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Abstract

Jaundice is the cause of an estimated 114,100 deaths among newborn annually.
Most of these deaths occur in the poorest regions of the world where current diag-
nostic technologies are too expensive. In this thesis, several methods were tested
using an HTC One V and a Samsung Galaxy S3 to see whether smartphones can
be used as an affordable diagnostic tool for jaundice. The methods include at-
taching foldable spectrometers to the phones, bandpass filters, pressing the camera
lens onto the skin, and using color analysis of images taken with the phones. All
methods were tested qualitatively using my own skin with either a bruise or with
carrot juice applied in order to simulate an increased bilirubin concentration. The
color analysis of images was also quantitatively compared to numerical simulations
of skin using optical diffusion theory.

Color analysis of images taken with the phones was found to be the most promis-
ing of all the methods. The standard deviations of the color responses of both
cameras were measured to be significantly smaller than the color variation of skin
due to increased bilirubin concentrations. A color calibration technique intended
to provide calibrations that are accurate enough for the phones to be used for
bilirubin concentration measurements was developed. In its current state, it does
not produce calibrations of the needed quality. A roadmap is therefore presented
for the further development of the technique needed to yield satisfying results.



Sammendrag

Det er estimert at gulsott er årsaken til 114,100 årlige dødsfall blant nyfødte.
De fleste av disse dødsfallene forekommer i de fattigste delene av verden hvor
n̊aværende teknologi er for dyrt til å tas i bruk. I dette prosjektet har flere me-
toder blitt testet ved hjelp av en HTC One V og en Samsung Galaxy S3 for å se
om smarttelefoner kan brukes som et billig diagnostisk verktøy. Brettbare spektro-
metere, b̊andpassfiltere, å trykke kameralinsen inntil huden, og fargeanalyser av
bilder tatt med telefonene har blitt testet. Alle metodene ble testet kvalitativt ved
å bruke min egen hud med enten et bl̊amerke eller med p̊asmurt gulrotjuice for å
simulere en forhøyet bilirubinkonsentrasjon. Fargeanalysen av bilder har ogs̊a blitt
kvantitativt sammenlignet med numeriske simuleringer av hud utført ved hjelp av
optisk diffusjonsteori.

Fargeanalyser av bilder tatt med telefonene viste seg å være den mest lovende
metoden. Standardavviket til fargeresponsen til begge kameraene ble m̊alt til å være
signifikant lavere enn fargevariasjonen til hud grunnet forhøyet bilirubinkonsentra-
sjon. En fargekalibreringsmetode ment til å gi god nok kalibrering av kameraene
til at telefonene kan bli brukt til m̊alinger av bilirubinkonsentrasjon ble utviklet.
Men kalibreringsmetoden gir per n̊a ikke gode nok resultater. Et veikart for den
videre utviklingen av denne metoden for at den skal gi tilfredstillende resultater
blir derfor presentert.



Preface
The idea of using smartphones as a cheap diagnostic tool for jaundice first came to
doctor Anders Aune while he was visiting a hospital in Tanzania. He found that
the hospital lacked the equipment needed to perform screening for jaundice due to
the high cost of such equipment. After further research into the issue, he found
that it was not a local problem occurring in Tanzania, but a major global health
issue.

He therefore contacted professor of biomedical optics, Lise Randeberg, at NTNU.
Together they formulated a master’s thesis assignment of designing a smartphone-
based diagnostic tool for jaundice. I was made aware of the thesis assignment
after having contacted Engineers without borders at NTNU who put me in touch
with Anders and Lise. Together we discussed and concluded that I could do this
assignment as my master’s thesis.

During the work with this thesis I have been participating at Applab NTNU,
which is a boot camp for app developers. Since the thesis would hopefully result in
a method that could be used for jaundice diagnostics, a smartphone app would have
to be created implementing this method. An app prototype able to take pictures
and analyze the colors of the captured image was therefore created in parallel with
the development of the diagnostic methods. But due to the app not being relevant
to the development of the diagnostic methods, it is not presented in this report.

Although this thesis focuses solely on developing a diagnostic tool for jaundice
using smartphones, the methods developed could in theory be used to diagnose
other conditions leaving some visible mark on the skin. Readers not interested in
jaundice, but wanting to learn more about how smartphones can be used as cheap
diagnostic tools are therefore recommended to continue reading.

During the thesis work, Lise has been my main supervisor. She has worked
specifically with jaundice before and has a deep understanding and knowledge of
the field of biomedical optics. This thesis could not have existed without her help.
Anders has been a co-supervisor helping with questions concerning medical science.
He has also been of great help, and his knowledge and position as senior consultant
at St. Olavs Hospital in Trondheim will be critical in moving this project forward.
I am very grateful of having been allowed to work with both of them and I look
forward to our future cooperation.

Trondheim, June 2014
Gunnar Vartdal
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Chapter 1
Introduction

1.1 Background
Jaundice is a condition characterized by the skin of the afflicted turning yellow.
This is due to elevated levels of the waste product bilirubin in the blood. The
condition is therefore often called hyperbilirubinemia. It is a condition affecting
approximately half of all newborn, but is in most cases harmless. The condition
is still potentially dangerous because the bilirubin can accumulate in the basal
ganglia of the brain, where it can cause permanent brain damage. Such brain
damage, better known as kernicterus, can manifest itself as cerebral palsy, deafness,
language difficulty, or in the worst cases death[1].

Bhutani et al. estimated the incidence and impairment of jaundice for 2010[2].
They concluded that failure to manage hyperbilirubinemia results in 114,100 avoid-
able neonatal deaths, and many grow up with disabilities. Three quarters of these
deaths are estimated to occur in the poorest regions of the world in sub-Saharan
Africa and south Asia. Other studies have found jaundice to be one of the top
three leading causes of death among newborn in sub-Saharan Africa[1].

To prevent the usually harmless condition of jaundice from developing into ker-
nicterus, it is highly important to identify the children at risk at an early stage.
Treatment of hyperbilirubinemia is in most cases done by phototherapy, and in
some extreme cases by blood transfusion. Sunlight is believed to be a cheap al-
ternative to specialized phototherapy light-boxes, and studies are now underway
investigating this[3]. It is therefore essential to be able to discover at-risk children
at an early stage, so that effective treatment can be given.

Bilirubin colors the skin yellow. Jaundice can therefore often be seen visually
even by people with no medical training. But mere visual judgment of the sever-
ity of jaundice has proven to be unreliable, even when performed by experienced
doctors[4]. The measurement of bilirubin is therefore traditionally done by blood
samples. To reduce the need of drawing blood from the newborn, devices have been
developed that measure the bilirubin concentration by shining light through the

1



1.2 This thesis Chapter 1. Introduction

skin, so-called transcutaneous bilirubinometers[5]. Both the lab equipment needed
for blood sample measurements and the devices used to measure bilirubin transcu-
taneously are expensive, costing more than 10,000 US dollars. Thus making them
practically unavailable in low-income countries.

Since most deaths due to jaundice occur in low-income countries, there is a
large unmet need of simple, reliable and affordable technologies able to identify at-
risk newborn. In the last few years, cell phone technology and smartphones have
penetrated into areas with little resources. This has given hope that new affordable
solutions to global health issues can be developed[6].

1.2 This thesis
With this as background it should be clear that finding a way of using smartphone
technology to measure the bilirubin concentration of newborn could possibly solve
a major global health issue. This thesis aims at developing such a method by
exploring several different ideas as to how such a measurement can be performed
using smartphone cameras.

The thesis has been written for people with at least some training in physics and
mathematics, either through studying physics, or having learned physics some other
way, e.g. through engineering studies. More specifically, it is presumed that the
reader has some background knowledge of mathematics and the electromagnetic
spectrum of light. Other than that, it is hoped that the following chapter will
provide the reader with enough background information to be able to follow the
reasoning presented in the later chapters.

Several methods were tested over the course of this project. Some of the meth-
ods were only tested briefly and qualitatively because it was found that the methods
would not likely lead to a practical measurement of bilirubin in a low-resource set-
ting. These methods, the way they were tested, and the reasoning behind their
abandonment, have still been included in the thesis. This has been done so that
others wanting to develop a smartphone-based diagnostic tool for jaundice won’t
have to waste their time doing research that has already been done. Including
these methods can also be useful in the case where the reader finds a flaw in the
reasoning behind a methods abandonment. This could lead the reader to attempt
to develop the method in spite of the recommendations of this thesis. Either way,
including these methods could potentially be useful to the reader.
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Chapter 2
Theory

The goal of this thesis was to find a way of measuring the bilirubin concentration
in skin by using smartphone cameras. It is therefore useful to have knowledge of
skin optics and the image creation process of modern digital cameras. This chapter
serves as the background information needed to follow the reasoning presented later
in the thesis, while it also includes the theoretical foundation for the numerical skin
simulations and color calibrations performed during the thesis work. The following
section introducing skin optics summarizes chapter two of the doctoral dissertation
of Randeberg[7]. It also adds information regarding melanin and bilirubin specific
to this thesis, and includes an updated value for background tissue scattering found
by Bashkatov[8].

2.1 Optical properties of human skin
Skin is the human organisms barrier to the environment. It is a structure composed
of different layers. The top layer, called the epidermis, is typically 100 micrometers
thick and contains among other things the pigment melanin, which is the pigment
responsible for the different skin colors of the world. Below the epidermis lies
the dermis, which has a typical thickness of 1-4mm. In the dermis, blood vessels,
connective tissue, sweat glands, hair follicles and sensory nerve systems are found.
The subcutaneous fatty layer lies below the dermis, and provides insulation and
protection from mechanical stress. Figure 2.1 illustrates the different skin layers
along with other components found in the skin.

3



2.1 Optical properties of human skin Chapter 2. Theory

Figure 2.1: An illustration of human skin, including the skin layers and other
components found in the skin. Figure taken from a web site discussing skin burns[9],
distributing the figure as public domain.

Light hitting biological tissue, such as skin, is either scattered or absorbed. The
intensity of light able to penetrate into the tissue is given by Beer-Lamberts law,

I(x) = I(0)e−µtrx (2.1)

where I(0) is the incident light intensity, x is the distance traveled in the tissue and
µtr is the transport coefficient, or the total attenuation coefficient. The transport
coefficient can be written as the sum of the reduced scattering coefficient, µ′s, and
the absorption coefficient, µa.

The scattering coefficient, µs describes the amount of light that is scattered by
the tissue. Some of this light is scattered in a forward direction, not decreasing the
penetrating lights intensity. The reduced scattering coefficient incorporates this by
being expressed as µ′s = µs(1−g), where g represents the amount of light scattered
in a forward direction. g is called the anisotropy factor, and is calculated as the
average of the cosine of the scattering angle distribution,

g = cos(θ). (2.2)

In skin, the anisotropy factor is approximately equal to 0.8, indicating highly for-
ward directed scattering.

Skin contains several different molecules responsible for the absorption and
scattering of incident light. The properties of these molecules and the surrounding
tissue are presented in the following sections.

4



Chapter 2. Theory 2.1 Optical properties of human skin

2.1.1 Melanin
Skin, as just mentioned, contains many absorbing and scattering molecules. The
main absorber in the epidermis is melanin[10]. Skin types based on varying amounts
of the pigment melanin can be classified by the Fitzpatrick skin type scale I-VI[11].
On this scale, type I refers to very fair skin that sunburns and does not tan, while
type VI is at the opposite end of the scale, referring to very dark skin.

Melanin absorbs light of wavelengths ranging from ultraviolet to near-infrared.
The wavelength dependence of the absorption is reported as λ−3.46[12]. The ab-
sorption of melanin across the whole spectrum can therefore be defined by the
absorption at a single wavelength. Absorption is often measured at 694nm, and
absorption values in adults have been found to vary from 300 m−1 for fair Caucasian
skin to 2500 m−1 for dark African skin[13]. Newborn skin is reported to have lower
concentrations of melanin than adult skin[14]. In this thesis it is therefore assumed
that the melanin absorption of newborn skin at 694nm does not exceed 2000 m−1,
although exact numbers have not been found in the literature.

2.1.2 Blood
The main absorbers in blood are oxygenated and deoxygenated hemoglobin. Methe-
moglobin can also be formed if hemoglobin is exposed to oxidative stress, but is
generally found in low concentrations. Exceptions are e.g. drug use which can
lead to methemoglobinemia[15]. The absorption spectra of hemoglobin, deoxyhe-
moglobin and methemoglobin can be seen in Figure 2.2. The spectra of hemoglobin
and deoxyhemoglobin can be seen intersecting at several points. Such points are
called isosbestic points. Measuring hemoglobin concentrations is often done at isos-
bestic wavelengths because the total measured concentration will not depend on
the oxygenation level of the blood[16].

5
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Figure 2.2: Extinction coefficients for hemoglobin, methemoglobin and bilirubin.
Figure taken from Randeberg[7].

2.1.3 Bilirubin
Bilirubin is the breakdown product of heme catabolism[17]. Heme is found in
hemoglobin and myoglobin. Bilirubin causes skin to turn yellow if it is allowed to
accumulate in the dermis, due to its high absorption of the shorter wavelengths of
the visible spectrum(see Figure 2.2). This is also the reason for the yellow color seen
in old bruises[18], as macrophages are recruited to the area of the bruise where it
phagocytizes erythrocytes and hemoglobin molecules, catabolizing the hemoglobin
to bilirubin[19].

The yellow color from bilirubin can also be seen across the whole body, and is
then caused by either a high turnover rate of hemoglobin, or liver failure, or both.
Newborns acquire jaundice due to a high turnover rate of hemoglobin after birth.
An elevated concentration of bilirubin in combination with a not fully developed
blood-brain barrier can lead to permanent brain damage or death[20]. For this
reason, 5-10% of all newborn receive either phototherapy, or in extreme cases blood
transfusion to rid the body of the excess bilirubin[17].

Bilirubin in blood is bound to albumin. In this form, the combined molecules
are too big to pass the blood vessels. When bilirubin concentrations exceed 400-500
micromolar, there is not enough albumin to bind all the bilirubin molecules[20]. The
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Chapter 2. Theory 2.1 Optical properties of human skin

free bilirubin can then diffuse through the blood vessels and into the surrounding
tissue. The skin concentration of bilirubin is therefore markedly lower than the
the blood serum concentration. Good correlation has been found between the skin
concentration of bilirubin measured by transcutaneous bilirubinometers and the
total blood serum concentration[21]. This makes it possible to estimate the blood
serum concentration through transcutaneous bilirubin measurements.

Transcutaneous bilirubinometers measure the bilirubin concentration by shin-
ing light of certain wavelengths and wavelength ranges into the skin. The reflected
light of each wavelength is measured and used to calculate the concentration. Full
reflection spectroscopy of newborn can similarly be used to measure bilirubin con-
centration. In addition, the reflected spectrum allows the calculation of several
other parameters such as melanin concentration and the gestational age of the
newborn. For details of how such measurements are performed, the patent of a
transcutaneous bilirubinometer[22] and a paper by Randeberg et al.[23] are recom-
mended.

2.1.4 Other absorbers
Carotenoids are organic pigments found in plants. These pigments cannot be pro-
duced by animals, so they are obtained through diets. They all absorb light in the
wavelength range 400-550nm. A common carotenoid abundant in carrots, betac-
arotene, has a double peak in its absorption spectrum at 450 and 480nm, giving it a
yellow/orange color. This color, which is similar to the color of bilirubin could po-
tentially be an error source in bilirubin measurements. But the skin concentration
of all carotenoids is generally too low to have an impact[7, p. 10].

Water should also be mentioned because it is found in abundance in skin. But
water has low absorption in the visible spectrum, with a minimum at 418nm and
increasing absorption for wavelengths above 600nm[24]. The water content of skin
is therefore not explicitly accounted for in this thesis.

2.1.5 Background tissue
Large molecules such as collagen fibers are a major source of scattering in the
dermis. These molecules and changes in refraction index between them and the
surrounding tissues are responsible for the fact that scattering is the dominating
process in this tissue. The epidermis has similar scattering properties, but absorp-
tion due to melanin can in some cases be the dominating process in this layer.
Bashkatov[8] showed that the reduced scattering coefficient of skin in the wave-
length range of 400 to 2000nm can be expressed as

µ′s = 73.7λ−0.22 + 1.1 · 1012λ−4. (2.3)

Background tissue absorption is absorption caused by other molecules than the
ones mentioned in the above sections. This value is set to µn = 25 m−1[25] for both
the epidermis and the dermis. This value is similar to what is found in ocular(eye)
tissue.

7



2.2 Optical diffusion Chapter 2. Theory

2.2 Optical diffusion
The mathematical model used for numerical simulations in this project is based on
optical diffusion theory. Optical diffusion theory can be applied when scattering
dominates over absorption[26]. This theory has limited validity in thin layers, and
finding appropriate boundary conditions is problematic. Optical diffusion theory
does not apply to air, but Haskell et al.[27] discovered boundary conditions that
can be used for interfaces such as those between air and tissue, giving good results
of simulations of diffuse skin reflectance[25]. Monte Carlo methods are known to
be more accurate for the type of skin simulations performed in this thesis, but
they are also much more computationally expensive[28] and have thus not been
performed.

For the simulations performed in this project, the skin is modeled as consisting
of three flat layers. The top layer represents the epidermis. To account for the
papillary structure between the dermis and epidermis, as seen in Figure 2.1, blood
is included in the epidermis. The epidermis therefore contains both blood and
melanin in the model. The middle layer represents the top part of the dermis,
and the bottom layer is a layer extending infinitely downwards. All molecules are
modeled as uniformly distributed within each layer. The total transport coefficients
of each layer can thus be calculated based on the background tissue scattering and
absorption described in section 2.1.5, and the concentrations of the different light
absorbing molecules. These transport coefficients can then be used in the diffusion
model of skin developed by Svaasand et al.[25]. A summary of which will be
presented below.

Svaasand et al.[25] starts by assuming an almost isotropic light distribution and
by expressing the radiance L by a series expansion,

L = φ

4π + 3
4π j · l + ... (2.4)

where φ and j are the fluence rate and the diffuse photon flux vector respectively.
l is the direction of the deviation from isotropy in the light distribution. The
irradiance on a surface normal to the flux then becomes

E = φ

4 ±
j

2 . (2.5)

where the sign is plus for surfaces against the flux and minus for surfaces along.
The diffuse photon flux vector is given by,

j = −D∇φ (2.6)

with the diffusion constant,
D = 1

3µtr
. (2.7)

The continuity equation can then be expressed as,

∇ · j = −µaφ+ q (2.8)

8



Chapter 2. Theory 2.2 Optical diffusion

where q is the source density of diffuse photons. The combination of equations 2.6
and 2.8 yields,

∇2φ− φ

δ2 = − q

D
(2.9)

where δ =
√

1/3µtrµa is the optical penetration depth.
The boundary conditions between two scattering media is then expressed by

the continuity of irradiance in the forward and backward directions,

φ1

4 ±
j1

2 = φ2

4 ±
j2

2 . (2.10)

Haskell et al. found a very useful boundary condition at the skin-air interface
by relating the reflected part of the irradiation at the inside of the interface to the
irradiation propagating back into the skin[27]

Reff (φ4 + j

2) = φ

4 −
j

2 (2.11)

where Reff is the effective reflection coefficient. The value of Reff can be found
by integrating the Fresnel reflection coefficient for unpolarized light over all angles
of incidence.

For an isotropic light distribution, the source density functions of Equation
2.9 are expressed as functions of the light intensity, P0, transmitted through the
skin-air interface as

q1 = P0µ
′
s,1e
−µtr,1x

q2 = P0µ
′
s,2e
−µtr,1d1e−µtr,2(x−d1)

q3 = P0µ
′
s,3e
−µtr,1d1e−µtr,2d2e−µtr,3(x−d1−d2)

(2.12)

where the indices 1,2 and 3 represents each layer, d represents the thickness of a
layer, and x the distance from the skin surface.

The solutions to equation 2.9 using these source equations can then be written

φ1 =
P0δ

2
1µ
′
s,1

D1(1− µ2
tr,1δ

2
1)e
−µtr,1x +A1e

− x
δ1 +A2e

x
δ1

φ2 =
P0δ

2
2µ
′
s,2

D2(1− µ2
tr,2δ

2
2)e
−µtr,1d1e−µtr,2(x−d1) +A3e

− x
δ2 +A4e

x
δ2

φ3 =
P0δ

2
3µ
′
s,3

D3(1− µ2
tr,3δ

2
3)e
−µtr,1d1e−µtr,2d2e−µtr,3(x−d1−d2) +A5e

− x
δ3

(2.13)

The values of the constants A1 −A5 can then be found by applying the boundary
conditions of equation 2.10 and 2.11. After this, the diffuse reflection coefficient
can be calculated by

γ = j|x=0

P0
. (2.14)

For the complete expression for γ, the reader is referred to the appendix of
Svaasand et al.[25].
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2.3 Color spaces
The eye has three types of cone cells which are sensitive to light of varying wave-
lengths. These cone cells provide the sensory input needed for color perception.
One type of cone cells primarily absorbs light of shorter, blue, wavelengths, and
the other two absorb mainly green and mainly red, respectively. Although there is
significant overlap between the sensitivity spectra of the cells. Three parameters
corresponding to the stimulus values provided by the cone cells can therefore be
used to describe any perceivable color.

2.3.1 XYZ
The CIE XYZ color space is one such tristimulus color space representation. It was
created by the International Commission on Illumination(CIE) in 1931[29]. The
X, Y and Z values are calculated by the following integrals

X =
∫ 780

380
I(λ)x̄(λ)dλ

Y =
∫ 780

380
I(λ)ȳ(λ)dλ

Z =
∫ 780

380
I(λ)z̄(λ)dλ

(2.15)

where I(λ) is the spectral distribution of the light, and x̄, ȳ and z̄ are color matching
functions. For light reflected off a surface, the spectral distribution can be expressed
as

I(λ) = P (λ)R(λ) (2.16)

where P (λ) is the spectral distribution of the light source, and R(λ) is the reflection
coefficient of the surface.

The color matching functions x̄, ȳ and z̄ have been constructed to be similar
to the sensitivities of the cone cells in the eye. Since cone cells are not distributed
equally within the eye, the CIE uses the response of the cone cells located in the
center 2 degrees of the field of vision when creating the color matching functions.
These color matching functions are therefore called the CIE 2o standard observer,
and can be downloaded from the CIE websites[30]. Other standard observers have
been created similarly, such as the CIE 10o standard observer, with similar color
matching functions, x̄10, ȳ10 and z̄10.

The color matching function ȳ was designed to match the perceived brightness or
luminance of a color. This could be done because humans perceive the brightness
or luminance of a color by mostly using the intensity of the green light in the
spectrum. By slightly deviating from the measured spectral sensitivity of the cone
cells sensitive to the center wavelengths, ȳ could be designed to match this perceived
brightness. This means that the Y value of the XYZ color space is used as a measure
of how bright a color is. By normalizing the XYZ values, a color can be represented
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by two chromaticity coordinates and a separate brightness or luminance value. If
the XYZ values are normalized as

x = X

X + Y + Z

y = Y

X + Y + Z

z = Z

X + Y + Z
= 1− x− y

(2.17)

the colors can be fully represented by the x and y chromaticity coordinates and
the Y luminance coordinate. This is called the xyY color space.

2.3.2 sRGB
Another useful color space is the sRGB color space. sRGB has become the in-
dustry standard color space for LCDs, digital cameras, printers, scanners, and of
course smartphones. It is therefore important to be able to convert sRGB colors
to XYZ and xyY and vice versa if analysis using these color spaces are of interest.
Conversion from XYZ to sRGB is done by first finding linear RGB values.RlinearGlinear

Blinear

 =

 3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

XY
Z

 (2.18)

These linear RGB values can then be converted to sRGB values by

Csrgb =
{

12.92Clinear, Clinear ≤ 0.0031308
1.055C

1
2.4
linear − 0.055, Clinear > 0.0031308

(2.19)

where C is replaced by R, G, or B. These values for RGB will be in the range 0 to
1 if the XYZ values are similarly normalized. If values from 0 to 255 are needed,
as is common for displays or image values, the usual technique is to multiply by
255 and round to an integer.

The reverse transformation is performed by first calculating the linear RGB
values

Clinear =
{
Csrgb
12.92 , Csrgb ≤ 0.04045
(Csrgb+0.055

1.055 )2.4, Csrgb > 0.04045
(2.20)

and then calculating the matrix productXY
Z

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9502

RlinearGlinear
Blinear

 . (2.21)
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2.3.3 CMYK
The CMYK color space is another color space worth mentioning. The primary
colors of this color space is cyan, magenta and yellow. Hence the CMY. The K
stands for key, and represents black. This convention is useful in printers because
black ink can then be used directly in print to darken the image. Something that
can be both hard and expensive to do using the ink of the three other colors.

2.4 Image creation in smartphone cameras
Almost all smartphone cameras today include a CMOS sensor. CMOS is an abbre-
viation for Complimentary Metal-Oxide Semiconductor. These sensors have arrays
of photodiodes that generate current when photons are absorbed. The efficiency
with which the photodiodes generate current depends on the wavelength and is
called the quantum efficiency. A typical quantum efficiency of a CMOS sensor can
be seen as the black line in Figure 2.3.

Figure 2.3: Figure showing the quantum efficiency of the CMOS sensor(black
line), the transmission of the cameras infrared filter(light blue line), and the trans-
mission of the red, green and blue wavelengths through a Bayer color filter array.
Figure taken from ir-photo.net[31], which distributed it under a Creative Commons
license[32].

On top of the CMOS sensor is a color filter array. A single cell in a color
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filter array covers a single photodiode and transmits only wavelengths of a certain
color to this diode. A commonly used filter of this type is the Bayer filter array.
The Bayer filter array contains 50% green, 25% red and 25% blue filters. This is
to resemble the human eye’s increased sensitivity to the intensity of green light.
The filters are placed in a specific pattern as can be seen in Figure 2.4, and their
transmission frequencies can be seen in Figure 2.3.

This type of filter arrangement creates in effect three different images, one red,
one green and one blue. All three of these images are collectively called a raw format
image. High end digital cameras have the option to output images in this format.
Cheaper cameras, including smartphone cameras, do not have this option. In these
cameras the three original images are combined using a demosaicing algorithm,
interpolating the missing red, green or blue pixel values from the surrounding
pixels. This process can be done by both hardware and software, and the specific
algorithms used differs for the different cameras. The result of this process in
smartphones is a JPEG image with RGB values for each pixel in the sRGB color
space.

Figure 2.4: Illustration of the positions of the red, green and blue color filters in
a Bayer filter array.

White balance adjustments of the image are also performed in addition to the
demosaicing algorithm. These color adjustments are performed to attempt to recre-
ate the colors of the scene more accurately. The process is called white balance
because photographers often use images of known white or gray objects as refer-
ences when performing these adjustments. The images need such color adjustments
because the light source illuminating the scene will create different color responses
in the camera depending on the light source used. Cameras therefore often come
preset with white balance settings such as daylight, cloudy, incandescent and flu-
orescent to accommodate for common light sources. The cameras also have an
auto white balance setting which adjusts the colors of the images automatically
depending on the distribution of colors in the image.

The white balance mode can be set using the smartphone camera app on almost
all smartphones. Other settings, such as the shutter speed, which is the amount
of time the camera allows light to reach the sensor, can only be set on a few
smartphones. This lack of control over camera settings could pose a challenge
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because small changes in e.g. the light intensity of a scene could potentially alter
the image substantially.

2.5 Color calibration
White balance adjustments can create images that look good, but that does not
mean that colors are reproduced accurately. To achieve good color reproduction,
images of objects with known colors can be captured. The colors of the captured
images can then be adjusted according to the known colors of this color target.
A common target used in photography settings is the Macbeth ColorChecker[33].
The ColorChecker contains 24 squares of different colors. The upper half contains
colors often found in nature, while the bottom half contains a gray scale and colors
close to the primary colors of the RGB and CMY color spaces. An image of the
ColorChecker used in this project can be seen in Figure 2.5.

Two different calibration methods were tested in this project. Both of which
are presented in the following sections.

Figure 2.5: Image of the Macbeth ColorChecker used in this project. This image
was taken using an HTC One V with the fluorescent white balance setting. The
light source was a combination of fluorescent light bulbs and daylight.

2.5.1 General Polynomial Transform
Ilie et al.[34] tested three different methods for the color calibration of images.
The first was a linear least squares matching, the second was a linear RGB to
RGB matrix transformation, and the third was a general polynomial transform.
Of these, the general polynomial transform was found to be the most accurate
because it was the only method that could account for both linear and non-linear
error sources. It was therefore chosen to be implemented in this thesis.

The equation for the general polynomial transform for color channel c ∈ {r, g, b}
of sample color s is

D∑
k=1

(trckIrks + tgckIg
k
s + tbckIb

k
s) + tc0 ' Tcs (2.22)
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where D is the degree of the polynomial approximation. Irks , Igks and Ibks are the
red, green and blue sample color values of the captured image raised to the power
of k, while Tcs is the true value of the target color sample s. txck is the polynomial
coefficient of kth order, specifying the influence of the input color channel x ∈
{r, g, b} on the output color channel c. For D = 2 with 24 color samples, such as
when using the ColorChecker, equation 2.22 can be written in matrix form as


Ir1 Ir2

1 Ig1 Ig2
1 Ib1 Ib2

1 1
Ir2 Ir2

2 Ig2 Ig2
2 Ib2 Ib2

2 1
... ... ... ... ... ... ...
Ir24 Ir2

24 Ig24 Ig2
24 Ib24 Ib2

24 1

×


trc1

trc2

tgc1

tgc2

tbc1

tbc2

tc0


' ~Tcs (2.23)

This equation can be solved for the polynomial coefficients, ~tck , by calculating
the pseudo-inverse of the matrix, B, containing the input sample color values. The
equation to be solved is therefore

B × ~tck ' ~Tcs ↔ ~tck ' Pinv(B)× ~Tcs (2.24)

resulting in a vector ~tck that can be used to convert any input color from the input
color space to the calibrated color space. The equations outlined here assumed
usage of an RGB color space, but the method can be used for any three-dimensional
vector space, including the XYZ color space.

2.5.2 Thin-Plate Spline Interpolation
Menesatti et al.[35] compared a commonly used commercial color profiling tool
called ProfileMaker to a novel calibration procedure using thin-plate spline in-
terpolation. The thin-plate spline method was found to give significantly better
calibration results than the commercial profiling tool.

The thin-plate spline interpolation method is named after the physical analogy
of bending thin metal plates to fit to certain fixed coordinates[36]. It is used in the
field of medical imaging, as a means of transforming and analyzing images from
e.g. magnetic resonance imaging(MRI) scans[37]. In three dimensions the method
works by finding a function f(x1, x2, x3) that minimizes

1
n

n∑
i=1

(yi − f(x1(i), x2(i), x3(i)))2 + λJ(f) (2.25)

where n is the number of known reference sample points, yi is a value at such a
sample point, x1(i), x2(i) and x3(i) are the input coordinate values of sample i,
and λ is a smoothing parameter determining the effect the penalty function J(f)
will have on the final interpolation. J(f) represents the bending energy of the thin
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plates. In three dimensions this function is given by[38, p. 89]

J(f) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(∂
2f

∂x2
1

)2 + (∂
2f

∂x2
2

)2 + (∂
2f

∂x2
3

)2+

2[( ∂2f

∂x1x2
)2 + ( ∂2f

∂x1x3
)2 + ( ∂2f

∂x2x3
)2]dxdydz.

(2.26)

Duchon[39] showed that the interpolation function f minimizing 2.25 is of the
form

f(x) = a1 + a2x1 + a3x2 + a4x3 +
n∑
i=1

biU(|x− x(i)|) (2.27)

where U(r) = r2 log(r2).
By defining a matrix K with elements Kij = U(|x(i) − x(j)|) and a matrix

M = K+nλI, where I is the identity matrix, Wahba[40] shows that the equations
above can be written as

Mb + Ta = y
T ′b = 0

(2.28)

where a and b are vectors containing the coefficients in equation 2.27, y is a vector
with values of the n reference samples, and T is a matrix of the form

T =


1 x1(1) x2(1) x3(1)
1 x1(2) x2(2) x3(2)
... ... ... ...
1 x1(n) x2(n) x3(n)

 (2.29)

Equation 2.28 can thus be expressed in matrix form as[
M T
T ′ O(4, 4)

]
×
[
b
a

]
=
[

y
O(4, 1)

]
(2.30)

where O(r, c) is a zero matrix. The values for the coefficients in vectors a and b are

then calculated by inversing the matrix
[
M T
T ′ O(4, 4)

]
. To include the calibration

of all three dimensions in the above equation, vectors a, b and y can be extended
to matrices with three columns of the form

[
a1 a2 a3

]
.

For a more rigorous mathematical development of the above relations, the reader
is referred to chapter 2.4 of the book by Wahba[40].
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Chapter 3
Materials and Methods

A Samsung Galaxy S3(GT-I9300, Samsung, South-Korea) and an HTC One V(One
V, HTC, Taiwan) were used for this project. Compared to other smartphones, the
S3 has a high quality camera[41], while the One V has a decent camera[42]. Both
cameras were bought used. The S3 was bought through a private person and the
One V was bought through Green Phone Security AS, a company that specializes
in reselling used mobile phones.

Several methods were tested using these two phones. They were tested on my
own skin which is of a light color, type II on the Fitzpatrick skin type scale. For
control purposes, numerical skin simulations and measurements of my skin with
bruises and carrot juice were performed. The methods tested and the controls used
are described in the following sections.

3.1 Controls
In order to test whether the different measurement methods could separate regular
skin from skin with higher bilirubin concentrations, skin with higher bilirubin con-
centrations was needed. Testing on newborn babies with corresponding bilirubin
blood serum measurements was the obvious choice, but acquiring ethical approval
of such tests take a long time. In addition, the description of the measurements
in the application for ethics approval need to be very detailed, leaving little room
for adjustments of the methods. In a beginning research stage, it would therefore
be useful to perform coarse tests of the methods before developing more refined
protocols.

3.1.1 Carrot juice and bruises
There exists a couple of methods to either simulate increased bilirubin concentra-
tion in the skin or to obtain an actual higher skin bilirubin concentration. One of
these methods is to perform measurements on bruised skin. The yellow color seen
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in or around bruises is, as mentioned in section 2.1.3, caused by increased bilirubin
concentration. Measurements on both yellow bruised skin and skin in close prox-
imity to the bruise, but with no distinct yellow color, have been performed. This
gives a qualitative result of whether the measurement method can separate skin
with low bilirubin concentration from skin with higher concentrations.

Carrot juice can also be applied to the skin in order to simulate an increased
bilirubin concentration. A comparison of the absorption spectrum of bilirubin and
an attenuation spectrum of carrot juice applied to my arm can be seen in Figure
3.1. The shape of the spectra are quite similar, but the spectrum of carrot juice
is shifted approximately 50 nanometers to the right of that of bilirubin. This is
not ideal, but in lack of better alternatives, such as bruises, carrot juice was used
instead. The carrot juice was applied by pouring it onto the skin generously. It
was then allowed to dry in the air before measurements were performed.

The carrot juice(organic carrot juice, Biotta AG, Switzerland) attenuation spec-
trum seen in Figure 3.1 was created using reflection spectra measured by a re-
flectance integrating sphere(ISP-REF, Ocean Optics, Netherlands) connected to
an SD2000 spectrometer(SD2000, Ocean Optics, Netherlands) with the Spectra-
Suite(SpectraSuite, Ocean Optics, Holland) computer application. A 10 millisec-
ond integration time was used along with smoothing by using the average of ten
spectra as the resulting spectrum. First, the reflection spectrum of the skin of my
forearm was measured by placing the integrating sphere on my forearm with light
pressure. Then the carrot juice was applied to the same area of my forearm. After
the carrot juice had dried, a second reflection spectrum was measured at the same
spot as the first one, with similar light pressure. The attenuation spectrum of the
carrot juice is therefore the reflection spectrum of my forearm with carrot juice
subtracted from the reflection spectrum of my forearm without the carrot juice.
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Figure 3.1: The attenuation spectrum of carrot juice applied to my arm is shown
in red. The absorption spectrum of bilirubin is shown in blue. The attenuation
spectrum of carrot juice has been scaled to approximately the same level as biliru-
bin for easier comparison. Bilirubin absorption data was taken from the Oregon
Medical Laser Center[43].

3.1.2 Numerical simulation of skin
The use of carrot juice and bruises allowed for a coarse test of whether the different
measurement methods would work or not. But quantitative results were also needed
to test the accuracy of the promising methods. Therefore, numerical simulations of
skin were performed. This allowed for the creation of both reflection spectra and
simulated colors of skin with varying concentrations of e.g. bilirubin and melanin.

Simulations were performed using the three-layer diffusion model described in
section 2.2. Wavelengths were sampled at 5nm intervals. The matlab scripts used
are given in appendix A.2. The resulting simulated reflection spectra were then
combined with a light source spectrum similar to one used during measurements,
i.e. CIE standard illuminant D50 for daylight[44, p. 93], through equation 2.16
and converted to a color using equation 2.15.

Unless otherwise specified, the simulations were performed with a blood oxy-
genation level of the top and second layers of 0.5 and 0.8 respectively. The blood
volume fractions of the top and second layer were set to 1%. The thickness of
the top layer was set to 100 microns, while the thickness of the second layer was
set to 250 microns. The water, fat, betacarotene and methemoglobin levels were
set to zero. The scattering coefficient was calculated with values as described in
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equation 2.3. Melanin concentrations were varied from an absorption at 694nm of
250 m−1 to 2000 m−1. Bilirubin concentrations were varied from 0 micromolar to
200 micromolar.

3.2 Methods
3.2.1 Foldable spectrometer
Spectroscopy of newborn jaundiced skin allows for the calculation of the biliru-
bin concentration as well as other skin properties, as mentioned in section 2.1.3.
It would therefore be useful to transform the camera of the smartphones into
spectrometers. Two foldable spectrometers(Foldable Mini-Spectrometer, Public
Lab, USA) designed specifically to be attached to cameras were ordered through
publiclab[45]. This type of spectrometer was chosen since it is both cheap(10 USD)
and easy to assemble[46] while using common materials such as cardboard and cd-
roms. These two properties will in theory make it easier to replace and repair
broken equipment in low-resource settings.

The slit opening of the spectrometers were measured to be 0.7± 0.1 mm. The
slit opening of one of the spectrometers was increased to 2± 0.5 mm using scissors.
It was not possible to cut perfectly straight, hence the increased error in the slit
opening size. The foldable spectrometers were attached to the phones using scotch
tape. Measurements were performed by setting the white balance mode of the
camera to something other than auto to prevent the smartphones automatic color
adjustments. Then the spectrometer was pointed at the object of interest before
an image was taken in a regular way using the built-in camera app of the phone.
An image of the setup along with a resulting image using the spectrometer can be
seen in Figure 3.2.
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(a) (b)

Figure 3.2: (a) Image showing one of the foldable spectrometers attached to
the Samsung Galaxy S3. (b) Image taken while pointing the spectrometer at a
fluorescent light bulb.

The image taken by the smartphone camera with the foldable spectrometer at-
tached, such as the image in Figure 3.2b, was converted to a spectrum by summing
the pixel color values either horizontally or vertically depending on the orientation
of the image. Matlab scripts able to do this were found free online[47]. But since
not all images captured using the spectrometers resulted in colored lines that were
parallel to the horizontal or vertical axis, as in Figure 3.2b, the images were ro-
tated before a spectrum was created. This was done using the image manipulation
software GIMP(GNU Image Manipulation Program, GNU).

Color images contain red, green and blue channels. A spectrum can be created
for each channel, but the sum of the values of all three channels can also create a
spectrum. By plotting the spectrum of each color channel, the separation of noise
from spectral data became an easier task. An example of this can be seen in Figure
4.1, where there is contribution to the spectrum from the blue and green channels
at wavelengths above 600 nanometers, and also contribution to the spectrum from
the red channel at wavelengths below 450 nanometers.

Wavelength calibration of the spectrometers was done by measuring the spec-
trum of a fluorescent light bulb using the spectrometers. Fluorescent light bulbs
contain mercury which produce several characteristic peaks in the resulting light
spectrum. These peaks can be seen as labeled peaks 1, 2, 5 and 7 in Figure 3.3.
The foldable spectrometers do not provide the high resolution needed to be able
to discern the minor peaks 1 and 7 in the resulting spectra. Therefore, only peaks
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2 and 5 were used for calibration. Using only two peaks limits the calibration to
be a linear function of the pixel positions in the image. It is likely that this lim-
its the wavelength calibration to be accurate only around these two peaks, which
have wavelengths of 435.8 nm and 546.1 nm. The script found in appendix A.1
was used for the calibration. This calibration procedure had to be done each time
the spectrometers were attached to the phones, since a slight misplacement of the
spectrometer could lead to a relatively large positional and rotational change in
the resulting image.

Figure 3.3: A typical spectrum of a fluorescent light bulb with labeled peaks.
Peaks 1, 2, 5 and 7 are due to the mercury found in all fluorescent light bulbs. This
figure was taken from Wikimedia Commons[48] and slightly modified by adding the
wavelengths of the mercury peaks to the peak labels.

The spectra measured by pointing the spectrometers at objects other than the
light source are reflection spectra. To convert these spectra to attenuation spectra,
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the reflection spectrum of a white object, such as a white sheet of paper, was
measured. The reflection spectrum of e.g. skin was then subtracted from this
white reference spectrum to obtain the attenuation spectrum of the skin. A similar
approach was used to measure the attenuation due solely to carrot juice. The only
difference was the use of the reflection spectrum of skin without carrot juice as the
reference white spectrum.

Measurements were attempted using both fluorescent and incandescent light
bulbs inside, and using direct sunlight as light source outside. The object measured
was the skin of my forearm with and without carrot juice.

3.2.2 Bandpass filters
An alternative to measuring all wavelengths is to measure only the wavelengths
needed to calculate the bilirubin concentration. This can be achieved using optical
bandpass filters. Two bandpass filters were bought from Thorlabs. The filters
have a central transmit wavelength of 450(FB450-40, Thorlabs Inc, USA) and
550(FB550-40, Thorlabs Inc, USA) nanometers, and a full width half maximum
of 40nm. These two central wavelengths were chosen because they are very close
to two isosbestic points of oxygenated and deoxygenated hemoglobin, which are
at 452 and 545nm[16]. In addition, bilirubin contributes to absorption around 450
nanometers, but the absorption is practically zero above 500nm(See Figure 3.1).
This means that a measurement can be done for the light absorption of blood
and skin using the bandpass filter with central wavelength at 550nm. Similarly,
the light absorption of blood, skin and bilirubin can be measured using the other
bandpass filter with a central wavelength at 450nm. The bilirubin concentration
can then theoretically be calculated by subtracting the effect of blood and skin
from the measurement at 450nm.

Measurements were done by holding the bandpass filter in front of the camera
lens while capturing images. The white balance mode of the camera was set to
something other than auto before the images were captured, similarly to how it
was done for the foldable spectrometers. Images using both bandpass filters were
captured for regular skin, for a skin bruise, and for skin with carrot juice applied.
The green and blue color values of the images were then analyzed to see whether
the bandpass filters could distinguish between regular skin and skin with increased
bilirubin concentration or carrot juice. The green color value was used for the
images captured with the 550nm filter, and the blue value was used with the 450nm
filter.

3.2.3 Linear relationship between color and bilirubin
A researcher in Thailand has had some success measuring the bilirubin concentra-
tion of Thai newborn using a digital camera[49]. Because the paper is written in
Thai, the method used is not entirely clear. But through the English summary and
by looking at the images in the article, a highly probable method can be deciphered.

In the paper, newborn were photographed with a strip of paper next to them
containing several squares colored in shades of gray ranging from black to white.

23



3.2 Methods Chapter 3. Materials and Methods

The images were then white-balance corrected in Photoshop using one of the gray
squares on the colored paper strip. In addition, the black part of the color strip
was set as RGB color value (0,0,0) in the images using the color level tool in Adobe
Photoshop. This was also done for the whitest part of the color strip, with the
color set to (255,255,255), and finally for one of the gray squares, which was set to
(128,128,128). After this, it seems that the images were converted to the CMYK
color space through the L*a*b* color space. The final value was then calculated as
the value of yellow minus magenta, or Y-M. This procedure was performed on 61
newborns, and a linear relationship between the value of Y-M and the total serum
bilirubin concentration was found.

As a reproduction of this method, two sheets of paper were printed. One
black with the RGB color of (0,0,0), and one gray with the color (128,128,128).
A standard paper sheet was used as the white (255,255,255) reference. Images
were then captured of my arm with and without carrot juice, and with the three
sheets of paper next to it. The images were then processed as described above
using GIMP instead of Photoshop, with the only exception that the images were
not transformed to the CMYK color space. The final result was instead calculated
as G-B in the RGB color space. This corresponds to the Y-M calculation in the
CMYK color space because Yellow, Y, corresponds to the mixture of red and
green in RGB, while Magenta, M corresponds to the mixture of blue and red. The
resulting calculation of Y-M in the CMYK color space therefore closely corresponds
to the calculation of G-B in the RGB color space.

3.2.4 True color analysis
An alternative to taking pictures and blood samples of newborn and finding color
correlations afterwards, is to attempt to predict the color of the newborns skin
with varying levels of bilirubin. These predictions can then be compared to a
measurements performed using a camera. This requires good numerical simulations
to predict the skin colors, as well as cameras that are calibrated to reproduce the
true colors of the captured scene. High-end digital cameras are today calibrated
using images of e.g. a Macbeth ColorChecker in RAW format. Free tools are
available that can perform such a calibration, but no smartphones on the market
today support RAW file output. For this reason, a different calibration procedure
was needed.

To calibrate the smartphone cameras, pictures of a Macbeth ColorChecker
(MacBeth ColorChecker, Munsell Color, Baltimore, USA) were taken. Most of
these images were captured using diffuse daylight through a window as light source.
For these images, the colors given in a paper by Pascale [50] were used as the ref-
erence ColorChecker colors. Images were also captured using only the built-in
flashlight of the smartphones as the light source. For those images, the reference
ColorChecker colors were calculated from the reflection spectra of the ColorChecker
and the light spectrum of the flashlights. The reflection spectra of the ColorChecker
were gathered from the Munsell Color Science Laboratory website[51].

The pixel coordinates of the ColorChecker squares in the images were found
manually. The color of the squares were then calculated as the average of all
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the pixels in a square box centered on the squares pixel coordinate. The side
length of these square boxes were set to 21 pixels, making the color of one of the
ColorChecker squares the average of 441 pixels within that square. These colors
were then converted to the xyY color system as outlined in 2.3, as they could then
be compared with the reference ColorChecker values.

Before calibration was attempted, the standard deviation of the color repro-
duction of the cameras was measured. This was done by taking 10 pictures of the
ColorChecker from slightly different angles using diffuse daylight through a win-
dow as light source. Series of ten pictures were taken using both daylight and auto
white balance mode for both cameras. The colors of the squares were then found
and converted to xyY as described above. An estimate of the standard deviation
of the xy chromaticity was then found by averaging the standard deviation of the
x and y values of the 24 individual ColorChecker squares. The final standard de-
viation was then calculated as the vector sum of the x and y standard deviations,
∆xy =

√
∆x2 + ∆y2.

Two calibration procedures were developed. The first is a generalized polyno-
mial transform, which was reported as precise by researchers in the field of com-
puter vision[34]. The other method is an implementation of the Thin-Plate Spline
interpolation algorithm, which has been reported as a highly efficient calibration
technique[35]. The theory behind the techniques is described in section 2.5. Both
methods were developed to be used for three color channels, i.e. the RGB and XYZ
color spaces. The Thin-Plate Spline interpolation algorithm was later modified to
also work using only two color channels, so that it could be used for calibration of
xy chromaticity. The general polynomial transform was not modified in the similar
way because the Thin-Plate Spline method had proven to be superior.

The two methods efficiencies were tested using ordinary cross-validation. Ordi-
nary cross-validation works by leaving one test sample out when creating a predic-
tion model such as a general polynomial transform. The prediction model is then
used to predict the value of the test sample that was left out during the models
creation. The error of this prediction therefore becomes an estimate of the accu-
racy of the prediction model. This procedure is repeated leaving out a different
test sample each repetition until all test samples have been left out once. The pre-
diction errors of these repetitions are then averaged to give the estimate of the final
models prediction error. In the case where the test samples are the 24 colors of the
ColorChecker, 24 prediction models were created leaving one different color out for
each model. These 24 models were then used to predict the value of the color that
was left out during the creation of the model. The average of the errors of these
predictions were then used as an estimate of the error of the final prediction model
created using all 24 colors.

Ordinary cross-validation was also used to optimize the calibration methods.
For the general polynomial transform, the polynomial order could be changed to
test for example whether a higher order would yield a more precise calibration.
Finding the optimal order was quick and easy because increasing the order above
three more often than not decreased the quality of the calibration. Thus, finding
the optimum polynomial order involved running ordinary cross-validation for order
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one, two and three and finding the polynomial order with the smallest error. The
Thin-Plate Spline method on the other hand, needed fine-tuning of the smoothing
parameter λ which can be any number above or equal to zero(see equation 2.25).
An iterative procedure was developed that first tested a range of values of λ using
ordinary cross validation. After this, a new range of values were tested centered
on the value λ that showed the least error in the previous iteration. Using this
method, a highly accurate estimation of the optimal value of λ was found after
only 6 or 7 such iterations. The matlab scripts used for the color calibration can
be seen in appendix A.3, and the scripts for the iteration procedure can be found
in appendix A.3.2.1.

The calibration methods were tested on images taken using diffuse daylight
through a window as light source. Pictures of the ColorChecker were taken using all
the different white balance settings on the cameras to find the best option. At the
same time, pictures were taken of my bruised arm so that the calibration method
could be compared to a real case of increased bilirubin as well as simulations.
The colors of the pictures of my arm were then corrected using the calibrations
calculated from the images of the ColorChecker. Then the pixel coordinates of
two points on my arm were found manually. First, a point where there was a
clear yellow color from my bruise, and second, a point on my arm with no bruise
or other clearly visible pigments such as moles. The color of these two points
were then calculated as the average color of the colors inside a square with side
lengths of 21 pixels centered around the points. These colors were then converted
to xy chromaticities in order to compare them to numerical simulations and the
calibration quality.

Calibration was, as mentioned earlier, also performed on pictures of the Col-
orChecker captured using the built-in flashlight on the smartphones as the only
light source. This was done because the reference colors of the ColorChecker given
in the paper by Pascale[50] were calculated using D50 as light source. D50 is a good
daylight simulator, but it is highly likely that there is some deviation from the true
colors of the ColorChecker. To calculate the true colors of the ColorChecker using
the flashlights, their light spectra were measured using the SD2000 spectrometer
with the SpectraSuite computer application. A 10 millisecond integration time
was used along with smoothing by using the average of ten spectra as the resulting
spectrum. In addition, the color spectrum of the flashlight on an Iphone 5 was also
measured to see if there is a large variance in different smartphone flashlights. These
spectra could then be combined with the reflection spectra of the ColorChecker[51]
using equations 2.15 and 2.16 to get the true colors of the ColorChecker.

3.2.5 Camera lens pressed against skin
There are apps available on the app markets today that are able to measure the
pulse of a person by pressing the camera and built-in flashlight of the smartphones
against the skin of a finger[52]. This could possibly be used to measure bilirubin
concentrations as well. This technique has not been studied extensively during
this project, but a couple of pictures were taken while pressing the lens and flash-
light against the skin with a light pressure. Similarly to the foldable spectrometer

26



Chapter 3. Materials and Methods 3.2 Methods

method, the white balance of the cameras were set to a non-auto setting before
capturing the images.
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Chapter 4
Results

4.1 Foldable spectrometer
Neither of the two spectrometers could be used with incandescent light bulbs.
A spectrum was seen when the spectrometer was pointed directly at the bulbs,
but when measurements were attempted on objects illuminated by the bulbs, the
light sensitivity of the spectromteters proved inadequate. The same issue became
apparent with the spectrometer with the smallest slit opening when it was used
with fluorescent light bulbs. Only the major peaks in the fluorescent light spectrum
created a response in the captured image. The spectrometer with a larger slit
opening fared better using fluorescent light bulbs, but as can be seen in Figure
4.1, the reflection is practically zero where there are no major peaks. It was hoped
that the peaks of the light source spectrum would disappear when the attenuation
spectra of my arm were calculated. But this proved not to be the case, as can be
seen in Figure 4.2. The peaks of the fluorescent light bulb are still seen dominating
the spectrum.
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Figure 4.1: Reflection spectrum of a white sheet of paper using a fluorescent light
bulb as light source. This spectrum was measured using the foldable spectrometer
with the large slit opening. Keep in mind that the red, green, and blue lines
represents the RGB channels of the image.
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Figure 4.2: Attenuation spectrum of my arm with carrot juice using a fluores-
cent light bulb as light source. This spectrum was measured using the foldable
spectrometer with the large slit opening.

When using direct sunlight as light source, the spectrometer with the small
slit opening could be used to measure reflectance spectra. When possible, this
spectrometer is preferred because it yields a higher resolution than the one with the
larger slit opening. The measured attenuation spectrum of the carrot juice applied
to my arm can be seen in Figure 4.3. This attenuation spectrum was measured and
calculated in the same way as the attenuation spectrum of carrot juice in Figure
3.1. A peak between 450 and 510 nanometers can be seen in both spectra, but
keep in mind that the wavelength calibration of the foldable spectrometer is not
highly accurate. A negative value in these attenuation spectra indicate an increase
in reflection when the carrot juice was applied. A sharp peak of this kind can be
seen at 600nm for the measurement using the foldable spectrometer. This is not
seen for the spectrum in Figure 3.1, where a slight increase in reflection is seen
from 600 to 700 nanometers.
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Figure 4.3: Attenuation spectrum of carrot juice on my arm using direct sunlight
as light source. This spectrum was calculated in the same way as the attenuation
spectrum of carrot juice seen in Figure 3.1, and was measured using the foldable
spectrometer with the small slit opening.

4.2 Bandpass filters
The images captured using the HTC One V with the 550nm bandpass filters were
all saturated (value 255) for the green color channel. The images captured with the
450nm filter were not saturated, but are of no use when they can’t be compared to
the images using the 550nm filter.

The Samsung fared better, although high values of the green channel were
recorded using the 550nm filter for this camera as well. For the measurements of
my skin without any bruise or carrot juice, the green value using the 550nm filter
was 202, while the blue value using the 450nm filter was 201. For the measurements
of my skin bruise, the green value using the 550nm filter was 208, while the blue
value using the other filter was 192. For the measurements using carrot juice,
the green value was measured to be 192, and the blue value was 158. Both the
measurements of my skin with carrot juice and a bruise show a clear drop in value
from the measurement using the 550nm filter to the one using the 450nm filter.
This drop is not seen in the measurements of my regular skin.
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4.3 Linear relationship between color and biliru-
bin

A clear increase in the value of green minus blue was found for skin applied with
carrot juice compared to my regular skin. For the HTC, the value of green minus
blue increased from 2 to 28, and for the Samsung the value increased from 22 to 33.
This increase was backed by results from numerical simulations, which also showed
an increase in the value of green minus blue when the amount of bilirubin was
increased. The large difference between the results of the HTC and the Samsung is
probably due to the different color responses of the cameras since the measurements
were done using the same camera settings within a small time window of each other.

4.4 True color analysis
The standard deviation of the color reproduction of the HTC was estimated to be
0.0036 for the auto white balance setting in xy color coordinates. For the daylight
white balance setting, it was estimated to 0.0034. Both white balance settings
resulted in a standard deviation of 0.0016 using the Samsung. These standard
deviations are illustrated in Figure 4.4, where the standard deviation is seen as the
radius of the circles in the figure. The blue lines in the figure represent series of
simulations with increasing concentrations of bilirubin, from 0 micromolar at the
bottom left of the line to 200 micromolar at the top right. Each blue line to the
right of another is another series of simulations of increasing bilirubin, but for a
higher concentration of melanin. The absorption of melanin at 694nm is 250 m−1

for the leftmost line, and 2000 m−1 for the rightmost line.

32



Chapter 4. Results 4.4 True color analysis

Figure 4.4: The standard deviation of the cameras plotted with skin simulation
results. The radius of the circles are set to the respective cameras standard devi-
ation. The blue lines are skin simulations for increasing levels of bilirubin. Each
connected blue line represents a series of 20 simulations of increasing bilirubin for
a single pigmentation level. Simulated pigmentation levels are higher for the blue
lines farther to the right in the figure.

The size of the circles in Figure 4.4 can be compared to the length of the blue
lines as an indicator of whether the cameras color variance is low enough to be
able to separate skin with high concentrations of bilirubin from skin with lower
concentrations. This appears to be true for both cameras except for the HTC
when compared to simulations with very high melanin concentrations.

Before color calibration was performed on the images, the average error of the
measured colors of the ColorChecker was usually between 50 and 60, measured
as the vectorial color distance in RGB color space. Using the general polynomial
transform to color calibrate the images, this error was reduced to approximately 30.
The Thin-Plate Spline interpolation on the other hand, managed to decrease the
error to approximately 25. Using the Thin-Plate Spline interpolation on the images
in xy coordinates yields prediction errors of 0.0126 and 0.0275 for the HTC with
white balance set to auto and daylight respectively. For the Samsung the prediction
errors were 0.0157 and 0.0163 with the same white balance settings. These values
are plotted in Figure 4.5 similarly to the standard deviations plotted in Figure
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4.4. The reason for the large value of the calibration error of the HTC with white
balance set to daylight is not known. Prediction errors were also calculated for the
other white balance settings, but auto and daylight were the ones with the best
results for the images captured with diffuse daylight through a window as light
source.

Figure 4.5: The predicted error of the calibration plotted with skin simulation
results. The radius of the circles are set to the respective predicted calibration
error. The blue lines are skin simulations for increasing levels of bilirubin, as in
Figure 4.4.

The diameter of the circles in Figure 4.5 are of approximately the same length
as the length of the blue lines. This indicates that this calibration procedure is
not precise enough for bilirubin concentrations to be estimated from comparing a
color measurement to numerical simulations. A calibration improvement was seen
when the images taken using the flashlight of the phones as light source were used.
When the reference colors from the paper by Pascale[50] were used to calibrate the
images taken using the flashlights, the results were prediction errors of 0.015 and
0.023 for the HTC and Samsung respectively. Using the colors of the ColorChecker
calculated by combining the flashlight spectra and the reflection spectra of the
ColorChecker, calibration errors were reduced to 0.012 and 0.018. An improvement
of approximately 20%.
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The measured flashlight spectra can be seen in Figure 4.6. All spectra are very
similar and share the same characteristic shape. This makes it likely that most
smartphones use the same type of diodes in their flashlights, sharing a similar
spectrum.

Figure 4.6: Light intensity spectra of the flashlights of three different phones.

Color measurements of my skin with and without a bruise were also performed
using the same calibrations as were used for the prediction errors shown in Figure
4.5. These measurements can be seen in Figure 4.7. Each circle represents a single
color measurement. Red circles indicate a measurement done on skin with no
bruise. Green circles indicate measurements done on a bruise. The lines connecting
them indicate what camera and white balance setting was used. The blue lines
represent simulations as before. All the lines going from a measurement of my skin
to a measurement of my skin with a bruise point up to the right similarly to the
numerical simulations of increasing bilirubin concentrations.

The red circles are all measurements of the same skin. This is also true of the
green circles, which are measurements of the same skin bruise. In an ideal case,
all the red circles would be placed at the same coordinate and similar for all the
green circles. The calibration errors illustrated in Figure 4.5 are the reasons for
the spread of the measurements. In spite of this, two of the measurements can be
seen very close to each other. But this is most likely a mere coincidence.
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Figure 4.7: Color measurements of my skin plotted with skin simulation results.
Red circles indicate measurement of my skin with no bruise. Green circles indicate
measurements of my skin with yellow color from a bruise. Lines connecting them
indicate the camera and white balance setting used in the measurements. The blue
lines are skin simulations for increasing levels of bilirubin, as in Figure 4.4.

Numerical simulations, such as the ones seen in the above figures, were also
performed with the blood volume fractions of the two top skin layers of the model
set to 2%, instead of 1%. The results of these simulations can be seen in Figure 4.8
along with the results of simulations with 1% blood volume fraction. The series of
simulations with higher blood volume fraction is the series of red lines. The top
right value of the first red line is almost at the same coordinate as the bottom left
of the fourth blue line. The xy coordinate of this point is approximately (0.427,
0.388). This indicates that the chromaticity alone cannot be used to give a single
estimate of the bilirubin concentration. A measurement of the light intensity could
solve this issue. The light intensity, or Y coordinate in the xyY color space, of
the blue and red points at the coordinate mentioned above was 0.212 and 0.295
respectively. These light intensity values were normalized with the intensity of the
light source set to 1.
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Figure 4.8: Skin simulation results with varying blood volume fraction. The blue
lines are skin simulations for increasing levels of bilirubin with the blood volume
fraction set to 1%, as in Figure 4.4. The red lines are the same except for an
increased blood volume fraction to 2%.

4.5 Camera lens pressed against skin
The resulting image from pressing the camera lens and flashlight of the Samsung
smartphone to my finger showed a near saturation of red over the whole image. In
addition, a blue color gradient was seen with the highest blue value of 100 in the
part which was closest to the flashlight. The blue value dropped to 37 in the part
of the image farthest away from the flashlight. A similar gradient was seen for the
green channel, but much smaller, with a drop from 15 to 0. The HTC produced
an image with similar qualities, except that the value of the blue channel was zero
over the whole image, and the green color gradient ranged from 153 nearest to the
flashlight, to 2 on the opposite side of the image.
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Discussion

5.1 Foldable spectrometer
Obtaining a full reflectance spectrum of a newborn would be ideal when the mea-
surement of bilirubin concentration is attempted. The reflectance spectrum can, as
mentioned earlier, be used for more than bilirubin measurements[23], perhaps mak-
ing diagnosis of other diseases or disorders possible. But the foldable spectrometers
tested do not seem like a viable technology for such measurements. Even though
the measurements of the light attenuation of carrot juice in Figure 4.3 showed de-
cent overlap with the same measurements done with a proper spectrometer(Figure
3.1), the spectrometers have certain flaws that would limit their use in a practical
setting.

First of all, the results show that the spectrometers need very bright light in
order to function. This will in most settings limit the measurements to be done
outside in the sun. This makes the procedure tedious and less likely to be per-
formed. Second, the spectrometers need wavelength calibration each time they are
attached to the phone, which also contributes to making the measurements tedious.
In addition, the availability of fluorescent light bulbs, as was used for calibration in
this project, is not guaranteed in a low resource setting. This calibration technique
was also very inaccurate, perhaps too inaccurate to be used for actual bilirubin
measurements.

Those are the main issues of the foldable spectrometers. The issue of reattach-
ing the spectrometers could be solved by developing a more robust attachment
procedure. The issue of wavelength calibration could perhaps be solved by using
the spectrum of sunlight. The peak with the highest intensity in the solar spec-
trum is known as a function of the time of day. The problem would be to find
other known wavelengths in the solar spectrum that can be used together with the
main peak for calibration. The solar spectrum contains several peaks and valleys
at known wavelengths, but the foldable spectrometers do not provide a spectrum
with a high enough resolution to be able to detect those peaks and valleys. This
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could be resolved by using a spectrometer with a smaller slit opening, but that
would in turn require even more intense light to perform measurements.

The spectrometers would also need to be calibrated for intensity before they
could be used for actual measurements. This could be done by shining light with
a known spectral distribution onto the spectrometers. The resulting measured
spectrum could then be adjusted according to the known spectrum of the light
source. This procedure would have had to be done for at least each smartphone
model that was to be used, since the spectral responses of the different camera
models are expected to differ significantly.

5.2 Bandpass filters
The results of the measurements using the bandpass filters indicate that it is possi-
ble to measure bilirubin concentrations with this technique. However, further work
would be needed to map the color values of the measurements to bilirubin concen-
trations. Different smartphone models would also need different color mappings.
In addition, varying pigmentation levels in newborn makes it highly likely that
a different color mapping would be needed for different skin types. The melanin
has a higher absorption at shorter wavelengths, which could severely distort mea-
surements at 450nm. Color saturation was also an issue with the HTC, but it is
unknown how many smartphones would encounter similar problems.

In addition to these issues, the main issue with this method, in my opinion, is
the price of the filters. Each filter costs 90 US dollars, and similar filters were found
on eBay at approximately half the prize. A sum of 90 dollars is not too expensive
for hospitals and health care institutions in low-income countries, but this limits
the potential use of this method to such institutions. In addition, the price of
the other methods tested during this project all fall below 10 dollars, making this
method the most expensive by far. If cheap filters can be produced, and an easy
method of attaching and detaching the filters to the camera is developed, then this
method could potentially be successful.

5.3 Linear relationship between color and biliru-
bin

The results of the measurements with carrot juice indicate that the cameras are able
to measure the difference in skin color due to increased concentration of bilirubin.
This is further backed by the results in Figures 4.4 and 4.7. Figure 4.4 shows
that the standard deviations of the cameras color responses are small enough that
the changes in skin color due to bilirubin will not drown in a sea of noise when
captured by the cameras. Figure 4.7 shows that all cameras and settings managed
to measure the increased concentrations of bilirubin due to a skin bruise. These
results, along with the positive results in the article from Thailand[49] makes this
method promising. But there are a few problems with this method as well.
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One of the problems is that it does not correct for varying pigmentation levels
in the newborn. This method will therefore only work when performed on newborn
with a similar skin type as the newborn studied when developing the method[22]. In
addition, all cameras that are to be used for measurements will need to be calibrated
by taking several pictures of newborn, as in the article from Thailand[49]. This
is because different cameras have different color responses. The article and the
results in this project show that cameras can indeed be used to measure bilirubin
levels, but a more sophisticated approach is needed if the goal is a tool that can be
used for all skin types and all smartphones.

5.4 True color analysis
The purpose of this method was to see whether the cameras could be used to
measure the true colors of the scene it captured. These captured colors could
then be compared to numerical simulations of skin color to give an estimate of the
bilirubin concentration of the skin. Figure 4.4 shows that the standard deviation
of the cameras is small enough that this should be possible. If this had not been
the case, several images of the target could have been captured and the means
of the captured color values could have been used instead. This technique can of
course be used when the standard deviation is small as well, as a means of reducing
the errors caused by the camera itself. The results of the calibration procedures
in Figure 4.5 on the other hand, shows a far larger error than can be accepted if
bilirubin concentrations are to be measured. A possible remedy for this is suggested
by Menesatti et al.

Menesatti et al.[35, p. 12] reports that when using the thin-plate spline interpo-
lation method, the use of ColorCheckers with more color patches results in calibra-
tions of higher accuracy than calibrations performed with fewer color patches. In
addition, they showed that the farther away the measured color was from the closest
reference patch color, the larger the calibration error. For this reason, they suggest
the use of ColorCheckers with 24-30 colors that closely match the colors of interest
to reduce calibration error. ColorCheckers could even be created and printed ad
hoc, and the colors could then be measured a posteriori using a spectrometer.

Numerical skin simulations could be used to calculate the whole range of skin
colors expected to exist in newborn. A ColorChecker could then be created with
many color patches within that color range. In this way, the calibration error
could quite possibly be reduced to within an acceptable level in the color region of
interest.

The color response of the cameras should also be tested using different light in-
tensities of the same light source. If the cameras produce the same xy chromaticity
values under varying light intensities, the cameras will only need to be calibrated
once for each light source. Also, this would allow the chromaticity to be measured
separately from the light intensity. The light intensity could be measured by hold-
ing something with a known reflectance, e.g. a white sheet of paper, next to the
newborn as an intensity reference. This would simplify the measuring procedure
because only the right type of light source would be needed, and not a certain
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intensity of said light source. Knowing the reflected light intensity in addition to
the chromaticity would help in the estimation of the bilirubin concentration. This
was illustrated in Figure 4.8, where there were two almost equal chromaticity val-
ues of simulations with very different bilirubin concentrations. But the simulated
light intensities at this point differed by approximately 40%, making it possible
to separate these two chromaticity measurements with a measurement of the light
intensity.

It would be very convenient if calibration only had to be performed on a single
smartphone of a certain model, and all smartphones of that model could then use
the same calibration. Knowing if this is possible is of great interest since it would
simplify the distribution of the tool greatly. If this is not possible, every smartphone
that is to be used as a diagnostic tool will need to be calibrated. This would make
it much harder for the tool to reach distant low-resource settings. The variance of
the color response of different smartphones of the same model can be estimated by
for example taking pictures of ColorCheckers under different light conditions using
many different smartphones of that specific model type. If the variance is then
shown to be too large, each smartphone would have to be calibrated separately.

This method could possibly also be used as a diagnostic tool for other conditions.
As mentioned in section 2.1.3, the reflection spectrum of newborn skin can be used
to calculate more than the bilirubin concentration. The color of the skin is a
result of the reflection spectrum and could therefore be used to calculate some of
the same parameters, even though most of the spectral information is lost when
the reflection spectrum is collapsed to three color values. Takiwaki and Serup[53]
found such color indicators on psoriatic plaque, opening the possibility of using
color analysis to diagnose psoriasis, or at least to measure the extent of it. But
the technique is not limited to the medical field. Menesatti et al.[35] mentions
color evaluation by biologists in field studies and quality control of food processing
as possible applications of the method. Because of the wide variety of possible
applications of this method, further studies should be conducted to find other
appropriate practical cases where it can be implemented.

5.5 Camera lens pressed against skin
The results gathered for this method do not really convey more information other
than that it might be possible to measure bilirubin concentrations using it. The
concentration could for example be calculated from the gradient of the blue or
green color of the image. For skin types with more pigmentation, the red value of
the image might decrease because of the increased absorption from melanin in the
skin. This could yield a way of distinguishing skin of varying skin pigmentation,
removing the need of calibration for all various skin types. Numerical simulations
of how far the light of different wavelengths will travel through skin with varying
properties could also be developed. This could be used to estimate the amount of
bilirubin needed in the skin to create a blue or green color gradient as is seen in
the resulting images. Such ideas should be explored further, but that has not been
done during this project.
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Of all the methods tested during this project, the method named true color analysis
is the most promising. All the other methods, except pressing the camera lens to the
skin, have certain flaws that are believed to either create inaccurate measurements
or lower the probability that they will be used in a low-resource setting. The
foldable spectrometers have issues with light intensity and calibration, the bandpass
filters are expensive compared to the other methods, and the linear relationship
between the measured yellow color and bilirubin concentrations will most likely
only hold for a homogenous population.

The true color analysis method circumvents these issues by not requiring any
external equipment, and by the possibility of correcting for varying pigmentation
using reflected light intensity measurements. This method could therefore poten-
tially work for all skin types and populations. Also, if tests of different smartphones
of the same model, such as different Samsung Galaxy S3’s, show little variation in
color response, the calibration of all S3’s could be performed by calibrating a single
phone. This would greatly simplify the distribution of the tool, allowing it to be
downloaded as an app, fully functional after download.

The method of pressing the camera lens onto the skin should also be mentioned
as a worthy candidate method. Since this method won’t require any external
equipment either, implementation in low-resource settings would be simplified. The
preliminary tests show that the method could potentially work, but it has not been
tested thoroughly enough in this project for a confident recommendation to be
given.

6.1 Recommendations for further work
It is recommended that the method of true color analysis is further developed. The
main problem of this method in its current state is the color calibration error, which
is far too large. This problem could be solved by creating a new ColorChecker with
30 color patches where most of the color patches have a chromaticity similar to
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the chromaticity of both jaundiced and healthy newborn skin. These chromaticity
values can be found by numerical simulations of skin with varying pigmentation,
blood and bilirubin levels.

The color responses of the cameras should also be tested using different light
intensities of the same light source. If the cameras reproduce the same chromaticity
values with varying light intensities, calibration will only have to be performed once
for each light source. Light intensity values could also be measured separately in
the same image by holding something with known reflectance close to the object
measured.

It is also of great interest to know whether every smartphone will need calibra-
tion, or if calibration of a single smartphone model will hold for all smartphones
of that model. It is therefore recommended to acquire several different phones
of the same model. The color response of the models could be tested by taking
pictures of a ColorChecker under varying light conditions. The variation in color
response between the cameras will then hopefully not be much larger than the
standard deviation of the color response of a single camera, allowing calibration to
be performed on a single phone of a certain model.

For this method to be a success when estimating bilirubin concentrations, nu-
merical simulations of skin will have to be performed for all ranges of the parame-
ters, such as bilirubin, that have an effect on the resulting skin color. This needs
to be done in order to compare the color measured by the cameras to a result
of the skin simulations. In this way, the bilirubin concentration can be found by
looking at the concentration used when performing the simulation that resulted
in the measured color. The simulations will need to be accurate if this method is
expected to give good estimations of bilirubin concentrations. It should therefore
be looked into whether the optical diffusion approximation yields accurate enough
results, or if it should be replaced by Monte Carlo methods.

To finish off, the method of pressing the camera lens and flashlight onto the
skin should be further developed if the method of true color analysis proves not to
be adequate. In addition, research should be conducted to find other areas where
the quantitative color analysis can be implemented. This should be done because
there might be several other areas where high-cost analytical equipment can be at
least partly replaced by cheap camera systems such as smartphones. This could
greatly increase the availability of such tools in low income countries, potentially
improving the quality of life of their people.
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Appendix A
Matlab scripts

A.1 Wavelength calibration
This is the wavelength calibration script used for the calibration of the foldable
spectrometers. It was modified to work with the foldable spectrometers by changing
the variables REF PEAK WAVELENGTHS and PEAKNUM so that the script
would work for only two reference peaks. The original script can be found at
Jonathan Thomsons website[47]. His code was released using the BSD Open source
license, allowing the usage and modification of his work.

1 % This script has been edited by Gunnar Vartdal
2

3 % 0001 %WAVELENGTH CALIBRATE - Takes a horizontal slice of a ...
reference spectrograph,

4 % 0002 % and through user interaction finds ...
the pixel locations

5 % 0003 % that correspond to known wavelengths ...
which are then used

6 % 0004 % to calculate and output a calibrated ...
wavelength scale.

7 % 0005 %
8 % 0006 % It's not necessary to use every row of a spectrograph to ...

derive the
9 % 0007 % spectrogram. Although every column is always used. To ...

specify a horizontal
10 % 0008 % slice (region), use the optional arguments y0 and h.
11 % 0009 %
12 % 0010 % This function uses the mercury peaks found in a compact ...

fluorescent lamp's
13 % 0011 % (CFL) spectrum as a wavelength reference. It is possible to...

use other
14 % 0012 % reference peaks (e.g. neon) with this function by slightly ...

modifying it.
15 % 0013 %
16 % 0014 % Syntax: lambda = wavelength calibrate(img, roi)
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17 % 0015 %
18 % 0016 % Inputs:
19 % 0017 % img - an image matrix or an image's filename.
20 % 0018 % roi - region of interest of spectrograph to process.
21 % 0019 %
22 % 0020 % Outputs:
23 % 0021 % lambda - a calibrated wavelength scale in nanometers.
24 % 0022 %
25 % 0023 % Example:
26 % 0024 % lambda = wavelength calibrate('path/filename');
27 % 0025 % h=100; y0=(size(I,1)-h)/2; lambda = wavelength calibrate...

(I, [y0, h]);
28 % 0026 %
29 % 0027 % Other m-files required: image2spectrum
30 % 0028 % Subfunctions: none
31 % 0029 % MAT-files required: none
32 % 0030 % Other files required: CFL Hg peaks labeled.png
33 % 0031 %
34 % 0032 % See also: IMAGE2SPECTRUM, POLYFIT
35 % 0033 %
36 % 0034 % Author: Jonathan Thomson
37 % 0035 % Work:
38 % 0036 % email:
39 % 0037 % Website: http://jethomson.wordpress.com
40 % 0038 %
41

42 function lambda = wavelength calibrate(img, roi)
43

44 if (nargin < 1 | | nargin > 2)
45 usage('wavelength calibrate(img, roi)');
46 end
47

48 % 0046 % Look at CFL Hg peaks labeled.png to see the numbered ...
peaks and their

49 % 0047 % wavelengths. These are mercury (Hg) spectrum peaks. The...
zeros in

50 % 0048 % REF PEAK WAVELENGTHS are for non-mercury peaks. Note ...
that your CFL's

51 % 0049 % spectrogram may show a second weaker peak near 407.783 ...
nm next to peak 1

52 % 0050 % at 404.656 nm. This is a mercury peak, but is not shown...
in the image

53 % 0051 % CFL Hg peaks labeled.png nor is it used for ...
calibration.

54 % 0052
55 % 0053 %NIST Atomic Spectra Database
56 % 0054 %http://physics.nist.gov/PhysRefData/ASD/lines form.html
57 % 0055 %REF PEAK WAVELENGTHS = [404.6565, 435.8335, 0, 0, 546...

.0750, 0, 579.0670];
58 % 0056
59 % 0057 %NIST Handbook of Basic Atomic Spectroscopic Data
60 % 0058 %http://physics.nist.gov/PhysRefData/Handbook/Tables/...

mercurytable2.htm
61 % 0059 %"This handbook is designed to provide a selection of the...

most important
62 % 0060 %and frequently used atomic spectroscopic data in an ...

easily accessible
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63 % 0061 %format."
64 REF PEAK WAVELENGTHS = [435.8328, 0, 546.0735];
65 % 0063
66 % 0064 % This is a user defined constant, but peak numbers 2, 5,...

and 7 should
67 % 0065 % work fine if you are using a CFL as the reference.
68 PEAKNUM = [1 3];
69

70 scrsz = get(0, 'ScreenSize');
71

72 if (¬exist('roi','var') | | isempty(roi))
73 roi = [0, 0];
74 end
75

76 Z = image2spectrum(img, 'rgb', roi);
77

78 refpknm = REF PEAK WAVELENGTHS(PEAKNUM);
79

80 %if rng is large and peak 7 is too close to peak 6, peak 6 might...
be

81 %incorrectly picked.
82 %rng = -10:10;
83 rng = -5:5;
84

85 dataisgood = false;
86 while (dataisgood == false)
87 n = figure('Position', [1 1 0.9*scrsz(3) 0.9*scrsz(4)]);
88 hold on
89 plot(fliplr(Z))
90 m = max(max(Z));
91 a = axis;
92 axis([a(1) a(2) 0 1.10*m])
93

94 for li = 1:length(PEAKNUM)
95 title(['Click on peak ' num2str(PEAKNUM(li)) '.']);
96 [x, ignored] = ginput(1); % 2nd output of ginput() is ...

mandatory
97 x = round(x);
98

99 % The user cannot be expected to click exactly at the ...
peak

100 % location so we should search on either side of gpxl
101 % (within a hardcoded range) to find the exact peak ...

location.
102 dx = x + rng;
103

104 [peak rgb, pkloc] = max(Z(dx,:));
105 [peak, chan] = max(peak rgb); % which channel has the ...

highest peak
106

107 % x-coordinate/column number of the peak
108 pkx(li) = dx(1) + pkloc(chan) - 1;
109

110 hold on, plot(pkx(li), peak, 'k*')
111 end
112

113 title(['The reference peaks'' locations have been recorded. ...
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' ...
114 'Please answer the question in the console.'])
115 rsp = input(['Did you pick the correct peaks? ' ...
116 'If not, answer no to try again. [(y)es/(n)o/(q...

)uit]: '], 's');
117 if (¬isempty(rsp) && lower(rsp(1)) == 'y')
118 dataisgood = true;
119 elseif (¬isempty(rsp) && lower(rsp(1)) == 'q')
120 close(n)
121 error('wavelength calibrate: instructed to quit by user....

');
122 end
123

124 close(n)
125 end
126

127 if (dataisgood == true)
128 [p, s] = polyfit(pkx, refpknm, 1);
129 lambda = polyval(p, (1:size(Z,1)).');
130 end
131

132 end

A.2 Numerical skin simulation
Two scripts were used for the numerical simulation of skin, both written by Asgeir
Bjørgan at the department of electronics and telecommunications at NTNU. He
has given permission for them to be reproduced here.

The first is a script calculating the absorption and scattering coefficients of the
different layers. This script has been modified by me, removing a bug and changing
the input unit of the bilirubin concentration:

1 function [mua1, mus1, mua2, mus2, mua3, mus3, g] = calcSkinData(...
lambda, oxy1, Bd1, oxy2, Bd2, muam694, wat1, wat2, wat3, fat1, ...
fat3, bet1, bet3, met2, met3, bil2, bil3, aMie, aRay, bMie)

2 load('muab.mat');
3 muh oxy calc = @(x) interp1(muabo(:,1), muabo(:,2), x);
4 muh deoxy calc = @(x) interp1(muabd(:,1), muabd(:,2), x);
5

6

7 muh oxy = muh oxy calc(lambda);
8 muh deoxy = muh deoxy calc(lambda);
9 melanin base = ((694./lambda)).ˆ3.46;

10 g = 0.62 + lambda.*29e-5;
11

12 %absorption properties
13 H = 0.41;
14 H0 = 0.45;
15 Be = 0.002;
16 mua other = 25;
17 muab blood1 = (muh oxy.*oxy1 + muh deoxy.*(1-oxy1)).*H/H0;
18 muab blood2 = (muh oxy.*oxy2 + muh deoxy.*(1-oxy2)).*H/H0;
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19 mua melanin = muam694.*melanin base;
20

21 %absorption coefficients
22 mua1 = mua melanin + muab blood1.*Be + mua other.*(1-Be);
23 mua2 = muab blood1.*Bd1 + mua other.*(1-Bd1);
24 mua3 = muab blood2.*Bd2 + mua other.*(1-Bd2);
25

26 %extra absorption from water and the like
27 muaw = load('hale73.dat');
28 muaf = load('fat.dat');
29 muabil = load('bil.dat');
30 muabet = load('bet.dat');
31 for i=1:length(lambda)
32 mua1(i) = mua1(i) + wat1.*water(lambda(i), muaw) + fat1.*fat...

(lambda(i), muaf) + bet1.*bet(lambda(i), muabet);
33 mua2(i) = mua2(i) + wat2.*water(lambda(i), muaw) + bil2.*bil...

(lambda(i), muabil);% + met2.*met(lambda(i));
34 mua3(i) = mua3(i) + wat3.*water(lambda(i), muaw) + fat3.*fat...

(lambda(i), muaf) + bil3.*bil(lambda(i), muabil) + ...
bet3.*bet(lambda(i), muabet);% + met3.*met(lambda(i));

35 end
36

37 %scattering properties
38

39 %bashkatov2005
40 must = 100.*(aMie.*(lambda./500.0).ˆ-bMie + aRay.*(lambda./500)....

ˆ-4);
41

42 mus1 = must./(1-g);
43 mus2 = must./(1-g);
44 mus3 = must./(1-g);
45 end
46

47 function w = water(x, muaw)
48 if ((x > 200) & (x < 90000))
49 w = interp1(muaw(:,1), muaw(:,2)*100, x, 'spline');
50 else
51 w = zeros(size(x));
52 end
53

54 end
55

56 function f = fat(x, muaf)
57 if ((x > 429) & (x < 1098))
58 f = interp1(muaf(:,1), muaf(:,2), x);
59 else
60 f = zeros(size(x));
61 end
62 end
63

64 % Endret av Gunnar til aa returnere mˆ-1/M fra cmˆ-1/M
65 function b = bil(x, muabil)
66 if ((x > 239) & (x < 510))
67 b = interp1(muabil(:,1), muabil(:,2), x);
68 b = 100*b;
69 else
70 b = zeros(size(x));
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71 end
72 end
73

74 function b = bet(x, muabet)
75 if ((x > 219) & (x < 510))
76 b = interp1(muabet(:,1), muabet(:,2), x);
77 else
78 b = zeros(size(x));
79 end
80 end

The second script is the script calculating the diffuse reflection coefficient:

1 %isotropic source function, three-layer model
2 function r = ReflIsoL3(mua1, mus1, mua2, mus2, mua3, mus3, g, d1, d2...

)
3 A = 0.17;
4 de = 100e-6;
5

6

7

8 %reduced scattering coefficients
9 musr1 = mus1.*(1.0-g);

10 musr2 = mus2.*(1.0-g);
11 musr3 = mus3.*(1.0-g);
12

13 %diffusion constant
14 D1 = 1.0./(3.0.*(musr1 + mua1));
15 D2 = 1.0./(3.0.*(musr2 + mua2));
16 D3 = 1.0./(3.0.*(musr3 + mua3));
17

18 %transport coefficients
19 mutr1 = musr1 + mua1;
20 u1 = mutr1;
21 mutr2 = musr2 + mua2;
22 u2 = mutr2;
23 mutr3 = musr3 + mua3;
24 u3 = mutr3;
25

26 %optical penetration depth
27 del1 = sqrt(D1./(mua1));
28 a1 = del1;
29 del2 = sqrt(D2./(mua2));
30 a2 = del2;
31 del3 = sqrt(D3./(mua3));
32 a3 = del3;
33

34 K1 = del1.*del1.*musr1./(D1.*(1-mutr1.*mutr1.*del1.*del1));
35 K2 = del2.*del2.*musr2./(D2.*(1-mutr2.*mutr2.*del2.*del2));
36 K3 = del3.*del3.*musr3./(D3.*(1-mutr3.*mutr3.*del3.*del3));
37 A2 = -(-2.*D2.*exp(-u1.*d1).*exp(u2.*(-d2+d1)).*(K3-K2).*D1.*D3....

*a2-D1.*...
38 exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*a2.*D3.*K2+D1.*exp(-(u1.*d1.*...

a2-d1+d2)./a2).*...
39 D2.*a2.*D3.*K1+D1.*exp(-(-d2+d1+u1.*d1.*a2)./a2).*D2.*a2.*D3.*K1...

-D1.*...
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40 exp(-(-d2+d1+u1.*d1.*a2)./a2).*D2.*a2.*D3.*K2-exp((-d2+d1)./a2)....

*D3.*...
41 a2.*a2.*D1.*exp(-u1.*d1).*(D2.*u2.*K2-D1.*u1.*K1)+exp(-(-d2+d1)....

/a2).*...
42 D3.*a2.*a2.*D1.*exp(-u1.*d1).*(D2.*u2.*K2-D1.*u1.*K1)+D1.*exp(-(...

u1.*d1.*a2-d1+d2)./a2).*...
43 D2.*D2.*a3.*K2-D1.*exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*D2.*a3.*K1-...

D1.*...
44 exp(-(-d2+d1+u1.*d1.*a2)./a2).*D2.*D2.*a3.*K2+D1.*exp(-(-d2+d1+...

u1.*d1.*a2)./a2).*...
45 D2.*D2.*a3.*K1-2.*A.*a1.*D2.*exp(-u1.*d1).*exp(u2.*(-d2+d1)).*(...

K3-K2).*...
46 D3.*a2-2.*exp(-u1.*d1-u2.*d2+u2.*d1).*a2.*D2.*D2.*u2.*K2.*a3.*D1...

+A.*a1.*...
47 exp(-(-d2+d1+u1.*d1.*a2)./a2).*D2.*a2.*D3.*K1-A.*a1.*exp(-(-d2+...

d1+u1.*d1.*a2)./a2).*...
48 D2.*a2.*D3.*K2+A.*a1.*exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*a2.*D3.*...

K1-A.*a1.*...
49 exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*a2.*D3.*K2+A.*a1.*exp(-(-d2+d1...

)./a2).*a3.*D2.*a2.*exp(-u1.*d1).*(D2.*u2.*K2-D1.*u1.*K1)+...
A.*a1.*exp((-d2+d1)./a2).*D2.*a3.*a2.*...

50 exp(-u1.*d1).*(D2.*u2.*K2-D1.*u1.*K1)+2.*exp(-u1.*d1-u2.*d2+u2.*...
d1).*a2.*...

51 D3.*K3.*u3.*a3.*D2.*D1+A.*a1.*exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*...
D2.*a3.*...

52 K2-A.*a1.*exp(-(u1.*d1.*a2-d1+d2)./a2).*D2.*D2.*a3.*K1+A.*a1.*...
...

53 exp(-(-d2+d1+u1.*d1.*a2)./a2).*D2.*D2.*a3.*K1-A.*a1.*exp(-(-d2+...
d1+u1.*d1.*a2)./a2)....

54 *D2.*D2.*a3.*K2+exp((-d2+d1)./a2).*D2.*a3.*a2.*D1.*exp(-u1.*d1)....

*(D2.*u2.*K2-D1.*...
55 u1.*K1)+exp(-(-d2+d1)./a2).*a3.*D2.*a2.*D1.*exp(-u1.*d1).*(D2.*...

u2.*K2-D1.*u1.*K1)-A.*...
56 a1.*exp((-d2+d1)./a2).*D3.*a2.*a2.*exp(-u1.*d1).*(D2.*u2.*K2-D1....

*u1.*K1)+A.*...
57 a1.*exp(-(-d2+d1)./a2).*D3.*a2.*a2.*exp(-u1.*d1).*(D2.*u2.*K2-...

D1.*u1.*K1)+2.*...
58 A.*a1.*exp(-u1.*d1-u2.*d2+u2.*d1).*a2.*D3.*K3.*u3.*a3.*D2-2.*A.*...

a1.*...
59 exp(-u1.*d1-u2.*d2+u2.*d1).*a2.*D2.*D2.*u2.*K2.*a3-A.*a1.*a2.*...

D2.*...
60 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*K1.*D3-A.*a1.*exp(-(d1.*a2...

-d2.*a1+d1.*a1)./...
61 a1./a2).*a2.*D2.*K1.*D3+D1.*D1.*a2.*D2.*exp((-d1.*a2+d1.*a1-d2.*...

a1)./a1./a2).*...
62 K1.*u1.*a3+D1.*a1.*D2.*D2.*exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2)....

*K1.*u1.*a3+A.*...
63 D1.*a2.*D2.*exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*K1.*a3+D1.*D1....

*...
64 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*a2.*D2.*K1.*u1.*a3+A.*D1.*...

...
65 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*a2.*D2.*K1.*a3-D1.*a1.*...
66 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D2.*D2.*K1.*u1.*a3+A.*D1.*...

...
67 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*a2.*a2.*K1.*D3+D1.*D1.*...
68 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*a2.*a2.*K1.*u1.*D3-D1.*D1....

*...

57



A.2 Numerical skin simulation Chapter A. Matlab scripts

69 a2.*a2.*exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*K1.*u1.*D3-A.*D1.*...
a2.*a2.*...

70 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*K1.*D3+A.*a1.*D2.*D2.*...
71 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*K1.*a3-A.*a1.*exp(-(d1.*a2...

-d2.*a1+d1.*a1)./...
72 a1./a2).*D2.*D2.*K1.*a3-D1.*a1.*a2.*D2.*exp((-d1.*a2+d1.*a1-d2.*...

a1)./a1./a2).*...
73 K1.*u1.*D3-D1.*a1.*exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*a2.*D2....

*K1.*u1.*D3).*...
74 a1./(exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*a1.*D2.*D2.*a3+...

...
75 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*D1.*a2.*D2.*a3+...
76 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*a1.*D2.*D2.*a3+...
77 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*a1.*D2.*D2.*a3-...
78 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*D1.*a2.*D2.*a3-...
79 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*a1.*D2.*D2.*a3+...
80 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*a1.*D2.*D2.*a3-...
81 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*D1.*a2.*D2.*a3-...
82 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*a1.*D2.*D2.*a3-...
83 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*a1.*D2.*D2.*a3+...
84 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*D1.*a2.*D2.*a3-...
85 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*a1.*D2.*D2.*a3+...
86 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*a1.*D2.*a2.*D3+...
87 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*a1.*D2.*a2.*D3+...
88 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*D1.*a2.*a2.*D3+...
89 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*a1.*D2.*a2.*D3+...
90 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*a1.*D2.*a2.*D3-...
91 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*a1.*D2.*a2.*D3+...
92 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*D1.*a2.*a2.*D3-...
93 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*a1.*D2.*a2.*D3-...
94 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*D1.*a2.*a2.*D3+...
95 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*a1.*D2.*a2.*D3-...
96 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*D1.*a2.*a2.*D3+...
97 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*a1.*D2.*a2.*D3+...
98 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*D1.*a2.*D2.*a3+...
99 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*D1.*a2.*D2.*a3+...

100 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*A.*a1.*D1.*a2.*D2.*a3+...
101 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*A.*a1.*D1.*a2.*D2.*a3+...
102 exp(-(-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*D1.*a2.*a2.*D3-...
103 exp((d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*D1.*a2.*a2.*D3-...
104 exp(-(d1.*a2-d2.*a1+d1.*a1)./a1./a2).*D1.*D1.*a2.*a2.*D3+...
105 exp((-d1.*a2+d1.*a1-d2.*a1)./a1./a2).*D1.*D1.*a2.*a2.*D3);
106 A1 = (A2.*(D1./del1-A)-K1.*(A+D1.*mutr1))./(D1./del1+A);
107 j = K1.*D1.*mutr1 + D1./del1.*A1 - A2.*D1./del1;
108 r = -j;
109 end

This is the script, written by me, used to calculate colors from the skin simula-
tions:

1 %calculate skin color Calculates simulated color values of given ...
skin parameters with given

2 %light source and observer
3 function [R, G, B, x, y, Y, diffusion spectrum, reflected spectrum] ...

= calculate skin color(lambda, light source, observer, oxy1, ...
Bd1, oxy2, Bd2, muam694, wat1, wat2, wat3, fat1, fat3, bet1, ...
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bet3, met2, met3, bil2, bil3, aMie, aRay, bMie, d1, d2)
4

5

6 %Beregn hud-data
7 [mua1, mus1, mua2, mus2, mua3, mus3, g] = calcSkinData(lambda, ...

oxy1, Bd1, oxy2, Bd2, muam694, wat1, wat2, wat3, fat1, fat3...
, bet1, bet3, met2, met3, bil2, bil3, aMie, aRay, bMie);

8 %Beregn det reflekterte spekteret dividert paa innkommende ...
intensitet

9 diffusion spectrum = ReflIsoL3(mua1, mus1, mua2, mus2, mua3, ...
mus3, g, d1, d2);

10 %Beregn det reflekterte spekteret med dagslys som lyskilde
11 reflected spectrum = apply light source(lambda, ...

diffusion spectrum, light source);
12

13 %Beregn fargen til lyskilden. Skal brukes til normalisering
14 light source spectrum = apply light source(lambda, ones(1, ...

length(lambda)), light source);
15 [Xs, Ys, Zs] = apply observer(lambda, light source spectrum, ...

observer);
16

17 %Beregn fargen til reflektert spekter og normaliser med ...
lyskilden.

18 [X, Y, Z] = apply observer(lambda, reflected spectrum, observer)...
;

19 X = X/Ys;
20 Y = Y/Ys;
21 Z = Z/Ys;
22 x = X/(X+Y+Z);
23 y = Y/(X+Y+Z);
24

25 [R, G, B] = convert XYZ sRGB(X, Y, Z);
26

27 end

And these are the two helper functions used by the above script. Apply light source
multiplies a given reflection spectrum with a light source spectrum. Apply observer
calculates tristimulus color values using the given observer.

1 %Combines a reflection spectrum and a light source into a single ...
spectrum

2 function Z = apply light source(lambda, spectrum, light source)
3

4 Z = zeros(1, length(lambda));
5 for i=1:length(lambda)
6 b = interp1(light source(:,1), light source(:,2), lambda(i))...

;
7 Z(i) = b*spectrum(i);
8 end
9

10 end

1 %Applies an observer, e.g. CIE 2deg observer, to an intensity ...
spectrum, resulting in
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2 %tristimulus color data.
3 function [X, Y, Z] = apply observer(lambda, spectrum, obs)
4

5 X = 0;
6 Y = 0;
7 Z = 0;
8 dl = lambda(2) - lambda(1);
9 for i=1:length(lambda)

10 xbar = interp1(obs(:,1), obs(:,2), lambda(i));
11 ybar = interp1(obs(:,1), obs(:,3), lambda(i));
12 zbar = interp1(obs(:,1), obs(:,4), lambda(i));
13 X = X + spectrum(i)*xbar*dl;
14 Y = Y + spectrum(i)*ybar*dl;
15 Z = Z + spectrum(i)*zbar*dl;
16 end
17

18 end

A.3 Color calibration
A.3.1 General polynomial transform
The general polynomial transform was calculated and applied using these two
scripts:

1

2

3 %Creates transformation matrix with polynomial coefficients of the ...
given order

4 %to transform source colors to the target color space
5 function Z = general polynomial transform(source colors, ...

target colors, order)
6

7 res size = order*3 + 1;
8 B = zeros(length(source colors(:,1)), res size);
9

10 for i=1:length(source colors(:,1))
11 for j=1:3
12 for k=1:order
13 B(i,(j-1)*order + k) = source colors(i,j)ˆk;
14 end
15 end
16 B(i, res size) = 1;
17 end
18

19 Z = pinv(B)*target colors;
20

21 end

1

2
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3 %Apply the general polynomial transform to the given color matrix
4 function Z = apply GPT(GPT, colors)
5

6 order = (length(GPT(:,1))-1)/3;
7 B = zeros(length(colors(:,1)), length(GPT(:,1)));
8

9 for i=1:length(colors(:,1))
10 for j=1:3
11 for k=1:order
12 B(i,(j-1)*order + k) = colors(i,j)ˆk;
13 end
14 end
15 B(i, length(GPT(:,1))) = 1;
16 end
17

18 Z = B*GPT;
19

20 end

Ordinary cross validation of the general polynomial transform method was per-
formed with this script which returns the polynomial order giving the lowest pre-
diction error along with the prediction error:

1 %Runs ordinary cross validation on the general polynomial transform ...
method. Returns

2 %the order resulting in the calibration with the least error, along ...
with the error.

3 function [order, color difference] = ocv gpt(source colors, ...
target colors, start order, stop order)

4

5 n=length(source colors(:,1));
6 test source colors = zeros(n-1, 3, n);
7 test target colors = zeros(n-1, 3, n);
8 test source colors(:,:,1) = source colors(2:n,:);
9 test target colors(:,:,1) = target colors(2:n,:);

10 for i=2:n-1
11 test source colors(1:(i-1),:,i) = source colors(1:(i-1),:);
12 test target colors(1:(i-1),:,i) = target colors(1:(i-1),:);
13 test source colors(i:n-1,:,i) = source colors(i+1:n,:);
14 test target colors(i:n-1,:,i) = target colors(i+1:n,:);
15 end
16 test source colors(:,:,n) = source colors(1:n-1,:);
17 test target colors(:,:,n) = target colors(1:n-1,:);
18

19 cnt = 1;
20 order(cnt) = start order;
21 while(order(cnt) ≤ stop order)
22 color diff(cnt) = 0;
23

24 for i=1:n
25 GPT = general polynomial transform(test source colors...

(:,:,i), test target colors(:,:,i), order(cnt));
26 gpt color = apply GPT(GPT, source colors(i,:));
27 color diff(cnt) = color diff(cnt) + get color diff(...

gpt color, target colors(i,:));
28 end
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29

30 cnt = cnt +1;
31 order(cnt) = order(cnt-1)+1;
32 end
33

34 [C, I] = min(color diff);
35 color difference = C/(n-1);
36 order = order(I);
37

38 end

A.3.2 Thin-Plate Spline
The Thin-plate spline interpolation method was implemented and applied in this
way for three dimensions:

1 %Calibrates the given colors in source colors using target colors as...
the target color values

2 %and the thin-plate spline interpolation method. lambda is the ...
smoothing parameter

3 function TPS = thin plate spline(source colors, target colors, ...
lambda)

4

5 n = length(source colors(:,1));
6

7 M = zeros(n,n);
8 T = zeros(n,4);
9 O1 = zeros(4,4);

10 O2 = zeros(4,3);
11

12 for i=1:n
13 T(i,1) = 1;
14 T(i,2) = source colors(i,1);
15 T(i,3) = source colors(i,2);
16 T(i,4) = source colors(i,3);
17 for j=1:n
18 M(i,j) = Em(source colors(i,:), source colors(j,:));
19 end
20 M(i,i) = n*lambda;
21 end
22

23 A = [M, T; T' O1];
24 B = [target colors; O2];
25 TPS = A\B;
26 end

1 %Applies thin plate spline interpolation to color data
2 function Z = apply TPS(TPS, colors, source colors)
3

4 M = 4;
5 n = length(TPS(:,1)) - M;
6
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7 Z = zeros(length(colors(:,1)), length(colors(1,:)));
8

9 for i=1:length(colors(:,1))
10 for c=1:3
11 %TPS(n+1,c);
12 Z(i,c) = Z(i,c) + TPS(n+1,c);
13 for sc=1:3
14 %TPS(n+1+sc,c)
15 Z(i,c) = Z(i,c) + colors(i,sc)*TPS(n+1+sc,c);
16 end
17 for j=1:n
18 %TPS(j,c)
19 E = Em(colors(i,:), source colors(j,:));
20 Z(i,c) = Z(i,c) + TPS(j,c)*E;
21 end
22 end
23 end
24

25 end

These are the scripts implementing and applying the thin-plate spline interpolation
method in two dimensions:

1 %Same as thin plate spline except for two-dimensional chromaticity ...
data

2 function TPS = thin plate spline 2d(source chr, target chr, lambda)
3

4 n = length(source chr(:,1));
5

6 M = zeros(n,n);
7 T = zeros(n,3);
8 O1 = zeros(3,3);
9 O2 = zeros(3,2);

10

11 for i=1:n
12 T(i,1) = 1;
13 T(i,2) = source chr(i,1);
14 T(i,3) = source chr(i,2);
15 for j=1:n
16 M(i,j) = Em 2d(source chr(i,:), source chr(j,:));
17 end
18 M(i,i) = n*lambda;
19 end
20

21 A = [M, T; T' O1];
22 B = [target chr; O2];
23 TPS = A\B;
24 end

1 %apply TPS Applies thin plate spline interpolation to chromaticity ...
data

2 function Z = apply TPS 2d(TPS, chromaticities, source chr)
3

4 M = 3;
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5 n = length(TPS(:,1)) - M;
6

7 Z = zeros(length(chromaticities(:,1)), length(chromaticities...
(1,:)));

8

9 for i=1:length(chromaticities(:,1))
10 for c=1:2
11 %TPS(n+1,c);
12 Z(i,c) = Z(i,c) + TPS(n+1,c);
13 for sc=1:2
14 %TPS(n+1+sc,c)
15 Z(i,c) = Z(i,c) + chromaticities(i,sc)*TPS(n+1+sc,c)...

;
16 end
17 for j=1:n
18 %TPS(j,c)
19 E = Em 2d(chromaticities(i,:), source chr(j,:));
20 Z(i,c) = Z(i,c) + TPS(j,c)*E;
21 end
22 end
23 end
24

25 end

The functions Em and Em 2d seen in the above scripts corresponds to U(r) in
equation 2.27, and can be seen in these scripts:

1 %Em Calculates the Em function of TPS
2 function E = Em(t1, t2)
3

4 tau = sqrt((t1(1)-t2(1))ˆ2 + (t1(2)-t2(2))ˆ2 + (t1(3)-t2(3))ˆ2);
5 %theta = -0.039789;
6 %E = theta*tau;
7 E = 2*(tauˆ2)*log(tau+1e-20);
8

9 end

1 %Em Calculates the Em function of TPS
2 function E = Em 2d(t1, t2)
3

4 tau = sqrt((t1(1)-t2(1))ˆ2 + (t1(2)-t2(2))ˆ2);
5 %theta = -0.039789;
6 %E = theta*tau;
7 E = 2*(tauˆ2)*log(tau+1e-20);
8

9 end

A.3.2.1 Ordinary cross validation for the thin-plate spline method

Ordinary cross validation of the thin-plate spline method was performed for three
dimensions using this script:
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1 %Runs ordinary cross validation on a series of values of lambda of ...
the thin-plate

2 %spline interpolation method. Returns the value of lambda minimizing...
the

3 %prediction error, and the prediction error itself
4 function [l, color difference] = ocv tps(source colors, ...

target colors, start lambda, stop lambda, mult)
5

6 n=length(source colors(:,1));
7 test source colors = zeros(n-1, 3, n);
8 test target colors = zeros(n-1, 3, n);
9 test source colors(:,:,1) = source colors(2:n,:);

10 test target colors(:,:,1) = target colors(2:n,:);
11 for i=2:n-1
12 test source colors(1:(i-1),:,i) = source colors(1:(i-1),:);
13 test target colors(1:(i-1),:,i) = target colors(1:(i-1),:);
14 test source colors(i:n-1,:,i) = source colors(i+1:n,:);
15 test target colors(i:n-1,:,i) = target colors(i+1:n,:);
16 end
17 test source colors(:,:,n) = source colors(1:n-1,:);
18 test target colors(:,:,n) = target colors(1:n-1,:);
19

20 cnt = 1;
21 lambda(cnt) = start lambda;
22 while(lambda ≤ stop lambda)
23 color diff(cnt) = 0;
24

25 for i=1:n
26 TPS = thin plate spline(test source colors(:,:,i), ...

test target colors(:,:,i), lambda(cnt));
27 tps color = apply TPS(TPS, source colors(i,:), ...

test source colors(:,:,i));
28 color diff(cnt) = color diff(cnt) + get color diff(...

tps color, target colors(i,:));
29 end
30

31 cnt = cnt +1;
32 lambda(cnt) = lambda(cnt-1)*mult;
33 end
34

35 [C, I] = min(color diff);
36 color difference = C/(n-1);
37 l = lambda(I);
38

39 end

For two dimensions it was performed using this script:

1 function [l, chr difference] = ocv tps 2d(source chr, target chr, ...
start lambda, stop lambda, mult)

2

3 n=length(source chr(:,1));
4 test source chr = zeros(n-1, 2, n);
5 test target chr = zeros(n-1, 2, n);
6 test source chr(:,:,1) = source chr(2:n,:);
7 test target chr(:,:,1) = target chr(2:n,:);
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8 for i=2:n-1
9 test source chr(1:(i-1),:,i) = source chr(1:(i-1),:);

10 test target chr(1:(i-1),:,i) = target chr(1:(i-1),:);
11 test source chr(i:n-1,:,i) = source chr(i+1:n,:);
12 test target chr(i:n-1,:,i) = target chr(i+1:n,:);
13 end
14 test source chr(:,:,n) = source chr(1:n-1,:);
15 test target chr(:,:,n) = target chr(1:n-1,:);
16

17 cnt = 1;
18 lambda(cnt) = start lambda;
19 while(lambda ≤ stop lambda)
20 chr diff(cnt) = 0;
21

22 for i=1:n
23 TPS = thin plate spline 2d(test source chr(:,:,i), ...

test target chr(:,:,i), lambda(cnt));
24 tps chr = apply TPS 2d(TPS, source chr(i,:), ...

test source chr(:,:,i));
25 chr diff(cnt) = chr diff(cnt) + get chromaticity diff(...

tps chr, target chr(i,:));
26 end
27

28 cnt = cnt +1;
29 lambda(cnt) = lambda(cnt-1)*mult;
30 end
31

32 [C, I] = min(chr diff);
33 chr difference = C/(n-1);
34 l = lambda(I);
35

36 end

The iterative procedure returning the smoothing parameter, λ, minimizing the
prediction error was implemented in these scripts for three and two dimensions:

1 %Iterates through different values of lambda, finding the value ...
minimizing the

2 %prediction error of the thin-plate spline calibration
3 function [l, color difference] = ocv tps iterative(source colors, ...

target colors, start lambda, stop lambda, mult, iterations)
4

5 [l, color difference] = ocv tps(source colors, target colors, ...
start lambda, stop lambda, mult);

6

7 for i=1:iterations-1
8 start lambda = l/mult;
9 stop lambda = l*mult;

10 mult = 1 + mult/(10*i);
11 [l, color difference] = ocv tps(source colors, target colors...

, start lambda, stop lambda, mult);
12 end
13

14 end
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1 %Iterates through different values of lambda, finding the value ...
minimizing the

2 %prediction error of the thin-plate spline calibration
3 function [l, chr difference] = ocv tps 2d iterative(source chr, ...

target chr, start lambda, stop lambda, mult, iterations)
4

5 [l, chr difference] = ocv tps 2d(source chr, target chr, ...
start lambda, stop lambda, mult);

6

7 for i=1:iterations-1
8 start lambda = l/mult;
9 stop lambda = l*mult;

10 mult = 1 + mult/(10*i);
11 [l, chr difference] = ocv tps 2d(source chr, target chr, ...

start lambda, stop lambda, mult);
12 end
13

14 end
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