
Wireless Video Capsule Endoscopy
Adaptive Coding for Parameters Update and

Low Complexity Region-of-Interest Encoding

Endre Våland Bø

Master of Science in Electronics

Supervisor: Ilangko Balasingham, IET
Co-supervisor: Øyvind Janbu, Oslo University Hospital

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology

Endre Våland Bø

Wireless Video Capsule Endoscopy

Adaptive Coding for Parameters Update and Low
Complexity Region-of-Interest Encoding

Master of Science in Electronics

Trondheim, June 2016

Supervisor: Ilangko Balasingham, IET

Co-supervisor: Øyvind Janbu, Oslo University Hospital

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Electronics and Telecommunications

iii

Abstract

Wireless capsule endoscopy (WCE) is a non-invasive diagnostic method to investigate diseases

in the human gastrointestinal (GI) tract. Specifically, the WCE allows for physicians to visually

inspect the GI tract of the patient who swallows the capsule. Thereafter, it transmits video

wireless from the inside of the human body to the outside, for approximately eight hours.

Because of the size and the limited battery of the capsule, the image quality can be quite poor.

By reducing the average bitrate per pixel, the energy consumption will be reduced, which will

allow higher quality images, higher framerate or resolution.

When applying the YEF colour transformation instead of the YUV, as well as adaptive

prediction, the rate can be reduced by circa 0.12-0.35bpp. Additionally, this resulted in an

increase in peak signal-to-noise ratio (PSNR) and Structural Similarity Index (SSIM),

depending on the input simulation video. On the other hand, these results were very dependent

on the source video and might by different in a real implementation. This should be investigated

further with simulation videos more similar to the ones captured by the camera sensor on the

capsule.

Another possible solution to improve the overall image quality is to encode some regions of the

image in higher quality than the rest of the frame, known as region-of-interest (ROI) coding. A

very low complexity, energy efficient, ROI coding scheme was proposed for the encoder (the

capsule). The method relies on adaptive sampling rate within a frame, to create a region which

isn’t down-sampled or filtered. Simulations showed that it works as expected in the encoder,

but it does have some problems at the decoder. This should be investigated further, as well as

to correctly examine the increase in energy consumption in the proposed method.

iv

v

Sammendrag

Trådløs kapselendoskopi (WCE) er en diagnostiseringsmetode innen medisin for å undersøke

menneskets mage- og tarmsystem, for å lete etter skader eller sykdommer. Pasienter svelger en

kapsel på størrelse med en vanlig pille, som tar bilder mens den beveger seg gjennom systemet.

Bildene blir trådløst overført til en mottaker som sitter på et belte på utsiden av kroppen.

Ettersom pillen er liten og skal vare i omtrentlig åtte timer, er fysisk størrelse og batterikapasitet

begrenset. Disse begrensningene medfører at mottatt video er av utilfredsstillende kvalitet. Ved

å redusere gjennomsnittlig datarate per piksel, vil energiforbruket reduseres, som tillater høyere

kvalitet på bildene, høyere bildesekvens eller oppløsning.

Ved å benytte YEF fargetransformasjon istedenfor YUV, i tillegg til adaptiv prediksjon, ble

gjennomsnittlig datarate redusert med mellom 0.12-0.35bpp, avhengig av simuleringsvideo.

Samtidig økte signal-til-støy forholdet (PSNR) samt strukturell likhetsindeks (SSIM).

Resultatene var tydelig avhengig av kilden, siden bildekompresjon av komprimert bilde økte

objektiv evaluering, så det er forventet at resultatene ikke vil være identiske i en faktisk

implementasjon. Dette bør undersøkes videre ved bruk av simuleringsvideoer som er identiske

med det som produseres av bildesensoren på kapselen.

En annen løsning for å øke den overordnet bildekvaliteten hos mottakeren kan være å kode

enkelte deler av bilderammen med høyere kvalitet enn andre, også kjent som

interesseområdekoding (ROI). I denne sammenheng ble det foreslått en lavkompleksitet- og

energieffektiv ROI implementering for koderen (kapselen). Metoden innebærer å forandre

punktprøvingsfrekvensen innad i bildet, som skaper en region som ikke reduserer

punktprøvingsfrekvensen eller lavpassfiltrerer verdiene. Simuleringene viste at dette virker som

forventet på enkoder siden, men det er noen problemer på dekoder siden, samt i ROI

evalueringene. Dette må videreutvikles slik at foreslått metode kan bli korrekt evaluert, samt

undersøke hvor mye energiforbruket øker med denne kodingen sett sammen med økt kvalitet.

vi

vii

Preface

This thesis is the finalization of the Master of Science (M.Sc.) degree at Norwegian University

of Science and Technology (NTNU). The work is based on a specialisation project conducted

in the fall 2015, and the thesis work was completed the spring 2016.

Working with the wireless capsule endoscopy has been interesting and exciting, but also

frustrating and challenging. Extensive research has been conducted a lot of research all over the

world within wireless capsule endoscopy technology. It has been a major motivating factor to

be a (small) part in this vast network of researchers who continuously try to improve the

diagnostic abilities for the physicians.

I need to give a big thank you to my supervisor Ilangko Balasingham. He has given me many

valuable advises, and a lot of good directions/discussions to get me on the right working path

of the thesis. The motivation, insight and guidance he has given me, has been very important to

achieve the resulting product.

I must also thank Øyvind Janbu, for giving good recommendations and providing opinions in

what he suggested for the thesis at an early stage, which was very motivating and helpful.

Lastly, I would like to thank all of my friends and family members for great support throughout

the project. Especially my fiancée, Helene Doublet, deserves a big appreciation for her support,

motivation and her encouragement through the thesis.

Endre Våland Bø

Trondheim, 21.06.2016

viii

ix

Table of Contents

LIST OF FIGURES ... XI

LIST OF TABLES .. XIII

ABBREVIATIONS .. XV

1 INTRODUCTION... 1

1.1 Motivation ... 2

1.2 Objective and Limitations ... 2

1.3 Structure of the Thesis ... 3

2 THEORY ... 5

2.1 Medical Background .. 5

2.1.1 Human Anatomy – The Gastrointestinal Tract .. 5

2.1.2 Diseases .. 7

2.1.3 Diagnostic Methods .. 8

2.2 Image Compression ... 9

2.2.1 Source Coding .. 10

2.2.2 Building Blocks for Image Compression ... 12

2.3 Image Source Representation .. 12

2.3.1 Colour Spaces ... 13

2.3.2 Tiling .. 15

2.4 Transformation Coding.. 16

2.4.1 Discrete Cosine Transform ... 17

2.4.2 Subband Coding ... 17

2.4.3 Predictive Coding ... 20

2.5 Quantization... 24

2.5.1 Uniform Scalar Quantizers ... 26

2.5.2 Non-uniform Quantizers .. 28

2.5.3 Adaptive Quantization .. 29

2.6 Entropy Encoding .. 30

2.6.1 Arithmetic Coding .. 31

2.6.2 Huffman Coding ... 32

2.6.3 Run-Length Encoding .. 33

3 WIRELESS CAPSULE ENDOSCOPY .. 37

3.1 The Sender and Encoder .. 37

3.1.1 The Image Compression Algorithm ... 39

3.2 Transmission .. 42

3.2.1 The Wireless Radio System ... 42

3.2.2 The Human Body as a Communication Channel ... 44

3.3 Receiver and Decoder .. 45

3.4 Previous Work ... 47

4 PROPOSED METHOD.. 49

4.1 System Overview ... 49

4.2 Feedback and Algorithm Analysis .. 50

4.3 Very Low Complexity Region-of-Interest Coding .. 51

4.4 Limitations ... 53

4.5 Implementation .. 53

4.6 Evaluation .. 54

x

5 RESULTS .. 57

5.1 Part 1: Algorithm ... 57

5.1.1 Simulation 1 ... 57

5.1.2 Simulation 2 ... 60

5.1.3 Simulation 3 ... 65

5.1.4 Simulation 4 ... 69

5.2 Part 2: Region-of-interest (ROI) .. 70

6 DISCUSSION .. 75

6.1 Part 1: Algorithm ... 75

6.2 Part 2: ROI ... 77

6.3 Complexity .. 78

6.4 Error sources .. 79

6.5 Comparison .. 80

6.6 Video Encoding ... 81

6.7 Hardware Implementation ... 82

7 CONCLUSION ... 85

7.1 Future work.. 86

8 BIBLIOGRAPHY ... 87

APPENDIX A ... 95

APPENDIX B – MATLAB CODE ... 99

xi

List of Figures

Figure 1.1 PillCam SB3 from Given Imaging.. 1

Figure 2.1 The GI tract ... 5

Figure 2.2 General biomedical image processing system .. 8

Figure 2.3 Rate-Distortion function ... 11

Figure 2.4 Lossy compression system .. 11

Figure 2.5 Building blocks for image compression ... 12

Figure 2.6 Illustration of RGB filters ... 13

Figure 2.7 Three levels of a tiled pyramid for "Lena" image .. 15

Figure 2.8 General subband coding scheme ... 18

Figure 2.9 Two-level wavelet decomposition. ... 19

Figure 2.10 Quantized Predictive Coding System. .. 21

Figure 2.11 Block diagram of a typical closed loop DPCM system .. 22

Figure 2.12 Adaptive DPCM system ... 24

Figure 2.13 Midrise quantization Q(x) and quantization error q(x) ... 26

Figure 2.14 Arithmetic coding example ... 32

Figure 3.1 Illustration of the WCE ... 38

Figure 3.2 Block diagram of the algorithm .. 39

Figure 3.3 IEEE standard on human exposure to EM fields .. 44

Figure 3.4 Placement of receiver antennas on the patient .. 46

Figure 4.1: Overview over the modified algorithm .. 50

Figure 4.2 Structure of implantation of ROI area, after the MR part. 52

Figure 4.3 Overview of implementation of the simulation system .. 54

Figure 5.1 Performance of original algorithm .. 58

Figure 5.2 Performance of modified algorithm, with YEF & adaptive prediction 59

Figure 5.3 Variation in the prediction coefficient over the frames .. 59

Figure 5.4 Difference between reconstructed and original frame .. 60

xii

Figure 5.5 Performance of original algorithm with second simulation video 61

Figure 5.6 Performance of algorithm with YEF & adaptive prediction 62

Figure 5.7 Source frame ... 62

Figure 5.8 Reconstructed frame from original algorithm .. 63

Figure 5.9 Reconstruced frames with a=0.8 .. 64

Figure 5.10 Reconstruced frames with a=0.9 .. 64

Figure 5.11 Reconstructed frames with adaptive prediction .. 64

Figure 5.12 Simulation result from original algorithm .. 66

Figure 5.13 Simulation results with YEF & static a=0.8 ... 67

Figure 5.14 Corrupted luminance pixel .. 67

Figure 5.15 Simulation results with YEF & adaptive prediction ... 68

Figure 5.16 Comparison between compressed (left), and recompressed (right) video 70

Figure 5.17 Difference between reconstructed and input frame video 1 71

Figure 5.18 Difference between reconstructed and input frame video 1 71

Figure 5.19 Comparison of reconstruced image with and without ROI 73

xiii

List of Tables

Table 2.1 Arithmetic coding example .. 31

Table 3.1 Min and Max path loss in different regions at 450 MHz ... 45

Table 5.1 Simulation results from video 1. .. 60

Table 5.2 Simulation results from video 2 ... 65

Table 5.3 Simulation results from video 3 ... 69

Table 5.4 Simulation results after compressing compressed video ... 69

Table 5.5 CPSNR & SSIM results from ROI encoding ... 72

xiv

xv

Abbreviations
ADC Analogue-to-Digital Converter

AVI Audio Video Interleave

BA Backward Adaptive

BPP Bit-Per-Pixel

CMOS Complementary Metal–Oxide–Semiconductor

CPSNR Colour Peak Signal-to-Noise Ratio

CR Compression Ratio

DCT Discrete Cosine Transform

DPCM Differential Pulse Code Modulation

DWT Discrete Wavelet Transform

DZ Dead-Zone

EM Electromagnetic

ERP Effective Radiated Power

FA Forward Adaptive

FPS Frames Per Second

GI Gastrointestinal

GOP Group Of Pictures

HP High-Pass

IEEE Institute of Electrical and Electronics Engineers

JPEG Joint Photographic Experts Group

LAR Locally Adaptive Resolution

LED Light Emitting Diode

LP Low-Pass

MOS Mean Opinion Score

MPEG Movie Picture Expert Group

MR Multirate

NB Narrow Band

PL Path Loss

PSNR Peak Signal-to-Noise Ratio

RLE Run-Length Encoding

ROI Region-Of-Interest

SBC Subband Coding

SNR Signal-to-Noise Ratio

SQNR Signal-to-Quantization-Noise Ratio

SR Stack-Run

SSIM Structural Similarity Index

URURQ Uniform Reconstruction with Unity Ratio Quantizer

UTQ Uniform Threshold Quantizer

UWB Ultra Wide-Band

WCE Wireless Capsule Endoscopy

xvi

1

1 Introduction

There has been conducted a lot of research within minimization of medical equipment, over the

past years. One of these fields is the wireless capsule endoscopy (WCE). WCE allows for

medical examinations of the gastrointestinal (GI) tract to diagnose diseases like cancer, tumour,

Crohn’s disease, and bleedings to mention a few [1, 2]. The capsule is swallowed by the

patients, and is then moved through the GI tract by the natural contractions in the tract

(peristalsis), the exactly same way as eaten food is [3].

Various versions of the WCE exist today, but what is common among these are that they usually

consist of a CMOS camera sensor with LED, microchip, battery and a radio frequency (RF)

transmitter [4]. The patient wears a sensor belt with an array of receiver antennas and a small

computer to decode and store the captured images [5]. However, since the capsule is so small,

the battery capacity is very limited, resulting in quite poor image quality, making diagnosing

harder for the physicians.

Because of this limitation in power availability, increasing the resolution, frame rate, or image

quality (minimizing distortion) is difficult. A possible solution is to reduce the required energy

to encode the frames. This can be achieved by analysing the algorithm to make it use less bits

per pixel, in order to increase the received image quality.

Another possible solution to get a higher image quality could be to encode some regions of the

image at a higher quality than the rest, also known as region-of-interest (ROI). ROI encoding

is a known image encoding method, but require more from the encoder (in terms of energy

consumption), which is unwanted in this case. Therefore, it would be advantageous if a very

low complexity ROI encoding scheme could be implemented in the WCE case.

Figure 1.1 PillCam SB3 from Given Imaging. Most widely

used model from Given Imaging [1].

Chapter 1: Introduction

2

1.1 Motivation

Normal endoscopic procedures are quite commonly used when diagnosing (or treating) diseases

in the GI tract, but this can be very uncomfortable for the patients [6, 7]. On rare occasions the

endoscopic equipment might even scratch the walls in the tract, causing bleedings and potential

infections. The wireless capsule endoscopy, on the other hand, isn’t felt by the patients at all, it

is safe, thus making it preferable to the former for the patients.

Physicians rely on the image quality to be able to make the diagnosis, and since normal

endoscopy (not WCE) have a higher image quality, this is preferred as long as it can reach the

area1. By improving the image quality, both the patients and the physicians can be satisfied in

both comfort and diagnosis. This isn’t easy, since improving the quality generally involves

increasing the complexity which requires more energy [8]. Some work has been done in attempt

to increase the available power by wireless power transfer using ultra-wideband (UWB) or

magnetic resonance technology [9-12], but this is still at quite early research stage. So at the

time, improving the image compression scheme would be a good way of improving the image

quality.

This thesis is mainly based on two different works. Firstly, a project conducted in the fall of

2015 which briefly investigated the possibility of adapting parameters, and secondly the

original algorithm proposal [7, 13]. These are explained more in Chapter 3.

1.2 Objective and Limitations

The aims of this thesis are to explore the possibilities of a feedback loop, and to adapt the WCE

during the active period through the GI tract. In a feedback loop the coefficients can be adapted

according to the position of the WCE, allowing for a higher quality image. To achieve this, a

study of the current algorithm as well as other image encoding techniques will be conducted to

find potential improvement areas.

A feedback loop also enables the possibility of ROI encoding without increasing the required

computational operations. Analysing the received frames at the decoder can give potential

ROI’s, where the positions are transmitted back. This ROI area can then be encoded using

higher quality than the rest.

Note that the WCE can have many different sensors attached to it. These can for instance be

measuring the pH parameter, pressure information, temperature or video capturing [14]. This

1 The small intestine isn’t reachable with normal endoscopy, so for this area WCE is preferred, see Section 2.1.

3

thesis is limited to concern the video or image capturing capsule, and focus to improve the

image compression algorithm. Improvement of the algorithm can include to reduce the amount

of data per transmission or reduce the complexity of the encoding algorithm, in order to save

energy. Reduction of transmitted data, will allow for additional sensors and/or improvement of

quality, since the available power is constant. A key aspect is to avoid increasing the complexity

of the algorithm, but since there is always a trade-off between complexity and received quality

this might be a challenge [15].

The problem will be limited to a simple implementation, and verification with simulations. The

results are therefore expected to differ from a real implementation in a device, but will be

compared with theory and existing research to be able to draw a conclusion based on the

findings.

1.3 Structure of the Thesis

The thesis is theoretical, so a comprehensive background will be presented in Chapter 2. This

chapter will include theory on common image encoding techniques before the original scheme

for the WCE is presented in Chapter 3.

Based on the theoretical background presented in Chapter 2 & 3, the proposed scheme will be

presented in Chapter 4. This chapter also elaborate the implementation and the chosen

evaluation methods.

In Chapter 5, the simulation results from the proposed algorithm improvements and the ROI

coding, is presented. The results will then be discussed in Chapter 6, where a comparison with

existing algorithms and possible error sources, will be studied. In this chapter possible hardware

implementation will briefly be examined before a summary or conclusion together with future

work, will be presented in Chapter 7.

Lastly a bibliography of the analysed literature is given in Chapter 8, before the appendixes. In

Appendix A, the different programs used throughout the thesis work is listed in A.1, together

with specifications in the simulation videos is given in A.2, before the MATLAB code is given

in Appendix B.

.

Chapter 1: Introduction

4

5

2 Theory

In this chapter, the necessary theoretical background will be presented, to establish a fundament

for how the algorithm works, and what can be done with the limitations. Chapter 2 is a general

presentation of compression techniques and a short medical background. After this, a more

specific theory section of the wireless capsule endoscopy is presented in Chapter 3. This will

be the basis for the choices done in order to improve the image quality with the application

specifics limitations.

2.1 Medical Background

Firstly, a brief medical background will be presented in this section, to understand how the

human anatomy works (Subsection 2.1.1-2.1.2) and how a general biomedical image processing

system can help diagnose patients (Subsection 2.1.3).

2.1.1 Human Anatomy – The Gastrointestinal Tract

The human digestive system consists of the gastrointestinal (GI) tract, liver, pancreas and

gallbladder [3]. The GI tract consists of hollow organs stretching from the mouth to the anus.

This includes the mouth, oesophagus, stomach, small- and large intestine, the rectum and the

anus, as shown in Figure 2.1. The systems’ main task is to breaks down the food to different

nutrients in which the body needs for energy, growth and cell repairs. Food enters the mouth,

and passes through this hollow GI tract, before going out through the anus. The food is broken

down by two main parts of the digestive system; the mechanical and the chemical.

Figure 2.1 The GI tract [16].

Chapter 2: Theory

6

The mechanical part is also known as chewing, when the food enters the mouth at the beginning

of the GI tract. The chemical part is happening along the whole way through the GI tract.

Different digestive juices are mixed with the food to break down food particles such as starches

(saliva), proteins (stomach acid), carbohydrates (small intestine digestive juice) and fats

(pancreatic juice & Bile acids) [3, 17]. Digestive juice contains enzymes which speeds up the

chemical reactions, and together with bacteria (also called gut flora or microbiome) in the GI

tract, the food is broken down. This food becomes small molecules in which the body absorbs

through the wall in the small intestine, and into the bloodstream. The bloodstream carries these

nutrients to the whole body, where they are needed. Waste, also called stool, from the process

is passed along the GI tract and out the anus.

All of the hollow organs in the GI tract contains a layer of muscles, which allows for the walls

to move (muscle contraction) [3, 18]. These muscle contractions make muscular waves, also

called peristalsis, that travels the whole length of the GI tract. Peristalsis propels the food and

liquid through the organ, while activating the production of different digestive juices along the

way. Along with the peristalsis there are two other main processes for movement and mixing

of the food; swallowing and segmentation. Swallowing uses smooth and skeletal muscles in the

mouth, tongue and pharynx2 to push the food through the pharynx and into the oesophagus.

Segmentation occurs in the small intestine and is short contractions which squeezes the food,

for improving the absorption of the small molecules into the blood stream.

The whole digestive process is controlled by two regulators; hormone and nerve regulators [3].

The hormone regulator is produced from cells in the stomach and small intestine. These

hormones stimulate production of digestive juices and controls the appetite. Nerve regulators

controls the action of the GI tract, and there are two kinds of nerve regulators; extrinsic (outside)

and intrinsic (inside). Extrinsic nerves release chemicals to make the muscles in the GI tract to

contract or relax. Intrinsic nerve regulators release different substances to speed or delay the

movement of food in the GI tract, and are triggered when the food stretches the walls.

The GI tract is a complex system with many different organs working together to digest food

and produce energy for the whole body. As with every complex system, it can also be vulnerable

to different diseases and injuries. Some of these will briefly be introduced in the next section,

before some of the diagnostics methods will be presented.

2 Pharynx is part of the throat, which can close off in various ways for speaking, breathing, swallowing etc. [19]

7

2.1.2 Diseases

A digestive disease is any health problems that can occur in the GI tract, and is very common

either as a mild or as a serious disease [20]. Since the GI tract consists of four distinct parts

(oesophagus, stomach, small- and large intestine) with different functions to perform the

digestion, each part has a unique type of motility (contractions) and sensation [21]. These parts

are separated by sphincter muscles3, and will in turn can give many distinct diseases and

symptoms. Functional and motility disorders are the most common GI disorders among the

general population. There is some uncertainty about how many is affected, but a study showed

that 42% of the population was affected over a 12 years’ period. However, another study

showed that 75% of the population which experienced some of these symptoms, didn’t consult

for medical care [22].

In general, the term “functional” disorder relates to disorders where some or more of the body’s

normal actives are impaired [22]. These actives can be in terms of intestine movement, nerve

sensitivity or the way the brain controls some of these functions. Common among these

disorders, is that they don’t have any structural abnormalities which can be seen by common

diagnostic methods, including endoscopy, x-ray and blood tests [23]. Instead they are diagnosed

based on the characteristic symptoms and sometimes limited tests. Some examples of these

disorders can be functional diarrhoea, functional vomiting, irritable bowel syndrome (IBS) or

functional abdominal pain, to mention a few.

“Motility” is defined as the movement of the digestive system and the content in it [24].

Disorders regarding motility occur when any nerves or muscles in any part of the GI tract don’t

function with normal strength or coordination. Unlike the functional disorders, the motility ones

can be diagnosed using methods as for instance endoscopy or oesophagram. For instance, some

disorders include gastroesophageal reflux disease (GERD), constipation or small bowel

bacterial overgrowth [25].

Many possible GI disorders don’t fit into functional or motility disorders, but are still common

[20, 26]. These other diseases can have symptoms that are similar to those belonging to the

functional or motility disorders. However, these can be uniquely identified since they have

some unique feature, depending on the kind of the disorder. Many different diagnostic methods

can be used to identify these features, for instance x-ray, Magnetic resonance imaging (MRI),

3 Sphincter muscles are special muscles that is normally tightly closed, and opens when food arrives, preventing

food from going the wrong direction [21].

Chapter 2: Theory

8

endoscopy among more. Typical disorders include cancer, lactose intolerance, bleedings,

Crohn’s disease or other inflammatory diseases [16, 26].

2.1.3 Diagnostic Methods

Since there are a lot of different disorders that can occur in the GI tract, there are also many

different methods for diagnosing diseases or injuries. Naturally, these methods depend on

which symptoms and disorder a patient present. Together with the symptoms it is common for

the physicians to run a laboratory test and or different imaging techniques to correctly diagnose

a patient. Naturally, laboratory tests aren’t relevant in this case, so the focus will be on imaging

techniques. Common imaging diagnosing techniques can include x-ray, colonoscopy,

endoscopy, capsule endoscopy, magnetic resonance imaging (MRI), ultrasound or computed

tomography scan (CT scan), to mention a few [27]. It is often common to use different imaging

methods depending on where the symptoms occur. For instance, endoscopy and x-ray are

common in the oesophagus and stomach, capsule endoscopy in the small intestine and

colonoscopy in the rectum and large intestine. In general, all of these biomedical image

techniques follows the same steps [28]. Some kind of sensors capture an image or signal from

a biological system, before pre-processing and filtering to remove the unwanted noise. Next,

extraction of the relevant features is done, to be able to describe the status before classification

and diagnosis, as shown in Figure 2.2 below.

Figure 2.2 General biomedical image processing system [28].

Regular photographic images are captured by cameras (sensors) which captures the light

intensity and/or colour of the objects [28]. Biomedical images on the other hand doesn’t

necessarily capture the images in this way. For instance, MRI capture images by recording the

magnetic properties of a tissue, and CT scan records many x-ray beams and the different

interaction between themselves, and the tissue to form an image [29]. The result of these other

kinds of recording, is that properties and functions of the tissues can be captured that normally

wouldn’t be possible for humans to see.

Sometimes, the physicians need to be able to see inside a patient. In such cases, non-invasive

methods, such as normal photographic images can be enough to be able to get a diagnosis of

the patients. Diagnostic equipment for imaging includes endoscopy, capsule endoscopy,

Biological
system

Sensors
Pre-

processing
and filtering

Feature
extraction

Classification
and

diagnostics

9

laparoscopy or colonoscopy [30, 31]. Most endoscopic procedures often involve a small

camera4 connected to the end of a flexible thin tube, which is inserted either through the mouth,

anus or through abdominal cavity (laparoscopy). Capsule endoscopy is a little different from

the other endoscopic procedures in the way that they are not connected to a tube. The sensor

are instead mounted on a small computer, the size of a pill, which is swallowed, taking pictures

along the way through the GI tract [27, 32]. This method is mainly used to detect bleedings,

tumours, inflammatory diseases, polyps or cancer in the small intestine, where the other types

of endoscopic techniques can’t reach.

When diagnosing a patient using normal camera sensors, a useful tool can be the feature

extraction part (Figure 2.2). In a typical endoscopic tool, the light source is xenon light, which

have wavelength variating between 470-700nm [33]. Blood absorbs more light than

surrounding tissue, because blood consists of about 45% red blood cells (and 55% plasma),

which contains the oxygen carrying protein haemoglobin [34]. Therefore, variation in blood

volume affects transmission and reflectance, which correspond to the thickness of the tissue

analysed [35, 36]. This principle is called photo-plethysmography (PPG), and can be used to

detect abnormalities in an area, compared to the surrounding tissue. If a picture from inside the

GI tract contains a tumour or cancer, the absorption and reflection of the light will be different

since the tissue is a lot thinner at this area. However, to be able to detect these possible

abnormalities efficiently and reliable, high quality images is required. To achieve this a good

image compression algorithm is needed, which will relate to the pre-processing and filtering

part in the biomedical image processing system (Figure 2.2).

2.2 Image Compression

Every digital signal or image requires a lot of bits per second to transmit or many bits to

represent in storage, which results in high costs [37]. For instance, an uncompressed image,

with a size of 512x512 pixels, would require 512x512 pixel colour image x 24 bits/pixel = 6,3

Mbits per image. Thus image compression is applied to reduce the required bits (or costs). In

general, data compression can be defined as minimizing the required bits needed to represent

the source, while maintaining acceptable reconstruction of the source. Hence the storage and/or

transmission costs are reduced. This can be done in many different ways, depending on the

method used and the signal (application).

4 There are other sensors which is used for this purpose as well and the procedure isn’t limited to a camera. Other

sensors can be pH meter, temperature meter, endoscopic ultrasound (EUS) or endoscopic retrograde

cholangiopancreatography (ERCP) [32].

Chapter 2: Theory

10

Many signals contain information which isn’t needed, either because the information can be

retrieved, or because it isn’t relevant for the application. In redundancy removal, there are

correlation between consecutive samples, which means some samples can be removed and

reconstructed at the decoder, using prediction. With irrelevancy, some of the information in the

signal can’t be perceived by the user, meaning it can be removed without it being noticed.

Redundancy is without loss of information (lossless), while irrelevancy is with loss of

information (lossy).

2.2.1 Source Coding

When compressing a source, it is common to use the terms lossless and lossy compression

algorithms [37]. Lossless means that perfect reconstruction is possible at the receiver, and the

result is identical to the source. Lossy compression on the other hand, means that the source is

not perfectly preserved and the reconstructed data is not identical to the original. It is important

to remember that an algorithm can be lossless even if the result isn’t identical. This is because

the transmission of a signal or image will be affected by noise or interference which can alter

the signal (more in Chapter 3.2). However, this is due to the channel, and not the compression

algorithm. If the channel is ideal, the reconstructed signal or image would be identical to the

source.

Naturally, lossless compression schemes have a higher bitrate than the lossy compression

algorithms, since information is lost in the lossy case. However, the high bitrate in lossless

means that there is no distortion5 in the signal or image. When limiting the bitrate to a lower

value than needed for the lossless compression scheme, distortion occurs to the signal. This is

known as rate distortion theory, and considers the minimum bitrate which is required for a

given image quality (or given fidelity) [39]. The relationship between bitrate and distortion

follows a function, R(D), based on the lower bound for the transmission bitrate, shown in Figure

2.3 below.

5 Distortion means to change the shape or appearance of a signal, in usually an unwanted way [38]. In practice this

means that a different symbol is received than was sent.

11

Figure 2.3 Rate-Distortion function [40]

This rate distortion function, or source coding theorem, is also known as one of the fundamental

limitations (within source coding), and was derived by Claude E. Shannon in 1959 [8, 41]. It is

important to remember that this only applies to lossy compression schemes. In practice, the

lossy compression technique is the quantization part, as shown in Figure 2.4 below. The other

two blocks are the lossless part of the general compression system. In other words, nearly every

lossy compression scheme, contains a lossless part and a lossy part [39].

Figure 2.4 Lossy compression system [42]

The compression system is based on Shannon’s separation principle, which states that for

point-to-point communication systems, reliable transmission is possible if the source coding

rate is below channel capacity [43]. This means that it is possible to look at the source coder

and the channel coder separately, and still be able to see if it will work. However, this theory is

under the assumptions of ergodic channel6, and complexity and delay tends towards infinity.

This is never the case in a practical system, especially in networks and in feedback systems,

6 Ergodic channel has the property that given enough time, all samples in a given (small) space can be represented

statistically by a large selection of samples.

Chapter 2: Theory

12

resulting in errors in the received signal. The theory still gives an important principle; to

optimize the whole communication system, one can optimize the source coder and channel

coder separately. Received signal, for instance, can either be tolerated as sub-optimal and/or

error correction methods can be applied (presented in Section 3.4).

2.2.2 Building Blocks for Image Compression

When optimizing the source coder is it, as mentioned, also common to separate into different

steps (not to be confused with Shannon’s separation principle), depending on the application.

This can be different redundancy reductions (reversible) or irrelevancy reductions (not

reversible). It is common to distinguish between three main steps, and two additional steps [44].

The first main step is the forward transformation. This is a redundancy reduction, in other

words, a lossless step. The second main step is the quantization, which is omitted in lossless

image compressors, since this is a non-reversible process. Next is the encoding step, often called

entropy encoding. The two additional steps are the image source representation, and the

compressed image data. The general block diagram for image compression is shown in Figure

2.5 below.

Figure 2.5 Building blocks for image compression

Different image compression schemes, utilizes different techniques, and may omit some of the

steps. Some may not do anything with the image source data step, and code directly on the

presented image, but some may require specific colour space representation or tiling before

transformation. As there exist too many techniques in the different steps to explore all of them,

some of the more common ones will be explained briefly in the subsequent chapters. The steps

will be presented in the order they would appear, given that all of the building blocks (Figure

2.5) is included in the image coding scheme. The first step is the image source data, more

specifically, how an image is produced, represented and pre-processed.

2.3 Image Source Representation

When creating a digital photography, an electro-optical sensor captures the light intensity from

a light source (camera flash, sun or other light sources) [7, 45]. This sensor consists of small

photosites, which is usually called pixels. The captured light intensity is then filtered through a

Source Image
Data

Forward
Transform

Quantization
Entropy

Encoding
Compressed
Image Data

13

colour filter arrays, depending on the wavelength. Normally this filter consists of three arrays7,

splitting the intensity into red, green and blue (RGB), as shown in Figure 2.6 below. The

resulting RGB image, is a so-called RAW image. A RAW image is uncompressed, and very

large, so these will be very demanding in processes for storage and/or transmission, and will

therefore be needing compression. However, before the image is compressed, colour

conversion is applied since the RGB isn’t a good representation for humans to visualize

different colours. In other words, proper perception of colours relies more on light intensity

than single RGB colours.

Figure 2.6 Illustration of RGB filters [46]

There are numerous methods for representing colours, depending on the different applications.

For instance, computers often use RGB, printers use cyan, magenta and yellow (CMY), but

YUV is common for human perception (see Subsection 2.3.1.2). All of these (among others)

are based on three coordinates. However, these parameters do not tell which colour is displayed,

only the amount of each component [47]. Some colour spaces are perceptually linear, meaning

linear changes in values, will result in linear change in perception. This is not the case in many

colour spaces used in computer graphics, on the other hand.

2.3.1 Colour Spaces

Since there are so many different colour spaces, it would be too much to go into detail about all

of them. A few of the most common simplified spaces is still worth mentioning and will be

briefly presented.

2.3.1.1 Red, Green, Blue (RGB)

As mentioned, RGB is often used intuitive from the uncompressed images. It is fairly easy to

implement with the additive three colour system. It is one of the most used colour space, but it

7 This is often a Bayer array, which contains twice as many green sensors as red or blue, due to the human eyes

are more sensitive to green colour [46].

Chapter 2: Theory

14

is non-linear with the visual perception and is therefore difficult for human description of colour

[47, 48]. RGB is quite inefficient, since all of the parameters are highly redundant and

correlated, meaning they all contain luminance information.

The RGB system is mostly used on displays and cameras, however when printing this is often

changed to cyan, magenta and yellow (CMY) system, often with a black component in addition

(CMYK). This is a simple linear transform from the RGB with the conversion shown in (1).

[
𝐶
𝑀
𝑌

] = [
1
1
1

] − [
𝑅
𝐺
𝐵

] (1)

2.3.1.2 Luminance and chrominance (YUV)

The luminance (Y) and chrominance (U and V)8 system removes some of the high correlation

in the RGB system [7, 48]. Luminance represents the intensity of the light (or black and white),

while chrominance is the colour components. The U refers to the difference between the red

component and the luminance, while V is the difference between blue and luminance. This

means these two categories (Y and U/V) can be treated separately, which is related to the human

perception system. In lossy compression this separation is widely used to either completely

remove the chrominance part or partly remove some of the colour (irrelevancy reduction).

Conversion between RGB and YUV are shown below in (2) [7, 49]. The transformation matrix

can be different, since there are different versions of RGB (and YUV). The one shown below

is a simplified version with base integers limited to 2, instead of floating points, which is more

energy efficient.

[
𝑌
𝑈
𝑉

] = [

1/4 1/2 1/8
0 −1/2 1/2

1/2 −1/2 0
] [

𝑅
𝐺
𝐵

] + [
0

128
128

] (2)

2.3.1.3 YEF

This section explains the YEF colour space which is very similar to the YUV colour space9. In

fact, the luminance component is very near-identical, but the chrominance components isn’t

[50]. Both the luminance and chrominance components are uncorrelated, which means that

larger quantization steps can be applied in the chrominance components (see Section 2.5),

without affecting the overall reconstructed image quality. The main difference between YUV

8 U and V is also known as Cr (red difference) and Cb (blue difference) in the JPEG format

9 This applies mainly to the one described above, since different versions exists, which wouldn’t necessarily be

near identical.

15

and YEF, is that the chrominance components are the difference between green and luminance

(E) and the difference between blue and luminance (F).

YEF colour space was developed with endoscopic images in mind, since YUV is

computationally expensive (when floating point numbers are used instead of the version

described above) [51]. This results in energy savings due to efficient hardware implementation,

since this colour space utilizes base integers of 2, which allows for simple bit shifting

operations. The conversion equation is given in (3) below.

[
𝑌
𝐸
𝐹

] = [

1/4 1/2 1/4
1/8 −1/4 1/8
1/8 1/8 −1/4

] [
𝑅
𝐺
𝐵

] + [
0

128
128

] (3)

2.3.2 Tiling

The term tiling is the process of splitting an image into small parts or partitions, which often

consists of rectangular non-overlapping blocks [44, 52]. This is done because many embedded

image processors may be unable to handle very large images, or it might have very limited

memory available. Tiles reduces this problem, since the tiles can be handled independently, as

if they were separate images and not just a partition of one image. Each tile is sent through all

of the operations in the system; transformation, quantization and entropy coding (Figure 2.5).

The same is the case for the decoder, which also will reconstruct the image, using the different

partitions independently, reducing the memory requirement for the decoder. Tiling can be

illustrated as shown in Figure 2.7 below, which shows three different levels of tiling. Firstly,

the whole image is regarded as one tile, before it is divided into 4 tiles and 16 tiles.

Figure 2.7 Three levels of a tiled pyramid for "Lena" image [53]

All of the different tiles in an image usually have the same size, but the tiles at the end of the

image may be the exception [44]. If some tiles exceed the image size, these tiles are usually

filled with zeroes in the surpassing area. As long as all of the tiles are the same dimension, the

decoder will know how to reconstruct the image properly and efficiently. The size of the tiles

Chapter 2: Theory

16

still varies, and can be up to the size of the whole image (the whole image is regarded as one

tile). The bigger the tiles, the better the reconstructed image quality, but it requires more

memory and larger latencies in read write [52]. Smaller tiles are the opposite; they have smaller

transfer time, require less memory but they have lower reconstructed image quality. A

drawback with the smaller tiles, is that they can create what is known as tiling artefacts, which

can be seen in reconstructed image as rectangular blocks10. On the other hand, tiles allows for

some parts of the image to be compressed differently than other sections. This can result in

variation in the image quality within the frame, also known as region-of-interest. These are

factors which need to be considered when deciding tile size, in an image compression system.

Regardless of what is chosen for the specific application, transformation coding will still have

to be applied for efficient coding.

2.4 Transformation Coding

After the image source representation is satisfying according to the application, transformation

is usually the next step in image compression. This is the process of transforming the image

data into some other values (or another set). These “other values” can be interpreted as the

image data is in another domain, which can be advantageous for identifying features that would

be difficult to do in spatial domain. For example, some properties or characteristics can be easier

to detect using frequency domain instead of the spatial domain. Some domains also provides a

better foundation for the entropy encoding which comes later (see Section 2.6).

It is common to distinguish between two types of transformations; orthogonal block transforms

and filterbank based transforms [54]. There are a variety of methods to transform within these

two categories, and some don’t completely fit into either of these two. Some of the common

methods within these two categories will be briefly described; the discrete cosine transform

(DCT) and subband coding (SBC). The DCT is used in the JPEG11 standard, while a special

case of SBC is used in the newer JPEG2000 standard. Another “transformation” which doesn’t

completely fit into one of those categories, but is quite common in digital signal processing will

also be discussed, namely predictive coding.

10 These tiling blocks aren’t the same as the known blocking artefact, which happens with DCT transformation at

low bitrates, because of high correlation between two blocks.

11 Joint Photographic Experts Group (https://jpeg.org/)

https://jpeg.org/

17

2.4.1 Discrete Cosine Transform

The discrete cosine transformation (DCT) is a transformation which is related to the discrete

Fourier transform (DFT). The main difference is that the DFT goes to infinity, the DCT is a

finite set [55, 56]. Since it is a finite sequence, perfect reconstruction will not be possible, and

it is therefore commonly used as a lossy compression scheme in image coders. Particularly, in

the well-known JPEG standard. Note that DCT can still achieve near-lossless, but not

completely lossless compression.

DCT takes an 8x8 greyscale block (tiling, Section 2.3.2), and compresses this block. When it is

a colour image, the procedure is repeated for each colour channel, i.e. one colour channel is

regarded the same as a grayscale channel. The values for the pixels are shifted at the entrance

of the transformation, from [0, 2P-1] to [-2(P-1), 2(P-1)-1], to ensure that the dynamic range is

centred around zero. The centred 8x8 block is then transformed by (4) below. The result is that

the 8x8 input block is transformed into a 64-point, 2-dimensional discrete signal. These 64

values are basically amplitudes, also known as DCT coefficients, based on the 64 input values

[56].

𝐹(𝑢, 𝑣) =
1

4
𝐶(𝑢)𝐶(𝑣) [∑ ∑ 𝑓(𝑥, 𝑦) ∙ cos (

(2𝑥+1)𝑢𝜋

16
) ∙ cos (

(2𝑥+1)𝑣𝜋

16
)7

𝑦=0
7
𝑥=0] (4)

Where:

𝐶(𝑢), 𝐶(𝑣) = {
1

√2
, 𝑓𝑜𝑟 𝑢, 𝑣 = 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

Inverse DCT (IDCT) is performed at the decoder side, given by (6) below, to get the 64

reconstructed pixel values based on the 64 DCT coefficients [56]. Mathematically, the DCT is

a so called one-to-one mapping, between the frequency domain and the image. However, since

it is a finite series, it can’t be computed with perfect accuracy. Especially when the DCT

coefficients are quantized, which is the case in the JPEG standard, i.e. in theory the DCT is a

lossless transformation, but in practice this is near impossible to achieve so it results in lossy

compression.

𝑓(𝑥, 𝑦) =
1

4
[∑ ∑ 𝐶(𝑢)𝐶(𝑣)𝐹(𝑢, 𝑣) ∙ cos (

(2𝑥+1)𝑢𝜋

16
) ∙ cos (

(2𝑥+1)𝑣𝜋

16
)7

𝑣=0
7
𝑢=0] (6)

2.4.2 Subband Coding

Filterbank transforms are in general based on frequency analysis of the signal by using filters

[54, 57]. The general idea in subband coding (SBC), is to split the signal into different channels

based on their frequencies, and process these independently. Splitting the signal is done by n

parallel filtering (1 low-pass, n-2 band-pass and 1 high-pass) and down-sampling (decimated)

Chapter 2: Theory

18

by a factor of k. If the number of subbands is two, naturally there won’t be any band-pass filters,

and the channels will consist of low-band and high-band, as shown in Figure 2.8 below. The

decimation is done since the output of the filters will contain more information than what is

required, also known as overcomplete output12. If the decimation factor is equal to the number

of parallel filters, the decimation is critical, meaning it is the limit which perfect reconstruction

is guaranteed.

Figure 2.8 General subband coding scheme [53]

In Figure 2.8, both the encoding and the decoding part is shown. On the encoder side (left side),

the process is often called the analysis, while at the decoder it’s called the synthesis [54, 58].

Synthesis is the process of reconstructing the signal by interpolating the different subband

signals, before filtering and combining using superposition of all the different frequencies

channels. The filters depend on the kind of signal, which for images often is finite impulse

response (FIR) filters. FIR filters gives linear transforms, and images are of finite size, making

these kind of filters well suited for images. The design of the filters is critical to avoid aliasing13

in the sub-sampling process, as the filters need to eliminate the alias components that occur

when the interpolated signals are combined.

Until now, SBC has been mentioned as parallel channels, however there is no reason why all

channels have to be in parallel. A special case of SBC is the cascade version, which can in a

simple case be described as inserting another 2D coding scheme between the analysis and the

synthesis part. If this is the case, the result would give three channels; low-low-band (LL), low-

high-band (LH) and high-band (H), which could be expanded further [58]. This technique is

12 In an overcomplete system, removal of some of the samples, won’t make the system incomplete, but the result

will still be complete.

13 In aliasing, parts of the frequency spectre are copied, which will add to the signal (spectra overlap). This is an

irreversible, unwanted process.

19

widely used in image processing, and it is what the basis for how the wavelet transform works,

which is for instance used in JPEG2000.

2.4.2.1 Wavelet Transform

The wavelet transform (WT), or discrete wavelet transform (DWT), is a special case of the

SBC. It utilizes 2D cascade scheme for decomposition of the image into, firstly, 4 channels;

LL, LH, HL and HH. Images contain most information in the low-pass part, LL, so when

compressing the image further, the cascade scheme is repeated on the LL part, and so on. This

results in an image decomposition, as shown in Figure 2.9 below. The process is called the

dyadic decomposition, which is a lossless transform, given correct implemented filters [44, 54].

If the image is tiled, the decomposition process is done independently on each tile.

Figure 2.9 Two-level wavelet decomposition. (a) original

Barbara image, (b) Resulting DWT decomposition image

[59].

As in the more general case, the SBC, all of the different channels are down-sampled and

filtered. The filters vary with the application14, but the JPEG2000 standard has two main kind

of filters, depending on irreversible or reversible transformation. Irreversible transform uses the

Daubechies filter with 9-tap/7-tap (lossy) and the reversible uses same with 5-tap/3-tap filter

(lossless) [44]. The Daubechies filters, are in fact one of the most common type of creating

mother wavelets in WT [60]. Mother wavelet refers to the main function which is used in WT,

and all other functions in the transform is scaled shifted versions of the mother wavelet. This

14 The main requirement is that the generated function (wavelet) must be oscillatory, i.e. a wave.

Chapter 2: Theory

20

property can be shown by looking at the discrete wavelet transform filters, where h(n) is the

low-pass filter. The corresponding high-pass filter15 will then be defined by (7).

𝑔(𝑛) = ℎ(2𝑁 − 1 − 𝑛) (7)

Equation (7) is valid for the one-dimensional case, but as for SBC, the two-dimensional case is

just an expansion, or cascade version of the one-dimensional case. A common implementation

of the cascade coupling is, for a NxN image f(x,y), to first regard the image as a series of 1-D

rows, and after as a 1-D series of columns [60]. The result from this one-level decomposition,

is four sections of the image, which can be repeated again at the LL part, to get the two-level

decomposition, as shown in Figure 2.9 above.

DWT gives some advantages in image processing. Since the image is divided into sections

depending on the frequencies, de-noising, filtering and feature extraction are easily applicable,

as well as compression. Most of these features involves eliminating or extracting some of the

frequencies from the signal based on a threshold [60]. For instance, electromagnetic drifts can

appear in wires during transmission, which will give high frequency noise. Such noise can be

filtered or removed by the DWT domain, since most of the image information is located in the

low-pass part of the image, and that particular noise is in the high-pass region. Direct

compression gain from DWT is similar; by decomposition irrelevant information (often high-

pass region) can easily be eliminated. This is a lossy compression method, but the indirect

compression method doesn’t need to be lossy. In the resulting other domain, values can be

better for entropy coding than the original, which will result in a more efficient lossless

compression than it would without the DWT.

Transformation of values into another domain, resulting in more efficient compression is

common, but some methods don’t require this transformation in order to be efficient. They can

use other properties to obtain high compression ratio, which is the case for the predictive coding

technique.

2.4.3 Predictive Coding

Predictive coding isn’t directly defined as transform coding, since it doesn’t transform the

values into another domain, but it does change the values in the signal. The encoding scheme

works by predicting the values, before subtracting the predicted from the original values. This

creates an error signal, e(n), with the difference between these two signals. Prediction of the

15 This is based on the quadrature mirror filter (QMF) algorithm, other variations exist, but the main principles are

similar. Most of the popular discrete wavelets are in fact formed using QMF [60].

21

values is possible because many signals, especially images and speech/audio signals, have high

correlation between consecutive samples. Since the resulting error signal has less variation than

the original signal, the quantizer (covered in Section 2.5) can have a smaller decision region,

resulting in a higher SNR [54, 61]. The general structure of the predictive coding system is

shown in Figure 2.10 below. Omitting the quantizer part will give lossless coding.

Figure 2.10 Quantized Predictive Coding System. Omitting the quantizer part will give a

lossless system. Encoder on the left, and decoder on the right [53].

The system equations in this predictive system is:

𝑒(𝑛) = 𝑥(𝑛) − �̂�(𝑛) (8)

𝑞(𝑛) = �̃�(𝑛) − 𝑒(𝑛) (9)

𝑦(𝑛) = �̃�(𝑛) + �̂�(𝑛) (10)

Where x(n) is the input signal, e(n) is the error signal, q(n) is quantizer error and y(n) is the

output signal. In the lossless case, the quantization error, q(n) in (9), becomes zero which results

to y(n)=x(n). In the z-domain this translates into:

�̃�(𝑧) = 𝑋(𝑧)(1 − 𝐻(𝑧)) + 𝑄(𝑧) (11)

𝑌(𝑧) =
�̃�(𝑧)

1−𝐻(𝑧)
= 𝑋(𝑧) +

𝑄(𝑧)

1−𝐻(𝑧)
 (12)

The prediction error, e(n), will in this case be a continuous range of values, which isn’t

applicable in digital transmission. Because of this predictive coding in digital signal processing

is often used with a quantizer, resulting in lossy compression [61]. It is fully possible to get near

lossless compression using predictive coding, but this is often a bit more complicated and may

include some transmission of side information [62].

2.4.3.1 Differential Pulse Code Modulation (DPCM)

Differential Pulse Code Modulation (DPCM) was first invented in 1950 by C. C. Cutler, and

has become a very common technique in digital signal processing [63]. The system shown in

Figure 2.10 is also known as an open-loop DPCM. In this system the encoder doesn’t have any

control on the reconstruction process, which will lead to the quantization error, q(n). The

Chapter 2: Theory

22

additional error signal will then be amplified by the filter at the decoder, as shown in (12),

which will lower the SNR [54, 61]. Because of this problem, the quantizer can be implemented

inside the prediction loop, as shown in Figure 2.11 below. With the quantizer within the loop,

the predictor always knows what the result is after the quantizer, i.e. q(n) is a part of e(n) and

will therefore not be amplified by the filter in the decoder.

Figure 2.11 Block diagram of a typical closed loop DPCM system [53].

The system equations will in this case become:

𝑞(𝑛) = �̃�(𝑛) − 𝑒(𝑛) (13)

𝑒(𝑛) = 𝑥(𝑛) − �̂̃�(𝑛) (14)

�̃�(𝑛) = �̃�(𝑛) + �̂̃�(𝑛) (15)

𝑦(𝑛) = �̃�(𝑛) + �̂�(𝑛) (16)

Which will be described in the z-domain as:

�̃�(𝑧) = 𝑋(𝑧) − 𝐻(𝑧)�̃�(𝑧) + 𝑄(𝑧) (17)

�̃�(𝑧) = (𝑄(𝑧) + 𝐸(𝑧)) + (𝑋(𝑧) − 𝐸(𝑧)) = 𝑋(𝑧) + 𝑄(𝑧) (18)

𝑌(𝑧) =
�̃�(𝑧)

1−𝐻(𝑧)
=

𝑋(𝑧)−𝐻(𝑧)(𝑋(𝑧)+𝑄(𝑧))+𝑄(𝑧)

1−𝐻(𝑧)
= 𝑋(𝑧) + 𝑄(𝑧) = �̃�(𝑧) (19)

As shown in (17)-(19) the problem regarding the quantization error being amplified is now

eliminated. Since the encoder contains a full copy of the decoder, the encoder will always know

what the resulting output signal will be [54]. Since the input signal on the predictor can’t be

delayed, the quantizer has to be memoryless in the system. This will result in some penalty in

SNR, with approximately 1.5dB, compared to optimal, but this isn’t considered a high price to

pay in the overall system [61]. There are many different ways of design the quantizer which

will affect the system performance (covered in Section 2.5), but the predictor also have a major

role in the performance.

23

2.4.3.2 Predictor

The predictor in the DPCM system can be considered as the key component in the system since

it highly influences the overall performance [54]. Naturally, the predictor will depend on the

input signal, but a common technique is to model the input signal as a discrete vector. For an

image, which is two-dimensional (2-D), one can either model as a series of vectors (multiple

rows or columns) or implement directly multidimensional. One of the simpler models is to

design the filters as a linear prediction of past samples, as shown in equation (20) and (21)

(forward and backward prediction respectively)[64].

�̂�(𝑛) = − ∑ 𝑎𝑝(𝑘)𝑥(𝑛 − 𝑘)𝑝
𝑘=1 (20)

�̂�(𝑛 − 𝑝) = − ∑ 𝑏𝑝(𝑘)𝑥(𝑛 − 𝑘)𝑝−1
𝑘=0 (21)

In this equation, p is the prediction order, ap is called the prediction coefficients and the negative

sign is for mathematical convenience and aligns with current practice. In the backward

prediction, the prediction coefficients, bp, is the complex conjugate of ap but in reverse order,

shown by (22).

𝑏𝑝(𝑘) = 𝑎𝑝
∗ (𝑝 − 𝑘) (22)

A common method of finding the prediction coefficients is to model the source signal as an

autoregressive (AR) process [54, 61]. The coefficients can then be found using the

autocorrelation sequence by solving (23), which can be expressed with Yule-Walker equations

given in (24) [64].

𝛾𝑥𝑥(𝑚) = {

− ∑ 𝑎𝑘𝛾𝑥𝑥(𝑚 − 𝑘), 𝑚 > 0 𝑝
𝑘=1

− ∑ 𝑎𝑘𝛾𝑥𝑥(𝑚 − 𝑘) + 𝜎𝑤
2 , 𝑚 = 0𝑝

𝑘=1

𝛾𝑥𝑥
∗ (−𝑚), 𝑚 < 0

 (23)

[

𝛾𝑥𝑥(0) 𝛾𝑥𝑥(−1) 𝛾𝑥𝑥(−2)

𝛾𝑥𝑥(1) 𝛾𝑥𝑥(0) 𝛾𝑥𝑥(−1)
⋯

𝛾𝑥𝑥(−𝑝)

𝛾𝑥𝑥(−𝑝 + 1)
⋮ ⋱ ⋮

𝛾𝑥𝑥(𝑝) 𝛾𝑥𝑥(𝑝 − 1) 𝛾𝑥𝑥(𝑝 − 2) ⋯ 𝛾𝑥𝑥(0)

] [

1
𝑎1

⋮
𝑎𝑝

] = [

𝜎𝑤
2

0
⋮
0

] (24)

Equation (23)-(24) shows that there is a linear relationship between the autocorrelation γxx(m),

and the prediction coefficients ak. This linear relationship is not the case in the ARMA or MA16

process which is nonlinear [64]. Linearity in the predictor can be advantageous for simplicity

and work well in areas with high correlation. This is not the case for the edges in an image, so

in images with a lot of edges, non-linear predictors have the advantages in terms of performance

16 Autoregressive, Moving Average (ARMA) process & Moving Average (MA) process.

Chapter 2: Theory

24

[54]. On the other hand, performance of linear predictors can be increased by having an adaptive

predictor, giving adaptive DPCM system. Adapting the prediction filter depending on the input

sample (or signal), can reduce the quantizer error, and achieve higher compression and higher

SNR. The drawback with this system, is that it requires more computations (energy) from both

the encoder and the decoder.

Figure 2.12 Adaptive DPCM system [53].

Since both the decoder and the encoder has access to identical signals, both can be made self-

adaptive. In an AR model the predictor coefficients can be updated with each sample, i.e. no

additional side-information has to be transferred, as Figure 2.12 shows. Switched prediction is

another kind of adaptive prediction, which consists of different predefined prediction filters,

switching between them depending on selected criteria [54]. A backward adaptive switched

prediction system is what is used in the lossless and near-lossless coding scheme JPEG-LS.

2.5 Quantization

Quantization of a signal is in basic the process of rounding a signal value. Analogue signals

have infinite possible values, so when digitalization of these values they are “rounded” to

practical values. This rounding is also known as a many-to-one mapping, implying there will

be loss in this process. However, in this analogue-to-digital converter (ADC) case, the

quantization part is often of such high quality that it is considered “original” for all intents and

purposes [37]. The quantization process within image encoding systems, will technically be the

second time the image signal is quantized, resulting in lossy encoding. Omitting this is the

lossless encoding, as mentioned, since it is related to the ADC (source) and not the image coder

itself.

The general principle of the “second quantizer” (herby only referred to this one) is the same as

in all quantizers. Quantizers round values into L different quantization levels, i.e. the number

25

of outputs, which all lies within the dynamic range of the quantizer [37, 65]. Dynamic range is

defined as the minimum and maximum values in quantizer which it can handle, i.e. the range

of input signal values xmax - xmin. If the input signal exceeds these values they are either rounded

(rounding) to these max- and min values, or the exceeding values can be discarded (truncation).

The allowed output values within the dynamic range are separated with distance ∆, also known

as quantization step size or resolution. Each rounding in the quantizer, assigns each sample of

x(n) to the nearest quantization level to produce the output xq(n). This results in some rounding

error in the signal, also called quantization error or quantization noise (eq(n)), which is limited

to half of the resolution, as shown in (25).

−
Δ

2
≤ 𝑒𝑞(𝑛) ≤

Δ

2
 (25)

𝑒𝑞(𝑛) ≜ 𝑥(𝑛) − 𝑥𝑞(𝑛) (26)

Many image encoders have implemented redundancy removal (Section 2.3 & 2.4) before the

quantization part, since this can reduce the number of required quantization levels and/or the

dynamic range. For instance, this reduction will be achieved in DPCM systems, which can

reduce the produced quantization noise.

Equation (25) for the quantization error is, strictly speaking, actually valid for an uniform scalar

quantizer. In this case, the step size, ∆, is a scalar constant (Figure 2.13 (a)), but this isn’t always

the case. In non-uniform quantizers, the step size varies (Figure 2.13 (b)) depending on the

assumed probability density function (pdf) of the input signal. In this case ∆ is referred to as

the scaling, but some still calls it the step size here as well, even though this isn’t strictly

completely correct [37].

Chapter 2: Theory

26

Figure 2.13 Midrise quantization Q(x) and quantization error q(x). (a)

uniform and (b) non-uniform quantizer [53]. Note that Q(x)=xq(n) &

q(x)=eq(n) in the text.

2.5.1 Uniform Scalar Quantizers

A uniform scalar quantizer is the simplest form, in terms of simplicity and implementation. It

is called uniform because the step points on the horizontal axis is the same (uniform) as the

output levels on the vertical axis [37]. If the quantizer has b-bits accuracy, this means that it has

L=2b different output levels. The step size, ∆, is then simply defined as the dynamic range over

the number of output levels (27), which will be the same for all the steps.

Δ =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝐿
=

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑏 (27)

Equation (25) will then be an absolute limit as long as the input signal doesn’t exceed the

dynamic range, if it does, the quantizer is said to be in overload. Within the dynamic range (also

known as granular region) the performance is often represented by a signal-to-quantization-

noise ratio (SQNR) or just SNR, described by (28) [37, 61].

𝑆𝑄𝑁𝑅[𝑑𝐵] = 10 log
10

(
𝜎𝑥

2

𝜎𝑞
2) (28)

Where σx
2 is the variance of the input signal and σq

2 is the variance of the quantization noise,

also known as mean squared quantization error. Assuming the quantizer isn’t overloaded (i.e.

27

σx
2 small enough to ensure x ϵ (-xmax, xmax)), and the input is uniformly distributed, the variance

quantization noise becomes:

𝜎𝑞
2 = 𝐸{𝑒𝑞

2} = ∫ 𝑒𝑞
2𝑝𝑞(𝑒𝑞) 𝑑𝑒𝑞 = ∫ (𝑥(𝑛) − 𝑥𝑞(𝑛))

2

𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

∞

−∞
 (29)

Where pq(∙) and px(∙) is the pdf of eq and x respectively. By approximation and a large enough

L, the quantization error can be described as:

𝑝𝑞(𝑒𝑞) = {
1 Δ⁄ , |𝑒𝑞| ≤ Δ 2⁄

0, 𝑒𝑙𝑠𝑒
 (30)

Giving:

𝜎𝑞
2 = ∫ 𝑒𝑞

2 1

Δ
𝑑𝑒𝑞 =

1

Δ
[

𝑒𝑞
3

3
]

−Δ 2⁄

Δ 2⁄
Δ 2⁄

−Δ 2⁄
=

Δ2

12
 (31)

By inserting the step size, and having b-bits to represent each discrete output, we obtain:

𝜎𝑞
2 =

Δ2

12
=

1

12
(

2𝑥𝑚𝑎𝑥

𝐿
)

2

=
1

3
𝑥𝑚𝑎𝑥

2 2−2𝑏 (32)

𝑆𝑄𝑁𝑅[𝑑𝐵] = 10 log10 (3
𝜎𝑥

2

𝑥𝑚𝑎𝑥
2 22𝑏) = 6.02𝑏 − 10 log10 (3

𝑥𝑚𝑎𝑥
2

𝜎𝑥
2) (33)

The result in (33) implies that SQNR increases by 6dB for each bit added, i.e. 6dB increase for

each doubling the number of quantization levels. This means that the quality of the output signal

will also deteriorate at low- to very low bitrates, and will increase with high bitrates [66]. For

the rest of the expression, it highly depends on the input signal. For instance, it can be shown

that for uniformly distributed x, xmax/σx=√3, which means SQNR=6.02b, for a sinusoidal x,

xmax/σx=√2 resulting in SQNR=6.02b+1.76 [61, 65]

Increasing the number of bits will give better quality, but will also cost more in terms of storage

and transmission of images. Therefore, in lossy image coding, it is a common problem to try to

minimize required bits without having too much distortion (which can translate into the

quantization noise variance). When trying to minimize the required bits, this mid-rise

quantization might be a disadvantage since it cannot have zero as an output value. Mid-tread

(reference to a tread in a staircase) quantizers eliminates this by including the zero output value.

However, it won’t be symmetric around the axis, which in turn can be a disadvantage if the

input is modelled as a random variable.

Chapter 2: Theory

28

In general, uniform quantizers are optimum as long as the input pdf is uniformly distributed,

but if it isn’t the uniform quantizer won’t be optimum17. This is especially true if the bitrate

isn’t high enough [66, 67].

2.5.2 Non-uniform Quantizers

As mentioned, the uniform quantizers are advantageous in simplicity, and especially if there is

no knowledge of the input signal, the average result can be better. However, when the pdf of

the input signal is known or assumed, the case can be different. The steps can be chosen

independently depending on how the signal is in order to minimize quantization error function

[37]. This will reduce the quantization error in some regions, but can increase in some others,

as compared with uniform in Figure 2.13. However, finding the different steps sizes for

different regions can be a complex approach. This can be solved using numerically

computation, which was done by Lloyd-Max (resulting in the Lloyd-Max quantizers) for

Gaussian distributions. Because of this, effective non-uniform quantizers can be difficult to

design without knowledge of the source statistics [68]. For some applications, some statistics

can be exploited. For instance, speech signals have high probabilities for low amplitudes, which

can be coded as a non-uniform quantizer. Another good solution is simply to transform the

speech signal into something that looks uniform and then use a uniform quantizer (compress

the larger amplitudes in the speech signal).

For image coders (and video sequence coders) it isn’t necessarily the same case as speech

coders, but the same technique is used in encoders which can have high bitrate. At low bitrates

it is common to use a special case of the non-uniform quantizers, namely the dead-zone (also

known as dead-band) quantizer.

2.5.2.1 Dead-zone Quantizer

The Dead-zone quantizer is a non-uniform18, mid-tread quantizer, basically by having a larger

region (or step) around zero. This means that more of the input values will be rounded to zero,

which reduces the required rate [7, 69]. This property also results in an increase in the

quantization error around this area, but the potential savings in rate if many samples are near

17 In terms of the quantizer itself, for some specific applications uniform can be optimum in terms of simplicity

and complexity.

18 Some do regard dead-zone quantization as a uniform, since it can often be uniform in all regions, except for the

region around zero.

29

zero value can compensate for this increase in eq. Dead-zone quantization has been proven quite

effective in image compression, and is therefore used in Part 1 in the JPEG2000 standard [44].

There are different versions of the dead-zone quantizer depending on the source. For instance,

the optimal Entropy Constrained Scalar Quantizer (opt-ECSQ) is used for sources having

exponential and Laplacian probabilities density function [69]. On the other hand, this has been

proven to be quite complex in designing and implementing. The Uniform Reconstruction with

Unity Ratio Quantizer (URURQ) is an improved version of the Uniform Threshold Quantizer

(UTQ), which can be used as a very well approximation of the ECSQ. URURQ has a wide zero

region, but has equal uniform steps outside this zero area with step size ∆. The dead-zone region

in the middle is a function of this step size, given by (34), as well as an offset value given by

(35).

𝐷𝑍𝑟𝑒𝑔𝑖𝑜𝑛 = 2(Δ − 𝛿(Δ)) (34)

𝛿(Δ) = 1 −
Δ𝑒−Δ

(1−𝑒−Δ)
 (35)

The total URURQ and its inverse can then be described by (36)-(37) below.

𝑥𝑞(Δ, 𝛿) = 𝑠𝑖𝑔𝑛(𝑥(𝑖, 𝑗)) ∙ max {0, ⌊
|𝑥(𝑖,𝑗)|+𝛿

Δ
⌋} (36)

𝑥𝑟𝑒𝑐(Δ) = Δ ∙ 𝑥𝑞(𝑖, 𝑗) (37)

Where (i,j) describe the location of pixel values for an image, and xrec is the reconstructed value

at the decoder. Comparing URURQ to the more complex algorithm opt-ECSQ, the difference

in rate-distortion performance (SQNR) for different bitrates is at a maximum 0,0021dB [69].

Meaning that since the URURQ is a lot simpler, it would be advantageous to use that quantizer

at lower rates. Note that for high bitrates the uniform will generally still be optimum compared

to any dead-zone quantizers [66].

2.5.3 Adaptive Quantization

Since many application has to compensate for different input signals (e.g. different speech

variances or different kind of images), problems can occur in the quantizer part for the encoder

(overload or mismatch in the steps). One well used solution to this problem is to adapt the

quantizer step size, ∆, and/or the dynamic range of the quantizer [37]. The general idea of this

is that the encoder will adapt to the input signal based on some local statistical properties (pdf’s)

of the signal. It is common to distinguish between two kinds of adaptive quantizers; Forward

adaptive (FA) and backward adaptive (BA) quantizers. Both of these methods have advantages

and disadvantages.

Chapter 2: Theory

30

Forward adaptive quantizers extract the step size from the input signal of the quantizer [37].

Calculation of ∆ is done over a block of data, and is therefore not changed for every input value.

Because of this block, a buffer is needed at the encoder which introduces a delay in the signal.

After the calculation of the step size, it is applied to the quantization, however, the same step

size is required at the decoder. In other words, transmission of side information is required in

FA quantizers. Naturally, the size of the blocks affects the amount of side information needed

to be transmitted, since smaller blocks result in more calculations of ∆ (and larger delays) [70].

Performance of the quantizer will also increase with smaller the blocks, so this implies a trade-

off between quality and delay/transmission rate.

Backward adaptive quantizers extract the step size from the output signal only of the quantizer,

and applies ∆ to the next sample. Since this doesn’t require the input signal, the calculation can

be done in both the decoder and the encoder. Therefore, there is no need to transmit side

information and no delay, which is an advantage over the FA quantizers [37, 70]. BA quantizers

operate on a sample-by-sample basis, and not over a block, which also eliminates the need for

a buffer. However, since it is the output signal that is used for calculation, the quantization noise

is also used in determining the parameters, resulting in a loss in performance. This also

increases the sensitivity to errors in the quantizer, which can be difficult at very low bitrates.

A third alternative to adaptive quantization can be switched quantization, or quantization banks,

similar to switched predictors (Section 2.4.3.2) [67]. This eliminates the need to calculate the

different parameters, but requires more storage of the different quantizers alternatives, and it

doesn’t eliminate a buffer or the need of statistical analysis of the input signal.

2.6 Entropy Encoding

Entropy coding19 is the last main building block in image compression (Section 2.2.2). The

main principle of entropy coding is to find new ways of representing the information based on

statistical properties. This is a lossless compression method based on redundancy reduction.

When coding an image (or any kind of source) it is represented by bits, and the “standard” way

is to use equal amount of bits per source letter, or pixel [8, 37]. Thus, if a source consists of

23=8 different symbols, at least 3 bits is required in order to represent all of the different

symbols. This is known as fixed-length code, or block code. Every symbol would then have

unique decipherability. In other words, the decoder would always know which symbol it is

supposed to decode. However, this is an ineffective coding method, since more bits is used than

19 Note that variation of this term exist, some simply call this “coding”, and some include “channel coding”.

31

what is needed. Different source letters have different frequency appearance, or different

probability of appearing. Comparatively, if the source was an English text (including space),

and a random character was selected, there is a 10.1% chance it’s an “E” and a 0.1% chance of

“Q” [71]. Naturally, if “E” was coded with 1 bit, and “Q” with 4 bits, the 4 bit would appear

less, while the 1 bit would be more frequent. By assigning different bit length to different

symbols, based on the probability of appearance, the total average code-symbols per source-

character decreases. This is also known as variable-length coding (VL code).

Different versions of VL codes exists, but an important feature of the code is that it has unique

decipherability, so the decoder can’t misinterpret a symbol. Common techniques for VL coding

can for example be arithmetic coding, Huffman coding or run-length coding.

2.6.1 Arithmetic Coding

In arithmetic coding the whole message is coded into a string, ranging from 0 to 1. Each symbol

in the message is then represented as a fraction interval on this “main” interval, with a size

relative to the symbol probability [72]. Successive symbols are then coded in a recursive

manner in this interval. Symbols with high occurrence probability is coded with few bits, while

low probability occurrence is coded with more. This is best illustrated with an example. Imagine

an alphabet consisting of six symbols (a, e, i, o, u, !) with probabilities and rages shown in Table

2.1. The message that the encoder is sending is “eaii!”.

Symbol Probability Range

a 0.2 [0, 0.2)

e 0.3 [0.2, 0.5)

i 0.1 [0.5, 0.6)

o 0.2 [0.6, 0.8)

u 0.1 [0.8, 0.9)

! 0.1 [0.9, 1.0)

Table 2.1 Arithmetic coding example

[72]

The decoder, which know the range is [0,1) will then start with the first symbol, and decode it

as “e” since the received value lies between 0.2 and 0.5. This new interval is then examined

where it decodes an “a” since it lies between 0 and 0.2. The process is then repeated as shown

in Figure 2.14.

Chapter 2: Theory

32

Figure 2.14 Arithmetic coding example [72]

This recursive model does ensure as the whole message can be encoded as a single number.

However, the longer the message, and the bigger the alphabet, the more bits are needed in the

representation. There is also a potential problem with unique decipherability in implementing

it in practice, since “0” could represent a, aa, aaa etc. Some solutions have been suggested by

inserting comma (or other symbol) or transmission of the size [72].

2.6.2 Huffman Coding

Huffman coding is another form of entropy coding in order to code the coefficients. Basically,

the encoding algorithm works by assigning every source symbol a sequence of bits,

approximately equal in length to the information that symbol contains [37, 73]. The amount of

information20 in a symbol is given by the frequency (or probability) of that symbol. This ensures

that the most frequent symbols have the least amount of bits, while symbols of low probability

have longer code. Subsequently, the average code-word length will be reduced and approaches

the fundamental limit set by the entropy. Essentially, the algorithm generates the code by

replacing the prescribed set of source statistics with a simpler one. This is a step-by-step

process, which works in the following way:

1. The source symbols are listed in order of their probability (or frequency), and the two

least frequent symbols are assigned 0 and 1.

2. The two source symbols with the lowest probability is then combined into a new symbol

with probability equal to the sum of these independent symbols. This new symbol is

then placed in the sorted list with its new probability.

3. The process is repeated until only two symbols remains which are assigned 0 and 1.

20 As probably known, the less likely a symbol is to appear the more information that symbol contains. If a symbol

has high probability of occurrence it contains less information.

33

By working backwards through the list, the different code words are found, and each symbol

can be assigned these code words. However, this isn’t a unique process as there isn’t any ruling

for which symbol is assigned 0, and which is assigned 1. If more than two symbols have equal

probability, there are more than one way to decide which two symbols are combined. This

doesn’t affect the average code length though. Note that this uniqueness in the process isn’t to

be confused with unique decipherability which the code still has, given equal ciphering tables

at the encoder and the decoder. Huffman coding is a quite efficient encoding process, but it has

the disadvantage of requiring storage for lookup tables. Some work has been done in order to

make Huffman coding more energy efficient by reducing the required switching activity21, but

it doesn’t eliminate the need for tables and can require some more pre-computations [74].

2.6.3 Run-Length Encoding

Run-Length encoding (RLE) is a relative simple form of lossless entropy encoding22 of the

source symbols [54]. The technique is one of the most-widely used, and was used in the early

television compression scheme in 1967 [75]. RLE is basically compression by grouping,

meaning that consecutive data is grouped into a single value and then counted. If many

consecutive samples are equal, the amount of these values will be transmitted instead of all of

them. This package is stored in a “RUN/LEVEL” fashion, often with an End-of-Block (EOB)

at the end. For example, if the sequence “aaaaabbbcccccd” is to be transmitted, this will be

coded as “(5)a(3)b(5)c(1)d”. Naturally, this will be quite effective if many samples have the

same value, but will be ineffective if there is a very high variation in the samples. Since images

have high correlation between sample values, RLE is a very common image coding technique,

and is used in for example, JPEG, MPEG23 and H.26x [76]. Note that RLE can be made “lossy”

if a threshold is included in the encoding. This can be regarded as a simple form of rounding

(quantization). If the difference in consecutive values are below a given threshold it is regarded

as the same sample value.

Since RLE is a 1D coding scheme, it is necessary to unwrap the 2D image, i.e. read the image

as a single data stream. Different methods exist on reading the image as 1D, and the way it is

read, is defined as the scan sequence. The most common scan sequence is the zigzag scan,

21 Switching activity is the process of changing a value. For instance, encoding “00” requires none switching

activities, while “01” requires 1 switching activity.

22 Note that some doesn’t define RLE as “entropy encoding”, but is regarded as a pre-stage before the entropy

coding (for instance, RLE first then Huffman coding after).

23 Movie Picture Expert Group (http://mpeg.chiariglione.org/)

http://mpeg.chiariglione.org/

Chapter 2: Theory

34

where the samples are read in a diagonal order. Other simple scan sequences can be horizontal

or vertical scans, but more complex sequences exist and might be application (or type of image)

depended [54]. For instance, if the image contains a lot of vertical lines (city image) the

horizontal (row-wise) scan is optimal, but generally, the zigzag scan is the most advantageous.

Naturally, RLE is quite favourable in very low complexity encoders, since it doesn’t require

any buffers and has very low implementation complexity. However, extra bits are required in

RLE for the sign of the nonzero indices. So for very low complexity coders, a special case or

improvement of the RLE was developed by some researchers at the University of California,

named the Stack-Run encoding [77].

2.6.3.1 Stack-Run Encoding

Stack-Run (SR) encoding works by partitioning the (quantized) coefficients into two

subgroups, where one group contains the nonzero coefficients while the other contains the zero

valued coefficients [77, 78]. The groups are then represented as a stack or a column in binary

notation with the most significant bit (MSB) on top, and the least significant bit (LSB) on the

bottom. The stacks are then mapped into a symbol stream using a special alphabet.

SR coding is composed of a four symbol alphabet (0, 1, +, -), where “0” and “1” represent run-

length of nonzero coefficients (levels) and the symbols “+/-” is used for the MSB of the nonzero

coefficients and the successive zero coefficients (runs). This is because if only the “0/1” is used,

it won’t be possible to distinguish between nonzero values and runs of zero values without more

context. Since all binary run lengths start with 1, one can omit the MSB from most of the run-

length representations without loss in information. Potentially, this can be a problem if the run

has a length of one, which would not be representable if all MSB symbols are eliminated.

Therefore, the MSB “+” symbol is only retained when the runs are of length 2k-1, where k is

an integer.

When the resulting bit stream changes from “1/0” to “+/-” or vice versa, the decoder know a

new code word has started since all code words starts with either “+” or “-” (MSB). Since all

words starts with indication of MSB, an EOB isn’t required in this method.

Further entropy encoding (such as Huffman or Arithmetic) is sometimes applied after the

conversion to SR since it can be quite affected by channel noise. Some work has been done to

minimize the need for additional entropy coding. This was done by making some assumptions

of the channel (memoryless, binary symmetrical channel), and code each of the subband

independently [79]. This results in performance gain, but also a slightly increase in complexity.

35

2.6.3.2 Bit-Plane Encoding

Bit-plane encoding utilizes separation into the different bit planes in order to achieve effective

lossless compression together with for example RLE [54, 80]. The basic principle of bit-plane

coding can be easily imagined if one considers an 8bit grayscale image (unit8), by using an

AND-operation for each of the 8 planes (for instance, ANDing with 10000000 gives the 7th bit-

plane, ANDing with 01000000 gives 6th plane). Each of these planes will then contain less

information than the whole image, which will result in more zeros. RLE encoding can then

effectively reduce the required transmission rate [81]. Every coded plane is ended by an End-

of-Plane (EOP) block, indicating the start of the next plane.

This separation technique is lossless, but can be made lossy by eliminating one of the planes

which can remove the need for a quantization part in the image coder. When a specific bitrate

is required, the encoding process can stop anywhere, while the image is still decodable. This

technique can be demanding since a buffer is required at very low complexity applications, due

to each plane needs to be treated separately.

Chapter 2: Theory

36

37

3 Wireless Capsule Endoscopy

The Wireless Capsule Endoscopy (WCE) have, in contrast to the other kinds of endoscopic

equipment, relatively poor image quality. This is a direct result of the amount of power

available, since WCE have a small battery, while the other methods are connected to an external

power supply. When the equipment has “unlimited” power available, they can use high

bandwidth, higher bitrate and complex image compression algorithms. Capsule endoscopy on

the other hand, which, as mentioned, is just a small pill, aren’t connected to an external power

supply. It only gets the power it needs from a small battery, and the battery need to last until

the journey through a patient’s body is complete (approximately 8 hours). The image quality is

therefore significantly poorer with the capsule endoscopy, compared to the other endoscopic

methods.

Since the image quality is poorer, capsule endoscopy is mostly used where the other methods

can’t reach (small intestine), and the other methods are preferred otherwise. However, this is

not the case for the patients. Capsule endoscopy isn’t felt by the patients, while the other

methods are known to give patients discomfort, and in worse cases scratch the wall inside the

GI tract so the patients start to bleed [6, 7]. This isn’t desirable, especially if the reason for the

test was to find another bleeding inside the GI tract. So it would be advantageous to improve

the image quality of the capsule endoscopy, to minimize the patient discomfort, while the

physicians are able to diagnose. This chapter is therefore dedicated to explore how the capsule

work in details, before the theory can be applied in order to improve the image quality.

3.1 The Sender and Encoder

The WCE system consists of two main parts; the sender and receiver [82] (receiver will be

covered in Section 3.3). The sender is the small pill, which is about 26 x 11mm in size and a

weight at about 3 gram [83]. The capsule is swallowed and as moving through the GI tract by

the peristalsis, the same way as the food (Section 2.1.1). At the front of the capsule, a small

camera lens (with RGB filters) and six LED light source, captures the frames at 2-4 frames per

second (fps). The frames are thereafter processed by a microchip which codes the images before

they are transmitted to the antenna in the back which sends the signal through the body to the

receiver. All of the electrical components are powered by a small battery in the middle, which

is required to be able to power the whole system for approximately 8 hours. Illustration of the

capsule is shown in Figure 3.1, below. To protect the electronic components, they are

encapsulated by a biocompatible plastic, which can resist all of the different digestive juices.

Chapter 3: Wireless Capsule Endoscopy

38

The capsule is made for one-time use, and after it has passed through the patient’s body it exits

the body together with the stool, ending in the toilet.

Figure 3.1 Illustration of the WCE [82].

As mentioned, the image capturing sensor captures the raw images, which is of very high

quality. These are then compressed in a lossy format, before transmitted. Basically there are

two main ways of improving the image quality of the capsule; increasing the amount of

available power or improving the algorithm. Since the capsule is required to be very small

(compact), in order for the patients to swallow it, there is not very much to room for hardware

changes. Some research has been conducted in order to try wireless transmission of energy to

the capsule [11, 12]. However, this is still at an early research stage and will need further

development before it can be utilized in practice. Therefore, the most effective way to improve

the image quality, may be to improve the algorithm.

Different versions of the WCE exists, by different companies with different trade secrets. This

means that a full system description is very hard to obtain. The focused capsule is the standard

version, PillCam™ SB from Given Imaging Ltd. which is one of the most widely used, and the

most common design. Unfortunately, information about the specific algorithms used in this pill

isn’t available, so the described algorithm is based on the proposed algorithm was developed

by researchers from Oslo University Hospital and Norwegian University of Science and

Technology [7].

39

3.1.1 The Image Compression Algorithm

The image compression algorithm in the capsule has to consume a minimal amount of power,

in order to achieve highest possible image quality throughout the whole journey through the GI

tract. For this reason, every part of the algorithm is carefully selected to maximize the image

quality, while minimizing the required physical size of the microchip and power consumption.

This is done by five main components in the coding scheme; colour transformation, multi-rate,

DPCM coder, dead-zone quantizer and a stack-run entropy coder, shown in Figure 3.2 below.

Figure 3.2 Block diagram of the algorithm [7].

3.1.1.1 Source Representation

As each of the RAW image frames enter the encoding scheme, the colour space is converted

from RGB into the YUV-space. Each of the different colour components are treated

independently throughout the algorithm. The conversion process is done by the simplified

transformation matrix given by (2) (Section 2.3.1.2), which is more attractive towards binary

treatment [49]. Every image frame is coded independently, so the whole system is regarded as

an image coder, and not as a direct video coder. The avoidance of floating points in the

transformation allows for single bit shifting operations in the colour conversion, which is very

energy efficient.

The images aren’t directly tiled (Section 2.3.2), except from separation of the colour

components. This choice would initially seem as it would require more memory and introduce

more latency, but by utilizing the characteristics of the camera sensor, it don’t. Since endoscopic

Chapter 3: Wireless Capsule Endoscopy

40

images have little variance in the chrominance (U, V) components compared to the luminance

(Y), they are treated different in the DPCM [7]. In the prediction, the chrominance components

are only predicted by the past sample on the same row. In other words, for these two colour

components, the whole row can be regarded as a tile, giving the number of tiles equal to the

number of rows. This isn’t the case for the luminance component, so looking at the whole frame,

no tiling is applied.

3.1.1.2 Multirate

Multirate (MR) can be regarded as a special case of one dimensional subband coding (Section

2.4.2). The MR system consists of two main parts; the decimation and the interpolation [84]. In

the decimation part, the goal is to decrease the sampling rate of the signal, while the opposite

is the goal in the interpolation. As in SBC, a filter is following the sampling rate compressor

and expander, which here is called a digital anti-aliasing filter (decimation) and anti-imaging

filter (interpolation). In contrast to SBC, the signal isn’t divided into different frequency parts

(high part and low part), but the whole signal is regarded as a single part. This sample rate

conversion allows for increased computational efficiency as well as improved performance, and

it is widely used within sound- and image processing.

In the WCE, the MR part is used to remove some part of the spectrum by using a simple low-

pass (LP) filter instead of the anti-aliasing filter. This process can be applied since at very low

bitrates will it be redundant to use bits to describe the spectrum which is below allowed

reconstruction noise. The down-sampling is performed to ensure that the low-passed signal is

used in the whole full-band available. The down-sampled signal is then encoded, and the

interpolation part (up-sampling) is done at the decoder to save required computation and

transmission in the sender.

This MR process is performed in both the rows and the columns, which means a reduction of

r2- source samples. This also means that 1/r2 bits are required compared to the original signal.

This is a lossy process (r ≠ N) in terms that perfect reconstruction isn’t guaranteed. Generally,

MR can be near-lossless depending on the filters (not the case with simple LP filters).

3.1.1.3 DPCM Predictive Coding

The algorithm in the WCE uses the time-domain source coding technique DPCM (described in

Chapter 2.4.3.1). It utilizes the closed-loop (backwards) DPCM, which ensures that the

quantization noise problem is eliminated. The quantizer used in this predictive system is the

41

dead-zone quantizer, described in Section 2.5.2.1, in which the corresponding quantization

equations is given by (34)-(37).

The prediction of pixel (i, j), within the DPCM system is based on the reconstructed pixel values

from neighbouring pixels, above (i-1, j), to the left (i, j-1) and diagonally above (i-1, j-1):

 �̂̃�(𝑖, 𝑗) = 𝑎�̃�(𝑖 − 1, 𝑗 − 1) + 𝑏�̃�(𝑖 − 1, 𝑗) + 𝑐�̃�(𝑖, 𝑗 − 1) (38)

Where a, b, c are the prediction coefficients, which in this case are averages with relationship

in (39). The “a” can be changed in the interval [0.65~0.95], but a value around 0.8-0.9 gives a

good prediction.

𝑎 = 0.8
𝑏 = 𝑎
𝑐 = −𝑎2

 (39)

Note that equation (38) is for the luminance component, while the two chrominance

components only use one reference pixel, and therefore only uses the prediction coefficient “a”.

This can be done since endoscopic images of the GI tract tend to have very little variation in

colour [7]. In addition, it is advantageous in terms of memory requirements to only use the rows

since CMOS image sensor captures images row-by-row [85]. By only using prediction from

the same row, there is no need to temporary store other rows.

3.1.1.4 Stack-Run Encoder

In order to avoid storing of lookup tables, buffers and potentially computations, the algorithm

uses the effective Stack-Run (SR) encoder instead of, for instance, Huffman or Arithmetic

coding (see Section 2.6). The SR encoder has been proven quite robust against bit errors, and

makes additional entropy coding redundant [79]. SR encoding is especially beneficial due to

the dead-zone quantizer in the DPCM part. The quantizer forces more of the error signal

towards zero, which increases the successive numbers of zeros, and the effectiveness of the

RLE system.

Since the WCE has very limited implementation space and limited power, additional entropy

coding is omitted. The four symbol alphabet in the SR coding are therefore chosen to be

composed by a simple 2-bit representation.

After the image signal is SR encoded it is transmitted over the channel to the decoder. Since

the image coding algorithm is the focus, channel coding is omitted from the simulation, as this

won’t affect the resulting image encoder/decoder. However, noise from the channel will affect

the received image quality, by introducing bit-errors. Therefore, the channel will briefly be

Chapter 3: Wireless Capsule Endoscopy

42

described next, to explain how the whole system will work, and what to take into account when

implementing in a real system.

3.2 Transmission

When the frames are coded, they are instantly sent to the decoder through the human body. This

is done to avoid the need for storage in the WCE. The transmission is, in this case, done by a

radio transmitter. The antenna is sending out the signal with a frequency at 434,1 MHz and with

a bandwidth at 1,6 MHz [83]. Some research has been done in this area and ultra wideband

(UWB) is expected to change this in the future.

Ultra wideband (UWB) technology for short distance transmission, is a very energy efficient

technology. UWB has a bandwidth from at least 500 MHz and up to 7,5 GHz, i.e. very high

data rates can be achieved [10]. The high rates will mean that higher quality, resolution and/or

frame rate can easily be obtained. In other words, lossless image compression can be

implemented cheaply. This isn’t only due to the high data rates, but also because of the

Shannon-Hartley theorem. The theorem states that parts of the wideband can be spent for energy

transfer back to the capsule, which would be very advantageous in ultralow power and low SNR

devices [9]. One of the drawbacks with this technology is the receiver complexity. Since UWB

uses so low power it is hard to detect, and therefore the receiver requires very power hungry

components, such as very high speed A/D converters and high-gain, low-noise amplifiers. In

addition, it requires very extensive signal processing at the receiver, which makes the receiver

unsuited to be powered by a battery, and would require the patients to be connected to an

external power supply [86]. The technology is very promising, but will still need more research

before it can be used in practice, so for now, the concentration is on narrowband radio

technology (used in current system).

3.2.1 The Wireless Radio System

In a wide perspective, wireless systems is defined as a system which allows for the

communication of information between two points without the use of wired connection [87].

This communication is possible because electromagnetic (EM) waves can propagate trough air

and matter without conductors. Propagation through matter and reflection from different

surfaces will result in fading of the signal, which is one of the main challenges in wireless

systems. These EM waves are produced by antennas which convert a guided EM wave on

transmission line and into a plane wave. Antennas are inherently bidirectional, in that all can

be used for both transmission and receiving of EM waves [88].

43

Noise is one of the other main challenges in wireless systems. Sources for noise exists

everywhere, from the sun, atmospheric, other wireless systems, thermal noise etc. [89]. The

term “noise” is often used to describe any unwanted signals that tends to disturb transmission

and processing of signals, in an uncontrollable matter. In communication systems is it common

to calculate with white noise, which contains all frequencies. This is impossible in practice,

because if a signal contained all frequencies, it would require unlimited power. White noise still

has an important feature in the statistical mathematics, and is used for analysis of worst case

scenario. If the noise is too severe, increase in signal power could be a solution in achieving

acceptable SNR depending on the application.

However, there is a limit to how much one can increase the emitted power from the antennas.

Increase in power would require more energy, and can be dangerous to the human body [87].

The energy in the waves will be converted into heat when exposed to too much radiation from

EM waves, the same way a microwave heats food. This can be especially dangerous for some

organs in the body at close range. IEEE has researched the dangers of human exposures to EM

waves [90]. As can be seen from Figure 3.3, at frequency of around 400 MHz, recommended

maximum exposure is at 3W/m2 (3mW/cm2). In comparison, the WCE transmits at 434 MHz,

and effective radiated power (ERP) is at 57nW [83], which is well below maximum

recommended exposure.

Chapter 3: Wireless Capsule Endoscopy

44

Figure 3.3 IEEE standard on human exposure to EM fields [90].

3.2.2 The Human Body as a Communication Channel

Describing a communication channel precisely is impossible, as there are too many random

variables (all reflections, diffractions, scattering, penetrations etc.) [91, 92]. Instead it is

common to use statistical model to determine the probability that channel parameters attain

certain values. This is especially true when the sender and/or receiver are moving with variation

in surrounding environment. All of the different noises and channel parameters will directly

impact the received SNR, by interfering with the transmitted signal. As the distance between

the sender and receiver gets larger, the different EM waves characteristics will be more

influential. However, if the waves are passing through mediums or the transmitted effect is very

low, these parameters will have impact on the received SNR.

In the case of WCE, the wireless communication channel will be the human body. Since every

person have different anatomy, the channel will differ. The largest variation in channel

parameters in this case is around the skin (closest to the receiver), and this will affect how the

radio signal propagates. This is because the human skin consists of a mixture of dead and alive

cells, together with fat and sweat [93]. Alive cells contain electrical signals for cellular

communication, messaging, and regulation of nearly all biological system. In practice this can

be modelled as a capacitor with action potential. Dead cells lack cytoplasm and has no charge

carriers, so dead cells (and fat) will conduct the signal poorly. On the other hand, the salt content

45

in the sweat result in improvement of the conduction of signals. Some of these effects can be

minimized (degreasing, exfoliating, impedance matching), but due to the long timeframe of the

WCE, it might be more advantageous compensating for these.

Link budget is a calculation of how much effect is received when parameters effecting the

transmission (transmitted effect, noise, gains, losses etc.) is considered. As mentioned, if these

parameters can’t be found, approximations are done based on worst case scenarios and/or

experiments. This field has been researched quite a lot when the signal goes through the body,

but quite little when the radio signal is transmitted from inside the human body [94]. A research

team in Malaysia has done this in the WCE case, and the results are summarized in Table 3.1

below. As it can be seen, the variation is between -9dB and -38dB in path loss (PL), depending

on the different locations of the WCE. This can be especially effective if localization of the

capsule can be done effectively, which is possible with quite high accuracy under ideal

conditions [95].

Location Region Skin depth [cm] Min Path loss Max. Path loss

A Upper Esophagus 7 -29 dB

B Lower Esophagus 13 -38 dB

C1, C2, C3 Stomach 4, 10, 17 -10 dB -34 dB

D1, D2, D3 Upper Intestine 5, 10, 15 -16 dB -33 dB

E1, E2 Intestine (above

abdominal region)

6, 14 -10 dB -23 dB

F1, F2 Intestine

(abdominal region)

5, 10 -9 dB -14 dB

Table 3.1 Min and Max path loss in different regions at 450 MHz [94].

3.3 Receiver and Decoder

The receiver system consists of two main parts, a belt with antennas and a small computer to

decode the signal. On the belt a matrix of 8 antennas, with sensor size of 40mm each, are

connected by coaxial cables [83, 96]. Placement of the antennas help localize the position of

the WCE, at any given time (illustrated in Figure 3.4 below). This placement structure also

ensures that strongest possible signal is received at any given time and the different path losses

in the different regions can be compensated (Section 3.2.2). The whole receiver system weights

about 500grams, which includes the battery power supply. Patients can therefore move around

freely, and they don’t have to be connected to an external power supply, though they need to

be cautious for extensive noise sources.

Chapter 3: Wireless Capsule Endoscopy

46

Figure 3.4 Placement of receiver antennas on the

patient [96].

The actual decoder algorithm is very similar to the encoder, but as “unlimited” power in

comparison, which means there is no computation limits. The transmitted signal is captured by

the antennas and channel decoded (this part is omitted from the simulations), before the image

decoding algorithm starts with the received bit stream. Received bit stream is decoded in the

SR decoder (described in Section 2.6.3.1). Since the encoder has an embedded decoder in the

DPCM structure (Chapter 2.4.3.1), the decoding process is the same as in the encoder. The

exception is the quantizer which is done by inverse quantization (Q-1) by (37). This results in

the reconstructed error signal, ẽ(n), which is used to find y(n) together with the previous

reconstructed value, given by (16). If no bit error was introduced in the transmission and there

was no quantization the decoded signal would be near identical to the encoded signal, y(n) =

x(n). Naturally, this isn’t the case, so the value will be an approximated signal.

Since the closed-loop DPCM is dependent on previous values in order to obtain the current

values, bit errors introduced earlier will propagate through the system. The RLE (SR) coding

scheme has a variable code length, which is susceptible to bit errors, which will propagate to

the DPCM. In other words, bit errors will appear and will affect the received image quality.

There are many ways of minimizing bit errors in a communication system. A common method

is to include parity bits, to ensure that received bits are correct, and if they aren’t, some can be

recovered depending on how many are wrong (assuming parity bit is correctly transmitted) [97].

A specific way of using parity bits, is to use hamming codes, which is one of the first error-

47

correcting codes24 [98]. The general idea is to use parity bits calculated from the message,

transmit as side information, and check if (and where) the error is located by recalculating (or

use lookup tables) at the receiver. However, this (and most error correcting methods) require

more energy and/or storage space at the encoder, as well as produce higher bit rate, which would

be a disadvantage in the WCE case.

With WCE it would be very advantageous if error correction could be done at the receiver,

without affecting the limited resources at the encoder. Two algorithms were proposed for this

purpose [99]. The first method is based on simple error detection and concealment, which

detects single pixel errors based on line detection. If bit error is detected, that particular pixel is

discarded and reconstructed based on neighbouring pixels. This method is used if the number

of bit errors is low. If the amount of bit errors is high, the second method is used, which discard

the whole frame and reconstruct it based on inter-frame interpolation. This can be done since

there is a temporal correlation between successive frames in a video sequence, and the discarded

frame can be estimated with motion vectors. None of these methods affect the encoder

performance, but will increase the SNR and bit-error ratio (BER).

3.4 Previous Work

As mentioned in the Introduction, this thesis is based on a project completed during fall 2015

[13]. This project explored the possibility of changing the image quality based on a location,

which would be achieved by sending a simple signal back to the capsule from the receiver.

Specifically, was the sampling rate in the MR part changed to not decimate and filtering the

input signal in some parts, and increase it at other parts. This means that more of the high

frequencies components were kept in the frames in the time they were coded with relative high

quality. The result was an increase in PSNR by 4.7dB in high quality regions, and a decrease

in PSNR by 9.6dB in low quality regions. The simulations showed that if the total time in high

quality region was about 10-15% (approximately 1 hour out of a total of 8 hour) of the total

time, this would decrease the total energy consumption. This could be very advantageous if the

health care personnel can estimate the location based on other diagnostic procedures or

symptoms.

The main goal was to investigate the possibility of adapting the parameters continuous and how

much this would affect the required energy consumption. The results showed that this was

possible and could be achieved by different triggers. Most obvious was a time, or a localization,

24 In general, can normal parity code check for errors, but cannot correct, hamming code can also correct.

Chapter 3: Wireless Capsule Endoscopy

48

trigger, which could activate high quality frames depending on where the capsule was located

(mentioned in Section 3.2.2) [95]. Other kind of triggers could for instance be analysis of the

frames at the decoder, real-time control by physicians or a combination of different triggers.

Other parameters could also be changed, for instance the predication coefficients, quantization

steps or the framerate.

As already mentioned, previous work includes the initial design of the algorithm [7], post-

processing error correction [99] and localization and tracking of the capsule [95]. These are

described more in Section 3.1.1, 3.2.2 and 3.3, respectively.

49

4 Proposed Method

In this chapter a system overview will be first be given in Section 4.1, before an analysis of

possible improvements of the current algorithm is presented in Section 4.2. Specifically, how

to efficiently utilize a feedback loop from the decoder, back to the encoder. Following, will the

proposed method for low complexity ROI coding be presented in Section 4.3. At the end will

the limitations, implementation process and the evaluation methods be described in Section 4.4,

4.5 and 4.6 respectively.

4.1 System Overview

The system used for solving the problem of this thesis is based on the original algorithm,

presented in Chapter 3.1. Originally, the algorithm was embedded, in the way that the encoded

signal wasn’t decoded, but the required coefficients for analysis was extracted during the

encoding process. This allowed for fast and efficient simulations for examining the most

important part, the encoder. However, if the algorithm is to be implemented on an actual WCE,

separation of the encoder and decoder would be a requirement. Separation have the advantage

of being more straightforward, but simulations (in this case) will take longer time.

For simplicity, all of the required parameters are kept in a single “struct”. At the decoder, a new

module is introduced which will update some of these parameters, as illustrated in Figure 4.1

below. Note that transmitting all parameters back to the encoder at each iteration, is not

necessary and should be omitted in an actual implementation.

In the simulation process, different videos will be used to get a good understanding of how the

image coder will work. Each video is read frame-by-frame, and each frame is encoded and

decoded separately at each iteration of the simulation. At the entry of encoder, each frame is

divided into the three RGB channels before the actual image encoder process starts. Note that

since the simulation videos are compressed in a specific format, the results are expected to differ

from a physical implementation.

Chapter 4: Proposed Method

50

Figure 4.1: Overview over the modified algorithm

4.2 Feedback and Algorithm Analysis

Since the key aspect is to keep the algorithm minimized in required computational resources,

many encoding techniques fail to become an option in this application. The YEF colour space

(Section 2.3.1.3) on the other hand, has showed promising results in wireless endoscopic

compression [50]. As the simplified YUV, it uses a base of 2 in the transformation matrix (3),

which is beneficial in low power applications. Therefore, this will be implemented and

compared to the existing YUV colour space.

Sending a return signal (feedback signal) with parameter updates is considered to be a cheap

operation, since it won’t require changes in hardware. There are different parameters which

could be useful to update during the capsule’s journey through the GI tract. As mentioned in

Chapter 2.4.3.2, adaptive prediction filter could be of use.

Because the encoding algorithm should be kept as simple as possible, and the prediction

coefficients are a simple averaging (38)-(39), only one value is chosen to be adapted. The

relationship between the three prediction coefficients are kept unchanged. The chosen solution

is to find the autocorrelation function (ACF) between yt and yt+k where k = 0, …, K is the lags:

𝑎𝑘 =
𝑐𝑘

𝑐0
 (40)

Where c0 is the sample variance, and ck is given by:

𝑎𝑘 =
1

𝑁−1
∑ (𝑦𝑛 − �̅�)𝑁−𝑘

𝑛=1 (𝑦𝑛+𝑘 − �̅�) (41)

Colour

Transformation

DPCM

encode
MR

SR
encode

Channel

code

Channel

decode

Channel

SR
decode

DPCM
decode

MR
Colour

Transformation

Parameters

Update

LP k

 k LP

ROI?

51

In an image, the ACF is first calculated over all rows, giving a matrix where each row is an

ACF of that row. Since there are three components to choose from, the luminance component

is chosen as this contains the most information (Section 2.3.1). The average value over each

column is thereafter calculated by (42), resulting in an ACF vector were each point is the

average sum over that column.

𝑎𝑘̅̅ ̅(𝑖) =
∑ 𝑎𝑘(𝑛,𝑖)𝑁

𝑛=1

𝑁
 (42)

By definition a0 = 1, and in the AR (2) model, the prediction coefficient that is desirable is a1.

This would result in only one value needing to be transmitted back the encoder, a, in (39).

It could be argued that the quantization steps and/or dynamic range can also be made adaptive

(Section 2.5.3). However, since all of the calculation has to be done on the output signal at the

decoder (subject to transmission error, and lossy encoding), this isn’t expected to have a great

impact on the resulting quality. DZ-quantizer uses the optimum uniform quantizer outside the

DZ region, and force more values towards zero which is advantageous at very low bit rates.

Since endoscopic images has very little variation between frames, BA quantizer would not

increase quality a lot, while FA quantizer could. Unfortunately, FA quantization would increase

computation (and energy consumption) too much at the encoder. Because of this, adaptive

quantizer is omitted, and the focus will instead be on attempting to find a very low complexity

ROI coding.

4.3 Very Low Complexity Region-of-Interest Coding

Initially, two schemes were proposed for ROI coding. The first was extracting the region, store

it in a buffer, and code the frame as normal, before the ROI region was coded separately with

higher quality (omitting the MR part). This would require extra storage/buffer, but it would

remove the need for excessive parts of the image to be coded in higher quality. However, since

the algorithm uses DPCM row wise, it would have fewer values to predict from. Early stages

simulations showed as expected that the result would be of poorer quality in this ROI because

of this. Therefore, this was discarded in favour of the other proposed scheme, which was built

on the principle of adapting the values.

Previously, changes in the sample rate (and by that filtering) has been explored (Section 3.4),

which showed promising results. Here the goal was to adaptively change the sampling rate in

achieving higher image quality (the whole frame). Based on adaptively changing the sampling

rate, this will be taken a step further by changing the sample rate within the frames in order to

obtain a simple ROI encoding.

Chapter 4: Proposed Method

52

When the sample rate is set to be equal to 1, there is no decimation/interpolation or filtering,

i.e. there is no Multirate part in the coder, and the colour transformed image goes directly into

the DPCM coder. By adapting the rate in the middle of the image, some parts go through MR

and some skip it, resulting in a grid structure showed in Figure 4.2. This ensures that the

variables don’t get filtered and decimated (a lossy process25), but instead keeps more of the high

frequency components in that area. As stated in Section 2.4.2, most of the information in an

image is in the low-pass part, but by omitting the high-pass parts the image quality will be

reduced.

Figure 4.2 Structure of implantation of ROI area, after the

MR part.

This method can be viewed as a simplified locally adaptive resolution (LAR) coding, but this

LAR method is a little different. The LAR method is in general, variation in pixel sizes in the

image depending on the activity in the image. It extracts the ROI area, and code it separately

with a higher resolution (or don’t code it), before the region is combined with the low-resolution

image. However, while this technique is utilized to have a low rate transmission, the encoder is

still quite complex in comparison of the suggested method [100-103].

The proposed ROI encoding scheme is expected to require more average bitrate per pixel, since

more areas than just the ROI region will indeed be coded with higher quality (more high

25 The total image coding process is still lossy due to the fact that the image is still quantized within the DPCM

part.

53

frequency components). On the other hand, the encoding will be very simple (it doesn’t require

additional hardware implementation/space), and it doesn’t require buffers or temporary

storages.

To the authors knowledge, this ROI encoding hasn’t been done exactly like this before.

4.4 Limitations

As already mentioned in Section 4.2, the feedback loop will, in the analysis part, be limited to

the prediction filter coefficients. The simulations will be performed in MATLAB, which will

have some drawbacks. MATLAB has no functionality for evaluation of the needed

computational operations, and as a result it isn’t possible to actually measure the required

energy consumption. This will instead be estimated based on theory.

In ROI coding, only the implementation of the ROI region at the encoder will be considered,

not finding the location of the particular region. The region can be found by image analysis

(post-processing) by, for instance, looking at the light reflecting properties caused by variations

in the haemoglobin protein (Section 2.1.3) [104]. This will be done at the decoder, resulting in

a position vector to be transmitted back to the encoder. Some delay will therefore occur before

the region is of higher quality, but it doesn’t require delays or computations in the encoder.

4.5 Implementation

The chosen MATLAB programming language has some advantages since it is very simple, it

has good matrix handling and it is reliable. Reliability is important for the ability to recreate

every simulation result. On the other hand, MATLAB has some drawbacks as it cannot calculate

the number of operations (and thereby complexity and energy consumption comparison), it isn’t

as memory efficient as C or C++, and is has some limitations in built-in functions. An example

of limitations in MATLAB functions is the built-in function VideoWriter used in the

simulations, which cannot handle adaptive framerate. It is possible to use a custom-VideoWriter

class called “QTwriter”, but this is used for QuickTime video format (.mov), and the results

won’t be directly comparable with the audio video interleaved (.avi) format [105]. However,

changes in the framerate is directly related to how often the camera sensor captures the frames,

and the encoding process will be the same. A feedback loop will allow adaption of the

framerate, so the direct implementation of this is omitted.

An important feature in the implementation, is the ability to recreate every simulation result as

well as separation of the different blocks (Figure 4.3). Separation of the blocks will result in

some repetitive tasks, since the performance evaluation will in fact have to partly code both the

Chapter 4: Proposed Method

54

original frame and the reconstructed frame. This will make the total simulation process slower,

but it won’t affect the encoding/decoding performance.

Figure 4.3 Overview of implementation of the simulation system

As mentioned in the previous chapter, the ROI will be coded by a position vector transmitted

to the encoder. The vector is defined as:

𝑅𝑂𝐼𝑝𝑜𝑠 = [𝑥, 𝑦, 𝑤, ℎ] (43)

Where (x, y) is the pixel location, and w, h is the width and height of the area respectively. The

region is rectangle shaped, with top left corner as the starting point (x, y). This means that a

total of only five integer values (including the prediction coefficient) has to be transmitted, as

well as one logical value (active ROI encoding, true/false).

4.6 Evaluation

In image encoding it is common to distinguish between objective and subjective measurements

of the image quality, since these aren’t necessarily the same. Similarly, both subjective and

objective evaluation will be performed in the thesis, but the subjective quality measurement

will be evaluated by the author, together with sample images in the thesis for the reader to be

able to evaluate as well. Subjective quality measurement will follow the principles of mean

opinion score (MOS)26, with reference to the source (input) image. The range is from 1 to 5,

and is defined as bad (1), poor (2), fair (3), good (4) and excellent (5) [37].

26 In this case, not many people will be asked, so will only consist of authors opinion score (OS).

While (hasFrame):

Frame Encode

Save

variables/frames,

plot & close.

Performance

evaluation

Frame Decode

Initiate & Open,

Read first frame

Get next frame

Enable_ROI?

ROI_pos

Pred_coeff

55

Two main quality evaluations will be done for the objective analysis; Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR will be performed for the

objective distortion for each of the three colour channels, before summed to the total CPSNR27

(colour peak signal-to-noise ratio).

𝑃𝑆𝑁𝑅(∙) = 10 ∙ log10 (
2552

1

𝐼∙𝐽
∑ ∑ (𝑌(𝑖,𝑗)−�̂�(𝑖,𝑗)))

2𝐽
𝑗=1

𝐼
𝑖=1

) (44)

Where (∙) indicate the colour component, and (i, j) is the pixel location. SSIM is an image

quality metric in which the three characteristics of the images is considered; Luminance,

contrast and structure [106]. The measurement is performed between the distorted (coded)

image, x, and a reference picture, y, given by (45). SSIM gives a measure ranging from 0 to 1,

where SSIM=1 if the two images are identical, and SSIM=0 if no parts of the image is similar.

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (45)

Where µx and µy are the local means, σx and σy is the standard deviations and σxy is the cross

covariance for the images x, y. C1 and C2 are constants to avoid instability when the local means

or standard deviation is very close to zero, and are related to the dynamic range28 L of the pixel

value (46). L is typically 255 for an 8bit greyscale image, and is multiplied with a small number

K1 « 1.

𝐶1 = (𝐾1 ∙ 𝐿)2 (46)

Two evaluation methods will be performed to get an idea of the energy consumption of the

image coder, the average bit-per-pixel (bpp) and the compression ratio (CR) given by (47)-(48).

Both of these are common in image encoding evaluation and will give an indication of the

energy requirements of the algorithm.

𝑅[𝑏𝑝𝑝] = 𝑅𝑐ℎ1 + 𝑅𝑐ℎ2 + 𝑅𝑐ℎ3 (47)

𝐶𝑅 = (1 −
𝑅𝑐1+𝑅𝑐2+𝑅𝑐3

8+8+8
) ∙ 100 (48)

Where R(∙) are the average rate for each of the colour components, assuming 8bit per colour

channel on the input image.

27 Also known as PSNR overall

28 Not to be confused with the dynamic range of a quantizer.

Chapter 4: Proposed Method

56

57

5 Results

In this chapter the results from the simulation will be presented, in order for a conclusion to be

formulated. The results are divided into two parts; Section 5.1 covers the algorithm and

feedback analysis, while Section 5.2 covers the ROI encoding.

Both parts are the result of simulations with different videos. Specifications about the

simulation videos can be found in appendix A.2.

5.1 Part 1: Algorithm

In part 1, the algorithm is analysed using different settings and methods. Each is compared with

the original algorithm in this section.

By analysing the algorithm, the areas with the most potential was considered to be changing

the colour space and adapting the prediction coefficient. These areas don’t require additional

buffer or storage, since every calculation is performed at the decoder, i.e. the complexity is

unchanged. This is the BA configuration is expected to give poorer result than FA would, but

it reduces the power consumption which is the main limiting entity in the device.

Note that even though this was considered the area with the most potential, it wasn’t the only

area changed in the algorithm. As mentioned in Chapter 4, the algorithm was separated, and

some functions had to be rewritten to allow encoding of ROI. For instance, the MR part had to

be changed, to not include any built-in functions, and this needed to be done manually.

The evaluation of the modified algorithm is performed as described in Section 4.6. Since many

results are very similar in structure, the graphs for each one is considered redundant, but the

most important ones will be included (this doesn’t include the results which will be summarized

in tables). The difference between them is usually small variations in the axis.

5.1.1 Simulation 1

The first simulation was performed with a short (~2s), quite low resolution (241x401) and low

quality video sequence (Appendix A.2.1). This video was chosen since it achieves quick

simulations due to the few number of frames, and would be similar in resolution to the current

WCE.

The algorithm was executed with a constant sampling rate in the MR part, but different between

the colour components. Since the luminance has the most information, this has a sampling rate

of 2, while the chrominance components are decimated/interpolated by 3. Figure 5.1 below

Chapter 5: Results

58

show the performance of the original algorithm, which uses the YUV colour space and a fixed

prediction coefficient, a=0.8.

Figure 5.1 Performance of original algorithm

As can be seen from the graphs above, the performance increases towards the end, which is

expected in predictive coding schemes. This particular simulation video has less variation in

the colour components towards the end than in the beginning (more white light reflection).

Notice a sudden drop in all of the measurements around frame number 35, which is most likely

due to a change in camera angle resulting in changes in reflected light intensity.

In the modified algorithm, different parameters was tested, but the one shown in Figure 5.2

below was with the YEF colour space, and adaptive prediction coefficient. Observable in the

figure, is the drop around frame number 35 gone in the CPSNR and SSIM measurements, but

the same in bitrate per pixel and CR. However, even though the drop is approximate the same

(~0.8% in CR in both algorithms), the overall performance is increased, as the value drops close

to the original algorithms’ value before the drop.

59

Figure 5.2 Performance of modified algorithm, with YEF & adaptive prediction

The drop in CPSNR and SSIM, is due to the chosen colour transform. Simulations which uses

the YUV colour space has this drop, but not the ones using the YEF colour space. This could

indicate that the YEF is more suited for endoscopic images, but it could also be just this video

sequence that behaves like this. Adaptive prediction seems to mainly affect the values of the

axis, not the graphs themselves. Figure 5.3 shows the variation of the prediction coefficient

over the sequence.

Figure 5.3 Variation in the prediction coefficient over the frames

Chapter 5: Results

60

The results from the different simulation settings is summarized in Table 5.1 below. As shown

in the table, the CPSNR has increased quite a bit from the original algorithm. The YEF colour

space generally seems to require less average bits per pixel than the YUV colour space and by

that better compression ratio, but the SSIM has slightly decreased. The reduction in SSIM might

be the result of the YEF colour space removes more of the red components in the image

compared to the YUV, as shown in Figure 5.4 below.

Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS

Original algorithm 0.76527 96.8114 34.49 0.9818 3.3

YUV, a=0.9 0.71062 97.0391 37.4652 0.98244 3.2

YEF, a=0.9 0.62778 97.3843 37.8722 0.97367 3.3

YUV, a=0.8 0.76527 96.8114 37.425 0.98246 3.5

YEF, a=0.8 0.64754 97.3019 37.8484 0.97304 3.6

YUV, a=adaptive 0.73026 96.9572 37.5166 0.98254 3.5

YEF, a=adaptive 0.63738 97.3442 37.982 0.97341 3.6

Table 5.1 Simulation results from video 1.

Figure 5.4 Difference between reconstructed and original frame. YUV colour space to the left,

YEF to the right.

5.1.2 Simulation 2

The second simulation was performed with a video which had longer duration (~97sec) and

higher resolution (576x768 pixels) (Appendix A.2.2). The video is taken from an endoscopy

(not capsule) procedure, meaning a lot higher quality and more similar to RAW input image.

61

By the looks of it, the tissue is healthy, but a bit of fluid is seen, which reflects more light. A

black boarder surrounds the image, and a few tags are displayed in the frames as well, see

Figure 5.7 below. Note that the simulation video had a few empty frames at the end, so the last

few frames was omitted from the simulation. The performance of the original algorithm is

displayed below, in Figure 5.5.

Figure 5.5 Performance of original algorithm with second simulation video

As with the previous simulation, the performance increases towards the end, but with a few

spikes. This might be since the video freezes at some points resulting in static frames (increase

in performance), before the whole frame is shrunk down to the corner (high variation, decrease

in performance). This happens a few times when the operator of the endoscopy is capturing the

frames.

The structure of the performance measurements from the modified algorithm, is very similar to

the structure of the original algorithm, as seen in Figure 5.6 below. On a closer look, it’s clear

that the graphs are scaled (increased), which also reflects the average results shown at the end

of the subchapter in Table 5.2.

Chapter 5: Results

62

Figure 5.6 Performance of algorithm with YEF & adaptive prediction

Analysing the reconstructed movies, reveals that in the adaptive performance, a few bit errors

occur from the bright spots in some of the frames. These are explored more in the next

simulation (Section 5.1.3), where they are a lot more frequent. In this section, similarities and

differences in the reconstructed frames will be analysed further, and the source frame can be

seen below in Figure 5.7.

Figure 5.7 Source frame

63

Figure 5.8-5.11 below, shows the reconstructed frames with the different settings, as well as

the resulting frame from the original algorithm. The first noticeable difference is in the black

areas in the frames, where the YEF colour space produces red components mixed with black.

The result is that true black areas aren’t black. The black boarder around the frames, wouldn’t

be there in a WCE implementation, since the camera sensor doesn’t have an obstruction in front

of it. Most of the black areas would be from further down the GI tract where the reflected light

would be too weak to be able to see before the capsule arrives to that section. Based on this, the

colour transformation isn’t considered to have any major limitations compared to the YUV

space.

By a closer study, it is observable that the tissue areas in the middle, are a little greyer than in

the YUV colour space. On the opposite side, on the top right corner (of the tissue) the area is

greyer/greener in the frames with YUV space than in the YEF which are slightly red in that

area.

It is also observable that some of the darker regions in the middle of the tissue is slightly larger

with a prediction coefficient equal to 0.8 than with adaptive. Nonetheless, this is very difficult

to see in the in the unscaled versions, where it is easier to see the same regions in all of

simulations.

Figure 5.8 Reconstructed frame from original

algorithm

Chapter 5: Results

64

Figure 5.9 Reconstruced frames with a=0.8. YEF to the left and YUV to the right

Figure 5.10 Reconstruced frames with a=0.9. YEF to the left and YUV to the right

Figure 5.11 Reconstructed frames with adaptive prediction. YEF to the left and YUV to the

right

It is up to reader to decide which will have the highest subjectively score, which can be

compared to the subjective score from the author. Notice that it is easier to see differences in

the reconstructed videos than on the scaled frames (~40% of original frame size).

65

The objective scores (along with the authors opinion) are summarized in Table 5.2 below. Most

noticeable is the major difference in the average bitrate per pixel (and by that compression rate),

where 0.35bpp separates the best and the worst performing settings. At the same time, this is

considered among the highest scoring in the author’s subjective score. Generally, the YUV has

worse performance in energy consumption, but slightly better quality, than the YEF. Which

isn’t the subjective perceived opinion.

Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS

Original algorithm 1.0414 95.6607 32.1601 0.83279 3,0

YUV, a=0.9 0.84076 96.4968 34.2188 0.85463 3,2

YEF, a=0.9 0.70575 97.0594 33.3165 0.72331 3,3

YUV, a=0.8 1.0414 95.6607 34.15 0.83154 3,3

YEF, a=0.8 0.83594 96.5169 33.2427 0.71674 3,5

YUV, a=adaptive 0.7895 96.7104 34.1763 0.85975 3,3

YEF, a=adaptive 0.68755 97.1352 33.3114 0.72674 3,5

Table 5.2 Simulation results from video 2

5.1.3 Simulation 3

The third simulation was with a cropped video of a normal (healthy) oesophagus. Originally,

this video contained surrounding black area (same as the second simulation), and the goal was

to see how this would affect the simulation results. The simulation video is between the first

and second simulation video, in both length (~29.6 sec) and in resolution (430x378), details can

be found in Appendix A.2.3. As the specifications show, this video sequence has the MPEG-4

format (.mp4) which is different from the previous videos. Because of this, the simulation video

was also converted into the audio video interleave (.avi) format, in order to check if there were

any deviations in the results between these two formats. Simulation with the two different

formats was identical, therefore only one will be presented. The same variation in

settings/parameters is applied here, as in the previous two simulations. Figure 5.12 below show

the performance of the original algorithm.

Chapter 5: Results

66

Figure 5.12 Simulation result from original algorithm

Notice the high variation, and the drop in performance towards the end. This is expected since

there is high variation in the simulation video in this area. The endoscope passes from the

oesophagus and into the stomach. High difference in regions tends to decrease the performance

of predictive coding, since it relies on past samples to predict current one.

This particular simulation video has another feature, as it has quite a lot of different “errors”. It

was still chosen since the capsule can be exposed to the same errors. Errors in the simulation

video include bit errors, fluid hitting the camera, black frame, loss of focus and variation in

light intensity. Interestingly, at frame number 500, the reconstructed frame in the YEF colour

space is completely black (SSIM=0, Figure 5.13), but not in the YUV colour space. In the

source, that frame is very blurry, and it is impossible to see anything else than a monotone grey

image. This is also the case in YUV, but not in the YEF simulations (independent of the

prediction coefficient).

67

Figure 5.13 Simulation results with YEF & static a=0.8

All of the simulations with this video sequence, produced quite a bit of corrupted pixels,

especially in the luminance channel. These corrupted pixels propagate to neighbouring pixels,

and form square edges in horizontal and vertical lines, as shown in Figure 5.14. These can be

reduced a lot when applying error concealment, described in Section 3.3 [99].

Figure 5.14 Corrupted luminance pixel

In adaptive prediction coefficients, the number of corrupted pixels, and the size of the errors

increases quite a bit. Naturally, this happens since corruption propagates through the frames

Chapter 5: Results

68

more, and the prediction coefficient is calculated from the luminance component (Section 4.2).

This is very much reflected in the graphs of the performance of the adaptive prediction shown

in Figure 5.15 below.

Figure 5.15 Simulation results with YEF & adaptive prediction

 Table 5.3 below summarizes the different simulations done with video sequence 3. Note that

in the simulations with adaptive prediction, the quality seems better as long as no pixel is

corrupted (some frames). Unfortunately, this is few frames, making the overall score (both

objective and subjective) lower than for the simulations with constant prediction coefficient.

69

Settings BPP [bpp] CR [%] CPSNR [dB] SSIM OS

Original algorithm 0.52825 97.799 39.2525 0.98537 2,9

YUV, a=0.9 0.36903 98.4624 37.6099 0.97915 2,9

YEF, a=0.9 0.28866 98.7972 38.2481 0.94798 2,9

YUV, a=0.8 0.52825 97.799 38.9714 0.98367 3,2

YEF, a=0.8 0.40995 98.2919 39.0113 0.94866 3,3

YUV, a=adaptive 0.35975 98.501 31.9438 0.87474 2,3

YEF, a=adaptive 0.31426 98.6906 33.4076 0.8843 2,2

Table 5.3 Simulation results from video 3

5.1.4 Simulation 4

The fourth simulation was performed to investigate the impact the simulation videos would

have on the objective scores. Since the simulation videos is also compressed, this could affect

the objective results quite a lot. To examine this, the reconstructed video after simulation 1, was

recompressed. Table 5.4 below shows the result of compressing the compressed video with

different settings.

Settings BPP CR CPSNR SSIM

Original algorithm 0.64069 97.3304 36.4843 0.98888

YUV, a=0.9 0.6181 97.4246 39.7259 0.98905

YEF, a=0.9 0.5437 97.7346 41.231 0.98776

YUV, a=0.8 0.64227 97.3239 39.7516 0.9894

YEF, a=0.8 0.54038 97.7484 41.2313 0.9884

YUV, a=adaptive 0.61689 97.4296 39.8196 0.9893

YEF, a=adaptive 0.53949 97.7521 41.3225 0.98828

Table 5.4 Simulation results after compressing compressed video

Chapter 5: Results

70

Comparing Table 5.4 and Table 5.1, is it clear that the objective measures have increased in the

rerun. CPSNR has increased between 2dB and 3.5dB, bitrate per pixel has decreased with

approximately 0.11bpp and SSIM has increased by around 0.15. The subjective evaluation is

difficult, as it is quite hard to distinguish between the compressed and recompressed images, as

displayed below in Figure 5.16. Especially, when the whole video sequence is evaluated and

not only single frames.

Figure 5.16 Comparison between compressed (left), and recompressed (right) video.

Settings: static prediction at 0.8 and YEF colour space.

5.2 Part 2: Region-of-interest (ROI)

In this part, the results from implementing ROI encoding will be presented. Simulation of the

implementation is performed with each of the three simulation videos, with the YEF colour

space and adaptive prediction as the general settings. The results will afterwards be discussed

in Chapter 6.2.

The MATLAB code can be found in Appendix B. Note that the code isn’t optimized, and it is

possible to reduce the number of calculations performed. For this thesis, the important part was

to test if the proposed method would work and how good the results would be.

When analysing the results from the encoding, the first to look at was the difference between

the reconstructed frame and the input frame. Figure 5.17-5.19 shows this difference in the first

video (Appendix A.2.1), with YEF and YUV respectively. The YUV was included for viewing

purposes, since the YEF include red components in the difference. It is observable that inside

the ROI area, no high frequency components are shown. On the horizontal and vertical axis of

this region, less of the high frequency regions are shown than the surrounding areas of the

frame. This was as expected for the low complexity ROI coding, see Figure 4.2 in Section 4.3.

71

Notice that these partly high quality coded axis was more observable in the moving video

sequence than in still images.

Figure 5.17 Difference between reconstructed and input frame

video 1, with ROI coding, YEF & adaptive prediction.

Figure 5.18 Difference between reconstructed and input frame

video 1 , with ROI coding, YUV & adaptive prediction.

The ROI area is chosen according to (43), with values:

𝑅𝑂𝐼𝑝𝑜𝑠 = [100 100 40 24] (49)

In other words, the top left corner of the region is located at (100, 100) with a width of 40 pixels

and height of 24 pixels. This is 10% of the frame size for this video. If the frames are compared

to Figure 5.4, which shows the difference without ROI coding, some deviation is observable.

Outside the ROI area, it seems that more of the high frequency components are filtered than

Chapter 5: Results

72

before. This also shows in the CPSNR (33.12dB) and SSIM (0.9553) which is actually lower

with the ROI encoding.

Note that average bitrate and compression ratio won’t be calculated here. Since the script

calculates averages depending on the sampling rate over the whole frame, it would be a bit

complicated to correctly compute this effectively the way it is implemented at the moment. On

the other hand, it is possible to estimate the increase based on the increase in resolution. With

that ROI sized area, additional samples kept in luminance component is 9600 samples, and

12800 samples in each of the chrominance components. This results in a total of 35200

additional values to be coded and transmitted per frame as shown in (50), corresponding to

12.2% increase.

(
40

2
∙ 240 +

24

2
∙ 400) + 2 ∙ (

2∙40

3
∙ 240 +

2∙24

3
∙ 400) = 35200 (50)

The simulation results from the other two videos shows similar results as the first one; deviation

from part 1. CPSNR and SSIM decreased in the second video, however, in the third video the

CPSNR and SSIM increased quite a lot. The CPSNR increased by nearly 6.9dB and SSIM was

raised by 0.072. When investigating the reconstructed movie, it showed that the amount of bit

errors was drastically reduced compared to part 1, as seen comparing Table 5.3 and Table 5.5.

Simulation CPSNR SSIM

Video 1 33.1205 0.9553

Video 2 30.5174 0.71724

Video 3 40.2831 0.95677

Table 5.5 CPSNR & SSIM results from ROI encoding

If the subjective opinion is considered instead of the objective the results are generally better.

It is mostly very difficult to observe the reduction in the videos, except for fewer bit errors. This

can be seen when comparing two frames together, as shown in Figure 5.19, below. The text

“Name:” is actually readable since it is in the ROI area, but it isn’t readable in the frame from

simulation 2 (Section 5.1.2). In some very fast moving sections of the videos, it seems that the

proposed scheme has some problems, where the axis of the region show in reconstructed image

as well (similar to the difference shown in Figure 5.17).

73

It is presumed from this, that there might be a small problem with the implemented performance

evaluation and/or some other part of the implementation process. This topic will be discussed

more in Chapter 6.2.

Figure 5.19 Comparison of reconstruced image with and without ROI. ROI encoding to the

left, and without to the right. Both with YEF and adaptive prediction.

Chapter 5: Results

74

75

6 Discussion

In Sections 6.1-6.2, the results from Chapter 5 will be discussed, before a brief complexity and

sources of errors analysis is presented in Sections 6.3-6.4.

The proposed method will thereafter briefly be compared with other WCE schemes in Section

6.5. In Subchapter 6.6, a brief comparison with video encoding instead of image encoding is

discussed, before hardware implementation is discussed in the subsequent section (6.7).

6.1 Part 1: Algorithm

Analysing the results from Section 5.1, one can in general see that the modified algorithm has

increased performance compared to the original. Different settings give different results, and is

highly dependent on the input video (shown in 5.1.4, Simulation 4). Firstly, the two different

colour space will be compared before the prediction, and lastly the further possibilities.

Comparing the YEF and YUV colour space reveals that they have some similarities and some

differences. Generally, the YEF is more energy efficient by reducing the average bitrate

compared to YUV, but it “removes” black components. The tissues are slightly greyer, while

the black areas contain red components. If ROI encoding and/or post-processing is applied, this

reduction in red components could affect the result. Especially, if the post-processing analyses

images by looking at reflected light intensity due to the variation of haemoglobin (Section 2.1.3

& 4.4). Simulating this effect is beyond the scope of the thesis, but would be something to

consider. On the plus side, the average bitrate has decreased quite a bit by utilizing the YEF

colour space instead of YUV. In other words, every transmitted frame uses less bits which saves

energy consumption.

Less energy consumption is very favourable in the capsule as this allows for additional

functionality and/or higher quality without changing the hardware. Quality increasing settings

can be higher framerate or resolution. Additional functionality can be a second sensor (for

instance, pH measuring sensor or ultrasound) or it can be error correcting codes (parity bit-

/hamming codes, described in Section 3.3).

Error-correcting codes could be advantageous if a feedback loop is included since bit errors

will propagate through the frames the same way BA DPCM does with pixel values (Section

2.4.3 & 4.2). Adapting the prediction coefficient showed this propagation of the bit errors in

Simulation 3. Bit errors are in practice unavoidable when transmitting over a wireless channel,

but errors can occur in compression schemes as well.

Chapter 6: Discussion

76

This is especially true with RLE coding (Section 2.6.3) which is very susceptible to bit errors

since it has variable code-word length. Errors produced by the quantization will propagate

through the system, resulting in a string off decoded errors. By reducing the number of

quantized values that is coded together, the robustness would increase on the cost of higher

bitrate (and higher energy consumption). It is expected that the propagating errors in the

feedback loop would be less by applying the post-processing error correcting described in

Section 3.3 [99].

Evaluating the feedback loop gives some important results. If the results from the first and

second simulations is considered (Table 5.1 & Table 5.2), it can be seen that the quality

measurements are approximately the same for adaptive and static prediction coefficient.

However, the average bitrate per pixel has decreased, especially when the longer video is

analysed instead of the short one. This is expected because adaption in the prediction coefficient

will reduce the error and by that increase the number of successive equal values. Since

consecutive values are grouped together in RLE encoding, this will reduce the average bitrate

(Section 2.6.3).

Analysing the result in the third simulation (Table 5.3), on the other hand, show a decrease in

performance as mentioned. In other words, adaptive prediction is dependent on the quality of

the received frames. When the quality is sufficient for the adaptive prediction it seems to work

better, especially with higher variation in the frame (e.g. not homogeneous frames).

Because all of the processing (finding the new prediction coefficient) is done at the decoder,

additional calculations are possible and might increase the results even more. For instance, can

only the non-corrupted pixels are used to update the coefficient, which can be combined with

the error concealment and post-processing described earlier.

One of the important criteria in this application was to not increase the complexity and

hardware. Since antennas are bidirectional in nature, this is maintained. The feedback loop can

include many other parameters as well. As mentioned in Chapter 3, these can be variation in

framerate, resolution, filter (in the MR part), or quantization steps. All of these will increase the

energy consumption, but also increase the quality. The advantage with these is that they can be

increased in some regions and decreased in others, giving an average energy consumption

which can still be the same (or lower if chosen). This idea was investigated in a previous work

(mentioned in Section 3.4), where the sampling rate in the MR was changed over different

frames. As mentioned earlier (Section 4.3), this can also be done within the frames to create a

ROI.

77

6.2 Part 2: ROI

Analysing the results from Chapter 5.2, the proposed method seems to be performing as

expected, especially when studying the reconstructed videos. The ROI area includes all of the

high frequency components, which are normally filtered out, but it also includes more on the

horizontal and vertical axis of this area. This is exactly as expected, as described in Section 4.3.

The advantage with this kind of implementation is that no additional memory is required, and

nearly no additional computations. The only calculation needed at the encoder is to calculate

when to change the rate within a frame. This can be optimized and minimized compared to the

current implementation, since the main goal in this thesis was to explore the idea.

Every calculation needed in order of locating the placement of the ROI area, is performed at

the decoder, which then transmits the position back to the encoder in the feedback loop. As

mentioned in the previous section (Section 6.1), it is uncertain how the removal of some red

components in the YEF colour transform might affect finding the exact location of the region.

Especially if this is based on the reflection of the light intensity by the protein haemoglobin.

Comparing the proposed method to other ROI encoding techniques, there are some differences.

Other schemes often use DCT or wavelet transformation which requires additional memory and

calculations. These methods extract the region or code only in the region with higher quality,

depending on the specifications. The advantage with these methods is that no sections of the

image that exceeds the ROI area will have to be coded with higher quality [100]. In other words,

this reduces the required bitrate and the number of pixels to be coded in higher quality. This

can reduce the energy consumption and the bandwidth compared to the proposed method, which

can be a very limiting factor. However, it requires quite a bit more from the encoder, which is

the main limiting factor in the WCE application. It is still uncertain how much the savings in

computations together with the extra high quality pixels affects the total energy consumption,

compared to the other methods.

As seen in the results from Chapter 5.2, there is some deviation from the expected evaluation

measurements, compared to the results from Chapter 5.1. The scores were lower in two of the

simulation videos, but higher in the third. When analysing the reconstructed videos, it was

observable that the bit errors were reduced in the simulations, especially compared to the third

simulation video. This might be due to the fact that more of the luminance component is kept

(not filtered) along the whole column of the frame, resulting in larger variation in the values in

that area. Since the prediction is done over a row, and quantized, fewer values will be rounded

to zero. In other words, fewer bit errors will propagate through the scheme in the SR encoder.

Chapter 6: Discussion

78

On the other hand, in fast-changing frames, especially in bright areas, it seems that the ROI

encoding might be having some difficulties. The axis seems to be corrupted in a few frames,

which might explain the reduction in some of the objective scores. One possible reason might

be that more of the high frequency is kept on the axis, which creates some corruption when the

decimation/interpolation in the other direction is applied. This problem might be solved by

optimizing the code some more. For instance, by improving the implemented interpolation

method, since currently a built in function in MATLAB is used. This function utilizes a simple

low-pass filter between the samples to create the new one in the interpolation process. It is

believed that this filtering might be the reason for the errors, but the concern in this thesis was

to simply test the proposed principle.

The main focus with the proposed system was the encoder process, and not the decoder. This

seems to work in general, but it might need some improvements in the implementation process,

especially concerning the energy evaluation. The average bit rate per pixel only calculates based

on constant sampling rate over the whole frame, which then will be nearly identical or lower.

Naturally, this isn’t correct since more pixels are transmitted with higher quality, so this will

have to be tested when working with this further. For now, the complexity of the whole system

will be examined further.

6.3 Complexity

The computational complexity of the proposed algorithm is very low. Especially the encoder is

very energy efficient, since every additional computations is performed at the decoder.

Compared to the original scheme, only a small module has to be added to the endoscope. This

is the listening module, which will listen for incoming signal from the decoder for parameter

update. Average bit per pixel has in this scheme been reduced by between 0.12-0.35 depending

on which simulation video is used (Section 5.1), which will more than enough compensate for

the additional listening module.

The feedback loop also allows for changes in the sampling rate which can reduce the bitrate

more. This can either be performed in all colour components (YEF), or only reduce the

subsampling in the chrominance components. Decreasing the sample rate will additionally

reduce the bitrate, but will also decrease the quality. At the same time, the algorithm has the

same complexity with this functionality, as the proposed.

The complexity of ROI encoding is also low, since no additional memory and nearly no

computations is needed at the encoder. Additional computations are only needed in the higher

79

quality areas, since these contains more pixels and aren’t low-pass filtered. The extra pixels

make the decimated frames larger than originally, but they increase the quality. Importantly,

this is an optional functionality, so it can be active in only part of the capsule’s whole journey

through the GI tract. Every calculation in finding the region is done at the decoder, which then

sends 4 integer values to the encoder; x and y position, as well as width and height.

The decoder has, on the other hand, higher complexity than before. More calculations are

performed in both adapting the parameters and finding ROI region. Since the decoder has

“unlimited” power compared to the encoder, this isn’t considered a problem or within the scope

of this thesis. As mentioned (Chapter 4), the focus will instead be at the encoder side, and the

simulations performed to analyse the performance. However, these simulations can potentially

have some sources of errors.

6.4 Error sources

As with every experiments and simulations, error sources are present resulting in deviation from

the actual performance. The most obvious source of error or deviation, is the simulation videos.

Performance evaluation is highly dependent on the input video, especially since every video is

compressed (not in RAW format). This was shown in the fourth simulation (Section 5.1.4),

where the recompression of the compressed simulation video had increase between 2-3.5dB in

CPSNR, bitrate per pixel decreased by 0.11 and SSIM increased by 0.15. Naturally, the

recompressed video wasn’t of a higher quality than the input source, but the objective score

would indicate that it was. Based on this principle, comparison between other encoding schemes

for the WCE is quite difficult, since different simulation videos is used by different researchers.

Objective performance measurements can only be compared when the simulation videos are

identical29. However, a theoretical comparison can be analysed to try to get some pointers to

how good performance is compared to other schemes, which will be presented in Section 6.5.

Similarly, the simulation videos can have negative impact compared to other simulation videos,

as presented in 5.1.3. The cropped, recoded video (performed manually), resulted in a lot of bit

errors from the quantization. This didn’t happen at this degree in other simulations, which

resulted in significantly reduction in performance. As mentioned (Section 6.1), RLE is very

susceptible to bit errors, and with a feedback loop these might propagate. It is expected these

wouldn’t affect the performance if RAW images is used instead of converted videos, but should

29 This was the case with the comparison with the performance measurements of original algorithm, shown in

Section 5.1.

Chapter 6: Discussion

80

be taken into account when implementing. Especially since the channel will also introduce bit

errors (Section 3.2), resulting in deviation from measured performance.

Deviation from actual implemented performance, can also be caused by the programming

language used in the simulations. The simulations are performed with MATLAB, which has

the advantage that it has very good matrix handling. Colour images can simply be regarded as

three separate matrices (one for each colour channel), which can make MATLAB particularly

well suited for image processing simulations. On the other hand, this language isn’t directly

implementable on a microchip, so translation into another programming language (for instance

C or C++) is required. This might affect the performance results presented in this thesis, but

generally, C/C++ is a more energy efficient programming language. This topic is discussed a

bit further in Section 6.7.

6.5 Comparison

Comparing the performance in the proposed scheme with other schemes is quite difficult,

without access to the identical simulation video or algorithm. A theoretical approach, on the

other hand, is possible. The building blocks in the image compression scheme (Section 2.2.2),

will be briefly evaluated by comparison with other methods.

Generally, wavelet transformation is slower and requires more computations than DCT or

prediction, and has thus not gained full acceptance in most video coding standards (except in

JPEG2000, which is used at digital cinemas) [15, 107]. DCT is more well established (used in

JPEG [56]), but it still requires quite a bit of calculations (Section 2.4.1). This would require

too much in an WCE application, but a simplified version called integer based DCT (iDCT30)

has been used [50, 108, 109]. In this version of the transform, quantization might be redundant

since this transform already constitutes loss. iDCT has been proven quite effective, but it does

require additional temporary storages, since the frames are divided (tiled) into 8x8 blocks or

similar block sizes. At low bitrates this will result in blocking artefacts in reconstructed frames,

which is very noticeable and it gives poor quality [15]. Predictive coding prevents this blocking

artefact, but it can be subject to degradation of compression performance when compressing at

lossless or near-lossless [110]. A possible solution would be to apply some pre-processing,

however, all of this results in an increase in complexity and energy consumption compared to

the proposed algorithm. This is because most compression schemes for WCE usually has

around 80-85% CR, while the proposed method has around 95-97% (depending on settings).

30 Not to be confused with inverse DCT (IDCT).

81

Notice that some of these other schemes do have higher PSNR, but this is again very related to

the source video used in simulations.

An advantage with the integer based DCT is that the quantization part can be omitted, partly

since it is embedded inside the DCT transformation. The same principle can be done at entropy

encoder by including a threshold together with the RLE. Neither results in lossless compression

(still rounding at some point), but can reduce delay in the image compressor [109].

Additionally, this can be more advantageous if the compression scheme is to be near-lossless,

but this is highly dependent on the available power capacity in the WCE.

Entropy coding is often combined with the different coding schemes (Section 2.6), which has

different advantages and disadvantages. Generally, RLE is very efficient if there isn’t a lot of

variation in the coefficients, but it is susceptible to bit errors. Some combines RLE (zero

coefficients) with Huffman or adaptive Golomb-Rice (AGR) (nonzero coefficients) [109, 111],

similar to the JPEG standard [56], and some uses Lempel-Ziv (LZ) coding [112]. Common

features among these methods are to minimize energy consumption, while maximizing quality.

SR encoding has generally less storage and computational requirements than LZ, Huffman or

AGR, but it is more compromised to bit errors. Especially, with the use of DZ quantizer which

is used in the proposed scheme, the SR encoding won’t necessary be the most suitable if this

quantizer was omitted.

Avoiding the need for temporary storages or excessive computations will result in significant

energy savings. However, most image compression standards don’t focus on this. Generally, in

many commercial applications, the encoder is the most complex part, and the decoder and

available bit stream (bandwidth) is the limiting factor (for instance, mobile telephone system).

This means that most standards don’t have this high focus on very low power encoder savings,

which is partly why it is an image- and not video compression scheme that is proposed (see

next section).

6.6 Video Encoding

In this section, a brief comparison between the algorithm at hand, and video coding schemes

will be presented.

In general, every video coding scheme consists of an image coder, video coder and audio coder.

Obviously, audio coding isn’t relevant in this application, and can be omitted (often optional).

Video coding, on the other hand, is relevant. The main concept in a video coder compared to

an image coder is to exploit correlation between frames instead of between pixels (described in

Chapter 6: Discussion

82

3.1.1.3), to reduce the required bitrate for each frame [15]. Because of the high correlation

between the frames, prediction (Section 2.4.3) can be applied between the frames, especially in

endoscopic images since the variation is very little. This is the same concept which is done in

MPEG31 standard, which utilizes both forward and backward prediction between frames. In

addition, motion estimation and compensation (creating a motion vector (MV)) is done to

estimate where areas or objects32 in the frames will be in the next frame. The prediction is done

over a group of pictures (GOP), which lowers the required bitrate, but this also has some

disadvantages.

Prediction between frames introduces a delay equal to the GOP, i.e. more memory because of

storage of the frames is required [15, 113]. Additionally, a lot more calculations is required,

especially if motion estimation is performed. In total, this means that more storage (memory)

is required, more components and more computations, i.e. more energy and physical hardware

space is required. The capsule has limitations in all of these areas, but this would reduce the

bitrate. In general, will there always be a trade-off between complexity (and bitrate) and quality.

Increasing the quality will always also increase the complexity of the algorithm, and by that

required energy/space.

Video encoding, instead of image encoder, is very dependent on the available hardware. If

development in hardware (minimization in components, higher battery capacity, etc.) allows

for a more complex algorithm, video encoding should be considered. Because of this high

dependency on physical hardware, this is beyond the scope of the thesis but should be

considered in future development.

6.7 Hardware Implementation

The algorithm is intended for implementation in an actuall WCE system, and the total energy

consumption will highly depend on this process. The simulations are, as mentioned, done in a

high level programming language. This has good matrix handling properties, but isn’t very

energy efficient or directly translatable. A translation is therefore necessary into an efficient

language (for instance C++ or C#), which may affect the simulation results presented in this

thesis.

In an implementation, the biggest change in the system is the additional listening module

introduced. This allows for the system to listen for incoming signals from the RF antenna, which

31 Movie Picture Expert Group (http://mpeg.chiariglione.org/)

32 This can be done over a block (or tile), homogenous regions or a whole object.

http://mpeg.chiariglione.org/

83

can be used for updating the parameters. This means that no hardware change is required when

implementing, because of the antennas bidirectional properties. However, energy efficient

hardware has a great impact on the energy consumption, and current hardware should be

evaluated since more energy efficient hardware constantly arrives.

In addition to the simulation algorithm, an effective channel coding may be required, together

with a proper channel modelling (Section 3.2). A joint source-channel coding may be beneficial

for low complexity modulation, and may be combined with SR encoding. Since SR encoding

uses a 2-bit symbol representation, but varies in lengths, additional packing of the data stream

can be combined with the channel encoding. Optimum channel coding (in complexity vs

probability in transmission error) may depend on the chosen transmission method, as UWB and

narrowband (NB) is different, and may have requirements in the channel modelling.

The specifics of the mentioned topics, is beyond the scope of this thesis but is highly relevant

in a system implementation, and should be taken into consideration.

Chapter 6: Discussion

84

85

7 Conclusion

In this thesis an analysis of the algorithm used in the wireless video capsule endoscopy was

investigated in order to find improvement potentials to increase the received image quality.

Because there always is a trade-off between received quality and complexity in image encoders,

a good solution was to reduce the average energy consumption for each transmission. With the

use of the YEF colour space and adaptive prediction coefficients, the average energy

consumption was reduced and the quality was slightly increased. Energy reduction was mainly

measured in average bit per pixel, which decreased by between 0.12-0.35bpp depending on the

input simulation video. The reduction in the average energy consumption will allow for higher

resolution, frame rate or quality, or additional sensors on the WCE. The results were highly

dependent on source video, so the results might differ in a real implementation.

A very low complexity ROI coding scheme was proposed for this application, which is based

on adaptive sampling rate within the frames. This creates a kind of locally adaptive resolution

(LAR), but don’t require any additional memory, or calculations compared to other ROI

encoding schemes. Every calculation to locate the position of the regions are performed at the

decoder, and the position is transmitted in a feedback loop to the encoder. This method doesn’t

require any hardware changes (except for a listening module), since antennas are bidirectional

in nature, resulting in an energy effective scheme.

The proposed ROI encoding scheme generally work as expected, but it seems that the decoding

process has some troubles in the interpolation process outside the ROI area. This might be

because of the low-pass filtering in the process doesn’t work optimally with variation in the

sampling rate. The implementation process will require more investigation to make it work

optimal in a real application. Especially in evaluating the increase in the energy consumption

produced by the ROI encoding.

Chapter 7: Conclusion

86

7.1 Future work

Even though some satisfying results have been given in this thesis, it is recommended to further

work on this topic before implementing in a system for clinical trials. In the following section,

some recommended suggestions from the author are presented, beyond the previously described

hardware implementation (Section 6.7).

The main problem that haven’t been addressed in this thesis considers finding the particular

ROI area. It has been mentioned (Section 2.1.3 & Chapter 4) a possible solution to finding the

region, and this should be further investigated. A problem that could arise in this area, is the

use of YEF colour transform instead of YUV. YEF requires less energy, and it gets better SNR,

however, it also has a bit less SSIM and removes some of the red colour components. This

could affect the ROI finding algorithm if it relies on reflected light from different parts of tissue.

Another problem that could arise is if the received image is of too low quality (too much

distortion or bit errors). Finding the region could be a difficult challenge then, and it should be

investigated how reliable the algorithm is with different quality settings.

A weakness in the presented results are the actual simulation videos. These differ from the

captured images from the CMOS sensor, and therefore the results will differ too. As shown in

Table 5.4 (p. 69), compression of a compressed image/video will affect the result. It is

recommended to perform further verification of the algorithm using RAW image data to explore

the quality difference reliable. The results from this further verification will determine the total

energy consumption, and thereby the allowed resolution/image quality parameters.

The implemented ROI scheme generally works as expected at the encoder, but it seems to

struggle at the decoder. It should be investigated how the interpolation process can be

optimized, specifically how the filtering process is performed in the built in function.

Additionally, the energy evaluation, in the increase in bitrate should be modified to concerning

adaptive sampling rate within the frame. At the moment it only evaluates as an average with

constant sampling rate over the whole frame.

The ROI coding algorithm could be further developed by investigating if the quantization part

in that region can be omitted (making the region near-lossless). It is uncertain how much this

will affect the battery compared to the received quality in that area.

87

8 Bibliography

[1] GivenImaging. (2016, 6.6.2016). Capsule Endoscopy: PillCam® SB 3 [Web Page]. Available:

http://www.givenimaging.com/en-int/Innovative-Solutions/Capsule-Endoscopy/Pillcam-

SB/PillCam-SB-3/Pages/default.aspx

[2] E. Scapa, H. Jacob, S. Lewkowicz, M. Migdal, D. Gat, A. Gluckhovski, et al., "Initial experience

of wireless-capsule endoscopy for evaluating occult gastrointestinal bleeding and suspected

small bowel pathology," The American Journal of Gastroenterology, vol. 97, Issue: 11, pp.

2776-2779, Nov. 2002. Doi:10.1111/j.1572-0241.2002.07021.x

[3] N. Clearinghouse. (2013, 19.04.2016). The Digestive System and How It Works. National

Institue of Diabetes and Digestive and Kidney Diseases (NIDDK) NIH Publication No. 13–2681

1-8. Available: http://www.niddk.nih.gov/health-information/health-topics/Anatomy/your-

digestive-system/Documents/Digestive_System_508.pdf

[4] C. Ell, S. Remke, A. May, L. Helou, R. Henrich, and G. Mayer, "The First Prospective

Controlled Trial Comparing Wireless Capsule Endoscopy with Push Enteroscopy in Chronic

Gastrointestinal Bleeding," Endoscopy, vol. 34, Issue: 9, pp. 685-689, Sep. 2002.

Doi:10.1055/s-2002-33446

[5] J. R. Saltzman, A. C. Travis, and R. S. Tilson. (2012, 06.06.2016). American College of

Gastroenterology (ACG): Small Bowel Bleeding and Capsule Endoscopy (3 ed.) [Web Page].

Available: http://patients.gi.org/topics/capsule-endoscopy/

[6] B. Krans and S. Kim. (2015, 10.06.2016). HealthLine - Endoscopy: Purpose, Procedure &

Types [Webpage]. Available: http://www.healthline.com/health/endoscopy#Overview1

[7] A. N. Kim, T. A. Ramstad, and I. Balasingham, "Very Low Complexity Low Rate Image Coding

for the Wireless Endoscope," ISABEL '11 Proceedings of the 4th International Symposium on

Applied Sciences in Biomedical and Communication Technologies, 2011.

[8] A. Perkis, "Compression," presented at the TTT4135: Multimedia signal processing, lecture,

NTNU, Trondheim, 2016.

[9] R. Chávez-Santiago and I. Balasingham, "Ultrawideband Signals in Medicine [Life Sciences],"

IEEE Signal Processing Magazine, vol. 31, Issue: 6, pp. 130-136, Oct. 2014.

Doi:10.1109/MSP.2014.2340234

[10] D. Porcino and W. Hirt, "Ultra-Wideband Radio Technology: Potential And Challenges

Ahead," IEEE Communications Magazine, vol. 41, Issue: 7, pp. 66-74, July 2003.

Doi:10.1109/MCOM.2003.1215641

[11] X. Fang, H. Liu, G. Li, Q. Shao, and H. Li, "Wireless Power Transfer System for Capsule

Endoscopy Based on Strongly Coupled Magnetic Resonance Theory," 2011 IEEE International

Conference on Mechatronics and Automation, pp. 232-236, Aug. 2011.

Doi:10.1109/ICMA.2011.5985662

[12] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, "A Two-Hop Wireless Power Transfer

System With an Efficiency-Enhanced Power Receiver for Motion-Free Capsule Endoscopy

Inspection," IEEE Transactions on Biomedical Engineering, vol. 59, Issue: 11, pp. 3247-3254,

Nov. 2012. Doi:10.1109/TBME.2012.2206809

[13] E. V. Bø, "Trådløs Kapselendoskopi - Adaptiv koding for områdetilpasning," TTT4510

Fordypningsprosjekt, Fakultet for informasjonsteknologi, matematikk og elektroteknikk,

NTNU, 2015.

[14] G. Pan and L. Wang, "Swallowable Wireless Capsule Endoscopy: Progress and Technical

Challenges," Gastroenterology Research and Practice, vol. 2012, pp. 1-9, Oct. 2011.

Doi:10.1155/2012/841691

[15] A. Perkis, "Visual Compression," presented at the TTT4135: Multimedia signal processing,

lecture, NTNU, Trondheim, 2016.

http://www.givenimaging.com/en-int/Innovative-Solutions/Capsule-Endoscopy/Pillcam-SB/PillCam-SB-3/Pages/default.aspx
http://www.givenimaging.com/en-int/Innovative-Solutions/Capsule-Endoscopy/Pillcam-SB/PillCam-SB-3/Pages/default.aspx
http://www.niddk.nih.gov/health-information/health-topics/Anatomy/your-digestive-system/Documents/Digestive_System_508.pdf
http://www.niddk.nih.gov/health-information/health-topics/Anatomy/your-digestive-system/Documents/Digestive_System_508.pdf
http://patients.gi.org/topics/capsule-endoscopy/
http://www.healthline.com/health/endoscopy#Overview1

Chapter 8: Bibliography

88

[16] N. Clearinghouse. (2014, 10.06.2016). Crohn's Disease. National Institue of Diabetes and

Digestive and Kidney Diseases (NIDDK) NIH Publication No. 14–3410, 1-16. Available:

http://www.niddk.nih.gov/health-information/health-topics/digestive-diseases/crohns-

disease/Documents/Crohns_508.pdf

[17] WebMD and J. Robinson. (2014, 21.04.2016). Digestive Disorders Health Center: The

Digestive System [Web Page]. Available: http://www.webmd.com/digestive-

disorders/digestive-system

[18] T. Taylor. (21.04.2016). InnerBody: Digestive System [Web Page]. Available:

http://www.innerbody.com/image/digeov.html

[19] C. Blakemore and S. Jannett. (2001, 10.06.2016). Encyclpoedia: Pharynx [Web Page].

Available: http://www.encyclopedia.com/doc/1O128-pharynx.html

[20] T. Eisner and B. Raton. (2014, 21.04.2016). MedlinePlus - U.S. National Library of Medicine:

Digestive diseases [Web Page]. Available:

https://www.nlm.nih.gov/medlineplus/ency/article/007447.htm

[21] W. E. Whitehead. (2001, 21.04.2016). IFFGD: Gastrointestinal Motility Disorders of the Small

Intestine, Large Intestine, Rectum, and Pelvic Floor [Web Page]. Available:

http://www.iffgd.org/store/viewproduct/162

[22] N. J. Talley, "Functional gastrointestinal disorders as a public health problem," Wiley Online

Library, vol. 10, Issue: Supplement s1, pp. 121-129, 8. April 2008. Doi:10.1111/j.1365-

2982.2008.01097.x

[23] IFFGD. (2015, 21.04.2016). Functional GI Disorders [Web Page]. Available:

http://www.iffgd.org/site/gi-disorders/functional-gi-disorders/

[24] IFFGD. (2016, 21.04.2016). About GI Motility [Web Page]. Available:

http://www.aboutgimotility.org/

[25] IFFGD. (2015, 21.04.2016). Motility Disorders [Web Page]. Available:

http://www.iffgd.org/site/gi-disorders/motility-disorders/

[26] IFFGD. (2014, 21.04.2016). Other Disorders [Web Page]. Available:

http://www.iffgd.org/site/gi-disorders/other/

[27] J. Hopkins. (22.04.2016). Health Library: Digestive Diagnostic Procedures [Web Page].

Available:

http://www.hopkinsmedicine.org/healthlibrary/conditions/digestive_disorders/digestive_diagn

ostic_procedures_85,P00364/

[28] K. Najarian and R. Splinter, "Introduction; Signal and Biomedical Signal Processing; Image

Filtering, Enhancement and Restoration," in Biomedical Signal and Image Processing, 2nd ed

Richmond, Virginia: CRC Press, 2012, pp. xxi-xxv; 3-13; 39-61.

[29] K. Najarian and R. Splinter, "X-Ray Imaging and Computed Tomography; Magnetic Resonance

Imaging," in Biomedical Signal and Image Processing, 2nd ed Richmond, Virginia: CRC Press,

2012, pp. 261-307.

[30] NHS. (2015, 12.06.2016). National Health Service (NHS): Laparoscopy (Keyhole Surgery)

[Web Page]. Available: http://www.nhs.uk/conditions/laparoscopy/Pages/Introduction.aspx

[31] NHS. (2014, 12.06.2016). National Health Service (NHS): Endoscopy [Web Page]. Available:

http://www.nhs.uk/conditions/Endoscopy/Pages/Introduction.aspx

[32] WebMD and M. Ratini. (2015, 23.04.2016). Digestive Disorders Health Center: Digestive

Diseases and Endoscopy [Web Page]. Available: http://www.webmd.com/digestive-

disorders/digestive-diseases-endoscopy

[33] I. Balasingham and H. Fouladi, "Mini Project description: Compensating for zooming/panning

and intensity variations in colonoscopy videos," presented at the TTT23: Biomedical Signal and

Image Processing and Communications, Trondheim, 2015.

http://www.niddk.nih.gov/health-information/health-topics/digestive-diseases/crohns-disease/Documents/Crohns_508.pdf
http://www.niddk.nih.gov/health-information/health-topics/digestive-diseases/crohns-disease/Documents/Crohns_508.pdf
http://www.webmd.com/digestive-disorders/digestive-system
http://www.webmd.com/digestive-disorders/digestive-system
http://www.innerbody.com/image/digeov.html
http://www.encyclopedia.com/doc/1O128-pharynx.html
https://www.nlm.nih.gov/medlineplus/ency/article/007447.htm
http://www.iffgd.org/store/viewproduct/162
http://www.iffgd.org/site/gi-disorders/functional-gi-disorders/
http://www.aboutgimotility.org/
http://www.iffgd.org/site/gi-disorders/motility-disorders/
http://www.iffgd.org/site/gi-disorders/other/
http://www.hopkinsmedicine.org/healthlibrary/conditions/digestive_disorders/digestive_diagnostic_procedures_85,P00364/
http://www.hopkinsmedicine.org/healthlibrary/conditions/digestive_disorders/digestive_diagnostic_procedures_85,P00364/
http://www.nhs.uk/conditions/laparoscopy/Pages/Introduction.aspx
http://www.nhs.uk/conditions/Endoscopy/Pages/Introduction.aspx
http://www.webmd.com/digestive-disorders/digestive-diseases-endoscopy
http://www.webmd.com/digestive-disorders/digestive-diseases-endoscopy

89

[34] ASH. (2016, 23.04.2016). American Society of Hematology: Blood Basics [Web Page].

Available: http://www.hematology.org/Patients/Basics/

[35] N. G. Roald, "Estimation of Vital Signs from Ambient-Light Non-Contact

Photoplethysmography," Msc., Department of Electronics and Telecommunications, NTNU,

Trondheim, 2013.

[36] Å. Rustand, "Ambient-light Photoplethysmography," Msc., Department of Electronics and

Telecommunications, NTNU, Trondheim, 2012.

[37] J. D. Gibson, T. Berger, T. Lookabaugh, D. Lindbergh, and R. L. Baker, "Introduction to Data

Compression; Lossless Source Coding; Quantization," in Digital compression for multimedia,

principles & standards, 1st ed: Morgan Kaufmann publishers, 1998, pp. 1-138.

[38] A. S. Hornby, Oxford Advanced Learner's Dictionary, 7th edition. Oxford: Oxford University

Press, 2005.

[39] B. Girod. (2000, 30.04.2016). Stanford University - EE368B: Image and Video Compression

[Web Page]. Available: http://web.stanford.edu/class/ee368b/handouts.html

[40] B. Girod. (2000, 30.04.2016). Rate Distortion Theory. EE368B: Image and Video Compression

4. Available: http://web.stanford.edu/class/ee368b/Handouts/04-RateDistortionTheory.pdf

[41] C. E. Shannon, "Probability of error for optimal codes in a Gaussian channel," The Bell System

Technical Journal, vol. 38, Issue: 3, pp. 611-656, 1959.

[42] B. Girod. (2000, 30.04.2016). Lossless Coding. EE368B: Image and Video Compression 2.

Available: http://web.stanford.edu/class/ee368b/Handouts/02-LosslessCoding1.pdf

[43] D. Gunduz, E. Erkip, A. Goldsmith, and H. V. Poor, "Source and Channel Coding for Correlated

Sources Over Multiuser Channels," IEEE Transactions on Information Theory, vol. 55, Issue:

9, pp. 3927-3944, September 2009.

[44] C. Christopoulos, A. Skodras, and T. Ebrahimi, "The JPEG2000 Still Image Coding System:

An Overview " IEEE Transactions on Consumer Electronics, vol. 46, Issue: 4, pp. 1103-1127,

November 2000. Doi:10.1109/30.920468

[45] J. Lodriguss. (2015, 05.05.2016). Catching the Light: How Digital Cameras Work [Web Page].

Available: http://www.astropix.com/HTML/I_ASTROP/HOW.HTM

[46] S. McHugh. (05.05.2016). Cambridge in Colour: Digital Camera Sensors [Web Page].

Available: http://www.cambridgeincolour.com/tutorials/camera-sensors.htm

[47] A. Ford and A. Roberts. (1998, 05.05.2016). Color Space Conversions. Charles Poynton: Color

Technology, 1-31. Available: http://www.poynton.com/PDFs/coloureq.pdf

[48] A. Wong. (2011, 05.05.2016). University of Waterloo: SYDE 575 -Image Processing [Web

Page]. Available: http://www.einfodaily.com/piTunez/syde575.htm

[49] D. Turgis and R. Puers, "Image compression in video radio transmission for capsule

endoscopy," Elsevier & Sensors and Actuators A: Physical, vol. 123-124, pp. 129-136, Sep.

2005. Doi:10.1016/j.sna.2005.05.016

[50] A. Mostafa, T. H. Khan, S.-B. Ko, and K. Wahid, "Efficient color space-based compression

scheme for endoscopic images," IEEE - Information Science, Signal Processing and their

Applications (ISSPA), 2012 11th International Conference on, pp. 83-86, 2012.

Doi:10.1109/ISSPA.2012.6310670

[51] T. Khan and K. Wahid, "Design of a Lossless Image Compression System for Video Capsule

Endoscopy and Its Performance in In-Vivo Trials," Sensors, vol. 14, Issue: 11, pp. 20779-20799,

2014. Doi:10.3390/s141120779

[52] V. Schwambach, S. Cleyet-Merle, A. Issard, and S. Mancini, "Image tiling for embedded

applications with non-linear constraints," IEEE: Design and Architectures for Signal and Image

Processing (DASIP), 2015 Conference on pp. 1-8, 23-25 Sept. 2015.

Doi:10.1109/DASIP.2015.7367256

http://www.hematology.org/Patients/Basics/
http://web.stanford.edu/class/ee368b/handouts.html
http://web.stanford.edu/class/ee368b/Handouts/04-RateDistortionTheory.pdf
http://web.stanford.edu/class/ee368b/Handouts/02-LosslessCoding1.pdf
http://www.astropix.com/HTML/I_ASTROP/HOW.HTM
http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
http://www.poynton.com/PDFs/coloureq.pdf
http://www.einfodaily.com/piTunez/syde575.htm

Chapter 8: Bibliography

90

[53] R. Olanda, M. Pérez, and X. Benavent, "Tiling of the Wavelet Lowpass Subbands for

Progressive Browsing of Images," IEEE Signal Processing Letters, vol. 13, Issue: 11, pp. 680-

683, Nov. 2006. Doi:10.1109/LSP.2006.879468

[54] J.-R. Ohm, "Linear Systems and Transforms, Still Image Coding," in Multimedia

Communication Technology. vol. 1, ed: Springer-Verlag Berlin Heidelberg, 2004, pp. 79-167,

509-549.

[55] J. G. Proakis and D. G. Manolakis, "The Discrete Fourier Transform: Its Properties and

Applications; Multirate Digital Signal Processing," in Digital Signal Processing: Principles,

Algorithms, and Applications, 4th ed: Pearson Prentice Hall, 2007, pp. 449-501,750-790.

[56] G. K. Wallace, "The JPEG still picture compression standard," IEEE Transactions on Consumer

Electronics, vol. 38, Issue: 1, pp. xviii-xxxiv, feb. 1992. Doi:10.1109/30.125072

[57] A. Youssef. (2015, 10.05.2016). The George Washington University: CS6351 Data

Compression: Subband Coding & Wavelets [Web Page]. Available:

https://www.seas.gwu.edu/~ayoussef/cs6351/

[58] E. P. Simoncelli and E. H. Adelson. (1991, 10.05.2016). Chapter 4: Subband Transforms. MIT

Media Laboratory Vision and Modeling Technical Report #137, 143-192. Available:

http://persci.mit.edu/pub_pdfs/simoncelli_subband.pdf

[59] The-Crankshaft. (2011, 10.05.2015). Mathematical Preliminaries (Image Processing) Part 1

[Web Page]. Available: http://what-when-how.com/embedded-image-processing-on-the-

tms320c6000-dsp/mathematical-preliminaries-image-processing-part-1/

[60] K. Najarian and R. Splinter, "Wavelet Transform," in Biomedical Signal and Image Processing,

2nd ed Richmond, Virginia: CRC Press, 2012, pp. 79-100.

[61] P. Schniter, An Introduction to Source-Coding: Quantization, DPCM, Transform Coding, and

Sub-band Coding. http://cnx.org/contents/b6387028-5ef5-4dbc-a7eb-ee9ea96d1b94@2.1:

OpenStax CNX - Rice University, 2009.

[62] R. R. S. Tomar and K. Jain, "Lossless Image Compression Using Differential Pulse Code

Modulation and its Application," IEEE - Communication Systems and Network Technologies

(CSNT), 2015 Fifth International Conference on pp. 543-545, 4-6 April 2015.

Doi:10.1109/CSNT.2015.192

[63] C. C. Cutler, "Differential Quantization of Communication Signals," United States Patent

US2605361 A, July, 1952.

[64] J. G. Proakis and D. G. Manolakis, "Linear Prediction and Optimum Linear Filters," in Digital

Signal Processing: Principles, Algorithms, and Applications, 4th ed: Pearson Prentice Hall,

2007, pp. 823-879.

[65] J. G. Proakis and D. G. Manolakis, "Analog-to-Digital and Digital-to-Analog Conversion," in

Digital Signal Processing: Principles, Algorithms, and Applications, 4th ed: Pearson Prentice

Hall, 2007, pp. 19-37.

[66] H. Gish and J. N. Pierce, "Asymptotically Efficient Quantizing," IEEE Transactions on

Information Theory, vol. 14, Issue: 5, pp. 676-683, Sep 1968. Doi:10.1109/TIT.1968.1054193

[67] Y. Q. Shi. (2004, 20.05.2016). Chapter 2: Quantization. New Jersey Institute of Technology -

ECE 789: Digital Image Processing II [Lecture]. 1-35. Available:

https://web.njit.edu/~shi/courses/ECE789/ch2.pdf

[68] E. Modiano. (2009, 20.05.2016). Lecture 4: Quantization. MIT OpenCourseWare - 16.36:

Communication Systems Engineering [Lecture]. 1-17. Available:

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-36-communication-systems-

engineering-spring-2009/lecture-notes/MIT16_36s09_lec04.pdf

https://www.seas.gwu.edu/~ayoussef/cs6351/
http://persci.mit.edu/pub_pdfs/simoncelli_subband.pdf
http://what-when-how.com/embedded-image-processing-on-the-tms320c6000-dsp/mathematical-preliminaries-image-processing-part-1/
http://what-when-how.com/embedded-image-processing-on-the-tms320c6000-dsp/mathematical-preliminaries-image-processing-part-1/
http://cnx.org/contents/b6387028-5ef5-4dbc-a7eb-ee9ea96d1b94@2.1:
https://web.njit.edu/~shi/courses/ECE789/ch2.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-36-communication-systems-engineering-spring-2009/lecture-notes/MIT16_36s09_lec04.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-36-communication-systems-engineering-spring-2009/lecture-notes/MIT16_36s09_lec04.pdf

91

[69] G. J. Sullivan, "Efficient Scalar Quantization Of Exponential And Laplacian Random Variables

" IEEE Transactions on Information Theory, vol. 42, Issue: 5, pp. 1365-1374, Sep. 1996.

Doi:10.1109/18.532878

[70] D. Martinez and W. Yang, "A Robust Backward Adaptive Quantizer," Neural Networks for

Signal Processing [1995] V. Proceedings of the 1995 IEEE Workshop pp. 531-540, 31. Aug. -

2. Sep. 1995. Doi:10.1109/NNSP.1995.514928

[71] C. A. Boyd, "Lecture 2: Classical Encryption," presented at the TTM4135: Information

Security, lecture, NTNU, Trondheim, 2015.

[72] I. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding For Data Compression,"

Communications of the ACM, vol. 30, Issue: 6, pp. 520-540, June 1987.

Doi:10.1145/214762.214771

[73] S. Haykin, "Chapter 9: Fundamental Limits In Information Theory," in Communication

Systems, 4th ed: John Wiley & Sons, Inc, 2001, pp. 567-617.

[74] C.-Y. Chen, Y.-T. Pai, and S.-J. Ruan, "Low Power Huffman Coding for High Performance

Data Transmission," IEEE - 2006 International Conference on Hybrid Information Technology

(ICHIT'06), vol. 1, pp. 71-77, Nov 2006. Doi:10.1109/ICHIT.2006.253467

[75] A. H. Robinson and C. Cherry, "Results of a Prototype Television Bandwidth Compression

Scheme," Proceedings of the IEEE, vol. 55, Issue: 3, pp. 356-364, March 1967.

Doi:10.1109/PROC.1967.5493

[76] C. Tu, J. Liang, and T. D. Tran, "Adaptive Runlength Coding," IEEE Signal Processing Letters,

vol. 10, Issue: 3, pp. 61-64, March 2003. Doi:10.1109/LSP.2002.807873

[77] M. J. Tsai, J. D. Villasenor, and F. Chen, "Stack-Run Image Coding," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 6, Issue: 5, pp. 519-521, Oct 1996.

Doi:10.1109/76.538934

[78] M.-J. Tsai, J. D. Villasenor, and F. Chen, "Stack-Run Coding for Low Bit Rate Image

Communication " Image Processing, 1996. Proceedings., International Conference on, vol. 1,

pp. 681-684, Sep 1996. Doi:10.1109/ICIP.1996.559590

[79] P. Raffy, C. Pépin, and R. M. Gray, "Robust Stack-Run Image Coding For Noisy Channels "

Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar

Conference on, vol. 1, pp. 352-356, Oct. 1999. Doi:10.1109/ACSSC.1999.832351

[80] J. W. Schwartz and R. C. Barker, "Bit-Plane Encoding: A Technique for Source Encoding,"

IEEE Transactions on Aerospace and Electronic Systems, vol. AES-2, Issue: 4, pp. 385-392,

July 1966. Doi:10.1109/TAES.1966.4501787

[81] H. Kikuchi, K. Funahashi, and S. Muramatsu, "Simple Bit-Plane Coding for Lossless Image

Compression and Extended Functionalities," Picture Coding Symposium, 2009. PCS 2009 pp.

1-4, May 2009. Doi:10.1109/PCS.2009.5167351

[82] MayoClinic. (2015, 26.04.2016). Tests and Procedures: Capsule endoscopy [Web Page].

Available: http://www.mayoclinic.org/tests-procedures/capsule-

endoscopy/basics/definition/prc-20012773

[83] GivenImaging, "Appendix A5: Technical Description," in PillCam Capsule Endoscopy: User

Manual, RAPID v8.0, ed Hamburg: Given Imaging Ltd., 2013, pp. 175-205.

[84] O. Hinton. (2001, 30.05.2016). Chapter 9 – Multirate Digital Signal Processing. “EEE305”,

“EEE801 Part A”: Digital Signal Processing [Lecture at University of Newcastle upon Tyne].

9.1-9.8. Available: https://www.staff.ncl.ac.uk/oliver.hinton/eee305/Chapter9.pdf

[85] T. H. Khan and K. Wahid, "Lossless and Low-Power Image Compressor for Wireless Capsule

Endoscopy," VLSI Design, vol. 1, pp. 1-12, May 2011. Doi:10.1155/2011/343787

http://www.mayoclinic.org/tests-procedures/capsule-endoscopy/basics/definition/prc-20012773
http://www.mayoclinic.org/tests-procedures/capsule-endoscopy/basics/definition/prc-20012773
https://www.staff.ncl.ac.uk/oliver.hinton/eee305/Chapter9.pdf

Chapter 8: Bibliography

92

[86] K. M. S. Thotahewa, J.-M. Redouté, and M. R. Yuce, "A UWB Wireless Capsule Endoscopy

Device," 2014 36th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pp. 6977-6980, Aug. 2014. Doi:10.1109/EMBC.2014.6945233

[87] D. M. Pozar, "Introduction To Wireless Systems," in Microwave and RF Design of Wireless

Systems, 1st ed: John Wiley & Sons, Inc, 2001, pp. 1-27.

[88] D. M. Pozar, "Antennas and Propagation for Wireless Systems," in Microwave and RF Design

of Wireless Systems, 1st ed: John Wiley & Sons, Inc, 2001, pp. 111-147.

[89] S. Haykin, "Chapter 1: Random Processes," in Communication Systems, 4th ed: John Wiley &

Sons, Inc, 2001, pp. 31-77.

[90] IEEE, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency

Electromagnetic Fields, 3 kHz to 300 GHz," IEEE Std C95.1-2005, pp. 1-238, April 2006.

Doi:10.1109/IEEESTD.2006.99501

[91] A. F. Molisch, "Chapter 5: Statistical Description of the Wireless Channel," in Wireless

Communications, 1st ed: John Wiley & Sons, Inc., 2005, pp. 65-93.

[92] D. Tse and P. Viswanath, "The Wireless Channel," in Fundamentals of Wireless

Communication, 1st ed: Cambridge University Press, 2005, pp. 10-48.

[93] K. Najarian and R. Splinter, "Electric Activities of the Cell," in Biomedical Signal and Image

Processing, 2nd ed: CRC Press, 2012, pp. 155-169.

[94] M. R. Basar, M. F. B. A. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, et al.,

"The Use of a Human Body Model to Determine the Variation of Path Losses in the Human

Body Channel in Wireless Capsule Endoscopy," Progress In Electromagnetics Research

(PIER), vol. 133, pp. 495-513, 2013. Doi:10.2528/PIER12091203

[95] A. S. Bjørnevik, "Localization and Tracking of Intestinal Paths for Wireless Capsule

Endoscopy," Msc., Department of Electronics and Telecommunications, Norwegian University

of Science and Technology (NTNU), NTNU, 2015.

[96] G. Qvigstad, O. Fløttum, and H. L. Waldum. (2005, 01.06.2016). Kapselendoskopi – en ny

metode for diagnostikk av sykdom i tynntarm. Tidsskrift for Den norske legeforening 125(2),

163-166. Available: http://tidsskriftet.no/pdf/pdf2005/163-6.pdf

[97] S. Haykin, "Chapter 10: Error-Control Coding," in Communication Systems, 4th ed: John Wiley

& Sons, Inc, 2001, pp. 626-702.

[98] R. W. Hamming, "Error Detecting and Error Correcting Codes," The Bell System Technical

Journal, vol. 29, Issue: 2, pp. 147-160, April 1950. Doi:10.1002/j.1538-7305.1950.tb00463.x

[99] A. N. Kim, E. J. Daling, T. A. Ramstad, and I. Balasingham, "Error Concealment and Post

Processing for the Capsule Endoscope," Proceedings of the 7th International Conference on

Body Area Networks (BodyNets), vol. 7, pp. 149-152, February 2012.

Doi:10.4108/icst.bodynets.2012.249951

[100] O. Déforges, J. Ronsin, and L. Bedat, "The LAR Method as a New Scalable Region-Based

Technique for Color Images Compression at Low Bit Rates " Image and Signal Processing and

Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium on pp. 86-90, Jun.

2001. Doi:10.1109/ISPA.2001.938608

[101] F. Pasteau, M. Babel, O. Deforges, C. Strauss, and L. Bedat, "Chapter 3: Locally Adaptive

Resolution (LAR) codec," in Recent Advances in Signal Processing, A. A. Zaher, Ed., 1 ed:

InTech, 2009, pp. 37-48.

[102] O. Déforges and J. Ronsin, "Locally Adaptive Resolution Method for Progressive Still Image

Coding," Signal Processing and Its Applications, 1999. ISSPA '99. Proceedings of the Fifth

International Symposium on, vol. 2, pp. 825-829, Aug. 1999. Doi:10.1109/ISSPA.1999.815799

http://tidsskriftet.no/pdf/pdf2005/163-6.pdf

93

[103] O. Déforges and J. Ronsin, "Region of Interest Coding for Low Bit Rate Image Transmission,"

Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, vol. 1, pp.

107-110, July-Aug. 2000. Doi:10.1109/ICME.2000.869556

[104] E. U. Thodesen, I. Q. Marti, O. K. Melve, and Ø. A. Smith, "Compensation for zooming/panning

and intensity variations in colonoscopy videos," TTT23: Biomedical signal and image

processing and communications: Mini-project, IET, NTNU, 2015.

[105] A. D. Horchler. (2013, 05.06.2016). QTWriter: Export QuickTime Movies with Matlab (1.1 ed.)

[Web Page]. Available: http://horchler.github.io/QTWriter/

[106] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image Quality Assessment: From

Error Visibility to Structural Similarity," IEEE Transactions on Image Processing, vol. 13,

Issue: 4, pp. 600-612, April 2004. Doi:10.1109/TIP.2003.819861

[107] A. Perkis, "JPEG2000," presented at the TTT4136: Sound- & Image Processing, lecture, NTNU,

Trondheim, 2013.

[108] A. Mostafa, T. Khan, and K. Wahid, "An Improved YEF-DCT based Compression Algorithm

for Video Capsule Endoscopy," 2014 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society pp. 2452-2455, Aug. 2014.

Doi:10.1109/EMBC.2014.6944118

[109] P. Turcza and M. Duplaga, "Low-Power Image Compression for Wireless Capsule Endoscopy,"

2007 IEEE International Workshop on Imaging Systems and Techniques pp. 1-4, May 2007.

Doi:10.1109/IST.2007.379586

[110] X. Li, X. Xie, X. Chen, G. Li, L. Zhang, Z. Wang, et al., "Design and Implementation of a Low

Complexity Near-lossless Image Compression Method for Wireless Endoscopy Capsule System

" 2007 IEEE International Symposium on Circuits and Systems pp. 1321-1324, May 2007.

Doi:10.1109/ISCAS.2007.378415

[111] P. Turcza and M. Duplaga, "Hardware-Efficient Low-Power Image Processing System for

Wireless Capsule Endoscopy," IEEE Journal of Biomedical and Health Informatics, vol. 17,

Issue: 6, pp. 1046-1056, June 2013. Doi:10.1109/JBHI.2013.2266101

[112] K. W. S.-B. Ko, D. Teng, and V. Dimitrov, "Low-Area and Low-Power Video Compressor for

Endoscopic Capsules," Electrical and Computer Engineering, 2008. CCECE 2008. Canadian

Conference on pp. 507-510, May 2008. Doi:10.1109/CCECE.2008.4564586

[113] A. Perkis, "Characterisation of audiovisual information," presented at the TTT4135: Multimedia

signal processing, lecture, NTNU, Trondheim, 2016.

http://horchler.github.io/QTWriter/

94

95

Appendix A

A.1 Program list

 Matlab R2015b 64-bit (8.6.0.267246)

 Microsoft Word 2016 (Version 16.0.6001.1078)

 Endnote X7.5 (Bld 9325)

 MediaInfo GUI 0.7.78

 Avidemux 64-bit

 VLC media player (2.2.2 Weatherwax)

A.2 Simulation Videos Specifications

A.2.1 Video 1
General

Complete name : E:\…\realseq3_c.avi

Source : Ilangko Balasingham, NTNU

Format : AVI

Format/Info : Audio Video Interleave

File size : 768 KiB

Duration : 2s 125ms

Overall bit rate : 2 960 Kbps

Video

ID : 0

Format : JPEG

Codec ID : MJPG

Duration : 2s 125ms

Bit rate : 2 706 Kbps

Width : 401 pixels

Height : 241 pixels

Display aspect ratio : 5:3

Frame rate : 24.000 fps

Color space : YUV

Chroma subsampling : 4:2:0

Bit depth : 8 bits

Compression mode : Lossy

Bits/(Pixel*Frame) : 1.167

Stream size : 702 KiB (91%)

A.2.2 Video 2
General

Complete name : E:\…\colon1.avi

Source : Ilangko Balasingham, NTNU

Format : AVI

Format/Info : Audio Video Interleave

File size : 83.7 MiB

Duration : 1mn 37s

96

Overall bit rate : 7 171 Kbps

Video

ID : 0

Format : JPEG

Codec ID : MJPG

Duration : 1mn 37s

Bit rate : 7 166 Kbps

Width : 768 pixels

Height : 576 pixels

Original height : 1 152 pixels

Display aspect ratio : 4:3

Frame rate : 25.000 fps

Color space : YUV

Chroma subsampling : 4:2:2

Bit depth : 8 bits

Scan type : Interlaced

Compression mode : Lossy

Bits/(Pixel*Frame) : 0.648

Stream size : 83.7 MiB (100%)

A.2.3 Video 3
General

Complete name : E:\…\oesophagus_norm_crp_org.mp4

Source : Gastrolab – the Gastrointestinal Site:

http://www.gastrolab.net cropped with “Avidemux 64-bit”

Format : MPEG-4

Format profile : Base Media / Version 2

Codec ID : mp42

File size : 6.19 MiB

Duration : 29s 640ms

Overall bit rate mode : Variable

Overall bit rate : 1 751 Kbps

Encoded date : UTC 2015-12-08 13:16:25

Tagged date : UTC 2015-12-08 13:16:31

Video

ID : 1

Format : AVC

Format/Info : Advanced Video Codec

Format profile : High@L2.1

Format settings, CABAC : Yes

Format settings, ReFrames : 4 frames

Codec ID : avc1

Codec ID/Info : Advanced Video Coding

Duration : 29s 640ms

Duration_FirstFrame : 80ms

Bit rate : 1 622 Kbps

Width : 430 pixels

Height : 378 pixels

http://www.gastrolab.net/

97

Display aspect ratio : 1.138

Frame rate mode : Constant

Frame rate : 25.000 fps

Color space : YUV

Chroma subsampling : 4:2:0

Bit depth : 8 bits

Scan type : Progressive

Bits/(Pixel*Frame) : 0.399

Stream size : 5.72 MiB (92%)

Writing library : x264 core 146 r2538 121396c

Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x133 /

me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1

/ trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 /

threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 /

bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 /

direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 /

intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=18.0 / qcomp=0.60 / qpmin=10 /

qpmax=51 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00

98

99

Appendix B – MATLAB Code

B.1 Simulator
%%%%%%%%%%%%%%%%%%%%%%%%%%

% Wireless Capsule Endocsopy simulator using GI tract videos

%

% Originally created by A. Kim 02.10.2011

% Last modified by E. Boe 15.06.2016

%

%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; close all; clc

Filename = 'colon1';

vidObj = VideoReader(strcat(Filename,'.avi'));

vidInfo = get(vidObj);

totFrames = vidInfo.Duration*vidInfo.FrameRate;

%Memory allocation

CPSNR = zeros(1,totFrames);

bit_rate = zeros(1,totFrames);

CR = zeros(1,totFrames);

pred_var = zeros(1,totFrames);

SSIM = zeros(1,totFrames);

%Define parameters

fig_name = 'colon1_adapt_YEF';

seq_num = 4;

colourTran = 'YEF';

a=0.9; %initial

p_coef = [a a -a^2]; % a=0.8, b=a, c=-a^2 [a b c]

sRate = [2 3];

deltas = [7, 6, 6];

quant_type = 'deadzone';

parameters = struct(...

 'colourTran', colourTran,...

 'sRate', sRate,...

 'p_coef', p_coef,...

 'deltas', deltas,...

 'quant_type', quant_type,...

 'p_coef_mode', 'rows',...

 'enable_ROI', 1,...

 'ROI_pos', [100 100 40 24],...

 'levels1', 0,...

 'levels2', 0,...

 'levels3', 0,...

 'frame_size', 0);

%create video write files

virecFileName =

sprintf('%s%d_downSample_%d%d_coef9_reconstr_%s.avi',Filename,seq_nu

m,sRate(1),sRate(2),colourTran);

virecObj = VideoWriter(virecFileName);

virecObj.FrameRate = 4;

100

open(virecObj);

vidifFileName=

sprintf('%s%d_downSample_%d%d_coef9_difference_%s.avi',Filename,seq_

num,sRate(1),sRate(2),colourTran);

vidifObj = VideoWriter(vidifFileName);

vidifObj.FrameRate = 4;

open(vidifObj);

if seq_num == 3

 rows = vidObj.Height-1;

 cols = vidObj.Width-1;

elseif seq_num == 4

 rows = vidObj.Height-6;

 cols = vidObj.Width-2;

else

 rows = vidObj.Height;

 cols = vidObj.Width;

end

%Run simulation

k=1;

while hasFrame(vidObj)

 display(['Frame ',int2str(k),' of ',num2str(totFrames)]);

 vidFrame = readFrame(vidObj);

 vidFrame = vidFrame(1:rows,1:cols,:);

 pred_var(k)=parameters.p_coef(1);

 %Encoder

 [sr123, parameters] = encoder(vidFrame, parameters);

 %Decoder

 [vidFrame_rec,parameters,component] = decoder(sr123,

parameters);%mean_RGB,

 %Performance evaluation

 [CPSNR(k),bit_rate(k),CR(k),SSIM(k)]=

performance_evaluation(vidFrame, vidFrame_rec, parameters);

 if parameters.enable_ROI

 writeVideo(virecObj, insertShape(vidFrame_rec,

'Rectangle',parameters.ROI_pos,'Color','Red','LineWidth',1));

 writeVideo(vidifObj, insertShape(vidFrame-vidFrame_rec,

'Rectangle',parameters.ROI_pos,'Color','Red','LineWidth',1));

 else

 writeVideo(virecObj, vidFrame_rec);

 writeVideo(vidifObj, vidFrame-vidFrame_rec);

 end

 if k==totFrames

 break;

 end

 k=k+1;

end

%end simulation program and close video files

101

close(virecObj);

close(vidifObj);

performFileName =

sprintf('%s%d_downSample_%d%d_coef9_performance_%s.mat',Filename,

seq_num,sRate(1),sRate(2),colourTran);

save(performFileName,'CPSNR', 'bit_rate', 'CR','SSIM');

display(['Average bit rate: ',num2str(mean(bit_rate))])

display(['Average compress ratio: ',num2str(mean(CR))])

display(['Average CPSNR: ',num2str(mean(CPSNR))])

display(['Average SSIM: ',num2str(mean(SSIM))])

%Plot results

figure(1)

set(gcf,'numbertitle','off','name',fig_name)

subplot(2,2,1),plot(1:totFrames,CPSNR,'b-*'),title('CPSNR

performance'),axis([0 50 35 40]);

axis tight;

ylabel('CPSNR in dB');

xlabel('Frame number');

grid on;

subplot(2,2,2), plot(1:totFrames,bit_rate,'b-d'),title('average bit

rate per pixel'),axis([0 50 0 1]);

grid on;

axis tight;

xlabel('Frame number');

ylabel('bit rate in bpp');

subplot(2,2,3), plot(1:totFrames,CR,'b-d'),title('average

compression ratio per pixel'),axis([0 50 0 1]);

grid on;

axis tight;

xlabel('Frame number');

ylabel('compression in precent');

subplot(2,2,4), plot(1:totFrames,SSIM,'b-o'),title('Average

structural similarity index measure'),axis([0 50 0 1]);

grid on;

axis tight;

xlabel('Frame number');

ylabel('SSIM');

figure(2)

set(gcf,'numbertitle','off','name',fig_name)

plot(1:totFrames,pred_var)

xlabel('Frame number');

ylabel('Prediction coefficient');

title('Variation in the prediction coefficient over the frames');

grid on;

axis tight;

102

B.2 Encoder
function varargout = encoder(vidFrame, parameters)

%Split frame into the different channels

R = double(vidFrame(:,:,1));

G = double(vidFrame(:,:,2));

B = double(vidFrame(:,:,3));

%Colour transformation

[c1_alt, c2_alt, c3_alt, mean_RGB] = en_colour_transform(R, G, B,

parameters);

%Multirate: lowpass & downsample with given sRate

if parameters.enable_ROI == 1

 [c1_MR, c2_MR, c3_MR] = en_lowpassDownsample_roi(c1_alt, c2_alt,

c3_alt, parameters);

else

 [c1_MR, c2_MR, c3_MR] =

en_lowpassDownsample(c1_alt,c2_alt,c3_alt, parameters);

end

%DPCM encoder

[levels1, levels2, levels3] = en_DPCM_encode(c1_MR,c2_MR,c3_MR,

parameters);

%encode quantization levels using SR run-length coder

sr123 = en_Frame_SRencode(levels1,levels2,levels3);

%update parameters:

parameters.mean_RGB = mean_RGB;

parameters.frame_size = size(vidFrame);

parameters.levels1 = levels1;

parameters.levels2 = levels2;

parameters.levels3 = levels3;

%send to decoder or to channelcoder

varargout{1} = sr123;

varargout{2} = parameters;

end

function [R_alt,G_alt,B_alt,mean_RGB] = en_colour_transform(R, G, B,

parameters)

if strcmp(parameters.colourTran,'YUV')

 transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0];

elseif strcmp(parameters.colourTran,'YEF')

 transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25];

else

 error('encoder:unknownTransformation', 'Invalid colour

transformation method chosen')

end

103

R_alt = R*transmat(1,1)+G*transmat(1,2)+B*transmat(1,3);

G_alt = R*transmat(2,1)+G*transmat(2,2)+B*transmat(2,3)+128;

B_alt = R*transmat(3,1)+G*transmat(3,2)+B*transmat(3,3)+128;

mean_RGB = [mean(R_alt(:)) mean(G_alt(:)) mean(B_alt(:))];

R_alt = R_alt - mean_RGB(1);

G_alt = G_alt - mean_RGB(2);

B_alt = B_alt - mean_RGB(3);

End

function [c1_MR,c2_MR,c3_MR] = en_lowpassDownsample_roi(c1_alt,

c2_alt, c3_alt, parameters)

sRate = parameters.sRate;

x1 = parameters.ROI_pos(1);

y1 = parameters.ROI_pos(2);

w1 = parameters.ROI_pos(3);

h1 = parameters.ROI_pos(4);

size_c1 = size(c1_alt);

rowsC1 = size_c1(1);

colsC1 = size_c1(2);

tempR=zeros(rowsC1,(colsC1+w1)/sRate(1));

tempG=zeros(rowsC1,(colsC1+2*w1)/sRate(2));

tempB=zeros(rowsC1,(colsC1+2*w1)/sRate(2));

c1_MR = zeros((colsC1+w1)/sRate(1),((rowsC1+h1)/sRate(1)));

c2_MR = zeros((colsC1+2*w1)/sRate(2),(rowsC1+2*h1)/sRate(2));

c3_MR = zeros((colsC1+2*w1)/sRate(2),(rowsC1+2*h1)/sRate(2));

b = fir1(40,1/sRate(1));

Yfilt_c = filter2(b,c1_alt);

%Luminance component (Channel 1)

for i=1:rowsC1

 tempR(i,1:x1/sRate(1))=Yfilt_c(i,1:sRate(1):x1);

 tempR(i,x1/sRate(1):(x1/sRate(1)+w1))=c1_alt(i,x1:(x1+w1));

tempR(i,(x1/sRate(1)+w1):(colsC1+w1)/sRate(1))=Yfilt_c(i,(x1+w1):sRa

te(1):colsC1);

end

tempR = tempR';

for i = 1:(colsC1+w1)/sRate(1);

 c1_MR(i,1:y1/sRate(1)) = tempR(i,1:sRate(1):y1);

 c1_MR(i,y1/sRate(1):(y1/sRate(1)+h1)) = tempR(i,y1:(y1+h1));

 c1_MR(i,(y1/sRate(1)+h1):((rowsC1+h1)/sRate(1))) =

tempR(i,(y1+h1):sRate(1):rowsC1);

end

%Chrominance components (Channel 2 & 3)

for i=1:rowsC1

 tempG(i,1:(ceil(x1/sRate(2))))=c2_alt(i,1:sRate(2):x1);

104

tempG(i,(ceil(x1/sRate(2))):(ceil(x1/sRate(2))+w1))=c2_alt(i,x1:(x1+

w1));

tempG(i,(ceil(x1/sRate(2))+w1):(colsC1+2*w1)/sRate(2))=c2_alt(i,(x1+

w1):sRate(2):colsC1);

 tempB(i,1:(ceil(x1/sRate(2))))=c3_alt(i,1:sRate(2):x1);

tempB(i,(ceil(x1/sRate(2))):(ceil(x1/sRate(2))+w1))=c3_alt(i,x1:(x1+

w1));

tempB(i,(ceil(x1/sRate(2))+w1):(colsC1+2*w1)/sRate(2))=c3_alt(i,(x1+

w1):sRate(2):colsC1);

end

tempG=tempG';

tempB=tempB';

for i=1:(colsC1+2*w1)/sRate(2)

 c2_MR(i,1:(ceil(y1/sRate(2)))) = tempG(i,1:sRate(2):y1);

 c2_MR(i,(ceil(y1/sRate(2))):(ceil(y1/sRate(2))+h1)) =

tempG(i,y1:(y1+h1));

 c2_MR(i,(ceil(y1/sRate(2))+h1):(rowsC1+2*h1)/sRate(2)) =

tempG(i,(y1+h1):sRate(2):rowsC1);

 c3_MR(i,1:(ceil(y1/sRate(2)))) = tempB(i,1:sRate(2):y1);

 c3_MR(i,(ceil(y1/sRate(2))):(ceil(y1/sRate(2))+h1)) =

tempB(i,y1:(y1+h1));

 c3_MR(i,(ceil(y1/sRate(2))+h1):(rowsC1+2*h1)/sRate(2)) =

tempB(i,(y1+h1):sRate(2):rowsC1);

end

c1_MR = c1_MR';

c2_MR = c2_MR';

c3_MR = c3_MR';

end

%{

low-pass and down-sampling of original Y, U and V components.

sRate is the down-sampling rate , which also indicate the cut-off

frequency

of the low-pass filter

for U and V, only down-sampling is performed.

%}

function [c1_MR,c2_MR,c3_MR] = en_lowpassDownsample(c1_alt, c2_alt,

c3_alt, parameters)

sRate = parameters.sRate;

if sRate == 1

 c1_MR = c1_alt;

 c2_MR = c2_alt;

 c3_MR = c3_alt;

else

 %%% Filtering %%%

 b = fir1(40,1/sRate(1));

105

 Yfilt_c = filter2(b,c1_alt);

 %%% Downsample %%%

 Ydown_c = downsample(Yfilt_c,sRate(1));

 c1_MR = downsample(Ydown_c',sRate(1));

 c1_MR = c1_MR';

 c2_MR = downsample(c2_alt, sRate(2));

 c2_MR = downsample(c2_MR',sRate(2));

 c2_MR = c2_MR';

 c3_MR = downsample(c3_alt,sRate(2));

 c3_MR = downsample(c3_MR',sRate(2));

 c3_MR = c3_MR';

end

end

function [levelsY, levelsU, levelsV] = en_DPCM_encode(Y, U, V,

parameters)

p_coef = parameters.p_coef;

deltas = parameters.deltas;

quant_type = parameters.quant_type;

if nargin ~=4

 fprintf('ERROR: incorrect number of inputs!');

else

 levelsY = zeros(size(Y));

 levelsU = zeros(size(U));

 levelsV = zeros(size(V));

 Y_rec = levelsY;

 U_rec = levelsU;

 V_rec = levelsV;

 dY = levelsY;

 dU = levelsU;

 dV = levelsV;

 Yp = 0;

 Up = 0;

 Vp = 0;

 % quantization levels of the uniform mid-tread quantizer.

 deltaY = deltas(1);

 deltaU = deltas(2);

 deltaV = deltas(3);

 if strcmp(quant_type,'deadzone') == 1

 % quantization using deadzone quantizer. URURQ

 kY = 1;

 kU = 1;

 kV = 1;

 offsetY = 1-kY*deltaY*exp(-kY*deltaY)/(1-exp(-kY*deltaY));

 offsetU = 1-kU*deltaU*exp(-kU*deltaU)/(1-exp(-kU*deltaU));

 offsetV = 1-kV*deltaV*exp(-kV*deltaV)/(1-exp(-kV*deltaV));

 end

106

end

if (nargout ==3 || nargout == 6 || nargout == 9)

 %%% DPCM Y-component encode %%%

 for i = 2:size(Y,1)

 for j = 1:size(Y,2)

 dY(i,j) = Y(i,j)-Yp;

 if strcmp(quant_type,'uniquant')==1

 levelsY(i,j)=round(dY(i,j)/deltaY);

 else

 levelsY(i,j) =

sign(dY(i,j))*max(0,floor((abs(dY(i,j))-

(kY*deltaY)+offsetY)/(kY*deltaY)+1));

 end

 Y_rec(i,j) = Yp +levelsY(i,j)*deltaY;

 if j == size(Y,2)

 break;

 else

 Yp = p_coef(2)*Y_rec(i-

1,j+1)+p_coef(1)*Y_rec(i,j)+p_coef(3)*Y_rec(i-1,j);

 end

 end

 end

 %%% DPCM U,V-components encode %%%

 for i = 2:size(U,1)

 for j = 1:size(U,2)

 dU(i,j) = U(i,j)-Up;

 dV(i,j) = V(i,j)-Vp;

 if strcmp(quant_type,'uniquant')==1

 levelsU(i,j) = round(dU(i,j)/deltaU);

 levelsV(i,j) = round(dV(i,j)/deltaV);

 else

 levelsU(i,j) =

sign(dU(i,j))*max(0,floor((abs(dU(i,j))-

(kU*deltaU)+offsetU)/(kU*deltaU)+1));

 levelsV(i,j) =

sign(dV(i,j))*max(0,floor((abs(dV(i,j))-

(kV*deltaV)+offsetV)/(kV*deltaV)+1));

 end

 U_rec(i,j) = Up+levelsU(i,j)*deltaU;

 V_rec(i,j) = Vp+levelsV(i,j)*deltaV;

 if j == size(Y,2)

 break;

 else

 Up = p_coef(1)*U_rec(i,j);

 Vp = p_coef(1)*V_rec(i,j);

 end

 end

 end

else

 fprintf('ERROR: Incorrect number of outputs');

end

end

107

function srYUV = en_Frame_SRencode(levelsY, levelsU, levelsV)

rowsY = size(levelsY,1);

colsY = size(levelsY,2);

rowsU = size(levelsU,1);

colsU = size(levelsU,2);

segmentlength = [size(levelsY,2) size(levelsU,2)];

% skip the first row which is zero.

segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1));

segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2));

levelsY = levelsY(2:rowsY,:)';

levelsU = levelsU(2:rowsU,:)';

levelsV = levelsV(2:rowsU,:)';

srYUV = cell(3,max(segment_nrY,segment_nrU));

for i = 1:segment_nrY

 if i == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY

 last_pos = length(levelsY(:));

 else

 last_pos = i*segmentlength(1);

 end

 segmentY = levelsY((i-1)*segmentlength(1)+1:last_pos);

 tempY = en_SRencode(segmentY);

 srYUV(1,i) = {symbol2bits(tempY)};

end

for i = 1:segment_nrU

 if i == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU

 last_pos = length(levelsU(:));

 else

 last_pos = i*segmentlength(2);

 end

 segmentU = levelsU((i-1)*segmentlength(2)+1:last_pos);

 tempU = en_SRencode(segmentU);

 srYUV(2,i) = {symbol2bits(tempU)};

 segmentV = levelsV((i-1)*segmentlength(2)+1:last_pos);

 tempV = en_SRencode(segmentV);

 srYUV(3,i) = {symbol2bits(tempV)};

end

end

function Y = en_SRencode(x,FMT)

%pre allocate codeword size. -1 is dummy bit.

y = -ones(size(x));

sizey1 = 1; %starting position of the codeword

sizey2 = 0; %end position.

while ~isempty(x) % check if x has any value

 if isempty(find(x~=0, 1))% x has only zeros.

 RLbin_str = int2bit(length(x));

 % checking to see if run-length is 2^k-1

108

 if round(log2(length(x)+1))-log2(length(x)+1)~=0

 RLbin_str = RLbin_str(2:length(RLbin_str));

 end

 % mapping to '+','-'. where '+' is 3, '-' is 2.

 RLbin_str = RLbin_str +2;

 %determine end position of codeword

 sizey2 = sizey2+length(RLbin_str);

 % remove the encoded zeros.

 x = [];

 % assign to output and update starting position of codeword

 y(sizey1:sizey2)=RLbin_str;

 sizey1 = sizey2+1;

 else % x has both zero and nonzero elements

 if x(1)==0 % when first element is zero, code run length:

 % determine length of zeros, convert to binary.

 marker = length(x(1:find(x~=0, 1)-1));

 RLbin_str = int2bit(marker);

 % checking to see if run-length is 2^k-1,if not remove MSB

 if round(log2(marker+1))-log2(marker+1)~=0

 RLbin_str = RLbin_str(2:length(RLbin_str));

 end

 %change 0, to -, 1 to +

 RLbin_str = RLbin_str +2;

 %update codeword start and end positions and output array

 sizey2 = sizey2+length(RLbin_str);

 y(sizey1:sizey2)=RLbin_str;

 sizey1 = sizey2+1;

 % remove the encoded zeros from input array

 x = x(find(x~=0,1):length(x));

 else % encode the first nonzero value

 % first increment the absolute value by 1. retain sign.

 nz_val = abs(x(1))+1;

 %NZbin_str = dec2bin(abs(nz_val));

 NZbin_str = int2bit(nz_val);

 % change the MSB into '+' or '-'

 if sign(x(1))>0

 NZbin_str(1)=3; % '+' is 3

 else

 NZbin_str(1)=2;% '-' is 2;

 end

 % update codeword positions and output array

 sizey2 = sizey2+length(NZbin_str);

 y(sizey1:sizey2)=NZbin_str;

 sizey1 = sizey2+1;

 % remove the nonzero value from input array

 if length(x)==1 % come to the last element

 x = [];

 else

 x = x(2:length(x));

 end

 end

 end

end

% remove the dummy bits -1;

y = y(y>=0);

109

if nargin==1 || strcmp(FMT,'double')==1

 Y = y;

elseif strcmp(FMT, 'char')==1

 Y(y==3) = '+';

 Y(y==2) = '-';

 Y(y==0) = '0';

 Y(y==1) = '1';

else

 fprintf('ERROR: unknown output format.');

 Y = [];

end

end

% convert integer to bits. we use little Endian.

% N: input integer. n: number of bits for output.

% n must be greater or equal to log2(N).

function bits = int2bit(N,n)

if nargin == 1

 if N == 0 || N == 1

 bits = rem(N,2);

 else

 n = floor(log2(N))+1;

 bits = zeros(1,n);

 for i = 1:n

 bits(i) = rem(N,2);

 N=(N-bits(i))/2 ;

 end

 bits = bits(end:-1:1);

 end

else

 bits = zeros(1,n);

 if N ==0 || N ==1

 bits(end) = rem(N,2);

 else

 for i = 1:n

 bits(i) = rem(N,2);

 N=(N-bits(i))/2 ;

 end

 bits = bits(end:-1:1);

 end

end

end

%{

converts symbols of +,-,0,1 into bits

uses 2 bits per symbol +: 11 -: 10 1: 01, 0:00

-1 is the dummy bit. it is transformed into [-1 -1];

%}

function bits = symbol2bits(symbols)

bits = zeros(2,size(symbols,2));

for i = 1: size(symbols,2)

 if symbols(i) =='+'|| symbols(i)== 3

 bits(:,i) = [1 1]';

110

 elseif symbols(i)== '-'|| symbols(i) == 2

 bits(:,i) = [1 0]';

 elseif symbols(i)=='1'|| symbols(i) == 1

 bits(:,i) = [0 1]';

 elseif symbols(i) == '0'|| symbols(i) == 0

 bits(:,i) = [0 0]';

 else

 bits(:,i) = ones(size(2,1))*symbols(i);%[-1 -1]';

 end

end

end

B.3 Decoder
function [vidFrame_rec,parameters,U_rec]= decoder(sr123, parameters)

%DPCM SR decode

[Y_rec, U_rec, V_rec, levelsY, levelsU, levelsV] =

de_DPCM_decode(sr123,parameters,0);

% MR - Lowpass and up sample

if parameters.enable_ROI == 1

 [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample_roi(Y_rec,

U_rec, V_rec, parameters);

else

 [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample(Y_rec, U_rec,

V_rec, parameters);

end

%inverse coulour transformation

[vidFrame_rec] = de_colour_transform

(co1_rec,co2_rec,co3_rec,parameters);

%Update parameters for next round

parameters = de_parameters_update(parameters, Y_rec, levelsY,

levelsU, levelsV);

end

function [Y_rec, U_rec, V_rec, levelsY, levelsU, levelsV] =

de_DPCM_decode(sr123,parameters,ROI_run)

if ROI_run

 levels1 = parameters.roi_levels1;

 levels2 = parameters.roi_levels2;

 levels3 = parameters.roi_levels3;

else

 levels1 = parameters.levels1;

 levels2 = parameters.levels2;

 levels3 = parameters.levels3;

end

 comp_size = [size(levels1); size(levels2); size(levels3)];

 Qrange = [max(levels1(:)) min(levels1(:)); max(levels2(:))

min(levels2(:)); max(levels3(:)) min(levels3(:))];

 segmentlength = [size(levels1,2) size(levels2,2)];

111

 %sr_YUV = sdec_input.sdec_bits;

 sr_YUV = sr123;

 deltas = parameters.deltas;

 p_coef = parameters.p_coef;

 maxY= Qrange(1,1);

 minY= Qrange(1,2);

 maxU= Qrange(2,1);

 minU= Qrange(2,2);

 maxV= Qrange(3,1);

 minV= Qrange(3,2);

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % declare output %

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Y_rec = zeros(comp_size(1,:));

 U_rec = zeros(comp_size(2,:));

 V_rec = zeros(comp_size(3,:));

 colsY = size(Y_rec,2);

 rowsY = size(Y_rec,1);

 colsU = size(U_rec,2);

 rowsU = size(U_rec,1);

 %segmentlength = sdec_input.segmentlength;

 segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1));

 segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2));

 levelsY = zeros(1,colsY*(rowsY-1));

 levelsU = zeros(1,colsU*(rowsU-1));

 levelsV = zeros(1,colsU*(rowsU-1));

 Y_row = sr_YUV(1,:);

 U_row = sr_YUV(2,:);

 V_row = sr_YUV(3,:);

for k = 1:segment_nrY

 Y_symb = bits2symbol(Y_row{k});

 Y_symb = Y_symb(Y_symb>=0);

 if k == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY

 last_pos = length(levelsY(:));

 dlength = last_pos-(k-1)*segmentlength(1);

 else

 last_pos = k*segmentlength(1);

 dlength = segmentlength(1);

 end

 levelsY((k-1)*segmentlength(1)+1:last_pos) =

de_SRdecode(Y_symb,dlength);

end

for k = 1:segment_nrU

 U_symb = bits2symbol(U_row{k});

112

 V_symb = bits2symbol(V_row{k});

 U_symb = U_symb(U_symb>=0);

 V_symb = V_symb(V_symb>=0);

 if k == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU

 last_pos = length(levelsU(:));

 dlength = last_pos-(k-1)*segmentlength(2);

 else

 last_pos = k*segmentlength(2);

 dlength = segmentlength(2);

 end

 levelsU((k-1)*segmentlength(2)+1:last_pos) =

de_SRdecode(U_symb,dlength);

 levelsV((k-1)*segmentlength(2)+1:last_pos) =

de_SRdecode(V_symb,dlength);

end

 levelsY = [zeros(1,colsY) levelsY];

 levelsU = [zeros(1,colsU) levelsU];

 levelsV = [zeros(1,colsU) levelsV];

 levelsY = reshape(levelsY, colsY, rowsY);

 levelsU = reshape(levelsU, colsU, rowsU);

 levelsV = reshape(levelsV, colsU, rowsU);

 levelsY = levelsY';

 levelsU = levelsU';

 levelsV = levelsV';

 % constrain the max min values.

 levelsY(levelsY>maxY) = maxY;

 levelsY(levelsY<minY) = minY;

 levelsU(levelsU>maxU) = maxU;

 levelsU(levelsU<minU) = minU;

 levelsV(levelsV>maxV) = maxV;

 levelsV(levelsV<minV) = minV;

 % quantization levels of the uniform mid-tread quantizer.

 deltaY = deltas(1);

 deltaU = deltas(2);

 deltaV = deltas(3);

 Yp = 0;

 Up = 0;

 Vp = 0;

 % prediction coefficients for 2D DPCM, Y channel.

 a =p_coef(1);%.8;%1;

 b =p_coef(2);% .8;%a;

 c =p_coef(3);% -a^2;

 for i = 2:size(levelsY,1)

 for j = 1:size(levelsY,2)

 Y_rec(i,j) = Yp +levelsY(i,j)*deltaY;

 if j == size(levelsY,2)

 break;

 else

 Yp = b*Y_rec(i-1,j+1)+a*Y_rec(i,j)+c*Y_rec(i-1,j);

 end

 end

 end

113

 for i = 2:size(levelsU,1)

 for j = 1:size(levelsU,2)

 U_rec(i,j) = Up + levelsU(i,j)*deltaU;

 V_rec(i,j) = Vp + levelsV(i,j)*deltaV;

 if j == size(levelsU,2)

 break;

 else

 Up = a*U_rec(i,j);

 Vp = a*V_rec(i,j);

 end

 end

 end

end

function symbols = bits2symbol(bits,FMT)

% convert bits back to symbols

% bits dimension 2xL

L = size(bits,2);

if nargin == 1|| strcmp(FMT,'double')==1

 symbols = zeros(1,L);

 for l = 1:L

 if bits(:,l) ==[1 1]'

 symbols(l) = 3;

 elseif bits(:,l) ==[1 0]'

 symbols(l) = 2;

 elseif bits(:,l) ==[0 1]'

 symbols(l) = 1;

 elseif bits(:,l) ==[0 0]'

 symbols(:,l) = 0;

 else

 symbols(:,l) = -1;

 end

 end

else

 symbols = repmat('+',1,L);

 for l = 1:L

 if bits(:,l) ==[1 1]'

 symbols(l) = '+';

 elseif bits(:,l) ==[1 0]'

 symbols(l) = '-';

 elseif bits(:,l) ==[0 1]'

 symbols(l) = '1';

 elseif bits(:,l) ==[0 0]'

 symbols(:,l) = '0';

 else

 symbols(:,l) = 's';

 end

 end

end

function x = SRdecode(Y,output_length,FMT)

114

x = [];

if nargin == 0

 fprintf('ERROR: no input given');

elseif nargin ==1 || nargin == 2|| strcmp(FMT,'double')==1

 y = Y;

elseif strcmp(FMT, 'char')==1

 % converting string into to double.

 y(Y=='+') = 3;

 y(Y=='-') = 2;

 y(Y=='1') = 1;

 y(Y=='0') = 0;

else

 fprintf('ERROR: unknown input format.');

 y = [];

end

while ~isempty(y)

 if length(y)>1

 % find the '+','-', '1' and '0' positions

 PM_pos = find(y==3| y==2);

 OZ_pos = find(y==1|y==0);

 % y always starts with the symbol '+' or '-'

 if isempty(OZ_pos) % only runs of zeros.

 temp3 = y(1:length(y));

 y = [];

 temp3(temp3==3)=1;

 temp3(temp3==2)=0;

 numbr = bit2int([1 temp3]);

 % check if the length is 2^k-1

 if round(log2((numbr)+1))-log2((numbr)+1)==0

 rl = bit2int(temp3);

 rl_zeros = zeros(1,rl);

 else

 rl_zeros = zeros(1,numbr);

 end

 x = [x rl_zeros];

 elseif isempty(PM_pos) % only 1 or zeros. (not valid code

word)

 x = y;

 y = [];

 elseif ~isempty(OZ_pos) && OZ_pos(1)==2 % first codeword is

none-zero value

 % check the sign of the none-zero value.

 if y(PM_pos(1))==3

 nz_sign = 1;

 elseif y(PM_pos(1))==2

115

 nz_sign = -1;

 end

 %convert the binary into decimal.

 % remove the codeword from y

 if length(PM_pos)>1

 temp = [1 y(2:PM_pos(2)-1)];

 y = y(PM_pos(2):length(y));

 else% no other valide codeword in the input.

 temp = [1 y(2:length(y))];

 y = [];

 end

 x = [x nz_sign*(bit2int(temp)-1)];

 elseif OZ_pos(1) ==1 %first codword is 1/0. decode as 1/0.

 x = [x y(1)];

 % remove codeword.

 y = y(2:length(y));

 elseif OZ_pos(1)>2% first code word is run length of zeros.

 %if ~isempty(OZ_pos)

 temp3 = y(1:OZ_pos(1)-2);% remember the nz val has

MSB.

 y = y(OZ_pos(1)-1:length(y));

 temp3(temp3==3)=1;

 temp3(temp3==2)=0;

 numbr = bit2int([1 temp3]);

 if round(log2((numbr)+1))-log2((numbr)+1)==0 % if

the length is 2^k-1

 rl = bit2int(temp3); % then all bits are there

 rl_zeros = zeros(1,rl);

 else % if not, need the one with added bits.

 rl_zeros = zeros(1,numbr);

 end

 x = [x rl_zeros];

 end

 elseif length(y)==1

 if y == 3 || y == 0% here y = +, then only 1 zero is left.

 x = [x 0];

 elseif y == 2 % here y = -, two zeros are left.

 x = [x 0 0];

 elseif y == 1

 x = [x 1];

 end

 y = [];

116

 end

end

%check to see if x is at the right length.

if nargin >=2

 if output_length > length(x)

 x = [x zeros(1,output_length-length(x))];

 else

 x = x(1:output_length);

 end

end

function N =bit2int(bits)

% convert bits to integers.

n = length(bits)-1;

w =2.^(n:-1:0);

N = sum(bits.*w);

End

function [co1_rec, co2_rec, co3_rec] =

de_lowpassUpsample_roi(c1_down, c2_down, c3_down, parameters)

sRate = parameters.sRate;

x1 = parameters.ROI_pos(1);

y1 = parameters.ROI_pos(2);

w1 = parameters.ROI_pos(3);

h1 = parameters.ROI_pos(4);

sizeUo = size(c2_down);

rowsU = sizeUo(1);

colsU = sizeUo(2);

sizeYo = size(c1_down);

rowsY = sizeYo(1,1);

colsY = sizeYo(1,2);

temp1 = zeros(rowsY,(sRate(1)*colsY-w1));

temp2 = zeros(rowsU,(sRate(2)*colsU-2*w1));

temp3 = zeros(rowsU,(sRate(2)*colsU-2*w1));

c1_rec = zeros((sRate(1)*colsY-w1),(sRate(1)*rowsY-h1));

c2_rec = zeros((sRate(2)*colsU-2*w1),(sRate(2)*rowsU-2*h1));

c3_rec = zeros((sRate(2)*colsU-2*w1),(sRate(2)*rowsU-2*h1));

c1_down = c1_down(2:rowsY,1:colsY);

c1_down = [c1_down;.1*c1_down(end,1:colsY)];

c2_down = c2_down(2:rowsU,1:colsU);

c2_down = [c2_down; zeros(1,colsU)];

%Luminance component (Channel 1)

for i = 1:rowsY

 temp1(i,1:x1) =

interp(c1_down(i,1:(x1/sRate(1))),sRate(1),10,.5);

 temp1(i,x1:(x1+w1)) = c1_down(i,(x1/sRate(1)):(x1/sRate(1)+w1));

 temp1(i,(x1+w1+1):(sRate(1)*colsY-w1)) =

interp(c1_down(i,(x1/sRate(1)+w1+1):colsY),sRate(1),10,.5);

117

end

temp1 = temp1';

for i = 1:(sRate(1)*colsY-w1)

 c1_rec(i,1:y1) =

interp(temp1(i,1:(y1/sRate(1))),sRate(1),10,.5);

 c1_rec(i,y1:(y1+h1)) = temp1(i,(y1/sRate(1)):(y1/sRate(1)+h1));

 c1_rec(i,(y1+h1+1):(sRate(1)*rowsY-h1)) =

interp(temp1(i,(y1/sRate(1)+h1+1):rowsY),sRate(1),10,.5);

end

%Chrominance components (Channel 2 & 3)

for i = 1:rowsU

 temp2(i,1:(x1-1)) = interp(c2_down(i,1:(floor(x1/sRate(2)))),

sRate(2));

 temp2(i,x1:(x1+w1)) =

c2_down(i,(floor(x1/sRate(2))+1):(floor(x1/sRate(2))+w1+1));

 temp2(i,(x1+w1):(sRate(2)*colsU-2*w1)) =

interp(c2_down(i,(floor(x1/sRate(2))+w1+1):colsU), sRate(2));

 temp3(i,1:(x1-1)) = interp(c3_down(i,1:(floor(x1/sRate(2)))),

sRate(2));

 temp3(i,x1:(x1+w1)) =

c3_down(i,(floor(x1/sRate(2))+1):(floor(x1/sRate(2))+w1+1));

 temp3(i,(x1+w1):(sRate(2)*colsU-2*w1)) =

interp(c3_down(i,(floor(x1/sRate(2))+w1+1):colsU), sRate(2));

end

temp2 = temp2';

temp3 = temp3';

for i = 1:(sRate(2)*colsU-2*w1)

 c2_rec(i,1:(y1-1)) =

interp(temp2(i,1:(floor(y1/sRate(2)))),sRate(2));

 c2_rec(i,y1:(y1+h1)) =

temp2(i,(floor(y1/sRate(2))+1):(floor(y1/sRate(2))+h1+1));

 c2_rec(i,(y1+h1):(sRate(2)*rowsU-2*h1)) =

interp(temp2(i,(floor(y1/sRate(2))+h1+1):rowsU),sRate(2));

 c3_rec(i,1:(y1-1)) =

interp(temp3(i,1:(floor(y1/sRate(2)))),sRate(2));

 c3_rec(i,y1:(y1+h1)) =

temp3(i,(floor(y1/sRate(2))+1):(floor(y1/sRate(2))+h1+1));

 c3_rec(i,(y1+h1):(sRate(2)*rowsU-2*h1)) =

interp(temp3(i,(floor(y1/sRate(2))+h1+1):rowsU),sRate(2));

end

c1_rec = c1_rec';

c2_rec = c2_rec';

c3_rec = c3_rec';

co1_rec = wiener2(c1_rec,[3,3]);

co2_rec = wiener2(c2_rec,[3,3]);

co3_rec = wiener2(c3_rec,[3,3]);

end

function [co1_rec, co2_rec, co3_rec] = de_lowpassUpsample(Y_down,

U_down, V_down, parameters)

118

 sRate = parameters.sRate;

 sizeUo = size(U_down);

 rowsU = sizeUo(1);

 colsU = sizeUo(2);

 sizeYo = size(Y_down);

 rowsY = sizeYo(1,1);

 colsY = sizeYo(1,2);

 Y_down = Y_down(2:rowsY,1:colsY);

 Y_down = [Y_down;.1*Y_down(end,1:colsY)];

 U_down = U_down(2:rowsU,1:colsU);

 U_down = [U_down; zeros(1,colsU)];

 for i = 1:rowsY

 Yup_row(i,:) = interp(Y_down(i,:),sRate(1),10,.5);

 end

 Yup_rowtrans = Yup_row';

 for i = 1:colsY*sRate(1)

 Y2(i,:) = interp(Yup_rowtrans(i,:),sRate(1),10,.5);

 end

 for i = 1:rowsU

 Uup_row(i,:) = interp(U_down(i,:), sRate(2));

 Vup_row(i,:) = interp(V_down(i,:), sRate(2));

 end

 Uup_rowtrans = Uup_row';

 Vup_rowtrans = Vup_row';

 for i = 1:colsU*sRate(2)

 U2(i,:) = interp(Uup_rowtrans(i,:),sRate(2));

 V2(i,:) = interp(Vup_rowtrans(i,:),sRate(2));

 end

 Y2 = Y2';

 U2 = U2';

 V2 = V2';

 co1_rec = wiener2(Y2,[3,3]);

 co2_rec = wiener2(U2,[3,3]);

 co3_rec = wiener2(V2,[3,3]);

end

function [vidFrame_rec] = de_colour_transform

(co1_rec,co2_rec,co3_rec,parameters)

mean_RGB = parameters.mean_RGB;

frame_size = size(co1_rec);

rows = frame_size(1);

cols = frame_size(2);

vidFrame_rec = uint8(zeros(frame_size));

if strcmp(parameters.colourTran,'YUV')

 transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0];

119

elseif strcmp(parameters.colourTran,'YEF')

 transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25];

else

 error('encoder:unknownTransformation', 'Invalid colour

transformation method chosen')

end

mean_co1 = mean_RGB(1);

mean_co2 = mean_RGB(2);

mean_co3 = mean_RGB(3);

if diff(parameters.sRate) ~= 0 || max(parameters.sRate)>1

 co1_rec = [co1_rec(1,1:cols); co1_rec(1:rows-1,1:cols)];

 co2_rec = [co2_rec(1,1:cols); co2_rec(1:rows-1,1:cols)];

 co3_rec = [co3_rec(1,1:cols); co3_rec(1:rows-1,1:cols)];

end

invtransmat = inv(transmat);

vidFrame_rec(:,:,1) =

uint8(invtransmat(1,1)*(co1_rec+mean_co1)+invtransmat(1,2)*(co2_rec+

mean_co2-128) + invtransmat(1,3)*(co3_rec+mean_co3-128));

vidFrame_rec(:,:,2) =

uint8(invtransmat(2,1)*(co1_rec+mean_co1)+invtransmat(2,2)*(co2_rec+

mean_co2-128) + invtransmat(2,3)*(co3_rec+mean_co3-128));

vidFrame_rec(:,:,3) =

uint8(invtransmat(3,1)*(co1_rec+mean_co1)+invtransmat(3,2)*(co2_rec+

mean_co2-128) + invtransmat(3,3)*(co3_rec+mean_co3-128));

end

function parameters = de_parameters_update(parameters, component,

levelsY, levelsU, levelsV)

component(~any(component,2), :) = []; %rows

component(:, ~any(component,1)) = []; %columns

if strcmp(parameters.p_coef_mode, 'colums')

 for i=1:length(component(1,:))

 autcorr_c(i,:)=autocorr(component(:,i)');

 end

 mean_c = zeros(1,length(autcorr_c(1,:)));

 for i=1:length(autcorr_c(1,:))

 mean_c(i)=mean(autcorr_c(1:end,i));

 end

 a = mean_c(2);

elseif strcmp(parameters.p_coef_mode, 'rows')

 for j=1:length(component(:,1))

 autcorr_r(j,:)=autocorr(component(j,:));

 end

 mean_r = zeros(1,length(autcorr_r(1,:)));

 for i=1:length(autcorr_r(1,:))

 mean_r(i)=mean(autcorr_r(2:end,i));

 end

120

 a = mean_r(2);

end

parameters.p_coef = [a a -a^2];

parameters.levels1 = levelsY;

parameters.levels2 = levelsU;

parameters.levels3 = levelsV;

end

B.4 Performance Evaluate
function [CPSNR,rate_bpp,CR,SSIM]=

performance_evaluation(vidFrame,vidFrame_rec,parameters)

sRate = parameters.sRate;

%encoder - decoder

[R_co,G_co,B_co,mean_RGB] =

en_colour_transform(double(vidFrame(:,:,1)),double(vidFrame(:,:,2)),

double(vidFrame(:,:,3)),parameters);

if parameters.enable_ROI == 1

 [colour1,colour2,colour3] =

en_lowpassDownsample_roi(R_co,G_co,B_co, parameters);

else

 [colour1,colour2,colour3] = en_lowpassDownsample(R_co,G_co,B_co,

parameters);

end

[levels1, levels2, levels3] =

en_DPCM_encode(colour1,colour2,colour3,parameters);

[rate_sr1,rate_sr2,rate_sr3] =

pe_Frame_SRencode(levels1,levels2,levels3);

%--- Performance evaluation ---

%}

%%% Average rate per pixel %%%

mean_rY = mean(rate_sr1)/sRate(1)^2;

mean_rU = mean(rate_sr2)/sRate(2)^2;

mean_rV = mean(rate_sr3)/sRate(2)^2;

rate_bpp = mean_rY+mean_rU+mean_rV;

%%% PSNR performance %%%

CPSNR= eval_CPSNR(vidFrame,vidFrame_rec,parameters);

%%% SSIM %%%

SSIM = ssim(vidFrame_rec,vidFrame);

%%% Calculate CR %%%

CR = (1-rate_bpp/24)*100;

End

function varargout = pe_Frame_SRencode(varargin)

if nargin ~=3 && nargin~=4

121

 fprintf('ERROR: incorrect number of inputs!');

else

 levelsY = varargin{1};

 levelsU = varargin{2};

 levelsV = varargin{3};

 segmentlength = [size(levelsY,2) size(levelsU,2)];

 rowsY = size(levelsY,1);

 colsY = size(levelsY,2);

 rowsU = size(levelsU,1);

 colsU = size(levelsU,2);

 segment_nrY = ceil((rowsY-1)*colsY/segmentlength(1));

 segment_nrU = ceil((rowsU-1)*colsU/segmentlength(2));

end

levelsY = levelsY(2:rowsY,:)';

levelsU = levelsU(2:rowsU,:)';

levelsV = levelsV(2:rowsU,:)';

rate_srY = zeros(1,segment_nrY);

rate_srU = zeros(1,segment_nrU);

rate_srV = zeros(1,segment_nrU);

for i = 1:segment_nrY

 if i == segment_nrY && segment_nrY*segmentlength(1)> (rowsY-

1)*colsY

 last_pos = length(levelsY(:));

 else

 last_pos = i*segmentlength(1);

 end

 segmentY = levelsY((i-1)*segmentlength(1)+1:last_pos);

 tempY = en_SRencode(segmentY);

 rate_srY(i) =2*length(tempY)/segmentlength(1); % 2bit is

used for coding each symbol.

end

for i = 1:segment_nrU

 if i == segment_nrU && segment_nrU*segmentlength(2)> (rowsU-

1)*colsU

 last_pos = length(levelsU(:));

 else

 last_pos = i*segmentlength(2);

 end

 segmentU = levelsU((i-1)*segmentlength(2)+1:last_pos);

 tempU = en_SRencode(segmentU);

 rate_srU(i) =2*length(tempU)/segmentlength(2); % 2bit is

used for coding each symbol.

 segmentV = levelsV((i-1)*segmentlength(2)+1:last_pos);

 tempV = en_SRencode(segmentV);

 rate_srV(i) =2*length(tempV)/segmentlength(2); % 2bit is

used for coding each symbol.

end

varargout(1) = {rate_srY};

varargout(2) = {rate_srU};

varargout(3) = {rate_srV;

end

function CPSNR = eval_CPSNR(pic,pic_rec,parameters)

122

% declare constants

rows = size(pic,1);

cols = size(pic,2);

%split frames

co1 = double(pic(:,:,1));

co2 = double(pic(:,:,2));

co3 = double(pic(:,:,3));

co1_rec = double(pic_rec(:,:,1));

co2_rec = double(pic_rec(:,:,2));

co3_rec = double(pic_rec(:,:,3));

if strcmp(parameters.colourTran,'YUV')

 transmat = [0.25 0.5 0.125; 0 -0.5 0.5; 0.5 -0.5 0];

elseif strcmp(parameters.colourTran,'YEF')

 transmat = [0.25 0.5 0.25; 0.125 -0.25 0.125; 0.125 0.125 -

0.25];

else

 error('encoder:unknownTransformation', 'Invalid colour

transformation method chosen')

end

co1_o = co1*transmat(1,1)+co2*transmat(1,2)+co3*transmat(1,3);

co2_o = co1*transmat(2,1)+co2*transmat(2,2)+co3*transmat(2,3)+128;

co3_o = co1*transmat(3,1)+co2*transmat(3,2)+co3*transmat(3,3)+128;

co1_rec_o =

co1_rec*transmat(1,1)+co2_rec*transmat(1,2)+co3_rec*transmat(1,3);

co2_rec_o =

co1_rec*transmat(2,1)+co2_rec*transmat(2,2)+co3_rec*transmat(2,3)+12

8;

co3_rec_o =

co1_rec*transmat(3,1)+co2_rec*transmat(3,2)+co3_rec*transmat(3,3)+12

8;

mean_co1_o = mean(co1_o(:));

mean_co2_o = mean(co2_o(:));

mean_co3_o = mean(co3_o(:));

mean_co1_rec_o = mean(co1_rec_o(:));

mean_co2_rec_o = mean(co2_rec_o(:));

mean_co3_rec_o = mean(co3_rec_o(:));

co1_o = co1_o-mean_co1_o;

co2_o = co2_o-mean_co2_o;

co3_o = co3_o-mean_co3_o;

co1_rec_o = co1_rec_o-mean_co1_rec_o;

co2_rec_o = co2_rec_o-mean_co2_rec_o;

co3_rec_o = co3_rec_o-mean_co3_rec_o;

if diff(parameters.sRate) ~= 0 || max(parameters.sRate)>1

 co1_rec_o = [co1_rec_o(1,1:cols); co1_rec_o(1:rows-1,1:cols)];

 co2_rec_o = [co2_rec_o(1,1:cols); co2_rec_o(1:rows-1,1:cols)];

 co3_rec_o = [co3_rec_o(1,1:cols); co3_rec_o(1:rows-1,1:cols)];

end

df_1 = co1_o(2:rows,2:cols)-co1_rec_o(2:rows,2:cols);

df_2 = co2_o(2:rows,2:cols)-co2_rec_o(2:rows,2:cols);

df_3 = co3_o(2:rows,2:cols)-co3_rec_o(2:rows,2:cols);

123

%composite PSNR

CPSNR =

10*log10((255^2*3)/(var(df_1(:))+var(df_2(:))+var(df_3(:))));

End

	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objective and Limitations
	1.3 Structure of the Thesis

	2 Theory
	2.1 Medical Background
	2.1.1 Human Anatomy – The Gastrointestinal Tract
	2.1.2 Diseases
	2.1.3 Diagnostic Methods

	2.2 Image Compression
	2.2.1 Source Coding
	2.2.2 Building Blocks for Image Compression

	2.3 Image Source Representation
	2.3.1 Colour Spaces
	2.3.1.1 Red, Green, Blue (RGB)
	2.3.1.2 Luminance and chrominance (YUV)
	2.3.1.3 YEF

	2.3.2 Tiling

	2.4 Transformation Coding
	2.4.1 Discrete Cosine Transform
	2.4.2 Subband Coding
	2.4.2.1 Wavelet Transform

	2.4.3 Predictive Coding
	2.4.3.1 Differential Pulse Code Modulation (DPCM)
	2.4.3.2 Predictor

	2.5 Quantization
	2.5.1 Uniform Scalar Quantizers
	2.5.2 Non-uniform Quantizers
	2.5.2.1 Dead-zone Quantizer

	2.5.3 Adaptive Quantization

	2.6 Entropy Encoding
	2.6.1 Arithmetic Coding
	2.6.2 Huffman Coding
	2.6.3 Run-Length Encoding
	2.6.3.1 Stack-Run Encoding
	2.6.3.2 Bit-Plane Encoding

	3 Wireless Capsule Endoscopy
	3.1 The Sender and Encoder
	3.1.1 The Image Compression Algorithm
	3.1.1.1 Source Representation
	3.1.1.2 Multirate
	3.1.1.3 DPCM Predictive Coding
	3.1.1.4 Stack-Run Encoder

	3.2 Transmission
	3.2.1 The Wireless Radio System
	3.2.2 The Human Body as a Communication Channel

	3.3 Receiver and Decoder
	3.4 Previous Work

	4 Proposed Method
	4.1 System Overview
	4.2 Feedback and Algorithm Analysis
	4.3 Very Low Complexity Region-of-Interest Coding
	4.4 Limitations
	4.5 Implementation
	4.6 Evaluation

	5 Results
	5.1 Part 1: Algorithm
	5.1.1 Simulation 1
	5.1.2 Simulation 2
	5.1.3 Simulation 3
	5.1.4 Simulation 4

	5.2 Part 2: Region-of-interest (ROI)

	6 Discussion
	6.1 Part 1: Algorithm
	6.2 Part 2: ROI
	6.3 Complexity
	6.4 Error sources
	6.5 Comparison
	6.6 Video Encoding
	6.7 Hardware Implementation

	7 Conclusion
	7.1 Future work

	8 Bibliography
	Appendix A
	A.1 Program list
	A.2 Simulation Videos Specifications
	A.2.1 Video 1
	A.2.2 Video 2
	A.2.3 Video 3

	Appendix B – MATLAB Code
	B.1 Simulator
	B.2 Encoder
	B.3 Decoder
	B.4 Performance Evaluate

