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Abstract 

Wireless capsule endoscopy (WCE) is a non-invasive diagnostic method to investigate diseases 

in the human gastrointestinal (GI) tract. Specifically, the WCE allows for physicians to visually 

inspect the GI tract of the patient who swallows the capsule. Thereafter, it transmits video 

wireless from the inside of the human body to the outside, for approximately eight hours.  

Because of the size and the limited battery of the capsule, the image quality can be quite poor. 

By reducing the average bitrate per pixel, the energy consumption will be reduced, which will 

allow higher quality images, higher framerate or resolution.  

When applying the YEF colour transformation instead of the YUV, as well as adaptive 

prediction, the rate can be reduced by circa 0.12-0.35bpp. Additionally, this resulted in an 

increase in peak signal-to-noise ratio (PSNR) and Structural Similarity Index (SSIM), 

depending on the input simulation video. On the other hand, these results were very dependent 

on the source video and might by different in a real implementation. This should be investigated 

further with simulation videos more similar to the ones captured by the camera sensor on the 

capsule. 

Another possible solution to improve the overall image quality is to encode some regions of the 

image in higher quality than the rest of the frame, known as region-of-interest (ROI) coding. A 

very low complexity, energy efficient, ROI coding scheme was proposed for the encoder (the 

capsule). The method relies on adaptive sampling rate within a frame, to create a region which 

isn’t down-sampled or filtered. Simulations showed that it works as expected in the encoder, 

but it does have some problems at the decoder. This should be investigated further, as well as 

to correctly examine the increase in energy consumption in the proposed method.  
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Sammendrag 

Trådløs kapselendoskopi (WCE) er en diagnostiseringsmetode innen medisin for å undersøke 

menneskets mage- og tarmsystem, for å lete etter skader eller sykdommer. Pasienter svelger en 

kapsel på størrelse med en vanlig pille, som tar bilder mens den beveger seg gjennom systemet. 

Bildene blir trådløst overført til en mottaker som sitter på et belte på utsiden av kroppen. 

Ettersom pillen er liten og skal vare i omtrentlig åtte timer, er fysisk størrelse og batterikapasitet 

begrenset. Disse begrensningene medfører at mottatt video er av utilfredsstillende kvalitet. Ved 

å redusere gjennomsnittlig datarate per piksel, vil energiforbruket reduseres, som tillater høyere 

kvalitet på bildene, høyere bildesekvens eller oppløsning. 

Ved å benytte YEF fargetransformasjon istedenfor YUV, i tillegg til adaptiv prediksjon, ble 

gjennomsnittlig datarate redusert med mellom 0.12-0.35bpp, avhengig av simuleringsvideo. 

Samtidig økte signal-til-støy forholdet (PSNR) samt strukturell likhetsindeks (SSIM). 

Resultatene var tydelig avhengig av kilden, siden bildekompresjon av komprimert bilde økte 

objektiv evaluering, så det er forventet at resultatene ikke vil være identiske i en faktisk 

implementasjon. Dette bør undersøkes videre ved bruk av simuleringsvideoer som er identiske 

med det som produseres av bildesensoren på kapselen. 

En annen løsning for å øke den overordnet bildekvaliteten hos mottakeren kan være å kode 

enkelte deler av bilderammen med høyere kvalitet enn andre, også kjent som 

interesseområdekoding (ROI). I denne sammenheng ble det foreslått en lavkompleksitet- og 

energieffektiv ROI implementering for koderen (kapselen). Metoden innebærer å forandre 

punktprøvingsfrekvensen innad i bildet, som skaper en region som ikke reduserer 

punktprøvingsfrekvensen eller lavpassfiltrerer verdiene. Simuleringene viste at dette virker som 

forventet på enkoder siden, men det er noen problemer på dekoder siden, samt i ROI 

evalueringene. Dette må videreutvikles slik at foreslått metode kan bli korrekt evaluert, samt 

undersøke hvor mye energiforbruket øker med denne kodingen sett sammen med økt kvalitet.   
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1 Introduction 

There has been conducted a lot of research within minimization of medical equipment, over the 

past years. One of these fields is the wireless capsule endoscopy (WCE). WCE allows for 

medical examinations of the gastrointestinal (GI) tract to diagnose diseases like cancer, tumour, 

Crohn’s disease, and bleedings to mention a few [1, 2]. The capsule is swallowed by the 

patients, and is then moved through the GI tract by the natural contractions in the tract 

(peristalsis), the exactly same way as eaten food is [3].  

Various versions of the WCE exist today, but what is common among these are that they usually 

consist of a CMOS camera sensor with LED, microchip, battery and a radio frequency (RF) 

transmitter [4]. The patient wears a sensor belt with an array of receiver antennas and a small 

computer to decode and store the captured images [5]. However, since the capsule is so small, 

the battery capacity is very limited, resulting in quite poor image quality, making diagnosing 

harder for the physicians. 

Because of this limitation in power availability, increasing the resolution, frame rate, or image 

quality (minimizing distortion) is difficult. A possible solution is to reduce the required energy 

to encode the frames. This can be achieved by analysing the algorithm to make it use less bits 

per pixel, in order to increase the received image quality. 

Another possible solution to get a higher image quality could be to encode some regions of the 

image at a higher quality than the rest, also known as region-of-interest (ROI). ROI encoding 

is a known image encoding method, but require more from the encoder (in terms of energy 

consumption), which is unwanted in this case. Therefore, it would be advantageous if a very 

low complexity ROI encoding scheme could be implemented in the WCE case.  

 

Figure 1.1 PillCam SB3 from Given Imaging. Most widely 

used model from Given Imaging [1]. 
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1.1 Motivation 

Normal endoscopic procedures are quite commonly used when diagnosing (or treating) diseases 

in the GI tract, but this can be very uncomfortable for the patients [6, 7]. On rare occasions the 

endoscopic equipment might even scratch the walls in the tract, causing bleedings and potential 

infections. The wireless capsule endoscopy, on the other hand, isn’t felt by the patients at all, it 

is safe, thus making it preferable to the former for the patients.  

Physicians rely on the image quality to be able to make the diagnosis, and since normal 

endoscopy (not WCE) have a higher image quality, this is preferred as long as it can reach the 

area1. By improving the image quality, both the patients and the physicians can be satisfied in 

both comfort and diagnosis. This isn’t easy, since improving the quality generally involves 

increasing the complexity which requires more energy [8]. Some work has been done in attempt 

to increase the available power by wireless power transfer using ultra-wideband (UWB) or 

magnetic resonance technology [9-12], but this is still at quite early research stage. So at the 

time, improving the image compression scheme would be a good way of improving the image 

quality.  

This thesis is mainly based on two different works. Firstly, a project conducted in the fall of 

2015 which briefly investigated the possibility of adapting parameters, and secondly the 

original algorithm proposal [7, 13]. These are explained more in Chapter 3. 

1.2 Objective and Limitations 

The aims of this thesis are to explore the possibilities of a feedback loop, and to adapt the WCE 

during the active period through the GI tract. In a feedback loop the coefficients can be adapted 

according to the position of the WCE, allowing for a higher quality image. To achieve this, a 

study of the current algorithm as well as other image encoding techniques will be conducted to 

find potential improvement areas.  

A feedback loop also enables the possibility of ROI encoding without increasing the required 

computational operations. Analysing the received frames at the decoder can give potential 

ROI’s, where the positions are transmitted back. This ROI area can then be encoded using 

higher quality than the rest. 

Note that the WCE can have many different sensors attached to it. These can for instance be 

measuring the pH parameter, pressure information, temperature or video capturing [14]. This 

                                                 
1 The small intestine isn’t reachable with normal endoscopy, so for this area WCE is preferred, see Section 2.1. 
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thesis is limited to concern the video or image capturing capsule, and focus to improve the 

image compression algorithm. Improvement of the algorithm can include to reduce the amount 

of data per transmission or reduce the complexity of the encoding algorithm, in order to save 

energy. Reduction of transmitted data, will allow for additional sensors and/or improvement of 

quality, since the available power is constant. A key aspect is to avoid increasing the complexity 

of the algorithm, but since there is always a trade-off between complexity and received quality 

this might be a challenge [15].  

The problem will be limited to a simple implementation, and verification with simulations. The 

results are therefore expected to differ from a real implementation in a device, but will be 

compared with theory and existing research to be able to draw a conclusion based on the 

findings. 

1.3 Structure of the Thesis 

The thesis is theoretical, so a comprehensive background will be presented in Chapter 2. This 

chapter will include theory on common image encoding techniques before the original scheme 

for the WCE is presented in Chapter 3.  

Based on the theoretical background presented in Chapter 2 & 3, the proposed scheme will be 

presented in Chapter 4. This chapter also elaborate the implementation and the chosen 

evaluation methods.  

In Chapter 5, the simulation results from the proposed algorithm improvements and the ROI 

coding, is presented. The results will then be discussed in Chapter 6, where a comparison with 

existing algorithms and possible error sources, will be studied. In this chapter possible hardware 

implementation will briefly be examined before a summary or conclusion together with future 

work, will be presented in Chapter 7. 

Lastly a bibliography of the analysed literature is given in Chapter 8, before the appendixes. In 

Appendix A, the different programs used throughout the thesis work is listed in A.1, together 

with specifications in the simulation videos is given in A.2, before the MATLAB code is given 

in Appendix B. 

. 
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2 Theory 

In this chapter, the necessary theoretical background will be presented, to establish a fundament 

for how the algorithm works, and what can be done with the limitations. Chapter 2 is a general 

presentation of compression techniques and a short medical background. After this, a more 

specific theory section of the wireless capsule endoscopy is presented in Chapter 3. This will 

be the basis for the choices done in order to improve the image quality with the application 

specifics limitations. 

2.1 Medical Background 

Firstly, a brief medical background will be presented in this section, to understand how the 

human anatomy works (Subsection 2.1.1-2.1.2) and how a general biomedical image processing 

system can help diagnose patients (Subsection 2.1.3).  

2.1.1 Human Anatomy – The Gastrointestinal Tract 

The human digestive system consists of the gastrointestinal (GI) tract, liver, pancreas and 

gallbladder [3]. The GI tract consists of hollow organs stretching from the mouth to the anus. 

This includes the mouth, oesophagus, stomach, small- and large intestine, the rectum and the 

anus, as shown in Figure 2.1. The systems’ main task is to breaks down the food to different 

nutrients in which the body needs for energy, growth and cell repairs. Food enters the mouth, 

and passes through this hollow GI tract, before going out through the anus. The food is broken 

down by two main parts of the digestive system; the mechanical and the chemical.  

 

Figure 2.1 The GI tract [16]. 
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The mechanical part is also known as chewing, when the food enters the mouth at the beginning 

of the GI tract. The chemical part is happening along the whole way through the GI tract. 

Different digestive juices are mixed with the food to break down food particles such as starches 

(saliva), proteins (stomach acid), carbohydrates (small intestine digestive juice) and fats 

(pancreatic juice & Bile acids) [3, 17]. Digestive juice contains enzymes which speeds up the 

chemical reactions, and together with bacteria (also called gut flora or microbiome) in the GI 

tract, the food is broken down. This food becomes small molecules in which the body absorbs 

through the wall in the small intestine, and into the bloodstream. The bloodstream carries these 

nutrients to the whole body, where they are needed. Waste, also called stool, from the process 

is passed along the GI tract and out the anus.  

All of the hollow organs in the GI tract contains a layer of muscles, which allows for the walls 

to move (muscle contraction) [3, 18]. These muscle contractions make muscular waves, also 

called peristalsis, that travels the whole length of the GI tract. Peristalsis propels the food and 

liquid through the organ, while activating the production of different digestive juices along the 

way. Along with the peristalsis there are two other main processes for movement and mixing 

of the food; swallowing and segmentation. Swallowing uses smooth and skeletal muscles in the 

mouth, tongue and pharynx2 to push the food through the pharynx and into the oesophagus. 

Segmentation occurs in the small intestine and is short contractions which squeezes the food, 

for improving the absorption of the small molecules into the blood stream. 

The whole digestive process is controlled by two regulators; hormone and nerve regulators [3]. 

The hormone regulator is produced from cells in the stomach and small intestine. These 

hormones stimulate production of digestive juices and controls the appetite. Nerve regulators 

controls the action of the GI tract, and there are two kinds of nerve regulators; extrinsic (outside) 

and intrinsic (inside). Extrinsic nerves release chemicals to make the muscles in the GI tract to 

contract or relax. Intrinsic nerve regulators release different substances to speed or delay the 

movement of food in the GI tract, and are triggered when the food stretches the walls. 

The GI tract is a complex system with many different organs working together to digest food 

and produce energy for the whole body. As with every complex system, it can also be vulnerable 

to different diseases and injuries. Some of these will briefly be introduced in the next section, 

before some of the diagnostics methods will be presented. 

                                                 
2 Pharynx is part of the throat, which can close off in various ways for speaking, breathing, swallowing etc. [19] 
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2.1.2 Diseases 

A digestive disease is any health problems that can occur in the GI tract, and is very common 

either as a mild or as a serious disease [20]. Since the GI tract consists of four distinct parts 

(oesophagus, stomach, small- and large intestine) with different functions to perform the 

digestion, each part has a unique type of motility (contractions) and sensation [21]. These parts 

are separated by sphincter muscles3, and will in turn can give many distinct diseases and 

symptoms. Functional and motility disorders are the most common GI disorders among the 

general population. There is some uncertainty about how many is affected, but a study showed 

that 42% of the population was affected over a 12 years’ period. However, another study 

showed that 75% of the population which experienced some of these symptoms, didn’t consult 

for medical care [22].  

In general, the term “functional” disorder relates to disorders where some or more of the body’s 

normal actives are impaired [22]. These actives can be in terms of intestine movement, nerve 

sensitivity or the way the brain controls some of these functions. Common among these 

disorders, is that they don’t have any structural abnormalities which can be seen by common 

diagnostic methods, including endoscopy, x-ray and blood tests [23]. Instead they are diagnosed 

based on the characteristic symptoms and sometimes limited tests. Some examples of these 

disorders can be functional diarrhoea, functional vomiting, irritable bowel syndrome (IBS) or 

functional abdominal pain, to mention a few.  

“Motility” is defined as the movement of the digestive system and the content in it [24]. 

Disorders regarding motility occur when any nerves or muscles in any part of the GI tract don’t 

function with normal strength or coordination. Unlike the functional disorders, the motility ones 

can be diagnosed using methods as for instance endoscopy or oesophagram. For instance, some 

disorders include gastroesophageal reflux disease (GERD), constipation or small bowel 

bacterial overgrowth [25].  

Many possible GI disorders don’t fit into functional or motility disorders, but are still common 

[20, 26]. These other diseases can have symptoms that are similar to those belonging to the 

functional or motility disorders. However, these can be uniquely identified since they have 

some unique feature, depending on the kind of the disorder. Many different diagnostic methods 

can be used to identify these features, for instance x-ray, Magnetic resonance imaging (MRI), 

                                                 
3 Sphincter muscles are special muscles that is normally tightly closed, and opens when food arrives, preventing 

food from going the wrong direction [21]. 
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endoscopy among more. Typical disorders include cancer, lactose intolerance, bleedings, 

Crohn’s disease or other inflammatory diseases [16, 26]. 

2.1.3 Diagnostic Methods 

Since there are a lot of different disorders that can occur in the GI tract, there are also many 

different methods for diagnosing diseases or injuries. Naturally, these methods depend on 

which symptoms and disorder a patient present. Together with the symptoms it is common for 

the physicians to run a laboratory test and or different imaging techniques to correctly diagnose 

a patient. Naturally, laboratory tests aren’t relevant in this case, so the focus will be on imaging 

techniques. Common imaging diagnosing techniques can include x-ray, colonoscopy, 

endoscopy, capsule endoscopy, magnetic resonance imaging (MRI), ultrasound or computed 

tomography scan (CT scan), to mention a few [27]. It is often common to use different imaging 

methods depending on where the symptoms occur. For instance, endoscopy and x-ray are 

common in the oesophagus and stomach, capsule endoscopy in the small intestine and 

colonoscopy in the rectum and large intestine. In general, all of these biomedical image 

techniques follows the same steps [28]. Some kind of sensors capture an image or signal from 

a biological system, before pre-processing and filtering to remove the unwanted noise. Next, 

extraction of the relevant features is done, to be able to describe the status before classification 

and diagnosis, as shown in Figure 2.2 below.  

 

Figure 2.2 General biomedical image processing system [28]. 

Regular photographic images are captured by cameras (sensors) which captures the light 

intensity and/or colour of the objects [28]. Biomedical images on the other hand doesn’t 

necessarily capture the images in this way. For instance, MRI capture images by recording the 

magnetic properties of a tissue, and CT scan records many x-ray beams and the different 

interaction between themselves, and the tissue to form an image [29]. The result of these other 

kinds of recording, is that properties and functions of the tissues can be captured that normally 

wouldn’t be possible for humans to see.  

Sometimes, the physicians need to be able to see inside a patient. In such cases, non-invasive 

methods, such as normal photographic images can be enough to be able to get a diagnosis of 

the patients. Diagnostic equipment for imaging includes endoscopy, capsule endoscopy, 
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laparoscopy or colonoscopy [30, 31]. Most endoscopic procedures often involve a small 

camera4 connected to the end of a flexible thin tube, which is inserted either through the mouth, 

anus or through abdominal cavity (laparoscopy). Capsule endoscopy is a little different from 

the other endoscopic procedures in the way that they are not connected to a tube. The sensor 

are instead mounted on a small computer, the size of a pill, which is swallowed, taking pictures 

along the way through the GI tract [27, 32]. This method is mainly used to detect bleedings, 

tumours, inflammatory diseases, polyps or cancer in the small intestine, where the other types 

of endoscopic techniques can’t reach.  

When diagnosing a patient using normal camera sensors, a useful tool can be the feature 

extraction part (Figure 2.2). In a typical endoscopic tool, the light source is xenon light, which 

have wavelength variating between 470-700nm [33]. Blood absorbs more light than 

surrounding tissue, because blood consists of about 45% red blood cells (and 55% plasma), 

which contains the oxygen carrying protein haemoglobin [34]. Therefore, variation in blood 

volume affects transmission and reflectance, which correspond to the thickness of the tissue 

analysed [35, 36]. This principle is called photo-plethysmography (PPG), and can be used to 

detect abnormalities in an area, compared to the surrounding tissue. If a picture from inside the 

GI tract contains a tumour or cancer, the absorption and reflection of the light will be different 

since the tissue is a lot thinner at this area. However, to be able to detect these possible 

abnormalities efficiently and reliable, high quality images is required. To achieve this a good 

image compression algorithm is needed, which will relate to the pre-processing and filtering 

part in the biomedical image processing system (Figure 2.2). 

2.2 Image Compression 

Every digital signal or image requires a lot of bits per second to transmit or many bits to 

represent in storage, which results in high costs [37]. For instance, an uncompressed image, 

with a size of 512x512 pixels, would require 512x512 pixel colour image x 24 bits/pixel = 6,3 

Mbits per image. Thus image compression is applied to reduce the required bits (or costs). In 

general, data compression can be defined as minimizing the required bits needed to represent 

the source, while maintaining acceptable reconstruction of the source. Hence the storage and/or 

transmission costs are reduced. This can be done in many different ways, depending on the 

method used and the signal (application).  

                                                 
4 There are other sensors which is used for this purpose as well and the procedure isn’t limited to a camera. Other 

sensors can be pH meter, temperature meter, endoscopic ultrasound (EUS) or endoscopic retrograde 

cholangiopancreatography (ERCP) [32]. 
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Many signals contain information which isn’t needed, either because the information can be 

retrieved, or because it isn’t relevant for the application. In redundancy removal, there are 

correlation between consecutive samples, which means some samples can be removed and 

reconstructed at the decoder, using prediction. With irrelevancy, some of the information in the 

signal can’t be perceived by the user, meaning it can be removed without it being noticed. 

Redundancy is without loss of information (lossless), while irrelevancy is with loss of 

information (lossy). 

2.2.1 Source Coding 

When compressing a source, it is common to use the terms lossless and lossy compression 

algorithms [37]. Lossless means that perfect reconstruction is possible at the receiver, and the 

result is identical to the source. Lossy compression on the other hand, means that the source is 

not perfectly preserved and the reconstructed data is not identical to the original. It is important 

to remember that an algorithm can be lossless even if the result isn’t identical. This is because 

the transmission of a signal or image will be affected by noise or interference which can alter 

the signal (more in Chapter 3.2). However, this is due to the channel, and not the compression 

algorithm. If the channel is ideal, the reconstructed signal or image would be identical to the 

source. 

Naturally, lossless compression schemes have a higher bitrate than the lossy compression 

algorithms, since information is lost in the lossy case. However, the high bitrate in lossless 

means that there is no distortion5 in the signal or image. When limiting the bitrate to a lower 

value than needed for the lossless compression scheme, distortion occurs to the signal. This is 

known as rate distortion theory, and considers the minimum bitrate which is required for a 

given image quality (or given fidelity) [39]. The relationship between bitrate and distortion 

follows a function, R(D), based on the lower bound for the transmission bitrate, shown in Figure 

2.3 below. 

                                                 
5 Distortion means to change the shape or appearance of a signal, in usually an unwanted way [38]. In practice this 

means that a different symbol is received than was sent. 
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Figure 2.3 Rate-Distortion function [40] 

This rate distortion function, or source coding theorem, is also known as one of the fundamental 

limitations (within source coding), and was derived by Claude E. Shannon in 1959 [8, 41]. It is 

important to remember that this only applies to lossy compression schemes. In practice, the 

lossy compression technique is the quantization part, as shown in Figure 2.4 below. The other 

two blocks are the lossless part of the general compression system. In other words, nearly every 

lossy compression scheme, contains a lossless part and a lossy part [39].  

 

Figure 2.4 Lossy compression system [42] 

The compression system is based on Shannon’s separation principle, which states that for 

point-to-point communication systems, reliable transmission is possible if the source coding 

rate is below channel capacity [43]. This means that it is possible to look at the source coder 

and the channel coder separately, and still be able to see if it will work. However, this theory is 

under the assumptions of ergodic channel6, and complexity and delay tends towards infinity. 

This is never the case in a practical system, especially in networks and in feedback systems, 

                                                 
6 Ergodic channel has the property that given enough time, all samples in a given (small) space can be represented 

statistically by a large selection of samples. 
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resulting in errors in the received signal. The theory still gives an important principle; to 

optimize the whole communication system, one can optimize the source coder and channel 

coder separately. Received signal, for instance, can either be tolerated as sub-optimal and/or 

error correction methods can be applied (presented in Section 3.4).  

2.2.2 Building Blocks for Image Compression 

When optimizing the source coder is it, as mentioned, also common to separate into different 

steps (not to be confused with Shannon’s separation principle), depending on the application. 

This can be different redundancy reductions (reversible) or irrelevancy reductions (not 

reversible). It is common to distinguish between three main steps, and two additional steps [44]. 

The first main step is the forward transformation. This is a redundancy reduction, in other 

words, a lossless step. The second main step is the quantization, which is omitted in lossless 

image compressors, since this is a non-reversible process. Next is the encoding step, often called 

entropy encoding. The two additional steps are the image source representation, and the 

compressed image data. The general block diagram for image compression is shown in Figure 

2.5 below.  

 

Figure 2.5 Building blocks for image compression 

Different image compression schemes, utilizes different techniques, and may omit some of the 

steps. Some may not do anything with the image source data step, and code directly on the 

presented image, but some may require specific colour space representation or tiling before 

transformation. As there exist too many techniques in the different steps to explore all of them, 

some of the more common ones will be explained briefly in the subsequent chapters. The steps 

will be presented in the order they would appear, given that all of the building blocks (Figure 

2.5) is included in the image coding scheme. The first step is the image source data, more 

specifically, how an image is produced, represented and pre-processed. 

2.3 Image Source Representation 

When creating a digital photography, an electro-optical sensor captures the light intensity from 

a light source (camera flash, sun or other light sources) [7, 45]. This sensor consists of small 

photosites, which is usually called pixels. The captured light intensity is then filtered through a 
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colour filter arrays, depending on the wavelength. Normally this filter consists of three arrays7, 

splitting the intensity into red, green and blue (RGB), as shown in Figure 2.6 below. The 

resulting RGB image, is a so-called RAW image. A RAW image is uncompressed, and very 

large, so these will be very demanding in processes for storage and/or transmission, and will 

therefore be needing compression. However, before the image is compressed, colour 

conversion is applied since the RGB isn’t a good representation for humans to visualize 

different colours. In other words, proper perception of colours relies more on light intensity 

than single RGB colours.  

 

Figure 2.6 Illustration of RGB filters [46] 

There are numerous methods for representing colours, depending on the different applications. 

For instance, computers often use RGB, printers use cyan, magenta and yellow (CMY), but 

YUV is common for human perception (see Subsection 2.3.1.2). All of these (among others) 

are based on three coordinates. However, these parameters do not tell which colour is displayed, 

only the amount of each component [47]. Some colour spaces are perceptually linear, meaning 

linear changes in values, will result in linear change in perception. This is not the case in many 

colour spaces used in computer graphics, on the other hand.  

2.3.1 Colour Spaces 

Since there are so many different colour spaces, it would be too much to go into detail about all 

of them. A few of the most common simplified spaces is still worth mentioning and will be 

briefly presented.  

2.3.1.1 Red, Green, Blue (RGB) 

As mentioned, RGB is often used intuitive from the uncompressed images. It is fairly easy to 

implement with the additive three colour system. It is one of the most used colour space, but it 

                                                 
7 This is often a Bayer array, which contains twice as many green sensors as red or blue, due to the human eyes 

are more sensitive to green colour [46]. 
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is non-linear with the visual perception and is therefore difficult for human description of colour 

[47, 48]. RGB is quite inefficient, since all of the parameters are highly redundant and 

correlated, meaning they all contain luminance information.  

The RGB system is mostly used on displays and cameras, however when printing this is often 

changed to cyan, magenta and yellow (CMY) system, often with a black component in addition 

(CMYK). This is a simple linear transform from the RGB with the conversion shown in (1). 

[
𝐶
𝑀
𝑌

] = [
1
1
1

] − [
𝑅
𝐺
𝐵

] (1) 

2.3.1.2 Luminance and chrominance (YUV) 

The luminance (Y) and chrominance (U and V)8 system removes some of the high correlation 

in the RGB system [7, 48]. Luminance represents the intensity of the light (or black and white), 

while chrominance is the colour components. The U refers to the difference between the red 

component and the luminance, while V is the difference between blue and luminance. This 

means these two categories (Y and U/V) can be treated separately, which is related to the human 

perception system. In lossy compression this separation is widely used to either completely 

remove the chrominance part or partly remove some of the colour (irrelevancy reduction). 

Conversion between RGB and YUV are shown below in (2) [7, 49]. The transformation matrix 

can be different, since there are different versions of RGB (and YUV). The one shown below 

is a simplified version with base integers limited to 2, instead of floating points, which is more 

energy efficient.  

[
𝑌
𝑈
𝑉

] = [

1/4 1/2 1/8
0 −1/2 1/2

1/2 −1/2 0
] [

𝑅
𝐺
𝐵

] + [
0

128
128

] (2) 

2.3.1.3 YEF  

This section explains the YEF colour space which is very similar to the YUV colour space9. In 

fact, the luminance component is very near-identical, but the chrominance components isn’t 

[50]. Both the luminance and chrominance components are uncorrelated, which means that 

larger quantization steps can be applied in the chrominance components (see Section 2.5), 

without affecting the overall reconstructed image quality. The main difference between YUV 

                                                 
8 U and V is also known as Cr (red difference) and Cb (blue difference) in the JPEG format 

9 This applies mainly to the one described above, since different versions exists, which wouldn’t necessarily be 

near identical. 
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and YEF, is that the chrominance components are the difference between green and luminance 

(E) and the difference between blue and luminance (F).  

YEF colour space was developed with endoscopic images in mind, since YUV is 

computationally expensive (when floating point numbers are used instead of the version 

described above) [51]. This results in energy savings due to efficient hardware implementation, 

since this colour space utilizes base integers of 2, which allows for simple bit shifting 

operations. The conversion equation is given in (3) below. 

[
𝑌
𝐸
𝐹

] = [

1/4 1/2 1/4
1/8 −1/4 1/8
1/8 1/8 −1/4

] [
𝑅
𝐺
𝐵

] + [
0

128
128

] (3) 

2.3.2 Tiling 

The term tiling is the process of splitting an image into small parts or partitions, which often 

consists of rectangular non-overlapping blocks [44, 52]. This is done because many embedded 

image processors may be unable to handle very large images, or it might have very limited 

memory available. Tiles reduces this problem, since the tiles can be handled independently, as 

if they were separate images and not just a partition of one image. Each tile is sent through all 

of the operations in the system; transformation, quantization and entropy coding (Figure 2.5). 

The same is the case for the decoder, which also will reconstruct the image, using the different 

partitions independently, reducing the memory requirement for the decoder. Tiling can be 

illustrated as shown in Figure 2.7 below, which shows three different levels of tiling. Firstly, 

the whole image is regarded as one tile, before it is divided into 4 tiles and 16 tiles. 

 

Figure 2.7 Three levels of a tiled pyramid for "Lena" image [53] 

All of the different tiles in an image usually have the same size, but the tiles at the end of the 

image may be the exception [44]. If some tiles exceed the image size, these tiles are usually 

filled with zeroes in the surpassing area. As long as all of the tiles are the same dimension, the 

decoder will know how to reconstruct the image properly and efficiently. The size of the tiles 
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still varies, and can be up to the size of the whole image (the whole image is regarded as one 

tile). The bigger the tiles, the better the reconstructed image quality, but it requires more 

memory and larger latencies in read write [52]. Smaller tiles are the opposite; they have smaller 

transfer time, require less memory but they have lower reconstructed image quality. A 

drawback with the smaller tiles, is that they can create what is known as tiling artefacts, which 

can be seen in reconstructed image as rectangular blocks10. On the other hand, tiles allows for 

some parts of the image to be compressed differently than other sections. This can result in 

variation in the image quality within the frame, also known as region-of-interest. These are 

factors which need to be considered when deciding tile size, in an image compression system. 

Regardless of what is chosen for the specific application, transformation coding will still have 

to be applied for efficient coding.  

2.4 Transformation Coding 

After the image source representation is satisfying according to the application, transformation 

is usually the next step in image compression. This is the process of transforming the image 

data into some other values (or another set). These “other values” can be interpreted as the 

image data is in another domain, which can be advantageous for identifying features that would 

be difficult to do in spatial domain. For example, some properties or characteristics can be easier 

to detect using frequency domain instead of the spatial domain. Some domains also provides a 

better foundation for the entropy encoding which comes later (see Section 2.6). 

It is common to distinguish between two types of transformations; orthogonal block transforms 

and filterbank based transforms [54]. There are a variety of methods to transform within these 

two categories, and some don’t completely fit into either of these two. Some of the common 

methods within these two categories will be briefly described; the discrete cosine transform 

(DCT) and subband coding (SBC). The DCT is used in the JPEG11 standard, while a special 

case of SBC is used in the newer JPEG2000 standard. Another “transformation” which doesn’t 

completely fit into one of those categories, but is quite common in digital signal processing will 

also be discussed, namely predictive coding.  

                                                 
10 These tiling blocks aren’t the same as the known blocking artefact, which happens with DCT transformation at 

low bitrates, because of high correlation between two blocks. 

11 Joint Photographic Experts Group (https://jpeg.org/) 

https://jpeg.org/
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2.4.1 Discrete Cosine Transform 

The discrete cosine transformation (DCT) is a transformation which is related to the discrete 

Fourier transform (DFT). The main difference is that the DFT goes to infinity, the DCT is a 

finite set [55, 56]. Since it is a finite sequence, perfect reconstruction will not be possible, and 

it is therefore commonly used as a lossy compression scheme in image coders. Particularly, in 

the well-known JPEG standard. Note that DCT can still achieve near-lossless, but not 

completely lossless compression.  

DCT takes an 8x8 greyscale block (tiling, Section 2.3.2), and compresses this block. When it is 

a colour image, the procedure is repeated for each colour channel, i.e. one colour channel is 

regarded the same as a grayscale channel. The values for the pixels are shifted at the entrance 

of the transformation, from [0, 2P-1] to [-2(P-1), 2(P-1)-1], to ensure that the dynamic range is 

centred around zero. The centred 8x8 block is then transformed by (4) below. The result is that 

the 8x8 input block is transformed into a 64-point, 2-dimensional discrete signal. These 64 

values are basically amplitudes, also known as DCT coefficients, based on the 64 input values 

[56].  

𝐹(𝑢, 𝑣) =
1

4
𝐶(𝑢)𝐶(𝑣) [∑ ∑ 𝑓(𝑥, 𝑦) ∙ cos (

(2𝑥+1)𝑢𝜋

16
) ∙ cos (

(2𝑥+1)𝑣𝜋

16
)7

𝑦=0
7
𝑥=0 ] (4) 

Where: 

𝐶(𝑢), 𝐶(𝑣) = {
1

√2
, 𝑓𝑜𝑟 𝑢, 𝑣 = 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

Inverse DCT (IDCT) is performed at the decoder side, given by (6) below, to get the 64 

reconstructed pixel values based on the 64 DCT coefficients [56]. Mathematically, the DCT is 

a so called one-to-one mapping, between the frequency domain and the image. However, since 

it is a finite series, it can’t be computed with perfect accuracy. Especially when the DCT 

coefficients are quantized, which is the case in the JPEG standard, i.e. in theory the DCT is a 

lossless transformation, but in practice this is near impossible to achieve so it results in lossy 

compression.  

𝑓(𝑥, 𝑦) =
1

4
[∑ ∑ 𝐶(𝑢)𝐶(𝑣)𝐹(𝑢, 𝑣) ∙ cos (

(2𝑥+1)𝑢𝜋

16
) ∙ cos (

(2𝑥+1)𝑣𝜋

16
)7

𝑣=0
7
𝑢=0 ] (6) 

2.4.2 Subband Coding 

Filterbank transforms are in general based on frequency analysis of the signal by using filters 

[54, 57]. The general idea in subband coding (SBC), is to split the signal into different channels 

based on their frequencies, and process these independently. Splitting the signal is done by n 

parallel filtering (1 low-pass, n-2 band-pass and 1 high-pass) and down-sampling (decimated) 
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by a factor of k. If the number of subbands is two, naturally there won’t be any band-pass filters, 

and the channels will consist of low-band and high-band, as shown in Figure 2.8 below. The 

decimation is done since the output of the filters will contain more information than what is 

required, also known as overcomplete output12. If the decimation factor is equal to the number 

of parallel filters, the decimation is critical, meaning it is the limit which perfect reconstruction 

is guaranteed.  

 

Figure 2.8 General subband coding scheme [53] 

In Figure 2.8, both the encoding and the decoding part is shown. On the encoder side (left side), 

the process is often called the analysis, while at the decoder it’s called the synthesis [54, 58]. 

Synthesis is the process of reconstructing the signal by interpolating the different subband 

signals, before filtering and combining using superposition of all the different frequencies 

channels. The filters depend on the kind of signal, which for images often is finite impulse 

response (FIR) filters. FIR filters gives linear transforms, and images are of finite size, making 

these kind of filters well suited for images. The design of the filters is critical to avoid aliasing13 

in the sub-sampling process, as the filters need to eliminate the alias components that occur 

when the interpolated signals are combined.  

Until now, SBC has been mentioned as parallel channels, however there is no reason why all 

channels have to be in parallel. A special case of SBC is the cascade version, which can in a 

simple case be described as inserting another 2D coding scheme between the analysis and the 

synthesis part. If this is the case, the result would give three channels; low-low-band (LL), low-

high-band (LH) and high-band (H), which could be expanded further [58]. This technique is 

                                                 
12 In an overcomplete system, removal of some of the samples, won’t make the system incomplete, but the result 

will still be complete. 

13 In aliasing, parts of the frequency spectre are copied, which will add to the signal (spectra overlap). This is an 

irreversible, unwanted process. 
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widely used in image processing, and it is what the basis for how the wavelet transform works, 

which is for instance used in JPEG2000.   

2.4.2.1 Wavelet Transform 

The wavelet transform (WT), or discrete wavelet transform (DWT), is a special case of the 

SBC. It utilizes 2D cascade scheme for decomposition of the image into, firstly, 4 channels; 

LL, LH, HL and HH. Images contain most information in the low-pass part, LL, so when 

compressing the image further, the cascade scheme is repeated on the LL part, and so on. This 

results in an image decomposition, as shown in Figure 2.9 below. The process is called the 

dyadic decomposition, which is a lossless transform, given correct implemented filters [44, 54]. 

If the image is tiled, the decomposition process is done independently on each tile.  

 

Figure 2.9 Two-level wavelet decomposition. (a) original 

Barbara image, (b) Resulting DWT decomposition image 

[59]. 

As in the more general case, the SBC, all of the different channels are down-sampled and 

filtered. The filters vary with the application14, but the JPEG2000 standard has two main kind 

of filters, depending on irreversible or reversible transformation. Irreversible transform uses the 

Daubechies filter with 9-tap/7-tap (lossy) and the reversible uses same with 5-tap/3-tap filter 

(lossless) [44]. The Daubechies filters, are in fact one of the most common type of creating 

mother wavelets in WT [60]. Mother wavelet refers to the main function which is used in WT, 

and all other functions in the transform is scaled shifted versions of the mother wavelet. This 

                                                 
14 The main requirement is that the generated function (wavelet) must be oscillatory, i.e. a wave.  
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property can be shown by looking at the discrete wavelet transform filters, where h(n) is the 

low-pass filter. The corresponding high-pass filter15 will then be defined by (7). 

𝑔(𝑛) = ℎ(2𝑁 − 1 − 𝑛) (7) 

Equation (7) is valid for the one-dimensional case, but as for SBC, the two-dimensional case is 

just an expansion, or cascade version of the one-dimensional case. A common implementation 

of the cascade coupling is, for a NxN image f(x,y), to first regard the image as a series of 1-D 

rows, and after as a 1-D series of columns [60]. The result from this one-level decomposition, 

is four sections of the image, which can be repeated again at the LL part, to get the two-level 

decomposition, as shown in Figure 2.9 above. 

DWT gives some advantages in image processing. Since the image is divided into sections 

depending on the frequencies, de-noising, filtering and feature extraction are easily applicable, 

as well as compression. Most of these features involves eliminating or extracting some of the 

frequencies from the signal based on a threshold [60]. For instance, electromagnetic drifts can 

appear in wires during transmission, which will give high frequency noise. Such noise can be 

filtered or removed by the DWT domain, since most of the image information is located in the 

low-pass part of the image, and that particular noise is in the high-pass region. Direct 

compression gain from DWT is similar; by decomposition irrelevant information (often high-

pass region) can easily be eliminated. This is a lossy compression method, but the indirect 

compression method doesn’t need to be lossy. In the resulting other domain, values can be 

better for entropy coding than the original, which will result in a more efficient lossless 

compression than it would without the DWT.  

Transformation of values into another domain, resulting in more efficient compression is 

common, but some methods don’t require this transformation in order to be efficient. They can 

use other properties to obtain high compression ratio, which is the case for the predictive coding 

technique. 

2.4.3  Predictive Coding 

Predictive coding isn’t directly defined as transform coding, since it doesn’t transform the 

values into another domain, but it does change the values in the signal. The encoding scheme 

works by predicting the values, before subtracting the predicted from the original values. This 

creates an error signal, e(n), with the difference between these two signals. Prediction of the 

                                                 
15 This is based on the quadrature mirror filter (QMF) algorithm, other variations exist, but the main principles are 

similar. Most of the popular discrete wavelets are in fact formed using QMF [60]. 
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values is possible because many signals, especially images and speech/audio signals, have high 

correlation between consecutive samples. Since the resulting error signal has less variation than 

the original signal, the quantizer (covered in Section 2.5) can have a smaller decision region, 

resulting in a higher SNR [54, 61]. The general structure of the predictive coding system is 

shown in Figure 2.10 below. Omitting the quantizer part will give lossless coding. 

 

Figure 2.10 Quantized Predictive Coding System. Omitting the quantizer part will give a 

lossless system. Encoder on the left, and decoder on the right [53]. 

The system equations in this predictive system is: 

𝑒(𝑛) = 𝑥(𝑛) − �̂�(𝑛) (8) 

𝑞(𝑛) = �̃�(𝑛) − 𝑒(𝑛) (9) 

𝑦(𝑛) = �̃�(𝑛) + �̂�(𝑛) (10) 

Where x(n) is the input signal, e(n) is the error signal, q(n) is quantizer error and y(n) is the 

output signal. In the lossless case, the quantization error, q(n) in (9), becomes zero which results 

to y(n)=x(n). In the z-domain this translates into: 

�̃�(𝑧) = 𝑋(𝑧)(1 − 𝐻(𝑧)) + 𝑄(𝑧) (11) 

𝑌(𝑧) =
�̃�(𝑧)

1−𝐻(𝑧)
= 𝑋(𝑧) +

𝑄(𝑧)

1−𝐻(𝑧)
 (12) 

The prediction error, e(n), will in this case be a continuous range of values, which isn’t 

applicable in digital transmission. Because of this predictive coding in digital signal processing 

is often used with a quantizer, resulting in lossy compression [61]. It is fully possible to get near 

lossless compression using predictive coding, but this is often a bit more complicated and may 

include some transmission of side information [62].  

2.4.3.1 Differential Pulse Code Modulation (DPCM) 

Differential Pulse Code Modulation (DPCM) was first invented in 1950 by C. C. Cutler, and 

has become a very common technique in digital signal processing [63]. The system shown in 

Figure 2.10 is also known as an open-loop DPCM. In this system the encoder doesn’t have any 

control on the reconstruction process, which will lead to the quantization error, q(n). The 
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additional error signal will then be amplified by the filter at the decoder, as shown in (12), 

which will lower the SNR [54, 61]. Because of this problem, the quantizer can be implemented 

inside the prediction loop, as shown in Figure 2.11 below. With the quantizer within the loop, 

the predictor always knows what the result is after the quantizer, i.e. q(n) is a part of e(n) and 

will therefore not be amplified by the filter in the decoder.  

 

Figure 2.11 Block diagram of a typical closed loop DPCM system [53]. 

The system equations will in this case become: 

𝑞(𝑛) = �̃�(𝑛) − 𝑒(𝑛) (13) 

𝑒(𝑛) = 𝑥(𝑛) − �̂̃�(𝑛) (14) 

�̃�(𝑛) = �̃�(𝑛) + �̂̃�(𝑛) (15) 

𝑦(𝑛) = �̃�(𝑛) + �̂�(𝑛) (16) 

Which will be described in the z-domain as: 

�̃�(𝑧) = 𝑋(𝑧) − 𝐻(𝑧)�̃�(𝑧) + 𝑄(𝑧) (17) 

�̃�(𝑧) = (𝑄(𝑧) + 𝐸(𝑧)) + (𝑋(𝑧) − 𝐸(𝑧)) = 𝑋(𝑧) + 𝑄(𝑧) (18) 

𝑌(𝑧) =
�̃�(𝑧)

1−𝐻(𝑧)
=

𝑋(𝑧)−𝐻(𝑧)(𝑋(𝑧)+𝑄(𝑧))+𝑄(𝑧)

1−𝐻(𝑧)
= 𝑋(𝑧) + 𝑄(𝑧) = �̃�(𝑧) (19) 

As shown in (17)-(19) the problem regarding the quantization error being amplified is now 

eliminated. Since the encoder contains a full copy of the decoder, the encoder will always know 

what the resulting output signal will be [54]. Since the input signal on the predictor can’t be 

delayed, the quantizer has to be memoryless in the system. This will result in some penalty in 

SNR, with approximately 1.5dB, compared to optimal, but this isn’t considered a high price to 

pay in the overall system [61]. There are many different ways of design the quantizer which 

will affect the system performance (covered in Section 2.5), but the predictor also have a major 

role in the performance.  
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2.4.3.2 Predictor 

The predictor in the DPCM system can be considered as the key component in the system since 

it highly influences the overall performance [54]. Naturally, the predictor will depend on the 

input signal, but a common technique is to model the input signal as a discrete vector. For an 

image, which is two-dimensional (2-D), one can either model as a series of vectors (multiple 

rows or columns) or implement directly multidimensional. One of the simpler models is to 

design the filters as a linear prediction of past samples, as shown in equation (20) and (21) 

(forward and backward prediction respectively)[64]. 

�̂�(𝑛) = − ∑ 𝑎𝑝(𝑘)𝑥(𝑛 − 𝑘)𝑝
𝑘=1  (20) 

�̂�(𝑛 − 𝑝) = − ∑ 𝑏𝑝(𝑘)𝑥(𝑛 − 𝑘)𝑝−1
𝑘=0  (21) 

In this equation, p is the prediction order, ap is called the prediction coefficients and the negative 

sign is for mathematical convenience and aligns with current practice. In the backward 

prediction, the prediction coefficients, bp, is the complex conjugate of ap but in reverse order, 

shown by (22). 

𝑏𝑝(𝑘) = 𝑎𝑝
∗ (𝑝 − 𝑘) (22) 

A common method of finding the prediction coefficients is to model the source signal as an 

autoregressive (AR) process [54, 61]. The coefficients can then be found using the 

autocorrelation sequence by solving (23), which can be expressed with Yule-Walker equations 

given in (24) [64].  

𝛾𝑥𝑥(𝑚) = {

− ∑ 𝑎𝑘𝛾𝑥𝑥(𝑚 − 𝑘),                  𝑚 > 0 𝑝
𝑘=1

− ∑ 𝑎𝑘𝛾𝑥𝑥(𝑚 − 𝑘) + 𝜎𝑤
2 ,      𝑚 = 0𝑝

𝑘=1

𝛾𝑥𝑥
∗ (−𝑚),                                         𝑚 < 0

 (23) 

[

𝛾𝑥𝑥(0) 𝛾𝑥𝑥(−1) 𝛾𝑥𝑥(−2)

𝛾𝑥𝑥(1) 𝛾𝑥𝑥(0) 𝛾𝑥𝑥(−1)
⋯

𝛾𝑥𝑥(−𝑝)

𝛾𝑥𝑥(−𝑝 + 1)
⋮ ⋱ ⋮

𝛾𝑥𝑥(𝑝) 𝛾𝑥𝑥(𝑝 − 1) 𝛾𝑥𝑥(𝑝 − 2) ⋯ 𝛾𝑥𝑥(0)

] [

1
𝑎1

⋮
𝑎𝑝

] = [

𝜎𝑤
2

0
⋮
0

] (24) 

Equation (23)-(24) shows that there is a linear relationship between the autocorrelation γxx(m), 

and the prediction coefficients ak. This linear relationship is not the case in the ARMA or MA16 

process which is nonlinear [64]. Linearity in the predictor can be advantageous for simplicity 

and work well in areas with high correlation. This is not the case for the edges in an image, so 

in images with a lot of edges, non-linear predictors have the advantages in terms of performance 

                                                 
16 Autoregressive, Moving Average (ARMA) process & Moving Average (MA) process. 
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[54]. On the other hand, performance of linear predictors can be increased by having an adaptive 

predictor, giving adaptive DPCM system. Adapting the prediction filter depending on the input 

sample (or signal), can reduce the quantizer error, and achieve higher compression and higher 

SNR. The drawback with this system, is that it requires more computations (energy) from both 

the encoder and the decoder.  

 

Figure 2.12 Adaptive DPCM system [53]. 

Since both the decoder and the encoder has access to identical signals, both can be made self-

adaptive. In an AR model the predictor coefficients can be updated with each sample, i.e. no 

additional side-information has to be transferred, as Figure 2.12 shows. Switched prediction is 

another kind of adaptive prediction, which consists of different predefined prediction filters, 

switching between them depending on selected criteria [54]. A backward adaptive switched 

prediction system is what is used in the lossless and near-lossless coding scheme JPEG-LS. 

2.5 Quantization 

Quantization of a signal is in basic the process of rounding a signal value. Analogue signals 

have infinite possible values, so when digitalization of these values they are “rounded” to 

practical values. This rounding is also known as a many-to-one mapping, implying there will 

be loss in this process. However, in this analogue-to-digital converter (ADC) case, the 

quantization part is often of such high quality that it is considered “original” for all intents and 

purposes [37]. The quantization process within image encoding systems, will technically be the 

second time the image signal is quantized, resulting in lossy encoding. Omitting this is the 

lossless encoding, as mentioned, since it is related to the ADC (source) and not the image coder 

itself.  

The general principle of the “second quantizer” (herby only referred to this one) is the same as 

in all quantizers. Quantizers round values into L different quantization levels, i.e. the number 



   

25 

 

of outputs, which all lies within the dynamic range of the quantizer [37, 65]. Dynamic range is 

defined as the minimum and maximum values in quantizer which it can handle, i.e. the range 

of input signal values xmax - xmin. If the input signal exceeds these values they are either rounded 

(rounding) to these max- and min values, or the exceeding values can be discarded (truncation).  

The allowed output values within the dynamic range are separated with distance ∆, also known 

as quantization step size or resolution. Each rounding in the quantizer, assigns each sample of 

x(n) to the nearest quantization level to produce the output xq(n). This results in some rounding 

error in the signal, also called quantization error or quantization noise (eq(n)), which is limited 

to half of the resolution, as shown in (25). 

−
Δ

2
≤ 𝑒𝑞(𝑛) ≤

Δ

2
 (25) 

𝑒𝑞(𝑛) ≜ 𝑥(𝑛) − 𝑥𝑞(𝑛) (26) 

Many image encoders have implemented redundancy removal (Section 2.3 & 2.4) before the 

quantization part, since this can reduce the number of required quantization levels and/or the 

dynamic range. For instance, this reduction will be achieved in DPCM systems, which can 

reduce the produced quantization noise.  

Equation (25) for the quantization error is, strictly speaking, actually valid for an uniform scalar 

quantizer. In this case, the step size, ∆, is a scalar constant (Figure 2.13 (a)), but this isn’t always 

the case. In non-uniform quantizers, the step size varies (Figure 2.13 (b)) depending on the 

assumed probability density function (pdf) of the input signal. In this case ∆ is referred to as 

the scaling, but some still calls it the step size here as well, even though this isn’t strictly 

completely correct [37].  
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Figure 2.13 Midrise quantization Q(x) and quantization error q(x). (a) 

uniform and (b) non-uniform quantizer [53]. Note that Q(x)=xq(n) & 

q(x)=eq(n) in the text. 

2.5.1 Uniform Scalar Quantizers 

A uniform scalar quantizer is the simplest form, in terms of simplicity and implementation. It 

is called uniform because the step points on the horizontal axis is the same (uniform) as the 

output levels on the vertical axis [37]. If the quantizer has b-bits accuracy, this means that it has 

L=2b different output levels. The step size, ∆, is then simply defined as the dynamic range over 

the number of output levels (27), which will be the same for all the steps. 

Δ =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝐿
=

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑏  (27) 

Equation (25) will then be an absolute limit as long as the input signal doesn’t exceed the 

dynamic range, if it does, the quantizer is said to be in overload. Within the dynamic range (also 

known as granular region) the performance is often represented by a signal-to-quantization-

noise ratio (SQNR) or just SNR, described by (28) [37, 61].  

𝑆𝑄𝑁𝑅[𝑑𝐵] = 10 log
10

(
𝜎𝑥

2

𝜎𝑞
2) (28) 

Where σx
2 is the variance of the input signal and σq

2 is the variance of the quantization noise, 

also known as mean squared quantization error. Assuming the quantizer isn’t overloaded (i.e. 
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σx
2 small enough to ensure x ϵ (-xmax, xmax)), and the input is uniformly distributed, the variance 

quantization noise becomes: 

𝜎𝑞
2 = 𝐸{𝑒𝑞

2} = ∫ 𝑒𝑞
2𝑝𝑞(𝑒𝑞) 𝑑𝑒𝑞 = ∫ (𝑥(𝑛) − 𝑥𝑞(𝑛))

2

𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

∞

−∞
 (29) 

Where pq(∙) and px(∙) is the pdf of eq and x respectively. By approximation and a large enough 

L, the quantization error can be described as: 

𝑝𝑞(𝑒𝑞) = {
1 Δ⁄ ,         |𝑒𝑞| ≤ Δ 2⁄

0,                𝑒𝑙𝑠𝑒
 (30) 

Giving: 

𝜎𝑞
2 = ∫ 𝑒𝑞

2 1

Δ
𝑑𝑒𝑞 =

1

Δ
[

𝑒𝑞
3

3
]

−Δ 2⁄

Δ 2⁄
Δ 2⁄

−Δ 2⁄
=

Δ2

12
 (31) 

By inserting the step size, and having b-bits to represent each discrete output, we obtain: 

𝜎𝑞
2 =

Δ2

12
=

1

12
(

2𝑥𝑚𝑎𝑥

𝐿
)

2

=
1

3
𝑥𝑚𝑎𝑥

2 2−2𝑏 (32) 

𝑆𝑄𝑁𝑅[𝑑𝐵] = 10 log10 (3
𝜎𝑥

2

𝑥𝑚𝑎𝑥
2 22𝑏) = 6.02𝑏 − 10 log10 (3

𝑥𝑚𝑎𝑥
2

𝜎𝑥
2 ) (33) 

The result in (33) implies that SQNR increases by 6dB for each bit added, i.e. 6dB increase for 

each doubling the number of quantization levels. This means that the quality of the output signal 

will also deteriorate at low- to very low bitrates, and will increase with high bitrates [66]. For 

the rest of the expression, it highly depends on the input signal. For instance, it can be shown 

that for uniformly distributed x, xmax/σx=√3, which means SQNR=6.02b, for a sinusoidal x, 

xmax/σx=√2 resulting in SQNR=6.02b+1.76 [61, 65] 

Increasing the number of bits will give better quality, but will also cost more in terms of storage 

and transmission of images. Therefore, in lossy image coding, it is a common problem to try to 

minimize required bits without having too much distortion (which can translate into the 

quantization noise variance). When trying to minimize the required bits, this mid-rise 

quantization might be a disadvantage since it cannot have zero as an output value. Mid-tread 

(reference to a tread in a staircase) quantizers eliminates this by including the zero output value. 

However, it won’t be symmetric around the axis, which in turn can be a disadvantage if the 

input is modelled as a random variable.  
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In general, uniform quantizers are optimum as long as the input pdf is uniformly distributed, 

but if it isn’t the uniform quantizer won’t be optimum17. This is especially true if the bitrate 

isn’t high enough [66, 67].  

2.5.2 Non-uniform Quantizers 

As mentioned, the uniform quantizers are advantageous in simplicity, and especially if there is 

no knowledge of the input signal, the average result can be better. However, when the pdf of 

the input signal is known or assumed, the case can be different. The steps can be chosen 

independently depending on how the signal is in order to minimize quantization error function 

[37]. This will reduce the quantization error in some regions, but can increase in some others, 

as compared with uniform in Figure 2.13. However, finding the different steps sizes for 

different regions can be a complex approach. This can be solved using numerically 

computation, which was done by Lloyd-Max (resulting in the Lloyd-Max quantizers) for 

Gaussian distributions. Because of this, effective non-uniform quantizers can be difficult to 

design without knowledge of the source statistics [68]. For some applications, some statistics 

can be exploited. For instance, speech signals have high probabilities for low amplitudes, which 

can be coded as a non-uniform quantizer. Another good solution is simply to transform the 

speech signal into something that looks uniform and then use a uniform quantizer (compress 

the larger amplitudes in the speech signal).  

For image coders (and video sequence coders) it isn’t necessarily the same case as speech 

coders, but the same technique is used in encoders which can have high bitrate. At low bitrates 

it is common to use a special case of the non-uniform quantizers, namely the dead-zone (also 

known as dead-band) quantizer. 

2.5.2.1 Dead-zone Quantizer 

The Dead-zone quantizer is a non-uniform18, mid-tread quantizer, basically by having a larger 

region (or step) around zero. This means that more of the input values will be rounded to zero, 

which reduces the required rate [7, 69]. This property also results in an increase in the 

quantization error around this area, but the potential savings in rate if many samples are near 

                                                 
17 In terms of the quantizer itself, for some specific applications uniform can be optimum in terms of simplicity 

and complexity. 

18 Some do regard dead-zone quantization as a uniform, since it can often be uniform in all regions, except for the 

region around zero. 
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zero value can compensate for this increase in eq. Dead-zone quantization has been proven quite 

effective in image compression, and is therefore used in Part 1 in the JPEG2000 standard [44].  

There are different versions of the dead-zone quantizer depending on the source. For instance, 

the optimal Entropy Constrained Scalar Quantizer (opt-ECSQ) is used for sources having 

exponential and Laplacian probabilities density function [69]. On the other hand, this has been 

proven to be quite complex in designing and implementing. The Uniform Reconstruction with 

Unity Ratio Quantizer (URURQ) is an improved version of the Uniform Threshold Quantizer 

(UTQ), which can be used as a very well approximation of the ECSQ. URURQ has a wide zero 

region, but has equal uniform steps outside this zero area with step size ∆. The dead-zone region 

in the middle is a function of this step size, given by (34), as well as an offset value given by 

(35). 

𝐷𝑍𝑟𝑒𝑔𝑖𝑜𝑛 =  2(Δ − 𝛿(Δ)) (34) 

𝛿(Δ) = 1 −
Δ𝑒−Δ

(1−𝑒−Δ)
 (35) 

The total URURQ and its inverse can then be described by (36)-(37) below. 

𝑥𝑞(Δ, 𝛿) = 𝑠𝑖𝑔𝑛(𝑥(𝑖, 𝑗)) ∙ max {0, ⌊
|𝑥(𝑖,𝑗)|+𝛿

Δ
⌋} (36) 

𝑥𝑟𝑒𝑐(Δ) = Δ ∙ 𝑥𝑞(𝑖, 𝑗) (37) 

Where (i,j) describe the location of pixel values for an image, and xrec is the reconstructed value 

at the decoder. Comparing URURQ to the more complex algorithm opt-ECSQ, the difference 

in rate-distortion performance (SQNR) for different bitrates is at a maximum 0,0021dB [69]. 

Meaning that since the URURQ is a lot simpler, it would be advantageous to use that quantizer 

at lower rates. Note that for high bitrates the uniform will generally still be optimum compared 

to any dead-zone quantizers [66]. 

2.5.3 Adaptive Quantization 

Since many application has to compensate for different input signals (e.g. different speech 

variances or different kind of images), problems can occur in the quantizer part for the encoder 

(overload or mismatch in the steps). One well used solution to this problem is to adapt the 

quantizer step size, ∆, and/or the dynamic range of the quantizer [37]. The general idea of this 

is that the encoder will adapt to the input signal based on some local statistical properties (pdf’s) 

of the signal. It is common to distinguish between two kinds of adaptive quantizers; Forward 

adaptive (FA) and backward adaptive (BA) quantizers. Both of these methods have advantages 

and disadvantages. 
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Forward adaptive quantizers extract the step size from the input signal of the quantizer [37]. 

Calculation of ∆ is done over a block of data, and is therefore not changed for every input value. 

Because of this block, a buffer is needed at the encoder which introduces a delay in the signal. 

After the calculation of the step size, it is applied to the quantization, however, the same step 

size is required at the decoder. In other words, transmission of side information is required in 

FA quantizers. Naturally, the size of the blocks affects the amount of side information needed 

to be transmitted, since smaller blocks result in more calculations of ∆ (and larger delays) [70]. 

Performance of the quantizer will also increase with smaller the blocks, so this implies a trade-

off between quality and delay/transmission rate. 

Backward adaptive quantizers extract the step size from the output signal only of the quantizer, 

and applies ∆ to the next sample. Since this doesn’t require the input signal, the calculation can 

be done in both the decoder and the encoder. Therefore, there is no need to transmit side 

information and no delay, which is an advantage over the FA quantizers [37, 70]. BA quantizers 

operate on a sample-by-sample basis, and not over a block, which also eliminates the need for 

a buffer. However, since it is the output signal that is used for calculation, the quantization noise 

is also used in determining the parameters, resulting in a loss in performance. This also 

increases the sensitivity to errors in the quantizer, which can be difficult at very low bitrates.  

A third alternative to adaptive quantization can be switched quantization, or quantization banks, 

similar to switched predictors (Section 2.4.3.2) [67]. This eliminates the need to calculate the 

different parameters, but requires more storage of the different quantizers alternatives, and it 

doesn’t eliminate a buffer or the need of statistical analysis of the input signal.  

2.6 Entropy Encoding 

Entropy coding19 is the last main building block in image compression (Section 2.2.2). The 

main principle of entropy coding is to find new ways of representing the information based on 

statistical properties. This is a lossless compression method based on redundancy reduction. 

When coding an image (or any kind of source) it is represented by bits, and the “standard” way 

is to use equal amount of bits per source letter, or pixel [8, 37]. Thus, if a source consists of 

23=8 different symbols, at least 3 bits is required in order to represent all of the different 

symbols. This is known as fixed-length code, or block code. Every symbol would then have 

unique decipherability. In other words, the decoder would always know which symbol it is 

supposed to decode. However, this is an ineffective coding method, since more bits is used than 

                                                 
19 Note that variation of this term exist, some simply call this “coding”, and some include “channel coding”. 
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what is needed. Different source letters have different frequency appearance, or different 

probability of appearing. Comparatively, if the source was an English text (including space), 

and a random character was selected, there is a 10.1% chance it’s an “E” and a 0.1% chance of 

“Q” [71]. Naturally, if “E” was coded with 1 bit, and “Q” with 4 bits, the 4 bit would appear 

less, while the 1 bit would be more frequent. By assigning different bit length to different 

symbols, based on the probability of appearance, the total average code-symbols per source-

character decreases. This is also known as variable-length coding (VL code). 

Different versions of VL codes exists, but an important feature of the code is that it has unique 

decipherability, so the decoder can’t misinterpret a symbol. Common techniques for VL coding 

can for example be arithmetic coding, Huffman coding or run-length coding.  

2.6.1 Arithmetic Coding 

In arithmetic coding the whole message is coded into a string, ranging from 0 to 1. Each symbol 

in the message is then represented as a fraction interval on this “main” interval, with a size 

relative to the symbol probability [72]. Successive symbols are then coded in a recursive 

manner in this interval. Symbols with high occurrence probability is coded with few bits, while 

low probability occurrence is coded with more. This is best illustrated with an example. Imagine 

an alphabet consisting of six symbols (a, e, i, o, u, !) with probabilities and rages shown in Table 

2.1. The message that the encoder is sending is “eaii!”.  

Symbol Probability Range 

a 0.2 [0, 0.2) 

e 0.3 [0.2, 0.5) 

i 0.1 [0.5, 0.6) 

o 0.2 [0.6, 0.8) 

u 0.1 [0.8, 0.9) 

! 0.1 [0.9, 1.0) 

Table 2.1 Arithmetic coding example 

[72] 

The decoder, which know the range is [0,1) will then start with the first symbol, and decode it 

as “e” since the received value lies between 0.2 and 0.5. This new interval is then examined 

where it decodes an “a” since it lies between 0 and 0.2. The process is then repeated as shown 

in Figure 2.14. 
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Figure 2.14 Arithmetic coding example [72] 

This recursive model does ensure as the whole message can be encoded as a single number. 

However, the longer the message, and the bigger the alphabet, the more bits are needed in the 

representation. There is also a potential problem with unique decipherability in implementing 

it in practice, since “0” could represent a, aa, aaa etc. Some solutions have been suggested by 

inserting comma (or other symbol) or transmission of the size [72]. 

2.6.2 Huffman Coding 

Huffman coding is another form of entropy coding in order to code the coefficients. Basically, 

the encoding algorithm works by assigning every source symbol a sequence of bits, 

approximately equal in length to the information that symbol contains [37, 73]. The amount of 

information20 in a symbol is given by the frequency (or probability) of that symbol. This ensures 

that the most frequent symbols have the least amount of bits, while symbols of low probability 

have longer code. Subsequently, the average code-word length will be reduced and approaches 

the fundamental limit set by the entropy. Essentially, the algorithm generates the code by 

replacing the prescribed set of source statistics with a simpler one. This is a step-by-step 

process, which works in the following way: 

1. The source symbols are listed in order of their probability (or frequency), and the two 

least frequent symbols are assigned 0 and 1.  

2. The two source symbols with the lowest probability is then combined into a new symbol 

with probability equal to the sum of these independent symbols. This new symbol is 

then placed in the sorted list with its new probability.  

3. The process is repeated until only two symbols remains which are assigned 0 and 1.  

                                                 
20 As probably known, the less likely a symbol is to appear the more information that symbol contains. If a symbol 

has high probability of occurrence it contains less information.  
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By working backwards through the list, the different code words are found, and each symbol 

can be assigned these code words. However, this isn’t a unique process as there isn’t any ruling 

for which symbol is assigned 0, and which is assigned 1. If more than two symbols have equal 

probability, there are more than one way to decide which two symbols are combined. This 

doesn’t affect the average code length though. Note that this uniqueness in the process isn’t to 

be confused with unique decipherability which the code still has, given equal ciphering tables 

at the encoder and the decoder. Huffman coding is a quite efficient encoding process, but it has 

the disadvantage of requiring storage for lookup tables. Some work has been done in order to 

make Huffman coding more energy efficient by reducing the required switching activity21, but 

it doesn’t eliminate the need for tables and can require some more pre-computations [74]. 

2.6.3 Run-Length Encoding 

Run-Length encoding (RLE) is a relative simple form of lossless entropy encoding22 of the 

source symbols [54]. The technique is one of the most-widely used, and was used in the early 

television compression scheme in 1967 [75]. RLE is basically compression by grouping, 

meaning that consecutive data is grouped into a single value and then counted. If many 

consecutive samples are equal, the amount of these values will be transmitted instead of all of 

them. This package is stored in a “RUN/LEVEL” fashion, often with an End-of-Block (EOB) 

at the end. For example, if the sequence “aaaaabbbcccccd” is to be transmitted, this will be 

coded as “(5)a(3)b(5)c(1)d”. Naturally, this will be quite effective if many samples have the 

same value, but will be ineffective if there is a very high variation in the samples. Since images 

have high correlation between sample values,  RLE is a very common image coding technique, 

and is used in for example, JPEG, MPEG23 and H.26x [76]. Note that RLE can be made “lossy” 

if a threshold is included in the encoding. This can be regarded as a simple form of rounding 

(quantization). If the difference in consecutive values are below a given threshold it is regarded 

as the same sample value.  

Since RLE is a 1D coding scheme, it is necessary to unwrap the 2D image, i.e. read the image 

as a single data stream. Different methods exist on reading the image as 1D, and the way it is 

read, is defined as the scan sequence. The most common scan sequence is the zigzag scan, 

                                                 
21 Switching activity is the process of changing a value. For instance, encoding “00” requires none switching 

activities, while “01” requires 1 switching activity. 

22 Note that some doesn’t define RLE as “entropy encoding”, but is regarded as a pre-stage before the entropy 

coding (for instance, RLE first then Huffman coding after). 

23 Movie Picture Expert Group (http://mpeg.chiariglione.org/) 

http://mpeg.chiariglione.org/
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where the samples are read in a diagonal order. Other simple scan sequences can be horizontal 

or vertical scans, but more complex sequences exist and might be application (or type of image) 

depended [54]. For instance, if the image contains a lot of vertical lines (city image) the 

horizontal (row-wise) scan is optimal, but generally, the zigzag scan is the most advantageous. 

Naturally, RLE is quite favourable in very low complexity encoders, since it doesn’t require 

any buffers and has very low implementation complexity. However, extra bits are required in 

RLE for the sign of the nonzero indices. So for very low complexity coders, a special case or 

improvement of the RLE was developed by some researchers at the University of California, 

named the Stack-Run encoding [77]. 

2.6.3.1 Stack-Run Encoding 

Stack-Run (SR) encoding works by partitioning the (quantized) coefficients into two 

subgroups, where one group contains the nonzero coefficients while the other contains the zero 

valued coefficients [77, 78]. The groups are then represented as a stack or a column in binary 

notation with the most significant bit (MSB) on top, and the least significant bit (LSB) on the 

bottom. The stacks are then mapped into a symbol stream using a special alphabet. 

SR coding is composed of a four symbol alphabet (0, 1, +, -), where “0” and “1” represent run-

length of nonzero coefficients (levels) and the symbols “+/-” is used for the MSB of the nonzero 

coefficients and the successive zero coefficients (runs). This is because if only the “0/1” is used, 

it won’t be possible to distinguish between nonzero values and runs of zero values without more 

context. Since all binary run lengths start with 1, one can omit the MSB from most of the run-

length representations without loss in information. Potentially, this can be a problem if the run 

has a length of one, which would not be representable if all MSB symbols are eliminated. 

Therefore, the MSB “+” symbol is only retained when the runs are of length 2k-1, where k is 

an integer.  

When the resulting bit stream changes from “1/0” to “+/-” or vice versa, the decoder know a 

new code word has started since all code words starts with either “+” or “-” (MSB). Since all 

words starts with indication of MSB, an EOB isn’t required in this method.  

Further entropy encoding (such as Huffman or Arithmetic) is sometimes applied after the 

conversion to SR since it can be quite affected by channel noise. Some work has been done to 

minimize the need for additional entropy coding. This was done by making some assumptions 

of the channel (memoryless, binary symmetrical channel), and code each of the subband 

independently [79]. This results in performance gain, but also a slightly increase in complexity. 
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2.6.3.2 Bit-Plane Encoding 

Bit-plane encoding utilizes separation into the different bit planes in order to achieve effective 

lossless compression together with for example RLE [54, 80]. The basic principle of bit-plane 

coding can be easily imagined if one considers an 8bit grayscale image (unit8), by using an 

AND-operation for each of the 8 planes (for instance, ANDing with 10000000 gives the 7th bit-

plane, ANDing with 01000000 gives 6th plane). Each of these planes will then contain less 

information than the whole image, which will result in more zeros. RLE encoding can then 

effectively reduce the required transmission rate [81]. Every coded plane is ended by an End-

of-Plane (EOP) block, indicating the start of the next plane.  

This separation technique is lossless, but can be made lossy by eliminating one of the planes 

which can remove the need for a quantization part in the image coder. When a specific bitrate 

is required, the encoding process can stop anywhere, while the image is still decodable. This 

technique can be demanding since a buffer is required at very low complexity applications, due 

to each plane needs to be treated separately. 

  



Chapter 2: Theory 

36 

 

  



   

37 

 

3 Wireless Capsule Endoscopy 

The Wireless Capsule Endoscopy (WCE) have, in contrast to the other kinds of endoscopic 

equipment, relatively poor image quality. This is a direct result of the amount of power 

available, since WCE have a small battery, while the other methods are connected to an external 

power supply. When the equipment has “unlimited” power available, they can use high 

bandwidth, higher bitrate and complex image compression algorithms. Capsule endoscopy on 

the other hand, which, as mentioned, is just a small pill, aren’t connected to an external power 

supply. It only gets the power it needs from a small battery, and the battery need to last until 

the journey through a patient’s body is complete (approximately 8 hours). The image quality is 

therefore significantly poorer with the capsule endoscopy, compared to the other endoscopic 

methods.  

Since the image quality is poorer, capsule endoscopy is mostly used where the other methods 

can’t reach (small intestine), and the other methods are preferred otherwise. However, this is 

not the case for the patients. Capsule endoscopy isn’t felt by the patients, while the other 

methods are known to give patients discomfort, and in worse cases scratch the wall inside the 

GI tract so the patients start to bleed [6, 7]. This isn’t desirable, especially if the reason for the 

test was to find another bleeding inside the GI tract. So it would be advantageous to improve 

the image quality of the capsule endoscopy, to minimize the patient discomfort, while the 

physicians are able to diagnose. This chapter is therefore dedicated to explore how the capsule 

work in details, before the theory can be applied in order to improve the image quality. 

3.1 The Sender and Encoder 

The WCE system consists of two main parts; the sender and receiver [82] (receiver will be 

covered in Section 3.3). The sender is the small pill, which is about 26 x 11mm in size and a 

weight at about 3 gram [83]. The capsule is swallowed and as moving through the GI tract by 

the peristalsis, the same way as the food (Section 2.1.1). At the front of the capsule, a small 

camera lens (with RGB filters) and six LED light source, captures the frames at 2-4 frames per 

second (fps). The frames are thereafter processed by a microchip which codes the images before 

they are transmitted to the antenna in the back which sends the signal through the body to the 

receiver. All of the electrical components are powered by a small battery in the middle, which 

is required to be able to power the whole system for approximately 8 hours. Illustration of the 

capsule is shown in Figure 3.1, below. To protect the electronic components, they are 

encapsulated by a biocompatible plastic, which can resist all of the different digestive juices. 
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The capsule is made for one-time use, and after it has passed through the patient’s body it exits 

the body together with the stool, ending in the toilet. 

 

Figure 3.1 Illustration of the WCE [82]. 

As mentioned, the image capturing sensor captures the raw images, which is of very high 

quality. These are then compressed in a lossy format, before transmitted. Basically there are 

two main ways of improving the image quality of the capsule; increasing the amount of 

available power or improving the algorithm. Since the capsule is required to be very small 

(compact), in order for the patients to swallow it, there is not very much to room for hardware 

changes. Some research has been conducted in order to try wireless transmission of energy to 

the capsule [11, 12]. However, this is still at an early research stage and will need further 

development before it can be utilized in practice. Therefore, the most effective way to improve 

the image quality, may be to improve the algorithm. 

Different versions of the WCE exists, by different companies with different trade secrets. This 

means that a full system description is very hard to obtain. The focused capsule is the standard 

version, PillCam™ SB from Given Imaging Ltd. which is one of the most widely used, and the 

most common design. Unfortunately, information about the specific algorithms used in this pill 

isn’t available, so the described algorithm is based on the proposed algorithm was developed 

by researchers from Oslo University Hospital and Norwegian University of Science and 

Technology [7]. 
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3.1.1 The Image Compression Algorithm 

The image compression algorithm in the capsule has to consume a minimal amount of power, 

in order to achieve highest possible image quality throughout the whole journey through the GI 

tract. For this reason, every part of the algorithm is carefully selected to maximize the image 

quality, while minimizing the required physical size of the microchip and power consumption. 

This is done by five main components in the coding scheme; colour transformation, multi-rate, 

DPCM coder, dead-zone quantizer and a stack-run entropy coder, shown in Figure 3.2 below. 

 

Figure 3.2 Block diagram of the algorithm [7]. 

3.1.1.1 Source Representation 

As each of the RAW image frames enter the encoding scheme, the colour space is converted 

from RGB into the YUV-space. Each of the different colour components are treated 

independently throughout the algorithm. The conversion process is done by the simplified 

transformation matrix given by (2) (Section 2.3.1.2), which is more attractive towards binary 

treatment [49]. Every image frame is coded independently, so the whole system is regarded as 

an image coder, and not as a direct video coder. The avoidance of floating points in the 

transformation allows for single bit shifting operations in the colour conversion, which is very 

energy efficient.  

The images aren’t directly tiled (Section 2.3.2), except from separation of the colour 

components. This choice would initially seem as it would require more memory and introduce 

more latency, but by utilizing the characteristics of the camera sensor, it don’t. Since endoscopic 
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images have little variance in the chrominance (U, V) components compared to the luminance 

(Y), they are treated different in the DPCM [7]. In the prediction, the chrominance components 

are only predicted by the past sample on the same row. In other words, for these two colour 

components, the whole row can be regarded as a tile, giving the number of tiles equal to the 

number of rows. This isn’t the case for the luminance component, so looking at the whole frame, 

no tiling is applied.  

3.1.1.2 Multirate 

Multirate (MR) can be regarded as a special case of one dimensional subband coding (Section 

2.4.2). The MR system consists of two main parts; the decimation and the interpolation [84]. In 

the decimation part, the goal is to decrease the sampling rate of the signal, while the opposite 

is the goal in the interpolation. As in SBC, a filter is following the sampling rate compressor 

and expander, which here is called a digital anti-aliasing filter (decimation) and anti-imaging 

filter (interpolation). In contrast to SBC, the signal isn’t divided into different frequency parts 

(high part and low part), but the whole signal is regarded as a single part. This sample rate 

conversion allows for increased computational efficiency as well as improved performance, and 

it is widely used within sound- and image processing. 

In the WCE, the MR part is used to remove some part of the spectrum by using a simple low-

pass (LP) filter instead of the anti-aliasing filter. This process can be applied since at very low 

bitrates will it be redundant to use bits to describe the spectrum which is below allowed 

reconstruction noise. The down-sampling is performed to ensure that the low-passed signal is 

used in the whole full-band available. The down-sampled signal is then encoded, and the 

interpolation part (up-sampling) is done at the decoder to save required computation and 

transmission in the sender. 

This MR process is performed in both the rows and the columns, which means a reduction of 

r2- source samples. This also means that 1/r2 bits are required compared to the original signal. 

This is a lossy process (r ≠ N) in terms that perfect reconstruction isn’t guaranteed. Generally, 

MR can be near-lossless depending on the filters (not the case with simple LP filters).  

3.1.1.3 DPCM Predictive Coding 

The algorithm in the WCE uses the time-domain source coding technique DPCM (described in 

Chapter 2.4.3.1). It utilizes the closed-loop (backwards) DPCM, which ensures that the 

quantization noise problem is eliminated. The quantizer used in this predictive system is the 
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dead-zone quantizer, described in Section 2.5.2.1, in which the corresponding quantization 

equations is given by (34)-(37). 

The prediction of pixel (i, j), within the DPCM system is based on the reconstructed pixel values 

from neighbouring pixels, above (i-1, j), to the left (i, j-1) and diagonally above (i-1, j-1): 

 �̂̃�(𝑖, 𝑗) = 𝑎�̃�(𝑖 − 1, 𝑗 − 1) + 𝑏�̃�(𝑖 − 1, 𝑗) + 𝑐�̃�(𝑖, 𝑗 − 1) (38) 

Where a, b, c are the prediction coefficients, which in this case are averages with relationship 

in (39). The “a” can be changed in the interval [0.65~0.95], but a value around 0.8-0.9 gives a 

good prediction.  

𝑎 = 0.8   
𝑏 = 𝑎      
𝑐 = −𝑎2

 (39) 

Note that equation (38) is for the luminance component, while the two chrominance 

components only use one reference pixel, and therefore only uses the prediction coefficient “a”. 

This can be done since endoscopic images of the GI tract tend to have very little variation in 

colour [7]. In addition, it is advantageous in terms of memory requirements to only use the rows 

since CMOS image sensor captures images row-by-row [85]. By only using prediction from 

the same row, there is no need to temporary store other rows. 

3.1.1.4 Stack-Run Encoder 

In order to avoid storing of lookup tables, buffers and potentially computations, the algorithm 

uses the effective Stack-Run (SR) encoder instead of, for instance, Huffman or Arithmetic 

coding (see Section 2.6). The SR encoder has been proven quite robust against bit errors, and 

makes additional entropy coding redundant [79]. SR encoding is especially beneficial due to 

the dead-zone quantizer in the DPCM part. The quantizer forces more of the error signal 

towards zero, which increases the successive numbers of zeros, and the effectiveness of the 

RLE system.  

Since the WCE has very limited implementation space and limited power, additional entropy 

coding is omitted. The four symbol alphabet in the SR coding are therefore chosen to be 

composed by a simple 2-bit representation.  

After the image signal is SR encoded it is transmitted over the channel to the decoder. Since 

the image coding algorithm is the focus, channel coding is omitted from the simulation, as this 

won’t affect the resulting image encoder/decoder. However, noise from the channel will affect 

the received image quality, by introducing bit-errors. Therefore, the channel will briefly be 



Chapter 3: Wireless Capsule Endoscopy 

42 

 

described next, to explain how the whole system will work, and what to take into account when 

implementing in a real system. 

3.2 Transmission 

When the frames are coded, they are instantly sent to the decoder through the human body. This 

is done to avoid the need for storage in the WCE. The transmission is, in this case, done by a 

radio transmitter. The antenna is sending out the signal with a frequency at 434,1 MHz and with 

a bandwidth at 1,6 MHz [83]. Some research has been done in this area and ultra wideband 

(UWB) is expected to change this in the future.  

Ultra wideband (UWB) technology for short distance transmission, is a very energy efficient 

technology. UWB has a bandwidth from at least 500 MHz and up to 7,5 GHz, i.e. very high 

data rates can be achieved [10]. The high rates will mean that higher quality, resolution and/or 

frame rate can easily be obtained. In other words, lossless image compression can be 

implemented cheaply. This isn’t only due to the high data rates, but also because of the 

Shannon-Hartley theorem. The theorem states that parts of the wideband can be spent for energy 

transfer back to the capsule, which would be very advantageous in ultralow power and low SNR 

devices [9]. One of the drawbacks with this technology is the receiver complexity. Since UWB 

uses so low power it is hard to detect, and therefore the receiver requires very power hungry 

components, such as very high speed A/D converters and high-gain, low-noise amplifiers. In 

addition, it requires  very extensive signal processing at the receiver, which makes the receiver 

unsuited to be powered by a battery, and would require the patients to be connected to an 

external power supply [86]. The technology is very promising, but will still need more research 

before it can be used in practice, so for now, the concentration is on narrowband radio 

technology (used in current system). 

3.2.1 The Wireless Radio System 

In a wide perspective, wireless systems is defined as a system which allows for the 

communication of information between two points without the use of wired connection [87]. 

This communication is possible because electromagnetic (EM) waves can propagate trough air 

and matter without conductors. Propagation through matter and reflection from different 

surfaces will result in fading of the signal, which is one of the main challenges in wireless 

systems. These EM waves are produced by antennas which convert a guided EM wave on 

transmission line and into a plane wave. Antennas are inherently bidirectional, in that all can 

be used for both transmission and receiving of EM waves [88]. 
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Noise is one of the other main challenges in wireless systems. Sources for noise exists 

everywhere, from the sun, atmospheric, other wireless systems, thermal noise etc. [89]. The 

term “noise” is often used to describe any unwanted signals that tends to disturb transmission 

and processing of signals, in an uncontrollable matter. In communication systems is it common 

to calculate with white noise, which contains all frequencies. This is impossible in practice, 

because if a signal contained all frequencies, it would require unlimited power. White noise still 

has an important feature in the statistical mathematics, and is used for analysis of worst case 

scenario. If the noise is too severe, increase in signal power could be a solution in achieving 

acceptable SNR depending on the application. 

However, there is a limit to how much one can increase the emitted power from the antennas. 

Increase in power would require more energy, and can be dangerous to the human body [87]. 

The energy in the waves will be converted into heat when exposed to too much radiation from 

EM waves, the same way a microwave heats food. This can be especially dangerous for some 

organs in the body at close range. IEEE has researched the dangers of human exposures to EM 

waves [90]. As can be seen from Figure 3.3, at frequency of around 400 MHz, recommended 

maximum exposure is at 3W/m2 (3mW/cm2). In comparison, the WCE transmits at 434 MHz, 

and effective radiated power (ERP) is at 57nW [83], which is well below maximum 

recommended exposure. 
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Figure 3.3 IEEE standard on human exposure to EM fields [90]. 

3.2.2 The Human Body as a Communication Channel 

Describing a communication channel precisely is impossible, as there are too many random 

variables (all reflections, diffractions, scattering, penetrations etc.) [91, 92]. Instead it is 

common to use statistical model to determine the probability that channel parameters attain 

certain values. This is especially true when the sender and/or receiver are moving with variation 

in surrounding environment. All of the different noises and channel parameters will directly 

impact the received SNR, by interfering with the transmitted signal. As the distance between 

the sender and receiver gets larger, the different EM waves characteristics will be more 

influential. However, if the waves are passing through mediums or the transmitted effect is very 

low, these parameters will have impact on the received SNR.  

In the case of WCE, the wireless communication channel will be the human body. Since every 

person have different anatomy, the channel will differ. The largest variation in channel 

parameters in this case is around the skin (closest to the receiver), and this will affect how the 

radio signal propagates. This is because the human skin consists of a mixture of dead and alive 

cells, together with fat and sweat [93]. Alive cells contain electrical signals for cellular 

communication, messaging, and regulation of nearly all biological system. In practice this can 

be modelled as a capacitor with action potential. Dead cells lack cytoplasm and has no charge 

carriers, so dead cells (and fat) will conduct the signal poorly. On the other hand, the salt content 
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in the sweat result in improvement of the conduction of signals. Some of these effects can be 

minimized (degreasing, exfoliating, impedance matching), but due to the long timeframe of the 

WCE, it might be more advantageous compensating for these. 

Link budget is a calculation of how much effect is received when parameters effecting the 

transmission (transmitted effect, noise, gains, losses etc.) is considered. As mentioned, if these 

parameters can’t be found, approximations are done based on worst case scenarios and/or 

experiments. This field has been researched quite a lot when the signal goes through the body, 

but quite little when the radio signal is transmitted from inside the human body [94]. A research 

team in Malaysia has done this in the WCE case, and the results are summarized in Table 3.1 

below. As it can be seen, the variation is between -9dB and -38dB in path loss (PL), depending 

on the different locations of the WCE. This can be especially effective if localization of the 

capsule can be done effectively, which is possible with quite high accuracy under ideal 

conditions [95]. 

Location Region Skin depth [cm] Min Path loss Max. Path loss 

A Upper Esophagus 7 -29 dB 

B Lower Esophagus 13 -38 dB 

C1, C2, C3 Stomach 4, 10, 17 -10 dB -34 dB 

D1, D2, D3 Upper Intestine 5, 10, 15 -16 dB -33 dB 

E1, E2 Intestine (above 

abdominal region) 

6, 14 -10 dB -23 dB 

F1, F2 Intestine 

(abdominal region) 

5, 10 -9 dB -14 dB 

Table 3.1 Min and Max path loss in different regions at 450 MHz [94]. 

3.3 Receiver and Decoder 

The receiver system consists of two main parts, a belt with antennas and a small computer to 

decode the signal. On the belt a matrix of 8 antennas, with sensor size of 40mm each, are 

connected by coaxial cables [83, 96]. Placement of the antennas help localize the position of 

the WCE, at any given time (illustrated in Figure 3.4 below). This placement structure also 

ensures that strongest possible signal is received at any given time and the different path losses 

in the different regions can be compensated (Section 3.2.2). The whole receiver system weights 

about 500grams, which includes the battery power supply. Patients can therefore move around 

freely, and they don’t have to be connected to an external power supply, though they need to 

be cautious for extensive noise sources.  
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Figure 3.4 Placement of receiver antennas on the 

patient [96]. 

The actual decoder algorithm is very similar to the encoder, but as “unlimited” power in 

comparison, which means there is no computation limits. The transmitted signal is captured by 

the antennas and channel decoded (this part is omitted from the simulations), before the image 

decoding algorithm starts with the received bit stream. Received bit stream is decoded in the 

SR decoder (described in Section 2.6.3.1). Since the encoder has an embedded decoder in the 

DPCM structure (Chapter 2.4.3.1), the decoding process is the same as in the encoder. The 

exception is the quantizer which is done by inverse quantization (Q-1) by (37). This results in 

the reconstructed error signal, ẽ(n), which is used to find y(n) together with the previous 

reconstructed value, given by (16). If no bit error was introduced in the transmission and there 

was no quantization the decoded signal would be near identical to the encoded signal, y(n) = 

x(n). Naturally, this isn’t the case, so the value will be an approximated signal. 

Since the closed-loop DPCM is dependent on previous values in order to obtain the current 

values, bit errors introduced earlier will propagate through the system. The RLE (SR) coding 

scheme has a variable code length, which is susceptible to bit errors, which will propagate to 

the DPCM. In other words, bit errors will appear and will affect the received image quality.  

There are many ways of minimizing bit errors in a communication system. A common method 

is to include parity bits, to ensure that received bits are correct, and if they aren’t, some can be 

recovered depending on how many are wrong (assuming parity bit is correctly transmitted) [97]. 

A specific way of using parity bits, is to use hamming codes, which is one of the first error-
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correcting codes24 [98]. The general idea is to use parity bits calculated from the message, 

transmit as side information, and check if (and where) the error is located by recalculating (or 

use lookup tables) at the receiver. However, this (and most error correcting methods) require 

more energy and/or storage space at the encoder, as well as produce higher bit rate, which would 

be a disadvantage in the WCE case.  

With WCE it would be very advantageous if error correction could be done at the receiver, 

without affecting the limited resources at the encoder. Two algorithms were proposed for this 

purpose [99]. The first method is based on simple error detection and concealment, which 

detects single pixel errors based on line detection. If bit error is detected, that particular pixel is 

discarded and reconstructed based on neighbouring pixels. This method is used if the number 

of bit errors is low. If the amount of bit errors is high, the second method is used, which discard 

the whole frame and reconstruct it based on inter-frame interpolation. This can be done since 

there is a temporal correlation between successive frames in a video sequence, and the discarded 

frame can be estimated with motion vectors. None of these methods affect the encoder 

performance, but will increase the SNR and bit-error ratio (BER). 

3.4 Previous Work 

As mentioned in the Introduction, this thesis is based on a project completed during fall 2015 

[13]. This project explored the possibility of changing the image quality based on a location, 

which would be achieved by sending a simple signal back to the capsule from the receiver. 

Specifically, was the sampling rate in the MR part changed to not decimate and filtering the 

input signal in some parts, and increase it at other parts. This means that more of the high 

frequencies components were kept in the frames in the time they were coded with relative high 

quality. The result was an increase in PSNR by 4.7dB in high quality regions, and a decrease 

in PSNR by 9.6dB in low quality regions. The simulations showed that if the total time in high 

quality region was about 10-15% (approximately 1 hour out of a total of 8 hour) of the total 

time, this would decrease the total energy consumption. This could be very advantageous if the 

health care personnel can estimate the location based on other diagnostic procedures or 

symptoms.  

The main goal was to investigate the possibility of adapting the parameters continuous and how 

much this would affect the required energy consumption. The results showed that this was 

possible and could be achieved by different triggers. Most obvious was a time, or a localization, 

                                                 
24 In general, can normal parity code check for errors, but cannot correct, hamming code can also correct. 
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trigger, which could activate high quality frames depending on where the capsule was located 

(mentioned in Section 3.2.2) [95]. Other kind of triggers could for instance be analysis of the 

frames at the decoder, real-time control by physicians or a combination of different triggers. 

Other parameters could also be changed, for instance the predication coefficients, quantization 

steps or the framerate.  

As already mentioned, previous work includes the initial design of the algorithm [7], post-

processing error correction [99] and localization and tracking of the capsule [95]. These are 

described more in Section 3.1.1, 3.2.2 and 3.3, respectively. 
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4 Proposed Method 

In this chapter a system overview will be first be given in Section 4.1, before an analysis of 

possible improvements of the current algorithm is presented in Section 4.2. Specifically, how 

to efficiently utilize a feedback loop from the decoder, back to the encoder. Following, will the 

proposed method for low complexity ROI coding be presented in Section 4.3. At the end will 

the limitations, implementation process and the evaluation methods be described in Section 4.4, 

4.5 and 4.6 respectively. 

4.1 System Overview  

The system used for solving the problem of this thesis is based on the original algorithm, 

presented in Chapter 3.1. Originally, the algorithm was embedded, in the way that the encoded 

signal wasn’t decoded, but the required coefficients for analysis was extracted during the 

encoding process. This allowed for fast and efficient simulations for examining the most 

important part, the encoder. However, if the algorithm is to be implemented on an actual WCE, 

separation of the encoder and decoder would be a requirement. Separation have the advantage 

of being more straightforward, but simulations (in this case) will take longer time. 

For simplicity, all of the required parameters are kept in a single “struct”. At the decoder, a new 

module is introduced which will update some of these parameters, as illustrated in Figure 4.1 

below. Note that transmitting all parameters back to the encoder at each iteration, is not 

necessary and should be omitted in an actual implementation. 

In the simulation process, different videos will be used to get a good understanding of how the 

image coder will work. Each video is read frame-by-frame, and each frame is encoded and 

decoded separately at each iteration of the simulation. At the entry of encoder, each frame is 

divided into the three RGB channels before the actual image encoder process starts. Note that 

since the simulation videos are compressed in a specific format, the results are expected to differ 

from a physical implementation.  
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Figure 4.1: Overview over the modified algorithm 

4.2 Feedback and Algorithm Analysis 

Since the key aspect is to keep the algorithm minimized in required computational resources, 

many encoding techniques fail to become an option in this application. The YEF colour space 

(Section 2.3.1.3) on the other hand, has showed promising results in wireless endoscopic 

compression [50]. As the simplified YUV, it uses a base of 2 in the transformation matrix (3), 

which is beneficial in low power applications. Therefore, this will be implemented and 

compared to the existing YUV colour space. 

Sending a return signal (feedback signal) with parameter updates is considered to be a cheap 

operation, since it won’t require changes in hardware. There are different parameters which 

could be useful to update during the capsule’s journey through the GI tract. As mentioned in 

Chapter 2.4.3.2, adaptive prediction filter could be of use.  

Because the encoding algorithm should be kept as simple as possible, and the prediction 

coefficients are a simple averaging (38)-(39), only one value is chosen to be adapted. The 

relationship between the three prediction coefficients are kept unchanged. The chosen solution 

is to find the autocorrelation function (ACF) between yt and yt+k where k = 0, …, K is the lags: 

𝑎𝑘 =
𝑐𝑘

𝑐0
 (40) 

Where c0 is the sample variance, and ck is given by: 

𝑎𝑘 =
1

𝑁−1
∑ (𝑦𝑛 − �̅�)𝑁−𝑘

𝑛=1 (𝑦𝑛+𝑘 − �̅�) (41) 
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In an image, the ACF is first calculated over all rows, giving a matrix where each row is an 

ACF of that row. Since there are three components to choose from, the luminance component 

is chosen as this contains the most information (Section 2.3.1). The average value over each 

column is thereafter calculated by (42), resulting in an ACF vector were each point is the 

average sum over that column. 

𝑎𝑘̅̅ ̅(𝑖) =
∑ 𝑎𝑘(𝑛,𝑖)𝑁

𝑛=1

𝑁
 (42) 

By definition a0 = 1, and in the AR (2) model, the prediction coefficient that is desirable is a1. 

This would result in only one value needing to be transmitted back the encoder, a, in (39). 

It could be argued that the quantization steps and/or dynamic range can also be made adaptive 

(Section 2.5.3). However, since all of the calculation has to be done on the output signal at the 

decoder (subject to transmission error, and lossy encoding), this isn’t expected to have a great 

impact on the resulting quality. DZ-quantizer uses the optimum uniform quantizer outside the 

DZ region, and force more values towards zero which is advantageous at very low bit rates. 

Since endoscopic images has very little variation between frames, BA quantizer would not 

increase quality a lot, while FA quantizer could. Unfortunately, FA quantization would increase 

computation (and energy consumption) too much at the encoder. Because of this, adaptive 

quantizer is omitted, and the focus will instead be on attempting to find a very low complexity 

ROI coding. 

4.3 Very Low Complexity Region-of-Interest Coding 

Initially, two schemes were proposed for ROI coding. The first was extracting the region, store 

it in a buffer, and code the frame as normal, before the ROI region was coded separately with 

higher quality (omitting the MR part). This would require extra storage/buffer, but it would 

remove the need for excessive parts of the image to be coded in higher quality. However, since 

the algorithm uses DPCM row wise, it would have fewer values to predict from. Early stages 

simulations showed as expected that the result would be of poorer quality in this ROI because 

of this. Therefore, this was discarded in favour of the other proposed scheme, which was built 

on the principle of adapting the values. 

Previously, changes in the sample rate (and by that filtering) has been explored (Section 3.4), 

which showed promising results. Here the goal was to adaptively change the sampling rate in 

achieving higher image quality (the whole frame). Based on adaptively changing the sampling 

rate, this will be taken a step further by changing the sample rate within the frames in order to 

obtain a simple ROI encoding.  
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When the sample rate is set to be equal to 1, there is no decimation/interpolation or filtering, 

i.e. there is no Multirate part in the coder, and the colour transformed image goes directly into 

the DPCM coder. By adapting the rate in the middle of the image, some parts go through MR 

and some skip it, resulting in a grid structure showed in Figure 4.2. This ensures that the 

variables don’t get filtered and decimated (a lossy process25), but instead keeps more of the high 

frequency components in that area. As stated in Section 2.4.2, most of the information in an 

image is in the low-pass part, but by omitting the high-pass parts the image quality will be 

reduced. 

 

Figure 4.2 Structure of implantation of ROI area, after the 

MR part. 

This method can be viewed as a simplified locally adaptive resolution (LAR) coding, but this 

LAR method is a little different. The LAR method is in general, variation in pixel sizes in the 

image depending on the activity in the image. It extracts the ROI area, and code it separately 

with a higher resolution (or don’t code it), before the region is combined with the low-resolution 

image. However, while this technique is utilized to have a low rate transmission, the encoder is 

still quite complex in comparison of the suggested method [100-103].  

The proposed ROI encoding scheme is expected to require more average bitrate per pixel, since 

more areas than just the ROI region will indeed be coded with higher quality (more high 

                                                 
25 The total image coding process is still lossy due to the fact that the image is still quantized within the DPCM 

part.  



   

53 

 

frequency components). On the other hand, the encoding will be very simple (it doesn’t require 

additional hardware implementation/space), and it doesn’t require buffers or temporary 

storages. 

To the authors knowledge, this ROI encoding hasn’t been done exactly like this before.  

4.4 Limitations 

As already mentioned in Section 4.2, the feedback loop will, in the analysis part, be limited to 

the prediction filter coefficients. The simulations will be performed in MATLAB, which will 

have some drawbacks. MATLAB has no functionality for evaluation of the needed 

computational operations, and as a result it isn’t possible to actually measure the required 

energy consumption. This will instead be estimated based on theory.  

In ROI coding, only the implementation of the ROI region at the encoder will be considered, 

not finding the location of the particular region. The region can be found by image analysis 

(post-processing) by, for instance, looking at the light reflecting properties caused by variations 

in the haemoglobin protein (Section 2.1.3) [104]. This will be done at the decoder, resulting in 

a position vector to be transmitted back to the encoder. Some delay will therefore occur before 

the region is of higher quality, but it doesn’t require delays or computations in the encoder.  

4.5 Implementation 

The chosen MATLAB programming language has some advantages since it is very simple, it 

has good matrix handling and it is reliable. Reliability is important for the ability to recreate 

every simulation result. On the other hand, MATLAB has some drawbacks as it cannot calculate 

the number of operations (and thereby complexity and energy consumption comparison), it isn’t 

as memory efficient as C or C++, and is has some limitations in built-in functions. An example 

of limitations in MATLAB functions is the built-in function VideoWriter used in the 

simulations, which cannot handle adaptive framerate. It is possible to use a custom-VideoWriter 

class called “QTwriter”, but this is used for QuickTime video format (.mov), and the results 

won’t be directly comparable with the audio video interleaved (.avi) format [105]. However, 

changes in the framerate is directly related to how often the camera sensor captures the frames, 

and the encoding process will be the same. A feedback loop will allow adaption of the 

framerate, so the direct implementation of this is omitted. 

An important feature in the implementation, is the ability to recreate every simulation result as 

well as separation of the different blocks (Figure 4.3). Separation of the blocks will result in 

some repetitive tasks, since the performance evaluation will in fact have to partly code both the 
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original frame and the reconstructed frame. This will make the total simulation process slower, 

but it won’t affect the encoding/decoding performance. 

 

Figure 4.3 Overview of implementation of the simulation system 

As mentioned in the previous chapter, the ROI will be coded by a position vector transmitted 

to the encoder. The vector is defined as: 

𝑅𝑂𝐼𝑝𝑜𝑠  =  [𝑥, 𝑦, 𝑤, ℎ] (43) 

Where (x, y) is the pixel location, and w, h is the width and height of the area respectively. The 

region is rectangle shaped, with top left corner as the starting point (x, y). This means that a 

total of only five integer values (including the prediction coefficient) has to be transmitted, as 

well as one logical value (active ROI encoding, true/false). 

4.6 Evaluation 

In image encoding it is common to distinguish between objective and subjective measurements 

of the image quality, since these aren’t necessarily the same. Similarly, both subjective and 

objective evaluation will be performed in the thesis, but the subjective quality measurement 

will be evaluated by the author, together with sample images in the thesis for the reader to be 

able to evaluate as well. Subjective quality measurement will follow the principles of mean 

opinion score (MOS)26, with reference to the source (input) image. The range is from 1 to 5, 

and is defined as bad (1), poor (2), fair (3), good (4) and excellent (5) [37]. 

                                                 
26 In this case, not many people will be asked, so will only consist of authors opinion score (OS). 
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Two main quality evaluations will be done for the objective analysis; Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR will be performed for the 

objective distortion for each of the three colour channels, before summed to the total CPSNR27 

(colour peak signal-to-noise ratio). 

𝑃𝑆𝑁𝑅(∙) = 10 ∙ log10 (
2552

1

𝐼∙𝐽
∑ ∑ (𝑌(𝑖,𝑗)−�̂�(𝑖,𝑗)))

2𝐽
𝑗=1

𝐼
𝑖=1

) (44) 

Where (∙) indicate the colour component, and (i, j) is the pixel location. SSIM is an image 

quality metric in which the three characteristics of the images is considered; Luminance, 

contrast and structure [106]. The measurement is performed between the distorted (coded) 

image, x, and a reference picture, y, given by (45). SSIM gives a measure ranging from 0 to 1, 

where SSIM=1 if the two images are identical, and SSIM=0 if no parts of the image is similar. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (45) 

Where µx and µy are the local means, σx and σy is the standard deviations and σxy is the cross 

covariance for the images x, y. C1 and C2 are constants to avoid instability when the local means 

or standard deviation is very close to zero, and are related to the dynamic range28 L of the pixel 

value (46). L is typically 255 for an 8bit greyscale image, and is multiplied with a small number 

K1 « 1. 

𝐶1 = (𝐾1 ∙ 𝐿)2 (46)  

Two evaluation methods will be performed to get an idea of the energy consumption of the 

image coder, the average bit-per-pixel (bpp) and the compression ratio (CR) given by (47)-(48). 

Both of these are common in image encoding evaluation and will give an indication of the 

energy requirements of the algorithm. 

𝑅[𝑏𝑝𝑝] = 𝑅𝑐ℎ1 + 𝑅𝑐ℎ2 + 𝑅𝑐ℎ3 (47) 

𝐶𝑅 = (1 −
𝑅𝑐1+𝑅𝑐2+𝑅𝑐3

8+8+8
) ∙ 100 (48) 

Where R(∙) are the average rate for each of the colour components, assuming 8bit per colour 

channel on the input image. 

 

  

                                                 
27 Also known as PSNR overall 

28 Not to be confused with the dynamic range of a quantizer.  
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5 Results 

In this chapter the results from the simulation will be presented, in order for a conclusion to be 

formulated. The results are divided into two parts; Section 5.1 covers the algorithm and 

feedback analysis, while Section 5.2 covers the ROI encoding. 

Both parts are the result of simulations with different videos. Specifications about the 

simulation videos can be found in appendix A.2. 

5.1 Part 1: Algorithm 

In part 1, the algorithm is analysed using different settings and methods. Each is compared with 

the original algorithm in this section.  

By analysing the algorithm, the areas with the most potential was considered to be changing 

the colour space and adapting the prediction coefficient. These areas don’t require additional 

buffer or storage, since every calculation is performed at the decoder, i.e. the complexity is 

unchanged. This is the BA configuration is expected to give poorer result than FA would, but 

it reduces the power consumption which is the main limiting entity in the device.  

Note that even though this was considered the area with the most potential, it wasn’t the only 

area changed in the algorithm. As mentioned in Chapter 4, the algorithm was separated, and 

some functions had to be rewritten to allow encoding of ROI. For instance, the MR part had to 

be changed, to not include any built-in functions, and this needed to be done manually. 

The evaluation of the modified algorithm is performed as described in Section 4.6. Since many 

results are very similar in structure, the graphs for each one is considered redundant, but the 

most important ones will be included (this doesn’t include the results which will be summarized 

in tables). The difference between them is usually small variations in the axis. 

5.1.1 Simulation 1 

The first simulation was performed with a short (~2s), quite low resolution (241x401) and low 

quality video sequence (Appendix A.2.1). This video was chosen since it achieves quick 

simulations due to the few number of frames, and would be similar in resolution to the current 

WCE.  

The algorithm was executed with a constant sampling rate in the MR part, but different between 

the colour components. Since the luminance has the most information, this has a sampling rate 

of 2, while the chrominance components are decimated/interpolated by 3. Figure 5.1 below 
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show the performance of the original algorithm, which uses the YUV colour space and a fixed 

prediction coefficient, a=0.8. 

 

Figure 5.1 Performance of original algorithm 

As can be seen from the graphs above, the performance increases towards the end, which is 

expected in predictive coding schemes. This particular simulation video has less variation in 

the colour components towards the end than in the beginning (more white light reflection). 

Notice a sudden drop in all of the measurements around frame number 35, which is most likely 

due to a change in camera angle resulting in changes in reflected light intensity. 

In the modified algorithm, different parameters was tested, but the one shown in Figure 5.2 

below was with the YEF colour space, and adaptive prediction coefficient. Observable in the 

figure, is the drop around frame number 35 gone in the CPSNR and SSIM measurements, but 

the same in bitrate per pixel and CR. However, even though the drop is approximate the same 

(~0.8% in CR in both algorithms), the overall performance is increased, as the value drops close 

to the original algorithms’ value before the drop.  
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Figure 5.2 Performance of modified algorithm, with YEF & adaptive prediction 

The drop in CPSNR and SSIM, is due to the chosen colour transform. Simulations which uses 

the YUV colour space has this drop, but not the ones using the YEF colour space. This could 

indicate that the YEF is more suited for endoscopic images, but it could also be just this video 

sequence that behaves like this. Adaptive prediction seems to mainly affect the values of the 

axis, not the graphs themselves. Figure 5.3 shows the variation of the prediction coefficient 

over the sequence. 

 

Figure 5.3 Variation in the prediction coefficient over the frames 
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The results from the different simulation settings is summarized in Table 5.1 below. As shown 

in the table, the CPSNR has increased quite a bit from the original algorithm. The YEF colour 

space generally seems to require less average bits per pixel than the YUV colour space and by 

that better compression ratio, but the SSIM has slightly decreased. The reduction in SSIM might 

be the result of the YEF colour space removes more of the red components in the image 

compared to the YUV, as shown in Figure 5.4 below.  

Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS 

Original algorithm 0.76527 96.8114 34.49 0.9818 3.3 

YUV, a=0.9 0.71062 97.0391 37.4652 0.98244 3.2 

YEF, a=0.9 0.62778 97.3843 37.8722 0.97367 3.3 

YUV, a=0.8 0.76527 96.8114 37.425 0.98246 3.5 

YEF, a=0.8 0.64754 97.3019 37.8484 0.97304 3.6 

YUV, a=adaptive 0.73026 96.9572 37.5166 0.98254 3.5 

YEF, a=adaptive 0.63738 97.3442 37.982 0.97341 3.6 

Table 5.1 Simulation results from video 1. 

 

Figure 5.4 Difference between reconstructed and original frame. YUV colour space to the left, 

YEF to the right. 

5.1.2 Simulation 2 

The second simulation was performed with a video which had longer duration (~97sec) and 

higher resolution (576x768 pixels) (Appendix A.2.2). The video is taken from an endoscopy 

(not capsule) procedure, meaning a lot higher quality and more similar to RAW input image. 
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By the looks of it, the tissue is healthy, but a bit of fluid is seen, which reflects more light. A 

black boarder surrounds the image, and a few tags are displayed in the frames as well, see 

Figure 5.7 below. Note that the simulation video had a few empty frames at the end, so the last 

few frames was omitted from the simulation. The performance of the original algorithm is 

displayed below, in Figure 5.5. 

 

Figure 5.5 Performance of original algorithm with second simulation video 

As with the previous simulation, the performance increases towards the end, but with a few 

spikes. This might be since the video freezes at some points resulting in static frames (increase 

in performance), before the whole frame is shrunk down to the corner (high variation, decrease 

in performance). This happens a few times when the operator of the endoscopy is capturing the 

frames. 

The structure of the performance measurements from the modified algorithm, is very similar to 

the structure of the original algorithm, as seen in Figure 5.6 below. On a closer look, it’s clear 

that the graphs are scaled (increased), which also reflects the average results shown at the end 

of the subchapter in Table 5.2.  
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Figure 5.6 Performance of algorithm with YEF & adaptive prediction 

Analysing the reconstructed movies, reveals that in the adaptive performance, a few bit errors 

occur from the bright spots in some of the frames. These are explored more in the next 

simulation (Section 5.1.3), where they are a lot more frequent. In this section, similarities and 

differences in the reconstructed frames will be analysed further, and the source frame can be 

seen below in Figure 5.7. 

 

Figure 5.7 Source frame 
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Figure 5.8-5.11 below, shows the reconstructed frames with the different settings, as well as 

the resulting frame from the original algorithm. The first noticeable difference is in the black 

areas in the frames, where the YEF colour space produces red components mixed with black. 

The result is that true black areas aren’t black. The black boarder around the frames, wouldn’t 

be there in a WCE implementation, since the camera sensor doesn’t have an obstruction in front 

of it. Most of the black areas would be from further down the GI tract where the reflected light 

would be too weak to be able to see before the capsule arrives to that section. Based on this, the 

colour transformation isn’t considered to have any major limitations compared to the YUV 

space. 

By a closer study, it is observable that the tissue areas in the middle, are a little greyer than in 

the YUV colour space. On the opposite side, on the top right corner (of the tissue) the area is 

greyer/greener in the frames with YUV space than in the YEF which are slightly red in that 

area. 

It is also observable that some of the darker regions in the middle of the tissue is slightly larger 

with a prediction coefficient equal to 0.8 than with adaptive. Nonetheless, this is very difficult 

to see in the in the unscaled versions, where it is easier to see the same regions in all of 

simulations. 

 

Figure 5.8 Reconstructed frame from original 

algorithm 
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Figure 5.9 Reconstruced frames with a=0.8. YEF to the left and YUV to the right 

 

Figure 5.10 Reconstruced frames with a=0.9. YEF to the left and YUV to the right 

 

Figure 5.11 Reconstructed frames with adaptive prediction. YEF to the left and YUV to the 

right 

It is up to reader to decide which will have the highest subjectively score, which can be 

compared to the subjective score from the author. Notice that it is easier to see differences in 

the reconstructed videos than on the scaled frames (~40% of original frame size). 
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The objective scores (along with the authors opinion) are summarized in Table 5.2 below. Most 

noticeable is the major difference in the average bitrate per pixel (and by that compression rate), 

where 0.35bpp separates the best and the worst performing settings. At the same time, this is 

considered among the highest scoring in the author’s subjective score. Generally, the YUV has 

worse performance in energy consumption, but slightly better quality, than the YEF. Which 

isn’t the subjective perceived opinion.  

Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS 

Original algorithm 1.0414 95.6607 32.1601 0.83279 3,0 

YUV, a=0.9 0.84076 96.4968 34.2188 0.85463 3,2 

YEF, a=0.9 0.70575 97.0594 33.3165 0.72331 3,3 

YUV, a=0.8 1.0414 95.6607 34.15 0.83154 3,3 

YEF, a=0.8 0.83594 96.5169 33.2427 0.71674 3,5 

YUV, a=adaptive 0.7895 96.7104 34.1763 0.85975 3,3 

YEF, a=adaptive 0.68755 97.1352 33.3114 0.72674 3,5 

Table 5.2 Simulation results from video 2 

5.1.3 Simulation 3 

The third simulation was with a cropped video of a normal (healthy) oesophagus. Originally, 

this video contained surrounding black area (same as the second simulation), and the goal was 

to see how this would affect the simulation results. The simulation video is between the first 

and second simulation video, in both length (~29.6 sec) and in resolution (430x378), details can 

be found in Appendix A.2.3. As the specifications show, this video sequence has the MPEG-4 

format (.mp4) which is different from the previous videos. Because of this, the simulation video 

was also converted into the audio video interleave (.avi) format, in order to check if there were 

any deviations in the results between these two formats. Simulation with the two different 

formats was identical, therefore only one will be presented. The same variation in 

settings/parameters is applied here, as in the previous two simulations. Figure 5.12 below show 

the performance of the original algorithm. 
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Figure 5.12 Simulation result from original algorithm 

Notice the high variation, and the drop in performance towards the end. This is expected since 

there is high variation in the simulation video in this area. The endoscope passes from the 

oesophagus and into the stomach. High difference in regions tends to decrease the performance 

of predictive coding, since it relies on past samples to predict current one.  

This particular simulation video has another feature, as it has quite a lot of different “errors”. It 

was still chosen since the capsule can be exposed to the same errors. Errors in the simulation 

video include bit errors, fluid hitting the camera, black frame, loss of focus and variation in 

light intensity. Interestingly, at frame number 500, the reconstructed frame in the YEF colour 

space is completely black (SSIM=0, Figure 5.13), but not in the YUV colour space. In the 

source, that frame is very blurry, and it is impossible to see anything else than a monotone grey 

image. This is also the case in YUV, but not in the YEF simulations (independent of the 

prediction coefficient).  
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Figure 5.13 Simulation results with YEF & static a=0.8 

All of the simulations with this video sequence, produced quite a bit of corrupted pixels, 

especially in the luminance channel. These corrupted pixels propagate to neighbouring pixels, 

and form square edges in horizontal and vertical lines, as shown in Figure 5.14. These can be 

reduced a lot when applying error concealment, described in Section 3.3 [99].  

 

Figure 5.14 Corrupted luminance pixel 

In adaptive prediction coefficients, the number of corrupted pixels, and the size of the errors 

increases quite a bit. Naturally, this happens since corruption propagates through the frames 
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more, and the prediction coefficient is calculated from the luminance component (Section 4.2). 

This is very much reflected in the graphs of the performance of the adaptive prediction shown 

in Figure 5.15 below. 

 

Figure 5.15 Simulation results with YEF & adaptive prediction 

 Table 5.3 below summarizes the different simulations done with video sequence 3. Note that 

in the simulations with adaptive prediction, the quality seems better as long as no pixel is 

corrupted (some frames). Unfortunately, this is few frames, making the overall score (both 

objective and subjective) lower than for the simulations with constant prediction coefficient.  
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Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS 

Original algorithm 0.52825 97.799 39.2525 0.98537 2,9 

YUV, a=0.9 0.36903 98.4624 37.6099 0.97915 2,9 

YEF, a=0.9 0.28866 98.7972 38.2481 0.94798 2,9 

YUV, a=0.8 0.52825 97.799 38.9714 0.98367 3,2 

YEF, a=0.8 0.40995 98.2919 39.0113 0.94866 3,3 

YUV, a=adaptive 0.35975 98.501 31.9438 0.87474 2,3 

YEF, a=adaptive 0.31426 98.6906 33.4076 0.8843 2,2 

Table 5.3 Simulation results from video 3 

5.1.4  Simulation 4 

The fourth simulation was performed to investigate the impact the simulation videos would 

have on the objective scores. Since the simulation videos is also compressed, this could affect 

the objective results quite a lot. To examine this, the reconstructed video after simulation 1, was 

recompressed. Table 5.4 below shows the result of compressing the compressed video with 

different settings. 

Settings BPP CR CPSNR SSIM 

Original algorithm 0.64069 97.3304 36.4843 0.98888 

YUV, a=0.9 0.6181 97.4246 39.7259 0.98905 

YEF, a=0.9 0.5437 97.7346 41.231 0.98776 

YUV, a=0.8 0.64227 97.3239 39.7516 0.9894 

YEF, a=0.8 0.54038 97.7484 41.2313 0.9884 

YUV, a=adaptive 0.61689 97.4296 39.8196 0.9893 

YEF, a=adaptive 0.53949 97.7521 41.3225 0.98828 

Table 5.4 Simulation results after compressing compressed video 
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Comparing Table 5.4 and Table 5.1, is it clear that the objective measures have increased in the 

rerun. CPSNR has increased between 2dB and 3.5dB, bitrate per pixel has decreased with 

approximately 0.11bpp and SSIM has increased by around 0.15. The subjective evaluation is 

difficult, as it is quite hard to distinguish between the compressed and recompressed images, as 

displayed below in Figure 5.16. Especially, when the whole video sequence is evaluated and 

not only single frames.   

 

Figure 5.16 Comparison between compressed (left), and recompressed (right) video. 

Settings: static prediction at 0.8 and YEF colour space. 

  

5.2 Part 2: Region-of-interest (ROI) 

In this part, the results from implementing ROI encoding will be presented. Simulation of the 

implementation is performed with each of the three simulation videos, with the YEF colour 

space and adaptive prediction as the general settings. The results will afterwards be discussed 

in Chapter 6.2. 

The MATLAB code can be found in Appendix B. Note that the code isn’t optimized, and it is 

possible to reduce the number of calculations performed. For this thesis, the important part was 

to test if the proposed method would work and how good the results would be.  

When analysing the results from the encoding, the first to look at was the difference between 

the reconstructed frame and the input frame. Figure 5.17-5.19 shows this difference in the first 

video (Appendix A.2.1), with YEF and YUV respectively. The YUV was included for viewing 

purposes, since the YEF include red components in the difference. It is observable that inside 

the ROI area, no high frequency components are shown. On the horizontal and vertical axis of 

this region, less of the high frequency regions are shown than the surrounding areas of the 

frame. This was as expected for the low complexity ROI coding, see Figure 4.2 in Section 4.3. 
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Notice that these partly high quality coded axis was more observable in the moving video 

sequence than in still images. 

 

Figure 5.17 Difference between reconstructed and input frame 

video 1, with ROI coding, YEF & adaptive prediction. 

 

Figure 5.18 Difference between reconstructed and input frame 

video 1 , with ROI coding, YUV & adaptive prediction. 

The ROI area is chosen according to (43), with values:  

𝑅𝑂𝐼𝑝𝑜𝑠 = [100 100 40 24] (49) 

In other words, the top left corner of the region is located at (100, 100) with a width of 40 pixels 

and height of 24 pixels. This is 10% of the frame size for this video. If the frames are compared 

to Figure 5.4, which shows the difference without ROI coding, some deviation is observable. 

Outside the ROI area, it seems that more of the high frequency components are filtered than 
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before. This also shows in the CPSNR (33.12dB) and SSIM (0.9553) which is actually lower 

with the ROI encoding.  

Note that average bitrate and compression ratio won’t be calculated here. Since the script 

calculates averages depending on the sampling rate over the whole frame, it would be a bit 

complicated to correctly compute this effectively the way it is implemented at the moment. On 

the other hand, it is possible to estimate the increase based on the increase in resolution. With 

that ROI sized area, additional samples kept in luminance component is 9600 samples, and 

12800 samples in each of the chrominance components. This results in a total of 35200 

additional values to be coded and transmitted per frame as shown in (50), corresponding to 

12.2% increase.  

(
40

2
∙ 240 +

24

2
∙ 400) + 2 ∙ (

2∙40

3
∙ 240 +

2∙24

3
∙ 400) = 35200 (50) 

The simulation results from the other two videos shows similar results as the first one; deviation 

from part 1. CPSNR and SSIM decreased in the second video, however, in the third video the 

CPSNR and SSIM increased quite a lot. The CPSNR increased by nearly 6.9dB and SSIM was 

raised by 0.072. When investigating the reconstructed movie, it showed that the amount of bit 

errors was drastically reduced compared to part 1, as seen comparing Table 5.3 and Table 5.5.  

Simulation CPSNR SSIM 

Video 1 33.1205 0.9553 

Video 2 30.5174 0.71724 

Video 3 40.2831 0.95677 

Table 5.5 CPSNR & SSIM results from ROI encoding 

If the subjective opinion is considered instead of the objective the results are generally better. 

It is mostly very difficult to observe the reduction in the videos, except for fewer bit errors. This 

can be seen when comparing two frames together, as shown in Figure 5.19, below. The text 

“Name:” is actually readable since it is in the ROI area, but it isn’t readable in the frame from 

simulation 2 (Section 5.1.2). In some very fast moving sections of the videos, it seems that the 

proposed scheme has some problems, where the axis of the region show in reconstructed image 

as well (similar to the difference shown in Figure 5.17). 
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It is presumed from this, that there might be a small problem with the implemented performance 

evaluation and/or some other part of the implementation process. This topic will be discussed 

more in Chapter 6.2. 

 

Figure 5.19 Comparison of reconstruced image with and without ROI. ROI encoding to the 

left, and without to the right. Both with YEF and adaptive prediction. 
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6 Discussion 

In Sections 6.1-6.2, the results from Chapter 5 will be discussed, before a brief complexity and 

sources of errors analysis is presented in Sections 6.3-6.4. 

The proposed method will thereafter briefly be compared with other WCE schemes in Section 

6.5. In Subchapter 6.6, a brief comparison with video encoding instead of image encoding is 

discussed, before hardware implementation is discussed in the subsequent section (6.7). 

6.1 Part 1: Algorithm 

Analysing the results from Section 5.1, one can in general see that the modified algorithm has 

increased performance compared to the original. Different settings give different results, and is 

highly dependent on the input video (shown in 5.1.4, Simulation 4). Firstly, the two different 

colour space will be compared before the prediction, and lastly the further possibilities.  

Comparing the YEF and YUV colour space reveals that they have some similarities and some 

differences. Generally, the YEF is more energy efficient by reducing the average bitrate 

compared to YUV, but it “removes” black components. The tissues are slightly greyer, while 

the black areas contain red components. If ROI encoding and/or post-processing is applied, this 

reduction in red components could affect the result. Especially, if the post-processing analyses 

images by looking at reflected light intensity due to the variation of haemoglobin (Section 2.1.3 

& 4.4). Simulating this effect is beyond the scope of the thesis, but would be something to 

consider. On the plus side, the average bitrate has decreased quite a bit by utilizing the YEF 

colour space instead of YUV. In other words, every transmitted frame uses less bits which saves 

energy consumption.  

Less energy consumption is very favourable in the capsule as this allows for additional 

functionality and/or higher quality without changing the hardware. Quality increasing settings 

can be higher framerate or resolution. Additional functionality can be a second sensor (for 

instance, pH measuring sensor or ultrasound) or it can be error correcting codes (parity bit-

/hamming codes, described in Section 3.3).  

Error-correcting codes could be advantageous if a feedback loop is included since bit errors 

will propagate through the frames the same way BA DPCM does with pixel values (Section 

2.4.3 & 4.2). Adapting the prediction coefficient showed this propagation of the bit errors in 

Simulation 3. Bit errors are in practice unavoidable when transmitting over a wireless channel, 

but errors can occur in compression schemes as well.  
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This is especially true with RLE coding (Section 2.6.3) which is very susceptible to bit errors 

since it has variable code-word length. Errors produced by the quantization will propagate 

through the system, resulting in a string off decoded errors. By reducing the number of 

quantized values that is coded together, the robustness would increase on the cost of higher 

bitrate (and higher energy consumption). It is expected that the propagating errors in the 

feedback loop would be less by applying the post-processing error correcting described in 

Section 3.3 [99].  

Evaluating the feedback loop gives some important results. If the results from the first and 

second simulations is considered (Table 5.1 & Table 5.2), it can be seen that the quality 

measurements are approximately the same for adaptive and static prediction coefficient. 

However, the average bitrate per pixel has decreased, especially when the longer video is 

analysed instead of the short one. This is expected because adaption in the prediction coefficient 

will reduce the error and by that increase the number of successive equal values. Since 

consecutive values are grouped together in RLE encoding, this will reduce the average bitrate 

(Section 2.6.3).  

Analysing the result in the third simulation (Table 5.3), on the other hand, show a decrease in 

performance as mentioned. In other words, adaptive prediction is dependent on the quality of 

the received frames. When the quality is sufficient for the adaptive prediction it seems to work 

better, especially with higher variation in the frame (e.g. not homogeneous frames).  

Because all of the processing (finding the new prediction coefficient) is done at the decoder, 

additional calculations are possible and might increase the results even more. For instance, can 

only the non-corrupted pixels are used to update the coefficient, which can be combined with 

the error concealment and post-processing described earlier.  

One of the important criteria in this application was to not increase the complexity and 

hardware. Since antennas are bidirectional in nature, this is maintained. The feedback loop can 

include many other parameters as well. As mentioned in Chapter 3, these can be variation in 

framerate, resolution, filter (in the MR part), or quantization steps. All of these will increase the 

energy consumption, but also increase the quality. The advantage with these is that they can be 

increased in some regions and decreased in others, giving an average energy consumption 

which can still be the same (or lower if chosen). This idea was investigated in a previous work 

(mentioned in Section 3.4), where the sampling rate in the MR was changed over different 

frames. As mentioned earlier (Section 4.3), this can also be done within the frames to create a 

ROI. 
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6.2 Part 2: ROI 

Analysing the results from Chapter 5.2, the proposed method seems to be performing as 

expected, especially when studying the reconstructed videos. The ROI area includes all of the 

high frequency components, which are normally filtered out, but it also includes more on the 

horizontal and vertical axis of this area. This is exactly as expected, as described in Section 4.3.  

The advantage with this kind of implementation is that no additional memory is required, and 

nearly no additional computations. The only calculation needed at the encoder is to calculate 

when to change the rate within a frame. This can be optimized and minimized compared to the 

current implementation, since the main goal in this thesis was to explore the idea.  

Every calculation needed in order of locating the placement of the ROI area, is performed at 

the decoder, which then transmits the position back to the encoder in the feedback loop. As 

mentioned in the previous section (Section 6.1), it is uncertain how the removal of some red 

components in the YEF colour transform might affect finding the exact location of the region. 

Especially if this is based on the reflection of the light intensity by the protein haemoglobin.  

Comparing the proposed method to other ROI encoding techniques, there are some differences. 

Other schemes often use DCT or wavelet transformation which requires additional memory and 

calculations. These methods extract the region or code only in the region with higher quality, 

depending on the specifications. The advantage with these methods is that no sections of the 

image that exceeds the ROI area will have to be coded with higher quality [100]. In other words, 

this reduces the required bitrate and the number of pixels to be coded in higher quality. This 

can reduce the energy consumption and the bandwidth compared to the proposed method, which 

can be a very limiting factor. However, it requires quite a bit more from the encoder, which is 

the main limiting factor in the WCE application. It is still uncertain how much the savings in 

computations together with the extra high quality pixels affects the total energy consumption, 

compared to the other methods.  

As seen in the results from Chapter 5.2, there is some deviation from the expected evaluation 

measurements,  compared to the results from Chapter 5.1. The scores were lower in two of the 

simulation videos, but higher in the third. When analysing the reconstructed videos, it was 

observable that the bit errors were reduced in the simulations, especially compared to the third 

simulation video. This might be due to the fact that more of the luminance component is kept 

(not filtered) along the whole column of the frame, resulting in larger variation in the values in 

that area. Since the prediction is done over a row, and quantized, fewer values will be rounded 

to zero. In other words, fewer bit errors will propagate through the scheme in the SR encoder.  
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On the other hand, in fast-changing frames, especially in bright areas, it seems that the ROI 

encoding might be having some difficulties. The axis seems to be corrupted in a few frames, 

which might explain the reduction in some of the objective scores. One possible reason might 

be that more of the high frequency is kept on the axis, which creates some corruption when the 

decimation/interpolation in the other direction is applied. This problem might be solved by 

optimizing the code some more. For instance, by improving the implemented interpolation 

method, since currently a built in function in MATLAB is used. This function utilizes a simple 

low-pass filter between the samples to create the new one in the interpolation process. It is 

believed that this filtering might be the reason for the errors, but the concern in this thesis was 

to simply test the proposed principle.  

The main focus with the proposed system was the encoder process, and not the decoder. This 

seems to work in general, but it might need some improvements in the implementation process, 

especially concerning the energy evaluation. The average bit rate per pixel only calculates based 

on constant sampling rate over the whole frame, which then will be nearly identical or lower. 

Naturally, this isn’t correct since more pixels are transmitted with higher quality, so this will 

have to be tested when working with this further. For now, the complexity of the whole system 

will be examined further.  

6.3 Complexity 

The computational complexity of the proposed algorithm is very low. Especially the encoder is 

very energy efficient, since every additional computations is performed at the decoder. 

Compared to the original scheme, only a small module has to be added to the endoscope. This 

is the listening module, which will listen for incoming signal from the decoder for parameter 

update. Average bit per pixel has in this scheme been reduced by between 0.12-0.35 depending 

on which simulation video is used (Section 5.1), which will more than enough compensate for 

the additional listening module.  

The feedback loop also allows for changes in the sampling rate which can reduce the bitrate 

more. This can either be performed in all colour components (YEF), or only reduce the 

subsampling in the chrominance components. Decreasing the sample rate will additionally 

reduce the bitrate, but will also decrease the quality. At the same time, the algorithm has the 

same complexity with this functionality, as the proposed.  

The complexity of ROI encoding is also low, since no additional memory and nearly no 

computations is needed at the encoder. Additional computations are only needed in the higher 
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quality areas, since these contains more pixels and aren’t low-pass filtered. The extra pixels 

make the decimated frames larger than originally, but they increase the quality. Importantly, 

this is an optional functionality, so it can be active in only part of the capsule’s whole journey 

through the GI tract. Every calculation in finding the region is done at the decoder, which then 

sends 4 integer values to the encoder; x and y position, as well as width and height.  

The decoder has, on the other hand, higher complexity than before. More calculations are 

performed in both adapting the parameters and finding ROI region. Since the decoder has 

“unlimited” power compared to the encoder, this isn’t considered a problem or within the scope 

of this thesis. As mentioned (Chapter 4), the focus will instead be at the encoder side, and the 

simulations performed to analyse the performance. However, these simulations can potentially 

have some sources of errors.  

6.4 Error sources 

As with every experiments and simulations, error sources are present resulting in deviation from 

the actual performance. The most obvious source of error or deviation, is the simulation videos. 

Performance evaluation is highly dependent on the input video, especially since every video is 

compressed (not in RAW format). This was shown in the fourth simulation (Section 5.1.4), 

where the recompression of the compressed simulation video had increase between 2-3.5dB in 

CPSNR, bitrate per pixel decreased by 0.11 and SSIM increased by 0.15. Naturally, the 

recompressed video wasn’t of a higher quality than the input source, but the objective score 

would indicate that it was. Based on this principle, comparison between other encoding schemes 

for the WCE is quite difficult, since different simulation videos is used by different researchers. 

Objective performance measurements can only be compared when the simulation videos are 

identical29. However, a theoretical comparison can be analysed to try to get some pointers to 

how good performance is compared to other schemes, which will be presented in Section 6.5. 

Similarly, the simulation videos can have negative impact compared to other simulation videos, 

as presented in 5.1.3. The cropped, recoded video (performed manually), resulted in a lot of bit 

errors from the quantization. This didn’t happen at this degree in other simulations, which 

resulted in significantly reduction in performance. As mentioned (Section 6.1), RLE is very 

susceptible to bit errors, and with a feedback loop these might propagate. It is expected these 

wouldn’t affect the performance if RAW images is used instead of converted videos, but should 

                                                 
29 This was the case with the comparison with the performance measurements of original algorithm, shown in 

Section 5.1. 



Chapter 6: Discussion 

80 

 

be taken into account when implementing. Especially since the channel will also introduce bit 

errors (Section 3.2), resulting in deviation from measured performance.  

Deviation from actual implemented performance, can also be caused by the programming 

language used in the simulations. The simulations are performed with MATLAB, which has 

the advantage that it has very good matrix handling. Colour images can simply be regarded as 

three separate matrices (one for each colour channel), which can make MATLAB particularly 

well suited for image processing simulations. On the other hand, this language isn’t directly 

implementable on a microchip, so translation into another programming language (for instance 

C or C++) is required. This might affect the performance results presented in this thesis, but 

generally, C/C++ is a more energy efficient programming language. This topic is discussed a 

bit further in Section 6.7. 

6.5 Comparison  

Comparing the performance in the proposed scheme with other schemes is quite difficult, 

without access to the identical simulation video or algorithm. A theoretical approach, on the 

other hand, is possible. The building blocks in the image compression scheme (Section 2.2.2), 

will be briefly evaluated by comparison with other methods. 

Generally, wavelet transformation is slower and requires more computations than DCT or 

prediction, and has thus not gained full acceptance in most video coding standards (except in 

JPEG2000, which is used at digital cinemas) [15, 107]. DCT is more well established (used in 

JPEG [56]), but it still requires quite a bit of calculations (Section 2.4.1). This would require 

too much in an WCE application, but a simplified version called integer based DCT (iDCT30) 

has been used [50, 108, 109]. In this version of the transform, quantization might be redundant 

since this transform already constitutes loss. iDCT has been proven quite effective, but it does 

require additional temporary storages, since the frames are divided (tiled) into 8x8 blocks or 

similar block sizes. At low bitrates this will result in blocking artefacts in reconstructed frames, 

which is very noticeable and it gives poor quality [15]. Predictive coding prevents this blocking 

artefact, but it can be subject to degradation of compression performance when compressing at 

lossless or near-lossless [110]. A possible solution would be to apply some pre-processing, 

however, all of this results in an increase in complexity and energy consumption compared to 

the proposed algorithm. This is because most compression schemes for WCE usually has 

around 80-85% CR, while the proposed method has around 95-97% (depending on settings). 

                                                 
30 Not to be confused with inverse DCT (IDCT). 
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Notice that some of these other schemes do have higher PSNR, but this is again very related to 

the source video used in simulations.  

An advantage with the integer based DCT is that the quantization part can be omitted, partly 

since it is embedded inside the DCT transformation. The same principle can be done at entropy 

encoder by including a threshold together with the RLE. Neither results in lossless compression 

(still rounding at some point), but can reduce delay in the image compressor [109]. 

Additionally, this can be more advantageous if the compression scheme is to be near-lossless, 

but this is highly dependent on the available power capacity in the WCE.  

Entropy coding is often combined with the different coding schemes (Section 2.6), which has 

different advantages and disadvantages. Generally, RLE is very efficient if there isn’t a lot of 

variation in the coefficients, but it is susceptible to bit errors. Some combines RLE (zero 

coefficients) with Huffman or adaptive Golomb-Rice (AGR) (nonzero coefficients) [109, 111], 

similar to the JPEG standard [56], and some uses Lempel-Ziv (LZ) coding [112]. Common 

features among these methods are to minimize energy consumption, while maximizing quality. 

SR encoding has generally less storage and computational requirements than LZ, Huffman or 

AGR, but it is more compromised to bit errors. Especially, with the use of DZ quantizer which 

is used in the proposed scheme, the SR encoding won’t necessary be the most suitable if this 

quantizer was omitted. 

Avoiding the need for temporary storages or excessive computations will result in significant 

energy savings. However, most image compression standards don’t focus on this. Generally, in 

many commercial applications, the encoder is the most complex part, and the decoder and 

available bit stream (bandwidth) is the limiting factor (for instance, mobile telephone system). 

This means that most standards don’t have this high focus on very low power encoder savings, 

which is partly why it is an image- and not video compression scheme that is proposed (see 

next section).  

6.6 Video Encoding 

In this section, a brief comparison between the algorithm at hand, and video coding schemes 

will be presented.  

In general, every video coding scheme consists of an image coder, video coder and audio coder. 

Obviously, audio coding isn’t relevant in this application, and can be omitted (often optional). 

Video coding, on the other hand, is relevant. The main concept in a video coder compared to 

an image coder is to exploit correlation between frames instead of between pixels (described in 
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3.1.1.3), to reduce the required bitrate for each frame [15]. Because of the high correlation 

between the frames, prediction (Section 2.4.3) can be applied between the frames, especially in 

endoscopic images since the variation is very little. This is the same concept which is done in 

MPEG31 standard, which utilizes both forward and backward prediction between frames. In 

addition, motion estimation and compensation (creating a motion vector (MV)) is done to 

estimate where areas or objects32 in the frames will be in the next frame. The prediction is done 

over a group of pictures (GOP), which lowers the required bitrate, but this also has some 

disadvantages.  

Prediction between frames introduces a delay equal to the GOP, i.e. more memory because of 

storage of the frames is required [15, 113]. Additionally, a lot more calculations is required, 

especially if motion estimation is performed. In total, this means that more storage (memory) 

is required, more components and more computations, i.e. more energy and physical hardware 

space is required. The capsule has limitations in all of these areas, but this would reduce the 

bitrate. In general, will there always be a trade-off between complexity (and bitrate) and quality. 

Increasing the quality will always also increase the complexity of the algorithm, and by that 

required energy/space.  

Video encoding, instead of image encoder, is very dependent on the available hardware. If 

development in hardware (minimization in components, higher battery capacity, etc.) allows 

for a more complex algorithm, video encoding should be considered. Because of this high 

dependency on physical hardware, this is beyond the scope of the thesis but should be 

considered in future development. 

6.7 Hardware Implementation 

The algorithm is intended for implementation in an actuall WCE system, and the total energy 

consumption will highly depend on this process. The simulations are, as mentioned, done in a 

high level programming language. This has good matrix handling properties, but isn’t very 

energy efficient or directly translatable. A translation is therefore necessary into an efficient 

language (for instance C++ or C#), which may affect the simulation results presented in this 

thesis.  

In an implementation, the biggest change in the system is the additional listening module 

introduced. This allows for the system to listen for incoming signals from the RF antenna, which 

                                                 
31 Movie Picture Expert Group (http://mpeg.chiariglione.org/) 

32 This can be done over a block (or tile), homogenous regions or a whole object. 

http://mpeg.chiariglione.org/
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can be used for updating the parameters. This means that no hardware change is required when 

implementing, because of the antennas bidirectional properties. However, energy efficient 

hardware has a great impact on the energy consumption, and current hardware should be 

evaluated since more energy efficient hardware constantly arrives. 

In addition to the simulation algorithm, an effective channel coding may be required, together 

with a proper channel modelling (Section 3.2). A joint source-channel coding may be beneficial 

for low complexity modulation, and may be combined with SR encoding. Since SR encoding 

uses a 2-bit symbol representation, but varies in lengths, additional packing of the data stream 

can be combined with the channel encoding. Optimum channel coding (in complexity vs 

probability in transmission error) may depend on the chosen transmission method, as UWB and 

narrowband (NB) is different, and may have requirements in the channel modelling. 

The specifics of the mentioned topics, is beyond the scope of this thesis but is highly relevant 

in a system implementation, and should be taken into consideration.  
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7 Conclusion 

In this thesis an analysis of the algorithm used in the wireless video capsule endoscopy was 

investigated in order to find improvement potentials to increase the received image quality. 

Because there always is a trade-off between received quality and complexity in image encoders, 

a good solution was to reduce the average energy consumption for each transmission. With the 

use of the YEF colour space and adaptive prediction coefficients, the average energy 

consumption was reduced and the quality was slightly increased. Energy reduction was mainly 

measured in average bit per pixel, which decreased by between 0.12-0.35bpp depending on the 

input simulation video. The reduction in the average energy consumption will allow for higher 

resolution, frame rate or quality, or additional sensors on the WCE. The results were highly 

dependent on source video, so the results might differ in a real implementation.  

A very low complexity ROI coding scheme was proposed for this application, which is based 

on adaptive sampling rate within the frames. This creates a kind of locally adaptive resolution 

(LAR), but don’t require any additional memory, or calculations compared to other ROI 

encoding schemes. Every calculation to locate the position of the regions are performed at the 

decoder, and the position is transmitted in a feedback loop to the encoder. This method doesn’t 

require any hardware changes (except for a listening module), since antennas are bidirectional 

in nature, resulting in an energy effective scheme. 

The proposed ROI encoding scheme generally work as expected, but it seems that the decoding 

process has some troubles in the interpolation process outside the ROI area. This might be 

because of the low-pass filtering in the process doesn’t work optimally with variation in the 

sampling rate. The implementation process will require more investigation to make it work 

optimal in a real application. Especially in evaluating the increase in the energy consumption 

produced by the ROI encoding. 
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7.1 Future work 

Even though some satisfying results have been given in this thesis, it is recommended to further 

work on this topic before implementing in a system for clinical trials. In the following section, 

some recommended suggestions from the author are presented, beyond the previously described 

hardware implementation (Section 6.7). 

The main problem that haven’t been addressed in this thesis considers finding the particular 

ROI area. It has been mentioned (Section 2.1.3 & Chapter 4) a possible solution to finding the 

region, and this should be further investigated. A problem that could arise in this area, is the 

use of YEF colour transform instead of YUV. YEF requires less energy, and it gets better SNR, 

however, it also has a bit less SSIM and removes some of the red colour components. This 

could affect the ROI finding algorithm if it relies on reflected light from different parts of tissue. 

Another problem that could arise is if the received image is of too low quality (too much 

distortion or bit errors). Finding the region could be a difficult challenge then, and it should be 

investigated how reliable the algorithm is with different quality settings. 

A weakness in the presented results are the actual simulation videos. These differ from the 

captured images from the CMOS sensor, and therefore the results will differ too. As shown in 

Table 5.4 (p. 69), compression of a compressed image/video will affect the result. It is 

recommended to perform further verification of the algorithm using RAW image data to explore 

the quality difference reliable. The results from this further verification will determine the total 

energy consumption, and thereby the allowed resolution/image quality parameters.  

The implemented ROI scheme generally works as expected at the encoder, but it seems to 

struggle at the decoder. It should be investigated how the interpolation process can be 

optimized, specifically how the filtering process is performed in the built in function. 

Additionally, the energy evaluation, in the increase in bitrate should be modified to concerning 

adaptive sampling rate within the frame. At the moment it only evaluates as an average with 

constant sampling rate over the whole frame.   

The ROI coding algorithm could be further developed by investigating if the quantization part 

in that region can be omitted (making the region near-lossless). It is uncertain how much this 

will affect the battery compared to the received quality in that area. 
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Appendix A 

A.1 Program list 

 Matlab R2015b 64-bit (8.6.0.267246) 

 Microsoft Word 2016 (Version 16.0.6001.1078) 

 Endnote X7.5 (Bld 9325) 

 MediaInfo GUI 0.7.78 

 Avidemux 64-bit 

 VLC media player (2.2.2 Weatherwax) 

A.2 Simulation Videos Specifications 

A.2.1 Video 1 
General 

Complete name   : E:\…\realseq3_c.avi 

Source     : Ilangko Balasingham, NTNU 

Format                                     : AVI 

Format/Info                               : Audio Video Interleave 

File size                                  : 768 KiB 

Duration                                   : 2s 125ms 

Overall bit rate                          : 2 960 Kbps 

 

Video 

ID                                         : 0 

Format                                     : JPEG 

Codec ID                                  : MJPG 

Duration                                   : 2s 125ms 

Bit rate                                   : 2 706 Kbps 

Width                                      : 401 pixels 

Height                                     : 241 pixels 

Display aspect ratio                      : 5:3 

Frame rate                                : 24.000 fps 

Color space                               : YUV 

Chroma subsampling                        : 4:2:0 

Bit depth                                  : 8 bits 

Compression mode                          : Lossy 

Bits/(Pixel*Frame)   : 1.167 

Stream size                               : 702 KiB (91%) 

A.2.2 Video 2 
General 

Complete name   : E:\…\colon1.avi 

Source     : Ilangko Balasingham, NTNU 

Format                                     : AVI 

Format/Info                               : Audio Video Interleave 

File size                                  : 83.7 MiB 

Duration                                   : 1mn 37s 
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Overall bit rate                          : 7 171 Kbps 

 

Video 

ID                                         : 0 

Format                                     : JPEG 

Codec ID                                  : MJPG 

Duration                                   : 1mn 37s 

Bit rate                                   : 7 166 Kbps 

Width                                      : 768 pixels 

Height                                     : 576 pixels 

Original height                           : 1 152 pixels 

Display aspect ratio                      : 4:3 

Frame rate                                : 25.000 fps 

Color space                               : YUV 

Chroma subsampling                        : 4:2:2 

Bit depth                                  : 8 bits 

Scan type                                 : Interlaced 

Compression mode                          : Lossy 

Bits/(Pixel*Frame)   : 0.648 

Stream size                               : 83.7 MiB (100%) 

A.2.3 Video 3 
General 

Complete name   : E:\…\oesophagus_norm_crp_org.mp4 

Source     : Gastrolab – the Gastrointestinal Site: 

http://www.gastrolab.net cropped with “Avidemux 64-bit” 

Format     : MPEG-4 

Format profile    : Base Media / Version 2 

Codec ID    : mp42 

File size    : 6.19 MiB 

Duration    : 29s 640ms 

Overall bit rate mode   : Variable 

Overall bit rate   : 1 751 Kbps 

Encoded date    : UTC 2015-12-08 13:16:25 

Tagged date    : UTC 2015-12-08 13:16:31 

 

Video 

ID     : 1 

Format     : AVC 

Format/Info    : Advanced Video Codec 

Format profile    : High@L2.1 

Format settings, CABAC  : Yes 

Format settings, ReFrames  : 4 frames 

Codec ID    : avc1 

Codec ID/Info    : Advanced Video Coding 

Duration    : 29s 640ms 

Duration_FirstFrame   : 80ms 

Bit rate    : 1 622 Kbps 

Width     : 430 pixels 

Height     : 378 pixels 

http://www.gastrolab.net/
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Display aspect ratio   : 1.138 

Frame rate mode   : Constant 

Frame rate    : 25.000 fps 

Color space    : YUV 

Chroma subsampling   : 4:2:0 

Bit depth    : 8 bits 

Scan type    : Progressive 

Bits/(Pixel*Frame)   : 0.399 

Stream size    : 5.72 MiB (92%) 

Writing library   : x264 core 146 r2538 121396c 

Encoding settings   : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x133 / 

me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 

/ trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / 

threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / 

bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / 

direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / 

intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=18.0 / qcomp=0.60 / qpmin=10 / 

qpmax=51 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00 
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Appendix B – MATLAB Code 

B.1 Simulator 
%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Wireless Capsule Endocsopy simulator using GI tract videos 

% 

% Originally created by A. Kim 02.10.2011 

% Last modified by E. Boe 15.06.2016 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all; close all; clc 

  

Filename = 'colon1'; 

vidObj = VideoReader(strcat(Filename,'.avi')); 

vidInfo = get(vidObj); 

totFrames = vidInfo.Duration*vidInfo.FrameRate; 

  

  

%Memory allocation 

CPSNR = zeros(1,totFrames); 

bit_rate = zeros(1,totFrames); 

CR = zeros(1,totFrames); 

pred_var = zeros(1,totFrames); 

SSIM = zeros(1,totFrames); 

  

%Define parameters 

fig_name = 'colon1_adapt_YEF'; 

seq_num = 4; 

colourTran = 'YEF'; 

a=0.9; %initial 

p_coef = [a a -a^2]; % a=0.8, b=a, c=-a^2 [a b c] 

sRate = [2 3]; 

deltas = [7, 6, 6]; 

quant_type = 'deadzone'; 

parameters = struct(... 

    'colourTran',   colourTran,... 

    'sRate',        sRate,... 

    'p_coef',       p_coef,... 

    'deltas',       deltas,... 

    'quant_type',   quant_type,... 

    'p_coef_mode',  'rows',... 

    'enable_ROI',   1,... 

    'ROI_pos',      [100 100 40 24],... 

    'levels1',      0,... 

    'levels2',      0,... 

    'levels3',      0,... 

    'frame_size',   0); 

  

%create video write files 

virecFileName = 

sprintf('%s%d_downSample_%d%d_coef9_reconstr_%s.avi',Filename,seq_nu

m,sRate(1),sRate(2),colourTran); 

virecObj = VideoWriter(virecFileName); 

virecObj.FrameRate = 4; 
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open(virecObj); 

vidifFileName= 

sprintf('%s%d_downSample_%d%d_coef9_difference_%s.avi',Filename,seq_

num,sRate(1),sRate(2),colourTran); 

vidifObj = VideoWriter(vidifFileName); 

vidifObj.FrameRate = 4; 

open(vidifObj); 

  

if seq_num == 3 

    rows = vidObj.Height-1; 

    cols = vidObj.Width-1; 

elseif seq_num == 4 

    rows = vidObj.Height-6; 

    cols = vidObj.Width-2; 

else 

    rows = vidObj.Height; 

    cols = vidObj.Width; 

end 

  

%Run simulation 

k=1; 

while hasFrame(vidObj) 

    display(['Frame ',int2str(k),' of ',num2str(totFrames)]); 

     

    vidFrame = readFrame(vidObj); 

    vidFrame = vidFrame(1:rows,1:cols,:); 

     

    pred_var(k)=parameters.p_coef(1); 

     

    %Encoder 

    [sr123, parameters] = encoder(vidFrame, parameters); 

     

    %Decoder 

    [vidFrame_rec,parameters,component] = decoder(sr123, 

parameters);%mean_RGB, 

  

    %Performance evaluation 

    [CPSNR(k),bit_rate(k),CR(k),SSIM(k)]= 

performance_evaluation(vidFrame, vidFrame_rec, parameters); 

  

    if parameters.enable_ROI 

        writeVideo(virecObj, insertShape(vidFrame_rec, 

'Rectangle',parameters.ROI_pos,'Color','Red','LineWidth',1)); 

        writeVideo(vidifObj, insertShape(vidFrame-vidFrame_rec, 

'Rectangle',parameters.ROI_pos,'Color','Red','LineWidth',1)); 

    else 

        writeVideo(virecObj, vidFrame_rec); 

        writeVideo(vidifObj, vidFrame-vidFrame_rec); 

    end 

    if k==totFrames 

        break; 

    end 

    k=k+1; 

end 

  

%end simulation program and close video files 
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close(virecObj); 

close(vidifObj); 

  

performFileName = 

sprintf('%s%d_downSample_%d%d_coef9_performance_%s.mat',Filename, 

seq_num,sRate(1),sRate(2),colourTran); 

save(performFileName,'CPSNR', 'bit_rate', 'CR','SSIM'); 

  

display(['Average bit rate: ',num2str(mean(bit_rate))]) 

display(['Average compress ratio: ',num2str(mean(CR))]) 

display(['Average CPSNR: ',num2str(mean(CPSNR))]) 

display(['Average SSIM: ',num2str(mean(SSIM))]) 

  

%Plot results 

figure(1) 

set(gcf,'numbertitle','off','name',fig_name) 

subplot(2,2,1),plot(1:totFrames,CPSNR,'b-*'),title('CPSNR 

performance'),axis([0 50 35 40]); 

axis tight; 

ylabel('CPSNR in dB'); 

xlabel('Frame number'); 

grid on;  

  

subplot(2,2,2), plot(1:totFrames,bit_rate,'b-d'),title('average bit 

rate per pixel'),axis([0 50 0 1]); 

grid on; 

axis tight; 

xlabel('Frame number'); 

ylabel('bit rate in bpp'); 

  

subplot(2,2,3), plot(1:totFrames,CR,'b-d'),title('average 

compression ratio per pixel'),axis([0 50 0 1]); 

grid on; 

axis tight; 

xlabel('Frame number'); 

ylabel('compression in precent'); 

  

subplot(2,2,4), plot(1:totFrames,SSIM,'b-o'),title('Average 

structural similarity index measure'),axis([0 50 0 1]); 

grid on; 

axis tight; 

xlabel('Frame number'); 

ylabel('SSIM'); 

  

figure(2) 

set(gcf,'numbertitle','off','name',fig_name) 

plot(1:totFrames,pred_var) 

xlabel('Frame number'); 

ylabel('Prediction coefficient'); 

title('Variation in the prediction coefficient over the frames'); 

grid on; 

axis tight; 
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B.2 Encoder 
function varargout = encoder(vidFrame, parameters) 

  

%Split frame into the different channels 

R = double(vidFrame(:,:,1)); 

G = double(vidFrame(:,:,2)); 

B = double(vidFrame(:,:,3)); 

  

%Colour transformation 

[c1_alt, c2_alt, c3_alt, mean_RGB] = en_colour_transform(R, G, B, 

parameters); 

  

%Multirate: lowpass & downsample with given sRate 

if parameters.enable_ROI == 1 

    [c1_MR, c2_MR, c3_MR] = en_lowpassDownsample_roi(c1_alt, c2_alt, 

c3_alt, parameters); 

else 

    [c1_MR, c2_MR, c3_MR] = 

en_lowpassDownsample(c1_alt,c2_alt,c3_alt, parameters); 

end 

  

%DPCM encoder 

[levels1, levels2, levels3] = en_DPCM_encode(c1_MR,c2_MR,c3_MR, 

parameters); 

  

%encode quantization levels using SR run-length coder 

sr123 = en_Frame_SRencode(levels1,levels2,levels3); 

  

%update parameters: 

parameters.mean_RGB = mean_RGB; 

parameters.frame_size = size(vidFrame); 

parameters.levels1 = levels1; 

parameters.levels2 = levels2; 

parameters.levels3 = levels3; 

  

%send to decoder or to channelcoder     

varargout{1} = sr123; 

varargout{2} = parameters; 

  

end 

 

 

function [R_alt,G_alt,B_alt,mean_RGB] = en_colour_transform(R, G, B, 

parameters) 

  

if strcmp(parameters.colourTran,'YUV') 

    transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0]; 

elseif strcmp(parameters.colourTran,'YEF') 

    transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25]; 

else 

    error('encoder:unknownTransformation', 'Invalid colour 

transformation method chosen') 

end 

  



   

103 

 

R_alt = R*transmat(1,1)+G*transmat(1,2)+B*transmat(1,3); 

G_alt = R*transmat(2,1)+G*transmat(2,2)+B*transmat(2,3)+128; 

B_alt = R*transmat(3,1)+G*transmat(3,2)+B*transmat(3,3)+128; 

  

mean_RGB = [mean(R_alt(:)) mean(G_alt(:)) mean(B_alt(:))]; 

  

R_alt = R_alt - mean_RGB(1); 

G_alt = G_alt - mean_RGB(2); 

B_alt = B_alt - mean_RGB(3); 

End 

 

 

function [c1_MR,c2_MR,c3_MR] = en_lowpassDownsample_roi(c1_alt, 

c2_alt, c3_alt, parameters) 

sRate = parameters.sRate; 

  

x1 = parameters.ROI_pos(1); 

y1 = parameters.ROI_pos(2); 

w1 = parameters.ROI_pos(3); 

h1 = parameters.ROI_pos(4); 

  

size_c1 = size(c1_alt); 

rowsC1 = size_c1(1); 

colsC1 = size_c1(2); 

  

tempR=zeros(rowsC1,(colsC1+w1)/sRate(1)); 

tempG=zeros(rowsC1,(colsC1+2*w1)/sRate(2)); 

tempB=zeros(rowsC1,(colsC1+2*w1)/sRate(2)); 

  

c1_MR = zeros((colsC1+w1)/sRate(1),((rowsC1+h1)/sRate(1))); 

c2_MR = zeros((colsC1+2*w1)/sRate(2),(rowsC1+2*h1)/sRate(2)); 

c3_MR = zeros((colsC1+2*w1)/sRate(2),(rowsC1+2*h1)/sRate(2)); 

  

b = fir1(40,1/sRate(1)); 

Yfilt_c = filter2(b,c1_alt); 

  

%Luminance component (Channel 1) 

for i=1:rowsC1 

    tempR(i,1:x1/sRate(1))=Yfilt_c(i,1:sRate(1):x1); 

    tempR(i,x1/sRate(1):(x1/sRate(1)+w1))=c1_alt(i,x1:(x1+w1)); 

    

tempR(i,(x1/sRate(1)+w1):(colsC1+w1)/sRate(1))=Yfilt_c(i,(x1+w1):sRa

te(1):colsC1); 

end 

tempR = tempR'; 

for i = 1:(colsC1+w1)/sRate(1); 

    c1_MR(i,1:y1/sRate(1)) = tempR(i,1:sRate(1):y1); 

    c1_MR(i,y1/sRate(1):(y1/sRate(1)+h1)) = tempR(i,y1:(y1+h1)); 

    c1_MR(i,(y1/sRate(1)+h1):((rowsC1+h1)/sRate(1))) = 

tempR(i,(y1+h1):sRate(1):rowsC1); 

end 

     

%Chrominance components (Channel 2 & 3) 

for i=1:rowsC1 

    tempG(i,1:(ceil(x1/sRate(2))))=c2_alt(i,1:sRate(2):x1); 
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tempG(i,(ceil(x1/sRate(2))):(ceil(x1/sRate(2))+w1))=c2_alt(i,x1:(x1+

w1)); 

    

tempG(i,(ceil(x1/sRate(2))+w1):(colsC1+2*w1)/sRate(2))=c2_alt(i,(x1+

w1):sRate(2):colsC1); 

  

    tempB(i,1:(ceil(x1/sRate(2))))=c3_alt(i,1:sRate(2):x1); 

    

tempB(i,(ceil(x1/sRate(2))):(ceil(x1/sRate(2))+w1))=c3_alt(i,x1:(x1+

w1)); 

    

tempB(i,(ceil(x1/sRate(2))+w1):(colsC1+2*w1)/sRate(2))=c3_alt(i,(x1+

w1):sRate(2):colsC1); 

end 

tempG=tempG'; 

tempB=tempB'; 

for i=1:(colsC1+2*w1)/sRate(2) 

    c2_MR(i,1:(ceil(y1/sRate(2)))) = tempG(i,1:sRate(2):y1); 

    c2_MR(i,(ceil(y1/sRate(2))):(ceil(y1/sRate(2))+h1)) = 

tempG(i,y1:(y1+h1)); 

    c2_MR(i,(ceil(y1/sRate(2))+h1):(rowsC1+2*h1)/sRate(2)) = 

tempG(i,(y1+h1):sRate(2):rowsC1); 

  

    c3_MR(i,1:(ceil(y1/sRate(2)))) = tempB(i,1:sRate(2):y1); 

    c3_MR(i,(ceil(y1/sRate(2))):(ceil(y1/sRate(2))+h1)) = 

tempB(i,y1:(y1+h1)); 

    c3_MR(i,(ceil(y1/sRate(2))+h1):(rowsC1+2*h1)/sRate(2)) = 

tempB(i,(y1+h1):sRate(2):rowsC1); 

end 

  

c1_MR = c1_MR'; 

c2_MR = c2_MR'; 

c3_MR = c3_MR'; 

     

end 

 

 

%{  

low-pass and down-sampling of original Y, U and V components. 

sRate is the down-sampling rate , which also indicate the cut-off 

frequency 

of the low-pass filter 

for U and V, only down-sampling is performed.  

%} 

function [c1_MR,c2_MR,c3_MR] = en_lowpassDownsample(c1_alt, c2_alt, 

c3_alt, parameters) 

sRate = parameters.sRate; 

if sRate == 1 

    c1_MR = c1_alt; 

    c2_MR = c2_alt; 

    c3_MR = c3_alt; 

else 

    %%% Filtering %%% 

    b = fir1(40,1/sRate(1)); 
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    Yfilt_c = filter2(b,c1_alt); 

    %%% Downsample %%% 

    Ydown_c = downsample(Yfilt_c,sRate(1)); 

    c1_MR = downsample(Ydown_c',sRate(1)); 

    c1_MR = c1_MR'; 

     

    c2_MR = downsample(c2_alt, sRate(2)); 

    c2_MR = downsample(c2_MR',sRate(2));  

    c2_MR = c2_MR'; 

     

    c3_MR = downsample(c3_alt,sRate(2)); 

    c3_MR = downsample(c3_MR',sRate(2));     

    c3_MR = c3_MR'; 

end 

end 

 

 

function [levelsY, levelsU, levelsV] = en_DPCM_encode(Y, U, V, 

parameters) 

p_coef = parameters.p_coef; 

deltas = parameters.deltas; 

quant_type = parameters.quant_type; 

  

if nargin ~=4 

    fprintf('ERROR: incorrect number of inputs!'); 

else 

    levelsY = zeros(size(Y)); 

    levelsU = zeros(size(U)); 

    levelsV = zeros(size(V)); 

     

    Y_rec = levelsY; 

    U_rec = levelsU; 

    V_rec = levelsV; 

     

    dY = levelsY; 

    dU = levelsU; 

    dV = levelsV; 

     

    Yp = 0; 

    Up = 0; 

    Vp = 0; 

  

    % quantization levels of the uniform mid-tread quantizer. 

    deltaY = deltas(1); 

    deltaU = deltas(2); 

    deltaV = deltas(3); 

    if strcmp(quant_type,'deadzone') == 1 

        % quantization using deadzone quantizer. URURQ 

        kY = 1; 

        kU = 1; 

        kV = 1; 

        offsetY = 1-kY*deltaY*exp(-kY*deltaY)/(1-exp(-kY*deltaY)); 

        offsetU = 1-kU*deltaU*exp(-kU*deltaU)/(1-exp(-kU*deltaU)); 

        offsetV = 1-kV*deltaV*exp(-kV*deltaV)/(1-exp(-kV*deltaV)); 

    end 
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end 

if (nargout ==3 || nargout == 6 || nargout == 9) 

    %%% DPCM Y-component encode %%% 

    for i = 2:size(Y,1) 

        for j = 1:size(Y,2) 

            dY(i,j) = Y(i,j)-Yp; 

            if strcmp(quant_type,'uniquant')==1 

                levelsY(i,j)=round(dY(i,j)/deltaY); 

            else 

                levelsY(i,j) = 

sign(dY(i,j))*max(0,floor((abs(dY(i,j))-

(kY*deltaY)+offsetY)/(kY*deltaY)+1)); 

            end 

            Y_rec(i,j) = Yp +levelsY(i,j)*deltaY; 

            if j == size(Y,2) 

                break; 

            else 

                Yp = p_coef(2)*Y_rec(i-

1,j+1)+p_coef(1)*Y_rec(i,j)+p_coef(3)*Y_rec(i-1,j); 

            end 

        end 

    end 

    %%% DPCM U,V-components encode %%% 

    for i = 2:size(U,1) 

        for j = 1:size(U,2) 

            dU(i,j) = U(i,j)-Up; 

            dV(i,j) = V(i,j)-Vp; 

            if strcmp(quant_type,'uniquant')==1 

                levelsU(i,j) = round(dU(i,j)/deltaU); 

                levelsV(i,j) = round(dV(i,j)/deltaV); 

            else 

                levelsU(i,j) = 

sign(dU(i,j))*max(0,floor((abs(dU(i,j))-

(kU*deltaU)+offsetU)/(kU*deltaU)+1)); 

                levelsV(i,j) = 

sign(dV(i,j))*max(0,floor((abs(dV(i,j))-

(kV*deltaV)+offsetV)/(kV*deltaV)+1)); 

            end 

            U_rec(i,j) = Up+levelsU(i,j)*deltaU; 

            V_rec(i,j) = Vp+levelsV(i,j)*deltaV;   

            if j == size(Y,2) 

                break; 

            else 

                Up = p_coef(1)*U_rec(i,j); 

                Vp = p_coef(1)*V_rec(i,j); 

            end 

        end 

    end 

else 

    fprintf('ERROR: Incorrect number of outputs'); 

end 

  

end 
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function srYUV = en_Frame_SRencode(levelsY, levelsU, levelsV) 

  

rowsY = size(levelsY,1); 

colsY = size(levelsY,2); 

rowsU = size(levelsU,1); 

colsU = size(levelsU,2); 

segmentlength = [size(levelsY,2) size(levelsU,2)]; 

  

% skip the first row which is zero. 

segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1));  

segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2));  

  

levelsY = levelsY(2:rowsY,:)'; 

levelsU = levelsU(2:rowsU,:)'; 

levelsV = levelsV(2:rowsU,:)'; 

srYUV = cell(3,max(segment_nrY,segment_nrU));    

  

for i = 1:segment_nrY 

        if i == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY  

            last_pos = length(levelsY(:)); 

        else 

            last_pos = i*segmentlength(1); 

        end 

        segmentY = levelsY((i-1)*segmentlength(1)+1:last_pos); 

        tempY = en_SRencode(segmentY); 

        srYUV(1,i) = {symbol2bits(tempY)};      

end 

for i = 1:segment_nrU 

        if i == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU  

            last_pos = length(levelsU(:)); 

        else 

            last_pos = i*segmentlength(2); 

        end 

        segmentU = levelsU((i-1)*segmentlength(2)+1:last_pos); 

        tempU = en_SRencode(segmentU); 

        srYUV(2,i) = {symbol2bits(tempU)};      

    

        segmentV = levelsV((i-1)*segmentlength(2)+1:last_pos); 

        tempV = en_SRencode(segmentV); 

        srYUV(3,i) = {symbol2bits(tempV)}; 

end 

end 

 

 

function Y = en_SRencode(x,FMT) 

%pre allocate codeword size. -1 is dummy bit.  

y = -ones(size(x)); 

sizey1 = 1; %starting position of the codeword 

sizey2 = 0; %end position. 

while ~isempty(x) % check if x has any value 

    if isempty(find(x~=0, 1))% x has only zeros. 

        RLbin_str = int2bit(length(x)); 

        % checking to see if run-length is 2^k-1  
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        if round(log2(length(x)+1))-log2(length(x)+1)~=0 

            RLbin_str = RLbin_str(2:length(RLbin_str)); 

        end 

        % mapping to '+','-'. where '+' is 3, '-' is 2. 

        RLbin_str = RLbin_str +2; 

        %determine end position of codeword 

        sizey2 = sizey2+length(RLbin_str); 

        % remove the encoded zeros. 

        x = []; 

        % assign to output and update starting position of codeword 

        y(sizey1:sizey2)=RLbin_str; 

        sizey1 = sizey2+1; 

    else % x has both zero and nonzero elements 

        if x(1)==0  % when first element is zero, code run length: 

        % determine length of zeros, convert to binary. 

        marker = length(x(1:find(x~=0, 1 )-1)); 

        RLbin_str = int2bit(marker); 

        % checking to see if run-length is 2^k-1,if not remove MSB  

        if round(log2(marker+1))-log2(marker+1)~=0 

            RLbin_str = RLbin_str(2:length(RLbin_str));     

        end 

        %change 0, to -, 1 to + 

        RLbin_str = RLbin_str +2;     

        %update codeword start and end positions and output array 

        sizey2 = sizey2+length(RLbin_str);        

        y(sizey1:sizey2)=RLbin_str; 

        sizey1 = sizey2+1; 

        % remove the encoded zeros from input array 

        x = x(find(x~=0,1):length(x)); 

        else % encode the first nonzero value 

            % first increment the absolute value by 1. retain sign. 

            nz_val = abs(x(1))+1; 

            %NZbin_str = dec2bin(abs(nz_val)); 

            NZbin_str = int2bit(nz_val);  

            % change the MSB into '+' or '-' 

            if sign(x(1))>0 

                NZbin_str(1)=3; % '+' is 3 

            else 

                NZbin_str(1)=2;% '-' is 2; 

            end 

            % update codeword positions and output array 

            sizey2 = sizey2+length(NZbin_str); 

            y(sizey1:sizey2)=NZbin_str; 

            sizey1 = sizey2+1; 

            % remove the nonzero value from input array 

            if length(x)==1  % come to the last element 

                x = []; 

            else  

                x = x(2:length(x)); 

            end 

        end       

    end 

end 

% remove the dummy bits -1; 

y = y(y>=0); 
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if nargin==1 || strcmp(FMT,'double')==1 

    Y = y; 

elseif  strcmp(FMT, 'char')==1 

    Y(y==3) = '+'; 

    Y(y==2) = '-'; 

    Y(y==0) = '0'; 

    Y(y==1) = '1'; 

else 

    fprintf('ERROR: unknown output format.'); 

    Y = []; 

end 

end 

 

 

% convert integer to bits. we use little Endian. 

% N:    input integer. n: number of bits for output. 

% n must be greater or equal to log2(N). 

function bits = int2bit(N,n) 

if nargin == 1 

    if N == 0 || N == 1 

        bits = rem(N,2); 

    else 

        n = floor(log2(N))+1; 

        bits = zeros(1,n); 

        for i = 1:n 

            bits(i) = rem(N,2); 

            N=(N-bits(i))/2 ; 

        end 

        bits = bits(end:-1:1); 

    end 

else 

    bits = zeros(1,n); 

    if N ==0 || N ==1 

        bits(end) = rem(N,2); 

    else 

        for i = 1:n 

            bits(i) = rem(N,2); 

            N=(N-bits(i))/2 ; 

        end 

        bits = bits(end:-1:1); 

    end 

end 

end 

 

 

%{  

converts symbols of +,-,0,1 into bits  

uses 2 bits per symbol +: 11 -: 10 1: 01, 0:00 

-1 is the dummy bit. it is transformed into [-1 -1]; 

%} 

function bits = symbol2bits(symbols) 

bits = zeros(2,size(symbols,2)); 

for i = 1: size(symbols,2) 

    if symbols(i) =='+'|| symbols(i)== 3 

        bits(:,i) = [1 1]'; 
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    elseif symbols(i)== '-'|| symbols(i) == 2 

        bits(:,i) = [1 0]'; 

    elseif symbols(i)=='1'|| symbols(i) == 1 

        bits(:,i) = [0 1]'; 

    elseif symbols(i) == '0'|| symbols(i) == 0 

        bits(:,i) = [0 0]'; 

    else 

        bits(:,i) = ones(size(2,1))*symbols(i);%[-1 -1]'; 

    end 

end 

end 

 

B.3 Decoder 
function [vidFrame_rec,parameters,U_rec]= decoder(sr123, parameters) 

  

%DPCM SR decode 

[Y_rec, U_rec, V_rec, levelsY, levelsU, levelsV] = 

de_DPCM_decode(sr123,parameters,0); 

  

% MR - Lowpass and up sample 

if parameters.enable_ROI == 1 

    [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample_roi(Y_rec, 

U_rec, V_rec, parameters); 

else 

    [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample(Y_rec, U_rec, 

V_rec, parameters); 

end 

%inverse coulour transformation 

[vidFrame_rec] = de_colour_transform 

(co1_rec,co2_rec,co3_rec,parameters); 

  

%Update parameters for next round 

parameters = de_parameters_update(parameters, Y_rec, levelsY, 

levelsU, levelsV); 

  

end 

 

 

function [Y_rec, U_rec, V_rec, levelsY, levelsU, levelsV] = 

de_DPCM_decode(sr123,parameters,ROI_run) 

  

if ROI_run 

    levels1 = parameters.roi_levels1; 

    levels2 = parameters.roi_levels2; 

    levels3 = parameters.roi_levels3; 

else 

    levels1 = parameters.levels1; 

    levels2 = parameters.levels2; 

    levels3 = parameters.levels3; 

end 

    comp_size = [size(levels1); size(levels2); size(levels3)]; 

    Qrange = [max(levels1(:)) min(levels1(:)); max(levels2(:)) 

min(levels2(:)); max(levels3(:)) min(levels3(:))]; 

    segmentlength = [size(levels1,2) size(levels2,2)]; 
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    %sr_YUV = sdec_input.sdec_bits; 

    sr_YUV = sr123; 

    deltas = parameters.deltas; 

    p_coef = parameters.p_coef; 

    maxY= Qrange(1,1); 

    minY= Qrange(1,2); 

    maxU= Qrange(2,1); 

    minU= Qrange(2,2); 

    maxV= Qrange(3,1); 

    minV= Qrange(3,2); 

  

     

     

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

   % declare output                   % 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    

    Y_rec = zeros(comp_size(1,:)); 

    U_rec = zeros(comp_size(2,:)); 

    V_rec = zeros(comp_size(3,:)); 

     

    colsY = size(Y_rec,2); 

    rowsY = size(Y_rec,1); 

    colsU = size(U_rec,2); 

    rowsU = size(U_rec,1); 

     

    %segmentlength = sdec_input.segmentlength; 

    segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1)); 

    segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2)); 

  

    levelsY = zeros(1,colsY*(rowsY-1));     

    levelsU = zeros(1,colsU*(rowsU-1)); 

    levelsV = zeros(1,colsU*(rowsU-1)); 

     

    Y_row = sr_YUV(1,:); 

    U_row = sr_YUV(2,:); 

    V_row = sr_YUV(3,:); 

     

     

for k = 1:segment_nrY 

    Y_symb = bits2symbol(Y_row{k}); 

    Y_symb = Y_symb(Y_symb>=0); 

    if k == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY 

        last_pos = length(levelsY(:)); 

        dlength = last_pos-(k-1)*segmentlength(1); 

    else 

        last_pos = k*segmentlength(1); 

        dlength = segmentlength(1); 

    end 

    levelsY((k-1)*segmentlength(1)+1:last_pos) = 

de_SRdecode(Y_symb,dlength); 

end 

for k = 1:segment_nrU 

    U_symb = bits2symbol(U_row{k}); 
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    V_symb = bits2symbol(V_row{k}); 

    U_symb = U_symb(U_symb>=0); 

    V_symb = V_symb(V_symb>=0); 

    if k == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU 

        last_pos = length(levelsU(:)); 

        dlength = last_pos-(k-1)*segmentlength(2); 

    else 

        last_pos = k*segmentlength(2); 

        dlength = segmentlength(2); 

    end 

    levelsU((k-1)*segmentlength(2)+1:last_pos) = 

de_SRdecode(U_symb,dlength); 

    levelsV((k-1)*segmentlength(2)+1:last_pos) = 

de_SRdecode(V_symb,dlength); 

end    

    levelsY = [zeros(1,colsY) levelsY]; 

    levelsU = [zeros(1,colsU) levelsU]; 

    levelsV = [zeros(1,colsU) levelsV]; 

    levelsY = reshape(levelsY, colsY, rowsY); 

    levelsU = reshape(levelsU, colsU, rowsU); 

    levelsV = reshape(levelsV, colsU, rowsU); 

    levelsY = levelsY'; 

    levelsU = levelsU'; 

    levelsV = levelsV'; 

     

    % constrain the max min values. 

    levelsY(levelsY>maxY) = maxY; 

    levelsY(levelsY<minY) = minY; 

    levelsU(levelsU>maxU) = maxU; 

    levelsU(levelsU<minU) = minU; 

    levelsV(levelsV>maxV) = maxV; 

    levelsV(levelsV<minV) = minV; 

     

    % quantization levels of the uniform mid-tread quantizer. 

    deltaY = deltas(1); 

    deltaU = deltas(2); 

    deltaV = deltas(3); 

    Yp = 0; 

    Up = 0; 

    Vp = 0; 

     

    % prediction coefficients for 2D DPCM, Y channel. 

    a =p_coef(1);%.8;%1; 

    b =p_coef(2);% .8;%a; 

    c =p_coef(3);% -a^2; 

    for i = 2:size(levelsY,1) 

        for j = 1:size(levelsY,2) 

            Y_rec(i,j) = Yp +levelsY(i,j)*deltaY; 

            if j == size(levelsY,2) 

                break; 

            else 

                Yp = b*Y_rec(i-1,j+1)+a*Y_rec(i,j)+c*Y_rec(i-1,j); 

            end 

        end         

    end 
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    for i = 2:size(levelsU,1) 

        for j = 1:size(levelsU,2) 

            U_rec(i,j) = Up + levelsU(i,j)*deltaU; 

            V_rec(i,j) = Vp + levelsV(i,j)*deltaV;   

            if j == size(levelsU,2) 

                break; 

            else 

                Up = a*U_rec(i,j); 

                Vp = a*V_rec(i,j); 

            end 

        end 

    end 

end 

 

 

function symbols = bits2symbol(bits,FMT) 

% convert bits back to symbols 

% bits dimension 2xL 

L = size(bits,2); 

  

if nargin == 1|| strcmp(FMT,'double')==1 

    symbols = zeros(1,L); 

    for l = 1:L 

        if bits(:,l) ==[1 1]' 

            symbols(l) = 3; 

        elseif bits(:,l) ==[1 0]' 

            symbols(l) = 2; 

        elseif bits(:,l) ==[0 1]' 

            symbols(l) = 1; 

        elseif bits(:,l) ==[0 0]' 

            symbols(:,l) = 0; 

        else 

            symbols(:,l) = -1; 

        end 

    end 

else 

    symbols = repmat('+',1,L); 

    for l = 1:L 

        if bits(:,l) ==[1 1]' 

            symbols(l) = '+'; 

        elseif bits(:,l) ==[1 0]' 

            symbols(l) = '-'; 

        elseif bits(:,l) ==[0 1]' 

            symbols(l) = '1'; 

        elseif bits(:,l) ==[0 0]' 

            symbols(:,l) = '0'; 

        else 

            symbols(:,l) = 's'; 

        end 

    end 

end 

 

 

function x = SRdecode(Y,output_length,FMT) 
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x = []; 

  

if nargin == 0 

    fprintf('ERROR: no input given'); 

elseif nargin ==1 || nargin == 2|| strcmp(FMT,'double')==1  

    y = Y; 

elseif strcmp(FMT, 'char')==1 

    % converting string into to double.  

    y(Y=='+') = 3; 

    y(Y=='-') = 2; 

    y(Y=='1') = 1; 

    y(Y=='0') = 0; 

else 

    fprintf('ERROR: unknown input format.'); 

    y = []; 

end 

     

while ~isempty(y) 

    if length(y)>1 

        % find the '+','-', '1' and '0' positions  

        PM_pos = find(y==3| y==2); 

        OZ_pos = find(y==1|y==0); 

         

        % y always starts with the symbol '+' or '-' 

         

        if isempty(OZ_pos) % only runs of zeros. 

            temp3 = y(1:length(y)); 

            y = []; 

            temp3(temp3==3)=1; 

             

            temp3(temp3==2)=0; 

             

            numbr = bit2int([1 temp3]); 

             

            % check if the length is 2^k-1 

             

            if round(log2((numbr)+1))-log2((numbr)+1)==0 

                rl = bit2int(temp3); 

                rl_zeros = zeros(1,rl); 

            else 

                rl_zeros = zeros(1,numbr); 

            end 

             

                x = [x rl_zeros]; 

  

        elseif isempty(PM_pos) % only 1 or zeros. (not valid code 

word)  

            x = y; 

            y = []; 

        elseif ~isempty(OZ_pos) && OZ_pos(1)==2 % first codeword is 

none-zero value 

         

            % check the sign of the none-zero value. 

            if y(PM_pos(1))==3 

               nz_sign = 1; 

            elseif y(PM_pos(1))==2 
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                nz_sign = -1; 

            end 

                

                

            %convert the binary into decimal. 

            % remove the codeword from y 

          

            if length(PM_pos)>1 

                temp = [1 y(2:PM_pos(2)-1)]; 

                y = y(PM_pos(2):length(y)); 

                 

            else% no other valide codeword in the input. 

                temp = [1 y(2:length(y))]; 

                y = []; 

            end 

             

            x = [x nz_sign*(bit2int(temp)-1)]; 

             

        elseif OZ_pos(1) ==1 %first codword is 1/0. decode as 1/0. 

                x = [x y(1)]; 

                 

                % remove codeword. 

                y = y(2:length(y)); 

                 

        elseif OZ_pos(1)>2% first code word is run length of zeros. 

                        %if ~isempty(OZ_pos) 

                temp3 = y(1:OZ_pos(1)-2);% remember the nz val has 

MSB. 

                y = y(OZ_pos(1)-1:length(y)); 

                 

                temp3(temp3==3)=1; 

                temp3(temp3==2)=0; 

                numbr = bit2int([1 temp3]); 

                 

                if round(log2((numbr)+1))-log2((numbr)+1)==0 % if 

the length is 2^k-1 

                    rl = bit2int(temp3); % then all bits are there 

                    rl_zeros = zeros(1,rl);  

                else % if not, need the one with added bits. 

                    rl_zeros = zeros(1,numbr); 

                end 

                 

                     

                x = [x rl_zeros]; 

        end 

        

    elseif length(y)==1  

        if y == 3 || y == 0% here y = +, then only 1 zero is left. 

            x = [x 0]; 

        elseif y == 2 % here y = -, two zeros are left. 

            x = [x 0 0]; 

        elseif y == 1  

            x = [x 1]; 

    

        end 

            y = []; 
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    end 

end         

             

%check to see if x is at the right length. 

if nargin >=2 

    if output_length > length(x) 

        x = [x zeros(1,output_length-length(x))]; 

    else 

        x = x(1:output_length); 

    end 

end 

 

 

function N =bit2int(bits) 

% convert bits to integers.  

  

n = length(bits)-1; 

w =2.^(n:-1:0); 

N = sum(bits.*w); 

End 

 

 

function [co1_rec, co2_rec, co3_rec] = 

de_lowpassUpsample_roi(c1_down, c2_down, c3_down, parameters) 

sRate = parameters.sRate; 

x1 = parameters.ROI_pos(1); 

y1 = parameters.ROI_pos(2); 

w1 = parameters.ROI_pos(3); 

h1 = parameters.ROI_pos(4); 

  

sizeUo = size(c2_down); 

rowsU = sizeUo(1); 

colsU = sizeUo(2); 

sizeYo = size(c1_down); 

rowsY = sizeYo(1,1); 

colsY = sizeYo(1,2); 

temp1 = zeros(rowsY,(sRate(1)*colsY-w1)); 

temp2 = zeros(rowsU,(sRate(2)*colsU-2*w1)); 

temp3 = zeros(rowsU,(sRate(2)*colsU-2*w1)); 

c1_rec = zeros((sRate(1)*colsY-w1),(sRate(1)*rowsY-h1)); 

c2_rec = zeros((sRate(2)*colsU-2*w1),(sRate(2)*rowsU-2*h1)); 

c3_rec = zeros((sRate(2)*colsU-2*w1),(sRate(2)*rowsU-2*h1)); 

c1_down = c1_down(2:rowsY,1:colsY); 

c1_down = [c1_down;.1*c1_down(end,1:colsY)]; 

  

c2_down = c2_down(2:rowsU,1:colsU); 

c2_down = [c2_down; zeros(1,colsU)]; 

     

%Luminance component (Channel 1) 

for i = 1:rowsY 

    temp1(i,1:x1) = 

interp(c1_down(i,1:(x1/sRate(1))),sRate(1),10,.5); 

    temp1(i,x1:(x1+w1)) = c1_down(i,(x1/sRate(1)):(x1/sRate(1)+w1)); 

    temp1(i,(x1+w1+1):(sRate(1)*colsY-w1)) = 

interp(c1_down(i,(x1/sRate(1)+w1+1):colsY),sRate(1),10,.5); 
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end 

temp1 = temp1'; 

for i = 1:(sRate(1)*colsY-w1) 

    c1_rec(i,1:y1) = 

interp(temp1(i,1:(y1/sRate(1))),sRate(1),10,.5); 

    c1_rec(i,y1:(y1+h1)) = temp1(i,(y1/sRate(1)):(y1/sRate(1)+h1)); 

    c1_rec(i,(y1+h1+1):(sRate(1)*rowsY-h1)) = 

interp(temp1(i,(y1/sRate(1)+h1+1):rowsY),sRate(1),10,.5); 

end 

     

%Chrominance components (Channel 2 & 3) 

for i = 1:rowsU 

    temp2(i,1:(x1-1)) = interp(c2_down(i,1:(floor(x1/sRate(2)))), 

sRate(2)); 

    temp2(i,x1:(x1+w1)) = 

c2_down(i,(floor(x1/sRate(2))+1):(floor(x1/sRate(2))+w1+1)); 

    temp2(i,(x1+w1):(sRate(2)*colsU-2*w1)) = 

interp(c2_down(i,(floor(x1/sRate(2))+w1+1):colsU), sRate(2)); 

  

    temp3(i,1:(x1-1)) = interp(c3_down(i,1:(floor(x1/sRate(2)))), 

sRate(2)); 

    temp3(i,x1:(x1+w1)) = 

c3_down(i,(floor(x1/sRate(2))+1):(floor(x1/sRate(2))+w1+1)); 

    temp3(i,(x1+w1):(sRate(2)*colsU-2*w1)) = 

interp(c3_down(i,(floor(x1/sRate(2))+w1+1):colsU), sRate(2)); 

end 

temp2 = temp2'; 

temp3 = temp3'; 

for i = 1:(sRate(2)*colsU-2*w1) 

    c2_rec(i,1:(y1-1)) = 

interp(temp2(i,1:(floor(y1/sRate(2)))),sRate(2)); 

    c2_rec(i,y1:(y1+h1)) = 

temp2(i,(floor(y1/sRate(2))+1):(floor(y1/sRate(2))+h1+1)); 

    c2_rec(i,(y1+h1):(sRate(2)*rowsU-2*h1)) = 

interp(temp2(i,(floor(y1/sRate(2))+h1+1):rowsU),sRate(2)); 

  

    c3_rec(i,1:(y1-1)) = 

interp(temp3(i,1:(floor(y1/sRate(2)))),sRate(2)); 

    c3_rec(i,y1:(y1+h1)) = 

temp3(i,(floor(y1/sRate(2))+1):(floor(y1/sRate(2))+h1+1)); 

    c3_rec(i,(y1+h1):(sRate(2)*rowsU-2*h1)) = 

interp(temp3(i,(floor(y1/sRate(2))+h1+1):rowsU),sRate(2)); 

end 

  

c1_rec = c1_rec';     

c2_rec = c2_rec'; 

c3_rec = c3_rec'; 

co1_rec = wiener2(c1_rec,[3,3]); 

co2_rec = wiener2(c2_rec,[3,3]); 

co3_rec = wiener2(c3_rec,[3,3]); 

end 

 

 

function [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample(Y_down, 

U_down, V_down, parameters) 
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    sRate = parameters.sRate; 

  

    sizeUo = size(U_down); 

    rowsU = sizeUo(1); 

    colsU = sizeUo(2); 

    sizeYo = size(Y_down); 

    rowsY = sizeYo(1,1); 

    colsY = sizeYo(1,2); 

  

    Y_down = Y_down(2:rowsY,1:colsY); 

    Y_down = [Y_down;.1*Y_down(end,1:colsY)]; 

  

    U_down = U_down(2:rowsU,1:colsU); 

    U_down = [U_down; zeros(1,colsU)]; 

  

    for i = 1:rowsY 

        Yup_row(i,:) = interp(Y_down(i,:),sRate(1),10,.5); 

    end 

    Yup_rowtrans = Yup_row'; 

    for i = 1:colsY*sRate(1) 

        Y2(i,:) = interp(Yup_rowtrans(i,:),sRate(1),10,.5); 

    end 

  

    for i = 1:rowsU 

        Uup_row(i,:) = interp(U_down(i,:), sRate(2)); 

        Vup_row(i,:) = interp(V_down(i,:), sRate(2)); 

    end 

    Uup_rowtrans = Uup_row'; 

    Vup_rowtrans = Vup_row'; 

    for i = 1:colsU*sRate(2) 

        U2(i,:) = interp(Uup_rowtrans(i,:),sRate(2)); 

        V2(i,:) = interp(Vup_rowtrans(i,:),sRate(2)); 

    end 

  

    Y2 = Y2';     

    U2 = U2'; 

    V2 = V2'; 

    co1_rec = wiener2(Y2,[3,3]); 

    co2_rec = wiener2(U2,[3,3]); 

    co3_rec = wiener2(V2,[3,3]); 

end 

 

 

function [vidFrame_rec] = de_colour_transform 

(co1_rec,co2_rec,co3_rec,parameters) 

  

mean_RGB = parameters.mean_RGB; 

  

frame_size = size(co1_rec); 

rows = frame_size(1); 

cols = frame_size(2); 

vidFrame_rec = uint8(zeros(frame_size)); 

  

if strcmp(parameters.colourTran,'YUV') 

    transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0]; 
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elseif strcmp(parameters.colourTran,'YEF') 

    transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25]; 

else 

    error('encoder:unknownTransformation', 'Invalid colour 

transformation method chosen') 

end 

  

mean_co1 = mean_RGB(1); 

mean_co2 = mean_RGB(2); 

mean_co3 = mean_RGB(3); 

if diff(parameters.sRate) ~= 0  || max(parameters.sRate)>1 

     co1_rec = [co1_rec(1,1:cols); co1_rec(1:rows-1,1:cols)]; 

     co2_rec = [co2_rec(1,1:cols); co2_rec(1:rows-1,1:cols)]; 

     co3_rec = [co3_rec(1,1:cols); co3_rec(1:rows-1,1:cols)]; 

end 

invtransmat = inv(transmat); 

  

vidFrame_rec(:,:,1) = 

uint8(invtransmat(1,1)*(co1_rec+mean_co1)+invtransmat(1,2)*(co2_rec+

mean_co2-128) + invtransmat(1,3)*(co3_rec+mean_co3-128)); 

vidFrame_rec(:,:,2) = 

uint8(invtransmat(2,1)*(co1_rec+mean_co1)+invtransmat(2,2)*(co2_rec+

mean_co2-128) + invtransmat(2,3)*(co3_rec+mean_co3-128)); 

vidFrame_rec(:,:,3) = 

uint8(invtransmat(3,1)*(co1_rec+mean_co1)+invtransmat(3,2)*(co2_rec+

mean_co2-128) + invtransmat(3,3)*(co3_rec+mean_co3-128)); 

end 

 

 

function parameters = de_parameters_update(parameters, component, 

levelsY, levelsU, levelsV) 

component( ~any(component,2), : ) = [];  %rows 

component( :, ~any(component,1) ) = [];  %columns 

if strcmp(parameters.p_coef_mode, 'colums') 

    for i=1:length(component(1,:)) 

        autcorr_c(i,:)=autocorr(component(:,i)'); 

    end 

     

    mean_c = zeros(1,length(autcorr_c(1,:))); 

     

    for i=1:length(autcorr_c(1,:)) 

        mean_c(i)=mean(autcorr_c(1:end,i)); 

    end 

    a = mean_c(2); 

elseif strcmp(parameters.p_coef_mode, 'rows') 

    for j=1:length(component(:,1)) 

        autcorr_r(j,:)=autocorr(component(j,:)); 

    end 

     

    mean_r = zeros(1,length(autcorr_r(1,:))); 

     

    for i=1:length(autcorr_r(1,:)) 

        mean_r(i)=mean(autcorr_r(2:end,i)); 

    end 
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    a = mean_r(2);    

end 

  

parameters.p_coef = [a a -a^2]; 

  

parameters.levels1 = levelsY; 

parameters.levels2 = levelsU; 

parameters.levels3 = levelsV; 

end 

B.4 Performance Evaluate 
function [CPSNR,rate_bpp,CR,SSIM]= 

performance_evaluation(vidFrame,vidFrame_rec,parameters) 

sRate = parameters.sRate; 

  

%encoder - decoder 

[R_co,G_co,B_co,mean_RGB] = 

en_colour_transform(double(vidFrame(:,:,1)),double(vidFrame(:,:,2)),

double(vidFrame(:,:,3)),parameters); 

  

if parameters.enable_ROI == 1 

    [colour1,colour2,colour3] = 

en_lowpassDownsample_roi(R_co,G_co,B_co, parameters); 

else 

    [colour1,colour2,colour3] = en_lowpassDownsample(R_co,G_co,B_co, 

parameters); 

end 

  

[levels1, levels2, levels3] = 

en_DPCM_encode(colour1,colour2,colour3,parameters); 

  

[rate_sr1,rate_sr2,rate_sr3] = 

pe_Frame_SRencode(levels1,levels2,levels3); 

  

%--- Performance evaluation --- 

%} 

%%% Average rate per pixel %%% 

mean_rY = mean(rate_sr1)/sRate(1)^2; 

mean_rU = mean(rate_sr2)/sRate(2)^2; 

mean_rV = mean(rate_sr3)/sRate(2)^2; 

rate_bpp = mean_rY+mean_rU+mean_rV; 

  

%%% PSNR performance %%% 

CPSNR= eval_CPSNR(vidFrame,vidFrame_rec,parameters); 

  

%%% SSIM %%% 

SSIM = ssim(vidFrame_rec,vidFrame); 

  

%%% Calculate CR %%% 

CR = (1-rate_bpp/24)*100; 

End 

 

 

function varargout = pe_Frame_SRencode(varargin) 

if nargin ~=3 && nargin~=4 
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    fprintf('ERROR: incorrect number of inputs!'); 

else 

    levelsY = varargin{1}; 

    levelsU = varargin{2}; 

    levelsV = varargin{3}; 

    segmentlength = [size(levelsY,2) size(levelsU,2)]; 

    rowsY = size(levelsY,1); 

    colsY = size(levelsY,2); 

    rowsU = size(levelsU,1); 

    colsU = size(levelsU,2); 

    segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1));  

    segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2));  

end 

levelsY = levelsY(2:rowsY,:)'; 

levelsU = levelsU(2:rowsU,:)'; 

levelsV = levelsV(2:rowsU,:)'; 

rate_srY = zeros(1,segment_nrY); 

rate_srU = zeros(1,segment_nrU); 

rate_srV = zeros(1,segment_nrU); 

  

for i = 1:segment_nrY 

        if i == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY  

            last_pos = length(levelsY(:)); 

        else 

            last_pos = i*segmentlength(1); 

        end 

        segmentY = levelsY((i-1)*segmentlength(1)+1:last_pos); 

        tempY = en_SRencode(segmentY);   

        rate_srY(i) =2*length(tempY)/segmentlength(1); % 2bit is 

used for coding each symbol. 

end 

for i = 1:segment_nrU 

        if i == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU  

            last_pos = length(levelsU(:)); 

        else 

            last_pos = i*segmentlength(2); 

        end 

        segmentU = levelsU((i-1)*segmentlength(2)+1:last_pos); 

        tempU = en_SRencode(segmentU); 

        rate_srU(i) =2*length(tempU)/segmentlength(2); % 2bit is 

used for coding each symbol. 

        segmentV = levelsV((i-1)*segmentlength(2)+1:last_pos); 

        tempV = en_SRencode(segmentV);     

        rate_srV(i) =2*length(tempV)/segmentlength(2); % 2bit is 

used for coding each symbol. 

end 

varargout(1) = {rate_srY}; 

varargout(2) = {rate_srU}; 

varargout(3) = {rate_srV; 

end 

 

 

function CPSNR = eval_CPSNR(pic,pic_rec,parameters) 
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% declare constants 

rows = size(pic,1); 

cols = size(pic,2); 

%split frames 

co1 = double(pic(:,:,1)); 

co2 = double(pic(:,:,2)); 

co3 = double(pic(:,:,3)); 

co1_rec = double(pic_rec(:,:,1)); 

co2_rec = double(pic_rec(:,:,2)); 

co3_rec = double(pic_rec(:,:,3)); 

  

if strcmp(parameters.colourTran,'YUV') 

    transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0]; 

elseif strcmp(parameters.colourTran,'YEF') 

    transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25]; 

else 

    error('encoder:unknownTransformation', 'Invalid colour 

transformation method chosen') 

end 

co1_o = co1*transmat(1,1)+co2*transmat(1,2)+co3*transmat(1,3); 

co2_o = co1*transmat(2,1)+co2*transmat(2,2)+co3*transmat(2,3)+128; 

co3_o = co1*transmat(3,1)+co2*transmat(3,2)+co3*transmat(3,3)+128; 

co1_rec_o = 

co1_rec*transmat(1,1)+co2_rec*transmat(1,2)+co3_rec*transmat(1,3); 

co2_rec_o = 

co1_rec*transmat(2,1)+co2_rec*transmat(2,2)+co3_rec*transmat(2,3)+12

8; 

co3_rec_o = 

co1_rec*transmat(3,1)+co2_rec*transmat(3,2)+co3_rec*transmat(3,3)+12

8; 

  

mean_co1_o = mean(co1_o(:));  

mean_co2_o = mean(co2_o(:)); 

mean_co3_o = mean(co3_o(:)); 

mean_co1_rec_o = mean(co1_rec_o(:));  

mean_co2_rec_o = mean(co2_rec_o(:)); 

mean_co3_rec_o = mean(co3_rec_o(:)); 

  

co1_o = co1_o-mean_co1_o; 

co2_o = co2_o-mean_co2_o; 

co3_o = co3_o-mean_co3_o; 

co1_rec_o = co1_rec_o-mean_co1_rec_o; 

co2_rec_o = co2_rec_o-mean_co2_rec_o; 

co3_rec_o = co3_rec_o-mean_co3_rec_o; 

  

if diff(parameters.sRate) ~= 0  || max(parameters.sRate)>1 

     co1_rec_o = [co1_rec_o(1,1:cols); co1_rec_o(1:rows-1,1:cols)]; 

     co2_rec_o = [co2_rec_o(1,1:cols); co2_rec_o(1:rows-1,1:cols)]; 

     co3_rec_o = [co3_rec_o(1,1:cols); co3_rec_o(1:rows-1,1:cols)]; 

end 

df_1 = co1_o(2:rows,2:cols)-co1_rec_o(2:rows,2:cols); 

df_2 = co2_o(2:rows,2:cols)-co2_rec_o(2:rows,2:cols); 

df_3 = co3_o(2:rows,2:cols)-co3_rec_o(2:rows,2:cols); 
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%composite PSNR 

CPSNR = 

10*log10((255^2*3)/(var(df_1(:))+var(df_2(:))+var(df_3(:)))); 

End 
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