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Preface 
 

This assignment has been written for the company Metso 
Automation AS with the task of developing a load optimization 
module for diesel-electric generators in the marine industry. 
This module will delivered as part of an ongoing project. 

The optimization module has been developed in Java and 
integrated with the Metso DNA system using the engineering 
tools within this system.  The overall safety of the system has 
been assured by implementing several safety measures. 

I would like to thank Metso Automation for providing me with 
required information/data as well as an office. A special 
thanks to Lars Svaasand, Stein Østby and Jens-Petter Nyland 
for their guidance and to Professor Tor Onshus for regular 
telephone meetings and guidance during the project. 



  



Assignment text 
 

A ship with diesel-electric propulsion has a several marine 
diesel generators creating power on a high-voltage 
switchboard. The specific fuel oil consumption (SFOC) of a 
generator is dependent on the load. In this assignment the 
system has four generators; two big generators and two 
smaller generators. The two generator types have a different 
relationship between SFOC and load. This assignment will 
address the following points: 

• The optimum set point of each diesel generator must be 
calculated in real time based on the actual load of the 
switchboard. Additionally, the optimum diesel 
generator running combination needs to be calculated. 

• Safety of the power production must be maintained. 
Items to consider include: 
1. Any sudden change of electric load occurs will 

instantaneously be taken by the diesel engine. The 
power management system will then start to 
distribute the load according to the control strategy. 
The power management shall never allow a diesel 
engine to be loaded below a minimum value or 
above a maximum value. 

2. Optimization mode should only be available in 
“normal conditions”. Any deviation like a sudden 
change in propulsion load shall automatically cause a 
switch to sea or maneuver mode. 
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Chapter 1 
 

Summary and conclusion 
 

On a ships power plant the diesel-electric generators produce 
the electricity. Each of the generators has its unique specific 
fuel oil consumption (SFOC) profile depending on the load. Up 
until now the generators have been run with balanced load 
sharing, meaning that all running generators have the same 
load. 

 

In this thesis an unbalanced load sharing module has been 
implemented. The module takes advantage of the SFOC 
profiles, thus optimizing fuel efficiency. This means that each 
generator can have a different load depending on what is 
economically beneficial. Since the demand for this 
optimization is fairly new in the marine industry it proved 
difficult to find any related work. It was therefore decided to 
design the optimization algorithm from scratch. 

  

The optimization module was made in Java and implemented 
into the Metso DNA system via an interface created by the 
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Metso DNA engineering tools. Optimization was added as a 
separate mode to the power plant. However, since the 
optimization mode should have all of the same safety features 
as another mode, called sea mode, the already built in safety 
features of this mode was utilized. This was done by building 
the optimization mode as an add-on to the sea mode in the 
logic. However, to the user it will appear as two separate 
modes. 

 

The results of the algorithm were very positive, theoretically 
saving up to around 200 kg of fuel per hour. Not every 
situation was as optimal, but the optimized unbalanced load 
sharing always performed better than or as well as the 
balanced load sharing. By testing some typical scenarios an 
average saving of 25,83 kg of fuel per hour (in optimization 
mode) was found which could mean yearly savings of up to 
USD 99 434. 
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Chapter 2 
 

Introduction 
 

On ships the production of electricity is done by a combination 
of diesel-electric generators (hereafter called generators). The 
generators produce mechanical energy which is converted to 
electrical energy that is supplied to the switchboard. Up until 
now the load has been equally shared amongst the running 
generators, but now the shipyards are requesting unbalanced 
load sharing to optimize fuel efficiency. 

 

The SFOC of the generators varies with the load of the 
generator. Earlier this relationship was quite flat, but with the 
new engine standards (see Chapter 3) the SFOC curves have 
become steeper. This leaves room for optimization. 

 

The goal of this thesis has been to minimize fuel consumption 
by choosing the most optimal load for each generator. The 
load set points are not set directly by the Metso DNA system, 
instead it gives out increase/decrease commands to a 
regulator. 
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One very important thing to consider when doing an 
optimization like this is safety.  Until now the ship’s power 
plant has had three different running modes in Metso DNA; 
Harbor, Sea or Maneuver mode. The optimization will be 
added as a separate mode, leaving four modes in total. Harbor 
mode is used when the ship is at harbor. Maneuver mode is 
generally used when the ship is maneuvering, causing the load 
on the engines to change rapidly. Sea mode is normally used 
for steady sailing and the optimization mode will also 
generally be used in this situation. The only thing that 
separates Sea mode and Optimization mode is that the 
Optimization mode will have unbalanced load sharing. Since 
the Sea mode already has built in safety mechanisms this 
points towards the possibility of utilizing these mechanisms in 
the optimization mode as well.  

 

The safety mechanisms in Metso DNA mainly consist of 
making sure there are enough running generators to cover the 
power demand. Shutdowns/start blocks of generators are 
handled by the generators own control system. Metso DNA’s 
task is to start up a new generator if a shutdown/start block 
occurs. 

 

Figure 1 shows the basic overview of the system. The 
interfaces from the external data and the Metso DNA system 
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have not handled in detail in this thesis. The focus of the thesis 
has been on the “Load optimization” and “Safety functions” 
box. Only a basic overview of Metso DNA will be given. 

 

Metso DNA

Load optimization
SFOC data

Generator data

Consumed power

Safety functions

Generator load 
set points

 

Figure 1 Basic overview of the system 

 

Another consideration is run time as the optimization program 
has been given a time slot of 200 ms in every cycle of the 
Metso DNA system. This means that the optimization program 
needs to read the input, calculate the set points and set the 
output to the correct values in less than 200 ms. 
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Chapter 3 
 

Background 
 

In the past the generators have been run with balanced load 
distribution. That is every generator has the same load. The 
SFOC profile of the generators was much flatter than it is 
today and therefore there was not very much to gain by 
optimizing the load distribution. However, due to the Tier II 
and Tier III emission demands [1], the engine manufacturers 
have done modifications to their engines causing SFOC profiles 
to change as well [2]. Now the profile is steeper and there is 
more to gain by optimizing the load distribution. 

 

The customer in this project is currently building a new ship. 
Metso Automation is delivering several systems for this ship, 
one being the power management system (PMS). The PMS 
includes load dependent start/stop of the engines as well as 
the safety mechanisms that start up a new engine if e.g. a 
shutdown occurs. 
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For this project the customer has requested optimization of 
the load distribution as part of the PMS. The scope of this 
thesis has been the design of this optimization module.  
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Chapter 4 
 

Theory 
 

In this chapter the theoretical aspects of the optimization is 
explained.  

 

4.1 Mathematical model 
 

To get an overview of the problem at hand a mathematical 
model was created. The model represents the optimization 
problem with the constraints. The problem can be stated as 

4

1
Minimize ( )

100
i

i i i i
i

xy x wα
=
∑  

Equation 1 Minimization problem 

Given that 
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Equation 2 Constraints 

Where the variables are defined as the following: 

 Maximum effect of generator i
y  Vector containing SFOC vs load of generator i
x  Load of generator i (in percent)
L  Lower load limit for generator i
U  Upper load limit for generator i

 Binary

i

i

i

i

i

i

w

α

=
=
=
=
=
=  variable that described whether or not a generator is running

D = Demand on the board
S = Safety band
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4.2 SFOC curves 
 

The SFOC curves describe the relationship between the SFOC 
and the load of a specific engine. The specific oil consumption 
is given as the consumption of fuel, in grams, per kWh 
(g/kWh). 

 

 

Figure 2 Example of an SFOC curve 

 

An example of an SFOC curve is given in Figure 2. As we can 
see by this curve the optimal load for this generator is 85%. At 
this point the generator will use the least amount of fuel per 
kWh. 
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Of course, if we only have one generator running there is no 
room for optimization, but if we have several running 
generators we might be able to save fuel by giving the 
generators different load set points. E.g. it is quite obvious 
from Figure 2 that if we have two generators of equal size that 
shares the same SFOC profile it will be beneficial have the 
generators running at 85% and 62% instead of both running at 
73.5%. 

 

The initial SFOC curves are created from confidential FAT data, 
however the SFOC curve for a specific generator will change 
during its lifetime. It is therefore necessary to update the 
SFOC curves on a regular basis. If the curves are not updated 
the optimization algorithm may not find the optimal set 
points. The curves are updated according to the strategy 
explained in chapter 6.2. 
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4.3 Optimization algorithm 

 

The only time restriction is that the algorithm must finish in its 
assigned time frame of 200 ms. As this is a quite long time 
frame a simple algorithm was constructed. If the simple 
algorithm performed within the timeframe there would not be 
any need for any further modification of the algorithm itself. 
First of all the resolution of the algorithm also needed to be 
decided. 

 

4.3.1 The resolution of the algorithm 
 

Since the resolution of the input (SFOC curves) is very low 
there is no point in having a very high resolution on the 
output. It was therefore decided that a resolution of 1% would 
be acceptable. The algorithm should then give set points to 
the n-1 running generators and the last generator would take 
the remaining load. The algorithm will still take the load of the 
remaining engine into account when deciding the optimal load 
set points. 
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4.3.2 Simple algorithm 
 

The first and simplest algorithm that was tested simply 
checked every load combination of the running generators 
within the low and high limits. The most optimal load 
combination was then given as an output.  

 

A separate algorithm for each number of running generators 
was made. If two generators was running then the algorithm 
consisted of two for loops, if three generators was running 
then the algorithm consisted of three for loops and so on. The 
pseudo code for the main program is presented in Figure 3. 

 

procedure calculateOptimalLoad 
if 1 running generator then 

run OptimalLoad1Gen(active_gens); 
else if 2 running generator then 

run OptimalLoad2Gen(active_gens); 
else if 3 running generator then 

run OptimalLoad3Gen(active_gens); 
else if 4 running generator then 

run OptimalLoad4Gen(active_gens); 
 

Figure 3 Pseudo code for the calculateOptimalLoad method of the simple algorithm 
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After the program determined the number of running 
generators the associated algorithm would be run. The pseudo 
code for the algorithm given four generators is given in Figure 
4.  

 

procedure OptimalLoad4Gens 
for i:=gen1 low limit to i:=gen1 high limit do 
 for j:=gen2 low limit to j:=gen2 high limit do 
  for k:=gen3 low limit to k:=gen3 high limit do 
   for l:=gen4 low limit to l:=gen4 high limit do 
    set temp_load to (i,j,k,l); 
    if temp_load gives necessary production then 
     set temp_OC to calculated oil consumption; 
     if temp_OC is better than the best oil consumption so far then 
      set best_OC to temp_OC; 

 

Figure 4 Pseudo code for the OptimalLoad4Gens method of the simple algorithm 

 

The simple algorithm did not perform within the 200 ms time 
frame and therefore modifications were needed. 

 

The complete code for the simple algorithm can be found in 
Appendix A. 
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4.3.3 Modified algorithm 
 

In the modified algorithm the running generator with the 
lowest priority is not checked in every point, rather it is just 
set to take the remaining load. The program was also 
compressed so that it did not have a separate method for 
each number of running generators. 

 

procedure calculateOptimalLoad 
for i:=(gen1 low limit)*(gen1 bin) to i:=(gen1 high limit))*(gen1 bin) do 
 for j:=(gen2 low limit)*(gen2 bin) to j:=(gen2 high limit))*(gen2 bin) do 
  for k:=(gen3 low limit)*(gen3 bin) to k:=(gen3 high limit))*(gen3 bin) do 
   if 4 active generators then 
    set temp_load to (i,j,k,remaining load); 
   if 3 active generators then 
    set temp_load to (i,j,remaining load,0); 
    if remaining load is within limits then 
     set k to gen3 high limit; 
   if 2 active generators then 
    set temp_load to (i,remaining load,0,0); 
    if remaining load is within limits then 
     set j to gen2 high limit; 
   if 1 active generators then 
    set temp_load to (remaining load,0,0,0); 
    if remaining load is within limits then 
     set i to gen1 high limit; 
   if remaining load was within limits then 
    set temp_OC to calculated oil consumption; 
    if temp_OC is better than the best oil consumption so far then 
     set best_OC to temp_OC; 

 

Figure 5 Pseudo code for the calculateOptimalLoad method of the modified algorithm 
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The bin variables in the algorithm in Figure 5 are 1 if the 
generator is running and 0 if the generator is not running. The 
algorithm is still quite simple, however it is less time 
consuming than the simple algorithm and performed within 
the 200 ms time frame. 

 

The program is in a form that the Metso system can handle. If 
four generators is running this program cannot set the set 
points of all four generators. It will set the set point of three of 
the generators and the last one will take the remaining load. 

 

The complete code for the modified algorithm can be found in 
Appendix B. 
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Chapter 5 
 

Metso DNA 
 

In this chapter we will take a closer look on how the Metso 
DNA system works. As much of this is confidential we will only 
be scratching the surface. However, since a large part of this 
assignment is interfacing the Metso DNA system, we need to 
get a basic understanding of how this is done. 

 

5.1 Basic overview 
 

Figure 6 gives a basic overview of the Metso DNA System. The 
input signals are processed on card level in the IO rack. Analog 
signals get a digital value and a fault bit while binary signals 
get a digital value, a timestamp and a fault bit. The signals are 
then collected by the internal bus controller (IBC) and sorted 
into tables of data that the IBC updates. 

 

The application and control node (ACN) is a computer where 
the IO is processed in different Metso modules. The ACN has a 
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field bus controller (FBC) that communicates with the IBC 
collecting the signals. The signals are then processed in the 
ACN. This processing results in monitoring signals, alarm 
signals or control signals. The FBC have a defined sample rate 
and the shortest sample rate used on the PMS is 200 ms.  In 
this assignment the goal was to stay within this time frame as 
this is the sample rate generally used for control functions. 

 

On the other end of the system there is an operator station 
(OPS) which will gather signals from the ACN and display the 
values in a user interface. If the user modifies a value the OPS 
will update the value in the ACN, which in turn will send the 
value to the IBC which will update the given outputs on the IO 
rack. 
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Figure 6 Basic set up of the Metso DNA system 
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The ACN and the OPS gathers the signals from the network 
ring. This network ring will look something like Figure 7 using a 
token passing Ethernet protocol[3]. As we can see from Figure 
7 other stations can also be connected to the network, like the 
Alarm station (ALS) shown in the figure. All components are 
connected to the network via switches which are not shown in 
the figure. 

 

Figure 7 Metso DNA network 
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5.1.1 Redundancy 
 

Metso DNA uses redundancy in every layer. This means that 
the set up in Figure 6 will not be satisfactory for the system. 
The set up must therefore be modified according to Figure 8. 

 

 

Figure 8 Redundancy in the Metso DNA system 

 

ACN Main and ACN Reserve need to run redundant modules 
so that the system can handle the loss of an ACN and still 
remain functional. Each ACN have two different connections 



24 

 

to the network, each going to a separate switch. This set up 
allows any module or connection to fail and still remain 
functional. If two of the same component fails the system will 
no longer function.  
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5.2 FbCad 
 

In the Metso DNA system modules are made using function 
block programming. The programming environment is called 
FbCad. The function block diagrams created in FbCad control 
loops related to controlling and monitoring the process 
controlled by Metso DNA [4]. 

 

Figure 9 shows an example of a module created in FbCad. This 
example has one input from an analog input card (1), two 
digital inputs from another module (2) and one output to a 
digital output card (4). The function of the module (3) is that it 
sets the output high if, and only if, the analog input is greater 
than a constant value and one of the digital inputs is high. The 
number on each of the function block is the execution order of 
the block. In this case the module will first OR the two digital 
inputs, then compare the analog input to a constant (42,0) 
and finally AND the result of the two previous blocks. 
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Figure 9 Basic example of a module made in FbCad 

 

This gives us a basic idea of how FbCad works. Further 
information about FbCad can be found in [4] and a complete 
list of function blocks can be found in [5]. 
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5.3 Java prog2 block 
 

In FbCad there is also an option to create Java code which can 
be integrated into a function block. This increases the 
flexibility of the system allowing the engineers to develop 
more complex programs in Java.  

 

5.3.1 Enabling Java on Metso DNA 
 

First of all Java must be enabled in the Metso DNA system. A 
guide to doing this is given in [6]. Java is not automatically set 
up after installation of Metso DNA so this procedure must be 
done manually on each process station running Java blocks. 

 

5.3.2 Adding a new prog2 block 
 

When FbCad is open one can add a new prog2 block by simply 
pressing “Fblocks3” and choosing “prog…”. A new dialog box 
will appear and in this dialog box choose the prog2 block [7]. 
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Figure 10 Adding a new prog2 block 

 

After adding the prog2 block to the desired location in the 
diagram the dialog in Figure 11 will appear. In this dialog the 
engineer should set the execution order of the prog2 block, 
the program name and the name of the java program class 
whose methods are to be called from the block. Inputs and 
outputs can be added by typing the variable name into the 
“Tag” field, choosing input (direction left) or output (direction 
right) and setting the appropriate data type in the “DNAType” 
field. A complete list of supported data types can be found in 
[8].  
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Figure 11 prog2 dialog 

 

5.3.3 Java skeleton 
 

Once the prog2 block has been added in FbCad it is possible to 
create the Java program skeleton that contains the function 
that the prog2-block calls upon on execution. 

 

Creating this skeleton is done by entering the command 
“genjava” in the CAD command prompt, selecting the prog2 
symbol using the mouse and entering the name of the 
generated source file. The file name should be in the format 
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<classname>.java. The generated file will be located in the 
folder \dna\Data\EA\fbmod [9]. 

 

Figure 12 shows the functions included in the Java skeleton. 
unbalLoadOpt() is the constructor. Here the member variables 
are connected to the input/output of the prog2 block. 
checkInitialTableConnections() checks that the parameter 
tables are properly connected, while checkTableConnections() 
checks the integrity of the parameter tables. init() is called 
once for each function block, when it is loaded into the 
application, and can be used for initialization code. run() is 
called when the execution block is executed and it in turn calls 
upon the runMe() method which is where the program logic 
should be located. moduleUpdate() is called  upon if the 
engineer updated the function block diagram on the 
application server. Finally the exit() method is called upon if 
the method is unloaded from the application server and 
should contain clean up code. The complete generated file can 
be found in Appendix C. 

 



31 

 

public <classname>() throws AITableReferenceException 
private final void checkInitialTableConnections() throws AITableReferenceException 
private final void checkTableConnections() throws AITableReferenceException 
public void init() 
public void run() 
private void runMe() 
public void moduleupdate () 
public void exit() 

 

Figure 12 Functions included in the Java skeleton 
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5.4 Updating the SFOC curves 
 

In a project like this there are many different companies 
delivering different subsystems for the ship. In this specific 
project another company is responsible for updating the SFOC 
data. They are gathering the necessary information in real 
time and update the SFOC data accordingly. 

 

It has been agreed that this company will send updated SFOC 
data via serial line to the Metso DNA system. 12 points will be 
sent for each generator. It will then be in the scope of my 
program to generate the rest of the points by a simple 
linearization between each of the given points. 
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5.5 Metso DNA simulator 

 
Since the installation of the equipment onboard the ship will 
be after the delivery of this thesis there has been no 
opportunity to test the optimization module on a real 
environment. However Metso has developed a simulator that 
has proven to be very well suited for testing the PMS. 

 

In this thesis Metso DNA C2013 PMS simulator was used and 
the results referred to in this thesis have been created using 
this simulated environment. Figure 13 shows the user 
interface of this simulator. The pink fields are functions that 
were not in use during testing. 
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Figure 13 Metso DNA simulator user interface 
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Chapter 6 
 

Method and material 
 

6.1 Material 
 

In this assignment the following software was used: 

- Eclipse IDE for Java developers, version: Juno service 
release 1 

- Java, version: 1.6 

- Metso DNA C2013 
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6.2 SFOC curves 
 

The SFOC curves are generated by a set of points. The curves 
are initialized with 12 points and then updated after some 
time. A point is given as x = load and y = SFOC.  The x-values of 
the points are always the same, but the y-values will change 
over time. The curves are generated by using a simple 
linearization between the points (see Appendix D). 

 

The 12 points that are used to initialize the SFOC curves are 
taken from the SFOC data of the engines. This data is 
confidential and thus not included in this report. 

 

With the system running the points will be updated every 
month. The new points are sent, by serial line, from an 
external system to the Metso system. At the receiving end of 
the data we use a standard Metso serial line interface. The 12 
points are then given as input to the optimization program 
together with a bit that tells the program that new SFOC data 
is available. The interface between the optimization program 
and the Metso system is explained in chapter 6.5. 
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6.3 Optimization algorithm 

 

The optimization algorithm requires input from the Metso 
DNA system. For each generator the program require a binary 
variable telling the program whether or not the generator is 
running, high and low limits, priority and nominal power. The 
program also needs to know the consumed power/power 
demand. 

 

The time consumption of the algorithm was tested by giving 
the algorithm different input and printing the run time. This 
showed a worst case scenario with a run time of 90 ms. This is 
well within the time slot of 200 ms so it should perform good 
enough to be integrated with Metso DNA. If the run time of 
the program increases beyond 200 ms when the program is 
integrated into Metso DNA we would get an error message in 
the error log of Metso DNA. This would acquire further 
modification of the algorithm. 
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6.4 A simple simulator 
 

Before making an interface to the Metso system a simple 
simulator was created to check if the optimization algorithm 
was working. This simulator was also useful for checking how 
much fuel was saved by using the optimization algorithm. 

 

6.4.1 The user interface 
 

The user interface of the simple simulator was created with 
Swing (java) and is very straight forward. The left column 
shows the load distribution and fuel consumption using the 
optimization algorithm, while the left column shows the load 
distribution and fuel consumption using balanced load 
sharing. The user gives the input (the power on the board) by 
adjusting a slider. This GUI is very useful for checking the 
potential savings in fuel consumption. The complete code for 
the simple simulator can be found in Appendix E. 
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Figure 14 User interface of the simple simulator 

 

6.4.2 How it works 
 

In the “Unbalanced” column of the GUI the load set points are 
set according to the optimization algorithm as explained in 
chapter 4.3.3. In the “Balanced” column every generator takes 
the same set point according to the code in Appendix F. 
 

In this simple simulator a simplified algorithm for 
starting/stopping generators was made. This algorithm starts a 
new generator when all of the running generators reach their 
high limit and stops a generator when it is possible to run one 
generator less without reaching the high limit (Java code can 
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be found in Appendix G). The limits can be adjusted directly in 
the code so that it is possible to test different scenarios. 

 

The fuel consumption is calculated by the following formula: 

4

1
( )

100
i

i i i
i

xy x w
=
∑  

Equation 3 Fuel consumption 
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6.5 Interfacing the Metso DNA system 
 

To interface Metso DNA a new FbCad module was created. A 
prog2 block was then added to the module according to 
chapter 5.3.1 and 5.3.2 (See Figure 15).  

 

The interface between the optimization program and Metso 
DNA is the Java skeleton explained in chapter 5.3.3. This 
means that the optimization program logic was integrated in 
the Java skeleton. The optimization algorithm was placed in 
the runMe() method while initialization code and clean up 
code was placed in the init() and exit() methods respectively. 
The complete code can be found in Appendix H. 

 

After incorporating the optimization program logic in the 
skeleton file a .jar-file was generated using the built in 
compiler in Eclipse. The .jar-file should be located at 
\dna\CA\pcs\program. After this was done the system files 
were edited according to [10] so that the Metso DNA system 
knows where the files are located. 
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Figure 15 Optimization prog2 block 
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6.6 Implementing the module in Metso DNA 
 

The prog2 block was now ready for use. It will function as a 
standalone application with no other logic included in the 
same function block diagram. The function block was 
connected to its respective inputs and outputs as seen in 
Figure 16. 

 

Figure 16 Section of the connections for the prog2 block 

 

6.6.1 Inputs and outputs 
 

The inputs come from confidential program logic so the origin 
of these signals will not be shown in this thesis. However, as 
Figure 16 shows, the inputs are the power demand as well as 
the different parameters for the generators (binary 
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running/not running, high limit, low limit and nominal power). 
Also there are inputs for updating the SFOC curves shown as 
“dg1_p”, “dg2_p”, “dg3_p” and “dg4_p” as well as the “new 
data” binary input in Figure 15. 

 

The outputs are written to a standalone module that only 
contains these data. This enables the engineer to easily read 
this value in another module. 

 

6.6.2 Implementing the module as a separate mode 
 

Since the unbalanced load optimization was to be 
implemented as a separate mode the mode selection logic in 
Metso DNA had to be modified. Figure 17 shows the old mode 
selection logic located in the MODECONFIG module. The 
“MODE” variable is an int representing the selected mode. The 
compare block sets the respective mode active in the logic. 
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Figure 17 Old mode selection logic 

 

The new mode was added to this logic as mode number 4 
according to Figure 18. The compare block was modified so 
that it included the “OPT” mode and also it will set the “SEA” 
mode active when “MODE” is set to 4 (optimization mode). 

 

 

Figure 18 New mode selection logic 

 

The reason why sea mode is set active when optimization 
mode is active is that sea mode contains all of the necessary 
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safety functions needed in optimization mode. The only thing 
that should separate these two modes is the set points given 
to the generators under normal conditions. 

 

The optimizing mode should only be available when the board 
is closed. That is when the breakers marked in Figure 19 are 
closed. This means that an automatic jump to sea mode 
should occur if one or both breakers are open. 

 

 
Figure 19 Electrical board breakers 

 

The automatic mode switch was implemented as shown in 
Figure 20. The first OR block says that if any of the switches 
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are open (set to 0) the output of the block is set to 1. Next this 
signal goes into an AND block together with the OPT bit. If any 
of the switches are open and the OPT bit is set to 1 the output 
of this block will be 1, otherwise 0. This signal then goes into a 
conditional block (ccos) which copies the constant value 3 (sea 
mode) into the MODE variable if the conditional signal is 1. 

 

 
Figure 20 Automatic mode switch 

 

6.6.3 Maintaining safety 
 

Since the optimization mode has been built as an add-on to 
the sea mode it maintains all of the same safety functions that 
exist in sea mode. As mentioned earlier the only difference 
between sea mode and optimization mode is the unbalanced 
load sharing. This eliminates the need for changing the mode 
automatically when a fault (other than open breakers) occurs. 
It was therefore decided by Metso, in cooperation with the 
customer, that there should not be an automatic mode 
change in the case of a fault. 

 



48 

 

6.6.4 Sending the set points to the generators 
 

The logic that actually creates the signals to the generators is 
confidential. However, the logic that decides whether or not 
the set points should be set by the optimization module can 
be shown. All of the logic in this chapter is located in the 
KWSETPOINT module. 

 

First of all a bit called biX, where X is the number of the 
generator, is set (Figure 21). biX is 1 if the generator is running 
(bX) and is not unloading (uX). Unloading means that the 
generator is preparing to shut down and the load should be 
distributed amongst the other running generators. 

 

 
Figure 21 Running/not running logic 
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Next the lowest priority of the running generators is found 
(Figure 22). The diss blocks copies the priority of the generator 
(dXp) if the generator is running (biX is 1) and a constant with 
the value 0 if the generator isn’t running (biX is0). The dvss 
block copies the largest input to the output. The result is that 
the ldg variable contains the lowest priority of the running 
generators. It is important to note that a high priority means a 
low value of the dXp variable while a low priority means a high 
value. 1 is the highest possible priority, while 4 is the lowest. 

 
Figure 22 Finding the lowest priority of the running generators 
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Figure 23 shows the logic stating whether or not generator X 
should get its set point from the optimization logic or not. dXu 
is set to 1 if the ldg variable is greater than the priority of the 
generator (dXp) and the generator is running. This is because 
the running generator with the lowest priority should not be 
set directly by the optimization module; rather it should just 
take the remaining load. 

 

 
Figure 23 Priority logic 

 

Next the optimization mode bit is read into the local variable 
optm (Figure 24) and finally the logic deciding whether or not 
a generator should take its set point from the optimization 
module is presented in Figure 25. If the program is in 
optimization mode (optm=1) and the dXu bit is 1 the 
generator should get its set point from the optimization 
program. The logic in the black box is then executed taking the 
set point from the optimization module. If the result of the 
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AND block is zero the cng 2 block will create a jump forward to 
the “1745 label” bypassing any optimization logic. 

 

 
Figure 24 Reading the optimization mode bit 

 

 

 
Figure 25 Bypass optimization or not 
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Chapter 7 
 

Results 
 

Since this system has only been tested in a simulated 
environment the results are theoretical. We will not know the 
true results until we test the system on a real ship. However, 
the simulated environment is well suited for giving us an idea 
on how well the system will perform. 

 

 

7.1 Implementation 
 

The implementation of the algorithm was very successful. The 
Metso system is a versatile system, easy to work with, and the 
implementation of Java programs was straight forward as 
well. As shown in Figure 26, unbalanced set point were 
successfully set by the program and transferred to the Metso 
System. Figure 27 shows that the set points are also correct 
according to the simple simulator designed to test the 
algorithm. 
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Figure 26 Optimization module running on Metso DNA 
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Figure 27 Simple simulator showing the same set points as in Metso DNA 

 

No error messages were recorded in the Metso DNA error logs 
during testing. This means that the algorithm performed 
within its time slot in every test scenario. The program was 
left running overnight on several occasions to make sure that 
the program was performing consequently without errors. 
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7.2 Savings 
 

The simple simulator was used to check the potential savings 
of the optimized unbalanced system compared to the 
balanced system. Potential saving of up to around 200 kg of 
fuel per hour, when four generators are running at an average 
load of 67,85% (see Figure 28), is a very good result. Not every 
situation showed this level of savings (see Figure 29), but for 
every situation tested the optimization gave results that was 
better than or as good as if balanced load sharing had been 
used. 

 

 
Figure 28 Fuel savings of up to around 200 kg every hour 
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Figure 29 Another situation showing less savings 

 

To get a better picture of how the actual savings will be, 
several different typical situations were tested. The three 
main scenarios are: 

1. High speed: 4 generators running with an average load 
of 85%. 

2. Normal speed: 3 generators running with an average 
load of 80-84%. Tested at 80% and 84% load. 

3. Half speed: 2 generators running with an average load 
of 60-80%. Tested at 60%, 70% and 80% load. 

If we postulate that while the ship is in optimization mode it is 
going high speed 5% of the time, normal speed 75% of the 
time and half speed 20% of the time (based on experience 
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within the Metso team1

 

) this amounts to an average saving of 
25,83 kg of fuel per hour (individual test results can be found 
in Appendix I). With today’s fuel oil prices of around 610 USD 
per ton [11] this is equal to USD 15,76 of savings per  hour.  

A typical 7 day cruise is at port 8 hours for five of the days. The 
rest of the time it is at sea. If we assume that, when the ship is 
at sea, the power plant will be in maneuvering mode for 1 
hour each day and the rest of the time in optimization mode 
(based on experience within the Metso team1) this amounts to 
a yearly saving of USD 99 434.  

 

                                               
1 Experience is based on how much the ship is usually in sea mode. For the purpose of 
this thesis we assume that the power plant will run in optimization mode all of the time 
it has previously ran in sea mode. 
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7.3  Load dependent start/stop 

 
The Metso system has a built in strategy for starting and 
stopping generators. It was necessary to test that the load 
dependent start/stop strategies still works in optimization 
mode. In this test scenario the generators are called DG1, 
DG2, DG3 and DG4. DG1 had priority 1, DG2 had priority 3, 
DG3 had priority 2 and DG4 had priority 4. 

 

7.3.1 Load dependent start 
 

In this test DG1 and DG3 was running with an initial power 
demand of 27,5MW. The power demand was increased to 
29MW which should cause a start up of DG3. 

 

Figure 30 shows the load of DG1 (blue) and DG3 (orange) 
increasing as the power demand increases. This causes a start 
up of DG2 (green) which after a while begins synchronizing 
and the generators stabilize on their new set points. 
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Figure 30 Load dependent start 

 

7.3.2 Load dependent stop 
 

In this test DG1, DG2 and DG3 was running with an initial 
power demand of 23,5MW. The power demand was 
decreased to 22MW which should cause DG2 to unload and 
shut down. Normally the stop delay is several minutes, but for 
the purposes of this test it was set to 45 seconds. 

 

Figure 31 shows the load of DG1, DG2 and DG3 decreasing as 
the power demand decreases. This starts the stop delay 
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counter and after 45 seconds DG2 starts unloading and shuts 
down. DG1 and DG 3 stabilize on their new set points. 

 

 
Figure 31 Load dependent stop 
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7.4 Safety 
 

The safety functions were tested by simulating the different 
fault scenarios in the simulator. In the test situations three 
generators were initially ran (DG1, DG2 and DG3) with an 
average load of 60% (28 MW).  DG1 had priority 1, DG2 had 
priority 3, DG3 had priority 2 and DG4 had priority 4. 

 

7.4.1 Shutdown 
 

Shutdown of a generator can happen if an unexpected error 
occurs. If this occurs the load from this generator will instantly 
be distributed amongst the remaining generator. A safety 
mechanism that shuts down the thrusters if the remaining 
generators are in overload exists. It is not a part of the Metso 
DNA system; rather it is built in to the generators control logic. 
It was therefore only possible to test a scenario where the 
remaining generators did not overload.  

 

Figure 32 shows how the system reacted when we simulated a 
shutdown of DG3 (orange). DG1 (blue) and DG2 (green) 
instantly take the load. DG4 (pink) instantly starts up, but it 
takes a while before it is ready to synchronize with the other 
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generators. After a while it starts synchronizing and the 
generators stabilize on their new load set points. 

 

 

Figure 32 Shutdown of DG3 

 

7.4.2 Load reduction 
 

A load reduction request can be sent to a generator for a 
number of reasons, the main reason being that the engine is 
overheating. A load reduction request is generally sent to a 
generator in cases where it is no longer desirable to have the 
generator running, but there is no need for an immediate 
shutdown. When a load reduction request is sent another 
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generator starts up and when the new generator is starting to 
synchronize the generator causing the load reduction request 
will start unloading. 

 

In Figure 33 a load reduction request was sent to DG3. When 
DG3 starts unloading DG4 starts synchronizing. DG1 and DG2 
also get new load set points according to the new optimal 
situation. After a while the generators stabilize on their new 
set points. 

 

 
Figure 33 Load reduction of DG3 
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7.4.3 Start failure 
 

A start failure means that the generator that is supposed to 
start, according to its priority, fails to start. This can happen if 
the start command fails to reach the generator, or if 
something is wrong with the generator itself. When a start 
failure occur the generator with the next highest priority 
should start. 

 

In this case DG1 and DG3 were running with a power demand 
of 12,5MW while increasing the power demand to 14MW. A 
start up failure was then simulated on DG2 which should 
cause DG4 to start up. 

 

Figure 34 shows this situation. As the power demand is 
increased from 12,5MW to 14MW we see that the load on 
DG1 and DG3 increases. This load increase should have started 
up DG2, however since DG2 has a start failure this does not 
happen. After a while DG4 starts up instead according to the 
start up failure procedure. 
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Figure 34 Start failure of DG2 

 

7.4.4 Safety summary 
 

All safety functions were tested successfully. This means that 
the optimization module was successfully implemented 
without compromising the safety of the system. 
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Chapter 8 
 

Discussion 

 
The algorithm itself is solid since every legal set point 
combination, with a resolution of 1%, is tested. There is a 
point to be made about increasing the resolution. However, 
since the resolution of the input is so low it is no way of 
knowing if we would actually achieve a more optimal situation 
or a less optimal situation. The linearization between the input 
points helps to create an image of how the SFOC curves look 
like, but there will be minor variations between the points 
which the linearization will not show. 

 

The savings proved to be very significant in certain situations 
and not so significant in other situations. The average saving 
however was 25,83 kg of fuel per hour (for the tested 
scenarios). This is a significant amount of fuel and the 
potential savings are high, but as important is the positive 
environmental effect. Less fuel used means reduced 
emissions, and is both good for the environment and the 
environmental profile of the customer. 
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The results presented in this thesis are still only theoretical 
since the optimization module has only been tested in a 
simulated environment. The simulator has been refined by 
Metso over the years and has proven to be reliable. There is 
however a chance that problems will occur on the real system 
that the simulator has not taken into account. The system 
therefore needs to go through extensive testing on a real 
system for the final approval. 

 

Since the resolution of the input is not very high the accuracy 
of the algorithm will not be 100%. If the resolution of the 
input was higher the accuracy of the algorithm would be 
better as well. If the resolution of the input was higher than 
the current output resolution this means that the algorithm 
could be modified so that the resolution of the output would 
be better than it is now. However, this would mean that the 
algorithm would have to look through a larger set of points 
which means that the run time would increase. If the run time 
is above 200 ms the algorithm would render useless given that 
the Metso DNA system is not modified. 

 

Another challenge for this algorithm would be if the number 
of generators increased. This would also result in larger data 
sets to look through, which again would increase the run time. 
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This means that the algorithm, as it sits, is not very 
expandable without doing any changes to the Metso DNA 
system. However, since the regulators in this system are fairly 
slow there is in fact no reason why the 200 ms time slot could 
not be expanded. This would mean some minor changes in the 
Metso DNA system, but these changes would not be hard to 
make. It is however important to make sure that the 
timeframe is not too large since this is a real time system, and 
there would be a need to analyze how large this time frame 
could be without interfering with functionality. 
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Chapter 9 
 

Further work 
 

In the future there might be a need to expand the algorithm to 
include a larger number of generators. Since this will increase 
the run time of the algorithm the time slot in the Metso DNA 
system may have to be increased. It is however a point to be 
made that this may not be a sustainable solution. A better 
solution would be to look towards optimizing or changing the 
algorithm itself. 

 

If the algorithm is to be changed it should be changed in such 
a way that it would also handle a better resolution on both the 
input and the output. It might therefore be necessary to 
develop a “smarter” algorithm. A natural step forward would 
be to look towards nonlinear programming. The framework 
developed in this thesis could still be used. Only the algorithm 
itself would have to be replaced. 
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Appendixes 
 

Appendix A   - Simple Algorithm 

Appendix B   - Modified Algorithm 

Appendix C  - Java Skeleton 

Appendix D  - SFOC Vector generator 

Appendix E  - Simple Simulator 

Appendix F  - Equal Load 

Appendix G  - Simplified start/stop 

Appendix H  - prog2 interface 

Appendix I  - Fuel saving tests 

Appendix J  - Javadoc 

 

Appendixes are located on the CD included in the booklet. 
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