
Diesel-Electric Generator Load
Optimization

Andreas Carlsen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: May 2014

Norwegian University of Science and Technology

Preface

This assignment has been written for the company Metso
Automation AS with the task of developing a load optimization
module for diesel-electric generators in the marine industry.
This module will delivered as part of an ongoing project.

The optimization module has been developed in Java and
integrated with the Metso DNA system using the engineering
tools within this system. The overall safety of the system has
been assured by implementing several safety measures.

I would like to thank Metso Automation for providing me with
required information/data as well as an office. A special
thanks to Lars Svaasand, Stein Østby and Jens-Petter Nyland
for their guidance and to Professor Tor Onshus for regular
telephone meetings and guidance during the project.

Assignment text

A ship with diesel-electric propulsion has a several marine
diesel generators creating power on a high-voltage
switchboard. The specific fuel oil consumption (SFOC) of a
generator is dependent on the load. In this assignment the
system has four generators; two big generators and two
smaller generators. The two generator types have a different
relationship between SFOC and load. This assignment will
address the following points:

• The optimum set point of each diesel generator must be
calculated in real time based on the actual load of the
switchboard. Additionally, the optimum diesel
generator running combination needs to be calculated.

• Safety of the power production must be maintained.
Items to consider include:
1. Any sudden change of electric load occurs will

instantaneously be taken by the diesel engine. The
power management system will then start to
distribute the load according to the control strategy.
The power management shall never allow a diesel
engine to be loaded below a minimum value or
above a maximum value.

2. Optimization mode should only be available in
“normal conditions”. Any deviation like a sudden
change in propulsion load shall automatically cause a
switch to sea or maneuver mode.

i

Table of contents

Table of contents ... i

List of figures ... v

Abbreviations .. vii

Chapter 1 Summary and conclusion ... 1

Chapter 2 Introduction ... 3

Chapter 3 Background .. 7

Chapter 4 Theory .. 9

4.1 Mathematical model .. 9

4.2 SFOC curves .. 11

4.3 Optimization algorithm .. 13

4.3.1 The resolution of the algorithm 13

4.3.2 Simple algorithm ... 14

4.3.3 Modified algorithm .. 16

Chapter 5 Metso DNA .. 19

5.1 Basic overview .. 19

5.1.1 Redundancy ... 23

5.2 FbCad .. 25

5.3 Java prog2 block ... 27

ii

5.3.1 Enabling Java on Metso DNA 27

5.3.2 Adding a new prog2 block 27

5.3.3 Java skeleton ... 29

5.4 Updating the SFOC curves .. 32

5.5 Metso DNA simulator ... 33

Chapter 6 Method and material ... 35

6.1 Material .. 35

6.2 SFOC curves .. 36

6.3 Optimization algorithm .. 37

6.4 A simple simulator .. 38

6.4.1 The user interface .. 38

6.4.2 How it works .. 39

6.5 Interfacing the Metso DNA system 41

6.6 Implementing the module in Metso DNA 43

6.6.1 Inputs and outputs .. 43

6.6.2 Implementing the module as a separate mode 44

6.6.3 Maintaining safety ... 47

6.6.4 Sending the set points to the generators 48

iii

Chapter 7 Results ... 53

7.1 Implementation .. 53

7.2 Savings .. 56

7.3 Load dependent start/stop .. 59

7.3.1 Load dependent start .. 59

7.3.2 Load dependent stop... 60

7.4 Safety .. 62

7.4.1 Shutdown .. 62

7.4.2 Load reduction .. 63

7.4.3 Start failure .. 65

7.4.4 Safety summary ... 66

Chapter 8 Discussion .. 67

Chapter 9 Further work .. 71

References .. 73

Appendixes ... 75

iv

v

List of figures

Figure 1 Basic overview of the system 5

Figure 2 Example of an SFOC curve .. 11

Figure 3 Pseudo code for the calculateOptimalLoad method of
the simple algorithm .. 14

Figure 4 Pseudo code for the OptimalLoad4Gens method of
the simple algorithm .. 15

Figure 5 Pseudo code for the calculateOptimalLoad method of
the modified algorithm .. 16

Figure 6 Basic set up of the Metso DNA system 21

Figure 7 Metso DNA network ... 22

Figure 8 Redundancy in the Metso DNA system 23

Figure 9 Basic example of a module made in FbCad 26

Figure 10 Adding a new prog2 block 28

Figure 11 prog2 dialog .. 29

Figure 12 Functions included in the Java skeleton 31

Figure 13 Metso DNA simulator user interface 34

Figure 14 User interface of the simple simulator 39

Figure 15 Optimization prog2 block 42

Figure 16 Section of the connections for the prog2 block 43

Figure 17 Old mode selection logic .. 45

Figure 18 New mode selection logic 45

Figure 19 Electrical board breakers .. 46

Figure 20 Automatic mode switch .. 47

Figure 21 Running/not running logic 48

vi

Figure 22 Number of running generators 49

Figure 23 Priority logic .. 50

Figure 24 Reading the opmtimization mode bit 51

Figure 25 Bypass optimization or not 51

Figure 26 Optimization module running on Metso DNA 54

Figure 27 Simple simulator showing the same set points as in
Metso DNA ... 55

Figure 28 Fuel savings of up to around 200 kg every hour 56

Figure 29 Another situation showing less savings 57

Figure 30 Load dependent start ... 60

Figure 31 Load dependent stop.. 61

Figure 32 Shutdown of DG3 ... 63

Figure 33 Load reduction of DG3 ... 64

Figure 34 Start failure of DG2 ... 66

vii

Abbreviations

SFOC - Specific Fuel Oil Consumption
PMS - Power Management System
OPS - Operator Station
ACN - Application and Control Node
IBC - Internal Bus Controller
IO - Input/Output
ALS - Alarm Station
FBC - Field Bus Controller
GUI - Graphic User Interface
DG - Diesel-electric Generator

viii

1

Chapter 1

Summary and conclusion

On a ships power plant the diesel-electric generators produce
the electricity. Each of the generators has its unique specific
fuel oil consumption (SFOC) profile depending on the load. Up
until now the generators have been run with balanced load
sharing, meaning that all running generators have the same
load.

In this thesis an unbalanced load sharing module has been
implemented. The module takes advantage of the SFOC
profiles, thus optimizing fuel efficiency. This means that each
generator can have a different load depending on what is
economically beneficial. Since the demand for this
optimization is fairly new in the marine industry it proved
difficult to find any related work. It was therefore decided to
design the optimization algorithm from scratch.

The optimization module was made in Java and implemented
into the Metso DNA system via an interface created by the

2

Metso DNA engineering tools. Optimization was added as a
separate mode to the power plant. However, since the
optimization mode should have all of the same safety features
as another mode, called sea mode, the already built in safety
features of this mode was utilized. This was done by building
the optimization mode as an add-on to the sea mode in the
logic. However, to the user it will appear as two separate
modes.

The results of the algorithm were very positive, theoretically
saving up to around 200 kg of fuel per hour. Not every
situation was as optimal, but the optimized unbalanced load
sharing always performed better than or as well as the
balanced load sharing. By testing some typical scenarios an
average saving of 25,83 kg of fuel per hour (in optimization
mode) was found which could mean yearly savings of up to
USD 99 434.

3

Chapter 2

Introduction

On ships the production of electricity is done by a combination
of diesel-electric generators (hereafter called generators). The
generators produce mechanical energy which is converted to
electrical energy that is supplied to the switchboard. Up until
now the load has been equally shared amongst the running
generators, but now the shipyards are requesting unbalanced
load sharing to optimize fuel efficiency.

The SFOC of the generators varies with the load of the
generator. Earlier this relationship was quite flat, but with the
new engine standards (see Chapter 3) the SFOC curves have
become steeper. This leaves room for optimization.

The goal of this thesis has been to minimize fuel consumption
by choosing the most optimal load for each generator. The
load set points are not set directly by the Metso DNA system,
instead it gives out increase/decrease commands to a
regulator.

4

One very important thing to consider when doing an
optimization like this is safety. Until now the ship’s power
plant has had three different running modes in Metso DNA;
Harbor, Sea or Maneuver mode. The optimization will be
added as a separate mode, leaving four modes in total. Harbor
mode is used when the ship is at harbor. Maneuver mode is
generally used when the ship is maneuvering, causing the load
on the engines to change rapidly. Sea mode is normally used
for steady sailing and the optimization mode will also
generally be used in this situation. The only thing that
separates Sea mode and Optimization mode is that the
Optimization mode will have unbalanced load sharing. Since
the Sea mode already has built in safety mechanisms this
points towards the possibility of utilizing these mechanisms in
the optimization mode as well.

The safety mechanisms in Metso DNA mainly consist of
making sure there are enough running generators to cover the
power demand. Shutdowns/start blocks of generators are
handled by the generators own control system. Metso DNA’s
task is to start up a new generator if a shutdown/start block
occurs.

Figure 1 shows the basic overview of the system. The
interfaces from the external data and the Metso DNA system

5

have not handled in detail in this thesis. The focus of the thesis
has been on the “Load optimization” and “Safety functions”
box. Only a basic overview of Metso DNA will be given.

Metso DNA

Load optimization
SFOC data

Generator data

Consumed power

Safety functions

Generator load
set points

Figure 1 Basic overview of the system

Another consideration is run time as the optimization program
has been given a time slot of 200 ms in every cycle of the
Metso DNA system. This means that the optimization program
needs to read the input, calculate the set points and set the
output to the correct values in less than 200 ms.

6

7

Chapter 3

Background

In the past the generators have been run with balanced load
distribution. That is every generator has the same load. The
SFOC profile of the generators was much flatter than it is
today and therefore there was not very much to gain by
optimizing the load distribution. However, due to the Tier II
and Tier III emission demands [1], the engine manufacturers
have done modifications to their engines causing SFOC profiles
to change as well [2]. Now the profile is steeper and there is
more to gain by optimizing the load distribution.

The customer in this project is currently building a new ship.
Metso Automation is delivering several systems for this ship,
one being the power management system (PMS). The PMS
includes load dependent start/stop of the engines as well as
the safety mechanisms that start up a new engine if e.g. a
shutdown occurs.

8

For this project the customer has requested optimization of
the load distribution as part of the PMS. The scope of this
thesis has been the design of this optimization module.

9

Chapter 4

Theory

In this chapter the theoretical aspects of the optimization is
explained.

4.1 Mathematical model

To get an overview of the problem at hand a mathematical
model was created. The model represents the optimization
problem with the constraints. The problem can be stated as

4

1
Minimize ()

100
i

i i i i
i

xy x wα
=
∑

Equation 1 Minimization problem

Given that

10

{ }

4

1
4

1

100

100

, , , , , , 0
0,1

i
i i

i

i
i i

i

i i

i i

x w D

U w D S

x L
x U
x y L U w D S

α

α

α

=

=

≥

≥ +

≥
≤

≥

=

∑

∑

Equation 2 Constraints

Where the variables are defined as the following:

 Maximum effect of generator i
y Vector containing SFOC vs load of generator i
x Load of generator i (in percent)
L Lower load limit for generator i
U Upper load limit for generator i

 Binary

i

i

i

i

i

i

w

α

=
=
=
=
=
= variable that described whether or not a generator is running

D = Demand on the board
S = Safety band

11

4.2 SFOC curves

The SFOC curves describe the relationship between the SFOC
and the load of a specific engine. The specific oil consumption
is given as the consumption of fuel, in grams, per kWh
(g/kWh).

Figure 2 Example of an SFOC curve

An example of an SFOC curve is given in Figure 2. As we can
see by this curve the optimal load for this generator is 85%. At
this point the generator will use the least amount of fuel per
kWh.

12

Of course, if we only have one generator running there is no
room for optimization, but if we have several running
generators we might be able to save fuel by giving the
generators different load set points. E.g. it is quite obvious
from Figure 2 that if we have two generators of equal size that
shares the same SFOC profile it will be beneficial have the
generators running at 85% and 62% instead of both running at
73.5%.

The initial SFOC curves are created from confidential FAT data,
however the SFOC curve for a specific generator will change
during its lifetime. It is therefore necessary to update the
SFOC curves on a regular basis. If the curves are not updated
the optimization algorithm may not find the optimal set
points. The curves are updated according to the strategy
explained in chapter 6.2.

13

4.3 Optimization algorithm

The only time restriction is that the algorithm must finish in its
assigned time frame of 200 ms. As this is a quite long time
frame a simple algorithm was constructed. If the simple
algorithm performed within the timeframe there would not be
any need for any further modification of the algorithm itself.
First of all the resolution of the algorithm also needed to be
decided.

4.3.1 The resolution of the algorithm

Since the resolution of the input (SFOC curves) is very low
there is no point in having a very high resolution on the
output. It was therefore decided that a resolution of 1% would
be acceptable. The algorithm should then give set points to
the n-1 running generators and the last generator would take
the remaining load. The algorithm will still take the load of the
remaining engine into account when deciding the optimal load
set points.

14

4.3.2 Simple algorithm

The first and simplest algorithm that was tested simply
checked every load combination of the running generators
within the low and high limits. The most optimal load
combination was then given as an output.

A separate algorithm for each number of running generators
was made. If two generators was running then the algorithm
consisted of two for loops, if three generators was running
then the algorithm consisted of three for loops and so on. The
pseudo code for the main program is presented in Figure 3.

procedure calculateOptimalLoad
if 1 running generator then

run OptimalLoad1Gen(active_gens);
else if 2 running generator then

run OptimalLoad2Gen(active_gens);
else if 3 running generator then

run OptimalLoad3Gen(active_gens);
else if 4 running generator then

run OptimalLoad4Gen(active_gens);

Figure 3 Pseudo code for the calculateOptimalLoad method of the simple algorithm

15

After the program determined the number of running
generators the associated algorithm would be run. The pseudo
code for the algorithm given four generators is given in Figure
4.

procedure OptimalLoad4Gens
for i:=gen1 low limit to i:=gen1 high limit do
 for j:=gen2 low limit to j:=gen2 high limit do
 for k:=gen3 low limit to k:=gen3 high limit do
 for l:=gen4 low limit to l:=gen4 high limit do
 set temp_load to (i,j,k,l);
 if temp_load gives necessary production then
 set temp_OC to calculated oil consumption;
 if temp_OC is better than the best oil consumption so far then
 set best_OC to temp_OC;

Figure 4 Pseudo code for the OptimalLoad4Gens method of the simple algorithm

The simple algorithm did not perform within the 200 ms time
frame and therefore modifications were needed.

The complete code for the simple algorithm can be found in
Appendix A.

16

4.3.3 Modified algorithm

In the modified algorithm the running generator with the
lowest priority is not checked in every point, rather it is just
set to take the remaining load. The program was also
compressed so that it did not have a separate method for
each number of running generators.

procedure calculateOptimalLoad
for i:=(gen1 low limit)*(gen1 bin) to i:=(gen1 high limit))*(gen1 bin) do
 for j:=(gen2 low limit)*(gen2 bin) to j:=(gen2 high limit))*(gen2 bin) do
 for k:=(gen3 low limit)*(gen3 bin) to k:=(gen3 high limit))*(gen3 bin) do
 if 4 active generators then
 set temp_load to (i,j,k,remaining load);
 if 3 active generators then
 set temp_load to (i,j,remaining load,0);
 if remaining load is within limits then
 set k to gen3 high limit;
 if 2 active generators then
 set temp_load to (i,remaining load,0,0);
 if remaining load is within limits then
 set j to gen2 high limit;
 if 1 active generators then
 set temp_load to (remaining load,0,0,0);
 if remaining load is within limits then
 set i to gen1 high limit;
 if remaining load was within limits then
 set temp_OC to calculated oil consumption;
 if temp_OC is better than the best oil consumption so far then
 set best_OC to temp_OC;

Figure 5 Pseudo code for the calculateOptimalLoad method of the modified algorithm

17

The bin variables in the algorithm in Figure 5 are 1 if the
generator is running and 0 if the generator is not running. The
algorithm is still quite simple, however it is less time
consuming than the simple algorithm and performed within
the 200 ms time frame.

The program is in a form that the Metso system can handle. If
four generators is running this program cannot set the set
points of all four generators. It will set the set point of three of
the generators and the last one will take the remaining load.

The complete code for the modified algorithm can be found in
Appendix B.

18

19

Chapter 5

Metso DNA

In this chapter we will take a closer look on how the Metso
DNA system works. As much of this is confidential we will only
be scratching the surface. However, since a large part of this
assignment is interfacing the Metso DNA system, we need to
get a basic understanding of how this is done.

5.1 Basic overview

Figure 6 gives a basic overview of the Metso DNA System. The
input signals are processed on card level in the IO rack. Analog
signals get a digital value and a fault bit while binary signals
get a digital value, a timestamp and a fault bit. The signals are
then collected by the internal bus controller (IBC) and sorted
into tables of data that the IBC updates.

The application and control node (ACN) is a computer where
the IO is processed in different Metso modules. The ACN has a

20

field bus controller (FBC) that communicates with the IBC
collecting the signals. The signals are then processed in the
ACN. This processing results in monitoring signals, alarm
signals or control signals. The FBC have a defined sample rate
and the shortest sample rate used on the PMS is 200 ms. In
this assignment the goal was to stay within this time frame as
this is the sample rate generally used for control functions.

On the other end of the system there is an operator station
(OPS) which will gather signals from the ACN and display the
values in a user interface. If the user modifies a value the OPS
will update the value in the ACN, which in turn will send the
value to the IBC which will update the given outputs on the IO
rack.

21

Figure 6 Basic set up of the Metso DNA system

22

The ACN and the OPS gathers the signals from the network
ring. This network ring will look something like Figure 7 using a
token passing Ethernet protocol[3]. As we can see from Figure
7 other stations can also be connected to the network, like the
Alarm station (ALS) shown in the figure. All components are
connected to the network via switches which are not shown in
the figure.

Figure 7 Metso DNA network

23

5.1.1 Redundancy

Metso DNA uses redundancy in every layer. This means that
the set up in Figure 6 will not be satisfactory for the system.
The set up must therefore be modified according to Figure 8.

Figure 8 Redundancy in the Metso DNA system

ACN Main and ACN Reserve need to run redundant modules
so that the system can handle the loss of an ACN and still
remain functional. Each ACN have two different connections

24

to the network, each going to a separate switch. This set up
allows any module or connection to fail and still remain
functional. If two of the same component fails the system will
no longer function.

25

5.2 FbCad

In the Metso DNA system modules are made using function
block programming. The programming environment is called
FbCad. The function block diagrams created in FbCad control
loops related to controlling and monitoring the process
controlled by Metso DNA [4].

Figure 9 shows an example of a module created in FbCad. This
example has one input from an analog input card (1), two
digital inputs from another module (2) and one output to a
digital output card (4). The function of the module (3) is that it
sets the output high if, and only if, the analog input is greater
than a constant value and one of the digital inputs is high. The
number on each of the function block is the execution order of
the block. In this case the module will first OR the two digital
inputs, then compare the analog input to a constant (42,0)
and finally AND the result of the two previous blocks.

26

Figure 9 Basic example of a module made in FbCad

This gives us a basic idea of how FbCad works. Further
information about FbCad can be found in [4] and a complete
list of function blocks can be found in [5].

27

5.3 Java prog2 block

In FbCad there is also an option to create Java code which can
be integrated into a function block. This increases the
flexibility of the system allowing the engineers to develop
more complex programs in Java.

5.3.1 Enabling Java on Metso DNA

First of all Java must be enabled in the Metso DNA system. A
guide to doing this is given in [6]. Java is not automatically set
up after installation of Metso DNA so this procedure must be
done manually on each process station running Java blocks.

5.3.2 Adding a new prog2 block

When FbCad is open one can add a new prog2 block by simply
pressing “Fblocks3” and choosing “prog…”. A new dialog box
will appear and in this dialog box choose the prog2 block [7].

28

Figure 10 Adding a new prog2 block

After adding the prog2 block to the desired location in the
diagram the dialog in Figure 11 will appear. In this dialog the
engineer should set the execution order of the prog2 block,
the program name and the name of the java program class
whose methods are to be called from the block. Inputs and
outputs can be added by typing the variable name into the
“Tag” field, choosing input (direction left) or output (direction
right) and setting the appropriate data type in the “DNAType”
field. A complete list of supported data types can be found in
[8].

29

Figure 11 prog2 dialog

5.3.3 Java skeleton

Once the prog2 block has been added in FbCad it is possible to
create the Java program skeleton that contains the function
that the prog2-block calls upon on execution.

Creating this skeleton is done by entering the command
“genjava” in the CAD command prompt, selecting the prog2
symbol using the mouse and entering the name of the
generated source file. The file name should be in the format

30

<classname>.java. The generated file will be located in the
folder \dna\Data\EA\fbmod [9].

Figure 12 shows the functions included in the Java skeleton.
unbalLoadOpt() is the constructor. Here the member variables
are connected to the input/output of the prog2 block.
checkInitialTableConnections() checks that the parameter
tables are properly connected, while checkTableConnections()
checks the integrity of the parameter tables. init() is called
once for each function block, when it is loaded into the
application, and can be used for initialization code. run() is
called when the execution block is executed and it in turn calls
upon the runMe() method which is where the program logic
should be located. moduleUpdate() is called upon if the
engineer updated the function block diagram on the
application server. Finally the exit() method is called upon if
the method is unloaded from the application server and
should contain clean up code. The complete generated file can
be found in Appendix C.

31

public <classname>() throws AITableReferenceException
private final void checkInitialTableConnections() throws AITableReferenceException
private final void checkTableConnections() throws AITableReferenceException
public void init()
public void run()
private void runMe()
public void moduleupdate ()
public void exit()

Figure 12 Functions included in the Java skeleton

32

5.4 Updating the SFOC curves

In a project like this there are many different companies
delivering different subsystems for the ship. In this specific
project another company is responsible for updating the SFOC
data. They are gathering the necessary information in real
time and update the SFOC data accordingly.

It has been agreed that this company will send updated SFOC
data via serial line to the Metso DNA system. 12 points will be
sent for each generator. It will then be in the scope of my
program to generate the rest of the points by a simple
linearization between each of the given points.

33

5.5 Metso DNA simulator

Since the installation of the equipment onboard the ship will
be after the delivery of this thesis there has been no
opportunity to test the optimization module on a real
environment. However Metso has developed a simulator that
has proven to be very well suited for testing the PMS.

In this thesis Metso DNA C2013 PMS simulator was used and
the results referred to in this thesis have been created using
this simulated environment. Figure 13 shows the user
interface of this simulator. The pink fields are functions that
were not in use during testing.

34

Figure 13 Metso DNA simulator user interface

35

Chapter 6

Method and material

6.1 Material

In this assignment the following software was used:

- Eclipse IDE for Java developers, version: Juno service
release 1

- Java, version: 1.6

- Metso DNA C2013

36

6.2 SFOC curves

The SFOC curves are generated by a set of points. The curves
are initialized with 12 points and then updated after some
time. A point is given as x = load and y = SFOC. The x-values of
the points are always the same, but the y-values will change
over time. The curves are generated by using a simple
linearization between the points (see Appendix D).

The 12 points that are used to initialize the SFOC curves are
taken from the SFOC data of the engines. This data is
confidential and thus not included in this report.

With the system running the points will be updated every
month. The new points are sent, by serial line, from an
external system to the Metso system. At the receiving end of
the data we use a standard Metso serial line interface. The 12
points are then given as input to the optimization program
together with a bit that tells the program that new SFOC data
is available. The interface between the optimization program
and the Metso system is explained in chapter 6.5.

37

6.3 Optimization algorithm

The optimization algorithm requires input from the Metso
DNA system. For each generator the program require a binary
variable telling the program whether or not the generator is
running, high and low limits, priority and nominal power. The
program also needs to know the consumed power/power
demand.

The time consumption of the algorithm was tested by giving
the algorithm different input and printing the run time. This
showed a worst case scenario with a run time of 90 ms. This is
well within the time slot of 200 ms so it should perform good
enough to be integrated with Metso DNA. If the run time of
the program increases beyond 200 ms when the program is
integrated into Metso DNA we would get an error message in
the error log of Metso DNA. This would acquire further
modification of the algorithm.

38

6.4 A simple simulator

Before making an interface to the Metso system a simple
simulator was created to check if the optimization algorithm
was working. This simulator was also useful for checking how
much fuel was saved by using the optimization algorithm.

6.4.1 The user interface

The user interface of the simple simulator was created with
Swing (java) and is very straight forward. The left column
shows the load distribution and fuel consumption using the
optimization algorithm, while the left column shows the load
distribution and fuel consumption using balanced load
sharing. The user gives the input (the power on the board) by
adjusting a slider. This GUI is very useful for checking the
potential savings in fuel consumption. The complete code for
the simple simulator can be found in Appendix E.

39

Figure 14 User interface of the simple simulator

6.4.2 How it works

In the “Unbalanced” column of the GUI the load set points are
set according to the optimization algorithm as explained in
chapter 4.3.3. In the “Balanced” column every generator takes
the same set point according to the code in Appendix F.

In this simple simulator a simplified algorithm for
starting/stopping generators was made. This algorithm starts a
new generator when all of the running generators reach their
high limit and stops a generator when it is possible to run one
generator less without reaching the high limit (Java code can

40

be found in Appendix G). The limits can be adjusted directly in
the code so that it is possible to test different scenarios.

The fuel consumption is calculated by the following formula:

4

1
()

100
i

i i i
i

xy x w
=
∑

Equation 3 Fuel consumption

41

6.5 Interfacing the Metso DNA system

To interface Metso DNA a new FbCad module was created. A
prog2 block was then added to the module according to
chapter 5.3.1 and 5.3.2 (See Figure 15).

The interface between the optimization program and Metso
DNA is the Java skeleton explained in chapter 5.3.3. This
means that the optimization program logic was integrated in
the Java skeleton. The optimization algorithm was placed in
the runMe() method while initialization code and clean up
code was placed in the init() and exit() methods respectively.
The complete code can be found in Appendix H.

After incorporating the optimization program logic in the
skeleton file a .jar-file was generated using the built in
compiler in Eclipse. The .jar-file should be located at
\dna\CA\pcs\program. After this was done the system files
were edited according to [10] so that the Metso DNA system
knows where the files are located.

42

Figure 15 Optimization prog2 block

43

6.6 Implementing the module in Metso DNA

The prog2 block was now ready for use. It will function as a
standalone application with no other logic included in the
same function block diagram. The function block was
connected to its respective inputs and outputs as seen in
Figure 16.

Figure 16 Section of the connections for the prog2 block

6.6.1 Inputs and outputs

The inputs come from confidential program logic so the origin
of these signals will not be shown in this thesis. However, as
Figure 16 shows, the inputs are the power demand as well as
the different parameters for the generators (binary

44

running/not running, high limit, low limit and nominal power).
Also there are inputs for updating the SFOC curves shown as
“dg1_p”, “dg2_p”, “dg3_p” and “dg4_p” as well as the “new
data” binary input in Figure 15.

The outputs are written to a standalone module that only
contains these data. This enables the engineer to easily read
this value in another module.

6.6.2 Implementing the module as a separate mode

Since the unbalanced load optimization was to be
implemented as a separate mode the mode selection logic in
Metso DNA had to be modified. Figure 17 shows the old mode
selection logic located in the MODECONFIG module. The
“MODE” variable is an int representing the selected mode. The
compare block sets the respective mode active in the logic.

45

Figure 17 Old mode selection logic

The new mode was added to this logic as mode number 4
according to Figure 18. The compare block was modified so
that it included the “OPT” mode and also it will set the “SEA”
mode active when “MODE” is set to 4 (optimization mode).

Figure 18 New mode selection logic

The reason why sea mode is set active when optimization
mode is active is that sea mode contains all of the necessary

46

safety functions needed in optimization mode. The only thing
that should separate these two modes is the set points given
to the generators under normal conditions.

The optimizing mode should only be available when the board
is closed. That is when the breakers marked in Figure 19 are
closed. This means that an automatic jump to sea mode
should occur if one or both breakers are open.

Figure 19 Electrical board breakers

The automatic mode switch was implemented as shown in
Figure 20. The first OR block says that if any of the switches

47

are open (set to 0) the output of the block is set to 1. Next this
signal goes into an AND block together with the OPT bit. If any
of the switches are open and the OPT bit is set to 1 the output
of this block will be 1, otherwise 0. This signal then goes into a
conditional block (ccos) which copies the constant value 3 (sea
mode) into the MODE variable if the conditional signal is 1.

Figure 20 Automatic mode switch

6.6.3 Maintaining safety

Since the optimization mode has been built as an add-on to
the sea mode it maintains all of the same safety functions that
exist in sea mode. As mentioned earlier the only difference
between sea mode and optimization mode is the unbalanced
load sharing. This eliminates the need for changing the mode
automatically when a fault (other than open breakers) occurs.
It was therefore decided by Metso, in cooperation with the
customer, that there should not be an automatic mode
change in the case of a fault.

48

6.6.4 Sending the set points to the generators

The logic that actually creates the signals to the generators is
confidential. However, the logic that decides whether or not
the set points should be set by the optimization module can
be shown. All of the logic in this chapter is located in the
KWSETPOINT module.

First of all a bit called biX, where X is the number of the
generator, is set (Figure 21). biX is 1 if the generator is running
(bX) and is not unloading (uX). Unloading means that the
generator is preparing to shut down and the load should be
distributed amongst the other running generators.

Figure 21 Running/not running logic

49

Next the lowest priority of the running generators is found
(Figure 22). The diss blocks copies the priority of the generator
(dXp) if the generator is running (biX is 1) and a constant with
the value 0 if the generator isn’t running (biX is0). The dvss
block copies the largest input to the output. The result is that
the ldg variable contains the lowest priority of the running
generators. It is important to note that a high priority means a
low value of the dXp variable while a low priority means a high
value. 1 is the highest possible priority, while 4 is the lowest.

Figure 22 Finding the lowest priority of the running generators

50

Figure 23 shows the logic stating whether or not generator X
should get its set point from the optimization logic or not. dXu
is set to 1 if the ldg variable is greater than the priority of the
generator (dXp) and the generator is running. This is because
the running generator with the lowest priority should not be
set directly by the optimization module; rather it should just
take the remaining load.

Figure 23 Priority logic

Next the optimization mode bit is read into the local variable
optm (Figure 24) and finally the logic deciding whether or not
a generator should take its set point from the optimization
module is presented in Figure 25. If the program is in
optimization mode (optm=1) and the dXu bit is 1 the
generator should get its set point from the optimization
program. The logic in the black box is then executed taking the
set point from the optimization module. If the result of the

51

AND block is zero the cng 2 block will create a jump forward to
the “1745 label” bypassing any optimization logic.

Figure 24 Reading the optimization mode bit

Figure 25 Bypass optimization or not

52

53

Chapter 7

Results

Since this system has only been tested in a simulated
environment the results are theoretical. We will not know the
true results until we test the system on a real ship. However,
the simulated environment is well suited for giving us an idea
on how well the system will perform.

7.1 Implementation

The implementation of the algorithm was very successful. The
Metso system is a versatile system, easy to work with, and the
implementation of Java programs was straight forward as
well. As shown in Figure 26, unbalanced set point were
successfully set by the program and transferred to the Metso
System. Figure 27 shows that the set points are also correct
according to the simple simulator designed to test the
algorithm.

54

Figure 26 Optimization module running on Metso DNA

55

Figure 27 Simple simulator showing the same set points as in Metso DNA

No error messages were recorded in the Metso DNA error logs
during testing. This means that the algorithm performed
within its time slot in every test scenario. The program was
left running overnight on several occasions to make sure that
the program was performing consequently without errors.

56

7.2 Savings

The simple simulator was used to check the potential savings
of the optimized unbalanced system compared to the
balanced system. Potential saving of up to around 200 kg of
fuel per hour, when four generators are running at an average
load of 67,85% (see Figure 28), is a very good result. Not every
situation showed this level of savings (see Figure 29), but for
every situation tested the optimization gave results that was
better than or as good as if balanced load sharing had been
used.

Figure 28 Fuel savings of up to around 200 kg every hour

57

Figure 29 Another situation showing less savings

To get a better picture of how the actual savings will be,
several different typical situations were tested. The three
main scenarios are:

1. High speed: 4 generators running with an average load
of 85%.

2. Normal speed: 3 generators running with an average
load of 80-84%. Tested at 80% and 84% load.

3. Half speed: 2 generators running with an average load
of 60-80%. Tested at 60%, 70% and 80% load.

If we postulate that while the ship is in optimization mode it is
going high speed 5% of the time, normal speed 75% of the
time and half speed 20% of the time (based on experience

58

within the Metso team1

) this amounts to an average saving of
25,83 kg of fuel per hour (individual test results can be found
in Appendix I). With today’s fuel oil prices of around 610 USD
per ton [11] this is equal to USD 15,76 of savings per hour.

A typical 7 day cruise is at port 8 hours for five of the days. The
rest of the time it is at sea. If we assume that, when the ship is
at sea, the power plant will be in maneuvering mode for 1
hour each day and the rest of the time in optimization mode
(based on experience within the Metso team1) this amounts to
a yearly saving of USD 99 434.

1 Experience is based on how much the ship is usually in sea mode. For the purpose of
this thesis we assume that the power plant will run in optimization mode all of the time
it has previously ran in sea mode.

59

7.3 Load dependent start/stop

The Metso system has a built in strategy for starting and
stopping generators. It was necessary to test that the load
dependent start/stop strategies still works in optimization
mode. In this test scenario the generators are called DG1,
DG2, DG3 and DG4. DG1 had priority 1, DG2 had priority 3,
DG3 had priority 2 and DG4 had priority 4.

7.3.1 Load dependent start

In this test DG1 and DG3 was running with an initial power
demand of 27,5MW. The power demand was increased to
29MW which should cause a start up of DG3.

Figure 30 shows the load of DG1 (blue) and DG3 (orange)
increasing as the power demand increases. This causes a start
up of DG2 (green) which after a while begins synchronizing
and the generators stabilize on their new set points.

60

Figure 30 Load dependent start

7.3.2 Load dependent stop

In this test DG1, DG2 and DG3 was running with an initial
power demand of 23,5MW. The power demand was
decreased to 22MW which should cause DG2 to unload and
shut down. Normally the stop delay is several minutes, but for
the purposes of this test it was set to 45 seconds.

Figure 31 shows the load of DG1, DG2 and DG3 decreasing as
the power demand decreases. This starts the stop delay

61

counter and after 45 seconds DG2 starts unloading and shuts
down. DG1 and DG 3 stabilize on their new set points.

Figure 31 Load dependent stop

62

7.4 Safety

The safety functions were tested by simulating the different
fault scenarios in the simulator. In the test situations three
generators were initially ran (DG1, DG2 and DG3) with an
average load of 60% (28 MW). DG1 had priority 1, DG2 had
priority 3, DG3 had priority 2 and DG4 had priority 4.

7.4.1 Shutdown

Shutdown of a generator can happen if an unexpected error
occurs. If this occurs the load from this generator will instantly
be distributed amongst the remaining generator. A safety
mechanism that shuts down the thrusters if the remaining
generators are in overload exists. It is not a part of the Metso
DNA system; rather it is built in to the generators control logic.
It was therefore only possible to test a scenario where the
remaining generators did not overload.

Figure 32 shows how the system reacted when we simulated a
shutdown of DG3 (orange). DG1 (blue) and DG2 (green)
instantly take the load. DG4 (pink) instantly starts up, but it
takes a while before it is ready to synchronize with the other

63

generators. After a while it starts synchronizing and the
generators stabilize on their new load set points.

Figure 32 Shutdown of DG3

7.4.2 Load reduction

A load reduction request can be sent to a generator for a
number of reasons, the main reason being that the engine is
overheating. A load reduction request is generally sent to a
generator in cases where it is no longer desirable to have the
generator running, but there is no need for an immediate
shutdown. When a load reduction request is sent another

64

generator starts up and when the new generator is starting to
synchronize the generator causing the load reduction request
will start unloading.

In Figure 33 a load reduction request was sent to DG3. When
DG3 starts unloading DG4 starts synchronizing. DG1 and DG2
also get new load set points according to the new optimal
situation. After a while the generators stabilize on their new
set points.

Figure 33 Load reduction of DG3

65

7.4.3 Start failure

A start failure means that the generator that is supposed to
start, according to its priority, fails to start. This can happen if
the start command fails to reach the generator, or if
something is wrong with the generator itself. When a start
failure occur the generator with the next highest priority
should start.

In this case DG1 and DG3 were running with a power demand
of 12,5MW while increasing the power demand to 14MW. A
start up failure was then simulated on DG2 which should
cause DG4 to start up.

Figure 34 shows this situation. As the power demand is
increased from 12,5MW to 14MW we see that the load on
DG1 and DG3 increases. This load increase should have started
up DG2, however since DG2 has a start failure this does not
happen. After a while DG4 starts up instead according to the
start up failure procedure.

66

Figure 34 Start failure of DG2

7.4.4 Safety summary

All safety functions were tested successfully. This means that
the optimization module was successfully implemented
without compromising the safety of the system.

67

Chapter 8

Discussion

The algorithm itself is solid since every legal set point
combination, with a resolution of 1%, is tested. There is a
point to be made about increasing the resolution. However,
since the resolution of the input is so low it is no way of
knowing if we would actually achieve a more optimal situation
or a less optimal situation. The linearization between the input
points helps to create an image of how the SFOC curves look
like, but there will be minor variations between the points
which the linearization will not show.

The savings proved to be very significant in certain situations
and not so significant in other situations. The average saving
however was 25,83 kg of fuel per hour (for the tested
scenarios). This is a significant amount of fuel and the
potential savings are high, but as important is the positive
environmental effect. Less fuel used means reduced
emissions, and is both good for the environment and the
environmental profile of the customer.

68

The results presented in this thesis are still only theoretical
since the optimization module has only been tested in a
simulated environment. The simulator has been refined by
Metso over the years and has proven to be reliable. There is
however a chance that problems will occur on the real system
that the simulator has not taken into account. The system
therefore needs to go through extensive testing on a real
system for the final approval.

Since the resolution of the input is not very high the accuracy
of the algorithm will not be 100%. If the resolution of the
input was higher the accuracy of the algorithm would be
better as well. If the resolution of the input was higher than
the current output resolution this means that the algorithm
could be modified so that the resolution of the output would
be better than it is now. However, this would mean that the
algorithm would have to look through a larger set of points
which means that the run time would increase. If the run time
is above 200 ms the algorithm would render useless given that
the Metso DNA system is not modified.

Another challenge for this algorithm would be if the number
of generators increased. This would also result in larger data
sets to look through, which again would increase the run time.

69

This means that the algorithm, as it sits, is not very
expandable without doing any changes to the Metso DNA
system. However, since the regulators in this system are fairly
slow there is in fact no reason why the 200 ms time slot could
not be expanded. This would mean some minor changes in the
Metso DNA system, but these changes would not be hard to
make. It is however important to make sure that the
timeframe is not too large since this is a real time system, and
there would be a need to analyze how large this time frame
could be without interfering with functionality.

70

71

Chapter 9

Further work

In the future there might be a need to expand the algorithm to
include a larger number of generators. Since this will increase
the run time of the algorithm the time slot in the Metso DNA
system may have to be increased. It is however a point to be
made that this may not be a sustainable solution. A better
solution would be to look towards optimizing or changing the
algorithm itself.

If the algorithm is to be changed it should be changed in such
a way that it would also handle a better resolution on both the
input and the output. It might therefore be necessary to
develop a “smarter” algorithm. A natural step forward would
be to look towards nonlinear programming. The framework
developed in this thesis could still be used. Only the algorithm
itself would have to be replaced.

72

73

References

[1] I. M. Organization, "Chapter III Requirements for control
of emissions from ships," in Report of the marine
environment protection committee on tis fifty-eight
session, Annex 13, 2008, pp. 14-27.

[2] G. Hellén, "Wärtsilä Product Development to comply
with IMO Tier III (NOx)," 26 May 2010. [Online].
Available:
http://meeting.helcom.fi/c/document_library/get_file?p
_l_id=18827&folderId=1123321&name=DLFE-41646.pdf.
[Accessed 27 May 2014].

[3] Metso, Metso DNA architecture and Ethernet Networks
v1.3, Metso, 2014.

[4] M. Automation, Function Block CAD Manual, rev. 6 ed.,
vol. 2013, Tampere, 2013.

[5] M. Automation, Function Blocks, Tampere, 2013.

[6] M. Automation, "5 Runtime Environment," in Prog2
Function Block Manual, 7 ed., vol. 2013, Tampere, 2013,
pp. 11-14.

[7] M. Automation, "4.3.1 Adding a new prog2 block," in
Prog2 Function Block Manual, 7 ed., vol. 2013, Tampere,

74

2013, pp. 6-7.

[8] M. Automation, "4.3.6 Supported Data Types," in Prog2
Function Block Manual, 7 ed., vol. 2013, Tampere, 2013,
p. 10.

[9] M. Automation, "4.3.4 Java program skeleton," in Prog2
Function Block Manual, 7 ed., vol. 2013, Tampere, 2013,
p. 9.

[10] M. Automation, "7.9.2 Java program in a jar package," in
Prog2 Function Block Manual, 7 ed., vol. 2013, Tampere,
2013, p. 30.

[11] "Bunker Index," 15 May 2014. [Online]. Available:
http://www.bunkerindex.com/. [Accessed 15 May 2014].

75

Appendixes

Appendix A - Simple Algorithm

Appendix B - Modified Algorithm

Appendix C - Java Skeleton

Appendix D - SFOC Vector generator

Appendix E - Simple Simulator

Appendix F - Equal Load

Appendix G - Simplified start/stop

Appendix H - prog2 interface

Appendix I - Fuel saving tests

Appendix J - Javadoc

Appendixes are located on the CD included in the booklet.

	Preface
	Assignment text
	List of figures
	Abbreviations
	Chapter 1
	Summary and conclusion
	Chapter 2
	Introduction
	Chapter 3
	Background
	Chapter 4
	Theory
	4.1 Mathematical model
	4.2 SFOC curves
	4.3.1 The resolution of the algorithm
	4.3.2 Simple algorithm
	4.3.3 Modified algorithm

	Chapter 5
	Metso DNA
	5.1 Basic overview
	5.1.1 Redundancy

	5.2 FbCad
	5.3 Java prog2 block
	5.3.1 Enabling Java on Metso DNA
	5.3.2 Adding a new prog2 block
	5.3.3 Java skeleton

	5.4 Updating the SFOC curves
	5.5 Metso DNA simulator

	Chapter 6
	Method and material
	6.1 Material
	6.2 SFOC curves
	6.3 Optimization algorithm
	6.4 A simple simulator
	6.4.1 The user interface
	6.4.2 How it works

	6.5 Interfacing the Metso DNA system
	6.6 Implementing the module in Metso DNA
	6.6.1 Inputs and outputs
	6.6.2 Implementing the module as a separate mode
	6.6.3 Maintaining safety
	6.6.4 Sending the set points to the generators

	Chapter 7
	Results
	7.1 Implementation
	7.2 Savings
	7.3 Load dependent start/stop
	7.3.1 Load dependent start
	7.3.2 Load dependent stop

	7.4 Safety
	7.4.1 Shutdown
	7.4.2 Load reduction
	7.4.3 Start failure
	7.4.4 Safety summary

	Chapter 8
	Discussion
	Chapter 9
	Further work
	References
	Appendixes

