose a
random configuration, which is the simulation equivalent of raising the temperature
above the Curie temperature in an experiment. Other choices include magnetically
saturated states, or more complicated magnetic configurations.

• Run a numerical scheme to identify the magnetic configuration that minimizes the
free energy of the system.

Modern simulation software, such as MuMax3, is extremely well suited for such simu-
lations, and can accurately calculate magnetic properties of a plethora of systems with
high accuracy [62]. Care must however be taken when considering systems with complex
magnetic free energy landscapes. Patterned thin films of LSMO are expected to belong
to this class of systems. They are characterized by non-uniqueness of magnetic ground
states, or equivalently, a free energy landscape dominated by many local minima, so that
the final configuration depends on the road taken. In order to ensure that the simulated
results are as accurate as possible, some precautionary steps can be taken.

Firstly, ensuring that simulation grid size was sufficiently large, or equivalently that the
simulation cell size was sufficiently small, was important. This consideration was not
unique to systems with complex free energy landscapes, but was indeed universal, and
nonetheless very important. The exchange length should be used as upper bound for
the cell size. Using Eq. 3.1, together with the material parameters of LSMO, as given in
Section 3.3.1, the calculated value of lex for LSMO ranged from 2.7 nm at temperatures
below 25K to approximately 4.7 nm at room temperature. Hence, we decided to set the
upper bound for the cell size (regardless of temperature) to 2.0 nm. The grid sizes were in
general chosen to be a power-of-two integer in all spatial directions, due to performance
considerations.

The second consideration was more specific to the systems of interest in this work. The
process of energy minimization from random configurations is designed to mimic the ex-
perimental method of heating the magnetic material to enter the paramagnetic regime,
followed by cooling, so that the true magnetic ground state can be found. The reason
is of course the intrinsic irreversibility of magnetic systems (i.e. the memory effect pre-
viously mentioned). When doing simulations it may therefore be worthwhile to try and
emulate realistic cooling processes, to ensure that the results are as realistic as possible.
The specific way we implemented this relaxation process was through step-wise energy
minimizations. The magnetic ground state of the simulated systems were hence identi-
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fied by allowing the system to relax at decreasing temperatures, until the wanted ground
state was found. In practice, this meant tuning the saturation magnetization and magne-
tocrystalline anisotropy constant for each step. This method of identifying the magnetic
ground state will later be referred to as temperature relaxation. The opposite approach
is to tune the magnetic properties to emulate the exact temperature that is wanted, and
perform an energy minimization directly from a random configuration. In experimental
terms, this would be equivalent to a very fast quenching of the magnetic material, hence
we will refer to the procedure as quenched relaxation.
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Chapter 4

Magnetic properties of single LSMO

nanomagnets

In this chapter, we will investigate the magnetic properties of single LSMO nanomagnets.
As before-mentioned, a prerequisite for supermagnetism being manifest in a system, is
superparamagnetism. Hence, the aim is to identify the size range where thin structures of
LSMO exhibit superparamagnetism. In Section 4.1, we will give a thorough description
of the simulations that were carried out on single LSMO nanomagnets. The results will
be presented and discussed in Section 4.2. A summary of the most important findings of
this chapter is given in Section 4.3.

4.1 Simulating single LSMO nanomagnets

The starting point of our investigations was determining the size range for which nanometer-
sized magnets of LSMO exhibit superparamagnetic behavior. In order to eliminate any
magnetic shape anisotropy effects, the geometry was chosen to be circular, as shown in
Figure 4.1. The magnets were aligned so that the easy axes were in the horizontal and
vertical directions. The thickness of the circular nanomagnets was determined by the
chosen film thickness.

Our chosen film thicknesses were 5 nm, 10 nm and 15 nm, with diameters in the range
20 nm to 150nm with increments of 10 nm. These dimensions were chosen because they
are in the range of typical sizes that are possible to fabricate using e.g. PLD for film
growth and state-of-the-art electron beam lithography for patterning. The nanomagnets
were simulated using material parameters corresponding to two different temperatures,
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Figure 4.1: The figure illustrates the geometry chosen to investigate the superparamag-
netic size range of LSMO nanomagnets. The 〈110〉-directions are the easy axes of the
magnet, with [110] as shown by the arrow.

50K and 300K. The simulation cell sizes were chosen to be 2 nm for both the in-plane
dimensions.

In order to ensure that the ground states of the magnets of each size were accurately
identified, we initialized the magnet to a random configuration (i.e. a configuration where
the magnetization of each cell points in a random direction) and relaxed it 50 times
for each size. Temperature relaxation, as described in Section 3.4, was the method of
choice.

In order to quantify whether the final magnetic configuration was monodomain, polydo-
main or a vortex (flux-closed) state, we used the absolute average reduced magnetization
of the magnetic region. Recalling that the reduced magnetization is the unit vector field
that describes the magnetic microstructure, a perfect monodomain particle would show
|〈m̂〉| = 1, whereas a perfect vortex state would show |〈m̂〉| ' 0. To allow for some imper-
fection, we chose |〈m̂〉| ≥ 0.95 as the threshold for classifying a particle as monodomain.
Conversely, the limit |〈m̂〉| ≤ 0.05 was chosen as the threshold for a vortex ground state.
Any particles falling outside both regimes were classified as polydomain.

4.2 Results and discussion

4.2.1 The magnetic ground states of single LSMO nanomagnets

After simulating single LSMO nanomagnets at different thicknesses, diameters and tem-
peratures, we wanted to identify the typical magnetic ground states. The most prevalent
magnetic ground states of single LSMO nanomagnets were by far the monodomain and
vortex ground states. The monodomain ground state was typically the most stable for
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thin magnets, and below some critical diameter, where exchange interactions dominated
over the magnetostatic forces. The vortex ground state was more often observed for
thicker magnets and at larger diameters.

In addition, we found two polydomain ground states that typically showed up in tran-
sition regimes between monodomain and vortex ground states. These were the “edge
vortex” and “S-shape” ground states. Examples of all four ground states are shown in
Figure 4.2. At 300K, only the monodomain and vortex ground states were present, ex-
cept for one case of the edge vortex state. The reason for this was most likely that the
magnetocrystalline anisotropy was very low at room temperature, and that the two poly-
domain ground states were results of competition between magnetocrystalline anisotropy
and exchange interaction, whom most likely favored monodomain ground states, and
the magnetostatic energy, which favored a vortex state. Typical values of absolute av-
erage reduced magnetization were in the range |〈m̂〉| & 0.95 for the monodomain state,
|〈m̂〉| . 0.05 for the vortex state, |〈m̂〉| ∼ 0.6 for the edge vortex state and |〈m̂〉| ∼ 0.8

for the S-shape state, but there were exceptions.

(a) (b)

(c) (d)

Figure 4.2: Examples of (a) the monodomain ground state, (b) the vortex ground state,
(c) the edge vortex ground state and (d) the S-shape ground state. The absolute average
reduced magnetization is noted on each ground state. The direction of magnetization is
given by the color legend in the middle.
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4.2.2 Probability of monodomain ground state

A total of 4200 energy minimizations were carried out in order to explore the parameter
range where single LSMO nanomagnets exhibited superparamagnetism. A prerequisite
for superparamagnetic behavior was of course that the magnetic ground state was the
monodomain state. In order to estimate the probability of having a monodomain ground
state, we plotted the fraction of monodomain ground states to the total number of sim-
ulations for each size, thickness and temperature. The results for T = 50K are given in
Figure 4.3a, whereas the results for T = 300K are shown in Figure 4.3b.
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Figure 4.3: The fraction of circular nanomagnets that exhibited monodomain ground
state at (a) 50K and (b) 300K. A total of 50 simulations were run for each diameter and
thickness t.

In general, we saw that the probability of obtaining a monodomain ground state increased
as both the thickness and diameter of the nanomagnets decreased. This was as expected,
since smaller dimensions of the nanomagnet lead to the exchange interaction and possibly
the magnetocrystalline anisotropy dominating over the demagnetizing contribution to the
free energy of the system. The results for 50K, Figure 4.3a, did show a peculiar peak
for t = 10 nm, in addition to abrupt transitions from approximately 100% monodomain
ground state to approximately 0%. This was due to formation of polydomain ground
states. At a diameter of 110nm, the monodomain state was stable again, leading to a
large fraction of monodomain ground states. This particular ground state was however in
a critical regime between a monodomain and polydomain state, or a quasi-monodomain
state. One possible explanation was that the magnetic free energy landscape of such
nanomagnets is very sensitive to change in size, due to the complex and dynamic in-
teractions of the magnetocrystalline anisotropy, exchange interaction and magnetostatic
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energy at this length scale. A small increase in monodomain ground states was also
observed at diameters of 110nm to 120nm at 300K for the 10nm thick nanomagnets.
This peak may have been caused by the same effects that were responsible for the peak
observed at 50K.

It was interesting that for t = 5 nm, the fraction of monodomain ground states was very
similar for both temperatures. It was likely that at this thickness, the exchange interaction
dominated over the magnetocrystalline anisotropy and magnetostatic self-interaction, so
that formation of polydomain ground states was suppressed.

4.2.3 The free energy of different ground states

In order to assess which magnetic ground state was the most stable, we also made plots of
average free energy density versus diameter for the different thicknesses and temperatures.
It was not given that the individual ground states found by MuMax were indeed the most
stable ones. It was possible that the some of the ground states were metastable ones, and
by comparing energy densities, we could identify the most energetically favorable ground
state. The results for a thickness of 5 nm at 50K and 300K are shown in Figures 4.4a
and 4.4b respectively. Similar plots for thicknesses of 10 nm and 15nm can be found in
Appendix B.1. The reason for only emphasizing the results for the 5 nm case, was that
this thickness exhibited the largest range of diameters where the monodomain ground
state was the most stable.

We saw that at 50K, the critical diameter of the nanomagnets was around 60 nm to
70 nm. The critical diameter referred to the diameter at which the energy density of the
monodomain ground state was equal to either the vortex or polydomain ground states.
By choosing a thickness of 5 nm, the monodomain ground state was the most energetically
favorable for dimensions up to approximately 120nm at 300K. Keeping the magnets thin
seemed to favor formation of monodomain ground states throughout the entire range of
temperatures we explored.

4.2.4 Identifying the dominant magnetic interactions

The total free energy density is a useful quantity for assessing which ground states were
the most stable ones, but in order to determine which magnetic effects were the dominant
ones for the different ground states, we looked closer at the different contributions to
the free energy density. For single nanomagnets in zero applied field, the free energy is
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Figure 4.4: Average energy density of circular LSMO nanomagnets grouped after type of
ground state. The thickness of the nanomagnets was 5 nm and the temperature (a) 50K
and (b) 300K. The reason for the average energy density of the vortex state not being
plotted below a diameter of 70 nm in (a) and (b) was that only monodomain ground
states were present.

composed of Edemag, Eanis and Eexch, as described in Section 2.2.3. The relative free energy
densities were defined as Ei = Ei/Etotal, i = demag, anis or exch, so that

∑
i Ei = 1.

The different free energy contributions are shown in Table 4.1 for 50K and 300K. The
idea behind this approach was that the composition of the free energy density of the
magnetic ground states would show which of the magnetic effects were the most important
for the formation of the specific ground state. Since the different effects scale differently
with both size and temperature, the evolution of their relative strengths was expected to
be non-trivial.

Starting at 50K in Table 4.1, we saw that the free energy of the monodomain ground state
was almost only composed of the demagnetization free energy for all thicknesses. The
contributions from magnetocrystalline anisotropy and exchange interactions were very
small in comparison, which meant that these effects were dominant for the formation of
the monodomain ground state. This could be inferred from the fact that both exchange
and anisotropy free energy had been minimized, meaning that the effective fields created
by these effects were comparatively stronger than the demagnetizing field. The free en-
ergy of the polydomain ground state showed a somewhat more even distribution between
demagnetization and exchange free energy, as well as minor contributions from the mag-
netocrystalline anisotropy. This was in accord with the type of polydomain ground state
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Table 4.1: The average relative free energy density contributions of all single LSMO
nanomagnets, grouped after magnet thickness and type of ground state at 50K and
300K. The relative energy density contributions were calculated by normalizing the
different free energy densities to total energy density for each individual simulation. N/A
meant that there were no occurrences of the particular ground state.

50K 300K
Thickness (nm) 5 10 15 5 10 15

Monodomain
Edemag 0.98 0.99 0.99 0.98 0.99 0.99

Eanis ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Eexch 0.02 0.01 0.01 0.02 0.01 0.01

Polydomain
Edemag N/A 0.82 0.83 N/A 0.14 0.26

Eanis N/A 0.02 0.01 N/A ∼ 0 ∼ 0

Eexch N/A 0.16 0.16 N/A 0.86 0.74

Vortex
Edemag 0.13 0.12 0.13 0.13 0.12 0.12

Eanis 0.08 0.08 0.07 ∼ 0 ∼ 0 ∼ 0

Eexch 0.79 0.80 0.80 0.87 0.88 0.88

most observed, i.e. the S-shape ground state, which would still have a large demagnetiz-
ing field. This domain structure was likely formed due to increased importance of the
demagnetizing field compared to the exchange field as sizes of magnets increased.

The direct effect of the magnetocrystalline anisotropy was hard to assess, but it did
most likely stabilize the S-shape ground state, since it contributed so little to the total
free energy density of the polydomain ground states. For the vortex ground state, the
free energy density was mostly composed of the exchange free energy, as expected, with
significant contributions from both anisotropy and demagnetization fields. This was in
line with our understanding of the vortex ground state as a configuration which minimized
magnetostatic self-interaction.

At 300K the trends were similar, except for smaller contributions from the magnetocrys-
talline anisotropy (which was very weak at this temperature), and a different composition
of the free energy density for the polydomain ground state. We saw that the relative con-
tributions of the demagnetization field and the exchange interaction to the free energy
energy density was approximately opposite to what was found at 50K. This meant that
the type of polydomain ground state at higher temperatures was more dominated by
the magnetostatic interactions than exchange and magnetocrystalline anisotropy. Since
the “edge vortex” ground state was the most observed polydomain ground state at this
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temperature, this result seemed reasonable. We could therefore conclude with the fact
that the edge vortex ground state was a result of competition between the magnetostatic
self-interaction and exchange interaction.

4.2.5 The effect of magnetocrystalline anisotropy

The effect of the magnetocrystalline anisotropy was perhaps more subtle than the other
exchange and magnetostatic effects. The anisotropy constant ranged from 100 kJ/m3 to
4100 kJ/m3 for LSMO in the temperature range we simulated. At 300K, it should have
been virtually unimportant, and contributed very little to the total free energy density
of the nanomagnets. It was however not possible to determine whether this was because
of minimization of the effective field created by the magnetocrystalline anisotropy, or
because the magnetocrystalline anisotropy was negligible.
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Figure 4.5: The direction of magnetization of single, monodomain circular LSMO nano-
magnets at (a) 50K and (b) 300K. The radial axis indicates diameter of the nanomagnets
in nanometer. The nanomagnets were 5 nm thick, with easy axes at 0, π/2, π and 3π/2

radians, and hard axes at π/4, 3π/4, 5π/4 and 7π/4 radians.

In order to assess the effect of the magnetocrystalline anisotropy on the direction of
magnetization for single, monodomain LSMO nanomagnets, we made polar plots of the
angle of magnetization versus the diameter of the nanomagnets. The plots for 5 nm thick
nanomagnets are shown in Figure 4.5. At 50K, the majority of the monodomain magnetic
ground states conformed to one of the easy axes of the system until a diameter of 80 nm
was reached. At this point, also monodomain states with magnetization slightly off-axis
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from the easy axis were stable. With increasing diameter, larger off-set angles were stable
as well. After inspecting the magnetic profiles of these ground states, we saw that they
were in a transition regime between the monodomain and “S-shape” ground states. Their
average absolute reduced magnetization was however above 0.95, so they were closer to
monodomain than “S-shape”. A few simulations also resulted in magnetization along the
hard axes. There were however few of these, and it is likely that they were metastable
ground states, and that they would not have been present at finite temperature, due to
thermal jostling.

At 300K, the monodomain ground states conformed in roughly equal proportions to the
eight directions given by the easy and hard axes, at least for smaller diameters. Recalling
that the magnetocrystalline anisotropy was very small at this temperature, this supported
the notion that the magnetocrystalline anisotropy was not of critical importance at higher
temperatures. The fact that such a large amount of monodomain ground states conformed
to the hard axes was most likely a numerical artifact. Since the effective field created
by the magnetocrystalline anisotropy depends on the derivative of the anisotropy free
energy, the effective field is close to zero around both the easy axes and the hard axes.
If finite temperature was introduced (i.e. thermal jostling), it is likely that much fewer
ground states would have conformed to the hard axes, if any.

4.2.6 Comparison of thermal energy to switching energy

In order to have superparamagnetic nanomagnets, not only is a monodomain ground
state a prerequisite, the thermal energy must also be of the same order as the energy
required for switching the direction of magnetization. For circular nanomagnets, the only
source of anisotropy is the magnetocrystalline anisotropy. Therefore, the energy barrier
associated with switching the direction of magnetization from one easy axis to another
easy axis (by uniform rotation) is Kc1V . For the circular nanomagnets we simulated, the
requirement for superparamagnetism was then Kc1V ∼ kBT . In Figure 4.6 we plotted
the diameter at which Kc1V = kBT for different thicknesses and temperatures. This
gave an indication of the size range where a monodomain nanomagnet would also be
superparamagnetic. If considering a thickness of 5 nm, we saw that the thermal energy
was equal to the switching energy for diameters from approximately 10 nm at 50K to
over 100nm at 300K. Since the effect of temperature is inherently random, we would
expect superparamagnetic behavior for nanomagnets with somewhat larger diameters or
thicknesses than what is indicated by Figure 4.6.
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Figure 4.6: The graph shows the diameter of a circular LSMO nanomagnet at which
Kc1V = kBT for different thicknesses and temperatures.

Having superparamagnetic nanomagnets was important if we wanted to achieve super-
magnetic ordering. Therefore, choosing the right dimensions was critical. Assuming
that supermagnetic ordering was strictly driven by dipole-coupling between superpara-
magnetic nanomagnets, we wanted to maximize the volume of these nanomagnets. The
reason for this was that the dipole-dipole energy, Eq. 2.14, is dependent on the total
magnetic dipole moment of each magnet, which was directly related to the volume of the
magnet. Since volume scales quadratically with the diameter of a cylinder, and only lin-
early with thickness, a good approach would be to increase diameter before thickness. We
also saw from the results that thinner nanomagnets yielded a larger range of diameters
and temperatures at which superparamagnetic behavior should be present.

4.3 Summary of findings

In this chapter, we have investigated the magnetic properties of single LSMO nanomag-
nets. The geometry we chose was that of thin cylinders, to exclude shape anisotropy
effects on in-plane magnetization. We simulated ground state magnetization of these
nanomagnets for thicknesses from 5 nm to 15 nm and diameters in the range 20 nm to
150nm. Two temperatures were investigated, 50K and 300K. We found four types of
magnetic ground states, namely the monodomain ground state, the vortex ground state
and two polydomain ones; the S-shape and edge vortex ground states. The two former
were the most prevalently encountered ones.
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We then estimated the probability of obtaining the monodomain ground state by calculat-
ing the fraction of monodomain ground states for all diameters and thicknesses. For the
5 nm thick nanomagnets, we saw that the probability of obtaining a monodomain ground
state was approximately unity up to diameters of 60 nm throughout the temperature
range, and the probability never fell below 0.6.

To assess the stability of the ground states of the nanomagnets and identify the dominant
magnetic interactions responsible for them, we looked at the total free energy density of
the different ground states, and the relative contributions from different physical phe-
nomena. We found that the monodomain ground states for the 5 nm thick magnets were
the most energetically favorable ground state up to diameters of 60 nm to 70 nm at 50K
and 120nm to 140nm at 50K. The thicker nanomagnets exhibited in general lower prob-
abilities of monodomain ground state, and larger fractions of polydomain nanomagnets.
The monodomain ground state was found to be a result of exchange interaction and pos-
sibly magnetocrystalline anisotropy dominating over the magnetostatic self-interaction,
whereas the opposite was true for the vortex ground state. The polydomain ground states
were results of the complex competition between exchange interaction, magnetocrystalline
anisotropy and the demagnetizing field. The effect of magnetocrystalline anisotropy was
found to be less significant at higher temperatures.

Thermal energy was compared to the energy required to switch the direction of magneti-
zation for the entire parameter range of simulations. This was done to evaluate whether
monodomain nanomagnets would also exhibit superparamagnetism at the relevant tem-
peratures. For 5 nm thick magnets, the diameter at which Ethermal ∼ Eanis ranged from
approximately 10 nm at 50K to over 100nm at 300K. From this, it could be inferred
that the 5 nm thick LSMO nanomagnets should exhibit superparamagnetism in the range
of diameters from 20 nm to over 100nm at experimentally available temperatures.
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Chapter 5

Supermagnetism in patterned LSMO

thin films

The purpose of this chapter is to demonstrate and characterize supermagnetic ordering
and phenomena in ordered arrays of LSMO nanomagnets. Section 5.1 is dedicated to the
description of the specific simulation procedures we utilized, and Section 5.2 to results
and discussion. In Sections 5.2.1 to 5.2.4, we will examine the supermagnetic ground
states of the arrays. Effects of stacking, exchange decoupling and finite size will be
discussed. Sections 5.2.5 to 5.2.8 focus on the response of the arrays to applied fields
and magnetization dynamics. Finally in Section 5.3, we summarize the most important
findings in this chapter.

5.1 Simulating arrays of LSMO nanomagnets

After exploring the magnetic properties of circular LSMO nanomagnets, we wanted to
investigate supermagnetic ordering in arrays of LSMO nanomagnets, as well as the mag-
netic properties of such arrays.

We investigated two different two-dimensional Bravais lattices, namely the square lattice
and the hexagonal lattice. The reason for this was that the latter has been predicted
to exhibit superferromagnetic ordering, whereas the former has been predicted to show
superantiferromagnetic ordering, with no net magnetization.

The square lattice is illustrated in Figure 5.1. The parameters used for the array were
d = 50 nm and |a1| = |a2| = 60 nm, so that the interparticle spacing was 10 nm. Needless
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Figure 5.1: An illustration of the square Bravais lattice of LSMO nanomagnets with
primitive lattice vectors a1 and a2. Each magnet was centered on a lattice point. The
easy axes of the magnets were in the 〈110〉-directions, i.e. parallel to both a1 and a2.

to say, a1 ⊥ a2. The thickness of the magnets was 5 nm. These choices were based on
results from the simulations of single nanomagnets, as well as wanting to keep in-plane
dimensions as large as possible, in order to ensure that the structures were feasible to
manufacture in the laboratory.

The entire array consisted of 30 magnets in both directions, i.e. 900 magnets in total,
meaning that the square array measured 1.8 µm along both edges. The simulation grid
was 1024 × 1024 cells. Unless otherwise stated, the material parameters were chosen to
corresponding to a temperature of 250K. The reason for choosing 250K was that we
expected stronger interparticle coupling at this temperature, due to a larger value of MS,
but we would still be well within the superparamagnetic regime of the individual nano-
magnets. We first performed quenched relaxations, and later temperature relaxations, to
see whether the relaxation scheme would affect the supermagnetic ground state.

The hexagonal array is illustrated in Figure 5.2. Once again we chose to use d = 50 nm,
|b1| = |b2| = 60 nm and a thickness of 5 nm. The angle between b1 and b2 was 60°.
Each row of magnets in the direction of b1 consisted of 30 magnets, and the entire array
consisted of 34 rows, arranged in a zig-zag configuration, i.e. with every row displaced by
b2 and every other row displaced by an additional −b1. This yielded an approximately
square array with dimensions of 1.8 µm × 1.8 µm. We chose to use a simulation grid of
1024× 1024 here as well.
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Figure 5.2: An illustration of the hexagonal Bravais lattice of LSMO nanomagnets with
primitive lattice vectors b1 and b2. Each magnet was centered on a lattice point. The
easy axes of the magnets are in the 〈110〉-directions.

5.2 Results and discussion

5.2.1 Tailoring supermagnetic ordering through stacking

In order to explore the inherent supermagnetic ordering of the arrays described in Section
5.1, we performed 50 energy minimizations, starting from random configurations. The
results from the temperature relaxation of the square array showed that interparticle
interactions did indeed favor SAF ordering. Four of the 50 magnetic ground states are
shown in Figure 5.3.

As predicted by theory, the finite lattice exhibited non-uniform ground states, with do-
main structures and defects, such as small regions with SFM ordering instead of SAF or-
dering. In addition, there was no single ground state, but instead a plethora of magnetic
conformations that were all approximately equally stable from a free energy perspective.
The average macroscopic magnetization of the 50 square arrays was 〈|m̂|〉 = 0.035±0.019.
The error estimate corresponded to one standard deviation.

Even though the SAF domains took on different shapes and sizes, there were some features
that seemed more universal. Due to the finite nature of the lattices, the magnetization
tended to align with the edges of the arrays. Also, the vast majority of domain walls were
abrupt, and involved either a 90° rotation of magnetization or no rotation at all (i.e. a
“SFM stacking fault”).

The hexagonally stacked arrays displayed very different magnetic ground states from the
square arrays. The material parameters were exactly the same, and the arrays were
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Figure 5.3: Four of the 50 simulated magnetic ground states for the square array. The
direction of magnetization is given by the color legend in the middle. The arrays were
1.8 µm× 1.8 µm and 5 nm thick. The a1-direction was along the horizontal edge, and a2

along the vertical edge.

initialized to the same random configurations, so the only significant difference was in
fact the stacking pattern.

Four of the 50 magnetic ground states are shown in Figure 5.4. The average magnetization
of the hexagonal arrays was 〈|m̂|〉 = 0.086± 0.051, which was not significantly different
from the magnetization of the square stacked arrays.

The domain structure of the hexagonally stacked arrays was more reminiscent of that
found in a continuous ferromagnetic thin film. There were examples of disordered ground
states, as shown in Figure 5.4a, but the most prevalent type of ground state was the
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(c) (d)

Figure 5.4: Four of the 50 simulated magnetic ground states for the hexagonal array. The
direction of magnetization is given by the color legend in the middle. The arrays were
approximately 1.8 µm×1.8 µm and 5 nm thick. The b1-direction was along the horizontal
edge.

Landau-like vortex state, of which one example is shown in Figure 5.4d. The quasi-Landau
states of the array did however in general exhibit six domains, instead of the classical
four of ordinary Landau states (an example of a Landau state in a continuous LSMO thin
film is shown in Figure 5.5). One similarity between the two differently stacked arrays
was that the magnetization tended to align with the edges of the arrays.

The presence of the six-fold quasi-Landau state meant that the LSMO nanomagnets did
not only conform to the easy axes of the individual magnets, but seemed to conform
to directions induced by the lattice as well. Hence, there was an apparent superlattice-
induced magnetic anisotropy. The strength of the induced anisotropy must have been
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of the same order as the magnetocrystalline anisotropy (which was fairly weak, Kc1 =

100 J/m3), since its effect was so pronounced.

The more disordered ground states did exhibit some common features. For instance, most
domain walls tended to align with axes of high-symmetry. Abrupt domain walls always
took place along one of the primitive directions of the lattice, as illustrated by the oblique
middle domain wall in Figure 5.4b, whereas the extended domain walls could form along
other axes, such as the vertically aligned domain wall in Figure 5.4c. Abrupt domain
walls tended to involve a 180° rotation of the magnetization, whereas the extended walls
more often involved a 60° or 90° rotation. This did not mean that there weren’t examples
of abrupt domain walls with 60° or 90° rotations. Multiple vortex-like structures were
also present.

One of the most important differences between these superlattices of nanomagnets and
continuous thin films, was the exchange decoupling between separate nanomagnets. We
know that the exchange interaction is very important for alignment of magnetic moments
and long-range order in continuous films. We have seen that dipolar interactions may also
favor aligned magnetic moments, and that it can induce long-range order. To elucidate
how exchange decoupling affected the ordering of the arrays, we compared the arrays to
a continuous LSMO thin film.

5.2.2 The effect of exchange decoupling

The continuous thin film of LSMO we simulated had dimensions 1.8 µm× 1.8 µm× 5 nm,
with the same material parameters as the arrays. We also used the same relaxation
procedures. The result is shown in Figure 5.5.

The continuous film exhibited four large domains with magnetization along the easy axes
of the system. The magnetocrystalline easy axes were in the horizontal and vertical
directions, and we see that the magnetization aligned with these directions. This also
meant that the magnetization aligned with the edges of the film, which is preferential
for the minimization of the stray field. There were clearly defined, although somewhat
extended, domain walls. The domain structure is a good example of a Landau state. The
magnetic ground states of the hexagonal array resembled the continuous film case, but
the hexagonal array exhibited more disorder and chaos.

One of the most obvious effects of exchange decoupling was then that the length scales
necessary for disorder and non-unique ground states were greatly reduced. No conven-
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Figure 5.5: The magnetic ground state of a 1.8 µm × 1.8 µm square shaped continuous
LSMO thin film. The thickness of the film was 5 nm. The magnetic domain structure
was a good example of a typical Landau state. Direction of magnetization was according
to the color legend to the right.

tional ferromagnetic material would show the type of magnetic ground state exhibited by
the square arrays, whereas the hexagonal arrays could be said to resemble continuous thin
films of LSMO, but for much larger thin films (i.e. typical blanket film magnetization).
The combination of exchange decoupling and different superlattice structures may open
for the possibility of engineering specific and novel magnetic spin textures at length scales
that were previously unavailable.

5.2.3 Statistically quantifying interparticle coupling

In the previous sections, we presented a qualitative description of the simulated magnetic
ground states of the two arrays we defined. We also wanted to develop a method to
quantitatively analyze the magnetic ground states. The method is described in Appendix
A.1, and was based on calculating average one dimensional Fourier power spectra of
the magnetization along the primitive lattice directions of the nanomagnet arrays. The
method was useful for quantifying periodicities in the magnetic texture.

The average Fourier power spectra of the perpendicular components of the magnetization
for the square array along the a1- and a2-directions, as specified in Figure 5.1, is shown in
Figure 5.6. The spectra of the parallel components of the magnetization are given in Ap-
pendix B.2. They showed that the average parallel component of the magnetization was
non-zero. In addition, there was nearest-neighbor periodicity, indicating that the parallel
components of the magnetization typically took on a head-to-tail configuration.

The spectra of the perpendicular components of m̂, Figures 5.6a and 5.6b, showed no
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Figure 5.6: Average Fourier power spectra of the perpendicular components of the mag-
netization of the square array along (a) a1 and (b) a2 exhibited peaks centered at
k = 8.33 µm−1, indicated by the red, vertical dashed line. These peaks corresponded
to a periodicity of 120nm.

DC peak, indicating that the average perpendicular components of the magnetization
was zero. This was consistent with how the biaxial anisotropy of the system did not
favor the a1-direction over a2 or vice versa, so that average perpendicular magnetization
should be zero. The only significant peak in these spectra was the one centered around
k = 8.33 µm−1, indicating a periodicity of 120nm, or equivalently, a next-nearest-neighbor
periodicity. Both peaks showed signs of splitting, indicating deviation from perfect order-
ing. From this, we could infer that the perpendicular components of the magnetization
were on average opposite in every other nanomagnet. The Fourier power spectra re-
flected the observed magnetic structure, i.e. superantiferromagnetic ordering made up of
alternating dipolar chains, but with multiple domains.

We wanted to quantify the average interparticle coupling for the hexagonal arrays as
well, and therefore we performed Fourier analysis of the 50 magnetic ground states. The
parallel and perpendicular components were analyzed along the primitive directions of
the lattice, i.e. the b1- and b2-directions as defined in Figure 5.2. The Fourier power
spectra of the perpendicular components are shown in Figure 5.7, whereas the spectra of
the parallel components are given in Appendix B.2. The characteristics of the parallel
components of the magnetization were similar to that of the square array, except there
were signs of peak splitting, indicative of multiple domains. This meant that the parallel
components of the magnetization typically aligned in a head-to-tail fashion, but that
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the length of these dipolar chains were generally shorter than the array. This was in
agreement with observations.

Hexagonal array
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Figure 5.7: Average Fourier power spectra of the perpendicular components of the mag-
netization of the hexagonal array along (a) b1 and (b) b2 exhibited peaks or split peaks
centered at k = 16.67 µm−1, indicated by the black, vertical dashed line. The difference
between the two latter spectra was that the first case did not exhibit a significant DC
peak at zero, but instead a peak at k1 = 0.48 µm−1, whereas the latter had a DC peak
centered at zero.

The main feature of the average Fourier power spectra of the hexagonal array was the
fact that the periodicity of the magnetization was predominantly of the nearest-neighbor
kind, with some long-wave or DC contributions, which was suggestive of SFM ordering.
The spectrum of m̂⊥ along b1, Figure 5.7a, had both a split DC-peak, with near-zero
amplitude at k1 = 0, and a split nearest-neighbor peak. Hence, the average perpendicular
magnetization to b1 was close to zero, and multiple domains were present. Since the
magnetocrystalline easy axes of the nanomagnets were parallel and perpendicular to b1,
and the array was otherwise symmetric about b1, this result was not surprising. The
average perpendicular magnetization should indeed be zero. The difference from SAF
ordering is obvious, since the periodicity of the perpendicular magnetization was of the
nearest-neighbor kind, not next-nearest-neighbor.

The spectrum of m̂⊥ along b2, Figure 5.7b, did not exhibit split peaks. The perpendicular
component of the magnetization with respect to b2 was therefore not on average zero,
but the nature of the periodicity was otherwise similar. This may be a result of the fact
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that the array of nanomagnets was asymmetric about the b2-direction, both with respect
to array shape and magnetocrystalline easy axes.

Using Fourier power spectra to quantitatively determine the nature of the average in-
terparticle coupling yielded results that enforced our conclusions from the qualitative
analysis of the magnetic ground states of both arrays, but the method was not suited for
assessing e.g. the strength of coupling between particles, and it didn’t provide a single
quantity that could be used as order parameter. We also hoped that the spectra would
provide information about average sizes of domains, but that was unfortunately not the
case.

5.2.4 Identifying finite size effects on supermagnetic ground state

All previous simulations of both the square and hexagonally stacked arrays were done
on finite arrays, i.e. arrays that terminated at the edges of the simulation box. In order
to investigate the effects of finite size, we performed the same simulations with peri-
odic boundary conditions. Note that we did not introduce the typical infinite periodic
boundary conditions, but instead a single extra image of the arrays on the four edges of
the arrays. This choice was based on the assumption that infinitely repeating boundary
conditions would lead to an idealized situation that could not be realized experimen-
tally.

Two of the ground states for the square array with periodic boundary conditions, and two
for the hexagonal array with periodic boundary conditions are shown in Figure 5.8.

For the square array with periodic boundary conditions, Figures 5.8a and 5.8b, the ground
states exhibited close to perfect SAF ordering. Not all magnetic ground states were this
ordered, but they were in general more ordered than the ground states of the finite
arrays. The average magnetization of all 50 simulated ground states for the square arrays
was 〈|m̂|〉 = 0.023 ± 0.017, which was somewhat smaller than for the square arrays
without periodic boundary conditions. One possible reason could be the fact that the
nanomagnets at the edges no longer had any reason to align their magnetization with the
edge, leading to less disorder, which lowered the average magnetization.

It would be instructive to examine the Fourier spectra of the magnetization profiles
of Figures 5.8a and 5.8b, since these were the two ground states that ended up the
closest to perfect ordering. The Fourier power spectra of the vertical components of
the magnetization in Figure 5.8a, and similarly for the horizontal components of the
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Figure 5.8: The magnetic ground states of randomly initialized arrays with periodic
boundary conditions. The square stacked arrays, (a) and (b), exhibited near-perfect
SAF ordering. The hexagonally stacked arrays, (c) and (d), showed more disordered
magnetic ground states than what was exhibited by the hexagonal arrays without periodic
boundary conditions. The dimensions of the arrays were approximately 1.8 µm× 1.8 µm.
The nanomagnets were 5 nm thick.

magnetization in Figure 5.8b, are given in Figures 5.9 and 5.10, respectively. The Fourier
power spectra of the other components of the magnetization showed no significant peaks,
meaning that the these were very close to zero throughout the arrays.

We saw that the Fourier power spectra of Figure 5.8a, shown in Figure 5.9, closely
resembled the average power spectra of the arrays without periodic boundary conditions in
Figure 5.6, except the peaks were narrower, and the next-nearest neighbor peak splitting
was more pronounced. The splitting arose because of the SFM stacking faults in Figure
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Figure 5.9: Fourier power spectra of the vertical components of the magnetization in
Figure 5.8a. The spectrum of m̂‖ along a2 (a) exhibited typical DC and nearest-neighbor
peaks, and the spectrum of m̂⊥ along a1 a split next-nearest neighbor peak.
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Figure 5.10: Fourier power spectra of the horizontal components of the magnetization in
Figure 5.8b. The spectrum of m̂‖ along a1 (a) exhibited typical DC and nearest-neighbor
peaks, and the spectrum of m̂⊥ along a2 a next-nearest neighbor peak.

5.8a, enforcing our interpretation of split peaks as a sign of multiple domains. The
spectra of Figure 5.8b in Figure 5.10 exhibited the DC and nearest-neighbor peaks for
the parallel magnetization, and the next-nearest neighbor peak for the perpendicular
components. These two spectra illustrated nicely how the Fourier power spectra of perfect
SAF ordering would look.

For the hexagonally stacked arrays, Figures 5.8c and 5.8d, the magnetic ground states
were more disordered than the ones of the finite lattices. The tendency for the magne-
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tization to align with the edges was less pronounced. This was reflected in the average
magnetization of the arrays, which was 〈|m̂|〉 = 0.25 ± 0.11. This may have been a
result of larger domains, as seen in Figure 5.8d, and suggests that the more ideal the
hexagonal lattice becomes (i.e. closer to the infinite, idealized situation), the larger the
magnetization becomes as well.

An important difference between the square stacked and hexagonally stacked arrays was
that whereas the former seemed to become more ordered when periodic boundary con-
ditions were introduced, the opposite was true for the latter. The hexagonal lattice
exhibited typical blanket film magnetization when periodic boundary conditions were ap-
plied. A possible explanation was that the increased order was a result of how the forces
behind ordering of the square lattice was of a short-ranged nature, whereas the opposite
was true for the hexagonal array. To illustrate this point, consider a nanomagnet in the
middle of the square array. The magnetic field from another nanomagnet a couple of unit
cells away would not influence the first nanomagnet significantly, due to the cancelling
effect of alternating directions of magnetization. For the hexagonal array, there was typ-
ically much less cancelling effects from alternating directions of magnetization. Hence, a
nanomagnet in the middle of the hexagonal array would be influenced by a much larger
neighborhood of other nanomagnets. This would increase the propensity for frustrated
magnetic ground states, which we saw was realized through more disorder.

5.2.5 Tuning the supermagnetic ground state by applying a field

To investigate how the magnetic ground states of the arrays could be controlled by ap-
plying a field, we found the ground states of the arrays after they had been magnetically
saturated in different directions. The square array was completely saturated along two
different directions, the [1̄10]- and the [1̄00]-directions. These were chosen because the
former constituted an easy axis of the entire array, since each particle had magnetocrys-
talline easy axes in the 〈110〉-directions, whereas the latter saturation direction was a
hard axis for the array, because of the hard axes of each particle. The hexagonal ar-
ray was saturated along the same axes as the square array, for similar reasons. Even
though the [1̄10]-direction was an easy axis for the nanomagnets, it was not a direction
of high-symmetry for the hexagonal array, so the axis could not be considered a true easy
axis.

The two magnetic ground states of the square stacked array after saturation are shown
in Figure 5.11. The array initialized along the [1̄10]-direction, Figure 5.11a (the green
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arrow if referring to the color legend), exhibited a large degree of SAF ordering. Two
large SAF domains formed with magnetization perpendicular to the initial direction of
magnetization. The two domains were off-set by one row, so that they had opposite
magnetization along the horizontal direction. The formation of these domains was most
likely initiated by the large demagnetizing fields at the horizontal edges of the array.
The array initialized along the [1̄00]-direction, Figure 5.11b, exhibited a multidomain,
albeit ordered, SFM ground state. This was one example where the square stacked array
exhibited SFM ordering. The magnetization followed the edges of the array, somewhat
reminiscent of a Landau state. The big difference between a Landau state and this one
was of course that this state was not flux-closed since there were large demagnetizing
fields at the top left and bottom right corners.

(a) (b)

Figure 5.11: The magnetic ground states of the square stacked array after it was mag-
netically saturated in the (a) [1̄10]-direction and (b) the [1̄00]-direction, as indicated by
the black arrows. The resulting |m̂| was (a) 0.15 along the [1̄10]-direction and (b) 0.83

along the [1̄00]-direction.

For the hexagonally stacked array, the magnetic ground states of the initially saturated
arrays are shown in Figure 5.12. The one initialized along the [1̄10]-direction is shown in
Figure 5.12a. Multiple domains formed in this array, once again probably initiated by the
demagnetizing fields at the horizontal edges. The hexagonal stacking was reflected in the
domain structure, which exhibited a quasi-hexagonal symmetry (domain walls roughly
followed the primitive lattices of the hexagonal array). The array initialized along the
[1̄00]-direction, Figure 5.12b, resembled the magnetic profile of the square stacked array
in Figure 5.11b, but with less sharp domain walls. Interestingly, all the magnetic ground
states portrayed in Figures 5.11 and 5.12 exhibited inversion symmetry.

These simulations were effectively investigations of the remanent states of the ordered
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(a) (b)

Figure 5.12: The magnetic ground states of the hexagonally stacked array after it was
magnetically saturated in the (a) [1̄10]-direction and (b) the [1̄00]-direction, as indicated
by the black arrows. The resulting |m̂| was (a) 0.79 at an angle of −6° with respect to
the [1̄10]-direction and (b) 0.92 at an angle of −1° with respect to the [1̄00]-direction.

arrays. The final direction and magnitude of magnetization for the square arrays showed
that initialization along the easy axes of the array lead to a small remanent magneti-
zation along the easy axes (|m̂| = 0.15), and initialization along the hard axes lead to
much larger magnetization along the hard axes (|m̂| = 0.83). There was no consider-
able rotation of the final magnetization with respect to the initial magnetization. The
large difference in final magnetization was of course caused by the difference in super-
magnetic ordering for the differently initialized arrays. The conclusion was therefore that
by using an applied field, we could switch between SAF and SFM ordering in the square
array.

For the hexagonal array, the remanent magnetization was larger. The [1̄10]-initialized
array exhibited |m̂| = 0.79 rotated by −6° with respect to the initial direction of mag-
netization, and correspondingly |m̂| = 0.92 rotated by −1° for the [1̄00]-initialized array.
Hence, the remanent magnetization of the hexagonal array was generally greater, accom-
panied by small rotations. This was most likely caused by the fact that the axes of high
symmetry did not coincide with the initial directions of magnetization.
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5.2.6 The effect of superlattice symmetry on the hysteretic be-

havior of supermagnetic arrays

In order to further characterize the magnetic response of the two different arrays to an
applied field, we simulated hysteresis curves of both arrays. The geometries and material
parameters of the two arrays were exactly as before.

First, we simulated hysteresis loops with an applied field along the [110]-direction. The
applied field ranged from −20mT to 20mT, with steps of 0.25mT. Both arrays were
first temperature relaxed, as described in Section 3.4, in zero field, before the external
field was applied. The magnetization profiles and average magnetization were saved at
each point.

The hysteresis loop of the square array is shown in Figure 5.13. Similarly, the hysteresis
loop of the hexagonal array is shown in Figure 5.14. Calculated values of Hc andMr for
these two cases are given in Table 5.1.

The characteristics of the full hysteresis loop of the square array, Figure 5.13a, were
interesting, as it exhibited well defined steps. In order to properly understand why these
steps appeared, we looked closer at the magnetic microstructure of the arrays at different
points of the hysteresis loop. These points are indicated by the roman numerals I-VI in
Figure 5.13a, and the corresponding magnetic microstructures are shown in Figures 5.13b
through 5.13g.

Starting in the top right corner of the hysteresis loop, the array was completely saturated
towards the right, i.e. completely red if referring to the color legend. As the applied
field was lowered, the magnetization followed the blue curve towards point I. The SAF
domains nucleated along the vertical edges, and grew steadily up until this point. The
difference in applied field between points I and II, as well as II and III, was only 0.25mT,
but over this small interval, the magnetic microstructure changed to the one portrayed
in Figure 5.13d, which was similar to the ground state of the square array shown in
Figure 5.11a. This lead to the large decrease in M . As the applied field was reduced
further, so that it became negative, the domain structure changed gradually till point
IV, after which it switched quite rapidly to the configuration at point V. This domain
structure was maintained throughout most of the step at point V. The small decrease in
magnetization along the step stemmed from gradual 90° rotation of the vertically aligned
superspins. The transition from the step at V to the step at VI was a result of the red
rows at the top and bottom of Figure 5.13f switching, so that the domain structure was
as shown in Figure 5.13g. The final transition into the fully saturated state involved the
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Figure 5.13: Hysteresis of the square array along the [110]-direction (a) with the magnetic
profile of the array at different points of the hysteresis loop (b-g). The pink curve in the
hysteresis loop was the virgin magnetization curve.

switching of the last two red rows.

The hysteresis loop of the hexagonal lattice, Figure 5.13a, did not exhibit the same
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Figure 5.14: Hysteresis of the hexagonal array along the [110]-direction (a) with the
magnetic profile of the array at different points of the hysteresis loop (b-f). The pink
curve in the hysteresis loop was the virgin magnetization curve.

number of steps, and was in general more similar to the hysteresis loop of typical soft
magnetic materials. A very abrupt transition from magnetization in the [110]-direction to
the [1̄1̄0]-direction was found. Once again, we looked at the magnetic profile to understand
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Table 5.1: The coercive field and remanent magnetization along the [110]-direction for
the square and hexagonally stacked arrays respectively.

Hc (kA/m) Mr (kA/m)

Square 0.518 70.276
Hexagonal 0.700 378.609

what was going on. The magnetic microstructure at points I-V in Figure 5.14a are shown
in Figures 5.14b-5.14f. The pink curve was the virgin magnetization curve.

Starting with the fully saturated array (not portrayed here) in the top right corner of
Figure 5.14a, and moving towards point I, the domains nucleated and formed along the
vertical edges. The magnetic structure clearly showed that the hexagonal array imposed
some magnetic anisotropy. Moving to points II and III, the magnetic profile became more
chaotic, until a sudden shift occurred between points III and IV. The small plateau close
to point IV transitioned into point V by 180° rotation of the red areas in Figure 5.14e,
and growth of the left-pointing domains.

The mechanism of magnetization reversal for the hexagonal array seemed to be composed
of both domain wall motion and single-domain coherent rotation, due to appreciable mag-
netization perpendicular to [110] around H = 0, M⊥ ≈ 45 kA/m. This was not the case
for the square stacked array, which showed at most M⊥ ≈ 0.1 kA/m at H ≈ 0.7 kA/m.
Hence, the mechanism of magnetization reversal was domain wall motion (or domain
growth), not single-domain coherent rotation. This was apparent in the magnetic mi-
crostructure in Figures 5.13b to 5.13d. The type of domain nucleation and growth ex-
hibited by the square lattice has also been called antiferromagnetic fanning [22], and was
demonstrated in simulations of rectangular grids of magnetic permalloy nanoparticles. It
was explained in terms of the multistability of the system, where metastable intermediate
states were formed with successively reversed dipole-chains. The mechanisms of magne-
tization reversal for the square lattice were therefore very different from the ones present
in the hexagonal lattice.

The discrete steps of the hysteresis loop of the square lattice were a characteristic not
usually encountered in continuous magnetic materials. Steplike hysteresis curves have
been found in theoretical work on 1D Ising spin chains with antiferromagnetic interac-
tions [4]. Ising models in multiple dimensions with mixed interactions generally exhibit
first-order transitions [20, 19], and magnetic ordered phases commensurate with the un-
derlying lattice. Self-similar hysteresis curves with step-like behavior have been calcu-
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lated theoretically for Ising models [65, 24], and have also been identified in simulations
of dipole-dipole coupled square lattices [22]. Hence, our square stacked array shared some
of the its characteristics with Ising models, making it an interesting objective of study
also for fundamental physics purposes. Our simulated arrays were however more complex
than Ising models, since each magnetic element had an uncountable number of possi-
ble states (i.e. magnetization in any possible direction), but in practice, most elements
typically took on one of four states (magnetization in the up/down/right/left direction),
which partly explained its hysteretic similarity with Ising model systems.

The step-like behavior could also be understood in terms of phase transitions, from the
SAF phase to the SFM phase, which is metastable on the square lattice [23]. The sym-
metry of the two different phases belong to different fundamental groups, hence the phase
transition between the two must be of the first order, which in turn could explain the
abrupt shifts in magnetic structure between the steps in the hysteresis loop.

For the hexagonal lattice, no such phase transitions took place. The SAF ordered phase
was not stable (nor metastable) on the hexagonal lattice, hence the hysteresis loops
exhibited no sharp transitions, apart from the large transition from point III to IV in
Figure 5.14a, attributed to magnetization reversal by coherent rotation. The steps that
took place between points IV, V and the saturated states were more likely a result of
domain pinning, due to the finite size of the array.

We have seen that the symmetry of the superlattice can have profound effects on the
exhibited hysteresis of the system. The phase transition from SAF ordered to SFM
ordered magnetization in the square lattice may have been aided by the fact that the
symmetry of the applied field coincided with the superlattice symmetry. Therefore, we
simulated hysteresis loops along axes that were not high-symmetry ones, to see what
effect this had on the hysteretic properties of the arrays. We chose the [010]-direction,
since this was a hard axis for the nanomagnets and an axis of low symmetry for the
arrays in general. For the square array, this was precisely the diagonal of the array, but
that was not the case for the hexagonally stacked array, since it was only approximately
square. All parameters were otherwise the same as for the previous hysteresis simulations.
Calculated values of Hc and Mr along these directions are given in Table 5.2.

The hysteresis loop of the square array along the given axis is shown in Figure 5.15a.
Multiple points, I-VI, are marked on the hysteresis loop, and the corresponding magnetic
microstructures are given in Figures 5.15b-5.15g.

Starting at the bottom left of the hysteresis loop, the array was completely saturated
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Figure 5.15: Hysteresis of the square array along the [010]-direction (a) with the magnetic
microstructure at different points of the hysteresis loop (b-g). The pink curve in the
hysteresis loop was the virgin magnetization curve.

towards the bottom left corner of the array. As the field was gradually increased through
point I and all the way to point II, a rather interesting domain structure emerged. The
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“Z-domain” has previously been reported in thin, square micromagnets of LSMO [58],
but in that case, the thin film was continuous. The change in applied field between
points II and III was only 0.25mT, but a large reduction of the magnetization took place
nonetheless. This was accompanied by a transition from mostly SFM coupling between
the nanomagnets, to mostly SAF coupling. Moving on to point IV, the newly formed
domains grew. The horizontally aligned domains seemed to grow more than the vertically
aligned ones. The large transition after point IV to points V and VI involved reformation
of the Z-domain, first in a flawed fashion, illustrated in V, and then a more complete
Z-domain, as shown in VI. The array saturated after the final step after point VI.

Table 5.2: The coercive field and remanent magnetization along the [010]-direction for
the square and hexagonally stacked arrays respectively.

Hc (kA/m) Mr (kA/m)

Square 0.709 120.172
Hexagonal 0.362 409.787

The magnetic microstructure of the square array during hysteresis showed evidence of
the same types of phase transition from a SFM ordered phase at large applied fields, to a
SAF ordered phase at lower fields, as was observed during the previously described hys-
teresis simulations. Transition from the SFM ordered (multidomain) Z-domain state in
Figure 5.15c to the mostly SAF ordered state in Figure 5.15d happened by antiferromag-
netic fanning. The SAF domains nucleated at critical points of the Z-domain, i.e. in the
neckings of the Z and the sharp corners of the ends of the Z. Since the applied field was
not parallel to one of the primitive directions of the lattice, the metastable intermediate
states did not involve subsequent switching of whole dipole chains, but instead formation
of a polydomain SAF state, with magnetization aligned in horizontal and vertical direc-
tions. Nevertheless, subsequent switching of partial dipole chains did occur, which lead
to the non-linear nature of the hysteresis curve between points II and VI. This seemed
to suppress the pronounced step-like hysteretic behavior previously observed (i.e. larger
steps with approximately constant magnetization). The plateau around point VI in Fig-
ure 5.15a occurred due to delayed switching of the edge rows and columns of magnets,
which may have been a finite size effect.

Hysteresis of the hexagonal array along the [010]-direction is shown in Figure 5.16a, with
corresponding magnetic microstructures in Figures 5.16b-5.16e. The shape of the hys-
teresis curve was similar to that shown in Figure 5.14a, but with more abrupt transitions.
The hysteresis loop was not completely symmetric about H = 0.
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Figure 5.16: Hysteresis of the hexagonal array along the [010]-direction (a) with the
magnetic microstructure at different points of the hysteresis loop (b-e). The pink curve
in the hysteresis loop was the virgin magnetization curve.

Starting in the top right corner of the hysteresis loop, the array was completely saturated
towards the top right corner. Moving towards point I, a quasi-Z-domain formed. Unlike
the Z-domain shown in Figure 5.15c, this Z-like domain did not have as well defined
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borders, and a broken neck. The reason for this may have been the lattice-induced
magnetic anisotropy, which seemed to stabilize magnetization along all the six directions
of high-symmetry for the array. The square array clearly showed only four preferential
directions of magnetization, i.e. the primitive lattice vectors, which were also the easy
axes of the LSMO nanomagnets.

After point I, a sharp transition took place, leading to points II and III. Here, the central
part of the array had flipped its direction of magnetization by approximately 180°. The
magnetization was further reduced by growth of the flipped domain, until point IV was
reached. At this point, most of the array had a magnetization towards the bottom left
corner, with small opposing domains on the top left and bottom right corners of the array.
After point IV, the array saturated, by shrinkage of the opposing domains.

The broken neck of the quasi-Z-domain exhibited by the hexagonal array, Figure 5.16b,
was probably caused by the superlattice-induced anisotropy. The easy axes of the nano-
magnets favored the horizontal and vertical directions, but a significant part of the array
exhibited magnetization in directions other than these four. Comparing it to the Z-
domain of the square lattice, Figure 5.15c, we saw that in the latter case, the entire
Z-domain exhibited the same direction of magnetization, which coincided with one of the
primitive directions of the lattice. In the hexagonal lattice, there was a gradual rotation
of the magnetization within the Z-like domain. Another important feature was the asym-
metry of the hysteresis loop. Whereas the [010]-direction was precisely the diagonal of
the square lattice, it was not for the hexagonal array, since the full array was only approx-
imately square. This was most likely the reason for the asymmetric switching behavior.
The mechanisms of magnetization reversal were assumed to be unchanged.

5.2.7 Indications of glassy dynamics from quenched disorder

When simulating the magnetic ground states of the two different arrays, we performed
both temperature relaxations and quenched relaxations. The two different simulation
procedures yielded quite different results.

Two of the magnetic ground states of the square array are shown in Figure 5.17. Figure
5.17a shows the magnetic ground state of the array after quenched relaxation, whereas
Figure 5.17b shows the magnetic ground state of the array after temperature relaxation.
Both arrays were initialized to the same random configuration, so the only difference was
the relaxation scheme. The quenched relaxed array exhibited a much higher degree of
disorder, with polydomain and vortex state nanomagnets, compared to the temperature

64



(a) (b)

Figure 5.17: The magnetic ground state of the square array after (a) quenched relaxation
and (b) temperature relaxation. Both arrays had the exact same material parameters
and geometry, and were initialized to the same random configuration. The arrays were
1.8 µm× 1.8 µm, with 5 nm thick nanomagnets.

relaxed array. This was indicative of glassy dynamics, since the final ground state was
dependent on the specific path taken through phase space. Equilibration of spin-glasses
has been explained in terms of stochastic motion in phase space combined with a hierar-
chical distribution of free energy barriers [60]. The effect of the hierarchical distribution
of free energy barriers is a wide range of characteristic time scales [45, 34], where relax-
ation of one part of the system depends on the state of the rest of the system. Although
we cannot say that our system exhibits such features with certainty, there is definite
indication of glassy dynamics in the square lattice. The quenched relaxation did after all
lead to a ground state of significant frustration and disorder. We know from Chapter 4
that single LSMO nanomagnets of the relevant size exhibited the monodomain ground
state as the most stable magnetic ground state. Such prevalence of single magnet vortex
ground states could be taken as evidence of metastability and hierarchical constrained
dynamics. To illustrate the concept, consider one of the vortex state nanomagnets in
Figure 5.17a. Each vortex was typically surrounded by nanomagnets with magnetization
in different directions. The vortex was prohibited from relaxing to the more stable mon-
odomain state before the surrounding nanomagnets had relaxed to a more ordered SAF
state (i.e. formed dipolar chains), but the slow dynamics of the transition meant that it
was blocked on the time scale of the simulation. Therefore, a metastable and disordered
ground state was realized, instead of the more ordered ground state in Figure 5.17b.

One quenched and one temperature relaxed ground state for the hexagonal array are
shown in Figure 5.18. Both were initialized to the same random configuration. The
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Figure 5.18: The magnetic ground state of the hexagonal array after (a) quenched relax-
ation and (b) temperature relaxation. Both arrays had the exact same material param-
eters and geometry, and were initialized to the same random configuration. The arrays
were 1.8 µm× 1.8 µm, with 5 nm thick nanomagnets.

quenched array, Figure 5.18a, exhibited significantly more disorder than the temperature
relaxed one in Figure 5.18b. Clusters of SFM ordered nanomagnets did form, and some
long-range order seemed to be present by inspection, but the temperature relaxed array
exhibited a highly ordered quasi-Landau state, without any single magnet vortices. The
difference was remarkable. The reasons for the difference in ground state was assumed
to be the same as for the square array. Investigations into the spin-glass dynamics of the
two arrays seemed then like the next natural step.

5.2.8 Field-cooled and zero-field-cooled magnetization as evidence

of spin-glass dynamics

The field-cooled and zero-field-cooled magnetization are well suited quantities for discern-
ing how magnetic behavior changes with temperature. Most importantly, these quantities
are used to characterize spin-glass behavior [27]. Typical spin-glass-like behavior includes
irreversibility, magnetic relaxation or aging, and certain characteristics in the ac suscep-
tibility.

In order to investigate the possible spin-glass properties of the arrays, we performed
simulations to find the zero-field cooled (ZFC) magnetization, as well as the field-cooled
magnetization measured during cooling (FCC) and the field-cooled magnetization mea-
sured during warming (FCW). These quantities were denoted MZFC, MFCC and MFCW
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respectively.

The procedure for simulating MZFC was as follows. First, the sample was temperature
relaxed, as described in Section 3.4, from a random configuration to a temperature of
25K in zero applied DC magnetic field. Following the cooling, a weak DC magnetic field
was applied in order to probe the magnetization of the array. We performed two different
simulations with applied fields µ0H = 1mT and 5mT along the [1̄10]-direction. The
average magnetization was measured along the same axis as the applied field while the
temperature was gradually increased by adjusting MS and Kc1 and performing energy
minimizations.

The simulation procedures for MFCC and MFCW were similar, except that the field was
applied during the initial cooling process. When measuring MFCC, the average magne-
tization was recorded as the sample was cooled, whereas for MFCW, the array was first
cooled in the same fashion as for MZFC, and average magnetization was recorded as the
system was gradually heated.

The results from simulating FCC, FCW and ZFC magnetization curves of the square
array are shown in Figure 5.19. At a field of 1mT, Figure 5.20a, a large irreversibility
between FCC/FCW and ZFC magnetization was observed. The irreversibility did in fact
persist throughout the entire temperature range of simulations. This was more obvious in
the normalized plots, given in Appendix B.4. Nevertheless,MZFC ≈MFCC ≈MFCW for
temperatures of 340K and above. This was very close to the paramagnetic limit of LSMO,
and it was in fact observed that the FCC simulation exhibited a fully superparamagnetic
array at 360K, where even the external field was insufficient to induce magnetic ordering.
This was not the case for the FCW simulation, most likely due to memory effects. In
the FCC case, the nanomagnets were aligned prior to increasing the temperature to
360K, as opposed to the FCC case, where the nanomagnets were relaxed from a random
configuration in the applied field at 360K.

In fact, irreversibility was also observed between the FCC and FCW curves. This
hysteretic behavior is indeed indicative of spin-glass-like behavior. Irreversibility be-
tween FCC and FCWmagnetization has been observed for superconducting YBa2Cu3O7-δ

(YBCO) single-crystals [66]. The phenomenon was explained in terms of the properties of
semiconducting spin-glasses, which indicated that the system exhibited weak and short-
ranged spin-glass coupling. Although LSMO is a very different material from YBCO,
the hysteretic behavior of the field-cooled magnetization does suggest such weak and
short-ranged spin-glass coupling. This explanation of the irreversibility can be further
supported by the nature of the finite square lattice, which enforces short-ranged order
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Figure 5.19: Plots of the “zero-field cooled” (ZFC), “field-cooled measured upon cooling”
(FCC) and “field-cooled measured upon warming” (FCW) magnetization of the square
lattice. The applied fields were (a) µ0H = 1mT and (b) µ0H = 5mT.

and metastability.

The peak in the ZFC magnetization at 340K indicated that the dipolar interactions be-
tween the particles were insufficient to induce supermagnetic ordering at this point. A
peak in the ZFC magnetization is typical for metastable magnetic system, and usually
suggestive of either superparamagnetic or spin-glass behavior [48]. If canonical spin-glass
behavior was present, the peak in the ZFC magnetization would however be accompa-
nied by a local minimum in the field-cooled magnetization [5], which was not the case
here.

Results from simulations with the stronger field, Figure 5.19b, also showed irreversibility
of the ZFC versus FCC and FCW magnetization. The onset temperature of irreversibility
was approximately equal. Significantly higher magnetization was achieved here. The
square array was in fact far from completely saturated with the weak probing field, which
was a finite size effect, but with the stronger probing field, full saturation was reached
approximately at the irreversibility temperature.

The resulting FCC, FCW and ZFC magnetization of the hexagonal array is shown in
Figure 5.20, for both fields. At a field of 1mT, Figure 5.20a, the zero-field-cooled versus
field-cooled magnetization exhibited similar irreversibility as exhibited by the square array
with the weak field. One peculiarity was the first measuring point at 25K, where the
magnetization was negative. This was most likely a random effect, since the array was
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relaxed from a random configuration in zero field. The interesting part was that the
applied field was unable to induce a positive magnetization, which indicated that the
array was blocked. When inspecting the magnetic ground state of the array at 25K,
there was definite SFM order, and the subsequent ground states at higher temperatures
displayed similar order, but with incrementally increasing magnetization along the applied
field. There did not seem to be appreciable motion of domains, supporting the notion
that the magnetization of the array was blocked at low temperatures. There was virtually
no irreversibility of the FCW versus FCC magnetization.
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Figure 5.20: Plots of the “zero-field cooled” (ZFC), “field-cooled measured upon cooling”
(FCC) and “field-cooled measured upon warming” (FCW) magnetization of the hexagonal
lattice. The applied fields were (a) µ0H = 1mT and (b) µ0H = 5mT.

The temperature of irreversibility was somewhat lower for the 5mT probing field, but not
by more than 10K to 20K. The difference in magnetization between the zero-field-cooled
magnetization and either of the field-cooled ones was very small, but the characteristics
were similar to the square array. The important difference was that the magnitude of the
magnetization induced in the hexagonal array was larger, meaning that the hexagonal
array had a larger susceptibility.

The ZFC, FCC and FCW magnetization of the square array did show spin-glass-like
behavior, but they did not provide ample grounds for discerning the underlying reason
of this behavior. It does seem unlikely that this behavior arose from a true SSG phase,
since the square array was completely regular in the structural sense. Therefore, it may
seem more likely that the spin-glass-behavior was caused by weak, short-range spin-glass
coupling, forming between clusters of superspins. Cluster-glass-like properties have been
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reported for ferromagnetic systems [33], where the magnetocrystalline anisotropy was
identified as the underlying reason. The irreversibility of the magnetization did however
persist up to temperatures above 300K, where the magnetocrystalline anisotropy was
very weak. It is possible that a superlattice-induced anisotropy could be involved in this
behavior, but we were not able to pursue this idea further, due to the limited time-frame
of this work.

Seemingly, spin-glass-like behavior was also present for the hexagonal array. In particular
the irreversibility of ZFC versus FCC or FCW magnetization was as pronounced in the
hexagonal array as in the square, at low fields. The higher susceptibility of the hexagonal
array lead to a larger degree of magnetization, but phenomenologically, there was no
particular reason to assume that the underlying mechanism behind this behavior was
different in the hexagonal array compared to the square one. In fact, in the hexagonal
array seems like a more likely candidate for cluster-glass behavior, since the SFM ordered
domains, in combination with the strong magnetocrystalline anisotropy, may introduce
the necessary disorder and frustration to realize the glassy traits of a cluster-glass. Our
simulations were however not comprehensive enough to say anything for certain.

5.3 Summary of findings

Based on our findings in Chapter 4, we chose to use 5nm thick nanomagnets, with
a diameter of 50 nm for the regular arrays discussed in this chapter. The choice was
based on two considerations. Firstly, we wanted to maximize the probability of achieving
supermagnetic ordering in the arrays, and secondly, we wanted to keep dimensions as large
as possible so that the structures were feasible to manufacture in the laboratory.

Supermagnetic ordering and the magnetic properties of ordered nanomagnet arrays was
explored. We first investigated how the supermagnetic ground states of ordered arrays
could be tailored by controlling the stacking of the arrays. We simulated two types of
regular, finite lattices, namely the square lattice and the hexagonal lattice. The former
exhibited SAF ground states and the latter SFM ground states. The ground states were
however characterized by disorder and non-uniqueness. The superlattice structure had
direct effects on the directions of magnetization, through an apparent lattice-induced
magnetic anisotropy. Especially the SFM ground states were reminiscent of the type
of magnetization exhibited by significantly larger thin films of LSMO (i.e. blanket film
magnetic texture). This phenomenon was attributed to the exchange decoupling between
individual nanomagnets.
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We used Fourier analysis to statistically quantify the interparticle coupling in the two
different arrays. On average, the interparticle coupling of the square array was of the
superantiferromagnetic character, with alternating dipole-chains. The dipole-chains were
arranged head-to-tail, with neighboring chains in opposite directions. The finite size of
the lattices lead to multiple domains. The average interparticle coupling of the hexagonal
array was of the superferromagnetic kind, where neighboring nanomagnets were aligned
(although with multiple domains present).

We saw that the analysis method we developed based on Fourier analysis was well suited
for characterizing the periodicities in the magnetization of the arrays. The method clearly
separated SFM from SAF ordering. Information on domain sizes or strength of coupling
was however not obtainable using the method. We did not achieve a single quantity that
could be used as an order parameter either, as we initially hoped.

Simulations of arrays with periodic boundary conditions showed that the SAF order of
the square array increased when finite size effects were excluded, whereas the opposite
was true for the SFM ordered hexagonal array. This was explained by the nature of
the forces responsible for the supermagnetic ordering of the arrays. Based on a heuristic
argument, we deduced that the interparticle interactions were of the short-ranged kind
in the square array and long-range in the hexagonal array.

An investigation of how an applied field could be used to control the supermagnetic ground
state was performed. We saw that especially the square array was sensitive to the initial
conditions, and could form remanent states with high or low macroscopic magnetization
based on which direction the array was magnetically saturated. This was explained by
switching between SAF and SFM ordering of the array, which was dependent on the
initial direction of magnetization.

We explored the hysteretic behavior of the ordered arrays along high-symmetry axes.
We saw that the symmetry of the superlattice had profound effects on the shape of the
hysteresis curve. The square array exhibited well-defined discrete steps in the magneti-
zation. The result was explained in terms of 2D Ising spin-lattices and supermagnetic
phase transitions. The symmetry of the SFM and SAF phases on the square lattice be-
longed to different fundamental groups, therefore we argued that the phase transition
must be of the first order. No such phase transitions took place in the hexagonal array
during hysteresis simulation. The hysteresis loop resembled those of typical soft mag-
netic materials. The abrupt changes in magnetization were attributed to magnetization
reversal by coherent rotation in combination with domain pinning because of the finite
nature of the array. The mechanism of magnetization reversal for the square array was
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found to be antiferromagnetic fanning in combination with the before-mentioned phase
transitions.

Hysteresis along low-symmetry axes was simulated to further classify the effects of the
superlattice structure on the hysteretic properties. The square lattice exhibited phase
transitions and an interesting multidomain SFM state called the “Z-domain” state (a Z-
domain-like state also formed in the hexagonal array). The fact that the applied field
did not coincide with the primitive directions of the superlattice seemed to suppress the
formation of the pronounced, discrete steps previously observed for the square array. The
hexagonal array exhibited similar hysteretic properties as previously observed. The most
interesting feature was the asymmetry of switching, which was explained by the fact that
the hysteresis direction was not the true diagonal of the hexagonal array (as it was for
the square array).

Finally, spin-glass properties of the arrays were explored. Comparison of quenched re-
laxations to temperature relaxations of the two arrays indicated the presence of glassy
dynamics, due to the significantly increased magnetic disorder of the quenched relaxed ar-
rays. The large difference in ground state for the two simulation procedures was explained
in terms of spin-glass dynamics, i.e. hierarchical constrained dynamics.

Field-cooled and zero-field cooled magnetization simulations of the two arrays were then
performed to further characterize the spin-glass behavior of the systems. Both arrays
exhibited irreversibility between field-cooled and zero-field cooled magnetization, which
was suggestive of spin-glass behavior, but no local minima in the field-cooled magne-
tization was found. Therefore, we concluded that no canonical superspin-glass phase
formed, but that the behavior may have arisen from cluster-glass interactions or possibly
magnetocrystalline and super-lattice induced anisotropy. The square array also exhib-
ited irreversibility between FCC and FCW magnetization. This feature was reminiscent
of semiconducting spin-glasses, which suggested that weak and short-ranged spin-glass
interactions were present in the square array. Supermagnetic ordering persisted to well
above room temperature.
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Chapter 6

Conclusions and outlook

We have investigated how supermagnetism may be manifest in patterned thin films of
LSMO. First, we explored the superparamagnetic regime of single LSMO nanomagnets.
We found superparamagnetism in 5 nm thick, cylindrical LSMO nanomagnets, with di-
ameters from 20 nm to 140nm. Based on our results, we designed ordered arrays of
LSMO nanomagnets of the relevant thickness, where each nanomagnet had a diameter
of 50 nm. Two superlattice structures were investigated, namely the two-dimensional
square and hexagonal Bravais lattices. The former exhibited superantiferromagnetic or-
dering, and the latter superferromagnetic ordering. We discussed effects of finite size,
exchange decoupling, and the response to applied fields. Hysteresis simulations showed
step-like hysteretic behaviour for the square lattice, explained by supermagnetic phase
transitions. The hexagonal lattice exhibited more conventional hysteresis, similar to that
of soft magnetic materials. Quenched disorder and magnetic irreversibility during sim-
ulation of field-cooled and zero-field-cooled magnetization was suggestive of spin-glass
dynamics in the arrays. Supermagnetic ordering was found to persist to well above room
temperature. Based on our investigations, we conclude that LSMO thin film systems
seem like a good candidate for fabricating and experimentally exploring supermagnetism
and supermagnetic ordering in solid state systems.

This explorative study of supermagnetism in patterned thin films of LSMO has elucidated
some of the possibilities of engineering magnetic materials with an unprecedented control
over macroscopic magnetic properties, and materials with properties that do not exist
in nature may also be within reach. The study was inspired by research articles by
Varón et. al [64, 63] and Jordanovic et. al [26]. While these studies simulated arrays of
magnetic particles under the assumption that each particle was in fact monodomain, and
could be treated as a superspin, we made no such simplifying assumptions. In addition,
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we explored phenomena beyond the scope of their studies, and we performed a large
number of simulations for all our systems, to ensure that our results were not caused by
randomness. We argue that this lends extra credibility to our study, especially since our
results agree with and can be explained in terms of previous results.

Conventional magnetic material engineering is typically limited by the intrinsic properties
of the magnetic material. The strength of the exchange interaction and the magnetocrys-
talline anisotropy cannot be controlled unless by chemically altering the material, and the
results are not easily predicted. By creating superstructures of nanomagnetic elements,
a much larger set of parameters can be controlled.

By controlling the size, shape and orientation of the individual array elements, the mag-
netodynamic properties of each elements can be fine-tuned [21]. For instance, by making
elliptic nanomagnets, instead of circular ones, a perceived uniaxial magnetic anisotropy
can be engineered. By combining control of individual elements with control over the
superstructure of the ordered arrays, it is possible to create novel materials for technical
applications, but also for research purposes.

2D dipolar lattices have previously been a subject of theoretical studies [31, 24], but
may now be experimentally realized in a controlled manner. Work by Fraerman [23] has
shown that the dipolar interactions in regular dipole lattices mimic the typical magnetic
interactions observed for continuous magnetic materials. It was shown that the long wave
approximation of the dipolar tensor of 2D orthorhombic dipole lattices could be expanded
into pseudo-anisotropy, -magnetostatic and -exchange terms. This may be a possible
approach to a macroscopic continuum description of magnetic metamaterials.

Unlike theoretical dipolar arrays, which tend to become disordered even at tempera-
tures close to zero, our simulated arrays exhibited supermagnetic ordering to above room
temperature.

Supermagnetic systems may also provide a route for fundamental research into condensed
matter physics. The shared characteristics between the arrays we simulated and e.g. 2D
Ising models suggest that such systems may be used for probing concepts that were pre-
viously experimentally unavailable. In fact, creating artificial spin systems using nano-
magnetic elements may help further explore several model systems of condensed matter
physics [46].

Among the possible applications of supermagnetic phenomena are of course several mag-
netoelectrical devices, from data storage to sensing devices. Care must be taken if using
single nanomagnets for data storage, as formation of collectively ordered magnetic phases
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may compromise the independence of stored information. Hence, supermagnetism may
not be used to directly overcome the superparamagnetic effect in the conventional sense,
but could be utilized in novel approaches to data processing and storage. The interesting
properties of supermagnetic arrays, such as the step-like hysteresis of the square array
could possibly be utilized for new devices, such as multi-level memory.

Even though we obtained some results on spin-glass behavior, we could not with certainty
say that the system of study exhibited glassy dynamics. Performing dynamical simula-
tions of e.g. the ac susceptibility of the arrays would have provided clearer evidence, but
was beyond the scope of this work. Further study of the spin-dynamics in such super-
lattices of nanomagnets would presumably open for other applications as well. It seems
likely that the ordered arrays of nanomagnets could act as magnonic crystals, and hence
be used as a basis for spintronic devices.

Further work should include simulations of magnetic ground states of unexplored 2D ar-
rays, more specifically how the magnetic ground state changes with the rhombic angle of
the array. Effects of array shape, and asymmetry of stacking should also be further ex-
plored, so that the full impact of superlattice structure may be understood. Very specific
domain structures could most likely be realized by introducing regions of different stack-
ing, or differently shaped nanomagnets. Studies of the dynamics of e.g. the SAF to SFM
phase transitions would provide useful insight into dynamical behavior of supermagnetic
arrays.
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Appendix A

Methodology

A.1 Fourier analysis of magnetization profiles

In order to quantitatively analyze the periodicities of the magnetic ground states of the
different systems we have simulated in this work, we devised a method using the discrete
Fourier transform (DFT). The definition of the DFT is given by

f̂k =
N−1∑
n=0

fn exp

(
−2πikn

N

)
, (A.1)

where a sequence of complex numbers fn, n = 0...N − 1, is transformed into the N-
periodic sequence of complex numbers f̂k, k = 0...N − 1. The sequence of numbers, fn,
will in our case correspond to the discrete sampling points of the reduced magnetization,
m̂. The (discrete) Fourier transform of m̂, F [m̂] is then the numbers f̂k. The Fourier
power spectrum is defined as |F [m̂]|2/N .

The aim of the method is being able to find the average coupling between neighboring
nanomagnets, by finding the average Fourier power spectrum of the parallel and perpen-
dicular components of the magnetization along the primitive vectors of the arrays. The
method is illustrated in Figure A.1. All analysis was performed using Matlab.

The two components of the magnetization were imported as numerical matrices in Mat-
lab. In order to obtain the average spectrum, one dimensional DFTs were performed along
each row, illustrated by the red arrows in Figure A.1a, and then all rows were averaged
in the direction of the blue arrow. An average spectrum for both parallel and perpendic-
ular components of m̂ were calculated along both the primitive directions, yielding four
spectra that describe the magnetization profile. This procedure could then be repeated
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Figure A.1: An illustration of how the average Fourier spectrum of the magnetization
along the x-direction was obtained for a square array. One dimensional DFT was per-
formed along each row in (a), illustrated by the red arrows. This yielded as many spectra
as there were data points along the y-direction. The average spectrum, illustrated in (b),
was found by averaging the Fourier spectra along the blue arrow in (a).

for as many magnetization profiles as necessary, and final average spectra could be found
for the entire ensemble of magnetic ground states.

For the case of the hexagonally stacked array, the primitive lattice directions were not
perpendicular. The b1- and b2-directions, as specified in Figure 5.2, formed an angle of
60°. The b1 was equivalent to the x-direction, so calculating the spectra of the parallel and
perpendicular components of the magnetization was straightforward in this case. For the
b2-direction, the numerical arrays had to be rotated by 60°, before the Fourier spectra
could be calculated. The algorithm used to rotate the matrices was Matlabs built-in
function imrotate, which used bilinear interpolation in order to determine the values
of the magnetization at spatial points that didn’t coincide with existing sampled points.
Even though the array was stacked in a hexagonal Bravais lattice, the magnetization
was sampled on a rectangular lattice, so the reciprocal lattice of Fourier transform of the
magnetization was also rectangular, not hexagonal.

The frequency resolution of the Fourier spectrum is limited by the number of data points
available. The size of the Brillouin zone of the regularly sampled magnetization profile
is by definition equal to the inverse of the simulation cell size. Since the objective of
this method was to explore the interparticle periodicities, only a small region of the Bril-
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louin zone was of interest, i.e. the frequencies corresponding to relatively long wavelength
signals (with wavelength equal to or longer than the interparticle spacing). For this pur-
pose, the resolution of the spectra was unsatisfactory. In order to improve the resolution,
the magnetization profiles were zero-padded, i.e. extended in both dimensions with only
zeroes. This is a method of interpolating values of the Fourier spectrum between the
frequency increments given by the original signal [56].
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Appendix B

Additional results

B.1 The free energy of different ground states

In this section, we provide the additional results not included in Section 4.2.3. The
average free energy of different ground states of single LSMO nanomagnets as function
of nanomagnet diameter is shown in Figures B.1 and B.2 for thicknesses of 10nm and
15 nm respectively.
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Figure B.1: Average energy density of circular LSMO nanomagnets grouped after type
of ground state. The thickness of the nanomagnets was 10 nm and the temperature (a)
50K and (b) 300K.
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Figure B.2: Average energy density of circular LSMO nanomagnets grouped after type
of ground state. The thickness of the nanomagnets was 15 nm and the temperature (a)
50K and (b) 300K.
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B.2 Fourier power spectra of the magnetization of the

ordered arrays

In this section, we provide the average Fourier power spectra of the parallel components
of the magnetization of the square array, Figure B.3, and the hexagonal array, Figure
5.7.
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Figure B.3: Average Fourier power spectra of the parallel components of the magnetiza-
tion along a1 (a) and a2 (b) exhibited DC peaks at k = 0 and nearest-neighbor peaks at
k = 16.67, indicated by the black, vertical dashed lines.
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Hexagonal array
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Figure B.4: Average Fourier power spectra of the parallel components of the magnetiza-
tion along b1 (a) and b2 (b) exhibited DC peaks or split DC-peaks centered at k = 0 and
nearest-neighbor peaks at k = 16.67, indicated by the black, vertical dashed lines.
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B.3 Virgin magnetization curves

In this section we show the magnetic microstructure of the square and hexagonal array
and how it changed along the virgin magnetization curves. The virgin magnetization
curves of the square array with corresponding magnetic microstructure simulated along
the [110]- and [010]-directions are shown in Figures B.5 and B.6 respectively.

Similarly, the virgin magnetization curves of the hexagonal array with corresponding
magnetic microstructure simulated along the [110]- and [010]-directions are shown in
Figures B.7 and B.8 respectively.
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Figure B.5: Virgin magnetization curve of the square array along the [110]-direction (a)
with the magnetic profile of the array at different points of the hysteresis loop (b-f). The
blue curve is the full hysteresis loop.
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Figure B.6: Virgin magnetization curve of the square array along the [010]-direction (a)
with the magnetic profile of the array at different points of the hysteresis loop (b-f). The
blue curve is the full hysteresis loop.
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Figure B.7: Virgin magnetization curve of the hexagonal array along the b1-direction (a)
with the magnetic profile of the array at different points of the hysteresis loop (b-e). The
blue curve is the full hysteresis loop.
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Figure B.8: Virgin magnetization curve of the hexagonal array along the 45° diagonal
with respect to the b1-direction (a) with the magnetic profile of the array at different
points of the hysteresis loop (b-d). The blue curve is the full hysteresis loop.
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B.4 Normalized field-cooled and zero-field-cooled mag-

netization

In this section we have included normalized plots of the field-cooled and zero-field cooled
magnetization shown in Section 5.2.8. These are shown in Figure B.9 and B.10 for the
square and hexagonal arrays respectively.
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Figure B.9: Normalized plots of the “zero-field cooled” (ZFC), “field-cooled measured upon
cooling” (FCC) and “field-cooled measured upon warming” (FCW) magnetization of the
square array. The applied probing fields were (a) µ0H = 1mT and (b) µ0H = 5mT.
Note that the range of the y-axis in (a) is different from (b).
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Hexagonal array
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Figure B.10: Normalized plots of the “zero-field cooled” (ZFC), “field-cooled measured
upon cooling” (FCC) and “field-cooled measured upon warming” (FCW) magnetization
of the hexagonal array. The applied probing fields were (a) µ0H = 1mT and (b) µ0H =

5mT. Note that the range of the y-axis in (a) is different from (b).
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