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Abstract

In search of increased wealth and public prosperity, the oil indus-

try have met new challenges in their quest for black gold. These

challenges have driven Statoil’s expertise to develop a compact

subsea separation unit. The compact structure of this unit makes

advanced process control a requirement. The study of this thesis

will focus on configuring a NMPC with state process informa-

tion supplied by a nonlinear observer. The study will be based

on previous work on the Compact Separation unit. Statoil’s in-

ternal MPC tool will be used for process control.

The state and parameter estimation performance of the imple-

mented observers has been assessed with regards to both mea-

surement noise and model/plant mismatches. This has been per-

formed through simulations on the implemented model, but tests

have also been conducted on an off-line data set from a test rig

of the compact separation unit. The observers provided suffi-

ciently accurate state estimates, with the exception being when

the estimates were based on too severe measurement noise. The

parameter estimation scheme proved to be suboptimal, but pro-

vided vital information during tests on the off-line data set.

The NMPC configuration developed during this project has been

tested on several process disturbances, and have provided good

results regarding regulation of the process within the desired

control objectives. The configuration have proved to fulfill the

performance criteria specified, both with the use of ideal process

information and estimates supplied by the observers.
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PART I

Introduction to the

Compact Separation unit

Abstract – This part is an introduction to the re-

port as well as to the Compact Separation process.

The first chapter gives an overview of the report

and the work previously conducted on the process.

The next and last chapter of this part provides an

overview of the process, explains the modeling and

the simplifications made and also introduces the

separation profiles.

The Norwegian oil adventure started in the late 1960s. Several different oil

companies were given a license from the Norwegian government to start

exploring for oil and gas on the Norwegian Continental Shelf. After sev-

eral failed attempts, most of the large oil companies were on the verge of

abandoning the possibility of ever finding oil in Norway. At the end of the

1
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summer of 1969, the oil company Phillips Petroleum decided to drill one last

well on the Norwegian Continental Shelf. This final attempt stroke gold. The

field now known as Ekofisk was discovered, an “elephant” was revealed. An

“elephant” is the codename for an oilfield greater than 500 million barrels.

This oil finding marked the start of the Norwegian oil adventure, and in

the wake of this finding, both the Norwegian Petroleum Directorate and the

government-owned oil company, Statoil, was founded1.

Today, more than 40 years after Ekofisk was found, the oil and gas

industry is experiencing new challenges. Many of the larger oil and gas

fields are old and the efficiency at these fields is not what it used to be. New

fields have been found, but many of these fields are relatively small and do

not justify building of a complete new oil extraction installation. A solution

would be to transport the oil and gas to an existing installation, but today’s

multiphase technology does not fulfill the requirements to transport oil and

gas over such vast distances. Another issue is the depths of the new fields.

Much new subsea technology have been developed, however, these depths

sets new and challenging requirements when it comes to robustness and

size. The cost of new technology demands higher performance and better

efficiency from these new developments compared to the old systems, thus

more delicate control is required.

The issues described above drives the development of Statoil’s Com-

pact Subsea Separation Unit, later referred to as the Compact Separation

process. This system will be designed for very deep waters, and the com-

pact structure of the unit will require more complex process control than

traditional separation units.

1More information about the Norwegian oil history can be found at

http://tekniskmuseum.no/gamlewebben/no/utstillingene/Jakten oljen/historie.htm.

http://tekniskmuseum.no/gamlewebben/no/utstillingene/Jakten_oljen/historie.htm


3

Chapter 1

Overview

The main purpose of the Compact Separation process is to separate the

multiphase input flow into two single phases – liquid and gas. The pure

liquid will be boosted to the surface using a pump, while the gas will be

transported to the surface by the means of a compressor. The structure

of the Compact Separation process will be further discussed in the next

chapter.

1.1 Earlier work

The Compact Separation project started in 2007, and phase 1 of the project

was completed in May 2011. Consequently, a lot of previous work has been

conducted in regard to this project. The modeling of the Compact Separa-

tion process started with a summer project in 2007, and the modeling was

further developed by [Ellingsen (2007)]. [Ellingsen (2007)] also conducted

some initial research on the control strategy of the Compact Separation

process, and concluded that model predictive control (MPC) would proba-

bly be the best control strategy, due to the complexity of the process.

In early 2008, [Nilsson (2008)] takes the development of the MPC strat-

egy further by allowing nonlinearities in the model. This can lead to tighter

and more accurate control. The concluding remark by [Nilsson (2008)] is
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that the introduction of nonlinear model predictive control (NMPC) to the

Compact Separation process should be considered. [Grimstad (2008)] took

the development of the model, as well as the NMPC algorithm, further and

evaluated the performance of the NMPC when the Compact Separation pro-

cess experiences hydrodynamic slugging1 on the input. The control strategy

was revised to perform better under steady state and under slugging se-

quences.

[Kristiansen et al. (2010)] report the test results from a high-pressure

flow loop at SINTEF. The objective of these tests were to conduct proof of

concept, and demonstrate the Compact Separation process. However, the

test rig used was not a complete setup of the Compact Separation process,

but rather a simplified version of the process. The simplifications in the

process will be further discussed in the next chapter. The report concludes

that the concept has been successfully demonstrated, and that further work

on this project should be conducted. The report also concludes that MPC

is the recommended control strategy.

However, according to PhD Gisle Otto Eikrem, co-supervisor of this

project, the prediction step of the MPC was poor, and the success of the

control system was due to the feedback of measurements. This result sug-

gests that the model used for prediction is inaccurate and it is therefore

desirable to implement nonlinear relationships in the controller.

During the summer of 2011, the author contributed to implementing a

nonlinear observer scheme to estimate the states used by the NMPC for con-

trol purposes, however, this scheme was not used for control of the Compact

Separation process[Steinshamn and Norgren (2011)].

1Hydrodynamic slugging is explained in Chapter 10 [p.75]
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1.2 Contributions to the Compact Separa-

tion project

The work presented in this thesis will contribute to the Compact Separation

project by carrying on the work on the implementation of the observers.

This project will focus on the use of the implemented observers for control

and evaluating the differences regarding robustness to measurement noise

and model/plant uncertainties. A controller will also be configured to deal

with appropriate process disturbances. The work has included extensive

debugging, both in the implemented observers and in the process model

used by the controller.

1.3 Report outline

Part I - Introduces the report and presents the model of the Compact

Separation process with simplifications and potential problems.

Chapter 2 - Presents the mathematical model of the Compact

Separation process, and the simplifications made.

Part II - Presents some brief theory on the different estimation and

control techniques considered for the Compact Separation process.

Chapter 3 - Summarizes the background and some requirements

for choice of a control algorithm.

Chapter 4 - Briefly presents theory, with pros and cons, for the

different solutions to the NMPC scheme.

Chapter 5 - Discusses several schemes for estimating the states

of a nonlinear process.
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Chapter 6 - Discusses several schemes for estimation of un-

certain parameters in a nonlinear process and some theory on

parameter estimation.

Part III - Introduces different configurations used for control of the

Compact Separation process.

Chapter 7 - Discusses the old strategy used for control.

Chapter 8 - Presents the new control strategy developed during

this project.

Part IV - Presents the simulation results of the implemented con-

troller and observers.

Chapter 9 - Gives the results of the observers performance,

both with respect to the ideal process model and with respect to

a off-line dataset.

Chapter 10 - Shows the results from the slugging case.

Chapter 11 - Shows the results from the start-up case.

Chapter 12 - Shows the results from the shut-down case.

Aftermath - Summarizes the project, discusses the results and what

the next step should be.

Chapter 13 - Discusses the results of the work done through

this project.

Chapter 14 - Concludes the performed work and suggests fur-

ther work on the Compact Separation process.
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Chapter 2

The Compact Separation

process

2.1 Process description

An overview of the Compact Separation process is shown in Figure 2.1 [p.8]

and, as can be seen from this figure, the gas-liquid separation is performed

in two stages. The first, rough, separation is performed by a Gas-Liquid

Cylindrical Cyclone (GLCC). The GLCC is a simple, low-weight and low-

cost separator which is much more compact compared to the traditional

gravity based vessel-type separator. The GLCC will only perform well on low

flow rates, on high flow rates, the separation performed by the GLCC will

be coarse. Therefore, a finer separation will be needed in order to reach the

separation criteria set by the area of operation of the pump and compressor,

as will be discussed later in this chapter.

From the GLCC there are two outlets, one liquid outlet and one gas

outlet. Downstream the liquid outlet of the GLCC, a Phase Splitter (PS) is

connected, while downstream the gas outlet a De-liquidizer (DL) is attached.

The PS will perform a more precise extraction of gas from the liquid flow,

while the DL will remove as much as possible of the liquid left in the gas

flow.
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Figure 2.1: Overview of the Compact Separation process[Grimstad (2008)]
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Both the DL and the PS are co-axial cyclones with a stationary swirl

element and a centered gas extraction pipe[Kristiansen et al. (2010)]. This means

that the separation is performed by rotating the unit and creating a cen-

trifugal force, so the liquid will form an annular flow along the walls of the

cylinder, while the gas will be concentrated in the middle[Grimstad (2008)].

Several valves have been placed on strategic places in the system, as

can be seen from Figure 2.1 [p.8]. These valves will be the manipulated

variables in the control system, and by controlling these valves the con-

troller must assure that both the pump and compressor will be supplied

with sufficiently pure liquid and gas respectively. This desire reasons to the

superior performance of single phase pumps and compressors compared to

their multiphase rivals. The single phase pump and compressor does, how-

ever, have an upper/lower bound on the gas volume fraction (GVF) in the

flow; to avoid malfunction of the boosters, the control system must meet

these control objectives.

In Figure 2.1 [p.8] it can also be seen that the Compact Separation

process has two recirculation pipelines. With these recirculation pipelines,

the control system will be able to provide the system with a certain minimum

input flow rate. This is necessary, due to the pump and compressor’s required

minimum flow rate. Both the pump and the compressor might stall if their

flow rates fall below this limit. Recirculating compressed gas in this manner

will most likely cause issues with the thermodynamics of the system, since

compressing gas leads to an increase in the temperature of the gas. However,

neither the thermodynamics nor the recirculation pipelines are within the

scope of this thesis and will therefore not be discussed further.
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2.2 Process model

The model presented in this section has been developed in earlier work, and

are presented by [Grimstad (2008)]. This model is explained in this chapter,

and the simplifications made are discussed. In the earlier works presented

at the start of the previous chapter, the focus was on the complete Compact

Separation process, shown in Figure 2.1 [p.8]. During the summer of 2010,

Statoil tested a linear MPC on a simplified setup of the Compact Separation

process at SINTEF Multiphase Flow Laboratory in Trondheim, Norway.

New tests has been scheduled for the summer of 2012 on this simplified test

rig, and as noted in Chapter 1 [p.3], linear MPC proved to be inadequate.

As illustrated in Figure 2.1 [p.8] the process has been divided into

separate control volumes (CV). The model presented in this chapter does

not include the recirculation flows nor the pump; and the compressor has

been replaced with a valve. As a consequence of removing the pump and

the belonging recirculation flow, the third CV has been neglected to simplify

the model. The resulting process is shown in Figure 2.2 [p.11].

These simplifications are obviously not realistic; a model based on these

simplifications will not reflect the real process, however, the simplified model

shown in Figure 2.2 [p.11] is an adequate description of the test unit at

SINTEF[Kristiansen et al. (2010)]. Due to the new tests scheduled for the summer

of 2012, this thesis will focus on the simplified Compact Separation process.

Differential equations

To model the Compact Separation system, the process has been divided into

control volumes. With this approach, a mass balance for each CV can be

expressed by using conservation of mass. The equation for conservation of
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Figure 2.2: Overview of the simplified Compact Separation process

mass can be found in [White (2006)], and are shown in Equation 2.1 [p.11]

below.

ṁ = win − wout (2.1a)

w = ρq (2.1b)

In Equation 2.1b [p.11], ρ is the density of the flow and q is volumetric

flow rate. To introduce gas-liquid separation into the process the conserva-

tion of mass was split onto two separate equation-sets. One set conserving

mass with regards to gas, and another with regards to liquids. The simplified

Compact Separation process can thus be described by four differential equa-

tions, shown in Equation 2.2 [p.12]. The equations are subscripted, where

the L stands for liquid, G is for gas; and 1 and 2 are separating between the

two CVs.
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ṁ1L = win1,L − wout1,L (2.2a)

ṁ1G = win1,G − wout1,G (2.2b)

ṁ2L = win2,L − wout2,L (2.2c)

ṁ2G = win2,G − wout2,G (2.2d)

The mass flow in the differential equations shown above consists of

different volumetric flows with different density. To solve the differential

equations above, knowledge about the quantity of gas and liquid in each

flow is needed. The fraction of gas in the flow will be expressed by the

gas volume fraction (GVF). The rest of the mass in the flow is defined as

liquid, which in turn provides the liquid volume fraction (LVF). The LVF is

therefore equal to 1 - GVF. The complete model dynamics for the Compact

Separation process is given in Equation 2.3 [p.12].

ṁ1L = ρL

[
(1− δ)qin − (1− α)q1 − (1− ν)q3 − (1− σ)q4

]
(2.3a)

ṁ1G = δρinqin − αρ1q1 − νρ1q3 − σρLq1 (2.3b)

ṁ2L = ρL

[
(1− α)q1 + (1− ν)q3 − (1− η)q5 − (1− µ)qout1

]
(2.3c)

ṁ2G = αρ1q1 + νρ1q3 − ηρ2q5 − µρ2qout1 (2.3d)

In Equation-set 2.3 [p.12], δ, α, σ, ν, µ and η are the GVFs of different

separations in the process. An explanation of the different separation degrees

are given in Table 2.1 [p.13], and are further discussed in Section 2.3 [p.15].

In its current form, Equation 2.3 [p.12] has several variables. These

variables are density, flow and separation degrees; and all of these variables
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δ – GVF in input to GLCC.

α – GVF in gas outlet of GLCC.

β – GVF in liquid outlet of GLCC.

σ – GVF in liquid outlet of PS.

ν – GVF in gas outlet of PS.

µ – GVF in gas outlet of DL.

η – GVF in liquid outlet of DL.

Table 2.1: List of separation variables

must be modeled to complete the process model. To be able to model the

flow between different control volumes, the pressure in the CVs must be

modeled. [Grimstad (2008)] models the pressure in the CVs using the ideal

gas law[White (2006)]. The ideal gas law for the pressure in CV number x is

given in Equation 2.4 [p.13], where R represents the universal gas constant1.

px = mxGRT

MVx

(2.4)

The pressure inside CV1 and CV2 can now be modeled. The tempera-

ture of the system is assumed constant, which is not a reasonable assumption

if the recirculation flows are taken into account, however, for the test rig,

this assumption is acceptable. The molar mass, M, of the gas has also been

assumed constant in the model. The average molar mass of a mixture can be

calculated from knowledge of the quantity of the different molecules in the

gas. By assuming this quantity is constant, the average molar mass of the

gas can be assumed constant. The volume of the gas, V, is modeled using

1R has the value 8.314J ·K−1 ·mol−1
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the relationship shown in Equation 2.5 [p.14]. VCV x is the total volume of

control volume number x.

VxG = VCV x −
mxL

ρL

(2.5)

With a model for the pressure in place, a model for the flow can be

expressed. [Grimstad (2008)] models the flow as a function of the valve

openings, as shown in Equation 2.6 [p.14].

q = C(u)

√√√√ ∆p
ρeff

(2.6)

In Equation 2.6 [p.14], C(u) is a function to restrict the flow based on

the current valve opening, which is represented by u. ∆p is the difference

in pressure between the CVs that the flow is running to and from. ρeff is

the effective density of the flow, and is a function of the separation degrees

presented in Table 2.1 [p.13], denoted by S in Equation 2.7 [p.14]. Cmax and

K are constants that define the characteristics of the valve, i.e. the maximum

flow rate and the minimum time used to open/close the valve[Grimstad (2008)].

C(u) = Cmax

(
Ku−1 −K−1

)
(2.7a)

ρeff = (1− S)ρL + Sρx (2.7b)

The mass of the gas in CV 1 and CV 2 is also used to model the density

of the gas. The model of the gas density is shown in Equation 2.8 [p.14].

ρx = mxG

VxG

(2.8)
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Disturbances

The variables δ, ρin, qin, pout1 and pout2 in Equation 2.3 [p.12] are distur-

bances. This means that these variables can not be controlled, and they

might be unpredictable. This is not entirely true for all the variables listed

above. The input flow, as well as the GVF of the input flow, can be controlled

on a certain level, since there must be some valves controlling the input to

the system. However, defining these variables as disturbances means that

the control system should assume that they are uncontrollable. This can

for example be because of simplifications to the modeling, or computational

complexity. Some variables, will be uncontrollable and uncertain, and must

be defined as disturbances, like ρin.

2.3 Separation profiles

The only variables left to be modeled in Equation 2.3 [p.12], are the sep-

aration profiles. Modeling of the separation profiles is not easy, and they

inhabit large nonlinearities. The separation profiles currently implemented

will be presented in this chapter.

GLCC

The separation profile of the GLCC2 is the simplest. When the flow rate

into the GLCC is low, the GLCC will function as a small gravity separator.

However, at high flow rates the separation degree of the GLCC will be more

crude, thus making the separation profile of the GLCC a function of the

fluid holdup time. The separation profile of the GLCC, based on the fluid

holdup time, is shown in Equation 2.9 [p.17]. This model was found in the

implemented computer code.

2GLCC: Gas-Liquid Cylindrical Cyclone
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(a) Liquid holdup time vs. liquid flow out and liquid level in GLCC

(b) Separation of gas and liquid vs. fluid holdup time

Figure 2.3: Separation profile of the GLCC
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α = 0.1 · log (30τgas) + 0.3 (2.9a)

β = −0.1 · log (30τliquid) + 0.7 (2.9b)

The holdup time will depend on the size of the GLCC, on the liquid

level in the tank, and on the liquid and gas flow out of the GLCC at a

given time. This way, a larger flow into the GLCC will give smaller holdup

time in the GLCC. A lower liquid level in the GLCC will also result in a

smaller holdup time, thus creating a cruder separation of liquid and gas.

Figure 2.3 [p.16] illustrates the liquid holdup time versus liquid level and

liquid flow out of the GLCC. This figure was created from Equation 2.9 [p.17]

and from the equations defining the fluid holdup time, found in the computer

code.

Phase Splitter

The separation profile of the PS3 is more complex and contains more vari-

ables. The separation in the liquid outlet of the PS is based on the inlet

conditions, which is the inlet flow and the GVF4 of the inlet flow. The GVF

of the liquid outlet will also depend on how much gas that is removed from

the inlet flow.

The separation in the gas outlet of the PS also depends on the inlet

conditions, but in a different manner than the liquid separation. The current

separation depends on the separation degree from the previous time step, as

well as the total inlet flow to the PS. The PS is designed to operate above

a specific operating point with regards to flow rate; below this operating

point, the PS will not be able to separate the gas and liquid properly in the

3PS: Phase Splitter
4GVF: Gas volume fraction
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gas outlet. The liquid separation will not be affected by this operating point

in the same manner. But since the PS is placed downstream from the GLCC,

which operates best at small flow rates, the PS will only experience a small

flow rate when the flow into the PS has a relatively low GVF. A small flow

rate into the PS will therefore cause the flows out of both the PS outlets to

contain mostly liquid. The controller must shut the valve between the PS

and the DL when this happens to prevent a degradation of the separation

through the DL – due to bad inlet conditions.

De-Liquidizer

The separation in the liquid outlet of the DL5 tank is identical to the

separation profile in the liquid outlet of the GLCC, presented in Equa-

tion 2.9b [p.17]. The liquid holdup time will, as with the GLCC, depend on

the size of the tank and on the liquid flow out of the DL, both in the gas

outlet and the liquid outlet.

In the gas outlet of the DL, the separation profile is calculated in a

similar way as the separation profile of the flow in the gas outlet of the

PS. The DL also has an operating point, and flows that falls beneath this

operating point will not be separated properly. The separation of the fluids

will also depend on the inlet flow and inlet GVF, as in the other separation

profiles.

The separation profiles for the PS and the DL is much more complex than

the separation profile for the GLCC. These separation profiles consist of

a large number of variables, and this makes a graphical representation of

these profiles hard. The modeling of the separation profiles are based on

experiments and tests outside the scope of this thesis and will therefore not

be discussed further.

5DL: De-liquidizer



PART II

Estimation and Control

Theory

Abstract – This part presents theory on the chosen

control strategy as well as theory on several nonlin-

ear observers. The first chapter discusses the back-

ground for the implemented controller and why an

observer must be introduced, while the next chapter

presents theory on NMPC. The last two chapters

present theory on nonlinear observers, with respect

to state estimation and parameter estimation.

Controlling nonlinear systems is one of the biggest challenges in modern con-

trol theory. Almost all physical systems are nonlinear in nature, however,

these systems are often linearized so the well known linear control theory

may be applied. Due to the desired high performance control of many mod-

ern industrial processes, pure nonlinear control systems are becoming more

19
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and more popular.

Nonlinear control methods are often more suited to handle physical

limitations and constraints than their linear counterpart. The reason for

this is that a constrained system will be nonlinear, even if the constraints

are linear themselves. Constraints are not always an important issue, but

they can also be crucial for the robustness and reliability of the controller.

Examples of this can be: An electro-motor having angular velocity limits, or

a tank with a constraining volume. To ignore these constraints in the design

of the controller, can in the worst case, lead to disastrous results.

A common problem with both linear and nonlinear control, is the issue

of attaining information about the internal states of a given process. In a

typical control system, some internal states can be measured, but it is often

too expensive or too hard to measure all internal states. In some cases it

might even be impossible.

This issue has led to the development of a branch of statistics and signal

processing called estimation theory. This is the theory of how to estimate

unknown states and/or parameters based on measurements, statistical data

and often a process model. As with control theory, estimators have both

linear and nonlinear versions. The Kalman filter and the moving horizon

estimator are among the most famous and popular estimators today.
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Chapter 3

Background

As noted in Chapter 2 [p.7], the test rig at SINTEF used a linear MPC so-

lution for control. The Compact Separation process is inherently nonlinear,

and therefore, it is desirable to implement a nonlinear controller. In Statoil’s

internal MPC tool, Statoil Estimation Prediction Tool for Identification and

Control (SEPTIC), it is currently implemented a nonlinear MPC algorithm,

but this controller, and the nonlinear separation profiles discussed in Chap-

ter 2 [p.7], have not been thoroughly tested. Nor has the controller been

tuned to satisfy the control objectives of the Compact Separation process.

Figure 3.1 [p.22] shows a block diagram of a typical control system

with an observer in place. Advanced controllers, such as the NMPC, re-

quires knowledge of all internal system states to be able to successfully

control the system. All the internal states of a process is normally not avail-

able to the controller, the sensors will only measure a subset of the states

or measure variables that are related to the states by some mathematical

model. To gain access to all states, some sort of observer must be imple-

mented with a model of the process. The observer does not need to have

feedback from the process1. If this is the case, a small deviation between

1This is much like sitting in a room with with a wall-clock, but no windows; trying to

predict the weather.



22 Part II. Estimation and Control Theory

Controller
(NMPC)

Process

Disturbances

(Compact Separation Process)

Observer
(Extended Kalman Filter)

u(t) y(t)

y(t)

x̂(t)

Figure 3.1: Overview of a typical control system[Steinshamn and Norgren (2011)]

the process model and the real process will cause the estimates to diverge

from the real values. Therefore, feedback of measurements are almost al-

ways a requirement if the estimates are to be used in combination with the

controller. However, using measurements are not without downsides. Mea-

surements are always influenced by noise of some sort. This noise might

for example be electric noise, caused by the transmission through copper

wires, or it might be surface disturbances in a tank which will influence

measurements of the liquid level. These problems have led to the develop-

ment of several observer schemes, that combine knowledge of the process

model and feedback of measurements, to get smooth and accurate estimates

of the internal states. Examples of observer schemes that use variations of

this method are the linear and nonlinear Kalman filter (KF) or the moving

horizon estimation (MHE), which is actually a dual problem2 of the MPC

problem[Tenny and Rawlings (2002)].

The current version of SEPTIC has an observer, but this observer is

not used for control of the process (the control system assumes perfect

knowledge of all states). The observers that were implemented during the

summer of 2011 are the unscented Kalman filter (UKF) and the extended

Kalman filter (EKF)[Steinshamn and Norgren (2011)]. The differences between these

two observer schemes, as well as a few other schemes will be presented later.

2For more information on dual problems visit en.wikipedia.org/wiki/Dual problem

http://en.wikipedia.org/wiki/Dual_problem
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Chapter 4

Nonlinear MPC

Since the 90s, there has been an increased interest in nonlinear control.

Many systems are inherently nonlinear in nature, and today’s industry re-

quires better control for economical and environmental purposes. The in-

formation in the current chapter has been found by reading the follow-

ing articles: [Findeisen and Allgöwer (2002)], [Findeisen et al. (2004)] and

[Marafioti et al. (2009)]. Nonlinear Model Predictive Control is a nonlin-

ear control scheme that has received a lot of attention in the recent years.

A reason for its success is its capability to handle the control problem in

real-time, as well as its simple handling of physical constraints.

NMPC uses a model of the process-plant, with a set of internal pro-

cess states, to predict the coming response of the open-loop system for a

given prediction horizon; this horizon is named Tp. The optimal input for a

given prediction horizon will be calculated from a control horizon, Tc ≤ Tp.

Note that the input is only optimal for that particular prediction horizon.

Depending on the size of the prediction horizon, the input may have large

deviations from the infinite horizon optimal input. The basic principle of

model predictive control is shown in Figure 4.1 [p.24]. In this figure the

control horizon is set equal to the prediction horizon, i.e Tc = Tp.

The first set of inputs calculated by the MPC will be used as inputs to
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Figure 4.1: The basic principle of MPC[Findeisen and Allgöwer (2002)]

the process. When new measurements are available, at time t+ δ, the MPC

will run the algorithm all over again and calculate a new set of inputs. δ is

the sampling rate of the controller.

Equation 4.1 [p.24] shows the general discrete time state space system.

xk+1 = f(xk,uk) (4.1a)

yk = h(xk,uk−1) (4.1b)

In Equation 4.1 [p.24], xk is the state vector, uk is the input vector and

yk is the measurement vector. With a basis in this discrete time system, the

nonlinear MPC optimization problem can be states as:
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minimize
u0,u1,...,unp−1

np−1∑
k=0

G (xk+1,uk), (4.2)

subject to:

xk+1 − f(xk,uk) = 0, k = 0, 1, ..., (4.3a)

cx (xk) ≤ 0, k = 1, 2, ..., (4.3b)

cu (uk) ≤ 0. k = 0, 1, ..., (4.3c)

If it was possible to use an infinite prediction horizon – and if there

were no model-plant mismatch or other disturbances, the input calculated

by the MPC could be applied to the open-loop system over the whole con-

trol horizon. In real applications, neither of these assumptions are generally

valid. Using an infinite prediction horizon is not possible when real-time

processing is required – as it often is in a real control system. Even though

many process models are developed before the real plant in industry, some

model-plant mismatch generally occurs. Different types of both measure-

ment and process disturbances are also common. Feedback is therefore a

necessary requirement in real applications.

A problem with NMPC using finite prediction horizon is stability. The

predicted open-loop and the real closed-loop behavior will be different, and

ideally, it is desirable to use a NMPC scheme which guaranties stability

regardless of tuning parameters. Several schemes have been proposed to

guarantee stability, and most of these schemes achieve this property by

adding suitable equality or inequality constraints to the standard NMPC

setup. An example of a scheme that can guarantee stability is the scheme

using a zero terminal constraint, or the scheme using a terminal region.
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These schemes work by forcing each open-loop solution to end in a region

where the system is stable, either a steady-state equilibrium point, or a

region of attraction. Even if the schemes presented above can guarantee

stability for the open-loop process model, this does not mean that the real

system will necessarily be stable if there where to exist some model/plant

uncertainties.

To address issues of robustness, at least three different NMPC schemes

have been developed. The first solution is the min-max formulation, which

modifies the cost function using the worst case disturbance. The second

possibility uses the H∞-problem in the in the NMPC framework, and the

last solution optimizes a feedback controller at each sampling time. The first

solution is very conservative, and might cause in-feasibility, since the worst

case disturbance must be considered at all times. The H∞-solution requires

much computational time, and the same goes for the third solution. When

disregarding the computational aspect, however, the third and last solution

is very attractive since it is less conservative than the other solutions.

The stability analyses presented above assumes that all of the states

are perfectly known. However, generally this is not the case, as previously

discussed. When dealing with linear systems, the separation principle states

that if the controller is stable and the observer is stable, then the combined

system is also stable. This principle is not valid when dealing with nonlinear

systems, and is a problem yet to be solved.
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Chapter 5

State estimation

As noted before, all internal states of a process might not be available to

the controller, or the measurements might be too noisy to be trusted in raw

form. In this case, some sort of state estimation or filtering is necessary. This

chapter will present a few observers, and their advantages and disadvantages

when it comes to state estimation combined with NMPC.

5.1 Extended Kalman filter

The Kalman filter and its nonlinear extension has been in use in the industry

since the 1970s and is still a popular state estimation tool. It has been

well documented through the years, and there exists a lot of experience on

the field of Kalman filtering. That fact and the simplicity of the nonlinear

Kalman filter is the reason for its great success. However, the EKF algorithm

is not without its disadvantages.

The principle of the EKF algorithm is shown in Figure 5.1 [p.28]. In the

prediction step, the Kalman filter uses the previous state to predict the next

state, and linearizes the nonlinear model to predict the covariance matrix.

The prediction step is shown in Equation 5.1 [p.28].
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Update:

Update state estimation

x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

Update estimation covariance

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T +KkRkKT
k

Predict:

Predict state

x̂k|k−1 = f(x̂k−1|k−1, uk)

Jacobian State Transition (ext. Kalman)

Fk−1 = ∂f
∂x

∣∣∣∣
x̂k−1|k−1,uk

Predict estimation covariance

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1

Gain:

Jacobian Observation (ext. Kalman)

Hk = ∂h
∂x

∣∣∣∣
x̂k|k−1

ŷk = h(x̂k|k−1)

Kalman gain

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)−1

Initialize:

Starting Kalman-loop

with initial values

x0 and u0

Input
yk,uk

Output
x̂k

Figure 5.1: The extended Kalman filter algorithm[Steinshamn and Norgren (2011)]

x̂k|k−1 = f(x̂k−1|k−1,uk), (5.1a)

Fk−1 = ∂f
∂x

∣∣∣∣∣
x̂k−1|k−1,uk

(5.1b)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (5.1c)

In Equation 5.1 [p.28], x̂k−1|k−1 is the old state vector estimate from the

previous time-step and uk is the input vector at the current time-step. x̂k|k−1

and Pk|k−1 is the a priori estimate of the state vector and the estimation

covariance respectively, while Fk−1 is the state Jacobian – based on the

old state vector estimate; and finally Qk−1 is the covariance matrix of the

process noise.
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ŷk = h(x̂k|k−1) (5.2a)

Hk = ∂h
∂x

∣∣∣∣∣
x̂k|k−1

(5.2b)

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1 (5.2c)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (5.2d)

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkKT
k (5.2e)

Equation 5.2 [p.29] shows the update step of the EKF algorithm. ŷk

is the estimate of the current measurement, while Hk is the observation

Jacobian. Rk is the measurement covariance and Kk is the Kalman gain.

yk is the current measurement vector, containing potentially noisy measure-

ments collected from different sensors. Last, x̂k|k and Pk|k is the a posteriori

estimate of the state vector and the estimation covariance.

The EKF scheme relies on linearization at each time step, to capture

the nonlinearities of the system. If, however, the system has large nonlin-

earities between time samples, the EKF scheme will not provide a good

prediction. The reason for this is that a lot of information about the process

is lost during linearization. As a result of this loss of information, the EKF

algorithm is not an optimal state estimator, however, the linear Kalman

filter is. Another problem with the Kalman filter is that it does not han-

dle physical constraints; neither hard, nor soft constraints. Hard constraints

might be negative mass or size of a tank, while soft constraints can be a de-

sired temperature or pressure range. Violating hard constraints can lead to

infeasible solutions in the controller and unexpected behavior of the closed-

loop system.

Due to the simplicity of the Kalman filter, and its superiority com-

pared to moving horizon estimation (MHE) when it comes to run-time
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Figure 5.2: Illustration of constrained EKF vs. UKF[Kandepu et al. (2007)]
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complexity, scientists have worked on solutions to the EKF’s drawbacks.

[Ungarala et al. (2007)] investigates an extension to the EKF algorithm that

allows the EKF scheme to deal with constraints. They compare their new

algorithm, the Constrained Extended Kalman Filter (CEKF), to the ordi-

nary EKF and to the MHE algorithm, and show that the CEKF will perform

similarly to the MHE, but the computational complexity of the CEKF are

only marginally bigger than the EKF and a fraction of the complexity of

the MHE.

5.2 Unscented Kalman filter

To deal with some of the drawbacks with the EKF algorithm, a new ex-

tension of the KF was proposed by [Julier and Uhlmann (1997)]. This new

scheme would address the issues with the linearization part of the EKF.

Local linearity is assumed when linearizing a nonlinear system. If this as-

sumption is violated, it can result in a unstable filter. The new scheme

would transform the information contained in the nonlinear model using a

set of points, called sigma-points. The mean and covariance of the nonlinear

model are captured precisely up to the second order[Julier and Uhlmann (1997)],

which is more accurate than the EKF scheme. This new scheme is called the

unscented Kalman filter (UKF), due to the nonlinear transformation called

the unscented transformation. The UKF algorithm also has its advantages

when it comes to implementation. There is no need to calculate the Jaco-

bian matrices, and therefore it can be easier to develop a numerically stable

estimator.

As noted in the previous section, the EKF algorithm can be extended

to incorporate physical state constraints. [Kandepu et al. (2007)] modified

the UKF scheme to handle constraints as well. Figure 5.2 [p.30] shows a

graphical representation of how the EKF and the UKF captures the mean
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and covariance information. Both the constrained EKF and the constrained

UKF algorithm uses so-called “clipping” to handle constraints. “Clipping” is

originally from the way EKF handles constraints; the estimates are calcu-

lated and then checked against the constraints to see if any of the constraints

are violated. If they are, the estimates are projected onto the boundary. The

constrained UKF scheme works in a similar fashion, but an important dif-

ference is that the estimates are not clipped by the UKF scheme, instead

the sigma-points are projected onto the constraint boundary. This way, the

covariance will capture information about the constraints, and this will lead

to a more accurate estimation. “Clipping” is illustrated in the last step in

Figure 5.2 [p.30].

The last thing to note about the UKF scheme versus the EKF is the

difference in run-time complexity. The run-time complexity of the EKF

scheme will depend on the way the EKF algorithm is implemented. If the

linearization is done analytically, then the EKF will be faster than the UKF.

However, if the EKF is implemented using numerical linearization, as it often

is when it comes to complex systems, the run-time complexity of the UKF

will be comparable to the run-time complexity of the EKF.

5.3 Nonlinear moving horizon estimation

Moving horizon estimation have received much attention as an estimator in

combination with MPC. This is mainly because of the constraint handling

in MHE. MHE is one of the only estimators that handles constraints when

computing the estimates. The main downside to MHE schemes are the com-

putational complexity. MHE is a dual problem of the MPC, and just like

the NMPC, nonlinear moving horizon estimation (NMHE) requires the so-

lution of a nonlinear programming problem at each time step. Since NMHE

is often used in combination with NMPC, the computational complexity of
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these algorithms together are often too restrictive and the sampling time of

the control system can become too long.

The NMHE is a sub-optimal estimator, like the nonlinear KF’s, that

uses a finite moving window of both current and old measurements to up-

date the state and the error covariance estimate[Johansen (2011)]. As with the

NMPC algorithm, the NMHE performance will depend on the size of the

window; the longer the history, the better the estimation. A longer window

will on the other hand mean a bigger optimization problem, and thus, the

computational complexity increases. If computational complexity was not an

issue and unlimited memory was possible, the NMHE would be an optimal

estimator. However, the NMHE can approximate an optimal estimator by

tuning the arrival cost penalties[Tenny and Rawlings (2002)]. The arrival cost is a

way to incorporate the information contained in the deleted measurements;

an important issue when it comes to implementing NMHE.

5.4 Particle filters

Particle filters, also known as Monte Carlo methods, tries to estimate the

probability density function (PDF) rather than the mean and the covari-

ance. The UKF algorithm can be considered as a type of particle filter, but

differs from the normal particle filters in some aspects. An example of a

difference between the UKF and the normal particle filters is that the UKF

is deterministic, while the normal particle filters uses randomly generated

noise distributed by the known process noise PDF. Therefore “the parti-

cle filter can be considered a generalization of the UKF”[Simon (2009)]. Given

enough particles, the particle filter will outperform the UKF, since the par-

ticle filter estimates the PDF, and the estimate of the PDF will converge to

the real PDF when the number of particles goes to infinity.
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[Daum (2005)] claims that for low dimensional problems the compu-

tational complexity of a well designed particle filter has approximately the

same complexity as the EKF. However, for systems with high dimension,

the computational complexity of the particle filter will become restrictive.
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Chapter 6

Model identification

Even though many processes are modeled before they are even built, as with

the Compact Separation process, the modeling seldom captures a complete

and entirely accurate picture of the process. The reason for this is that some

components may be difficult to model, the dynamics might be unknown or

the behavior of different modules change from setup to setup. Moreover,

the process dynamics of certain components might even change somewhat

with time, and leave the model inaccurate. Therefore, to make the complete

system more robust and to allow a more accurate control, it can be preferable

to identify such uncertain process dynamics on-line.

6.1 The dual estimation problem

As discussed in the previous chapter, the system states generally need to

be estimated. The problem of estimating both the states and the model

parameters are often referred to as the dual estimation problem. Dual esti-

mation works by alternating between using the model to estimate the states,

and using the states to estimate the model. Basically, this process can be

performed in two ways, either iterative or sequentially[Wan and Nelson (2001)]. A

block diagram of the two methods of performing dual estimation can be

seen in Figure 6.1 [p.36].
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Figure 6.1: Two approaches to the dual estimation problem[Wan and Nelson (2001)].

The iterative scheme works by estimating the states using the cur-

rent model and the available measurements, and in the next step, the

states and the measurements are used for updating the model. According to

[Wan and Nelson (2001)], the iterative scheme is restricted to off-line appli-

cations. On the other hand, the sequential scheme works both for on-line and

off-line applications – and works by using the individual measurements to

estimate both states and model at the same time. The majority of research

on dual estimation has been focused on linear models, but some papers have

researched the possibility of using the EKF algorithm to dual estimation,

such as [Khodadadi and Jazayeri (2011)], [Wan and Nelson (1997, 2001)],

and [Wan et al. (2000)]. [Wan et al. (2000)] compare the EKF to the UKF

with respect to dual estimation.

The dual EKF algorithm works by running two extended Kalman filters

in parallel. One of the EKF’s estimates the states, based on the old states

and the old parameters, while the other EKF estimates the parameters using

the same information. Both EKF’s uses measurements for the correction step

of the algorithm. A block diagram representation of the dual EKF algorithm

is shown in Figure 6.2 [p.37].

Another version of a Kalman filter to solve the dual estimation problem
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Figure 6.2: The dual EKF algorithm[Khodadadi and Jazayeri (2011)].

is the joint EKF algorithm. This version uses only one extended Kalman

filter, and the state vector are the combined state and parameter vector.

The resulting state vector zk is shown in Equation 6.1 [p.37].

zk =
[

xk

wk

]
(6.1)

This method will result in a difficult optimization problem, caused by

the high coupling between the states and the parameters. This was the

algorithm implemented in the Compact Separation process during the sum-

mer project of 2011[Steinshamn and Norgren (2011)]. However, this algorithm suf-

ferers from potential convergence problems[Khodadadi and Jazayeri (2011)]. These

convergence problems are reduced with the dual EKF algorithm. Further-

more, the parameter estimating Kalman filter can be turned off when the

states have converged; reducing the computational complexity of the entire

system. Another solution to reduce the computational complexity is to in-

crease the sample time of the second EKF, since the parameters are assumed

to be constant.

The parameter estimation part of the dual EKF, are very similar to the

ordinary EKF, shown in Chapter 5 [p.27], however, with some modifications.
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The discrete time-update equations for the parameter filter are shown in

Equation 6.2 [p.38]. The “noise” covariance is chosen as Rr
k = (λ−1− 1)Pwk

,

where λ ∈ (0, 1] is referred to as the forgetting factor[Wan and Nelson (2001)].

This way, the past data will be weighted less than new data. The equations

given below are taken from [Khodadadi and Jazayeri (2011)].

ŵ−k = ŵ−k−1 (6.2a)

P−wk
= Pwk−1 +Rr

k−1 = λ−1Pwk−1 (6.2b)

And the measurement update equations are shown below, in Equa-

tion 6.3 [p.38].

Kw
k = P−wk

(Cw
k )T

(
Cw

k P
−
wk

(Cw
k )T +Re

)−1
(6.3a)

ŵk = ŵ−k +Kw
k εk (6.3b)

Pwk
= (I −Kw

k C
w
k )P−wk

(6.3c)

εk and Cw
k are given in Equation 6.4 [p.38].

εk =
(
yk − Cx̂−k

)
(6.4a)

Cw
k = C

∂xk

∂w

∣∣∣∣∣
w=ŵk

(6.4b)

6.2 Observability

Observability theory on linear systems is well known, and given a linear

system on the state-space form, it is easy to show if the system is glob-
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ally observable or not. For theory on linear systems and observability, see

[Hespanha (2009)]. Observability means that, given an arbitrary sequence

of outputs from a system, it is possible to uniquely define the current state

of the system.

Observability is generally a requirement to be able to estimate the un-

measurable states of a system, but checking the observability conditions of a

nonlinear system is more tedious work. One approach to study observability

of a nonlinear system, is to study the observability of the linearized system

in the same manner as with linear systems. However, since the linearization

is only valid in a region around the point the nonlinear system is linearized

about, the observability analysis can only provide information about local

observability. How large the region this analysis is valid in, will depend on

the structure of the nonlinear system.

To study global observability, the local observability property must

be studied at all the points the nonlinear system is linearized about. This

can result in a very large complexity of the analysis. For a system with nx

states and nu inputs, the dimension of the space where observability should

be considered is nx +nu. With k number of samples of each state and input,

this will result in a total of knx+nu points where observability should be

checked[Hammervold (2011)].

6.3 Parameter identifiability

There might be many uncertain parameters in a process model, however, it

might not be possible to estimate them all. To be able to identify all the

uncertain parameters, it is a necessary condition that the measurements

contain enough information. Equation 6.5 [p.40] shows an arbitrary nonlin-

ear system, where x is the state-vector, u is the input-vector, while p is the

vector containing the uncertain parameters.
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ẋ = f (x,u,p) , (6.5a)

y = h (x,u,p) . (6.5b)

In a system with nx states, ny measurements and np parameters, this

will give a total of nx +ny equations, and since the states of the system can

be counted as unknown variables, we are left with a grand total of nx + np

variables. Basic mathematics tells us that if we try to solve an equation-

set with more unknowns than equations, we will not get a unique solution.

Thus, the number of measurements, ny, must be greater than or equal to

the number of parameters, np, if we want to estimate the parameters.

The parameter identifiability analysis in a nonlinear system is complex,

but by choosing np ≤ ny the parameters will always be identifiable, as long

as the Equations-set 6.5 [p.40] are solvable for the chosen parameters. The

information in this section was found in [Hammervold (2011)].



PART III

Control Strategy

Abstract – This part presents the set-ups used to

configure the NMPC algorithm. The first chapter

introduces some of the tuning variables available in

SEPTIC as well as some old configurations used

to set up the controller in earlier work. The next

chapter introduces the new control strategy devel-

oped during this project and the cases used to test

the control algorithm.

When it comes to implementing and tuning controllers, there are many

aspects that need careful consideration, such as physical and/or desired

constraints that the control system must abide. Physical constraints on in-

puts can cause the controller to become unstable, if not accounted for when

designed. Physical constraints cannot be violated in real life. For example,

41
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a pipe have only a given diameter – a pump has only a certain amount

of effect. For example: A nuclear power plant is overheating and a pump

is providing cold water to cool the plant down. The pump if operating at

its limit (physical constraint), and there is therefore nothing one can do to

make it deliver more water. The system becomes unstable at this point.

Desired constraints on the other hand, can be violated in real life,

however, violation of these constraints might lead to damage of equipment,

reduced productivity or even in extreme cases, loss of human life. This brings

us to another aspect that must be analyzed when implementing a control

system, namely priorities. It is obvious that constraints paramount to the

safety of human life and equipment should be prioritized above constraints

that, if violated, only will lead to reduced production. In order to fulfill

this requirement, priorities can be divided into two groups, soft and hard

constraints. Soft constraints are the constraints that can be violated without

causing damage to equipment or humans; while hard constraints must be

held in order to ensure that severe faults does not occur.

Not all control schemes have the capability of assigning priorities, and

in these cases other strategies must be taken in order to assure the safety

and continued operation of the system. This choice of control configuration

will from now on be referred to as the control strategy.
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Chapter 7

Old Control Strategy

Choosing a control strategy that will fulfill all hard constraints at all times

– while considering that all the desired criteria’s are met, is not always

easy. A NMPC control scheme can have hundreds or thousands of tuning

variables, depending on the complexity of the plant to be controlled. Iden-

tifying all hard constraints might not even be that simple, and sometimes

all constraints of a system can be hard constraints.

The performance of a controller can often be affected by the current

region of operation. A control scheme that is good in one region, might

be inadequate in other regions. The Compact Separation process is meant

to function on a wide variety of operating points: Cases that might prove

especially difficult in this process can include shut-down, start-up and hy-

drodynamic slugging1.

The main purpose of the Compact Separation process is to separate the

gas and liquid from one multiphase input flow, into two single phase flows.

The gas will be boosted to the surface using a single phase compressor, and

must therefore contain as little liquid as possible, while the liquid will be

boosted to the surface using a single phase pump, and must contain as little

gas as possible. The single phase pump can tolerate about 3% gas in the

1Hydrodynamic slugging is explained in Chapter 10 [p.75].
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liquid flow, and the compressor can handle about 3% liquid in the gas flow.

If the GVF into the compressor or pump is below/above these limits, this

will cause unnecessary wear and tear on the equipment, and will reduce the

lifespan of the units.

This can indicate that the separation degrees into the pump and into

the compressor should be considered as hard constraints. On the other hand,

if the separation profiles are prioritized above the desired pressure in the two

control volumes, and the only way to comply with the separation constraints

is to decrease (or increase) the pressure in one of the CVs in such a way that

no flow will flow through the system, then this might be even worse than if

the separation constraints are violated for a short time. Therefore, both the

differential pressure and the separation profiles will be considered as hard

constraints, but care must be taken when tuning the algorithm. Avoiding

liquid overflow in the GLCC and in the DL tank are also very important,

and should be considered as hard constraints.

The control strategy from [Grimstad (2008)] is listed in Table 7.2 [p.46],

and the control strategy used on the linear MPC, that was used for control-

ling the first tests on the test rig at SINTEF, is shown in Table 7.3 [p.48].

Before explaining the different control strategies, the SEPTIC MPC imple-

mentation must be highlighted.

7.1 SEPTIC tuning variables and priorities

SEPTIC contains a wide selection of tuning parameters. These parameters

include priorities, penalties and high and low constraints. All variables are

assigned a parameter type, such as manipulated variables (MVR), control

variables (CVR), disturbance variables (DVR) and trend variables (TVR).

The different types of variables can be assigned different types of constraints.

For example, MVRs can be assigned ideal values or move penalties, while
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1. Respect MVR rate of change limitations.

2. Respect MVR high/low limitations.

3. Respect hard CVR limitations.

4. Sort CVR/MVR specifications after the defined priorities.

5. Solve with respect to the specifications with lowest priorities first. If

several specifications have the same priority, penalties and weight-

ing will be used to find the most important specification.

6. Lock the solution with respect to CVR set point and MVR ideal

value, and possibly expand the CVR limitations.

7. Start on point 5 again, until all specifications are handled.

Table 7.1: SEPTIC priority handling

CVRs can be assigned set points or set point deviation penalty. The weight-

ing of the set point deviation is shown in Equation 7.1a [p.45] and the weight-

ing of the input change is shown in Equation 7.1b [p.45]. Fulf and Span are

tuning parameters to optimize the behavior of the control algorithm.

w =
(

Fulf · (predicted value− set point)
Span

)2

(7.1a)

w =
(

Move penalty ·∆u
Span

)2

(7.1b)

The priority scheme in SEPTIC will handle priorities in a certain man-

ner, where hard constraints and physical limitations will be met first. The

way the steady state solver deals with priorities are shown in Table 7.1 [p.45].

In the priority scheme used by SEPTIC, the lowest number (0) is the highest
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Priority Description Penalty

0 ui Actuator constraints

1 p1 CV 1 pressure (High/Low) 1000

hs GLCC tank liquid level (High/Low) 1000

∆p12 Differential pressure between CV 1

and CV 2 (High/Low) 100

∆p23 Differential pressure between CV 2

and CV 3 (High/Low) 100

2 qout1 Compressor anti-surge (Low) 10

qout2 Pump minimum flow (Low) 10

3 p1 CV 1 pressure (Set point) 10

p3 CV 3 pressure (Low) 10

hs GLCC tank liquid level (Set point) 1

4 u5 Gas recirculation (Ideal value) 10

u6 Liquid recirculation (Ideal value) 10

5 u7 Control Valve (Ideal value) 1

Table 7.2: NMPC configuration in [Grimstad (2008)]
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priority, while the highest number (99) is the lowest priority. The priority hi-

erarchy, shown in Table 7.1 [p.45], was found in the SEPTIC documentation

provided by Statoil.

7.2 Grimstad (2008) NMPC configuration

The control strategy of [Grimstad (2008)] is shown in Table 7.2 [p.46]. The

min-max constraints of the actuators will always have the highest priority,

due to the priority scheme in SEPTIC, shown in Table 7.1 [p.45]. Next,

the control scheme will try to avoid damage to the equipment used in the

Compact Separation process, by considering the CVRs with the highest

priorities first. The high/low limits on the pressure is to keep the process

operating within a desired operating area. The liquid level in the GLCC

must have upper and lower bounds to avoid emptying or overflowing on

bursts of liquid or gas bubbles. To ensure flow downstream the Compact

Separation process the differential pressures between the different CVs must

be positive, and above a certain level. The minimum flow of the pump and

the compressor anti-surge constraints have a lower priority than the pressure

and liquid level of the GLCC. This was justified by [Nilsson (2008)] to be due

to the automatic shut-down procedure of the pump and compressor, which

would shut them down before they ended up in a dangerous situation.

All the constraints discussed above are crucial for the operation of the

Compact Separation process. Next step in the control scheme are the set

points and the low level for the third control volume: These constraints will

only be fulfilled if all the constraints with higher priority are fulfilled. Last

is the ideal value of three of the control valves, to ensure that these stay

completely closed when it is desired.

It is noteworthy that the control strategy in Table 7.2 [p.46] have ne-

glected the high/low bounds on the GVF of the flow into both the pump
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Priority Description Penalty

0 ui Actuator constraints

1 σ GVF in liquid flow out of PS (High) 100

σ GVF in liquid flow out of PS (Set point)

ν GVF in gas flow out of PS (Low) 100

ν GVF in liquid flow out of PS (Set point)

2 p1 CV 1 pressure (High/Low) 10

p1 CV 1 pressure (Set point)

p2 CV 2 pressure (High/Low) 10

p2 CV 2 pressure (Set point)

Table 7.3: NMPC configuration on the SINTEF test rig

and the compressor. This control strategy assumes that the separations will

be adequate over the whole operating area, however, this is not a reasonable

assumption.

The control strategy presented in [Grimstad (2008)] is not directly ap-

plicable to the lab setup, due to the simplification of the process, and can

therefore not be directly compared with the control schemes developed dur-

ing this project. The control strategy of [Grimstad (2008)] is presented here

to show a NMPC strategy that already has been tried, and what aspects

must be considered when implementing a new control strategy.

7.3 SINTEF test rig MPC configuration

The actual MPC configuration used on the SINTEF test rig is shown in

Table 7.3 [p.48]. Due to the simpler structure of the test rig versus the
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CVR High constraint Low constraint

∆p12 4 0.5 [bar]

p1 15 9 [bar]

p2 12 8 [bar]

hs 2 0 [meter]

hdl 2 0 [meter]

GVF in qout1 97%

GVF in qout2 3%

Table 7.4: Control objectives in the Compact Separation process

complete Compact Separation process, the control strategy is also much

simpler. Some new control variables have been introduced, however. The

separation degrees of the different flows have been included as CVRs, and

as can be seen from Table 7.3 [p.48] the control variables regarding the

separation profiles have the highest priority – except for the hard constraints

of the actuators. The pressure in the two control volumes are also set as

CVRs.

The linear MPC configuration presented in Table 7.3 [p.48] is simple,

but has certain drawbacks. The configuration presented in Table 7.2 [p.46]

is more complex, and contains more CVRs. Some of these CVRs, as well as

some of the MVRs, are not present in the simplified Compact Separation

process (illustrated in Figure 2.2 [p.11]). Both the third control volume and

the recirculation pipelines have been removed, and therefore all CVRs and

MVRs belonging to these components are irrelevant to the case discussed

here. This includes the CVRs ∆p23 and p3 and the MVRs u5 and u6. Both

the pump and compressor are also removed and therefore the CVRs qout1
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Figure 7.1: Simulation of the SINTEF test configuration
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and qout2 can be ignored.

Due to the fast dynamics of the process compared to the desired sam-

pling time of the NMPC at 1 second, it is desired to control the liquid level

of both the GLCC and the DL tank using PID-controllers with a higher

sampling rate. Since it is not desirable to have two competing controllers

controlling one valve, both the valve on the liquid outlet of the PS and

the valve on the liquid outlet of the DL will be controlled solely by PID-

controllers. The NMPC will therefore only have three MVRs left to control

pressure and separation degrees in the Compact Separation process.

Table 7.4 [p.49] lists the control objectives in the NMPC algorithm.

The differential pressure, ∆p12, has an important low value to ensure flow

downstream the Compact Separation system. Too high differential pressure

might cause a too large flow, resulting in a degradation of the separations

through the in-line units. It is desirable to control the pressures in the sys-

tem to stay within a certain operating point, therefore, high and low limits

on the pressures have been introduced. The last control objectives that need

to be satisfied are the maximum/minimum GVF of the flow into the pump

and compressor. Neither pump, nor compressor are present in the test rig,

however, gas-liquid separation is the main objective of the Compact Separa-

tion process. Since the recirculation pipelines should not be used to maintain

the necessary separation degree, the simplified Compact Separation process

should be able to perform as specified, without the recirculation pipelines.

This means that the recirculation pipelines, when implemented, should only

be used to ensure a minimum flow to the pump and the compressor.

In Figure 7.1 [p.50], some results from the simulation of the linear MPC

configuration is shown. In this case the input to the GLCC was a slugging-

case, with varying GVF and flow rate. When studying Figure 7.1 [p.50], some

issues can be noted. The set point on σ, the separation in the liquid outlet
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of the PS, is set to 5% gas in the flow, and the highest GVF recommended

for the pump was, as shown in Table 7.4 [p.49], 3%. The set point on 5%

results in a average GVF of slightly more than 5%, and peaks almost up

to 7%. A solution might be to use a lower set point, but this can result in

more liquid in the gas outlet of the PS. The separation in the liquid flow

out of the DL is, on average, below 3%, but this flow contributes so little

compared to the liquid flow from the PS it is almost negligible.

The separation in the gas outlet of the DL does not have a set point,

like the set point in the liquid outlet in the PS. The separation degree have

some short transients to below 96%, with the recommended GVF into the

compressor being 97%. These transients are, however, short, and the average

separation is close to 100%, so the gas flow out of the Compact Separation

process is sufficiently good.

Another problem with the configuration shown in Table 7.3 [p.48], is the

lack of a set point on the differential pressure. During the tests at SINTEF,

the Compact Separation process was used in a loop, and recirculated the

fluids that were separated. This resulted in troubles with controlling the

pressure in the Compact Separation process, and it was therefore desired to

only control the differential pressure over the Compact Separation process.

If the differential pressure is not controlled, this can result in a very high

differential pressure, causing the test rig operator to become a very unhappy

man or woman due to the high flow rates. Also, for optimal separation, the

flow rates should be as small as possible, and therefore a high differential

pressure in undesirable.
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Chapter 8

New Control Strategy

The new control strategy developed through this project has been divided

into three different configurations. The main configuration is for steady-

state control and slugging cases, i.e. the normal operation of the system,

while the other two are for start-up and shut-down sequences. Start-up and

shut-down are two cases which are very different from the normal operation

of the Compact Separation process, and since these two cases can be more or

less planned, a new control strategy has been developed to meet the specific

requirements of these cases. In the next sections, the idea and configuration

behind each strategy is explained.

8.1 Steady-state and slugging

Ideally, the slugging sequence used to test the control strategy would be

a square pulse, with varying amplitude and duty-cycle. This would be the

ideal test sequence, since this is the worst-case slugging sequence that can

possibly occur; and if the controller can handle this type of slugging, the

controller will be able to handle all real slugging cases. However, using a

square pulse as slug-case caused the controller to crash. The stiff dynamics

of the system and the rapid change in the disturbance proved too much for



54 Part III. Control Strategy

(a) GVF of the flow into the Compact Separation process

(b) Flow rate into the Compact Separation process

Figure 8.1: Slugging sequence used to test the NMPC
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the ODE-solver1 to handle. The slug sequence used to test the controller in

this project is illustrated in Figure 8.1 [p.54]. The change in both the GVF

of the input flow and the rate of the input flow are ramped up and down

to a specified maximum and minimum value. The minimum time that the

ODE-solver could handle was found to be between 15 and 20 seconds, and

the maximum and minimum GVF possible was found to be 0.7 and 0.3.

The NMPC configuration for the slugging and steady-state case is listed in

Table 8.1 [p.56]. In all the cases presented below, the liquid level in both the

GLCC and in the DL tank are controlled by PID-controllers. That is: u4 and

u7 are controlled by PID-controllers, even if the controller being discussed

is NMPC.

8.2 Start-up

When the Compact Separation process unit is installed, there will be a need

for a controlled start-up procedure, and to control the system to its steady-

state operating area. After a shut-down of the complete system there will

also be a need to re-start the system; since start-up is a very extraordinary

and tough case from a control perspective, this case is addressed separately.

Start-up of the Compact Separation process can cause problems if done

too fast, because all valves are initially closed and there is a physical limi-

tation to how fast a valve can be opened; therefore, overflows or controller

instabilities can occur if the flow rate into the system is ramped up too

fast. The separation degree out of the system is still an important control

objective and should stay within the specified constraints, even through

this special and challenging case. Three different start-up procedures are

presented in the next subsections.

1ODE - Ordinary differential equation.
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Priority Set pt. High/low Penalty Fulf Span

0 ucompressor - 1/0 1 1 0.1

u1 - 1/0 1 1 0.1

u3 - 1/0 2 1 0.1

1 ∆p12 (low) - 0.5 100 1 0.5

∆p12 (high) - 4 10 1 0.5

σ (high) - 0.03 100 10 0.1

ν (low) - 0.75 10 1 1

2 p1 (low) - 9 10 1 1

p1 (high) - 15 10 1 1

p2 (low) - 8 10 0.5 0.5

p2 (high) - 12 10 0.5 0.5

3 p1 (set point) 12 - 10 1 1

p2 (set point) 10 - 10 0.5 0.5

4 ∆p12 (set point) 2.0 - 10 1 0.5

Table 8.1: New NMPC slugging configuration

Start-up using PID-controllers on all valves

This configuration does not use the NMPC at all. The NMPC is turned

off, and each valve in the Compact Separation process is controlled by an

individual PID-controller. The advantages of this method is the simplicity of

the controller, and since the start-up procedure is a controlled disturbance,

the behavior of the PID-controller is predictable. The PID-controller can be

implemented in hardware, and is therefore a possible backup solution if the

NMPC should fail for some reason.

Care must be taken when tuning the PID-controller, since a change in

one of the valves will affect the rest of the system. In [Fjalestad et al. (2010)]
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ucompressor Controlled by a set point on 10 bar on CV 2.

u1 Controlled by a set point on 12 bar on CV 1.

u3 Controlled by a set point on 3% on σ.

u4 Controlled by a set point on 0.5 meters on hdl
2.

u7 Controlled by a set point on 0.7 meters on hs
3.

Table 8.2: PID-controller start-up configuration

it was proven that a too fast start-up or shut-down procedure would cause

instabilities in the PID-controller. The input to the system should there-

fore be ramped up over a certain amount of time when starting up the

system. An overview of the internal PID-controller configuration is given in

Table 8.2 [p.57].

Start-up using NMPC on a planned start-up procedure

This subsection presents the start-up procedure using the same NMPC con-

figuration as the one used to handle slugging, shown in Table 8.1 [p.56]. The

planned start-up sequence is the same as the one used for the start-up with

PID-controllers. The advantage of using this procedure is that there is no

need to change control strategy, only a start-up sequence must be initiated.

Start-up using a modified NMPC configuration

The configuration presented here, is a modified NMPC configuration. The

flow rate into the system, qin, which is a disturbance in the original NMPC

configuration, is now implemented as a manipulated variable. This way, the

2hdl: Liquid level in DL tank.
3hs: Liquid level in GLCC.
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Priority Set pt. High/low Penalty Fulf Span

0 ucompressor - 1/0 5 1 0.1

u1 - 1/0 2 1 0.1

u3 - 1/0 5 1 0.1

1 qin (ideal value) 0.04 - 1 10 0.01

∆p12 (low) - 0.5 100 1 0.5

∆p12 (high) - 4 10 1 0.5

3 p1 (low) - 9 10 1 1

p1 (high) - 15 10 1 1

p2 (low) - 8 10 0.5 0.5

p2 (high) - 12 10 0.5 0.5

4 ∆p12 (set point) 2 - - 1 0.5

5 p1 (set point) 12 - - 1 1

p2 (set point) 10 - - 0.5 0.5

Table 8.3: Modified NMPC start-up configuration

NMPC can control the start-up and plan it optimally, based on the current

constraints and set points. Using this method one can hope to achieve a

safer and quicker start-up than a planned disturbance can achieve. The

controller could also be able to handle unexpected disturbances during start-

up. Table 8.3 [p.58] shows the configuration for the modified NMPC start-up

sequence.

8.3 Shut-down

Like the start-up case, shutting down the Compact Separation process is

very hard from a control perspective. During the complete shut-down se-
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quence, both pump and compressor will need a supply of sufficiently pure

liquid and gas, and there must be no overflow. It is also desirable to leave

the system in a safe state, so that the system can be started back up again

without any complications. It might be necessary to shut the process down

fast, if an emergency rises, but a too fast shut-down might cause problems

with overflow and unstable controllers, as in the start-up case previously

discussed. The next three subsections presents three different shut-down

procedures.

Shut-down using PID-controllers on all valves

This configuration uses PID-controllers on all valves to shut the system

down, just like in the PID-controller start-up procedure presented above.

An overview is given in Table 8.2 [p.57]. The shut-down sequence is a pre-

determined sequence, and must be planned with respect to how big changes

in the input the controller can handle.

Shut-down using NMPC on a planned shut-down pro-

cedure

This approach uses the same configuration used for the slugging case, given

in Table 8.1 [p.56]. The planned shut-down sequence is the same as the one

used for shut-down with PID-controllers.

Shut-down using a modified NMPC configuration

As with the start-up case, an approach to a fully automated shut-down

procedure was tried. The disturbance variable qin is implemented as a MVR,

and the NMPC can shut the system down in a controlled manner. To be able

to shut the system down, the ideal value on the flow rate into the system

has to be set to zero.
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Priority Set pt. High/low Penalty Fulf Span

0 ucompressor - 1/0 2 0.33 0.1

u1 - 1/0 2 0.27 0.1

u3 - 1/0 5 0.55 0.1

1 qin (ideal value) 0 - 1 10 1

∆p12 (low) - 0.5 100 1 0.5

∆p12 (high) - 4 10 1 0.5

3 p1 (low) - 9 1000 0.1 1

p1 (high) - 15 10 0.1 1

p2 (low) - 8 1000 0.5 0.5

p2 (high) - 12 10 0.5 0.5

4 u1 0 - 2 0.27 0.1

u3 0 - 5 0.55 0.1

5 ucompressor 0 - 2 0.33 0.1

Table 8.4: Modified NMPC shut-down configuration

It is desirable to shut the system down as fast as possible, because the

reason for shut-down can often be an emergency. However, the system must

not be shut down faster than it can handle, and the time used to shut down

the Compact Separation process can be changed by tuning the penalty of

deviating from the ideal value. Table 8.4 [p.60] shows the configuration for

the NMPC shut-down sequence.



PART IV

Simulation Study

Abstract – This part presents the results from the

work performed during this project. The first chap-

ter studies the results from the evaluation of the

different observers implemented. The next chapter

will show results from the slugging case using the

implemented NMPC configuration, while the last

two chapters will present the results from the three

different start-up and shut-down procedures.

Simulation is the process of experimenting with a designed model. The

model can be either a representation of a real, physical system; or an imag-

inary one. To develop a model for a given process, assumptions are often

made to simplify the dynamics of the system. This will, however, make the

model less accurate, and it will differ from the process it is intended to de-
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scribe. The purpose of simulating is to understand how a system works, and

to understand the dynamics involved. One might simulate to verify that the

developed model captures all aspects of a real life process, or to understand

how a process might react to certain disturbances or manipulations.

Simulation is a word used in several different fields, and in this context

simulation is defined as a computer simulation. This means that a computer

will run a developed mathematical model, with a specified set of simulation

variables, and through this, calculate predicted future values of the states

in the process. The Monte Carlo method is counted as one of the first types

of computer simulation. The Monte Carlo method is a method that uses

a series of randomly generated samples to represent behavior that is hard

to model. The Monte Carlo method was invented by John von Neumann,

Stanislaw Ulam and Nicholas Metropolis during their work on the Man-

hattan Project in the 1940s. The project intended to simulate a nuclear

detonation.

In addition to verification and understanding of physical models, sim-

ulations are extensively used to test whether a control system will perform

as intended, to find bugs and errors in a program. It is often very important

to find the majority of errors and to do tuning of a control system on a sim-

ulator to make the control system ready to be used on the physical system.

The reason for this is that a control system that does not work on a real

system, can often lead to both structural damage and injury to humans.
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Chapter 9

Observer performance

Earlier, in Chapter 1 [p.3], it was mentioned that during the summer project

of 2011, two different observers was implemented in SEPTIC, but these

observers were not used for control of the Compact Separation process,

since this was not a part of the assignment. To evaluate the performance

of the implemented observers, both observer schemes were tested on three

cases, namely slugging, start-up and shut-down. The results from the start-

up and the shut-down, using states estimated by each implemented observer,

can be found in Appendix A [p.119]. The slugging sequence, presented in

Figure 8.1 [p.54], has been used through the first two sections of this chapter

to test the observer performance. The observers have also been tested on

an off-line process data set, taken from the test at SINTEF mentioned in

Chapter 1 [p.3], to evaluate how good the performance of the two different

observers are when the real process model is different from the model used

in the observers.

9.1 State estimation

The most important task of the observer is to accurately estimate the inter-

nal states of the system model and to estimate disturbances, so the controller

can base its decisions on the right information. If inaccurate estimates are
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Figure 9.1: States estimated using EKF
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delivered to the controller, this can lead to non-optimal control of the sys-

tem, or in worst case – instability. Figure 9.1 [p.64] shows the real process

states, as well as two of the real disturbances on the inlet of the system,

versus the states and disturbances estimated by the extended Kalman fil-

ter. Three of the disturbances, namely the density of the input flow and

the pressures on the two outlets, are excluded from this figure, since these

disturbances are assumed constant. The same results using the unscented

Kalman filter are presented in Figure 9.2 [p.66].

These plots show that the estimates of the states are good for most

of the states, however, some states are more sensitive to noise than others.

Gaussian white noise has been added to the ideal measurements, to sim-

ulate the effect of measurement noise. The noisy measurements are shown

in Figure 9.1 [p.64] and in Figure 9.2 [p.66] as the measured value. The

magnitude of the noise varies from measurement to measurement, since the

different sensors will deliver different quality of measurements. For example,

the multiphase meters used for measuring σ, ν and µ1 are more accurate

than the sensors used to the measure the liquid level in the GLCC and the

DL tank. One reason for this is that the liquid measurements are influenced

by waves in the tank, which makes the measurements noisy. Other reasons

can be the quality of the sensor in use. The slug-sequence, which is the same

as the one used in Chapter 10 [p.75], starts after 100 seconds. The reason

for this, is to give the estimates time to converge before the hard control

task starts.

From Figure 9.1 [p.64] and Figure 9.2 [p.66] it is obvious that the state

that was most sensitive to noise was the mass of the liquid in control volume

12. The mass of the gas in the same CV is also somewhat sensitive to noise,

1An overview of the separation profiles can be found in Table 2.1 [p.13].
2xm1L and xm1G is the mass of the liquid and gas in CV 1 respectively, while xm2L and

xm2G represents mass of gas and liquid in CV 2.
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Figure 9.2: States estimated using UKF
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but not as much as the mass of the liquid. One reason for this sensitivity

is that this state depends on several noisy measurements, like the flow into

the system and the liquid level; but the state itself is unmeasurable. The

mass of the gas and liquid in the second CV was, however, not affected the

same way.

When comparing the two observers, we can see that the UKF has more

accurate estimates than the EKF, but it has the same sensitivities in the

same states as EKF. During the simulation of the slug case, the UKF used

about 0.1 seconds per run in average, with a worst case of 0.25 seconds;

while the EKF used an average of 0.03 seconds per run and had a worst

case run-time of 0.1 seconds. Both the accuracy differences and the run-time

differences are consistent with the theory presented in Part II [p.19].

9.2 Parameter estimation

As discussed in Chapter 6 [p.35], it is desirable to estimate uncertain model

parameters on-line. Therefore, the implemented observers have the capa-

bility of estimating the parameters of the uncertain separation profiles. For

example, uncertain model parameters can be the constants in the separation

profiles for the GLCC, Equation 2.9 [p.17], repeated below for simplicity.

α = 0.1 · log (30τgas) + 0.3

β = −0.1 · log (30τliquid) + 0.7

By rewriting the equations for α and β, and by adding variables to

the equations that can be used as states in the observer, the parameters of

Equation 2.9 [p.17] can be estimated.



68 Part IV. Simulation Study

Figure 9.3: Estimates of uncertain model parameters
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α = a1 · log (30τgas) + a2 (9.1a)

β = −b1 · log (30τliquid) + b2 (9.1b)

Using this many parameters proved to be a too difficult task for the

observers. The observer implemented in the summer project used 17 un-

certain parameters, and 18 measurements. As discussed in Chapter 6 [p.35]

the number of estimated parameters should always be less than the number

of measurements, but the observers were still unable to estimate the pa-

rameters. This could be because the measurements do not contain enough

information to estimate all the parameters, or the coupling between the

state- and parameter estimation makes the optimization problem too diffi-

cult. Therefore, the new parameter estimation scheme only used a scaling

of the separation profiles as the uncertain parameters, thus only 6 uncertain

parameters were necessary. Changing the uncertain parameters is a way to

check if the observer will be able to estimate the states even if the model

used in the observer is not a perfect model of the process, as has been

assumed until this point.

Figure 9.3 [p.68] shows the estimation of uncertain model parameters

during a slugging case using EKF. As can be seen from this figure, the pa-

rameter estimation does not work perfectly. Most parameters converge, but

one of the parameters, the scaling of σ, diverges. Figure 9.4 [p.70] illustrates

how the state estimates evolve during the parameter estimation simulation.

From this figure it can be seen that all the state estimates converge to the

real state estimates, even if the scaling of σ diverges. This illustrates the

problem that may arise due to the high coupling between the state and

parameter estimation problem. Parameter estimation using UKF was also

attempted, but a numerical issue made this impossible. This problem will
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Figure 9.4: Estimated states with uncertain parameters
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be discussed in Chapter 13 [p.95]. Due to this problem, only EKF was used

in the next section.

9.3 Off-line process data set

So far, the model used as process has been the same as the model used

for estimation. Even if the observer is able to handle some model/plant

parameter mismatch, this does not mean that the observer will be able to

handle the actual plant. The plant will have more model uncertainties, and

the only data available to estimate the internal states and the process model

parameters are noisy measurements.

Figure 9.5 [p.72] shows the observer performance with off-line data from

the test rig at SINTEF as the measurements. In these plots, the values on

the y-axis have been removed. The reason for this is to mask the test data,

since these data are classified internal at Statoil, and the important aspects

of this case are the smoothing and tracking capabilities of the observer.

Figure 9.5 [p.72] shows the performance of the EKF on the off-line data

from the test rig. In order to get these results, the parameter estimation

scheme had to be altered yet again. The scaling of σ was replaced with an

offset parameter. Offset parameters were also introduced to remove bias on

the estimates of the input flow rate and GVF. Figure 9.6 [p.73] shows the

parameter estimation during the run on the off-line data set. Neither of the

scaling parameters converge to a specific value during the 500 seconds long

data set, but most of the states track and smooth the measurements well.

The state that inhibit the worst tracking performance is µ, but it gets

closer in the end of the simulation. Using a constant scaling does not work

well either, as can be seen from Figure 9.7 [p.74], which shows a run on the

off-line data without parameter estimation (but the bias estimation of the

disturbances were still used).
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Figure 9.5: States estimated with EKF from offline data
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Figure 9.6: Parameters estimated with EKF from offline data
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Figure 9.7: States estimated with off-line data without parameter estimation
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Chapter 10

Case: Slugging

To test the implemented control strategy and to check if all constraints and

control objectives can be held, even in tough cases, the control system must

be tested using worst case scenarios. Hydrodynamic slugging, henceforth

known as slugging, is a phenomenon that may arise in two-phase pipelines.

When waves on the liquid surface grow to a height large enough to fill the

pipe completely, a slug is formed. This occurs when gas flows at a higher

rate than the liquid through the pipe. Figure 10.1 shows an illustration of

a hydrodynamic slug.

Figure 10.1: Forming of a hydrodynamic slug

Picture found on http://www.scribd.com/doc/50803045/2/Hydrodynamic-Slugging

http://www.scribd.com/doc/50803045/2/Hydrodynamic-Slugging
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Figure 10.2: Slugging: NMPC with ideal states
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Slugging is a tough case for the control algorithm, yet even through

long slug cases, the algorithm should provide adequate control of the pro-

cess. This means that even if the slugging goes on forever, the liquid tanks

should not overflow and the GVF in the input flow to both the pump and

compressor should be sufficiently low/high, such that the equipment is not

damaged. The configuration used by the NMPC algorithm in the slugging

case is shown in Table 8.1 [p.56], and the slugging sequence used to test the

control strategy is shown in Figure 8.1 [p.54].

Figure 10.2 [p.76] illustrates the simulation of the slugging case. Only

the states assumed important for the discussion of the NMPCs performance

during the slug case is presented, due to a large number of measurements

and states. During the duration of the slug case, the NMPC manages to

deliver sufficiently pure gas and liquid flows out of the system. Both the

liquid flow out of the PS, as well as the gas flow out of the DL, which are the

main contributors to the liquid and gas flow out of the Compact Separation

process, have certain transients in the GVF. However, these transients are

short and the average GVF into both the pump and compressor are well

within the desired control objectives, discussed in Chapter 7 [p.43]. The

GVF of the liquid flow out of the DL will also contribute to the total liquid

flow out of the Compact Separation process, but the flow rate in this output

is very small compared to the liquid flow out of the PS. The GVF of the

total liquid flow out of the system will therefore be mainly determined by

the liquid flow out of the PS. As long as the GVF of the liquid flow out of

the DL is below 5% on average, the effect of this flow on the total liquid

flow will be neglected.

Figure 10.3 [p.78] illustrates a simulation with a slightly modified con-

figuration. The linear MPC configuration used a set point of 5% on the GVF

in the liquid flow out of the PS, σ. This was tested using the NMPC as well,
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Figure 10.3: Slugging: NMPC with estimated states and set point on σ
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but with a set point of 3%. In this plot, the NMPC uses estimated states

from the observer, and before the slugging case started, this configuration

resulted in large oscillations. The reason for this is that the estimates had

not converged to the real values at the start of the simulation. Due to the

problems with this configuration, the set point on σ was replaced with a

high limit on 3%. This removed the oscillations, and resulted in a better

liquid quality on average. The results from the simulation with the slug-

ging configuration, where the NMPC uses estimated states from the EKF,

is presented in Figure 10.4 [p.80].
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Figure 10.4: Slugging: NMPC with estimated states and high limit on σ
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Chapter 11

Case: Start-up

Chapter 8, Section 8.2 [p.55], discussed the different configurations that

have been tested to start the Compact Separation process – the simulation

results from the different start-up configurations will be presented through

this chapter.

The first control scheme tested was the basic PID-controller configu-

ration, presented in Table 8.2 [p.57]. The results from this simulation are

presented in Figure 11.1 [p.82]. From this figure it is obvious that the PID-

controllers successfully manages to start the Compact Separation process,

within the desired control objectives. In this start-up sequence, the flow rate

into the system was ramped up from 0 to 0.04m3

s
in 20 seconds. While the

flow rate was ramped up, the GVF into the system was changed. This was

to simulate that, at the start of the sequence, the input flow was mostly

gas and the liquid flow was increased until a certain point, before the gas

was ramped up and the GVF ends at 50, i.e. 50 percent gas and 50 percent

liquid in the input flow. This might not reflect the start-up at the test rig,

where the gas must be started before the liquid[Kristiansen et al. (2010)], but pure

gas into the system caused numerical issues with the ODE-solver.

The next start-up procedure tested was the NMPC with a planned

start-up sequence. The results from this simulation is presented in Fig-
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Figure 11.1: Start-up using internal PID-controller
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ure 11.2 [p.84]. In this chapter, only the results with ideal states are shown,

but in Appendix A [p.119], the results from the start-up procedures using

estimated states are listed.

The planned start-up sequence used in this case was the same start-

up sequence as the one used for the PID-controller start-up. As can be

seen from the simulation results, the start-up was fast, and well within the

constraints. 200 seconds after the start-up sequence begun, the system has

reached steady-state.

The last start-up sequence, that was tested, was the fully automated

NMPC start-up. The results are presented in Figure 11.3 [p.85]. The fully

automated start-up procedure used longer time than the planned start-

up. The start-up sequence could be tuned to go faster, but this resulted

in numerical issues in the controller, and it was therefore hard to test a

faster start-up. The GVF in the gas flow out of the DL experiences several

overshoots with respect to the control objective, however, these overshoots

are short and should not be considered to be a problem.
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Figure 11.2: Planned start-up using NMPC with ideal states
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Figure 11.3: Start-up using NMPC with ideal states
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Chapter 12

Case: Shut-down

As with the start-up case, several control configurations have been consid-

ered for shutting the Compact Separation process down. These configura-

tions were discussed in Chapter 8, Section 8.3 [p.58].

The first shut-down procedure that was tested was the simple PID-

controller configuration, presented in Table 8.2 [p.57]. The shut-down se-

quence used in this case was, as with the start-up, a preplanned sequence,

where the flow rate into the system was ramped down. The GVF was also

varied to simulate a possible shut-down procedure, where the gas flow into

the system was reduced first. Then the liquid flow was reduced to a mini-

mum (the solver did not manage zero liquid flow into the system), and the

GVF was held constant at this level while the flow rate was ramped down

the last part. The results from this case is presented in Figure 12.1 [p.88].

In order to get a sufficiently good shut-down, the shut-down sequence had

to be longer than the start-up. While start-up could be managed in 20 sec-

onds, the shut-down procedure had to be 50 seconds to be able to maintain

differential pressure between the two control volumes. However, with a 50

seconds shut-down sequence, the shut-down of the process was performed

within the desired control objectives.

The next case tested was the planned NMPC shut-down procedure.
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Figure 12.1: Shut-down using PID-controller
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The shut-down sequence for this case is the same as for the PID-controllers.

The results from the NMPC shut-down are presented in Figure 12.2 [p.90].

During the shut-down, the NMPC uses ideal states for control. The results

from the shut-down procedure using estimated states are illustrated in Ap-

pendix A [p.119]. The NMPC manages to shut the Compact Separation

process down successfully, and is within the desired constraints at all times

– except for two transients in the GVF in the gas flow out of the DL.

A fully automated procedure was tested for shut-down as well, and the

results from this simulation are presented in Figure 12.3 [p.91] for NMPC

using ideal states for control. As with the fully automated start-up pro-

cedure, this method uses longer time to shut the system down than the

planned sequences. The system is not completely shut down until 2 minutes

have passed. The GVF in the liquid flow out of the PS has an overshoot

that lasts for about 30 seconds. The reason for this is that the separation

degrees are not used as CVR, since this caused numerical problems with the

ODE-solver.
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Figure 12.2: Planned shut-down using NMPC with ideal states
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Figure 12.3: Shut-down using NMPC with ideal states
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PART V

Aftermath

Abstract – The last part in this thesis will discuss

the results presented in part IV [p.61], problems

that have emerged during the work on this project

and what the next step in the work on the Com-

pact Separation process might be. The first chapter

presents the discussion of results, while the next

and final chapter will make some concluding re-

marks and suggest further work.

93
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Chapter 13

Discussion

Through this thesis the Compact Subsea Separation Unit Statoil is currently

developing, has been presented. The Compact Separation project has re-

cently gone through a test demonstrating the concept, and the implemented

control system was evaluated. Both basic control using PID-controllers and

a linear MPC algorithm was tested. It was concluded that model predictive

control was the preferred control strategy. The linear experimental models

used to represent the gas-liquid separation proved inadequate for predicting

future behavior of the process. Since the linear MPC approach underper-

formed, the next step was to assess the nonlinear version of MPC. To justify

the more complex control structure of the NMPC, a more accurate and ro-

bust control must be provided. Unlike the linear MPC, the nonlinear MPC

requires an observer to gain access to all internal process states and to re-

duce noise on the measured states. This thesis has therefore focused on

implementing a nonlinear model predictive control strategy that uses the

states and parameters estimated by an observer.

13.1 Process model

During the process of implementing the nonlinear MPC, several bugs in

the implemented nonlinear separation profiles, as well as some bugs in
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the process model, were discovered and mended (and some new bugs were

most likely introduced). These bugs include divide-by-zero and wrongly im-

plemented equations. Exemplifying: In Equation 2.7b [p.14] ρL’s and ρx’s

knowns were interchanged, i.e. (1− S) and S had switched places.

Another error was gas/liquid conservation through the Phase Splitter

and the De-liquidizer. Conservation of mass is used to conserve gas and

liquid in the different control volumes, but not through the in-line separation

units. Through the PS this was not as problematic as through the DL, but

the separation degrees on the outlet of the PS would not properly reflect the

inlet properties of the flow. In the DL, the lack of gas/liquid conservation

would cause the liquid gathered in the DL tank to flow back up and out of

the gas outlet of the DL. This is not possible, due to the structure of the

DL.

13.2 Observer performance

The implemented observers have not been used for control during the sum-

mer project. Nor have the observers been tested on different process distur-

bances, like slugging, start-up and shut-down sequences. The observer must

provide accurate estimates in the whole region of operation of the process.

The two implemented observers have a different structure, as discussed in

Chapter 5 [p.27], and will therefore exhibit different properties and perfor-

mance.

State estimation

Results from the state estimation using the extended Kalman filter and the

unscented Kalman filter is shown in Figure 9.1 [p.64] and Figure 9.2 [p.66]

respectively. As discussed in Chapter 9 [p.63], the estimation of the states
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using both observer schemes was generally good for most of the states. The

hardest state to estimate was the mass of the liquid in CV 1. The mass of

the gas in CV 1 was also a bit sensitive to noise, but not as much as the

mass of the liquid. One of the reasons for the sensitivity in estimation of the

liquid mass, was that this state was estimated from measurements of the

liquid level in CV 1. This measurement was very noisy, since measurements

of the liquid level was not only affected by electrical noise in the sensor, but

also from waves on the liquid surface. Figure 13.1 [p.98] shows a simulation

using significantly less noise on the liquid level in the GLCC. The noise

was reduced from 10% to 2%, and the estimates of the liquid mass was

significantly improved. The estimates of the mass of the gas in CV 1 does,

however, have some overshoots, but this can be due to noise on another

parameter.

The masses in the different CVs are not used directly by the controller

to calculate new inputs since neither of these states are used as CVRs –

meaning that this sensitivity will not affect the controller that much. It

will, however, make the estimation problem harder; and is the reason for

the over-/undershoots in σ and ν that can be seen in both Figure 9.1 [p.64]

and Figure 9.2 [p.66].

Plots of the different start-up and shut-down procedures are presented

in Appendix A [p.119], and from these results it can be seen that there is

not much difference when it comes to controlling the Compact Separation

process using either EKF or UKF as the applied observer. Since the con-

troller is meant to run in real time, the relatively high run-time complexity

of the UKF compared to EKF could be reason alone to choose the EKF.

Also worth noting, is that the PID-controllers use measurements that

are not filtered by the observer. Therefore, the PID-controllers have only

used the ideal measurements throughout this project. In a real application,
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Figure 13.1: States estimated using EKF, less noise on liquid level in GLCC
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the measurements used by the PID-controllers could be filtered by a Kalman

filter, but since the PID-controllers are running every 0.1 seconds and the

NMPC are running once each second – the Kalman filter might be unable

to meet the time constraints of the PID-controllers. Another possibility

could be to filter the measurements using a low-pass filter or another simple

filtering algorithm.

Parameter estimation

Figure 9.3 [p.68] shows the result of trying to estimate the unknown model

parameters using EKF. All parameters, except for the scaling of σ, con-

verged during one slug-sequence simulation. At the end of the simulation

the estimated states had also converged to the real process values, as can

be seen from Figure 9.4 [p.70]. Even the GVF in the liquid flow out of the

PS, σ, converged – even when parameters actually diverged.

Different observer setups to solve the dual estimation problem was dis-

cussed in Chapter 6 [p.35], and it was noted that the observers implemented

in SEPTIC uses a so-called joint Kalman filter algorithm. This method es-

timates states and parameters using only one Kalman filter. The drawbacks

of this was a high coupling between the states and the parameters, and an

algorithm that could suffer from potential convergence problems. This might

be an explanation for the difficulty in estimating both the parameters and

the states – a possible solution could be to use the dual Kalman filter algo-

rithm, discussed in Chapter 6 [p.35]. This algorithm uses one Kalman filter

to estimate the states and one to estimate the parameters. This could lead

to a smaller run-time complexity, since the state estimating Kalman filter

will have fewer states, and the parameter estimating Kalman filter can run

with a slower frequency, even on its own processor – if so is desirable. This

scheme would also allow tuning of the two filters separately, which might
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reduce the parameter estimation’s sensitivity in the tuning parameters –

which also was a problem.

Estimation using off-line process data

Figure 9.5 [p.72] shows the results from the simulation where off-line process

data has been used to update the observer. Without parameter estimation

the observer was unable to track and smooth the measurements. The reason

for this is the model/plant mismatch and trusting the model too much in

the estimation. However, trusting the measurements too much would cause

very noisy estimates.

Figure 9.6 [p.73] illustrates the parameter estimation during the same

simulation as the state estimation discussed above. In order to get a good

estimation, parameters estimating the bias had to be introduced on both

the flow rate into the system as well as the GVF in this flow.

In Figure 9.7 [p.74] the parameter estimation has been turned off, ex-

cept for the bias estimation on the input flow rate and GVF. The constant

parameters used in this simulation were taken from the last values in the

parameter estimation shown in Figure 9.6 [p.73]. The observer is not able

to provide decent state estimates during this run, meaning that a different

parameter estimation scheme should be chosen. The reason for this is that a

good parameter estimation scheme should provide an estimate of the model

parameters, not adjust the model to fit at the given time. This might not

be possible if the structure of the real process is not similar to the model.

Scaling of the GVF of the liquid flow in the PS outlet turned out to

provide too poor estimates. Therefore, a parameter estimating the bias was

introduced instead. From Figure 9.6 [p.73] it can be seen that the estimate of

the σ-parameter has the same shape as the measurement of σ. This indicates
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that the model of this separation profile is not a good reflection of the real

process model.

Only the EKF was used on the off-line data as well as for parameter

estimation during simulations, due to a numerical problem causing the whole

application to crash when trying to estimate the states using UKF. This

problem is further discussed in the subsection below.

Numerical evaluation

The implemented observer usually inhibits good numerical properties, but

some issues must be addressed. The implemented observers are uncon-

strained and in certain cases, like in the initial start-up of the filter, the

estimates can be outside the region of allowed values. This can cause the

whole SEPTIC-application to crash. This mostly happened during the ini-

tial steps, but there is no guarantee that this cannot happen at any given

time.

Another issue with the observers are a crash that may happen at any

given time during the simulation. The reason for this crash was not found

before the end of the project and has therefore not been fixed. During the

summer project, an ODE-solver, different from the one used by SEPTIC to

solve the MPC-problem, was implemented to run the model in the Kalman

filter. This ODE-solver does not seem to be as robust as the solver used by

SEPTIC and has been found to be the most likely reason for the observer

crashing. The UKF algorithm was more sensitive to this problem than the

EKF algorithm.

The ODE-solver used by the Kalman filters does not have the capability

of iteration limits. This can potentially cause the observer to run forever –

if it runs into a especially difficult case.
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The numerical properties of the ODE-solver used in the NMPC was

much more robust, even though this ODE-solver had problems when chang-

ing set points or disturbances too fast. Another problem was that not all

cases could be simulated, such as start-up and shut-down using pure gas at

the start/end of the sequence.

13.3 Control system performance

The control strategy was developed with a basis in the linear control strategy

shown in Table 7.3 [p.48]. Several different control strategies were attempted

during the work on this thesis, but the strategy that seemed to work best

was the strategy shown in Table 8.1 [p.56] – which is a modified version of

the old strategy. The main difference is the new control variable, namely

the differential pressure between the two CVs. In a real application, the set

points and the high and low constraints on pressure are important, because

it is desirable to stay near a certain operating point. However, the test rig is a

closed loop system where the gas and liquid separated through the Compact

Separation unit are combined and recirculated again. This makes it more

convenient to let the Compact Separation unit “follow” the pressure of the

input to the rig. The differential pressure over the test rig could therefore

become very large, which in turn would make the job hard for the operator

of the test rig to control the feedback loop of gas and liquid. Actually,

with respect to the gas-liquid separation, it would be desirable to minimize

the differential pressure over the Compact Separation process, since a very

small flow through the system would provide the best separation of gas and

liquid. At very small flow rates, however, the production would be small –

which is not desirable. If we think about future applications with pump and

compressor in place, a certain minimum flow would be required to operate



Chapter 13. Discussion 103

the system as well. Therefore, a minimum differential pressure between the

different CVs are required.

Slugging

The results from the simulation study with the slug-case is presented in

Chapter 10 [p.75] and the slug-sequence used to test the control system is

shown in Figure 8.1 [p.54]. As mentioned earlier, it was not possible to use

a square-pulse slugging sequence since this caused numerical problems in

the ODE-solver. These numerical issues could also arise by rapid changes in

the valve opening or by a too large change in set point. Therefore, when a

change in the set point was required, this could be solved by ramping the set

point up to the desired value. The change in valve openings could be reduced

by punishing the use of the manipulated variables in the control strategy,

thus allowing short-frequent disturbances to just pass through. Changes in

disturbances are not generally something that can be controlled, but to

simulate the slug-case, the disturbance had to be ramped up/down as well.

In the figures in Chapter 10 [p.75] the GVF of the output flows are

plotted, along with other information. From these figures, it can be seen

that the controller is able to handle a long slug sequence, both by using ideal

states and by using states estimated by the observer. Using states estimated

by the observer did, however, pose some restrictions on the choice of control

strategy. The controller may become unstable due to inaccuracies in the

estimates, and it is important to choose a control strategy that minimizes

the probability of this happening. Figure 10.3 [p.78] illustrates a possible

outcome where the controller becomes unstable due to inaccurate estimates.

To solve this problem the high priority set point on σ at 3% was changed

to a high priority high limit at 3%. This resulted in a more robust control
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strategy, and the average GVF in the liquid flow out of the PS where also

lowered.

All the separations presented in Chapter 10 [p.75] experience certain

transients. These transients occur when the total flow rate into either the

De-liquidizer or into the Phase Splitter falls beneath a certain operating

point. This happens since both the PS and the DL are designed to operate

at a certain level, and when the flow rate into one of these units drops below

this operating point, the quality of the separation of the unit decreases

significantly. The control system uses a few seconds to adjust the valves

when this happens – to compensate for the poor quality of the separation.

Start-up

The second case used to test the controller performance was the start-up

strategy. The control strategy used in the slugging case was tested to start

the Compact Separation process up from zero input flow and with all valves

closed, to a desired working area. A preplanned start-up sequence was used

to ramp up the input of the system, as discussed in Chapter 11 [p.81]. A

PID-controller scheme was also tested to start up the system, using the

same start-up procedure as the one used by the NMPC algorithm. Fig-

ure 11.1 [p.82] shows the result from the planned PID-controller start-up,

while Figure 11.2 [p.84] shows the result from the planned start-up us-

ing NMPC with ideal states. Results from the start-up case, using states

estimated by the observers, are shown in Appendix A [p.119]. These two

schemes does not show too much differences; both controllers comply with

the desired control objectives, also when the NMPC uses estimated states.

In both the planned start-up control schemes, the input to the systems are

ramped up in 20 seconds. Ramping up the input faster than this caused nu-

merical problems for both the PID-controller and the NMPC. It is desirable
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to start the system as fast as possible – to maximize the production, but not

faster than the control system can handle. In the two cases discussed above,

the system reaches steady-state after about 200 seconds after start-up was

initiated.

A modified control scheme was also tried to start the Compact Sepa-

ration process up from zero input flow. The results from this simulation is

shown in Figure 11.3 [p.85] for NMPC using ideal states. This control strat-

egy performs within the given constraints, except for a few peaks – but the

time used to start the system up using this controller is about 120 seconds.

It was hard to avoid numerical problems with this configuration. Therefore,

the GVF of the input flow could not be used as a manipulated variable in

addition to the flow rate into the system – as was desired.

Shut-down

As with the start-up case, three different shut-down configurations were

tested and are presented in Chapter 12 [p.87]. Both of the planned shut-down

sequences, be it PID-controlled or NMPC, worked according to the specifica-

tions. However, the shut-down sequences could not be executed faster than

50 seconds – without causing numerical problems. The planned shut-down

sequences also worked well when using estimated states in the NMPC, al-

though the transients in the GVF in the gas flow out of the DL had a longer

duration when the NMPC used states from the EKF; as can be seen from

Figure 12.2 [p.90] compared to Figure A.5 [p.124] and Figure A.6 [p.125].

The planned shut-down with NMPC using states estimated by the UKF

actually had one less transient than the ideal case. The differences between

the ideal case and between the two observers, comes from the delay in the

estimates when a change occurs.
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Figure 12.3 [p.91] shows the modified NMPC shut-down configuration

for ideal states. This configuration uses about 150 seconds before the sys-

tem is completely shut-down; it was very hard to avoid numerical issues.The

configuration was also extremely sensitive to changes in penalty on the devi-

ation from the desired value on the valves – which was set to zero. A small

change in this penalty could cause a too fast or too slow shut-down of a

valve, which could cause the entire shut-down to fail. As with the start-up

case, the shut-down sequence was unable to use the GVF of the input as

MVR due to numerical problems.

A last thing worth noting about the fully automated shut-down and

start-up procedure, is that to get the start-up and shut-down to work, the

high and low limit on the separation of the flows out of the PS had to be

removed. These control objectives were held most of the time nonetheless,

but a disturbance on the input could cause this to change. Due to these

limitations and due to the numerical sensitivity of the ODE-solver when

using this strategy, it seems that the more robust start-up and shut-down

sequence would be the planned NMPC or PID-controller start-up and shut-

down. The PID-controller scheme is simple, however, the NMPC scheme

would already be used for the normal operation of the plant – and model

predictive control is preferred among operators due to the higher human-

to-machine interface.
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Chapter 14

Conclusions and further work

The complete Compact Separation process has been simplified to match the

test rig used to demonstrate the concept of Compact Separation. Thus, mak-

ing this thesis focus on the simplified Compact Separation process. However,

the requirements for the test rig are still the same as for the complete sys-

tem. Therefore, the simplified Compact Separation process should provide

good separation – even during large process disturbances.

The performance of the implemented observers have been evaluated,

and both the observers are able to estimate states with sufficient accuracy.

However, some filtering should be provided on the liquid level measurements:

Both with respect to the PID-controllers and the increase in accuracy this

can provide. Too much noise can make the estimates noisy and unreliable,

as have been proved in Chapter 9 [p.63].

The extended Kalman filter has also been successfully tested to track

and smooth measurements from an off-line data set from the test rig and

provided feasible estimates for the unmeasurable states. Unfortunately, the

unscented Kalman filter was highly sensitive to a numerical problem with

the ODE-solver used by the observers, and tests on the off-line data could

not be performed using this observer scheme.

Parameter estimation has been tested on both the off-line data set
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and through simulations using EKF. Even though the parameter estima-

tion scheme did not work optimally, it proved to be crucial with respect

to estimation of states on the off-line data set – due to the model/plant

mismatch.

The implemented NMPC configuration was tested on several different

process disturbances, like start-up, shut-down and slugging. The NMPC

configuration proved adequate and performed well on all the tested distur-

bances. The modified NMPC configuration was successfully used for start-up

and shut-down, but in its current state, it has proved to be less robust than

the normal NMPC configuration. Thus, the suggested normal NMPC con-

figuration can be used for normal operation, including slugging sequences,

and start-up and shut-down using preplanned ramping of the input gas and

liquid flow.

14.1 Further Work

This section will present the problems with the implemented algorithms and

models as they are today, and suggest further work to improve the Compact

Separation process’ control algorithm.

Model adjustment and parameter estimation

As discussed in Chapter 13 [p.95], the implemented parameter estimation

scheme was not optimal; the parameters did not converge to a constant

value representing a parameter defining the real process. Therefore, these

estimated parameters would not provide a good representation of the model,

if the parameter estimation was turned off, and the last values of the pa-

rameter estimation was used as the model parameters. A different setup,

possibly with an increased number of parameters, should be implemented.
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The model of the separation in the liquid flow in the outlet of the PS

should be revised, as this model seemed to be the model that deviated most

from the real process.

Filtering of measurements

The liquid level PID-controllers used ideal measurements for control. In a

real application, the PID-controllers will only have access to noisy measure-

ments, meaning some sort of filtering must be performed. Using the filtered

measurements as input to the Kalman filter might also help reduce the noise

on the mass of the liquid level in CV 1.

Observer implementation

Since the ODE-solver used in the observer have been found to be the most

likely reason for the crashes of the observer, the ODE-solver should be

changed. The fact that this ODE-solver does not have the capability of

an iteration limitation supports the decision to change it, since it can lead

to unacceptable behavior if the solver runs into a difficult case and is unable

to deliver estimates to the controller.

The other problem that could cause the observer to fail, is its inability

to constrain the states. In some cases, the estimates would be outside the

feasible region, and this could cause the observer to fail. Therefore, imple-

mentation of a constrained observer should be considered.
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Reflection

Through this project I feel I’ve done more than just expand my

theoretical skills. I feel I’ve learned how much trouble a small

error can provide and how frustrating it can be when nothing

works: But yet, the experience and feeling of solving a problem

by never giving up – well worth every hour.

The dictionary is the only place where success comes

before work.

– Mark Twain
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Appendices

The appendix includes additional results not di-

rectly required in the discussion performed through

the thesis. All the results presented in the appen-

dices, as well as in the rest of the report, can also

be found in digital form on the CD attached on

page vii.
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Figure A.1: Planned start-up using NMPC with estimated states from EKF
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Figure A.2: Planned start-up using NMPC with estimated states from UKF
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Figure A.3: Start-up using modifed NMPC with estimated states from EKF
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Figure A.4: Start-up using modifed NMPC with estimated states from UKF
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Figure A.5: Planned shut-down using NMPC with estimated states from EKF



Appendix A. Additional plots 125

Figure A.6: Planned shut-down using NMPC with estimated states from UKF
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Figure A.7: Shut-down using modifed NMPC with estimated states from EKF
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Figure A.8: Shut-down using modifed NMPC with estimated states from UKF
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