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Abstract
by Martin Taugland Kollerud

Increasing voltage and frequency margins in traditional worst-case designs will

be more dominating as the process technology is scaled, where power is wasted

in exchange for production yield. We have investigated a state-of-the-art DVFS

method to eliminate all margins and still guarantee error-free operation, named

Bubble Razor.

In the first part of the project did we investigate the methodology of automated

conversion from a flip-flop design to a two-phased latch circuit and finally a com-

plete Bubble Razor circuit.

The second part was investigating how Bubble Razor behaves in circuits with syn-

chronous clock domain-crossings, and revealing a clock domain-crossing problem.

Two new types of clock-gates are proposed, extending Bubble Razor and enabling

it to operate in designs with clock-gates and multiple synchronous clock domains.

A conventional flip-flop design was converted to a two-phase latch design and got

a Bubble Razor-circuit inserted. Bubble Razor enabled the design to operate at

80% of the flip-flop version’s voltage, without any errors.
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Sammendrag

av Martin Taugland Kollerud

Økende spenning- og frekvensmarginer i tradisjonelle worst-case design vil være

mer dominerende ettersom prosess-teknologien blir skalert, hvor effekt er brukt i

bytte for produksjonsgevinst. Vi har undersøkt en state-of-the-art DVFS metode

for å eliminere alle marginer og samtidig garantere feilfri drift, kalt Bubble Razor.

I første del av prosjektet undersøkte vi metodikk for automatisert konvertering fra

et flip-flop design til et to-fase latch-design for s̊a til et komplett Bubble Razor-

krets.

Den andre delen var å undersøke hvordan Bubble Razor oppfører seg i kretser

med synkrone klokkedomene-kryssinger, og avslører et klokke domene-kryssnings

problem. To nye typer klokkeporter er foresl̊att, dette utvider Bubble Razor slik

at det kan operere i design med klokke-porter og flere synkrone klokkedomener.

Et konvensjonell flip-flop design ble omdannet til en to-fase latch design og fikk

innsatt Bubble Razor. Bubble Razor lar kretsen operere p 80 % av flip-flop versjon

sin spenning, uten noen feil.
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Chapter 1

Introduction

To fulfil an everlasting demand for longer battery life, faster circuits and more

functionality per area, parameters like voltage, frequency and process technology

need to be scaled to even more extreme limits. However, production yield will

decrease if not margins are added to guarantee error-free operation for every single

PVT-corner. If a design is made for a given frequency and process, some margins

need to be added when specifying the operation voltage. These margins cost power

and will not contribute to any performance.

To overcome the increase of margins, the design-for-worst-case mentality must be

reconsidered. This report is a study of a state-of-the-art method for making each

single chip perform at its best at any condition, called Bubble Razor. It enables

the circuit itself to give feedback about its status on the fly, giving the opportunity

to scale voltage or frequency to the brink of failure. It will even let setup errors

occur, due to slow propagation delay, correcting the errors with an error correcting

bubble algorithm and tell the voltage/frequency controllers to speed up.

The project is mainly about the methodology of applying Bubble Razor to any

sequential flip-flop design. If it will fit the normal design flow and if it performs

as good as we hope. We do also look into how Bubble Razor will interact in a

design with more than one clock domain. An extension to the bubble component,

1



Chapter 1. Introduction 2

called Bubble ICG, is proposed, which will allow multiple clock domains and clock

gating in a Bubble Razor design.

Regulators and the power-chain is not a part of this project. This is mainly about

the error protection at register-to-register level and its methodology.

1.1 Layout of the Report

Chapter 2 contains a brief explanation of important therms and principles impor-

tant for the understanding of Bubble Razor. It also includes motivation for DVFS.

Further, two-phased latch design and Bubble Razor architecture are explained.

The first part of chapter 3 presents how we converted a flip-flop design to a two-

phase latch design, implemented Bubble Razor and how it were verified. The

second part is where the Clock Gate Problem explained and a proposed solution

is presented.

The analogue simulation results are presented and explained in chapter 4. A

discussion and further explanation of the power results are located in chapter 5.



Chapter 2

Theory and Background

Section 2.1 and 2.2 are based on similar sections from our previous work [Kollerud,

2012].

2.1 Power Dissipation in CMOS designs

Digital power dissipation is due to three main sources shown in equation 2.1 [Chan-

drakasan et al., 1992].

Ptotal = pt(CL × V 2
dd × fclk) + Isc × Vdd + Ileakage × Vdd (2.1)

Voltage is a part of all the terms and therefore is a good motivator for scale the

voltage. The first term is the dynamic power and is a product of the switching

factor, pt, load capacitance, CL, supply voltage squared, Vdd, and the clock fre-

quency, fclk. This term is very power consuming and as a result is clock-gating

being more and more used to reduce the switching factor. However, voltage is

squared and is a big contributor to this term.

The second term is the power due to short path current that arises when both

NMOS and PMOS transistors are active. In addition, this is reduced by decreasing

voltage.

3
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The third term is the leakage power, this term is highly dependent on the man-

ufacturing technology and is expected to be more dominant, or maybe the most

dominant term as the technology is scaled. Leakage is also a dominating part in

sub-threshold circuits [Blaauw et al., 2005].

2.2 Propagation Delay in Digital CMOS Circuits

Propagation delay is generally the time it takes for a signal to travel from launch

point to the destination. In digital circuits, the delay of interest is often the

delay through the combinatorial logic between two registers, and the delay in the

clock network. These delays are composed of interconnect delay, delay through

wires, and logic delay, delay through gates. Logic delay scale a lot compared to

interconnect delay when voltage is reduced [Elgebaly and Sachdev, 2007].

D

Q

_

Q

Capture FF

D

Q

_

Q

Launch FF

Comb. Logic

Data Path

Launch clock path

Capture clock path

Common clock point

Figure 2.1: Illustration of the different paths between two registers.

Figure 2.1 shows the paths of interest between two registers. The data path is

defined as the delay between the two registers plus the clock-to-Q time of the

launch FF. The launch and capture clock paths are the delay from the common

clock point to the clock pin on each FF. The clock paths are often composed of

clock buffers, net delay and, if used, clock-gates.

Tarrival = Tlaunch clock path + Tdata path (2.2)
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Treqired = Tcapture clock path + Tcapture clk period − Tsetup time (2.3)

SetupSlack = Treqired − Tarrival (2.4)

Equation 2.4 shows some very important values when verifying the timing of a

circuit. Tarrival is the time a signal use from the common clock point, through the

launch clock path and through the data path. Treqired is the deadline for when the

instruction need to be stable at the capture registers input pin. It is the delay

through the capture clock path plus the clock period and the capture registers flip

flop. By combining these two values, SetupSlack is derived. SetupSlack tells how

far away a path is from failing it’s setup time constraint. The capture register

will launch the wrong value, or maybe become metastable, and set the circuit in

a wrong state. In the end, the setup slack is the limiting factor for the speed

a circuit is able to handle. A circuit will stop working when the frequency is

increased or voltage decreased to the point where the slack turns negative. This

delay mentality is important when designing a DVFS system.

Figure 2.2: Illustration of one interconnect dominated path vs one logic dom-
inated path in 180nm. [Elgebaly and Sachdev, 2007]
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Logic delay scale a lot compared to interconnect delay [Elgebaly and Sachdev,

2007]. Over the typical voltage range in voltage scaling system is the scaling of

the interconnect delay negligible and may be regarded almost constant. Figure 2.2

illustrate two paths being voltage scaled, one logic dominated and one interconnect

dominated.

2.3 Dynamic Voltage Frequency Scaling and Er-

ror Resilience

Dynamic Voltage Frequency Scaling and design for error immunity are strongly

connected. DVFS is all about tuning voltage and/or frequency down/up to the

bare minimum/maximum. Some sort of feedback is needed to know when the

circuit is operating at its limit. This is where error detection and recovery comes

in handy. Traditionally were DVFS done by monitoring copies of a circuits most

critical paths [Uht, 2005] [Park and Abraham, 2011]. These techniques are more

error avoidance in the sense of measuring the circuits speed, for then to scale

down accordingly. However, this is an indirectly method, where on chip variation

need to be taken into account leaving some margins left making them pessimistic

and not that efficient. More modern ways of monitoring, with DVFS in mind are

in-situ monitoring, which detects setup errors and correct them. This will enable

almost all margins to be cut away and, as explained later, even scaling beyond the

Point of First Failure.

Figure 2.3 illustrates the voltage margins in different samples. Every circuit will

have different delay properties, which will determine what frequency and voltage

they need to meet all timing requirements. However, margins are added to the

actual required values to get a good yield and guarantee error free operation. These

margins increase as the technology is scaled, making power be wasted just to insure

that most circuits will work in all process corners and under all temperatures, even

if 90% of the chips are fast enough far within these margins.
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Required voltage

Voltage margin w/o DVS

Margin with DVS

Set of dies

Figure 2.3: Illustration of operating voltage in four different dies. Design for
worst-case at the left, voltage scaling to the left.

Max delay

Clock

Fast

Violating

Just in time

Dead-line

Figure 2.4: Just In Time principle.

The point is to get each individual chip to perform as good as it is capable of,

and not let every chip perform as the worst-case corner. Figure 2.4 illustrates the

”just-in-time” principle, which is the goal independent of what is being scaled.

First when the most critical path barely reach its setup requirement, will the

circuit operate at optimum voltage or frequency. The most critical paths are the

bottlenecks, which mean these paths are the place to monitor. If the regulator

control gets feedback about these paths’ slack, it will be able scale the voltage to

the ”just-in-time”-point. Of course, the most critical path in a chip will wary with
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OCV, different interconnect/logic-delay ratios and path activity, which means that

multiple of paths need monitoring. The traditional critical-path copies needs to

take all possible critical paths at every single PVT-variation into account, and

guarantee that the copy is always the slowest, which leads to more safety margins.

It does not matter if it is voltage, frequency or even body-bias that is scaled. All of

these variables will eventually make the slack negative if scaled too far. The system

of detecting when to stop is the same, with some minor differences. Scaling voltage

is more challenging than scaling the frequency due to the non-linear properties,

which means the task of picking which paths to monitor is more complex. A good

voltage scaling scheme will be able to also work for frequency.

This report is mainly about scaling the voltage to reduce power. However, fre-

quency may also be scaled without any more modifications. The idea is to let

voltage be scaled to a bare minimum at any time, but let the user scale the fre-

quency accordingly to what throughput he or she need for the application. The

voltage will automatically drop if the frequency is decrease, and boost if the fre-

quency is increased for more throughput.

There are some different schemes when it comes to what kind of feedback the

regulators get. The traditional methods often use an up/down-feedback, meaning

speed up or down. The more modern in-situ methods only send a warning or

error, meaning that the regulator need to stop scaling down the speed. Regulator

will always decrease the speed with a slow rate until the circuit tells it to stop,

then possible scale it a small amount back. The rest of this report is about this

feedback, or monitors, and its error recovery capabilities.

2.4 Latch Based Design: Latch is Back?

This section is a short introduction to latches and latch design. For many people,

latches are something not often used and are associated with poor tool support

and bad verification methods. However, latch designs, if designed right, are faster
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than the normal flip-flop design [Chinnery et al., 2004]. This is due to the ability

for time-borrowing, sometimes called time-stealing, which will be a vital part in

the Bubble Razor design.

2.4.1 Registers

Latches and flip-flops are both registers and are used for storing a sate, either 0

or 1. There exist multiple different latches and flip-flops, however, the D-latch, D

flop-flop and master-slave flip-flop will be the ones in focus and most important

in this study.

In this report, a latch is defined as a level sensitive register and a flip-flop as an

edge-triggered register.

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

L Q

Q
S ET

C LR

D

L Q

Q
S ET

C LR

D

L

D flop-flop D latch Master-Slave flip-flop

Figure 2.5: Symbols for D flip-flop, D latch and master-slave flip-flop.

Latches is transparent as long as the enable or clock signal is active, and its output

will follow its input. The value is hold in the latch’s opaque (closed) phase.

The principle of a master-slave flip-flop is important for a latch system to work

correct, and behave just like its flip-flop counterpart. This basic element is what

enables a flip-flop design to be converted to a two-phased latch design. Figure

2.5 shows a master-slave FF to the right. It’s basically two latches, with opposite

polarity, connected together. As a black box, this will behave just like a normal

edge-triggered flip-flop, even though it is two latches. The first latch, the master,

will open and let its input value through to its output in one of the clock phases,

while the second latch, the slave latch, will open on the next clock phase.

Latch polarity is a way to distinguish which latches are active at which clock

phase. Positive latches are transparent at high clock phase, while negative latches
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at low clock phase when using a root clock as reference. Active-low and active-high

latches refer to the latches themselves when using their clock pins, or enable pins,

as reference. A active-high latch is transparent when its clock pin is pull high and

vice versa. Sometime are master and slave used instead of positive and negative

latches. As seen later will all masters have the same polarity and all slaves the

opposite polarity.

2.5 Two-phase Latch Design Principle

A two-phase latch design utilizes the principles of a master-slave flip-flop, that two

latches with opposite polarity in series behaves like an edge-triggered flip-flop. By

combining more master-slave latches to make up a sequential circuit, like a normal

D-latch design, will it behave as a normal edge triggered design by observing its

input and output ports. So, if two latches are connected directly together and

behave edge triggered, why not balance the data-paths and take some of the logic

between each master-slave pair, and put it inside the pairs themselves?

Q

Q
S ET

C LR

D

FF

Q

Q
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C LR

D

FF

Q

Q
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D

FF
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Q
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D

S

2

Figure 2.6: Illustration of the two-phase latch design principle.
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Figure 2.6 illustrates the steps of how to convert a flip-flop design to a two-phase

latch design. The most challenging step is the balancing of the paths, the last

step in the figure. Modern tool do support retiming of latch circuits, making

this step easier [Syn, 2011]. Prior to this tool support was balancing done by

tricking the tools to believe they retimed a flip-flop circuit. Instead of inserting

a master-slave pair, like in the first step, the flip-flop were swapped with a pair

of flip-flops [Chinnery et al., 2004]. If paths then are constrained to half the

clock cycle and retimed with a normal flip-flop synthesis tool, the output will be

a balanced circuit. The last step is then to swap each flip-flop with a latch, and

always let neighbouring latches be of opposite polarity. The downside by using

this method instead of a purposely-made latch retiming tool, is that the circuit is

not balanced for time-borrowing.

The two-phases, or clocks, should preferably be non-overlapping. It is vital that

neighbouring latches are not transparent at the same time, which may introduce

oscillating loops. However, the two phases may overlap a small amount, as long

as the difference between the launch and capture clock path is not more than the

length of the data-path.

2.5.1 Time-Borrowing

Q

Q
S ET

C LR

D

L

Path
1

Q

Q
S ET
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Figure 2.7: Illustration of the time-borrow principle.

Time-borrowing is one of the main benefits of a latch design. This enables a faster

circuit compared to a flip-flop equivalent. Figure 2.7 illustrates the latch to latch
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timing. Each data-path is constrained to a half clock cycle, and this is the time

instructions got to reach the next latch. The deadline is defined as the edge, which

the capturing latch opens. However, as seen in data-path 2, does the instruction

not arrive at time. Instead, it borrows some time from path 3 and since this path

is much faster than path 2, does the instruction reach D before it opens and the

path is again stable. The difficult part of verifying a latch design’s timing, is the

fact that every path’s timing depends on all the upstream paths. Path 3 in the

figure cannot be too fast, since it has already given some of it’s time to path 2,

meaning that this must be taken into account when deciding path 3’s length.

2.6 History of Razor

First of all, is Bubble Razor a solution that solves many of the problems that its

predecessors suffer from, Razor and Razor II [Ernst et al., 2003] [Das et al., 2006]

[Das et al., 2009]. Therefore is Razor presented briefly before Bubble Razor. The

principles of Razor, both Razor I and II, also apply to Bubble Razor. This was

one of the subjects in our previous work, for a more in-depth discussion of Razor

and other solutions please see [Kollerud, 2012].

Figure 2.8: Razor I. [Ernst et al., 2003]
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As mentioned in section 2.3, the first thing to fail as the voltage is scaled is the

setup time constraint of the most critical paths. These errors need to be either

predicted or detected. Razor is an in-situ error detecting technique that utilize the

double sampling principle. Figure 2.8 shows the first version of Razor by [Ernst

et al., 2003]. A RazorFF monitor is inserted at the endpoint of possible setup

violating paths, most critical paths, to detect if a setup violation has occurred.

By sampling the data at the endpoint twice, first at the positive clock edge (main

flip-flop) and the some time after this edge (shadow latch), a compare between

the two registers will reveal an error. The time difference between the two sample

times works as an error detection window.

When the path-delay is too long and the main flip-flop latches the wrong value,

the shadow latch, clocked by a delayed clock, will latch the right value. XORing

the two stored values reveal an error and the main flip-flop need to be restored.

Razor includes a local restore-function to latch the correct value from the shadow

latch to the main flip-flop, done by the mux. The error is then used in the feedback

to alert the voltage the voltage control.

In addition to the Razor flip-flops themselves, some error recovery is needed to

prevent the invalid data propagating to the next stages, ultimately propagating

through the circuit and possibly set it in a faulty state. This has been the biggest

issue with all the Razor solutions. The Razor solutions are error-detection solu-

tions, meaning the speed is allowed to be scaled to the point where paths fail the

setup time and a faulty value is latched. Since error eventually will occur, some

error recovery needs to handle this. Proposed error recovery solutions include

pipeline flushing and stalling all other stages ones at the same cycle. This is not

trivial and makes Razor tricky to apply for a general sequential circuit.

Another problem is the ”short path problem”. The detection window (a.k.a spec-

ulation window), the time between positive edge and the point in time when the

shadow latch closes, constraints how fast a path is allowed to be. The Razor may

issue a false error if the signal propagates through a data-path before the shadow
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latch latches the data from the prior cycle. A solution for this is to insert delay

buffers at these fast paths, but could lead to a large area overhead.

Figure 2.9: Illustration of energy saving with error detecting circuitry.[Ernst
et al., 2003]

Another technique often mentioned is the Canary flip-flop [Sato and Kunitake,

2007]. The Canary flip-flop is very similar to Razor as it also utilizes an in-situ

double sampling technique. However, instead of clocking the shadow register after

the main flip-flop, as Razor, do the shadow register latch prior to the main flip-flop.

This makes Canary an error predicting method and is not capable of detecting a

real error. A real error is when the main flip-flop latches the incorrect value.

Instead, Canary may only predict if a path is close to fail its setup time, and

then warn the voltage control about it. If a real error should occur, somehow, it

will go undetected. Predicting methods do not get rid of all the PVT-margins, as

illustrated in section 2.3, it need some margin to guarantee that an actual error

never occur.

Figure 2.9 shows the benefits of using an error detecting DVFS method compared

to an error predicting method. Error detecting methods are capable of shaving
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away all voltage margins and scale the voltage down to right before failure. Be-

cause of error recovery does it even allow to scale even beyond PoFF and gain

power savings in exchange for throughput.

2.7 Bubble Razor

Since the rest of the report really rely on the Bubble Razor paper by [Fojtik et al.,

2013], will we summarize the main principles and work in this section. The cited

figures is original figures from [Fojtik et al., 2013] work. We found these figures

pedagogical and good for understanding the Bubble Razor principle. As far as we

know, [Fojtik et al., 2013] is the only published article about this kind of Razor.

2.7.1 Basic Principle

Bubble Razor is a new DVFS method based on the same principles as Razor, being

an error detection in-situ method. Bubble Razor solves the short path problem

and the error-recovery challenge. Where Razor only specify the flip-flop itself and

not a recovery architecture, does Bubble Razor include an error recovery algorithm

based on a two-phase latch scheme. The idea is that with two phases, does the

circuit get a phase extra giving a better time-resolution, or better aspect of time, to

correct an error. Furthermore, the algorithm may be used in any design without

much knowledge of the internal functionality [Fojtik et al., 2013]. The Bubble

Razor algorithm recovers the datapath with only on cycle stall on the out and

input port per error. Any Razor-style latch may be used, but it is not necessary

with a local recovery in the monitor since this is handled by the Bubble-circuitry

and time-borrowing.
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2.7.2 Speculation Window and Error Correction on Latch

Level

In the previous Razor architectures, did the minimum path delay constrain the

width of the speculation window [Ernst et al., 2003]. Bubble Razor, on the other

hand, enables a large speculation window of almost a half clock period, and no

short path problems.

Main
Latch

Shadow
Latch

Input Output

Error

CK

CK

Figure 2.10: Illustration of a Razor-latch

CK

TCK

CK

tsetup

Speculation
window

Figure 2.11: Illustration of the speculation window of the basic Razor latch

Figure 2.10 shows a basic Razor latch. Although the latch version does not have a

local data-recovery multiplexer like the original Razor flip-flop. Except for that, is

the error-signal generation the same, but with a latch as the main register instead

of a flip-flop. As illustrated in figure 2.11 is the speculation window determined

by the width of the main latch’s clock pulse and setup time. This means that

the most variation in delay allowed between two clock cycles must not exceed the

speculation window length. An error is detected when the signal arrives inside this
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window. Note that the clock on the bottom in figure 2.11 is not the second phase,

but an inverted version of the clock on the main latch which is locally generated

inside the Razor latch.

An error is generated by the XORgate if the signal propagates too slow and reaches

the main latch after it has opened. The deadline for the signal to arrive is the point

when the shadow latch switches from opaque to transparent. The voltage cannot

be scaled down to the point where a path takes more than a whole clock cycle

minus the setup time. If the signal arrives after the speculation window closes,

it will be interoperated as the next cycles instruction and will go undetected.

Therefore must the lowest voltage allowed be restricted so this does never occur.

Metastability has been an issue in Razor, since it may occur in the main flop-flop,

and propagate along the datapath. This is not a problem in Bubble Razor, since

metastability can only occur in the shadow latch, reducing the risk of undesired

behaviour.

So, when the deadline is violated and an error is issued, what is done to correct this

locally? In contrast to the flip-flop Razor where, in case of an error, the instruction

must be re-latched to the main flip-flop, does time-borrowing automatically insure

the correct value to be latched in the latch Razor. An instruction arriving inside

the speculation window will be stored in the main latch due to time-borrowing.

A time-borrow will cause an error to be issued, but the datapath is kept intact,

for now. However, the next stage has now given away some of its time and is not

guaranteed to latch the right value. It has taken the punishment for the failing

upstream path, and is itself prone to fail. This is where the clock control kicks in,

a stall on the downstream stage/stages will give the instruction time to recover

and reach this stage in time. A bubble of stalls is started along the datapath to

let the next stages recover or keep them from latching the same value twice, hence

Bubble Razor. This process is further explained in the next section.
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2.7.3 Bubble Algorithm

A sequence of clock stalling, or bubbling, is started when a monitor issues an error.

This sequence is the key to how Bubble Razor may be applied to large designs.

Figure 2.12: Illustration of the recovery of a datapath. [Fojtik et al., 2013]

Figure 2.12 shows how the datapath is restored in case of an error. This is the

point where the two-phase latch design comes in handy. The extra phase enable

a stall without immediately losing any data in the neighbouring stages. A stall in

a one-phased flip-flop system would make the flip-flop upstream to the error latch

a new value and overwrite the old value before it is stored in the next stage.

Figure 2.14 shows Clock Gate Control, which controls the bubbling. The control

logic follows a very simple set of rules. Each individual control is not aware of

how many neighbours it has upstream, downstream or where it is in the system.

This reduces the area and the complexity and makes it possible to apply without

knowledge of the design. The Bubble algorithm given by [Fojtik et al., 2013] is as

follows:
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1 A latch that receives a bubble from one or more of its neighbours stalls and

sends its other neighbours (upstream and downstream) a bubble one half-

cycle later.

2 A latch that receives a bubble from all of its neighbours stalls but does not send

out any bubbles, making the bubble process end.

3 Multiple errors at the same time are handled in the same way. Stages do not

know how many errors there are in circulation, or where they originate from.

Figure 2.13 shows a bubble sequence in a simple test circuit. It is easier to see how

the algorithm propagates through logic by following the rules in listed above. Each

box, 1 to 8, is a monitor latch with a cluster control module. White boxes mean

normal operation, solid red mean the data reaches the latch after it has opened

and this latch issues an error. Solid blue is a stalling latch while red striped is a

latch that stalled last cycle and cannot stall or send bubble at the current one.

An error is detected at step 1 in latch 6. Step 2 are phase 2 latches supposed

to latch incoming data, but due to the late data in latch 6, 8 must stall to be

ensure the instruction is recovered properly. This is the initialization of the bubble

sequence. Next step, step 3, do phase 2 latches open, and latch 8 sends bubbles

both up- and downstream making latch 1, 6 and 7 stall. Note that latch 8 do not

stall in step 4, since it stalled last time. The bubble sequence end when a latch

gets bubbles in from all of its neighbours, like latch 3 in step 5. Note that every

latch only stalls once.

2.7.4 Bubble Circuitry: The Cluster Control

Figure 2.14 shows the Bubble Razor components. Cluster Control Logic is the

same as Clock Gate Control logic, but as described later, are latches clustered

into groups to reduce logic area from control logic. This means that multiple

latches clocked by the same phased clock may share Cluster Control. The Cluster

Control is identical for both phases; the only difference is which clock they run on.
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Figure 2.13: Example of the bubble algorithm.
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Figure 2.14: The Bubble Razor circuitry made by [Fojtik et al., 2013].

The Cluster Controls are the components that propagate the bubble signals and

stalls the latches. Its main task is to gather bubble signals from neighbouring

Cluster Controls and stall its member latches if it did not stall last cycle. Its

other task is to gather all the error signals from its member monitors to a Cluster

Error -signal. If a member monitor violate it’s timing constraint and issues an

error, this will be picked up by its Cluster Control and cause the bubble process

to be initialized.

[Fojtik et al., 2013] uses dynamic OR-gate trees with maximum 16 inputs for both

the Bubble In and Cluster Error signals. It is crucial that these error signal paths

are fast. Delay through the OR-trees is makes the speculation window shorter.

Dynamic gates are presumably used to decrease the delay. Why the delay through

the OR-trees affect the speculation window is illustrated and explained in section

3.3.1.

The error signal from each Razor latch is only valid when the main latch is open
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and the shadow latch is opaque. This is the reason for the clock-controlled pull

down in the XOR-gates. When the main latch is closed and the error signal is

not valid, the shadow latch’s input will toggle and glitch before stabilizing. This

glitching would propagate through a standard static XOR-gate, but by pulling the

XOR’s output low, the signal will be stable zero until a valid error occur during

high clock pulse. The pull down XOR-gate will be static zero as long as a valid

error does not occur. Therefore, will there only be a small amount of toggling in

the OR-trees, since an error is relatively rare.

Dynamic gates need to be clock with a frequency higher than a certain threshold to

prevent the charge draining out. This is solved by a latch at the end of the Cluster

Error -signal, making the OR-trees operate regardless of the clock frequency.

The bubble signals are then used in the feedback to the DVFS control logic. The

control logic probes the bubble network at different intervals depending on how fast

the regulation need to be. The voltage regulator control will increase the voltage

if it picks up bubble activity somewhere in the bubble network. As mentioned in

section 2.3, is there two kind of feedback to the voltage regulators, either up/down

or only up, where Bubble Razor will only give an up feedback.

2.7.4.1 Clusters

To reduce area overhead from the cluster control logic, latches clocked by the same

phase may share the same Cluster Control. Why not assigning all slave latches to

one cluster and all masters to another? First of all would the OR-tree collecting

Razors’ error signal get a huge fan-in, thus be too slow. Another problem is the

clock networks. It will be, if not impossible, very difficult to control half of the

latches in a chip from one clock gate with single cycle precision. The delay through

the clock network will possibly too large from buffering.

Cluster Controls are not aware of how many latches or monitors they control,

and clustering do not change the bubble algorithm or the bubble modules. [Fojtik

et al., 2013] cluster latches of same polarity with many common neighbours. There
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is a tradeoff between the size of OR-gates for the internal Cluster Error and the

size of the OR-gates for the bubbles between clusters. They do the clustering by

representing the circuit as a positive and a negative graph. Where the negative

graph contain all the latches, and Razor monitors, clocked by the one of the phases,

and positive graph of all clocked by the other phase. The edges between each

vertices (latches & monitors), is weighted by the number of common neighbours

between them. These graphs is than clustered by a hypergraph partitioning tool

[Fojtik et al., 2013], with constraint on the size of the clusters to keep the OR-gate

size down.





Chapter 3

Methodology

3.1 Setup

A good base design was needed to test the methodology of inserting Bubble Ra-

zor and its behaviour. The aim is to convert a competed sub-module to a fully

functional Bubble-Razor system. [Fojtik et al., 2013] uses commercial tools and

scripts, but do not say what is done by scripts and what is done by tools. We

will investigate how to do the transformation with the tools available, and custom

scripts. The test design need to fit some requirements:

1. Flip-Flop based

One of the advantages of Bubble Razor is that it should be able to fit in

any flip-flop design without the knowledge of the functionality. It should

obviously fit in a dual-phase latch design as well, but the most common

sequential architecture is the flip-flop design.

2. Path Delay Distribution

The path delay distribution should represent a typical design. There should

be critical paths as well as less critical paths.

3. No Hard Macros

Hard macro cells do not report the correct timing in a Static Time Analysis.

25
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The delays through these cells are often defined with a very large margin.

Hard macros are not desired in this study.

4. Testbench

Since the design will be attracted as a black box with no knowledge of the

internals or the actual functionality, a good testbench written by the module

designer must be available. This testbench will be used to confirm a correct

operation between each conversion step.

5. Size

The size of the module cannot be too large, but it must be big enough to get

a good set of paths. Simulation time, particularly the analogue simulations,

will be large if the design contains too many cells. From experience gives a

size of 200-400 registers a good turnover time, and still large enough to test

the methods and Bubble Razor.

6. Clock Gates or multiple Clock Domains

Clock gates and/or more than one clock domain is something that is often

used and is as far as we know not described in any Bubble Razor publication.

If Bubble Razor really is applicable in any design, this is one of the things

it should handle.

It was decided to use the same chip as in our previous study, a 180nm radio chip,

in co-operation with Nordic Semiconductor. However, it will now only be one

sub-module in compliance with the list above and not the whole chip.

With help from some of the designers, we landed on a sub-module believed to

fit our requirements. This module is a digital filter and comes with a testbench.

From now on, this module is named DigitalFilter.

3.1.1 Path Analysis of DigitalFilter

To verify that the paths in this module have a slack distribution that represents

the whole design, were the path-analysis scripts from our previous work used to
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map the paths. This module runs at 52MHz and was therefore not part of the last

study where only the 16MHz domain where analysed.
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Figure 3.1: Plot of the slack distribution in DitalFilter. Blue is slow and red
is fast corner.

Figure 3.1 shows a plot of the slack in DigitalFilter. There is a larger group close

to zero slack, which tells that this module got a group of critical paths. The next

plot, figure 3.2, displays how each individual path’s delay change between the

corners. There is no unusual incline which prove that the module do not contain

hard-macros or special cells. DigitalFilter contains 243 flip-flops.

3.1.2 Verification

The module has a functional testbench to be used for verification of each step

in the conversion between a flip-flop design to a Bubble Razor design. However,

the testbench is not the typical GO/NO-GO testbench, but is instead a RTL-

testbench with a MATLAB script to confirm the right filter response. Further do

the testbench only connects to the ports of the module, and do not probe into the
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Figure 3.2: Slack movement over the slow and fast corner, where slack is
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design. This enables the testbench to be used on any of the upcoming modified

versions of the design as long as the interface is the same.

The testbench will be ran for each of the major modifications done to the design.

Since the correct behaviour of the DigitalFilter is unknown, will the behaviour

of the modified design be considered as correct if it matches the output from the

original filter response.

3.1.3 Clock and Clock Gates in Case Module

DigitalFilter contains two clock gates. One of the clock gates is used to turn on

or off a smaller section of the module while the second gate is used in a clock

divider for a larger portion of the filter. This enables us to test how Bubble Razor

behaves with more complex clocking and clock domain crossings. All clocks are

synchronous.
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Figure 3.3: Verification of the RTL/netlist-changes.

3.2 Step 1: Converting to a Two-Phase Latch

Design

This section explains how the DigitalFilter were converted to a two-phase latch

design. These steps all depend on what software tools and what kinds of cell

libraries are available. Most of the steps are done by scripts, but the vital re-

timing step depends on a synthesis tool.

The original design is synthesized from RTL to a verilog netlist, which is the base

for the conversion. RTL is left untouched; every modification is only done to the

netslists. Every step, except retiming, were done by custom scripts.

One of the most characteristic things about Bubble Razor is the two-phase latch

architecture. It is crucial to be able to easily convert any flip-flop design to a latch

design for the Bubble Razor system to work at all, since most designs are based
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on the typical flip-flop architecture. The method used here is based on the latch

rules from section 2.5.

3.2.1 Cell switch

Insertion of latches is based on the fact that the synthesis/retiming tool used in

later stages is able to calculate the right output drive and balance the paths by

adding or removing latches.

The initial move is swapping every flip-flop in the netlist with two latches, one for

each phase, where the master is clocked by phase one and slave by phase two. This

will make the module as a black box behave just like the original design. Next

is the insertion of wires between the latches. The two latches are now connected

directly together and appear as one master-slave flip-flop. It is important to use

latches corresponding to the flip-flop being replaced. If the original flip-flop had

asynchronous active-low reset or used the inverted output, should the master-slave

replacement also be the same. Rest of the changes is inserting declarations based

on the syntax of the netlist language, in this case verilog.

Script is found in appendix A.

3.2.2 Clock Tree

Unlike a flip-flop design, where only one clock tree is made, does a latch-design

need two phases. On the other hand are the timing requirements for the two clock

trees in a latch design less strict with skew in mind, which means that each tree

is smaller and less power consuming than the tree from a flip-flop design.

This study is not going to be taken to the layout stage. The clock tree is often

an ideal network in all stages before layout and the comparison would be more

correct with an ideal clock for the BubbleRazor design, since the original design

is not laid out.
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The list below describes the two ways of setting up the clock in a latch design:

1. Locally generated second phase

The basics behind the local generated second phase is in the name itself.

One clock is routed throughout the design, where the second phase in each

master-slave pair is made locally with inverters. This is possibly one of the

best methods for generating the clock tree, but will introduce buffers in the

clock tree which is not done in the original design. This buffer difference will

introduce an error in the power estimation. Small local variation may intro-

duce an error to the non-overlap constraint, but this will cause no troubles

as long as the data signal uses longer time than the non-overlap.

2. Generate a tree for each phase

Instead of locally generate the two phases with buffers and inverters, is the

module granted the second phase from an external source. Both phases are

then routed as two clocks throughout the design. This way no extra buffers

need to be introduced for the upcoming power simulations. Another up-

side by having the two phases independent of each other is that this enables

tweaking with the non-overlap time a duty cycle in later analogue simula-

tions. Therefore is this clock solution used in the rest of the study.

The second option was chosen for the reasons given in the list. Script in appendix

B sets up the second phase in each sub-module.

At this stage, the latches are inserted and a phase two is introduced throughout

the design. However, as the next two sections explain, does the module contain

clock gates that need to be modified to suit the active low latches and the two

phases.

3.2.2.1 Active Low Clock Gates

The 180nm std. cell library used in this study did not contain active-high latches,

which introduce some modifications to fit active-low latches. It did neither include
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an ICG (Integrated Clock Gate) for active-low clock setup. A ICG made of other

cells shown in figure 3.4. This is only needed if active-low latches are used. It

is important to note that a clock must always be set to the inactive phase when

turned off. If it is not, oscillation loops may arise since both the master and slaves

would be transparent.
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Figure 3.4: Clock gate for active low latches. Glitch free.

3.2.2.2 Two-Phase Clock Control

The clock gate must undergo further modifications. This clock control outputs a

equal duty cycled pair. However, as explained later in the BubbleRazor section

3.4.2 is there a trade-off between equal or non-equal duty cycle between the two

phases in the clock domains when inserting Bubble Razor.

Another aspect with clock-gating two phases is that for each time the gate is open,

a pair of pulses needs to be gated, one for each phase. This gets important when

the gates are used for more than turning clock domains on or off, but instead be

used for more complicated gating such as clock dividing or pulse picking. Further,

the masters need its pulse before the slaves gets its.

Figure 3.5 shows the clock gate used in this study, note that only the original gates

from the flip-flop design are switched to this. Some different gates are introduced

for the BubbleRazor logic, which is not switched to this gate. At first glance, the

gate configuration in figure 3.5 may seem unsafe, and yes, it is not trivial to send

the enable-signal directly to the OR-gate to generate the first gated phase. The

Enable-signal is the same as the Enable-signal in figure 3.4.
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Figure 3.6: Illustration of the two-phase clock gate behaviour.

It is important to constrain the data-path from the phase-two latches to the OR-

gate with good margin within a half period. If the Logic part generating Enable

is too large, or has a too long delay, this gate cannot be used. However may

the synthesis tool be able to retime and balance some of this logic upstream of

the phase-two latches, giving more time for the Enable-signal to reach the first

OR-gate.

The reason why this gate is being used, is to get the first, phase one, clock through

before the phase two clock as shown in figure 3.6. As mentioned in section 3.2.1,
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the last of each inserted pair of latches, the slave latch, is clocked on the phase

two clock. This means that the enable signal from the original design is now being

clocked on phase two. Furthermore does the design rely on getting the first pulse

after the enable is set.

By now, the design has a complete clock tree and it is run through the testbench

with ideal timing. This confirms the logical behaviour of the circuit, though the

circuit would not work in a simulation with real delay on the data paths due to

timing violating paths, which is fixed in the next section.

3.2.3 Retiming

The retiming is a very important step to get the logically correct latch-design meet

the timing requirements. The middle circuit in figure 2.6, section 2.5, shows the

design at the current state. The goal is to balance all paths to a half clock cycle

and end up with the last stage.

The tool used for retiming is Design Compiler from Synopsys. Design Compiler

include a command, optimize registers, that retime circuits [Syn, 2011]. Fortu-

nately do this command supports latch designs, it even supports time-borrowing.

However, is time-borrowing something not wanted under the conditions in slow

corner. Synthesis tools use libraries specifying cells at normal operation condition,

but as [Fojtik et al., 2013] mention, is time-borrowing something not desired when

voltage is not scaled. An error is issued when a path borrows time. At 1.2V, which

is the slow corner defined in the cell library, should the circuit run without any

time-borrowing.

The data-paths between each latch are constrained to half clock period minus

setup time and clock uncertainty. Paths between latches and input/output ports

are constrained to a quarter clock cycle. Time-borrowing is turned off and the

clock-network is set as don’t touch and ideal. DigitalFilter is now a complete latch

design.
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3.3 Step 2: Bubble Razor insertion

This section explains how we inserted a complete Bubble Razor system to the

DigitalFilter, which at this point is a complete two-phase latch design. Section

3.3.1 explains how we made the components in figure 2.14 by [Fojtik et al., 2013]

with our std. library. Section 3.3.2 to 3.3.6 explains how Bubble Razor is inserted

to our test module, DigitalFilter. However, as mentioned do DigitalFilter include

clock gates, which introduce some challenges. The steps in this section is enough

for a design without clock gates. The clock-gate problem and a proposed solution

for the clock gates is described in section 3.4.

3.3.1 Algorithm and Components

Before starting implementing Bubble Razor were the components from figure 2.14

made from the set of std. cells available. In addition, do these cells need to operate

in an active-low system like the latch version of DigitalFilter.

Figure 3.7 and 3.8 are the active-low versions of the modules by [Fojtik et al., 2013],

figure 2.14, the only difference being active-low latches and the clock gate. The

state-holding flip-flop in the Cluster Control is now clocked by the other phased

clock, since a negative edge flip-flip is not available. This does not change any

behaviour.

A test circuit with a testbench was made in SystemVerilog to ensure the circuit

behave as desired. The algorithm is already been confirmed to work by [Fojtik

et al., 2013], but there were some confusions. Which cluster error is connected

to which Cluster Control? ”... it was noted that upon initiating the bubble

propagation sequence after detecting a timing error, the first clock gating event is

optional, so clock gating does not take place during the first bubble” [Fojtik et al.,

2013]. Initially, this were interpreted to that the first downstream latch, after

the monitor issuing the error, do not need to stall, but just send bubble up and

downstream. This means that latch 8 in figure 2.13 do not stall. The way [Fojtik
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Q

Q
S ET

C LR

D

L

Q

Q
S ET

C LR

D

L

Latch

Data In Data Out

LatchCK

Error

Figure 3.8: Illustration of the active-low Bubble Razor monitor.

et al., 2013] samples the error signal in the Error OR-tree, on the opposite clock

of the cluster clock, also indicates that the error signals going in to the cluster

control is not from the monitors within the cluster. The error signal from each

monitor is valid only when the main latch is open. The Error OR, in figure 2.14,

is the latch receiving ERR In clocked on CLK which implies this error signal is

issued by a monitor clocked on the other phased clock. Without saying that this

is wrong, we may consider another version of this algorithm.
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Figure 3.9: Alternative Cluster Error Routing.

Figure 3.9 shows the two cluster-error routing options considered. The red wires

is the Skip first stall option, blue is a dual error injection version. In the skip

first stall option are cluster errors from each latch connected to the downstream

latches’ cluster controls. The dual error injection is cluster error connected to the

same cluster control controlling the monitor’s clock.

The different behaviours of the two options are illustrated in figure 3.10 and is

based on the example of the ideal algorithm in figure 2.13. The Optional first stall

to the left shows an error in latch 6, which sends the cluster error downstream

to latch 8. Latch 8 do not stall, unlike to the example in section 2.7.3, but

instead sends bubbles both up and downstream. The behaviour is identically to

the example, except latch 8 stalls in step 4 instead of 2. If we have interpreted

the ”skip first stall” correct, do the wave at the left bottom illustrate the possible
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hazard with this method. The wave shows latches 3, 4, 6, 8 and 9, which is in the

correct order. This example shows the circuit under very slow, but legal condition,

which makes the data arrive very late at latch 6. This is not a problem in the

example from section 2.7.3, where the data get an extra half cycle to reach latch

8. However, if latch 8 do not stall, hence the optional first stall, does the data

has only a little over half cycle to reach 8. Under normal operation is this not a

problem, since data paths use under a half cycle anyway. On the contrary, the

paths are already operating slow when latch 6 fails with this margin, consequently

is the path between 6 and 8 also slower than normal. There is no guarantee that

this path is below a half cycle, under these conditions. If this instruction misses

the deadline in latch 8, will the instruction be lost since latch 6 will overwrite it

before 8 opens again. This happens when two paths in succession combined is

over 1.5 clock cycle long. If optional first stall is going to be used, path pairs must

be constrained for this. We do not tolerate a latch error.

The upside of using optional first stall is less constrained OR-trees. Cluster Error

do now have a half period extra to reach the recipients. As discussed later, do the

delay through this OR-tree affect the speculation window.

Dual error insertion is the other way to connect the control circuitry. This is the

method selected for the DigitalFilter. Dual error insertion is very similar to the

ideal bubble initiation from 2.7.3. The different is that a bubble is not sent just

downstream, but also upstream in the first step, as shown to the right in figure 3.10

(step 1 to 2 ). This simplifies the automation done in the next chapters by routing

the cluster error signal, as shown in blue in 3.9. However, won’t inserting two

errors result in two stalls in each latch? No, the circuit does not know where the

bubbles originate from or how many are bubbling around. The two bubbles will

cancel each other out in the cluster/cluster-control pair issuing the error and then

propagating from this point out. This method do not have the problem where an

instruction may be lost, however is this method dependent on a low delay through

both cluster error and bubble in OR-trees. An error must propagate from the

Razor monitor and be stable on the input of the clock gate in the neighbours’

cluster control before the next clock pulse arrives. This reduces the speculation
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window by limiting how late an instruction can arrive, illustrated by the red line

in the wave illustration in figure 3.10. This is the same constraint as the original

algorithm.

The active low components and the dual error injection initiation where tested in

ideal logic simulations and chosen for this project.

3.3.2 Analysing and Mapping DigitalFilter

The functionality of DigitalFilter is unknown, but the relationship between each

individual latch needs to be mapped for the insertion of Bubble Razor. The routing

of each signal introduced with Bubble Razor maps directly to the local connection

between latches. Which clock the latches are clocked by and what slack each latch

has on its input is also vital information.

Initially, a custom Verilog parser was considered. However, by using DesignCom-

piler instead enables getting more information without making a parser. By using

DesignCompiler’s report timing-function on each latch and input-port in Digital-

Filter, obtaining slack and downstream latches for every latch. This data were

extracted and are the base for a lookup file of each latch in the design, intended

for the insertion of Bubble Razor. DesignCompiler also include command for re-

porting clock information. It gives the full clock path to each latch allowing the

script to get the last clock gate, or which clock domain the latches are clocked by.

It is possible to report the whole design in one command for timing reports and

one command for clock tree reports, but the computer’s memory were not large

enough. To overcome this, a wrapper script written to report for each latch and

input port and then dump it to a file, appendix C. This report file were then

imported to another script, which generates the actual lookup of all the latches,

in addition, this is also the script handling the cluster control lookup. There are

no clusters for now, every latch have their own control module. The cluster part

is described in sectin 3.3.6, but it is the same script performing the clustering.
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Figure 3.11 shows an example of a mapped circuit. The script makes, just like

[Fojtik et al., 2013], a positive and a negative graph showing how many common

neighbours each latch of the same polarity share. This is used for the clustering

algorithm. See section 3.3.6.

This step, like all the other steps, is important to automate. Notice that the

runtime of the automated DesignCompiler wrapper script is significant. However,

it is OK for the work in this report due to the size of DigitalFilter. A better

solution is to write a Tcl script native for DesignCompiler, which will reduce the

runtime for larger designs in the future.

An example of the lookup file may be seen in appendix F.
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3.3.3 Deciding the Number of Monitors

Which latches should be replaced by monitors? [Fojtik et al., 2013] propose tree

different methods of selecting paths, or latches: only negative latches, only positive

latches or a subset of all latches. A 100% speculation window is achieved by

replacing all latches, however do this increase the area a lot. By only applying

Razor latches to only negative or positive latches will result in half the speculation

window time, since only every other latch monitors, but half the number of extra

Razor logic.
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Figure 3.12: Histogram of endpoint slack at each path.

Figure 3.12 illustrates a histogram of endpoint slack at all latches. Endpoint slack

is how far away a path is failing its setup time. When the latches were inserted was

each flip-flop swapped by a pair of latches. There is the same amount of masters

and slaves prior to retiming. However may retiming affect this ratio depending

on area and timing constraints. DigitalFilter post retiming is the ratio almost 1,

with 257 negative latches and 267 positive latches. Some area may be saved by

only monitoring negative latches, but the gain is minimal.

A more important factor for deciding which phase to monitor, is how many critical

paths they include, where the two phases differ a lot. The group of positive latches

includes all the most critical paths. Exactly why it is like this is unknown, but a
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theory that the retiming tools do not change paths within it’s time constraint, if

not one of it’s upstream or downstream paths violates it’s timing constraint. A

path violating it’s timing constraint will be balanced, and some of it’s logic will be

pushed either to the previous stage or the next stage. Many paths between master-

slave pairs are violating the timing constraints prior to retiming, since these paths

are synthesized for a flip-flop circuit with a whole clock period constraint. The

paths within each pair are almost zero, with no cells between them. With the new

constraints, just below a half clock cycle between each latch, force retiming tools to

balance the paths. However, the tool does not necessary balance paths to a 50%-

50% ratio, but may tend to only move over the logic needed to meet requirements

in all paths. This is why positive latches, master latches, are endpoints for more

critical paths. The positive latches switched with Razor monitors since these

include all critical paths.

Decision of only monitoring the positive latches and not only the critical paths

may seem a little odd. By consistently monitor one phase, guarantees monitoring

every other latch. This will break up time borrowing paths, which may accumulate

to a point of failure if there are multiple unmonitored successive paths.

3.3.4 Applying Bubble Razor to DigitalFilter

DemodFilter is still a latch design at this point, but the design is mapped with

all the information required for the Bubble Razor insertion stored in lookup files.

The next step is to make scripts to automate the insertion of all the Bubble Razor

logic based on these lookups.

No more synthesis was done from this point on. Due to some unexpected behaviour

from the synthesis tools, the decision of not running the design through synthesis

to keep a good overview of the circuit. Synthesis tools tend to rename signals and

remove, add or move cells around which makes it a lot more difficult to debug. In

addition, due to the strict timing requirements in the bubble network do we not

want the synthesis tool to touch any of the cluster logic. The latch circuit itself is
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already synthesized and retimed from section 3.2.3. A Bubble Razor circuit can be

attracted as two circuits, one bubble network of cluster controls, and the original

lathes and datapaths. Only the latch-datapath part is retimed.

3.3.4.1 Script Inserting Bubble System

The script do only work on flatten hierarchy netlists, where the whole circuit is

in one module. This is a constrained made when the circuit was retimed. The

script goes through a latch design netlist and for each latch looks up in the latch

lookup to see if this latch is being replaced by a Razor monitor. If it is not being

replaced, it will only switch the clock port input to the clock provided by its new

cluster control, also listed in the lookup. Otherwise, if swapped to Razor latch,

this is inserted instead of the latch and the clock and error signal is connected.

When the script reach end of module and all the latches are treated, the insertion

of the cluster control takes place. These are inserted and connected according to

the cluster lookup file. The OR-trees for the bubble and error signals is inserted,

but only ideal assignments and not cells. This were done for testing purposes,

OR-trees made by cells will be discussed in the next section, 3.3.5. At last, all the

instantiations for the new signals were added accordingly to the Verilog syntax.

The script seen in appendix E executes the insertion.

3.3.4.2 Input and Output ports

The script inserting monitors and cluster control works only on flat hierarchy

netlists. However, it is still possible to use it on individual modules in a hierarchical

system. The input and output ports of each module are considered synchronous

to one of the phases. Input ports are clocked on the opposite phased clock relative

to its first downstream latch, while output ports are clocked on opposite phased

clock relative to its first upstream latch. The script adds bubble signals, both

in and out, for each port as in figure 3.13. By running each module creating a
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Figure 3.13: Illustration of the port interface.

hierarchy through the script individually, to then connect all the bubbles to/from

the ports to other modules’ ports or latches/cluster-controls.

3.3.4.3 Testbench Modifications

The testbench needs some minor modifications to test the Bubble Razor version

of DigitalFilter. First of all, do it need to insert errors randomly in the circuit and

then filter out the bubbles on the input and output ports.

The testbench is ideal, without cell delay, so it is not possible to tune the frequency

or voltage to provoke errors. The solution is to probe down in the circuit and force-

release random Razor latches’ data-pins to hold its value into the speculation

window. This will introduce errors randomly in the circuit.
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When errors are inserted and the bubble system is working, these will propagate

to the in and output ports. A cluster control is added to each port, making the

ports themselves stall upon bubbles.

At this point, the testbench did not go through error free. The output is not the

same as the reference design, as expected. The reason for this is the clock gate

problem, or clock domain problem. This problem is elaborated in section 3.4 and

a proposed solution is presented. However, by permanently open the clock gates,

practically getting rid of all clock domains and letting all logic being clocked by

the two root clocks, the testbench match the reference design, also with all gates

opened. Note that the clock gates inside the cluster control is not opened, only

the clock gates which were in the original flip-flop design.

3.3.5 OR-trees

The OR-trees introduced by the bubble logic are vital components. It is very

important that these signals always reach their destination on time. In addition,

the OR-trees generating the cluster error -signal affects the speculation window.

[Fojtik et al., 2013] use dynamic OR-gates in a tree structure, which has a speed

advantages. Unfortunately are no dynamic gates available in the std. cell library.

A decision of not making models of these cells taken made in co-operation with

Nordic Semiconductor, due to limited time, but will be added in the future.

The custom XOR-gate, pulling down the error signal when it is not valid, was also

not available. This will most likely increase the power consumption to a certain

degree. Toggling and glitching will leak through along the error-paths because a

normal static XOR-gate always will be open.

Due to the decision of only using available std. cells and the strict delay require-

ment in the OR-trees, modules of ORs are written in Veliog and synthesized with

maximal time constraint for the maximum speculation window.
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OR modules made up of std. cells, able to OR from 4-26 inputs, makes up the

static OR-trees. The slowest one is the 23-input OR which has a delay of 0.77ns,

or 4% clock period under worst-case library. These gates are mostly a tree of

NORs, inverters and NAND gates. These cells have a strong output drive, due to

the timing requirement.

3.3.6 Clustering

Clustering is an important step to reduce area added by Bubble Razor. Digital-

Filter’s latches have all their own cluster control, which increase the area by a lot.

As mentioned, does the lookup-generating script also perform clustering. When

clustering, it outputs a cluster lookup containing all cluster, its member latches

and monitors, clock etc.

As mentioned in 2.7.4.1, is there a tradeoff between the size of Cluster Error OR-

tree and Bubble In OR-tree. Bigger clusters give fewer neighbours, hence smaller

Bubble In OR-trees. However, bigger clusters mean more Razor monitors per

cluster and larger OR-trees for Cluster Error generation.

Figure 3.14 illustrates the main steps when clustering. The algorithm starts on

graphs like the ones in figure 3.11. It selects the two clusters with most neighbours

in common, and then check if these two clusters merged fulfils the OR-tree size

constraints. If a pair of clusters do not meet the constraints, they will be added to

a ban-list and will be ignored until some other cluster pair is merged. Otherwise,

if fulfilling the constraints, they are merged together and the positive and negative

graphs are updated. The merging is finished when there are no legal cluster pairs

left.

There is only a constraint for how many monitors a cluster is allowed to contain.

Due to the size of DigitalFilter, is there no need to constrain number of neighbours.

The problem with this algorithm is that it cannot escape a local minimum if the

number of neighbours is constrained, which will be a problem in larger designs. A



Chapter 3. Methodology 48

START

Assign each 
latch and 
monitor a 

Cluster Control

Find cluster pair of 
same polarity with 

most common 
neighbours.

Pair in ban-list?

Any un-banned
cluster pairs?

YES

END

NO

Pair meets
size constraints?

Add pair to 
ban-list

NO

Merge clusers 
to one

Clear ban-list

Update both 
negative and 

positive graph

Figure 3.14: Illustration of how the clustering is done.

hypergraph partitioning tool will most likely be the best way to cluster latches in

designs above a certain size.

The number of clusters is reduced from 524 to 19 clusters. The best result were

achieved with constrain on number of monitors per cluster of 16. The largest

Bubble In OR-tree is then a 26 input, which is the only larger one. The second

largest has 5 inputs. Number of components added by Bubble Razor is found in

appendix G.

3.4 Clock Gate Problem

All the steps in section 3.3 will work in designs with only one clock domain. A

clock domain is here defined as groups of registers clocked by the same clock.

The output of two clock gates are defined as different clock domains. However,
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the clock gate inside cluster controls does not define a new clock domain. In the

context of latch design, are both the two phases in a two phased clock defined as

one clock.
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Figure 3.15: Illustration of different clock domains.

Figure 3.15 illustrates what is defined as a clock domain and what is not. The clock

signal includes both phases. Note that all the different clocks are synchronous.

Asynchronous clock domain crossings are a totally different problem.

As far as we know, is Bubble Razor not been applied to designs with a more

complicated clock scheme. Why not remove clock gates? If Bubble Razor should

work on ”any” design, this problem must be solved. Clock gates are widely used

and is a way to reduce power. Many of the design which already are made will

often include clock gates, either only to turn on and off sections of a chip or more

complicated where it is used to control the behaviour of the circuit. One of the

gated domains in Digital filter does the clock itself control the sampling rate, and

cannot be removed without a larger modification.
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3.4.1 Problem Description

The problem with clock domain crossings is how the bubble signal is treated in

the domain with the slowest clock. Normal cluster controls will give an error time

to recover, but will not stall the clock itself. This will lead to incorrect behaviour.

Clock Domain 1:
Sequential logic

clocked by ckFreq1

Clock Domain 2:
Sequential logic

clocked by ckFreq2

Clock Domain 1:
Sequential logic clocked by ckFreq1.

Generates the enable signal for ckFreq2 gate.

ICG

Data in 1

Data in 2

ckFreq1

ckFreq2

enable

A

B C

Figure 3.16: Illustration of the clock domains in DigitalFilter with its two
different clocks, ckFreq1 and ckFreq2.

Figure 3.16 illustrate how the clock is routed in DigitalFilter. The module at top,

A, is a control module for the clock ckFreq2. ckFreq2 is a downscaled version of

ckFreq1, where the frequency is controlled by module A. Although ckFreq2 is a

periodic clock with a controlled period, the problem is the same in modules clocked

by pulse picking with no fixed period. There is no data paths between module A

and the two others, so no bubbles will bubble between them and A.

Figure 3.17 shows how the error occur. A, B, C and D are four latches with their

own cluster controls. Latch A and B are located in clock domain 1, C and D in

domain 2. Throughout will these domains be referred to ”fast clock” and ”slow

clock”. Technically is ”slow clock” the clock pair in the slowest clock domain

containing both phases, and the same for fast clock.

When an error occurs in domain 1 and a bubble passes to domain 2, the cluster

control in latch C prevent latch C to clock data. However, this makes no difference
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Figure 3.17: Illustration of how an error occur between clock domains. (Active
high)

on the latches in domain 2. The slow clock will keep ticking in the same pace as

before independent of errors in either domains. To illustrate this do the two tables

show the instruction stored in each latch as the clock is ticking. Blue cells are

stalling latches and red cells are incorrect behaviour. An even worst behaviour

occur when a bubble reaches domain 2 at a positive edge on latch C’s clock. The

cluster controls will then stall both C and then D and cancel the pulses, which

result in no new clock pulse until next scheduled edge. If it happens in this example

to the middle pair of slow clocks, latch C will not latch any instruction between

the first and last pulse in the figure. The slow clock itself needs to stall, as in the
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bottom table, for the correct behaviour. This complicated things a lot. The slow

clock is global to all the latches inside its clock domain, so it is not possible to

stall it along the datapath with the bubble algorithm. Instead, there need to exist

a dependency between clock domain 2 and ckFreq2’s control module.

The same things are true if an error occurs inside the Clock Control Logic itself.

When a bubble reaches the latches controlling Enable and Enable stalls at a logic

one, this will result in a double clock pulse on both phases in CkFreq2. CkFreq2

will also be delayed by one cycle relative to module B.

Bubble Razor is based on propagating stalls along the data dependencies, but

what happens in the case where one module is controlling another through its

clock? The idea is that a gated clock contains information about the clock gate’s

enable signal. If so, and a gate clock could be seen as a data carrying signal, some

bubble exchange must take place between these modules at the clock gate.

3.4.2 Proposed solution

The clock gate problem is not insignificant and, as far as we can see, introduce a

whole set of constraints. The possible circuitry presented here is an extension and

our contribution to Bubble Razor. The point is to give an idea of how the solution

will affect the circuit that gets Bubble Razor. Two different Bubble Clock Gates

are presented in section, one in 3.4.2.1 and one in 3.4.2.2.

Rules for domain crossings:

1. Every latch along a data path need to stall the same amount of time indepen-

dent of its clock period.

2. The amount of time each latch stalls must be based on the fast clock: a stall

takes one fast clock cycle. Throughput penalty will increase if it is based on

the slow clock. This will especially be a problem where the time between

two pulses on the slow clock is very long. To work independent of the slow
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clock period, all bubbles and cluster controls must be clocked by the fastest

clock.

3. All the latches in the slow domain is clocked by a gated clock, thus do all

latches have a data dependency to the clock gate. A stall on the slow clock

itself is a stall on all the latches in the domain, making the domain itself act

like a cluster.

4. When a bubble reaches the slow domain, or an error is issued from inside the

domain itself, exactly before a pulse on the slow clock, do this pulse need to

be cancelled and postponed to a fast clock cycle later. As shown in figure

3.20.

5. A bubble to the clock gate must propagate to the circuitry controlling the

enable signal, delaying the next enable.

Constraint for clock gated domains:

1. The amount of monitors inside the slow domain is limited. Since the whole slow

domain itself acts as a cluster, all Cluster Error -signals from all monitors

must be OR’ed together. One OR-gate for each phase, which cannot be

larger than the delay limit for the desired speculation window.

2. The amount of neighbouring clusters to the domain is limited. Every neigh-

bouring cluster need to connect their BubbleOut signal to the clock gate: one

OR-gate for upstream clusters and one OR-gate for downstream clusters.

3. If constraint 1. and 2. cannot be met, and the domain need to be split to

two or more slow domains, each new slow domain need their own copy of

the Clock Gate Control circuit, or a copy of part of the Clock Gate Control

circuit. This may increase the area a lot, depending on the number of new

domains and the size of the Clock Gate Control circuit.

Figure 3.18 shows a new component introduced to the circuit from figure 3.16,

Bubble ICG. This component is a special cluster control, or more correctly domain
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Figure 3.18: Illustration of DigitalFilter’s clock domains with a Bubble Clock
Gate.

control. Bubble ICG works as a cluster control for a cluster containing both

positive and negative latches by controlling both phases. It also does the task of

gating CkFreq2, which means that this special cluster control get a datapath signal,

Enable, and need a bubble signal to Clock Gate Control Circuit. Thick grey arrows

are the datapaths between latches, blue connections are bubble signals and red are

cluster error signals. A, A’, B, B’, E, E’, F and F’ are clusters in clock domain 1

with a cluster control each. While the patterned C and D are latches or monitors

without cluster control. As mentioned is Bubble ICG their cluster control and
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therefore is C’ and D’s Cluster Error connected to Bubble ICG’s Domain Error

ports. Bubble ICG got a pair of BubbleIn, BubbleOut and Domain Error ports,

one for each phase, because Bubble ICG boarders to each phase in the bubble

network.

3.4.2.1 Bubble ICG: Equal Duty Cycle Version
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Figure 3.19: Bubble ICG, the clock domain bubble control. This version
is for active low clocks. Blue arrows are bubble signals, and red are Cluster

error -signal from the slow clock domain.

Figure 3.19 shows the Bubble ICG. It is based on the two-phased clock gate from

section 3.2.2. However, it now includes two cluster controls, which is the standard

cluster control with active low latches, from figure 3.7. These clusters provide

clocks to the latches in the clock gate. Note that the phase two latches, φ2, is

actually the last stage in Clock Control Logic. This means that Cluster Control

Logic must get a clock, from Cluster Control 1 for these bordering latches.

The latches are clocked by cluster controls to delay CkFreq2 and Enable signal

upon an incoming bubble or error signal. If the clock gate is stalled when a



Chapter 3. Methodology 56

CkFreq2 pulse is being issued, the OBS signal will be frozen high one cycle extra,

which will lead to two pulses in succession on CkFreq2. To prevent this, is the

internal Kill signal from each cluster control cross connected and sent to the OR-

gates. This may not be the best method to pull the CkFreq2 -clocks down. An

alternative method is to use ClusterCK2 and OBS2 to generate CkFreq2 φ2 g, and

ClusterCK1 and OBS1 for CkFreq2 φ1 g. This will cause the same behaviour, but

with one less input on the OR-gates. This is illustrated in the unequal duty cycle

version in figure 3.21.

Bubble ICG’s behaviour is shown in figure 3.20. Tiles A and C illustrates when

a bubble from either downstream neighbours of the slow domain, clocked by φ1,

monitors inside the slow domain, clocked by φ1, or a bubble from Clock Control

Logic reaches Bubble ICG. This will cause φ2 g to stall and then φ1 g. Tile B

and D shows the opposite, except that a bubble from Clock Control Logic always

stalls φ2 g first. If a pulse on either φ1 g or φ2 g is stalled away, it will appear

the next cycle. It is important to always keep the order intact, φ1 g always need

to appear before φ2 g.

Some modern circuits utilize a fine-grained clock gate scheme with a numerous

clock gates. Bubble ICG will introduce a lot of area. This will also complicate the

clustering. In some cases would it be more beneficial to redesign parts of a design

with large gated domains.

3.4.2.2 Bubble ICG: Unequal Duty Cycle Version

It is possible to only gate φ2 g and use a inverted version of this as φ1 g. This will

reduce the timing constraint for Enable, and make Bubble ICG two cells smaller.

The downside is that φ1 g now has inverted duty cycle with an active phase

dependent on the enable signal. As a consequence, monitors cannot be clocked by

φ1 g. An error in a monitor clocked with a long active phase will be held until

the next edge, causing one error to initiate a new bubble sequence every other fast

clock period.
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clocking the slow clock domain.
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A more complicated constraint is that feedback connections from the first stage

in the slow clock domain, clocked by φ1 g, to the last stage in the neighboring

upstream domain, clocked by φ2, are not allowed. This is due to the violation

of the non-overlap requirement done by the φ1 g latches. Luckily, there are no

such feedbacks prior to retiming of the latch circuit, since both nodes are inside

a master-slave pair and can be easily avoided under retiming. It is important to

ensure that no feedback exists. Oscillation loops will arise if so.
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Figure 3.21: The alternative Bubble ICG. This removes the strict timing
reqirement for Enable, but φ1 g get an inverted duty cycle.

Figure 3.21 shows the alternative Bubble ICG. This also shows the alternative

method of generating the stall on φ2 g by gating the cluster clock, shown in red,

instead of using the internal Kill -signal. Cluster Control1 is still shared by the

clock control circuit and the Bubble ICG. This version is preferred due to the less

strict timing constraint, but cannot clock monitors on φ1 g, only on φ2 g, which

is normally not a problem.

The behaviour is similar to the equal duty cycle version, shown in 3.20, but without

a separate gate for φ1 g. The unequal duty cycle version also fulfils the requirement
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of getting the first pulse following a high Enable.

This versions connection is the same as the equal duty cycle version, shown in

figure 3.18.

3.4.3 How to Handle the Error Signal

Main Latch Clock

Shadow Latch Clock

Error signal is valid Error signal is valid

D

Q Shadow

Q Main

Error

Error signal 
evaluated

Figure 3.22: Illustration of problems regarding standard XOR-gate in an
Razor latch, error signal is only a true error in blue areas. (Active low)

Another important element when Bubble Razor is applied to designs with multiple

clock domains is the pull-down XOR-gate from figure 2.14. As mentioned, must

all bubble and error signals have the resolution of the fastest clock in the system.

Unfortunately, a normal XOR-gate cannot be used since this will let through error

signals when the master latch is not active. As described in section 2.7.4, does the

pull-down XOR-gate only generate an error signal in the timeslot when its valid.

A Razor latch with a standard XOR will behave as in figure 3.22. Every error

issued in the red areas is not true errors. Therefore, clusters and Bubble ICG

evaluate these error signals on the fast clock and will then interpret these false

errors as real and initiate the bubble process.
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3.5 SPICE: Analogue Simulations

Every simulation up to this point has been ideal logic simulation with no timing.

To test the actual behaviour of the Bubble Razor version of DigitalFilter and get

accurate power estimates, it need to be simulated by an analogue simulator.

The SPICE simulator is Spectre. Both the original flip-flop DigitalFilter and the

Bubble Razor DigitalFilter are simulated to compare power-results. Neither of

these modules has gone through layout, so there will is no wire capacitance. For

the same reason is there no clock tree buffers, the clock trees are ideal. However,

as discussed later, is the clock tree in the flip-flop design much less complex since

it is ideal all the way to most of the latche’s clock pins, except the ones clocked

by a clock gate. While all latches and monitors in the Bubble Razors are driven

by the cluster controls.

The first step to simulate a Verilog-netlist in a SPICE simulator is obviously to

convert the Verilog-netlist to a SPICE-netlist. This was done by using a small

Verilog-SPICE converter. Power-pins are added to each cell, since these are not

used in the Verilog-netlist.

Model files of both transistors and cells must be included in the newly generated

SPICE-netlists. It is important that the Verilog-netlists only contain cells that are

described in the model files, and no non-synthesizable syntax.

The input stimuli are generated from the stimuli vectors of the original Verilog-

testbench. The clock setup made in section 3.2.2 gives us full control of duty-cycle,

frequency and non-overlap. Since we chose to generate a clock tree for each phase

and rout them out to two clock pins, instead of locally generating each phase from

one three.

All simulations are ran at typical conditions: room temperature, typical-typical

transistor models. The original flip-flop design is simulated for a reference, but it

is only simulated at 1.2V and 1.4V, where 1.2 is the lower voltage limit for error-

free operation. On the other hand, the Bubble Razor version of has no pre-set
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lower voltage boundary to prevent setup errors, only a boundary to prevent the

paths exceeding the speculation window. The voltage in the Bubble Razor version

is scaled down over a number of simulations to test it to its limit. The voltage

could also be scaled in one long simulation, but more control were achieved by

simulating each voltage step as one smaller simulation, in addition to reduce the

turnover time in case of a bug.

The size of DemodFilter is relatively big for an analogue simulation, which results

in long simulation time. More clock cycles will give a better representative esti-

mation of the dynamic power. 42 clock cycles were chosen for simulation length.

Simulation time took from about 30 minutes to above two hours for every voltage

step, depending on how many CPU-cores the simulations utilize.

As explained in the earlier sections is the clock domain problem solution not

implemented in DemodFilter due to the lack of some std.cells. Therefore do, like

in the logic simulations of Bubble Razor DigitalFilter, all clock domains run at

the fast clock. This is done by setting all clock gates controlling the domains to

always open, merging all clock domains to one. This is done both in the flip-flop

and the Bubble version.

Clock Frequency 52MHz

Voltage Range 0.9 - 1.4V

Simulation Length 42 ck cycles

Technology 180nm
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Power Results

The result from the power analysis was not as satisfying as we hoped for. An

explanation for the result is discussed in the next chapter, Discussion.
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Figure 4.1: Plot of power consumption in flip-flop version and Bubble Razor
version of DigitalFilter. Both design run at 52MHz.

Figure 4.1 shows how the power is scaled in DigitalFilter. The blue graph shows

power consumption in the Bubble Razor version of DigitalFilter. The vertical line

63



Chapter 4. Power Results 64

shows when the first error is detected by the Bubble logic, where one error was

issued over the 42 clock cycles. At the next simulation at 0.9V the number of

error increased to 7. The error detection worked perfectly, and recovered each

instruction. The magenta circle is a simulation of Bubble Razor version with

errors every cycle, and still operated perfectly. This were done by setting one

bubble signal permanently high. By comparing the error-free and always error

simulation at 1.2V we get an image of the power cost for error recovery, that is

10% at 1.2V.

Red cross are the original flip-flop design, this design is only guaranteed to operate

error free down to 1.2V, therefore is the voltage not scaled further in this design.

While the Bubble Razor does not have a lower limit, is the practical limit about

0.95V without affecting throughput. Indeed, at 1.2V the flip-flop design uses much

less power than the Bubble Razor version due to the extra logic in the Bubble Razor

version. However, the Bubble Razor version should have been more efficient at

its optimal point, near PoFF, compared to the flip-flop design at 1.2V. There are

explanations for why the Bubble Razor version does not perform as well in these

simulations, discussed in the next chapter.
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Discussion

General Discussion and Reflection

The conversion from a flip-flop design to a Bubble Razor design is highly automat-

able. It is important that the current design-flow for designers is kept, as it is,

where the insertion of Bubble Razor is a separate step. Module designers must be

able to design modules without thinking about bubbles and latch design. From

the experience of this study, the best place to implement the latch design and

bubble design is after synthesis and before layout. This enables module designers

to think of the circuit as a normal sequential flip-flop design. However, designers

should be aware the clock domain problem, and try to avoid large clock domains

and think through how the clock gates will affect the cluster logic.

The next step after Bubble Razor has been applied to a design, layout, is af-

fected more than the steps prior to the insertion. Latch circuits have other timing

requirements and the clock network is different, but the principle is the same.

However, many of the backend steps are highly automated, and all the backend

scripts and setups must be redone to fit latches and cluster circuits. Many of the

steps in the current design-flow are automated by scripts and setups made by dif-

ferent engineers over many years, and multiple these must be redone or modified

to work with Bubble Razor.

65
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Retiming tools will affect the characteristics of the DVFS system. More balanced

path, fewer near zero slack paths, will enable the system to scale further. The

decision for the ”dual error injection” version of the algorithm was based on the

fact that every path in the system must be attracted as critical under low voltage

condition. This means that the first downstream path of a failing path must

be regarded as a possible critical path. In hindsight, this is not the case for

DigitalFilter, although it is the safest option. The slack distribution in figure 3.12

says that only one of the phases is critical, meaning that DigitalFilter could have

been implemented with the ”optional first stall”, which would have given a larger

speculation window. On the other hand, the amount of voltage reduction is limited

due to the uneven the slack distribution. A more even distribution between the

two polarities would increase the amount of slack on the most critical path in

exchange for some area overhead. Which means that ”dual error injection” must

be used. On a general basis, where the slack distribution is more even, as it should

be, will ”dual error injection” be the only option guaranteeing error free operation.

As mentioned is DFT, or design-for-test, a drawback with latch designs. Stuck-

at testing is done very similar to normal sequential flip-flop design, but delay

testing with scan chains is more difficult due to time-borrowing. However, the

latch circuit in a Bubble Razor design is design with no time-borrowing at normal

operation, which means that all paths should have positive slack at slow corner.

Time-borrowing is considered as an error and will initialize data recovery. The

whole point of Bubble Razor is to guard each path and make sure that the delay

is small enough, which makes delay testing unnecessary and DFT not an issue for

a Bubble Razor circuit.

The insertion of Razor latches and Cluster Controls are highly automated. The

most challenging parts are the mapping of the design and the clustering. Mapping

by using a STA-tool was rather effective in the way that all the information needed

for signal routing and clustering is obtained. Although STA-tools is very useful

for the task, a custom netlist parser may be used instead. A parser is able to get

all the latch-to-latch routing information at a small amount of time, but getting

setup slack will be more complicated.
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There are different ways of handle the hierarchical structure of a design when

inserting Bubble Razor. DigitalFilter, as a module, was initially a module with

some sub-modules. Its hierarchy was flatten, which makes sense since it makes it

easier to rout signals and it is a lot easier to cluster latches at the same hierarchical

level. When it comes to the whole system, containing all modules at the same

hierarchical level as DigitalFilter, it will give a good overview for the layout team

if this structure is kept. By doing the process done in this project to all modules at

a certain hierarchical level or a certain size and flatten each module’s structure, for

then connecting bubbles along the data dependencies between each flatten module.

It will be easier to pinpoint which module is failing if bugs appear. Modules often

come with testbenches that need the interface to be preserved, and will only work

if the modules is kept intact.

Clustering where done by an algorithm which is not capable of escaping a local

minima. This works fine for smaller modules like DigitalFilter, but a hill-climbing

algorithm should be used on larger ones. There exist multiple of clustering tools

with a selection of algorithms, which will be further explored in upcoming it-

erations. The clustering algorithm was not especially quick, and will increase

exponentially with the number of latches.

The clock gate problem could introduce troubles, especially in existing design that

are converted to a Bubble Razor design. Unlike a circuit designed from scratch

where this problem should be taken into account from the start. Some circuits

may be practical impossible to convert without a large commitment. Let’s say

that a chip is divided into two halves: one part is clocked by a gated clock and

the other half is a complex state machine controlling the clock gate. If the gated

area is too big for one Bubble ICG and need to be divided into two domains, each

of these domains need a Bubble ICG leading to a large modification of the state

machine. Consequently, increased area and violating the automatable insertion.

Domains with a particularly slow clock may not need monitors due to the path

capture time, which will enable one Bubble ICG to control a large domain. Not

all design will fit Bubble Razor out of the box. Some circuits have strict real-time

requirements that do not tolerate even a single stall. It is easy to stall within
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a chip, but the bubbles will only go so far. Some problems may occur in the

interaction with other off chip components that do not support Bubble Razor.

When it comes to the two different versions of Bubble ICG, do we believe the un-

equal duty cycle version is the better option. By ensuring that the nodes between

each master-slave latch are not used in a feedback, oscillation loops will not arise.

This will not be a problem in most cases, since these nodes downstream neighbors

are always clocked by the non-overlapping second phase and only latches outside

the domain are overlapping relative to the masters inside the domain. Therefor is

the master’s overlapping clock are not believed to cause any problems. The gain

of having a less constraint path for Enable ensures correct operation under the

scaled voltage, which may be a problem

As a safety measure against setup violations, does the Bubble Razor system work

perfectly. It alerts if an error occurs and recovers the datapaths on the fly. Error

resilient design will be more and more necessary as technology is scaled. An-

other area where solutions like Bubble Razor probably will be essential in the

future is sub-threshold circuits. Sub-threshold circuits are often sensitive to PVT-

variations, and the yield would benefit a lot with the error protection of Bubble

Razor.

Power results

The power results were not as good as we hoped, but we believe that the results

is biased towards the flip-flop version. The main reasons for this are listed below.

Output drive in OR-trees

Due to a lack of large input dynamic OR-gates, static OR-gates trees of high

output drive were synthesized to secure trees with low delay. However, these

high drive gates will consume more power, especially in the combination

of the next point. It must be said that dynamic gates are not known for

power efficiently, especially when the pull-down network is activated. This
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will make the gate charge up, to then discharge every clock cycle. On the

other hand, the dynamic OR-gates will stay charged all the time if using

the XOR-gate proposed by [Fojtik et al., 2013], until a occasionally error is

issued.

Unnecessary toggling in the error paths

The Bubble Razor version of DigitalFilter uses a standard static XOR-gate

for the error signal generation, making the error trees toggle every time a

Razor latch’s datapin toggles. Glitches and toggles will propagate through

the shadow latch when the error signal is not valid anyway, as showed in fig-

ure 3.22. This will cause dynamic power being used for unnecessary activity.

The special XOR-gate from figure 2.14 will only evaluate its inputs when it

should, and filter out all unnecessary glitches and toggles.

Clock tree

One of the most power consuming parts of a sequential flip-flop design is

the clock tree. Experience show that, the power consumption in a clock

tree is typically between 1
3

to 1
2

of the total power consumption, in 180nm.

Both of the simulated designs have an ideal clock tree, but every latch in

the Bubble Razor version are driven by a clock gate, unlike the flip-flop

version, where most of the latches are driven by the ideal input port. This

will unfairly favour the flip-flop design simulation. The latches would be

driven by buffers and cells with a complete clock tree.

Technology

The test design provided is in 180nm, where PVT-variations are not a dom-

inating factor when specifying the supply voltage. The voltage margins for

PVT-variations in 180nm are small relative to the operation voltage. With

newer technologies, these margins will contribute a lot more to the voltage.

This is where Bubble Razor will be at its ace by letting any circuit to oper-

ate at brink of failure, where a non-error detecting design must operate at a

pessimistic voltage to guarantee error-free operation.
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Despite the power number, did Bubble Razor enable the circuit to operate at the

lowest voltage possible, removing all margins. Hopefully will we be able to syn-

thesize the design with a more modern technology, where the margins contribute

more, and minimize the power overhead from the cluster logic.

The static XOR-gates used in the Razor latches have so many disadvantages com-

pared to the pull-down version. First of all is it necessary for Bubble Razor to

work with more clock domain, and secondly do it reduce the amount of toggling

in the OR-trees. Glitches and toggles will leak through very time there is some

activity in a monitored path, which could be close to every clock cycle. We no-

ticed that unnecessarily toggling through the OR-trees happened almost 95% of

the clock cycles, and is belived to be the main reason for the power overhead from

Bubble Razor.

By no means do we discard Bubble Razor as a power saving method, [Fojtik et al.,

2013] has proved the opposite. The next iterations will include both the pull-down

XOR-gate and dynamic OR-trees. Dynamic OR-trees will be faster, which means

the clusters can grow larger. This will save even more power.
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Conclusion

The methodology of inserting a Bubble Razor system to an existing flip-flop de-

sign was shown to be highly automatable. New circuits that are meant to get a

Bubble Razor scheme can be design as normal flip-flop circuits, allowing module

designers to continue designing circuits as they are used to and not bother about

the Bubble Razor circuit. However, Bubble Razor needs to be taken into account

when deciding clock domains and inserting clock gates.

As revealed does Bubble Razor suffer from a clock domain crossing problem. A

presented solution based on clustering of whole clock domains is presented. A clock

domain, including both latch polarities, will behave as one cluster by the use of the

presented Bubble ICG, and connects bubbles from both upstream and downstream

neighbours as well as the clock controlling circuit. Although, the maximum size of

each clock domain is limited by the number of neighbouring clusters and monitors

inside the domain. This constrain may cause a redesign of some circuits when

converted to Bubble Razor. Clock gates and multiple synchronous clock domains

are very often used in circuits, and Bubble ICG or a similar component will enable

most of these designs to be converted to Bubble Razor.

Analogue simulations prove that a circuit with Bubble Razor is able to notify

about and correct errors when propagation delay is too high in the most critical

paths. This enables a voltage control to scale away all voltage margins and let the
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circuit operate at optimal voltage. The circuit itself behaves just like a sequential

flip-flop design, with an occasional one cycle stall if voltage is scaled too far.

Power results in this report favour the normal flip-flop design. However, we

strongly believe that with some modifications, the picture will be different. The

switching activity in the bubble and error OR-trees will be drastically reduced by

filtering out invalid errors. The ideal clock trees do favour the flip-flop design in the

power analysis. A fully generated clock tree will lead to a more fair comparison.

If sequential designs are going to work in the future, with even more extreme de-

mands for ultra-low supply voltage, extreme process technologies and high frequen-

cies, the circuits need protection against errors and methods of reducing margins.

Bubble Razor and future solutions like it will be a necessity.

6.1 Further Work

• Make the dynamic OR-gates and the pull-down XOR-gate. Insert them and

re-run the power estimations.

• Test Bubble ICG in a larger system, and check if the non-overlap violation

of the unequal duty cycle affect the retiming.

• Investigate the clock domains for the whole chip, what is the largest one?

How many domains is there?

• Take DigitalFilter through layout.



Appendix A

Insertion of Master-Slave Latches

Script for extracting replacing flip-flops with master-slave latches.

1 #!/usr/bin/env perl

2

3 use warnings;

4 use strict;

5 #use feature qw{switch };;

6

7 #----------------------------------------------------

8 #-------------------- ABOUT -------------------------

9 #----------------------------------------------------

10 # This script replace all the flip -flop in a netlist

11 # with two latches in a master -slave configuration.

12 # The user must either modify @flip_array , or use the

13 # input argument -flop to state the cell name of the

14 # flip -flops. The latch cell is stored in the variable

15 # $latch_element , may be changed in script or by

16 # argument -latch.

17

18

19 #---------------KNOWN VARIABLE LIST ------------------

20 # These variables is changed to whatever your netlist

21 # requires.You may also use the input argument -flop.

22

23 my @flip_array = qw(retracted retracted retracted retracted retracted );

24 my $latch_element = "retracted"; #Latch with reset , added in 20110526 version

25

26 # Look -up strings in the FF declaration:

27 #INPUT

28 my $ff_input = "\.D";

29 #Scan in

73



Appendix A. Appendix Insert Latches 74

30 my $ff_SI = "\.SI";

31 #Scan enable

32 my $ff_SE = "\.SE";

33 #Clock pin

34 my $ff_clock = "\.CK";

35 #Reset Negative

36 my $ff_RN = "\.RN";

37 #Data out

38 my $ff_Q = "\.Q";

39 #Data out inverted

40 my $ff_QN = "\.QN";

41 #----------------------------------------------------

42

43 print "Converting from Flip -Flops to Latches ...\n";

44

45 my $num_args = $#ARGV + 1;

46 my $in;

47 my $in_name;

48 my $out;

49 my $out_name= "tmp_latch";

50 my $out2;

51 my $out_name2;

52 my $flop_string;

53 my @flop_array;

54

55 my $argv_string = join(" ", @ARGV );

56

57 #----------------------------------------------------

58 #----------------- INPUT ARGUMENTS ------------------

59 #----------------------------------------------------

60

61 if ($argv_string =~ m/.*(\-\- help|\-help )/) {

62 print "\n\n\n";

63 print "First argument: INPUT netlist\n";

64 print "Second argument: OUTPUT netlist\n\n";

65 print "OPTIONAL :\n";

66 print "-latch\tSet the name of the latch to be used.\n";

67 print "-flop\tSet the name of the flip -flops to be changed";

68 exit;

69 }

70

71 die "Need in/out files -paths! $num_args\n" if $num_args <2;

72 if ($argv_string =~ m/^(.+?)\s+/) {

73 $in_name = $1;

74 }

75 if ($argv_string =~ m/^\ Q$in_name\E\s+?(.+)(\s|$)/) {

76 $out_name2 = $1;

77 }
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78 $in_name = $ENV{PWD}."/".$in_name;

79 print "INPUT: $in_name\n";

80 $out_name2 = $ENV{PWD}."/".$1;

81 print "OUTPUT: $out_name2\n";

82

83 if ($argv_string =~ m/\-latch\s(.+)(\s\-|$)/) {

84 $latch_element = $1;

85 print "Latch: $latch_element\n";

86 }

87 if ($argv_string =~ m/(\-flop|\-flip)\s(.+)(\s\-|$)/) {

88 $flop_string = $2;

89 print "Flip -Flops: $flop_string\n";

90 @flop_array = split (/\s/, $flop_string );

91 push (@flip_array , @flop_array );

92 }

93

94 #----------------------------------------------------

95 #-------------------- FILE BLOCK --------------------

96 #----------------------------------------------------

97

98 open($in , "<", "$in_name") or die "Can’t open $in_name: $!";

99 open($out , ">", "$out_name") or die "Can’t open $out_name: $!";

100 my $test_file;

101 open($test_file , ">", "out_test_debug") or die "";

102

103 #----------------------------------------------------

104 #-------------------- FUNCTIONS ---------------------

105 #----------------------------------------------------

106 # This is the functions that translate the flip -flop

107 # to two latches.

108 sub InsertLatch($){ #inputs: (Flip -Flop declaration) returns mid_wire name

109 my $instance = $_[0];

110 my $instance_name;

111 my $cell_name;

112 my $input_node;

113 my $SI_node;

114 my $SE_node;

115 my $clock_node;

116 my $output_node;

117 my $output_inv_node;

118 my $reset_node;

119

120 my $latch_1;

121 my $latch_2;

122 #-------------- Extract Names and Nodes -------------

123 if($instance =~ m/^\s*(\w+)\s/){

124 $cell_name = $1;

125 }else{
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126 print "WARNING: Could not fine FF’s cell name! $instance\n";

127 }

128

129 if($instance =~ m/.*?\ Q$cell_name\E\s+?(\w+)\s/){

130 $instance_name = $1;

131 #print "$instance_name\n";

132 }else{

133 print "WARNING: Could not fine FF’s instance name! $instance\n";

134 }

135

136 if($instance =~ m/.*?\ Q$instance_name\E.+? $ff_input \((.+?)\)/){

137 $input_node = $1;

138 #print "$input_node\n";

139 }else{

140 print "WARNING: Could not fine FF’s input node! $instance\n";

141 }

142

143 if($instance =~ m/$ff_SI \((.*?)\)/){

144 $SI_node = $1;

145 #print "$SI_node\n";

146 }else{

147 print "WARNING: Could not fine FF’s scan -in node! $instance\n";

148 }

149

150 if($instance =~ m/$ff_SE \((.*?)\)/){

151 $SE_node = $1;

152 #print "$SE_node\n";

153 }else{

154 print "WARNING: Could not fine FF’s scan -enable node! $instance\n";

155 }

156

157 if($instance =~ m/$ff_clock \((.+?)\)/){

158 $clock_node = $1;

159 #print "$clock_node\n";

160 }else{

161 print "WARNING: Could not fine FF’s clock node! $instance\n";

162 }

163

164 if($instance =~ m/$ff_Q \((.*?)\)/){

165 $output_node = $1;

166 #print "$output_node\n";

167 }else{

168 print "WARNING: Could not fine FF’s output node! $instance\n";

169 }

170

171 if($instance =~ m/$ff_QN \((.*?)\)/){

172 $output_inv_node = $1;

173 #print "$output_inv_node\n";
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174 }else{

175 print "WARNING: Could not fine FF’s output inverted node! $instance\n";

176 }

177

178 if($instance =~ m/$ff_RN \((.*?)\)/){

179 $reset_node = $1;

180 #print "$output_inv_node\n";

181 }else{

182 print "WARNING: Could not fine FF’s reset node! $instance\n";

183 }

184 #------------ Extract Names and Nodes End -----------

185

186 $latch_1 = "$latch_element $instance_name" . "_master ( .D($input_node)

187 , .Q(" . "mid_" . "$input_node), .QN(), .GN($clock_node)

188 , .RN($reset_node) );\n";

189 $latch_2 = "$latch_element $instance_name" . "_slave ( .D(" . "mid_"

190 . "$input_node), .Q($output_node), .QN($output_inv_node), .GN($clock_node"

191 . "_phase2" . "), .RN($reset_node) );\n";

192

193 #--------------- Insert Reset -Latch ----------------

194 print $test_file "$latch_1$latch_2";

195 print $out "$latch_1$latch_2";

196

197 return "mid_" . "$input_node";

198 #---------------- Insert Latch End -----------------

199

200 } #InsertLatch end

201

202 sub InsertWires{ #array of mid -nodes

203 # declare alle wires needed for the nodes between

204 # laches

205 my %wire_index;

206 foreach (@_){

207 if($_ =~ /(.+?)\[(\d+)\]/){

208 #Find wire arrays

209 if(! $wire_index{$1}){

210 $wire_index{$1} = $2;

211 }elsif($2 > $wire_index{$1}){

212 $wire_index{$1} = $2;

213 }

214 }else{

215 #Single wire

216 print $out "wire $_;\n";

217 }

218 }

219 foreach my $i (keys (% wire_index )){

220 print $out "wire \[ $wire_index{$i }\:0\] $i\;\n";

221 }
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222 }

223

224 #----------------------------------------------------

225 #---------------- SWITCHING BLOCK -------------------

226 #----------------- STATE MACHINE --------------------

227 #----------------------------------------------------

228

229 my $search_string= (join "|", @flip_array );

230 print "\Q$search_string\E\n\n";

231 print "$search_string\n\n";

232

233 my $buffer = "";

234 my $state = ’Normal ’;

235 my @mid_wires; #Contains all the nodes that need wire declaration

236 while (my $line = <$in >){

237

238 if($line =~ m/$search_string /){ #Look for Flip -Flop

239 $state = ’FFstart ’;

240 }

241

242 #------------------- STATE BLOCK -------------------

243 #Non Flip -Flop lines

244 if ($state eq ’Normal ’) {

245 # declare alle wires needed for the nodes between

246 # laches

247 if($line =~ /\ bendmodule\b/){

248 InsertWires(@mid_wires );

249 @mid_wires = qw{};

250 }

251 print $out "$line";

252

253 #Decleration Start

254 }elsif ($state eq ’FFstart ’) {

255 $buffer = $line;

256 chomp($buffer );

257

258 if($line =~ m/\;/){

259 $state = ’Insrt latch’;

260 }else{

261 $state = ’FFrest ’;

262 }

263

264 #Declaration End

265 }elsif ($state eq ’FFrest ’) {

266 $buffer = "$buffer" . "$line";

267

268 if($line =~ m/\;/){

269 $state = ’Insrt latch’;
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270 }

271 }

272 #Switch the FF decl. to latch

273 if ($state eq ’Insrt latch ’) {

274 chomp($buffer );

275 $buffer =~ s/\s+/ /g;

276 print $test_file "$buffer\n";

277 push(@mid_wires , InsertLatch($buffer ));

278 $state = ’Normal ’;

279 }

280 #----------------- END STATE BLOCK -----------------

281

282 }

283

284 close $in;

285 close $out;

286 open($out , "<", "$out_name") or die "Can’t open $out_name: $!";

287 open($out2 , ">", "$out_name2") or die "Can’t open $out_name2: $!";

288 print "ack\n";

289 #Balance wire declarations

290 my @file_r = <$out >;

291 my @wire_buffer;

292 my $line_number = -1;

293 foreach (@file_r) {

294 $line_number ++;

295 #get all wire declarations from the module

296 if($file_r[$line_number] =~/\b^\s*? module\b/){

297 while($file_r[$line_number] !~/\;/){

298 print $out2 "$file_r[$line_number]";

299 $line_number ++;

300 }

301 my $tmp_line_number = $line_number;

302 while($file_r[$tmp_line_number] !~ /\ bendmodule\b/){

303 $tmp_line_number ++;

304

305 #wire found

306 if($file_r[$tmp_line_number] =~ /^\s*?\ bwire\b\s/){

307 while($file_r[$tmp_line_number] !~ /\;/){

308 push(@wire_buffer , $file_r[$tmp_line_number ]);

309 $tmp_line_number ++;

310 }

311 push(@wire_buffer , $file_r[$tmp_line_number ]);

312

313 #modules declared inside this module is filtered out

314 }elsif($file_r[$tmp_line_number] =~/\b^\s*? module\b/){

315 my $escape = 1;

316 while($escape > 0){

317 $tmp_line_number ++;
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318 if($file_r[$tmp_line_number] =~ /\ bendmodule\b/){

319 $escape --;

320 }elsif($file_r[$tmp_line_number] =~ /\^\s*? module\b/){

321 $escape ++;

322 }

323 }

324 }

325 }

326 }

327 last unless defined($file_r[$line_number ]);

328

329 #Do not include wires twice

330 if($file_r[$line_number] =~ /^\s*?\ bwire\b\s/ ){

331 while($file_r[$line_number] !~ /\;/){

332 print "eeeeee: $file_r[$line_number]";

333 $line_number ++;

334 }

335 }else{

336 print "$file_r[$line_number]";

337 print $out2 "$file_r[$line_number]";

338 }

339

340 print "@wire_buffer";

341 print $out2 "@wire_buffer";

342 splice(@wire_buffer );

343 #write out to file..

344 }

345

346 close $out;

347 close $out2;

348 system ("rm $out_name");



Appendix B

Clock Routing

Script to setup two-phase clock.

1 #!/usr/bin/env /pri/mako/local/bin/python

2

3 import re

4 import sys

5 from sys import argv , exit

6

7 ##----------------------------------------

8 ##------------ IN/OUT -FILES --------------

9 ##----------------------------------------

10 in_file_name = str(sys.argv [1])

11 tmp_file_name = ’netlist.tmp’

12 tmp_file2_name = ’netlist2.tmp’

13 out_file_name= str(sys.argv [2])

14 ##----------------------------------------

15

16 ##----------------------------------------

17 clock_names = [’ck’, ’ck_g’, ’retracted ’, ’ckFreq1 ’, ’ckFreq2 ’]

18 clock_gates = [’retracted ’] #CKgate cell name

19

20 ##----------------------------------------

21 print clock_names

22

23 print "IN: ", sys.argv [1]

24 print "OUT:", sys.argv [2]

25

26 #STATES:

27

28 module_names = []

29
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30 # Route through module declarations

31 # Route through module instansiations

32 # Handle clock -gates

33

34 # def

35 def module_dec_case(line):

36 #module decleration

37 match = re.search(r’^\s*? module\s*?(\w+?)[\s|\(]’, line)

38 if match:

39 module_names.append(match.group (1))

40 for clocks in clock_names:

41 match = re.search(r’\s*? module .*?[\(| ,]\s*?(%s)\s*?[\)| ,]’

42 % clocks , line)

43 if(match ):

44 line = re.sub(r’([\(| ,])\s*?%s\s*?([\)| ,])’ % clocks ,

45 r’\1 %s, %s_phase2 \2’ % (clocks , clocks), line)

46 state = ’wire’

47 match = re.search(r’^\s*? module\s+?(.+?)\s’, line)

48

49 #input/output dec:

50 match = re.search(r’^\s*?( input|output)’, line)

51 if match:

52 for clocks in clock_names:

53 line = re.sub(r’(\w\s|,)\s*?%s\s*?( ,|\;)’ % clocks ,

54 r’\1 %s, %s_phase2 \2’ % (clocks , clocks), line)

55 return {’out_line ’ : line}

56 # end def

57

58 # def

59 def module_inst_case(line):

60 gate = 0

61 for module in module_names :

62 match = re.search(r’^\s*?%s’ % module , line)

63 if (match):

64 for ck_gate in clock_gates:

65 if re.search(r’^\s*?%s’ % ck_gate , line):

66 gate = 1

67

68 if gate:

69 line = insert_dual_ck_gate(line)

70 else:

71 for clock in clock_names :

72 match = re.search(r’(\.\w*?)\(\s*?%s[\)|\s]’

73 % clock , line)

74 if match:

75 search_string = match.group (0)

76 search_string1= match.group (1)

77 line = re.sub(r’(\.\w*?)\(\s*?%s[\)|\s]’
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78 % clock , r’%s, %s_phase2 (% s_phase2)’

79 % (search_string , search_string1 , clock), line)

80 return {’out_line ’ : line}

81 # end def

82

83 def insert_dual_ck_gate(line):

84 match = re.search(r’^\s*?\w+?\s+?(\w+?)\s’, line)

85 switch = match.group (1)

86 line_tmp = re.sub(r’%s’ % switch , r’%s_phase2 ’ % switch , line)

87 for clock in clock_names:

88 if re.search(r’\(\s*?%s\s*?\)’ % clock , line):

89 line_tmp = re.sub(r’\(\s*?%s\s*?\)’ % clock , r’(% s_phase2)’

90 % clock , line_tmp)

91

92 line = line + line_tmp

93 return line

94

95

96 mycase = {

97 ’module_dec ’ : module_dec_case ,

98 #’oneline_module_inst ’ : oneline_module_inst_case ,

99 ’module_inst ’ : module_inst_case

100 }

101

102 f = open(in_file_name , ’r’)

103 lines = f.readlines ()

104 tmp = open(tmp_file_name , ’w’)

105

106 # route two -phase clock through module declarations

107 current_state = ’module_dec ’

108 for line in lines:

109 myfunc = mycase[current_state]

110 return_value = myfunc(line)

111 if (return_value[’out_line ’]):

112 tmp.write(return_value[’out_line ’])

113

114 f.close()

115 tmp.close()

116 tmp = open(tmp_file_name , ’r’)

117 tmp2= open(tmp_file2_name , ’w’)

118 lines = tmp.readlines ()

119

120 # Set all module instansiations on one line:

121 end = 1

122 for line in lines:

123 for module in module_names :

124 match = re.search(r’^\s*?%s’ % module , line)

125 if match:
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126 match = re.search(r’;’, line)

127 if match:

128 end = 1

129 else:

130 end = 0

131 if (not end):

132 match = re.search(r’;’, line)

133 if match:

134 end = 1

135 else:

136 end = 0

137 line = re.sub(r’([^;])\s*\n’, r’\1’, line)

138 tmp2.write(line)

139

140 tmp.close()

141 tmp2.close()

142 tmp2 = open(tmp_file2_name , ’r’)

143 lines = tmp2.readlines ()

144 out = open(out_file_name , ’w’)

145

146 # route two -phase clock through module instansiations

147 current_state = ’module_inst ’

148 print module_names

149 for line in lines:

150 myfunc = mycase[current_state]

151 return_value = myfunc(line)

152 if (return_value[’out_line ’]):

153 out.write(return_value[’out_line ’])
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Design Compiler Wrapper

Wrapper for DesignCompiler. Need two tcl scripts dependent on the module,

one for clock reporting and one for time reporting. Both including the string

FROM LATCH, which is the string that is replaced by every latch. Outputs a

short merged version of timing and clock report for the whole design.

1 #!/usr/bin/env perl

2

3 use warnings;

4 use strict;

5

6 #Variables

7 my $tmp_register_file = "dc_register_list.log";

8 my $tmp_report_file = "dc_tmp_report.log";

9 my $tmp_clock_file = "dc_tmp_clock.log";

10 my $main_report_file = "dc_report.log";

11 my $warning_log_file = "autoscript_warnings.log";

12 # Generate a compact list -file of all start -endpoint pairs

13

14 #Clock gate cell name

15 my @post_added_latches = ("retracted",

16 "retracted",

17 "retracted",

18 "retracted");

19

20

21 ##FOR EACH LATCH:

22 ## update dc_report: (must load the design)

23 ## report_timing -nworst 2000 -max_paths 100000 -path_type short

24 ## -start_end_pair from FROM_LATCH/Q -to [all_registers -data_pins]

85
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25 ## put result in a tmp file (./ dc_report)

26 ## append report in the main file ...

27 ## END FOR LOOP

28

29 #Get list of all registers:

30 system("dc_shell -f dc_scripts/dc_get_registers.tcl | tee $tmp_register_file");

31

32 my $register_file;

33 open($register_file , "<", "$tmp_register_file")

34 or die "Can’t open $tmp_register_file";

35

36 my $warning_log;

37 open($warning_log , ">", "$warning_log_file")

38 or die "Can’t open $warning_log_file";

39

40 my $start = 0;

41 my $reg_string = 0;

42 while (my $line = <$register_file >) {

43 if($start == 0){

44 if($line =~ /^\ Qset data [all_registers -clock_pins ]\E/){

45 $start = 1;

46 }

47 }else{ # START OF LIST

48 if($line =~ /^\{/){ # FIRST LINE

49 $line =~ s/\{//;

50 $line =~ s/\}//;

51 $line =~ s/\n//;

52 $reg_string = $line;

53 }

54 }

55 }

56

57 my @registers = split(" ", $reg_string );

58 $reg_string = 0;

59

60 @registers = (@registers , @post_added_latches );

61

62 #End cleaning

63 close($register_file );

64 system("rm $tmp_register_file");

65

66 sub extract (){

67 my $report_file;

68 open($report_file , ’<’, "$tmp_report_file") or die "Can’t open $tmp_report

69 _file\n";

70 while (my $line = <$report_file >){

71 if ($line =~ /^s*? warning/i){

72 print $warning_log "$line";
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73 }

74

75 if ($line =~ /(^\s*? Startpoint \:|^\s*? Endpoint \:|^\s*?Path\sGroup \:|

76 clocked\sby\s|^\s*? slack |^\s*?time\sborrowed\sfrom )/){

77 system("echo \"$line\" >> \Q$main_report_file\E");

78 }

79 }

80 close($report_file );

81 }

82

83 sub extract_clock($){ #$register

84 my $report_file;

85 my $clock_line = "root";

86 my $start = 0;

87 open($report_file , ’<’, "$tmp_clock_file") or die "Can’t open

88 $tmp_clock_file\n";

89 while (my $line = <$report_file >){

90 if ($line =~ /^\s*? warning/i){

91 print $warning_log "$line";

92 }

93

94 if ($line =~ /^The\sShortest\sPath /){

95 $start = 1;

96 }elsif($start == 1) {

97 if ($line =~ /InvertedGate_OrGate /){

98 $clock_line = $line;

99 }

100 }

101 }

102 system("echo \"clock\($_ [0]\)\: $clock_line \" >> \Q$main_report_file\E");

103 }

104

105 # Report for each path

106

107 my $num_of_regs = 0;

108 my $array_size = $# registers + 1;

109 print $warning_log "Length of register array: $array_size\n";

110

111 system("echo \" COMPACT REPORT \" > \Q$main_report_file\E");

112 foreach my $register (@registers) {

113 $num_of_regs ++;

114 # setup dc_report.tcl with right latch

115 print "SETUP dc_report :\n";

116 $register =~ /(.+?)\/ GN/;

117 system("cp dc_scripts/dc_report_template.template

118 dc_scripts/dc_report.tcl");

119 system("perl -p -i -e ’s/\ QFROM_LATCH\E/\Q$1\E/g’

120 dc_scripts/dc_report.tcl");



Appendix C. Appendix Design Compiler Wrapper 88

121 print "test";

122 system("cat dc_scripts/dc_report.tcl");

123 # report timing to tempfile

124 print "Report on latch: $register\n";

125 system("dc_shell -f dc_scripts/dc_report.tcl | tee $tmp_report_file");

126 # extract needed data to main file

127 print "Extract and append\n";

128 extract ();

129

130 # setup dc_get_clock_domains.tcl

131 system("cp dc_scripts/dc_get_clock_domains_template.template

132 dc_scripts/dc_get_clock_domains.tcl");

133 system("perl -p -i -e ’s/\ QFROM_LATCH\E/\ Q$register\E/g’

134 dc_scripts/dc_get_clock_domains.tcl");

135 # report clock to tempfile

136 system("dc_shell -f dc_scripts/dc_get_clock_domains.tcl | tee \Q$tmp_clock_file\E");

137 # extract clock to main file

138 extract_clock($register );

139 }

140

141 print $warning_log "Reported registesrs: $num_of_regs\n";

142

143 ## clean up

144 system("rm $tmp_report_file");

145 system("rm $tmp_clock_file");

146 system("rm dc_scripts/dc_report.tcl");

147 system("rm dc_scripts/dc_get_clock_domains.tcl");



Appendix D

Lookup generation and Clustering

Script for latch-lookup and cluster-lookup generation. Takes report from the De-

signCompiler Wrapper as input.

1 #!/usr/bin/env /pri/mako/local/bin/python

2

3 import re

4 from sys import argv , exit

5

6 ##----------------------------------------

7 ##------------ IN/OUT -FILES --------------

8 ##----------------------------------------

9 in_file_name = ’dc_report.log’

10 out_file_name = ’latches_clustered_final.loup’

11 cluster_file_name = ’cluster_clustered_final.loup’

12 ##----------------------------------------

13

14 latches = {}

15 latch_list = []

16 number_of_latches = 0

17

18 cluster_list = []

19 cluster_hash = {}

20 number_of_clusters = 0

21

22 #----------- MAXIMUM OR SIZE -------------

23 max_monitor = 16

24 max_num_of_neighbours = 32

25 #-----------------------------------------

26

27 ##----------------------------------------

89
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28 ##---------- Monitor Condition -----------

29 ##----------------------------------------

30 def IsLatchMonitor(latch ):

31 if(latch.GetType () == ’slave ’):

32 latch.monitor = ’True’

33 ##----------------------------------------

34

35 class Latch:

36 def __init__(self , name , UpStream , DownStream ):

37 self.latch_name = name

38 if re.search("Master", name):

39 self.latch_type = "master"

40 if re.search("Slave", name):

41 self.latch_type = "slave"

42

43 self.latch_clock = "" ## Relative phase

44 self.latch_real_clock = "" ## Actual clock source

45 self.latch_reset = ""

46 self.latch_path = ""

47 self.latch_type = "" ## Master or Slave

48

49 self.monitor = False ## Is this a Razor Latch?

50

51 self.upStream = []

52 self.upStream_hash = {}

53 self.downStream = []

54 self.downStream_hash = {}

55

56 self.slack = -10000000

57 self.time_borrowed_frome = ""

58 self.time_borrowed = 0

59

60 self.cluster = ""

61

62 def AddUpStream(self , latch_in ):

63 if (not latch_in in self.upStream_hash ):

64 self.upStream_hash[latch_in] = 1

65 self.upStream.append(latch_in)

66 def AddDownStream(self , latch_in ):

67 if (not latch_in in self.downStream_hash ):

68 self.downStream_hash[latch_in] = 1

69 self.downStream.append(latch_in)

70 def AddClock(self , clock):

71 self.latch_clock = clock

72 if (re.search(r’\’’, clock )):

73 self.latch_type = "master"

74 else:

75 self.latch_type = "slave"
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76 def AddSlack(self , slack):

77 self.slack = slack

78 def GetNeighbours(self):

79 return {’upStream ’ : self.upStream ,

80 ’downStream ’ : self.downStream}

81 def AddCluster(self , cluster ):

82 self.cluster = cluster

83 def GetCluster(self):

84 return self.cluster

85 def AddRealClock(self , clock ):

86 self.latch_real_clock = clock

87 def GetType(self) :

88 return self.latch_type

89 def GetClock(self):

90 return {’clock’: self.latch_clock ,

91 ’real_clock ’: self.latch_real_clock}

92 def PrintClass(self):

93 print "-----------------------------------------------"

94 print ’Latch:\t|\t’, self.latch_name

95 print ’ Clock\t|\t’, self.latch_clock

96 print ’ Type\t|\t’, self.latch_type

97 print ’ Up\t|\t’, self.upStream

98 print ’ Down\t|\t’, self.downStream

99 print "-----------------------------------------------"

100 def PrintClass2File(self , file):

101 file.write(’-----------------------------------------------\n’)

102 file.write(’Latch:\t\t|\t %s\n’ % self.latch_name)

103 file.write(’Clock:\t\t|\t %s\n’ % self.latch_clock)

104 file.write(’Real_Clock :\t|\t%s\n’ % self.latch_real_clock)

105 file.write(’Type:\t\t|\t %s\n’ % self.latch_type)

106 file.write(’Cluster :\t|\t %s\n’ % self.cluster)

107 file.write(’Monitor :\t|\t %s\n’ % str(self.monitor ))

108 file.write(’Slack:\t\t|\t %s\n’ % self.slack)

109 file.write(’Up:\t\t|\t %s\n’ % self.upStream)

110 file.write(’Down:\t\t|\t %s\n’ % self.downStream)

111 file.write(’-----------------------------------------------\n’)

112

113 def print_all_latches ():

114 for i in latch_list:

115 i.PrintClass ()

116

117 def print_all_latches_to_file ():

118 out_file = open(out_file_name , ’w’)

119 out_file.write(’--------------Latch -Connection --------------\n’)

120 out_file.write(’TOTAL NUMBER OF LATCHES :\t %d\n’ % number_of_latches )

121 out_file.write(’--------------------------------------------\n’)

122

123 out_file.write(’-------------- Latch LookUp ----------------\n’)
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124 out_file.write(’Latch: \t\t Line\n’)

125

126 off_set = 5 + number_of_latches + 3

127 line_number = off_set

128 for i in latch_list:

129 out_file.write(’%s :\t\t %d\n’ % (i.latch_name , line_number) )

130 line_number += 11

131 out_file.write(’--------------------------------------------\n’)

132

133 ## Print all info

134 for i in latch_list:

135 i.PrintClass2File(out_file)

136

137 out_file.close()

138

139 f = open(in_file_name)

140 lines = f.readlines ()

141

142 ## CASES

143 ## def

144 def find_new_path_case(line , empty):

145 global number_of_latches

146 match = re.search(r’Startpoint \:\s+(.+?)[\n|$|]’, line)

147 if(match ):

148 #Look if the Startpoint is new

149 if (not latches.has_key(match.group (1))):

150 latch_list.append(Latch(match.group (1), ’’, ’’))

151 latches[match.group (1)] = latch_list[number_of_latches]

152 number_of_latches += 1

153 match2 = re.search(r’port\sclocked\sby\s(.+?)\) ’, line)

154 if (match2 ):

155 latches[match.group (1)]. AddClock(match2.group (1))

156 return {’return_string ’:match.group (1),

157 ’next_state ’: ’get_endpoint ’}

158 else:

159 return {’return_string ’:match.group (1),

160 ’next_state ’:’get_start_clock ’}

161

162 return {’return_string ’:None , ’next_state ’:’find_new_path ’}

163 ## end def

164

165 ## def

166 def get_endpoint_case(line , startpoint ):

167 global number_of_latches

168 match = re.search(r’Endpoint \:\s+(.+?)[\n|$]’, line)

169 if(match ):

170 #Look if the Endpoint is new

171 if (not latches.has_key(match.group (1))):
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172 latch_list.append(Latch(match.group (1), ’’, ’’))

173 latches[match.group (1)] = latch_list[number_of_latches]

174 number_of_latches += 1

175

176 ## ADD down and up stream on start and end latch

177 latches[startpoint ]. AddDownStream(match.group (1))

178 latches[match.group (1)]. AddUpStream(startpoint)

179 return {’return_string ’: match.group(1),

180 ’next_state ’:’get_slack ’}

181

182 return {’return_string ’:startpoint , ’next_state ’:’get_endpoint ’}

183 ## end def

184

185 ## def

186 def get_start_clock_case(line , startpoint) :

187 match = re.search(r’clocked\sby\s(.+?)\) ’, line)

188 if(match ):

189 latches[startpoint ]. AddClock(match.group (1))

190 return {’return_string ’: startpoint ,

191 ’next_state ’:’get_endpoint ’}

192 return {’return_string ’: startpoint , ’next_state ’:’get_start_clock ’}

193 ## end def

194

195 ## def

196 def get_end_clock_case(line , endpoint) :

197 match = re.search(r’clocked\sby\s(.+?)\) ’, line)

198 if(match ):

199 latches[endpoint ]. AddClock(match.group (1))

200 return {’return_string ’: None , ’next_state ’:’find_new_path ’}

201 return {’return_string ’: endpoint , ’next_state ’:’get_end_clock ’}

202 ## end def

203

204 ##def

205 def get_slack_case(line , endpoint) :

206 match = re.search(r’slack .+?([\d|-]\d*?\.\d+?)’, line)

207 if(match ):

208 latches[endpoint ]. AddSlack(match.group (1))

209 return {’return_string ’: None , ’next_state ’:’find_new_path ’}

210 return {’return_string ’: endpoint , ’next_state ’:’get_slack ’}

211 ##end def

212 ## END CASES

213

214 ## CASE lookup

215 mycase = {

216 ’find_new_path ’: find_new_path_case ,

217 ’get_endpoint ’ : get_endpoint_case ,

218 ’get_start_clock ’ : get_start_clock_case ,

219 ’get_end_clock ’ : get_end_clock_case ,
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220 ’get_slack ’ : get_slack_case

221 }

222 ## END CASE lookup

223

224 def sniff_clock(line) :

225 match = re.search(r’^\s*?clock \((.+?)\/ GN\):\s*?(.+?)$’, line)

226 if(match ):

227 latches[match.group (1)]. AddRealClock(match.group (2))

228 #latches[match.group (1)]. AddRealClock(’ root ’)

229

230

231 ## THE LOOP FOR MAKING LATCH CONNECTIVITY GRAPH

232 current_state = ’find_new_path ’

233 next_state = ’’

234 current_startpoint = ’’

235 for line in lines:

236 #print line

237 sniff_clock(line)

238 myfunc = mycase[current_state]

239 return_value = myfunc(line , current_startpoint)

240 if (return_value[’next_state ’]):

241 current_state = return_value[’next_state ’]

242 current_startpoint = return_value[’return_string ’]

243 ## END THE LOOP

244

245 ## DECIDE IF LATCH SHOULD BE A RAZOR

246 for latch in latch_list:

247 IsLatchMonitor(latch)

248

249

250 class Cluster:

251 def __init__(self , type , name):

252 self.type = type

253 self.name = name

254

255 #clock

256 self.clock = ""

257 self.real_clock = ""

258

259 #member latches

260 self.member_latches = []

261 self.member_latches_hash = {}

262 self.number_of_members = 0

263 self.number_of_monitors = 0

264

265 #oposite polarity neighbours(clusters),

266 #this is the neighbours that need bubble from this vice versa

267 self.neighbours = []
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268 self.neighbours_hash = {}

269 self.number_of_neighbours = 0

270

271 #same polarity clusters with common neighbours , no bubble connection ,

272 #but mergeable

273 self.common_neighbours = [] #neighbour same polarity clusters

274 self.common_neighbours_hash = {} #cluster as key , number of common

275 #neighbours as value

276

277 def AddLatch(self , latch):

278 if(not self.member_latches_hash.has_key(latch )):

279 self.member_latches.append(latch)

280 self.member_latches_hash[latch] = 1

281 self.number_of_members += 1

282

283 clock = latch.GetClock ()

284 self.real_clock = clock[’real_clock ’]

285 self.clock = clock[’clock ’]

286

287 if (latch.monitor == ’True’) :

288 self.number_of_monitors += 1

289

290 retval = latch.GetNeighbours ()

291 tmp_neighbours = self.neighbours + retval[’upStream ’]

292 + retval[’downStream ’]

293 for latch1 in tmp_neighbours:

294 if(not self.neighbours_hash.has_key(latches[latch1 ]. GetCluster ())):

295 self.neighbours.append(latches[latch1 ]. GetCluster ())

296 self.neighbours_hash[latches[latch1 ]. GetCluster ()] = 1

297

298 def MergeClusters(self , cluster ):

299 # tell all the neighbours that one cluster is deleted ...

300 #and remove this from the list ...

301 # tell all latch members about their new master ...

302 #Check that the merge do not violate OR-size , if this

303 #is violated , we need to mark this cluster

304 #so it does not get merged next time.

305 if((self.number_of_monitors + cluster.number_of_monitors) > max_monitor ):

306 return 0

307

308 temp_number_of_neighbours = len(self.neighbours)

309

310 for new_neigh in cluster.neighbours:

311 if (not self.neighbours_hash.has_key(new_neigh )):

312 temp_number_of_neighbours = temp_number_of_neighbours + 1

313

314 if(temp_number_of_neighbours > max_num_of_neighbours ):

315 return 0
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316

317 #Map neigbours again. Common neighbours must not be counted twice

318 #and tell neigh cluster that cluster 2 is no longer.

319 for new_neigh in cluster.neighbours:

320 if (not self.neighbours_hash.has_key(new_neigh )):

321 self.neighbours.append(new_neigh)

322 self.neighbours_hash[new_neigh ]=1

323 #Remove old cluster as neighbour

324 cluster_hash[new_neigh ]. RemoveNeighbour(cluster.name)

325 #Add new cluster as neighbour

326 cluster_hash[new_neigh ]. AddNeighbour(self.name)

327

328 #Add the new members and tell about their new master

329 for latch_for in cluster.member_latches:

330 self.AddMember(latch_for)

331 latch_for.AddCluster(self.name)

332

333 #Update cluster_hash and list

334 del cluster_hash[cluster.name]

335 cluster_list.remove(cluster)

336

337 #Delete old common neighbours , and calculate again for every cluster

338 for cluster in cluster_list :

339 cluster.MapCommonNeighbours ()

340

341 return 1

342

343 def RemoveNeighbour(self , neighbour ):

344 if(self.neighbours_hash.has_key(neighbour )):

345 del self.neighbours_hash[neighbour]

346 self.neighbours.remove(neighbour)

347 def AddMember(self , member ):

348 if(not self.member_latches_hash.has_key(member )):

349 self.member_latches.append(member)

350 self.member_latches_hash[member] = 1

351 self.number_of_members += 1

352 if(member.monitor == ’True’):

353 self.number_of_monitors += 1

354 def AddNeighbour(self , neighbour ):

355 if (not self.neighbours_hash.has_key(neighbour )):

356 self.neighbours_hash[neighbour] = 1

357 self.neighbours.append(neighbour)

358 def MapCommonNeighbours(self) :

359 self.common_neighbours = []

360 self.common_neighbours_hash = {}

361 for cluster in self.neighbours :

362 for common in cluster_hash[cluster ]. neighbours :

363 if (not cluster_hash[common ].name is self.name) :
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364 if(not self.common_neighbours_hash.has_key(common )):

365 self.common_neighbours.append(common)

366 self.common_neighbours_hash[common] = 1

367 else:

368 self.common_neighbours_hash[common] += 1

369 def GetNumberOfNeighbours(self):

370 return self.number_of_neighbours

371

372

373

374 def printClusters(in_clust ):

375 if(in_clust ):

376 print cluster_hash[in_clust ].name

377 for latch in cluster_hash[in_clust ]. member_latches:

378 print latch.latch_name

379 print latch.upStream

380 print latch.downStream

381 print cluster_hash[in_clust ]. neighbours

382 else:

383 for cluster in cluster_list:

384 print cluster.name , cluster.member_latches [0]. latch_name

385 print cluster.neighbours

386

387

388 def printClusterFile ():

389 cluster_file = open(cluster_file_name , ’w’)

390 cluster_file.write(’--------------Latch -Connection --------------\n’)

391 cluster_file.write(’TOTAL NUMBER OF CLUSTERS :\t %d\n’ % number_of_clusters )

392 cluster_file.write(’--------------------------------------------\n’)

393

394 cluster_file.write(’-------------- Latch LookUp ----------------\n’)

395 cluster_file.write(’Cluster: \t\t Line\n’)

396

397 off_set = 5 + number_of_clusters + 2

398 line_number = off_set

399 for i in cluster_list:

400 cluster_file.write(’%s :\t\t %d\n’ % (i.name , line_number) )

401 line_number += 6

402

403 ## Print all info

404 for i in cluster_list:

405 cluster_file.write(’--------------------------------------------\n’)

406 cluster_file.write(’Cluster :\t%s\n’ % i.name)

407 cluster_file.write(’Clock: \t\t%s\n’ % i.clock)

408 cluster_file.write(’RealCK :\t\t%s\n’ % i.real_clock)

409 cluster_file.write(’Members: \t’)

410 for latches in i.member_latches :

411 cluster_file.write(’%s ’ % latches.latch_name)
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412 cluster_file.write(’\n’)

413 cluster_file.write(’Neighbours: \t%s\n’ % i.neighbours )

414

415 cluster_file.close ()

416

417 # ---------------------------------------------------------

418 # GENERAT CLUSTER GRAPHS

419 # ---------------------------------------------------------

420 #GENERATE ONE CLUSTER PER LATCH

421 #for all latches add cluster

422 id = 0

423 for latch in latch_list :

424 cluster_name = "cluster_%d" % id

425 latch.AddCluster(cluster_name)

426 id += 1

427

428 #for all latches , inst cluster and connect

429 id = 0

430 for latch in latch_list :

431 cluster_name = "cluster_%d" % id

432 cluster_list.append(Cluster(latch.GetType(), cluster_name ))

433 cluster_hash[cluster_name] = cluster_list[number_of_clusters]

434 cluster_hash[cluster_name ]. AddLatch(latch)

435 number_of_clusters += 1

436 id += 1

437 # inst. cluster

438 # add latch as member

439 # add polarity

440 # add clock

441 # add clustser as latch master

442 ### add neighbour latches (up/down)

443

444 #GET COMMON NEIGHBOURS

445 # for each cluster

446 # for each direct neighbour

447 # add their direct neghbour/increment the hash (exept self)

448 for cluster in cluster_list :

449 cluster.MapCommonNeighbours ()

450

451

452 banned_clusters= {}

453 def BannedClusters(from_clu , to_clu ):

454 if banned_clusters.has_key(from_clu ):

455 if(banned_clusters[from_clu ]. has_key(to_clu )):

456 return 1

457 if banned_clusters.has_key(to_clu ):

458 if(banned_clusters[to_clu ]. has_key(from_clu )):

459 return 1
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460 return 0

461

462 def isCkGate(string ):

463 match = re.search(r’ClockGateSyncReset ’, string.latch_name)

464 if match:

465 return 1

466 else:

467 return 0

468

469 def FindNextCluster ():

470 max = 0

471 from_clu = ’’

472 to_clu = ’’

473 for clu in cluster_list:

474 for common in clu.common_neighbours_hash:

475 if clu.common_neighbours_hash[common] > max and not

476 BannedClusters(clu.name , common ):

477 if clu.real_clock == ’’ or cluster_hash[common ]. real_clock == ’’:

478 k = 1

479 #no nothing

480 elif isCkGate(clu.member_latches [0]) or

481 isCkGate(cluster_hash[common ]. member_latches [0]):

482 k = 1

483 #no nothing

484 else :

485 max = clu.common_neighbours_hash[common]

486 from_clu = clu.name

487 to_clu = common

488

489 if max is 0:

490 return {’from’ : ’False ’ , ’to’ : ’False’}

491 return {’from’ : from_clu , ’to’ : to_clu}

492

493 # MERGING CLUSTERS

494 nop = 0

495 test = 0

496 while (nop < 10000000):

497 retval = FindNextCluster ()

498 from_clu = retval[’from’]

499 to_clu = retval[’to’]

500 if (from_clu is ’False ’ or to_clu is ’False’):

501 break

502 if from_clu is ’cluster_538 ’ and to_clu is ’cluster_539 ’:

503 test = 1

504 if (from_clu is ’’ or to_clu is ’’ or test is 1):

505 #finnished!

506 print "Looks like there nothing left to merge ..."

507 break
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508 else :

509 if not cluster_hash[from_clu ]. MergeClusters(cluster_hash[to_clu ]):

510 if not banned_clusters.has_key(from_clu ):

511 banned_clusters[from_clu ]={}

512 if not banned_clusters.has_key(to_clu ):

513 banned_clusters[to_clu ]={}

514 banned_clusters[from_clu ][ to_clu] = 1

515 banned_clusters[to_clu ][ from_clu] = 1

516 nop += 1

517 else:

518 nop = 0

519 print "Merging", from_clu , to_clu

520 banned_clusters = {}

521

522 printClusterFile ()

523

524 print_all_latches_to_file ()

525

526 print "Name:\t\tMembers\tMonitors\tNeighbours\tFirstMemb"

527 for cluster in cluster_list:

528 print ’%s\t%d\t%d\t%d\t%s’ % (cluster.name , len(cluster.member_latches)

529 , cluster.number_of_monitors , len(cluster.neighbours)

530 , cluster.member_latches [0]. latch_name)

531 print "--------------------------------------------------------------"
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Insertion of Bubble Razor

Components

Script for insertion of the Bubble Razor components. Takes lookups and netlist

as input.

1 #!/usr/bin/env /pri/mako/local/bin/python

2

3 import re

4 import sys

5 from subprocess import call

6 import os

7

8 #from sys import argv , exit

9

10 print "\n".join(sys.argv)

11 print sys.argv [1]

12

13 # VARIABLES

14 # Lines starting with these will be one -lined

15 oneline_string = "retracted retracted retracted"

16 # Must contain all latch cell -names

17 latch_string = "retracted retracted"

18

19 input_ports_string = "retracted"

20 output_ports_string = "retracted"

21 # Ports that need bubbles up the hierarchy

22 #Input port : vector length

23 bubble_input_ports = {’retracted ’ : 2, ’retracted ’ : 1, ’retracted ’: 1}

24 #Input port : vector length

101
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25 bubble_output_ports = {’retracted ’ : 9, ’retracted ’ : 1}

26 module_reset_string = "retracted" #Reset port string

27

28 bubble_verilog_models_string = "bubble.v" #file with bubble razor components

29

30 #CLOCK SETUP INVERTED

31 # clocks and subclocks and their phases

32 clock_nodes = {}

33 clock_nodes[r’root’] = {’slave’ : ’ckFreq1 ’, ’master ’ : ’ckFreq1_phase2 ’}

34

35 clock_nodes["retracted"] = {’slave’ : ’ckFreq2 ’, ’master ’: ’ckFreq2_phase2 ’}

36 clock_nodes[r’retracted ’] = {’slave ’ : ’ckFreq2_phase2 ’, ’master ’ : ’ckFreq2 ’}

37 clock_nodes[r’retracted ’] = {’slave ’ : ’retracted ’, ’master ’: ’retracted ’}

38 clock_nodes[r’retracted ’] = {’slave ’ : ’retracted ’, ’master ’: ’retracted ’}

39

40 for argument in sys.argv :

41 match = re.search(r’-help|-h’, argument)

42 if(match) :

43 print " ------------------------------------------------\n"

44 print "Inserting Bubble -Razor system to a netlist\n"

45 print "Need lookup tables for cluster and latches\n"

46 print "Req. arguments :\n"

47 print "1: cluster lookup\n"

48 print "2: latch lookup\n"

49 print "3: input netlist\n"

50 print "4: output netlist\n"

51 print ""

52 print "Also need some config in script for cell_names"

53 print " ------------------------------------------------\n"

54 sys.exit()

55

56 print sys.argv

57

58 if(len(sys.argv)-1 is 4) :

59 cluster_lookup_name = sys.argv [1]

60 latch_lookup_name = sys.argv [2]

61 netlist_name = sys.argv [3]

62 out_netlist_name = sys.argv [4]

63

64 else :

65 print "------------------------------------------------\n";

66 print "ERROR!\n";

67 print "Need input arguments .\n";

68 print " -help for more info!\n";

69 print "------------------------------------------------\n";

70 sys.exit()

71

72 print "------------------------------------------------\n";
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73 print "INPUTS\n";

74 print "Cluster lookup :\t%s\n" % cluster_lookup_name;

75 print "Latch lookup :\t%s\n" % latch_lookup_name;

76 print "Input netlist :\t%s\n" % netlist_name;

77 print "OUTPUT\n";

78 print "Output netlist :\t%s\n" % out_netlist_name;

79 print "------------------------------------------------\n";

80

81 #---------------------------------------------------

82 #INFO

83 # The actual connection of clusters and latches is

84 # done in the SelfWrite functions in both the Latch

85 # and Cluster classes.

86 #

87 #Cluster wires:

88 # Cluster CK: ck_"cluster_name"

89 # Bubble Out: bubbleOut_"cluster_name"

90 #

91 #

92 #Latch wires:

93 # Error: error_"latch_name" (optinal)

94 #

95 #Ports:

96 # Ports are a special case , they look like a cluster but is not

97 # defined in this module. Instead every data -port get a dummy cluster

98 #---------------------------------------------------

99

100

101

102 class Latch:

103 def __init__(self , name):

104 self.name = name

105 self.cluster = ’’

106 self.monitor = ’False’ #Should this latch have a monitor?

107 def AddCluster(self , cluster ):

108 self.cluster = cluster

109 def AddMonitor(self , bool):

110 self.monitor = bool

111 def GetCluster(self):

112 return self.cluster

113 def GetMonitor(self):

114 return self.monitor

115 def WriteWires(self , file):

116 file.write("wire error_%s;" % self.name)

117 def WriteSelf(self , line , out_file ):

118 if self.monitor == ’True’:

119 node_match = re.findall(r’\..+?\((.*?)\) ’, line)

120 port_match = re.findall(r’\.(.+?)\( ’, line)
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121

122 if(’RN’ in port_match) :

123 out_line = ’BubbleRazor ’ + self.name + ’ (.ck(), .rn(), .d()’\

124 ’.err(error_ ’\

125 ’+ self.name +’), .q(), .qn ());\n’

126 elif(’SN’ in port_match ):

127 out_line = ’BubbleRazorNegSet ’ + self.name + ’ (.ck(), .sn()’\

128 ’, .d(), .err(error_ ’\

129 ’+ self.name +’), .q(), .qn ());\n’

130 else :

131 print "ERROR: NO RESET PIN ON LATCH"

132

133 out_file.write(’wire error_ ’ + self.name + ’;\n’)

134

135 index=0

136 for port in port_match:

137 if port == ’D’ and node_match[index]:

138 out_line = re.sub(r’(.+?\.d\().*?(\).+) ’, r’\g<1>%s\g<2>’\

139 % node_match[index], out_line)

140 elif port == ’GN’ and node_match[index ]:

141 cluster_clock = ’ck_’ + self.cluster

142 out_line = re.sub(r’(.+?\. ck \().*?(\).+) ’, r’\g<1>%s\g<2>’\

143 % (’ck_’+self.cluster), out_line)

144 elif port == ’RN’ and node_match[index ]:

145 out_line = re.sub(r’(.+?\. rn \().*?(\).+) ’, r’\g<1>%s\g<2>’\

146 % node_match[index], out_line)

147 elif port == ’SN’ and node_match[index ]:

148 out_line = re.sub(r’(.+?\. sn \().*?(\).+) ’, r’\g<1>%s\g<2>’\

149 % node_match[index], out_line)

150 elif port == ’Q’ and node_match[index ]:

151 out_line = re.sub(r’(.+?\.q\().*?(\).+) ’, r’\g<1>%s\g<2>’\

152 % node_match[index], out_line)

153 elif port == ’QN’ and node_match[index ]:

154 out_line = re.sub(r’(.+?\. qn \().*?(\).+) ’, r’\g<1>%s\g<2>’\

155 % node_match[index], out_line)

156 index +=1

157 #print "L", line

158 #print "O", out_line

159 out_file.write(out_line)

160 else :

161 line = re.sub(r’(\.GN \().+?(\)) ’, r’\g<1>ck_%s\g<2>’

162 % self.cluster , line)

163 out_file.write(line)

164

165 class Cluster:

166 def __init__(self , name):

167 self.name = name

168 self.bubble_in = [] #neighbour clusters , defines all bubble in
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169 self.monitor_members = [] #member latches , defines all the cluster err in

170 self.clock = ’’

171 self.real_clock = ’’

172 self.port = ’False’

173 def AddClock(self , clock):

174 self.clock = clock

175 def AddRealClock(self , clock ):

176 self.real_clock = clock

177 def AddMonitorMembers(self , monitor_members ):

178 monitor_members=re.sub(r’(\(.+?\)) ’, ’’, monitor_members)

179 monitor_members=re.sub(r’\s’, ’ ’, monitor_members)

180 match = re.findall(r’(?:\s|^)(.+?)(?:\s|$)’, monitor_members)

181 if self.name == ’cluster_60 ’:

182 print monitor_members

183 print match

184 if match:

185 self.monitor_members = self.monitor_members + match

186 def AddBubbleIn(self , bubbles ):

187 match = re.findall(r’\ ’(.+?)\ ’’, bubbles)

188 if match:

189 self.bubble_in = self.bubble_in + match

190 def GetClock(self):

191 return self.clock

192 def GetRealClock(self):

193 return self.real_clock

194 def GetMembers(self):

195 return self.members

196 def GetBubbleIn(self):

197 return self.bubble_in

198 def WriteWires(self , file):

199 file.write("wire bubbleOut_%s, ck_%s;" % (self.name , self.name))

200 def WriteSelf(self , out_file ):

201 if(not clock_nodes.has_key(r’%s’ % self.real_clock) or

202 re.search(r’^\s*?$’, self.real_clock )):

203 print "Ignoring cluster:" , self.monitor_members

204 bubble_in_OR = ’assign bubbleIn_ ’\

205 + GetCleanPort(self.monitor_members [0]) +’ =’

206 for neighbour in self.bubble_in :

207 if clusters_dict[neighbour ].port == ’False’:

208 bubble_in_OR = bubble_in_OR + ’ bubbleOut_ ’\

209 + neighbour + " ||"

210 else : #Ghost cluster , bubble for port

211 bubble_in_OR = bubble_in_OR + ’ bubbleOut_ ’ +\

212 GetCleanPort(clusters_dict[neighbour ]. monitor_members [0]) + " ||"

213 print "Add port bubble to cluster", ’ bubbleOut_ ’\

214 + GetCleanPort(clusters_dict[neighbour ]. monitor_members [0])

215 bubble_in_OR = re.sub(r’\|\|$’, r’;\n\n’, bubble_in_OR)

216 if not re.search(r’=\s*?$’, bubble_in_OR ):
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217 out_file.write(bubble_in_OR)

218 print bubble_in_OR

219 return 0

220

221 #OUTPUT WIRES

222 out_file.write("wire bubbleIn_"+ self.name + ’, bubbleOut_ ’\

223 + self.name + ", ck_" + self.name + ";\n")

224

225 #BUBBLE IN

226 bubble_in_OR = ’assign bubbleIn_ ’ + self.name +’ =’

227 for neighbour in self.bubble_in :

228 if clusters_dict[neighbour ].port == ’False’:

229 bubble_in_OR = bubble_in_OR + ’ bubbleOut_ ’ + neighbour + " ||"

230 else : #Ghost cluster , bubble for port

231 bubble_in_OR = bubble_in_OR + ’ bubbleOut_ ’\

232 + GetCleanPort(clusters_dict[neighbour ]. monitor_members [0]) + " ||"

233 bubble_in_OR = re.sub(r’\|\|$’, r’;\n’, bubble_in_OR)

234 out_file.write(bubble_in_OR)

235

236 #CLUSTER ERR

237 have_monitor = ’False’

238 error_in_OR = ’assign error_ ’+ self.name +’ =’

239 for member in self.monitor_members:

240 #Only if member is a monitor

241 if latches_dict[member ]. monitor == ’True’:

242 have_monitor = ’True’

243 error_in_OR = error_in_OR + ’ error_ ’+ member +’ ||’

244 error_in_OR = re.sub(r’\|\|$’, r’;\n’, error_in_OR)

245

246 if have_monitor == ’True’:

247 out_file.write(error_in_OR)

248 out_file.write("wire error_"+ self.name +";\n")

249 cluster_error_string = ’error_ ’ + self.name

250 else :

251 cluster_error_string = ’1\’b0’

252

253 #CLOCK XXX NOTE: every cluster is clocked on fast clock

254 match = re.search(r’\’’, self.clock)

255 clock_string_master = ’ERROR’

256 clock_string_slave = ’ERROR’

257 if(self.real_clock == ’root’):

258 if(match ): #slave

259 #phase two clock

260 clock_string_master = clock_nodes[’root’][’slave ’]

261 clock_string_slave = clock_nodes[’root’][’master ’]

262

263 else: #master

264 #phase one clock
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265 clock_string_master = clock_nodes[’root’][’master ’]

266 clock_string_slave = clock_nodes[’root’][’slave’]

267

268 else :

269 if(clock_nodes.has_key(self.real_clock )):

270 clock_string_master = clock_nodes[self.real_clock ][’master ’]

271 clock_string_slave = clock_nodes[self.real_clock ][’slave’]

272 else :

273 print "Me no latch 2, but port:" , self.monitor_members

274 print self.real_clock

275

276 out_line = ’BubbleClusterCtrl ’+ self.name + \

277 ’ ( .bubbleIn(bubbleIn_ ’+ self.name + \

278 ’), .clusterErr(’+ cluster_error_string + \

279 ’), .ck(’+ clock_string_master + \

280 ’), .ck_b(’+ clock_string_slave + \

281 ’), .invEnable(’ + module_reset_string + \

282 ’), .clusterCk(ck_’+ self.name + \

283 ’), .bubbleOut(bubbleOut_ ’+ self.name +’));\n\n’

284

285 out_file.write(out_line)

286

287 clusters_dict = {}

288 latches_dict = {}

289

290 def CheckIfPort(name):

291 clean_name = re.sub(r’(\[.*?\]) ’, r’’, name)

292 clean_name = re.sub(r’(\(.*?\)) ’, r’’, clean_name)

293 clean_name = re.sub(r’(\s)’, r’’, clean_name)

294 return (re.search(r’%s’ % clean_name , input_ports_string) or

295 re.search(r’%s’ % clean_name , output_ports_string ))

296

297 def GetCleanPort(name):

298 clean_name = re.sub(r’(\(.*?\)) ’, r’’, name)

299 clean_name = re.sub(r’(\s)’, r’’, clean_name)

300 return clean_name

301

302 def ReadToMem(file , offset) :

303 line_num = 1

304 start_line = 10000000

305 cluster_or_latch = ’’

306 state = ’’

307 current_object = ’’

308 state = ’GET_OBJECT ’

309 for line in file :

310 match = re.search(r’TOTAL\sNUMBER\sOF\s+(.+?)\:\s+?(\d+)$’, line)

311 if match :

312 start_line = 5 #offset
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313 print start_line

314 cluster_or_latch = match.group (1)

315 print cluster_or_latch

316 elif(line_num > start_line ): # Fill classes

317 # If Cluster

318 if(cluster_or_latch == ’CLUSTERS ’) :

319 if state == ’GET_OBJECT ’:

320 match = re.search(r’Cluster :\s+(.+?)$’, line)

321 if(match ):

322 #print match.group (1)

323 state=’GET_CLOCK ’

324 current_object = match.group (1)

325 clusters_dict[current_object] = Cluster(current_object)

326

327 elif(state == ’GET_CLOCK ’):

328 match = re.search(r’Clock:\s+(.+?)$’, line)

329 if(match ):

330 #print match.group (1)

331 state = ’GET_REALCK ’

332 clusters_dict[current_object ]. AddClock(match.group (1))

333

334 elif(state == ’GET_REALCK ’):

335 match = re.search(r’RealCK :\s+(.+?)$’, line)

336 if(match ):

337 #print match.group (1)

338 state = ’GET_MEMBERS ’

339 clusters_dict[current_object ]. AddRealClock(match.group (1))

340

341 elif(state == ’GET_MEMBERS ’):

342 match = re.search(r’Members :\s+(.+?)$’, line)

343 if(match ):

344 #print match.group (1)

345 state = ’GET_BUBBLES ’

346 clusters_dict[current_object ]. AddMonitorMembers(match.group (1))

347 if CheckIfPort(match.group (1)) :

348 clusters_dict[current_object ].port = ’True’

349

350 elif(state == ’GET_BUBBLES ’):

351 match = re.search(r’Neighbours :\s+(.+?)$’, line)

352 if(match ):

353 #print match.group (1)

354 state = ’GET_OBJECT ’

355 clusters_dict[current_object ]. AddBubbleIn(match.group (1))

356

357 # If Latch

358 elif(cluster_or_latch == ’LATCHES ’):

359 if state == ’GET_OBJECT ’:

360 match = re.search(r’^Latch:\s+\|\s+(.+?)$’, line)
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361 if(match ):

362 #print match.group (1)

363 state=’GET_CLUSTER ’

364 current_object = match.group (1)

365 latches_dict[current_object] = Latch(current_object)

366

367 if state == ’GET_CLUSTER ’:

368 match = re.search(r’^Cluster :\s+\|\s+(.+?)$’, line)

369 if(match ):

370 #print match.group (1)

371 state=’GET_MONITOR ’

372 latches_dict[current_object ]. AddCluster(match.group (1))

373

374 if state == ’GET_MONITOR ’:

375 match = re.search(r’^Monitor :\s+\|\s+(.+?)$’, line)

376 if(match ):

377 #print match.group (1)

378 state=’GET_OBJECT ’

379 latches_dict[current_object ]. AddMonitor(match.group (1))

380

381 else :

382 print "ERROR! Error in lookup: %s" % cluster_or_latch

383 sys.exit()

384

385 match = False

386 line_num += 1

387

388 cluster_lookup = open(cluster_lookup_name)

389 latch_lookup = open(latch_lookup_name)

390

391 out_netlist = open(out_netlist_name , ’w’)

392

393 # ----------------------------

394 ReadToMem(cluster_lookup , 5)

395 ReadToMem(latch_lookup , 5)

396 # ----------------------------

397

398 cluster_lookup.close()

399 latch_lookup.close ()

400

401 def OneLineInst(file , out_file , match_string) :

402 last = True

403 out_line = ’’

404 for line in file :

405 match = re.search(r’^\s*(.+?)\s+(?:.+?)\s*\(’, line)

406 if match :

407 check_latch = match.group (1)

408 match = re.search(r’(?:^|\s)(%s)(?:\s|$)’\
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409 % re.escape(check_latch), match_string) #check if comp is latch

410 if match :

411 last = False

412 if not last:

413 match = re.search(r’;’, line)

414 if match:

415 out_line = line

416 last = True

417 else :

418 out_line = re.sub(r’\n’, ’’, line)

419 else :

420 out_line = line

421

422 out_file.write(out_line)

423

424 netlist = open(netlist_name)

425 temp_file = open(’tmp_netlist.v’, ’w’)

426 OneLineInst(netlist , temp_file , oneline_string)

427 temp_file.close()

428 netlist.close ()

429 temp_file = open(’tmp_netlist.v’)

430

431 for line in temp_file:

432 module_match = re.search(r’^\s*? module ’, line)

433 wire_match = re.search(r’^\s*?wire’ , line)

434 object_match = re.search(r’^\s+(.+?)\s+(.+?)\s*\(’, line)

435 endmodule_match = re.search(r’^\s*? endmodule\s’, line)

436

437 if module_match:

438 out_netlist.write(line)

439 elif wire_match:

440 out_netlist.write(line)

441 elif object_match:

442 match = re.search(r’(?:^|\s)(%s)(?:\s|$)’

443 % re.escape(object_match.group (1)), latch_string) #check if comp is latch

444 if match:

445 latches_dict[object_match.group (2)]. WriteSelf(line , out_netlist)

446 else :

447 out_netlist.write(line)

448 elif endmodule_match:

449 for cluster in clusters_dict:

450 clusters_dict[cluster ]. WriteSelf(out_netlist)

451 out_netlist.write(line)

452 else :

453 out_netlist.write(line)

454

455 out_netlist.close()

456 temp_file.close()
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457

458 out_netlist = open(out_netlist_name , ’r’)

459 temp_file = open(’tmp_netlist.v’, ’w’)

460

461 current_module = ’’

462 wires = {}

463 wire_end = ’true’

464

465 #sniff all wires

466 file_content = out_netlist.readlines ()

467 for line in file_content:

468

469 match = re.search(r’^\s*? module\s+(.+?)(\s|\()’, line )

470 if match:

471 current_modules = match.group (1)

472 wires[current_module] = ’’

473

474 if re.search(r’^\s*wire\s’, line):

475 #append this line here

476 wires[current_module] = wires[current_module] + line

477 if re.search(r’;\s*$’, line):

478 wire_end = ’true’

479 else :

480 wire_end = ’false ’

481 elif wire_end == ’false ’ :

482 #append this line here

483 wires[current_module] = wires[current_module] + line

484 if re.search(r’;\s*$’, line):

485 wire_end = ’true’

486 else :

487 wire_end = ’false ’

488

489 wire_end = ’true’

490 first_wire = ’false’

491 inserted_bubble_ports = ’False’

492 for line in file_content:

493 match = re.search(r’^\s*? module\s+(.+?)(\s|\()’, line )

494 if match:

495 current_modules = match.group (1)

496 for port in bubble_input_ports:

497 line = re.sub(r’(\))’,r’, bubbleOut_%s, bubbleIn_%s)’

498 % (port , port), line )

499 for port in bubble_output_ports:

500 line = re.sub(r’(\))’,r’, bubbleOut_%s, bubbleIn_%s)’

501 % (port , port), line )

502

503 if re.search(r’^\s*?( input|output )\s’, line)

504 and inserted_bubble_ports == ’False ’:
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505 inserted_bubble_ports = ’True’

506 for port in bubble_input_ports:

507 if bubble_input_ports[port] > 1:

508 temp_file.write("input ["+ str(bubble_input_ports[port]-1)

509 +":0] bubbleOut_"+ port +";\n")

510 temp_file.write("output ["+ str(bubble_input_ports[port]-1)

511 +":0] bubbleIn_"+ port +";\n")

512 else :

513 temp_file.write("input bubbleOut_"+ port +";\n")

514 temp_file.write("output bubbleIn_"+ port +";\n")

515

516 for port in bubble_output_ports:

517 if bubble_output_ports[port] > 1:

518 temp_file.write("input ["+ str(bubble_output_ports[port]-1)

519 +":0] bubbleOut_"+ port +";\n")

520 temp_file.write("output ["+ str(bubble_output_ports[port]-1)

521 +":0] bubbleIn_"+ port +";\n")

522 else :

523 temp_file.write("input bubbleOut_"+ port +";\n")

524 temp_file.write("output bubbleIn_"+ port +";\n")

525

526 if re.search(r’^\s*wire\s’, line):

527 if re.search(r’;\s*$’, line):

528 wire_end = ’true’

529 else :

530 wire_end = ’false ’

531

532 if first_wire ==’false’:

533 first_wire = ’true’

534 #print all wires for module

535 temp_file.write(wires[current_module ])

536 print "print wires"

537

538 elif wire_end == ’false ’ :

539 if re.search(r’;\s*$’, line):

540 wire_end = ’true’

541 else :

542 wire_end = ’false ’

543

544 else :

545 #write line ...

546 ff=0

547 temp_file.write(line)

548

549 out_netlist.close()

550 temp_file.close()

551 print out_netlist_name

552 os.system("mv tmp_netlist.v %s" % out_netlist_name)
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553

554 # append models

555 print "Appending models to end of file ..."

556 out_netlist = open(out_netlist_name , ’a’)

557 bubble_models = open(bubble_verilog_models_string , ’r’)

558 out_netlist.write(bubble_models.read ())





Appendix F

Lookup Example

1 --------------------------------------------

2 Cluster: cluster_8

3 Clock: ckFreq1

4 RealCK: root

5 Members: ckFreq1_p2_REG455_S1 ckFreq1_p2_REG473_S1 ckFreq1_p2_REG471_S1

6 ckFreq1_p2_REG469_S1 ckFreq1_p2_REG467_S1 ckFreq1_p2_REG465_S1

7 ckFreq1_p2_REG463_S1 ckFreq1_p2_REG479_S1 ckFreq1_p2_REG481_S1

8 ckFreq1_p2_REG483_S1 ckFreq1_p2_REG485_S1 ckFreq1_p2_REG461_S1

9 ckFreq1_p2_REG475_S1 ckFreq1_p2_REG487_S1 ckFreq1_p2_REG489_S1

10 ckFreq1_p2_REG477_S1

11 Neighbours: [’cluster_14 ’, ’cluster_33 ’, ’cluster_0 ’]

12 --------------------------------------------

1 -----------------------------------------------

2 Latch: | ckFreq1_p2_REG471_S1

3 Clock: | ckFreq1

4 Real_Clock: | root

5 Type: | slave

6 Cluster: | cluster_8

7 Monitor: | True

8 Slack: | 3.5

9 Up: | [’ckFreq1_p1_REG468_S2 ’, ’ckFreq1_p1_REG470_S2 ’,

10 ’ckFreq1_p1_REG496_S2 ’, ’ckFreq1_p1_REG494_S2 ’,

11 ’ckFreq1_p1_REG492_S2 ’, ’ckFreq1_p1_REG490_S2 ’,

12 ’ckFreq1_p1_REG488_S2 ’, ’ckFreq1_p1_REG486_S2 ’,

13 ’ckFreq1_p1_REG484_S2 ’, ’ckFreq1_p1_REG476_S2 ’,

14 ’ckFreq1_p1_REG462_S2 ’, ’ckFreq1_p1_REG464_S2 ’,

15 ’ckFreq1_p1_REG466_S2 ’, ’ckFreq1_p1_REG472_S2 ’,

16 ’rfDr [0] (input port clocked by ckFreq1)’,

17 ’ckFreq1_p1_REG520_S1 ’, ’ckFreq1_p1_REG478_S2 ’,

18 ’ckFreq1_p1_REG516_S1 ’, ’ckFreq1_p1_REG514_S1 ’,

115
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19 ’ckFreq1_p1_REG504_S1 ’, ’ckFreq1_p1_REG502_S1 ’]

20 Down: | [’ckFreq1_p1_REG472_S2 ’]

21 -----------------------------------------------



Appendix G

Number of Bubble Razor

Components

Tabular of the number of element in the different stages.

Flip-flop version Latch pre-retimeing

and pre-clustering

Latch post-retiming

and post-clustering

Flip-Flops 243 - -

Latches* - 486 524

-Monitors - 257 257

Clusters - 524 19

*Includes both latches and monitors

Number and size of OR-trees for bubble and error generation.

OR-three size Count

3 2

4 2

7 2

16 16

26 1
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