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Problem Description

As oil �elds produce less in the later part of their life cycle oil companies must
look into methods for making their operations more e�cient. This will increase
pro�ts and extend the lifetime of their oil �elds. Integrated Operations (often
called IO) are one of the methods for increasing e�ciency. IO implies that data
must be shared between di�erent levels in the company. ISO 15926 �Industrial
automation systems and integration�Integration of life-cycle data for process
plants including oil and gas production facilities� is an ISO standard for data
integration, sharing and exchange.

OPC UA is one of the possible technologies for sharing data organized according
to ISO 15926. Siemens in Trondheim is currently participating in a project
where they are modeling the Snorre A and Snorre B oil platforms according to
ISO 15926. This master will try to implement a prototype OPC UA server for
Siemens Oil and Gas in Trondheim. Siemens save their historical and current
data using a tag.�eld data model; this should be represented in the OPC UA
server. The thesis will investigate if ISO 15926 models can be implemented
using the OPC UA Part 3 - Information Model, and investigate if connecting
the tag.�eld model to the ISO model is doable.

The server should o�er the following communication methods (security and
signing is not prioritized for the prototype); OPC UA TCP and SOAP/Web
services.

Research questions

• RQ 1

� Build an OPC UA server framework based on the SDKs and the com-
munication stack to perform the basic setup of services and security.
In other words make communication, read/write of simulated values,
encryption/encoding and certi�cates work.

• RQ 2

� Evaluate di�erent ways of building the server Information Model
based on the Siemens tag.�eld information model.

• RQ 3
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� Try to build a server Information Model based on an ISO 15926
model.

• RQ 4

� Test the server for its Pro�le compliance using the Compliance Test-
ing Tools(CTT) from the OPC Foundation.

The server should have these general properties:

• Modular

• Small amount of con�guration before start up
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Abstract

When oil & gas �elds produce less in the late part of their life cycle, oil & gas
companies must run their operations more e�cient. One of the methods for
running their operations e�ciently is called Integrated Operations (IO). Rapid
introduction of IO can possibly save 250 billion NOK from 2005-2015. Stage
one of IO involved creating onshore expert centers which advises the operators
o�shore. Stage two will involve integrating suppliers and the oil company itself
using common data models. ISO 15926 �Industrial automation systems and in-
tegration�Integration of life-cycle data for process plants including oil and gas
production facilities� is an ISO standard which may facilitate this data integra-
tion. Siemens is currently participating in a project where they are modeling
the Snorre A and B oil platforms according to the ISO 15926 standard.

OPC (Openness, Productivity and Connectivity) speci�cations are communica-
tion speci�cations for process plants, and are the dominant speci�cations within
the automation industry. OPC UA is the newest OPC speci�cation and was cre-
ated to use new IT technologies, be platform independent, and handle complex
process models. OPC UA should o�er the technology and platform for imple-
menting ISO 15926 models and be one of the technologies used in stage two of
IO.

The purpose of this thesis has been to determine if OPC UA can be used for
presenting ISO 15926 models, with the consequence that OPC UA technology
may be part of an implementation for IO. To achieve this goal an OPC UA server
prototype was created for Siemens. The prototype server retrieves current and
historical data from Siemens's PIMAQ software system. When the server was
connected to PIMAQ an ISO 15926 model of Snorre B was created in the server
and the data in PIMAQ was connected to this model.

The prototype server that has been created supports reading of current and
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historical values from PIMAQ. Reading of current values passes the tests with
some warnings for minor non-compliance with the OPC UA standard. However
the rest of the server is not compliant and as a consequence not yet ready for
industrial deployment.

The OPC UA server prototype has been able to present the ISO 15926 model of
Snorre B to clients. Only parts of the ISO 15926 has been modeled in the server
because of time constraints, but enough has been modeled and implemented
to show that an OPC UA server can represent ISO 15926 models. This also
implies that OPC UA may be used by a company in stage two of implementing
Integrated Operations.
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Chapter 1

Introduction

1.1 The Context for the Thesis

As the highest peak has been reached for extracting oil in the North Sea [1],
oil companies have been looking into methods for making their operations more
e�cient and cheaper, in order to increase pro�t and extend the lifetime of their
oil �elds. Integrated Operations (often called IO) are one of these methods [2]
and IO implies that data must be shared between di�erent levels in the company
[3].

ISO 15926 �Industrial automation systems and integration�Integration of life-
cycle data for process plants including oil and gas production facilities� is an
ISO standard for data integration, sharing and exchange [4], and will be used by
the Norwegian oil industry in their second generation integrated operations [5].
OPC UA could be one of the technologies for sharing data organized according to
ISO 15926. Siemens in Trondheim is currently modeling oil platforms according
to ISO 15926 and is therefore interested in investigating if presenting these
models is possible in an OPC UA server, and if OPC UA could be a part of
a future product for the IO market. As OPC UA was the target of an earlier
project for Siemens in the autumn of 2010, it is not investigated in depth in this
thesis. The earlier report is attached and can be viewed if the reader would like
to gain more knowledge about OPC and OPC UA.
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2 CHAPTER 1. INTRODUCTION

1.1.1 OPC

OPC speci�cations are made by the OPC Foundation and used for exchanging
data in process plants. OPC stood for OLE in Process Control and currently
it stands for Openness, Productivity and Connectivity. OPC is tied to the
Windows platform via the COM/DCOM technologies. An OPC server retrieves
data from sources like sensors, PLCs and databases and makes the data available
for clients. The presentation of the data is called the servers Address Space. An
OPC client connects to an OPC server and browses the Address Space and
retrieves data from the server for further processing.

The �rst OPC speci�cation was created in 1996 and has been fragmenting as
new technologies have been developed and currently consists of a large amount
of speci�cations. To remedy this the OPC Foundation created OPC Uni�ed
Architecture(UA) in 2006 which was designed to be able to incorporate new
technologies without having to create new speci�cations, and to be cross plat-
form i.e. no longer tied to only Windows. OPC UA also o�ers a better platform
for modeling complex processes in its Address Space. More on OPC and OPC
UA can be had from [6] or http://www.opcfoundation.org/.

1.1.2 Information Management Systems (IMS)

An IMS is a software system that �...gathers live and historical data from sources
and presents these for further processing for di�erent users. Processing can
mean trending or parameter/model estimation based on the measured data.
Some typical requirements on an IMS are access to live and historical data,
high throughput, high availability, trending and analysis tools, and meta data
support.�[6].

1.1.3 PIMAQ

Siemens Oil & Gas in Trondheim delivers among their products the Process
Information Management and Acquisition Information Management System or
the PIMAQ IMS[7]. PIMAQ is used on oil & gas platforms and other pro-
cess plants. PIMAQ gathers live data from the signals in the control system
and saves these signals in a historical database. This data is used by di�erent
applications in PIMAQ for further processing like trending, daily reports and

http://www.opcfoundation.org/
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parameter/model estimation. A typical demand on a PIMAQ is high through-
put as there may be large amounts of data that must be moved and processed
[6] so e�ciency of work is important.

1.1.3.1 DynamicProcessAPI

DynamicProcessAPI is a class that is part of PIMAQ. It provides functions for
connecting to data providers, reading/writing of values and disconnecting from
data providers. It is the class used for data requests.

1.1.4 Purpose of the Thesis

The purpose of the thesis was to build a working OPC UA server prototype
using the OPC UA Standard Development Kit(SDK) and the OPC UA com-
munication stack. Once the server framework was done there was an attempt
to model process data according to ISO 15926 in the server and connect this
model to a historical data source. To understand the context of the thesis, I
needed more knowledge of IO and ISO 15926. To achieve these overall goals I
de�ned, in collaboration with Siemens, these project goals:

• Study Integrated Operations and ISO 15926 more in depth.

• Evaluate the SDKs and decide on the programming language with which
to start development.

• As the prototype may be part of a commercial solution the di�erent li-
censes and their usage must be investigated.

• Build an OPC UA server framework which allows a client to connect to
the server and browse a custom Information Model.

• Connect to PIMAQ and present current and historical data in the Address
Space of the server.

• Implement the methods necessary for an OPC UA client to be able to
read current and historical data from PIMAQ.

• Try to model an ISO 15926 model in the OPC UA server Address Space
and connect this model to data in PIMAQ.

• Evaluate the server for compliance using the OPC UA Compliance Test
Tools.
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1.1.5 Server Properties Speci�ed by Siemens

Siemens speci�ed some properties for the server before and during implementa-
tion. These were:

• Modularity, it should be easy to extend/modify the server.

• There should be as little con�guration of the server as possible before
booting.

• Ideally it should be possible to add/modify the existing Information Model
in the server without having to recompile the server, just reboot it.

1.1.6 Acknowledgments

I would like to thank my fellow graduating class mates of MITK 2009 for the
fun we have had and their support during these two years at NTNU. From
Siemens I would especially like to thank Espen Breivik for his guidance, support
and feedback, and the other people at Siemens OGTI in Trondheim for their
help. Finally I would like to thank Professor Sverre Hendseth at NTNU for his
guidance.

1.1.7 Audience

It is assumed the reader is familiar with the principles of object oriented pro-
gramming and data structures like lists and trees.

1.2 Terms Used in the Thesis

Some of the terms used in the thesis are from the OPC UA speci�cations. These
are written as they are in the speci�cations with big �rst letters as in Information
Model, Nodes or Address Space. Software classes and functions are also written
with big �rst letters as in the function �Read�.
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Information Model

An Information Model is the data itself and how this data is built up. Or as can
be deduced from the name it is a model of the information and the structure of
the information.

Nodes and References

Objects in an OPC UA server is built up using Nodes. Nodes are the building
blocks of objects. To relate Nodes to other Nodes they are connected using
References.

Model Compiler

The Model Compiler is a tool that is part of the OPC UA SDK. It compiles
Information Models de�ned in an xml �le into di�erent formats including a C#
class de�nition �le and a binary �le with prede�ned Nodes and References.

Address Space

The Address Space is the collection of Nodes and References that an OPC UA
server presents to clients.

NodeManager

When developers create their own Information Model they will also create cus-
tom Nodes and references that are not part of the OPC UA speci�cation. To be
able to handle/manage requests for these Nodes and References a NodeManager
is created.

Namespace

This is a container for objects, classes and variables. In this thesis it is used in
both the C# code to identify di�erent data models and to identify Information
Models.
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Uniform Resource Locator (URI)

An URI is a string of characters identifying an abstract or physical resource on
the Internet. The well known URL is an example of an URI, so www.Google.com
is the URI identifying the resource Google.

Factories

Factories are objects in a programming language which has the job of creating
other objects. A factory is usually used when creating the object directly is not
an option, for instance there might be an identi�er in the object that needs to
be unique. One could pass into the object a unique identi�er but if there are
many it will be easier to create a factory which would create objects with unique
identi�ers automatically.

Wrappers

There are di�erent uses of wrappers but in this thesis it is used as a function/-
class which calls/uses another function in a di�erent language. The purpose in
this thesis is to call C++ functions using C# by creating a wrapper.

Tags

In relation to automation a tag is a unique identi�er for an object or part of
an object, generally associated with a process value. The identi�er is usually
descriptive so the location and function of the object is easily identi�able. As
an example; to create a tag for an oil pressure transmitter on a generator, the
tag could be called: Generator1.Oil.PT.

The Semantic Web

Semantics is the meaning of something. The Internet as it is now is a large
collection of web pages. The information on web pages are exposed through
keywords. Search engines use these keywords, usage patterns and clever algo-
rithms to �nd the most relevant web pages but ultimately it is up to a human
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to look at the web page and decide if it is relevant. The semantic web is tech-
nologies and methods which allows a machine to understand the meaning of a
web page[8].

Ontology

Ontology comes from philosophy and is the science of describing things/ob-
jects and how they are related. Ontologies �...describe a shared and common
understanding of a domain that can be communicated between people and het-
erogeneous software tools. We construct an ontology by de�ning classes of
things, their taxonomy, the possible relations between things and axioms for
those relations.�[9]. This means that �...loosely speaking, collections of classes
of objects such as entity-relationship models from the database community or
object-oriented class de�nitions can be considered as ontologies.� [9].

UTC

Coordinated Universal Time or UTC is time given from 00 to 23 in the Green-
wich meridian. Local time is then given as UTC +- an o�set. UTC is not
adjusted for summer time so Norway has UTC+1 during winter and UTC+2
during summer.

Dictionaries, KeyValuePairs

A Dictionary is a data structure which maps one object to another object. In
other words a Dictionary is a hash table which can only point to one entry per
key. For instance the de�nition:

Dictionary<string, int>

creates a dictionary which can be used to map strings to integers, like a name
to a social security number.

A KeyValuePair is a data structure consisting of key and a value. This makes
it easy to collect two values into one object for later access.
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Chapter 2

Background

2.1 Integrated Operations (IO)

This background chapter about IO is not directly relevant for the implemen-
tation of the server, but IO was investigated to understand the context of the
thesis. The information in chapter 2.1 is taken from [10, 11, 2, 12] unless oth-
erwise speci�ed.

Integrated Operations is also called Smart Field, Field of the Future and E-Field
by di�erent companies. On the Norwegian Continental Shelf (NCS) Integrated
Operations is used. As oil and gas �elds produce less in the late part of their
life cycle oil companies must run the day-to-day operations of the �elds more
e�ciently, IO is part of this. The estimated gain of rapid introduction of IO
on the NCS can be around 250 billion NOK from 2005-2015 according to [13].
Also �...OLF has estimated that the implementation of integrated operations on
the NCS can increase oil recovery by 3-4%, accelerate production by 5-10% and
lower operational costs by 20-30%.�[14].

The Norwegian Oil & Gas Association de�nes IO as �...real time data onshore
from o�shore �elds and new integrated work processes.�[11]. IO consists of new
work processes and methods for doing oil and gas exploration and production
with the main goal of creating better planning and decision processes. The
ideal result is that exploration will be more e�ective, better reservoir utilization,

9
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increased production, less downtime, less interruptions, more e�cient operation
and project implementation and reduced HSE risk[15].

This is possible because of new IT technology. New technology allows real time
communication and data sharing between o�shore and onshore which allows
personnel onshore to have access to the same information as those o�shore.
The consequences of this is that onshore personnel can advise/support those
o�shore, equipment and processes can be remotely controlled, and more per-
sonnel can be moved onshore. This results in a change of work methods. By
reducing cost it can also enable oil & gas extraction from �elds which were not
economically feasible. More upsides is that IO should result in cooperation and
closeness between groups which earlier had no contact, especially within the
same organization, and that sharing of HSE information between companies
may increase the overall understanding of risk and HSE within the petroleum
business [16].

Traditionally onshore and o�shore was regarded as separate units. The day to
day operations were handled o�shore with limited support from onshore. Most
decisions were taken by operators without or with limited engineer support.

Generation 1 of IO is now underway and involves creating onshore centers with
24/7 communication links to several o�shore control rooms. This allows compa-
nies to have experts on land advising several platforms, instead of having to send
one expert to each platform. Having onshore experts allows better optimization
of production and provides extra support during problems.

Generation 2 is the next step and involves integrating suppliers and having
expert centers around the world to allow 24/7 support without having night
shifts. Suppliers will also take over part of the job of advising operators o�shore
as they are more familiar with their own equipment.

2.1.1 Perspectives on Accidents

While these perspectives/views on accidents are not directly relevant to the
server implementation, they are interesting and educational. There are di�erent
perspectives on risk management and major accidents described in [15], below
is a summary of these:

• Energy barrier perspective
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� This involves preventing accidents by focusing on dangerous amounts
of energy (like pressure, weight and heat) and creating barriers to
separate these from humans, equipment and the environment. Safety
strategies involves reducing the amount of energy, create barriers or
handling the dangerous situation (evacuation).

• Information processing perspective

� This perspective identi�es the root cause of major accidents, as not
the technical system itself, but as a result of lack of information �ow
and/or misinterpretation of events. This hindered identi�cation of
problems. In other words the accident is a result of organizational
problems. To combat these problems an organization must be able
to utilize information, observations and ideas from everyone in the
organization without regard of a person's/group's status.

• Decision perspective

� Risk management in this perspective is handling three di�erent goals
and trying to keep the company within three di�erent boundaries.
If a boundary is exceeded there will be an accident. The manage-
ment wants better e�ciency and to avoid their boundary of �nancial
bankruptcy. Workers would like a comfortable workload and their
boundary is an uncomfortable workload. The safety management
wants to reduce risk and they have an unacceptable risk boundary.
Choices will a�ect one or several of these goals. Lack of awareness of
this will result in accidents.

• Normal-accident perspective

� This perspective claims that the barrier perspective will not detect
some accidents as it does not take into account the interaction of
active and latent errors in complex systems. In a tightly coupled
system disturbances and unintended side e�ects can spread and es-
calate. This makes it impossible to attain complete knowledge of the
system to prevent accidents.

• High Reliability Organization (HRO) perspective
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� HRO is partially intended as an answer to the Normal-accident per-
spective and tries to explain how an organization who has Normal-
accidents conditions does avoid accidents. The central elements here
are organizational redundancy and the ability to change operation
modes during crisis. Organizational redundancy implies that tasks
and competence is overlapping within the organization and there is a
culture for exchanging information and overseeing each other. Some
of the theory comes from studies of the military, which may go into
more adaptable and �exible operation modes if there are deviations
from the norm.

• Resilience engineering perspective

� This is a new perspective based on theory from cybernetics and bi-
ological systems. It has two premises; Systems are nonlinear and
dynamical. The properties of the system vary naturally which is a
premise for learning and development but also a source of unwanted
deviations and events. Based on this, errors are not the collapse or
faults of normal system operation but unintended and coinciding ef-
fects of the adaptive processes which are needed for a system to work
in a complex environment. Resilience engineering then hopes to pro-
vide models and tools to understand, monitor and handle system
variations.

2.1.2 Risks and Rewards by Implementing Integrated Op-
erations

The o�shore industry has some of the highest security requirements in the world
and there has been research into how the introduction of IO will a�ect security.
The SINTEF report [15] uses the accident perspectives to create questions rele-
vant to each perspective. As none of the perspectives tells the absolute truth the
hope is that by using all six perspectives it will give a varied and good insight
into the risk factors for major accidents with regards to the implementation of
IO. To answer these questions �ve scenarios are created which are analyzed to
�nd the changes that IO implies. These changes are then collected to �nd the
answer to the original questions. As one may expect there are both positive
and negative e�ects to all changes and such no clear answers to the questions,
however these isolated changes seem to have a positive e�ect:
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• Better planning/support.

• Increased use of IT.

• Better possibilities for simulation and training.

The negative e�ects are more generic and are heavily connected to:

• Complex structures, like integrated suppliers with limited responsibility.

• Lack of understanding of the implications from the new decision context
like di�erent situation understanding, lack of hands-on knowledge, group
based decisions can blur the responsibility for executing the decision and
e�ciency/cost reduction dominates at the cost of safety.

• Lack of focus on work methods compared to work e�ciency.

[16] describes three di�erent situations o�shore and the generic elements which
may contribute to a major accident:

• Though decisions can be taken remotely it may not be the best option as
e�ciency and cost is a driving factor in most contracts. The result may
be that decision makers may not have the necessary prerequisites to make
their decision, i.e. they may know simple components intimately but may
lack the overall systems knowledge.

• An operator may feel that something is wrong but he could simultaneously
feel that it is not important enough to share.

• By creating expert centers companies will be more vulnerable to personnel
changes which could result in loss of key competence.

• Any uncertainties with regards to responsibility and decision boundaries
between operator, suppliers and sub suppliers.

• Electronic communication can hide underlying information.

• There could be a lack of personnel to handle emergencies as the current
personnel situation is already minimal/cost e�ective.

• The dependency on the IT structure increases, and only the possibility of
vulnerability to hacking, viruses and denial of service attacks can introduce
uncertainty whether the deviation is as a result of this or equipment/op-
erator fault.
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2.2 ISO 15926

The information in this chapter was not used directly in the implementation,
as a �nished ISO 15926 model was used, but ISO 15925 was investigated as
part of understanding the context of the thesis. ISO 15926 is large speci�cation
involving many concepts and can easily compromise enough work for a mas-
ter's thesis by itself so the information in this chapter tries to give a general
overview, describe why the speci�cation exists, how it is implemented and the
advantages/disadvantages of the speci�cation. Unless otherwise speci�ed the
information in chapter 2.2 is from [17, 4, 18, 19, 14].

2.2.1 Why ISO 15926 Exists

ISO 15926 is a speci�cation in eleven parts for digital interoperability for pro-
cess plants and facilitates exchanging complex plant information. Digital inter-
operability is �...the ability of di�erent types of computers, networks, operating
systems, and applications to work together e�ectively, without prior communi-
cation, in order to exchange information in a useful and meaningful manner�[20].

�...In the US capital facilities industry in 2002 alone, NIST estimated the annual
cost of poor interoperability �the cost of �nding and verifying (& the cost &
risk of not �nding) correct information for operational decision support �at
USD15.8 billion�over and above wider health, safety and environmental risks.�
[21]. As seen the lack of digital interoperability has costs [9, 21] and this is the
background for the ISO 15926 speci�cation.

On the NCS there has been a trend for the last years that there are more
small oil and gas �elds, and more specialized service companies. This makes
coordination and collaboration more important[14].

The hope is that ISO15026 can reduce the cost of retyping and reformatting data
when moving it from one system to another. As an example when designing,
specifying and purchasing an instrument the following operations could be done:

1. After the design the information is entered into a spreadsheet or database.

2. The o�cer in charge of purchases assembles the information and sends to
the suppliers.

3. Each supplier will enter the information into proprietary software and
create an o�er based on this.
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4. During design some properties of the instrument may be supplier speci�c
and is not taken account of. After a supplier is chosen the supplier data
will have to be manually entered into the CAD program.

5. After receiving documentation from the supplier important values will
have to be entered into an asset management system.

The information above is entered and converted into many di�erent systems.
Not only does this take time but it also introduces the element of human error
in each operation. What is needed and what ISO 15926 should provide is a way
for each participant's software to communicate complex information to another
participant without having to know the receivers data structure/format. Now
doing the same operations above with ISO 15926:

1. After design the information is entered into a spreadsheet or a database.

With ISO 15926 tools extracting the information automatically, the next oper-
ations may be:

1. The purchase o�cer will use a public interface for the company called a
façade to create purchase request and expose it via the company's website.
The URL can then be sent to the suppliers via email.

2. Suppliers can connect to the façade and retrieve the information for each
instrument. The suppliers can now choose to enter the data manually or,
since ISO 15926 data is rich enough, they can use a software program to
�nd the relevant instruments and let their engineers review the bid before
sending it.

3. After a supplier is chosen the design engineer can use his CAD system to
connect to the supplier's façade and retrieve the data automatically.

4. The asset management system can connect to the supplier's façade and
retrieve the interesting values.

As seen the process should now be faster and less prone to human errors. If
everyone uses the same standard, then information can be exchanged without
having to know of each other's data format, information will not have to be re-
typed and data has higher �delity as there is less human involvement. Everyone
can still use their own proprietary format or storage format and information
will be exchanged via a façade.
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2.2.2 Upper Ontology

The knowledge in chapter, 2.2.2, is taken from [9]. ISO 15926 is an upper level
ontology. Ontologies can be developed either from bottom-up or top-down.
Bottom-up development means that one starts by de�ning the most relevant
concepts for the area where the ontology is to be used. This results in ontologies
which are hard to modify and integrate with other ontologies. The top-down
design starts by de�ning high level concepts, which most likely are relevant for
many areas. Engineers using top-down design will know where the ontology will
eventually be used. This knowledge may in�uence the high level design in a
negative way as the engineers may create high level concepts which corresponds
to or leads faster to the �nal use. Upper ontologies avoid this problem by
de�ning the top/high level classes �rst and engineers can then use these classes
to create the more speci�c classes for their need.

2.2.3 A General Overview of the ISO 15926 Speci�cation

A short summary of the eleven parts of the ISO 15926 speci�cation taken from
the �How Does ISO 15926 Work?� part of [17] is below:

• 1 Overview and Fundamental Principles

� The title is fairly self explanatory.

• 2 Data Model

� This is the foundation of the speci�cation and creates the grammar
for ISO 15926 and �..is akin to an Upper Ontology�[19]. It consists of
the rules and constraints for using ISO 15926. Part 2 requires a fair
amount of work to understand, but fortunately most organizations
will only have to deal with part 7.

• 3 Reference Data for Geometry and Topology

� Part 3 is still under development and will eventually used to represent
3D CAD objects.

• 4 Reference Data Classes
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� Similar to a dictionary or thesaurus, it de�nes types of entities and
their relationships. An entity can be for instance an �Inanimate phys-
ical object� as seen in �gure 3.9 on page 39. Its parent may be �phys-
ical object�. How an entity in part 4 is related to part 2 can be seen
in �gure 2.3 on page 20.

• 5 Registration Procedure

� �..Procedures for registration and maintenance of reference data.�
from �How Does ISO 15926 Work?� part of [17].

• 6 Reference Data Additions

� The requirements when creating additions to ISO 15926.

• 7 Templates

� A template is �...a pattern for stating facts.�[20] or it can be thought
of as a small ontology. An example of a pattern can be �The am-
bient temperature during operation of a 3051CG pressure transmit-
ter should be within -40 and 85 degrees Celsius�[20]. Figure 2.2 on
page 20 shows how this can be represented in an ISO 15926 model.
Templates can the building blocks of what one needs to represent.
For example if one needs to create a template of an engine, the tem-
plate can be created by combining templates of cylinders, generators,
pressure/temperature transmitters and so on. This is the most im-
portant speci�cation for most users as it can be said to encapsulate
part 2.

• 8 RDF/OWL Implementation Speci�cation

� This part shows how to implement part 7 using Resource Description
Format and Web Ontology language (OWL). RDF and OWL are
technologies that have grown from the concept of the semantic web.
�...XML allows the creation of structured data but the data has no
meaning. The meaning is given by RDF. RDF asserts that objects
have properties which have values, this called a triplet. Formally
objects are called subjects, properties are called predicates and values
are called objects. An example is �Alice is the sister of Bob� or
�Shakespeare is the author of Hamlet�. In these instances the subjects
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are �Alice� and �Shakespeare� who have the predicates �sister of� and
�author of� and the objects have the values �Bob� and �Hamlet�. By
using RDF one can relate data to other data and convey meaning.�[6].
OWL is a language that uses RDF to create ontologies. For example
an ontology describing the wines of the world.

• 9 Façade Speci�cation

� As mentioned earlier a Façade is the public interface of a company's
ISO 15926 repository. Other companies can use the Façade to retrieve
information. A company can choose which parts to make public.

• 10 Abstract Test Methods

� No information is available yet.

• 11 Simpli�ed Industrial Usage including Gellish Implementation using Ref-
erence Data

� �...Part 11 was proposed recently as an easier methodology to im-
plement parts 7 & 8.� from �How Does ISO 15926 Work?� part of
[17].

A comparison between the �rst nine parts of the ISO 15926 speci�cation and
natural language can be had from �gure 2.1 on the next page.

2.2.4 How ISO 15926 Will Work

ISO 15926 will ultimately provide a set of public reference data, or a Reference
Data Library (RDL). An RDL is implemented as a Reference Data System/-
Work In Progress(RDS/WIP). An organization can then map their data and
applications to the RDL. Before an organization sends ISO data it can vali-
date the data against a RDS/WIP and then the receiver can also validate the
incoming ISO data against the RDS/WIP. The RDL used in thesis is part of
the Integrated Operations in the High North (IOHN) project and is created by
Siemens in collaboration with other companies. The RDL uses part 4 of the
ISO 15926 speci�cation as a base and then extends those entities to model a
oil platform. Ultimately the goal of the project is to create an RDL for the oil
and gas industry that is good enough to be standardized into the ISO 15926
speci�cation.
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Figure 2.1: Comparison between language and the parts of the ISO 15926 spec-
i�cation, from [17]

2.2.5 Advantages and Disadvantages

The advantage as written earlier is that the speci�cation should result in less
time and money spent on retyping/interpreting data by allowing computers to
do more of the work.

The article [22] discusses some issues with the ISO 15926 speci�cation. While
the author does not say whether the speci�cation itself can or cannot ful�ll
what it was made to do, he does argue that there are problems with calling the
speci�cation an ontology. His main issues are:

• The speci�cation is not very intelligible or easy to understand.

• It is not an open speci�cation and as such there are costs and compromises
when creating the speci�cation.



20 CHAPTER 2. BACKGROUND

Figure 2.2: ISO 15926 model of ambient temperature assignment, from [19]

Figure 2.3: The relationship between ISO 15926 part 2 and 4 taken from [14]
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• The author takes issue with the mathematical set theory that was used
when creating the speci�cation.

• It does not reuse available and good resources/ontologies.

• There is no clear way to distinguish between types and instances of types.

2.3 OPC UA SDKs

The OPC Foundation provides SDKs in Java, C# and C/C++ for server and
client development. Understanding the SDKs is an important step before im-
plementing. The source code and binaries for the SDKs are covered by di�erent
licenses. This must be kept in mind when implementing an application, as
wrong use of licensed code is morally wrong and can be expensive.

2.3.1 Licenses

The information about licenses is taken from [23]. As the server prototype may
be part of a commercial solution license usage must be investigated. The OPC
Foundation uses a dual licensing model where users can choose between and
Commercial license or a Reciprocal Community License. With the Commercial
license the user can pay and then use the software without having to share their
code with the community. The Reciprocal Community license allows users to
use the software free of charge but the users must pay the community back by
sharing their bug �xes and changes. To put it succinctly; developers pay in
either cash or code.

2.3.1.1 OPC Redistributables License

This license applies to any prebuilt binaries and binaries compiled from dis-
tributed source code. It grants users the right to distribute and redistribute
these binaries without royalty fees. Users can not redistribute without adding
signi�cant functionality.
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2.3.1.2 MIT License

The MIT license is an open source license, originating from Massachusetts In-
stitute of Technology, and allows users �..to deal in the Software without re-
striction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sub license, and/or sell copies of the Software.� subject to
including the license in all copies or portions of the software. The author(s) is
also not responsible for any damages occurred by using the software and the
software is given without any warranty.

2.3.1.3 Reciprocal Community License ("RCL")

Based on the principle of fairness and the Open Source RPL license the RCL
license closes some loopholes in the open source license which allowed companies
to use open source code and gain �nancial bene�t without having to share their
improvements or bug �xes with the community. In this case the community
is the OPC Corporate Members so it is not full open source. In essence this
means that any bug �xes or changes to the original modules like the SDK, stack
or wrapper must be shared with the community even if you deploy for internal
testing. However any proprietary source code you create using the original
modules is your own intellectual property and must not be shared. The RCL is
meant to be commercially friendly.

2.3.1.4 Reciprocal Community Binary License ("RCBL")

The RCBL license is the same as the RCL only binaries can be shared, no source
code.

2.3.1.5 Commercial Source Code License ("CSCL")

If the RCL or RCBL is not acceptable the OPC Foundation o�ers this license for
a fee which removes any requirements to share modi�cations or enhancements.
It does not add support or warranty.

2.3.2 DLLs

The OPC Foundation delivers four DLLs with the SDKs, these are:
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• Opc.Ua.Client.dll

� This DLL contains classes which are used to implement UA clients.
This includes classes for managing and storing sessions, subscriptions
and browsing the server model.

• Opc.Ua.Server.dll

� De�nes the classes which can be used to implement a UA server.
Among these classes is the NodeManager which manages the custom
Nodes developers uses to build their Information Model. As with the
client DLL, the server DLL manages and stores session's data and
subscriptions. The server is where a developer would access data
and events in an external system, like a database, controllers and/or
measurement devices.

• Opc.Ua.Con�guration.dll

� This DLL manages the con�guration and security settings for a UA
application. The classes here do the initial setup based on XML �les
and certi�cates.

• Opc.Ua.Core.dll

� De�nes the classes which implement all of the services and types in
the UA speci�cation.

2.3.3 Programming Languages

SDKs are o�ered in C/C++, C# and Java. As Siemens has no code in Java
this SDK has not investigated. The C/C++ SDK consist of the communication
stack and a simple server/client Visual Studio solution. The solution is for a
server that does simple setup and start/stop of the server with no data presented
to clients.

The C# SDK contains nine solutions showcasing di�erent aspects of a server, a
closer look of these are in section 4.2 on page 44.
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Chapter 3

Server and Information

Model Design

Implementation and design was done in two stages. Stage one, called the �frame-
work server�, created/designed a framework for the server. In stage two, the
�prototype server�, the framework server was extended to interact with PIMAQ
and create/present Information Models based on PIMAQ data and/or an ISO
15926 model.

3.1 The Design of the Framework for the UA
Server

There were no real design choices for the framework as the basic structure of
an OPC UA server is already �xed. Most of the e�ort for the framework went
into investigating all of the SDKs and how to con�gure the server. The server
architecture in the C# SDK is as seen in �gure 3.2 on page 27. All of these
classes/interfaces are implemented in the OPC.UA.Dlls and/or in the SDK. The
framework server structure is as seen in �gure 3.1 on the following page.

One of the �rst goals of the thesis was to create a framework for the server which
would con�gure the server with a certi�cate, de�ne communication methods,
de�ne the security and present a Information Model in its Address Space. An

25
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Figure 3.1: The structure of the OPC UA Framework server

implementation inherits from StandardServer to create a server class and inher-
its from INodeManager to create at least one NodeManager for use in the server
class. A NodeManager has the job of managing the custom Nodes created in
an Information Model.

The framework for the prototype server consist of several classes with di�erent
functions, these are described in section 4.3.1 to 4.3.2 . The framework server is
simple with an Information Model of a boiler. Objects and Nodes were exposed
to clients without reading and writing of data, but the model could be browsed.
The server was tested with two clients, the UA SDK DataAccess client and a
commercial client called OPC UA viewer [24].

3.2 The Design of the Prototype UA Server

The prototype server adds more classes to the framework server to connect and
read from the data source(s) and expands the NodeManager(s) to handle read
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Figure 3.2: The classes in the server architecture according to [25].

and historical read requests. The full structure of the prototype server can be
seen in �gure 3.3 on page 29.

For the prototype there were not many design decisions to be made. This was
because the PIMAQ structure is �xed and the NodeManager/UaServer structure
is the same as in the framework server. The design decisions dealt then with
the best method for the OPC UA classes to interact with PIMAQ.

The class DynamicProcessAPIwrapper was designed to mirror the functions in
pInvokeInterface directly and convert data from DynamicProcessAPI into the
data structures used in the server. It is a static class to make sure it is the only
method for using DynamicProcessAPI.

The class DynamicProcessAPIinterface is intended to be a interface for classes
that needs to interact with DynamicProcessAPI. DynamicProcessAPIinterface
consists of simple or complex functions which utilize the functions in the wrapper
to build functionality for other classes.

Modularity is important and this design should make it easy to extend or modify
the server as both classes have clearly de�ned functionality.

The functionality for the server classes are as follows:

• The DynamicProcessAPIwrapper has the functions for communicating
with PIMAQ.
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• DynamicProcessAPIinterface uses the wrapper to build more complex
functions for managing tags and initializing the DynamicProcessAPI.

• The UaServer has three NodeManagers which it calls in turn to ful�ll
requests from clients, it also initializes DynamicProcessAPI through the
DynamicProcessAPIinterface.

• For data requests each NodeManager will use DynamicProcessAPIinter-
face to retrieve data if they need. Each NodeManager is inherited from
the Quickstart NodeManager and consequently some function calls are
handled by the functions in the Quickstart NodeManager.

3.2.1 The PIMAQ Structure

PIMAQ is a C++ application which consists of many modules. Each module is
compiled as a DLL and then loaded by the program using this DLL. This makes
PIMAQ modular and customizable. For the purpose of this thesis the modules
used were:

• SiLight.dll

� This is a support library which contains data structures like time/-
date structures and read/write mutexes/semaphores.

• ProcessDataUtilities.dll

� This module contains among others the two main classes for connect-
ing to data. DynamicProcessAPI, which is the API used to connect
and read/write to the di�erent data providers, and pInvokeInterface
which is intended to be used by a wrapper class.

• Staticprovider.dll

� This module is responsible for loading/providing csv �les, these look
like in listing 3.1 on page 30. CSV �les are an easy method to test
read/write of values in DynamicProcessAPI as they are local �les
requiring no network con�guration or external database.

• SiemensIp21ProviderRemote.dll
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Figure 3.3: The structure of the OPC UA server prototype
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� InfoPlus21 is a historical database made by Aspentech and this mod-
ule connects to such a database for reading/writing. This provider
connects to a remote machine on the network hence it is called re-
mote.

• IP21FilterLib.dll

� The API for the IP21 database from Aspentech is complex and not
easy to use. Siemens has therefore created a wrapper class for the
IP21 API, called IP21Filterlib for doing calls into IP21.

• Assorted DLLs made by Aspentech [26] for connecting to their InfoPlus21
database.

As seen in �gure 3.3 on the previous page DynamicProcessAPI can connect
to four di�erent data sources, an Oracle database, csv �les, an IP21 database
and a OPC HDA server. The classes responsible for connecting to each data
source are called providers and are dynamically loaded by DynamicProcessAPI
on start up.

Listing 3.1: Example CSV �le
1 #Tag , Field , Value , Timestamp
2 MLS -LIC -113,"FBTypeName","CA"
3 MLS -LIC -113,"AutoMode" ,1,2011-01-07T00 :00:00.000+02:00
4 MLS -LIC -113,"PropGain_Kp" ,0.1,2011 -01-07T00 :00:00.000+02:00
5 MLS -LIC -113,"IntegrTime_Ti" ,0,2011-01-07T00 :00:00.000+02:00
6 MLS -LIC -113,"DerivativeTime_Td" ,0,2011-01-07T00 :00:00.000+02:00
7 MLS -LIC -113,"IntSetpoint" ,5000 ,2011 -01 -07 T00 :00:00.000+02:00
8 MLS -LIC -113,"AnalogInputValue" ,0,2011-01-07T00 :00:00.000+02:00
9 MLS -LIC -113,"ControlOutput" ,0,2011-01-07T00 :00:00.000+02:00

3.3 Designing Information Models

To present data in the Address Space for clients, the data must be modeled.
These models are called Information Models in UA. One of the strengths of UA
is that it can model complex relationships and models, according to [6]. Two
Information Models have been developed, the �rst to model/mimic the data
structure in PIMAQ and the second to model an ISO 15926 model of the oil rig
Snorre B.
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The di�erent Nodes in the OPC UA Information Model have normal de�nitions
and type de�nitions. Type de�nitions are meant to be created for Nodes that
are reused, for instance in a library. Complex objects have mostly been created
as types, and then an instance of the type has been created and loaded into the
server from a binary �le.

3.3.1 Creating an Information Model

Information Models are created as XML �les, and then compiled with the
tool Model Compiler. The Model Compiler outputs a binary �le; Names-
paceName.Prede�nedNodes.uanodes, which contains prede�ned Nodes and the
NamespaceName.Classes.cs �le which contains the C# class de�nitions for Nodes
and References. Editing an XML �le by hand can be hard and prone to errors.
There is a solution to this, a free software tool called CAS UA Address Space
Model Designer from [27]. This software allows an easier GUI creating and edit-
ing of Information Models, and then it compiles the models into the same �les as
from the Model Compiler. It will also refuse to compile on errors in the model.
The full version includes options to verify the model. Figure 3.4 on the following
page shows how the Information Model for the framework server looks in the
CAS Model designer. As seen the model has two custom References to describe
signal and �uid �ow, type de�nitions for each part of the boiler(controllers, sen-
sors, actuators, indicators, transmitters, pipes and the drum) and a prede�ned
boiler1 which is the same as seen in �gure 4.1 on page 47.

3.3.2 Description of Tag.Field Model

Data in DynamicProcessAPI are organized �rst under function block type, then
tag name and then �elds. Function block types are mostly from the NORSOK
I-005 standard[28]. A control system for a process is mostly compromised of
eleven di�erent functions which was standardized in NORSOK I-005. Examples
of the functions standardized are:

• MA, Monitoring of Analogue variables.

• MB, Monitoring of Binary variables.

• CA, Modulating control/PID controller.
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Figure 3.4: The Framework Information Model as seen in CAS UA Address
Space Model designer
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• CS, Step control of equipment.

• SBE, Binary control of electrical equipment.

• SBV, Binary control of pneumatic/hydraulic equipment.

• QA, The total amount of process values for a time interval.

These functions, or function templates as they are called in the standard, are
associated with a tag in the system. The control system is then mirrored in the
historian, normally an IP21 database. A seen in �gure 3.5 on the following page
each function template have several inputs and several outputs. These inputs
and outputs are historized as �elds under each tag along with other �elds which
comes from IP21 settings and other �elds which describe the tag. Figure 3.6
on page 35 shows an MA function block from the control system from Snorre B
modeled in CAS OPC UA Address Space designer. By comparing both �gures
referenced above one can see that the MA model mirrors most of the inputs and
outputs for the function templates, with extra �elds which describe both the
MA block further and historian settings.

What all of the above means is that all tags in the system are organized under
function blocks and that each tag have �elds which both describe the measure-
ments and are the measurements themselves. This means that the �elds are
uniquely tied to the function blocks and not to the tags themselves and that all
function blocks of the same type have the same �elds for a given process plant.
These assumptions are used heavily when dynamically creating the Address
Space for the serve and are valid according to Siemens.

3.3.2.1 Advantages of the Tag.Field Model

Normally a control system will have tags for every option and measurement so
around 50-60000 tags for an oil rig. The advantage with the Tag.Field model
is that the amount of tags are reduced and then options and measurements are
collected as �elds/properties of the tag and then every single �eld is historized.
The model also mirrors the control system.

3.3.2.2 Di�erent Methods for Creating the Model

Two methods for creating the Tag.Field model have been explored. The �rst
was a dynamical method where a FunctionBlockType Node, a TagType Node,
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Figure 3.5: The MA function template from the NORSOK I-005 standard[28]
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Figure 3.6: The di�erent Tag.�eld models for the OPC UA server
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a StringFieldType Node, a DoubleFieldType Node, a FloatFieldType Node and
a StatusWordFieldType Node was created in the Information Model as seen in
�gure 3.6 on the preceding page. Servers can then connect to PIMAQ, get the
tags, iterate the tags, connect them to function blocks, and create �elds based
on the tag's function block type. The advantage here is that the model makes
no assumptions apart from that all function blocks of the same type have the
same �elds and requires no con�guration and will adapt to any data source
dynamically. The disadvantage is that it does require time to create for the
server.

The second method is to model the function blocks exactly as seen in the data
source. An example of this is seen under MATagFieldType in �gure 3.6 on the
previous page. Of course this means every function block type must be modeled
from the data source �rst. The advantage is that it should be faster to create
the model for the server but it is not �exible as only one data source is modeled
and hence more con�guration is needed. More work is also required to use the
second method.

Both methods have advantages and disadvantages so they were both tried and
tested. In the end the dynamical approach was selected for the prototype as it
was more in line with Siemens wishes for as little con�guration as needed.

3.3.3 Description of the ISO 15926 Model

As described in the background chapter about ISO 15926 public RDLs should
be created so that companies can share data according to the data models.
Siemens is part of the IOHN project and have used the POSC Caesar RDL to
create a ISO 15926 model for the Snorre B oil platform. It is a large model as
seen in �gure 3.7 on the facing page. The �gure has no details but green color
means a static element like �ow lines, risers and joints, gray is active elements
like valves and pressure elements, and purple are properties of elements like pipe
inner diameter and pipe wall thickness. Because of time constraints the entire
model has not been modeled for the UA server but oil well C6 (�gure 3.8 on
page 38) and C5 has been modeled to show the concept. The objects which the
wells consists of are de�ned in the nomenclature in �gure 3.9 on page 39. As
seen Inanimate Physical Object is from ISO 15926 speci�cation 4 and then has
been further re�ned into di�erent objects corresponding to platform equipment
by the IOHN RDL project. To create an OPC UA Information Model the ISO
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Figure 3.7: The ISO 15926 Model for the Snorre B platform[29]

objects become Nodes and the relations between objects are created as non
hierarchical References.

OPC UA clients can browse a servers address space and �lter away the Ref-
erences it is not interested in. Therefore the References for the ISO model is
collected into a master Node object ISONonHReferenceTypes, so clients can
view the ISO model by choosing to view ISONonHReferenceTypes.

The assumption for the ISO 15926 Information Model is that all Displaynames
for Nodes are unique, which is OK as all objects in the original model have
unique identi�ers.

3.3.3.1 Di�erent Methods for Creating the Model

First the basic Nodes and References of the model were created by converting
RDL objects into Nodes and RDL relations into References using the nomencla-
ture. This resulted in the objects above the WellType de�nition in �gure 3.10
on page 41.

References can have an inverse name or be symmetric. An example is the
hasPart Reference which is not symmetric and has the inverse name isPartOf
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Figure 3.8: ISO 15926 Model for Well C6[29]
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Figure 3.9: Nomenclature for the elements in well C6[29]

(Object A hasPart Object B, Object B isPartOf Object A). An example of a
symmetric Reference is the connectedTo Reference (Object A is connectedTo
Object B, Object B is connectedTo Object A). The CAS OPC UA Address
Space designer does not support inverse names at the moment so it was hard
coded into the model by editing the xml �le.

Again two slightly di�erent methods for creating the model were investigated,
created and tested. The �rst consists of creating a PlatformType type de�nition
and then add Nodes and References to mirror the ISO model as seen under
PlatformType in �gure 3.10 on page 41. Each Node references its type de�nition.
In the end a Snorre B object is created which has its type de�nition from
PlatformType. This method involves mirroring the entire ISO 15926 model in
the Information Model. The advantage is that the model needs no processing
it just have to be loaded by the server, the disadvantage is that it is static and
harder to change.

The second method is similar to the �rst, but instead of creating a speci�c
model the original model can be divided into general parts which are modeled
by themselves as seen in WellType in �gure 3.10 on page 41. The complete
platform can then be created by putting together the general parts as seen
under Snorre A in �gure 3.10 on page 41. The advantage is that the model is
more �exible and easier to change but with the disadvantage that the server
must process the model to set the correct identi�ers for the Nodes. This is
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because the general model does not have unique identi�ers.

The �rst method is the one that is used. Even though it needs more modeling
and is less �exible, an oil platform is a fairly static structure so the extra e�ort is
worth it. The second method, while more �exible, will add more con�guration
to the server to determine identi�ers for Nodes.
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Figure 3.10: The complete ISO 15926 Information Model
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Chapter 4

Implementation

The implementation part of the thesis has created two servers called the frame-
work server and the prototype server.

The framework server has:

• Initial con�guration of the server.

• An Information Model of a boiler.

• The possibility for clients to browse the Information Model.

The prototype server extends the framework server and adds:

• The possibility to retrieve current and historical data from PIMAQ.

• Two Information Models, the Tag.Field model and the ISO 15926 model.

• Information Models that can be browsed, and current and historical values
can be read for the the Nodes in the model.

• Caching of historical request to minimize the load on PIMAQ.

Chapter 4 gives an overview of the two servers and the most important classes
and functions for each. It also explains and discusses the problems encountered
during the implementation and their solutions.

43
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4.1 Choosing the Programming Language

Originally the plan was to create a server in C++ as most of PIMAQ is pro-
grammed in C++. But as the SDKs were investigated it was found that C++
is a harder starting point as there are no proper examples to work with. The
only proper C++ SDKs are commercial and costs money. So in the end the
choice fell on using the C# SDKs and creates a wrapper for communicating
with PIMAQ. The knowledge gained during the C# implementation also works
a starting point for a future C++ implementation as they both use the same
functions in the OPC Dlls.

4.2 Choosing Solutions to Base the Framework
and Prototype on

The SDK contains nine .NET server solutions in C# these are:

1. AlarmCondition Server, a server which simulates alarms in di�erent areas
of a process plant. The server allows �ltering of alarms , enabling/disabling
of alarms and to acknowledge alarms.

2. DataAccess Server, a server which has reading of current values, called
DataAccess in OPC terms.

3. Empty Server, a server with an empty Address Space.

4. HistoricalAccess Server, a server which has historical data access, historical
process values.

5. HistoricalEvents Server, a server which has historical events.

6. InformationModel Server, a server which builds and exposes an Informa-
tion Model based on a precompiled binary �le and also creates objects
dynamically.

7. Methods Server, a server for calling methods in a server. Methods are the
equivalent of functions.

8. SimpleEvents Server, a server which shows non historical events.
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9. UserAuthentication Server, a server which shows how to implement user
authentication and other issues arising from authentication.

As this thesis is about building a prototype UA server that can connect to and
retrieve current and historical data in PIMAQ and model this data according
to di�erent models, the most interesting solutions to base the server on was the
DataAccess, HistoricalAccess and the InformationModel solutions. All three
solutions were investigated more in depth and in the end the framework for
the UA server prototype was based on the InformationModel server solution.
The main reason for this choice was that there were no real di�erences between
the three solutions for the purpose of creating the framework server. For the
prototype server all three solutions were consulted.

4.3 The Implemented Classes for the Prototype
Server

4.3.1 UaServer

UaServer is the class which implements the core of the server. It inherits from
StandardServer in Opc.Ua.Server and overrides these functions:

• CreateMasterNodemanager()

� This function creates the MasterNodeManager by populating a list
with custom a NodeManager(s). To be able to handle Information
Models with custom Nodes and References a developer must create a
NodeManager to handle these. The intent is for developers to create
a NodeManager for each model they build. When there is a Node
request the MasterNodeManager calls each NodeManager in turn to
see if they can ful�ll the request. It is the job of each NodeManager to
check if the Node belongs to it and perform the necessary operations.

• LoadServerProperties()

� This function sets properties for the server which cannot be con�g-
ured by the XML �les, like manufacturer name, product URI, soft-
ware version, software certi�cates and build number.
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4.3.2 FrameworkNodeManager

The FrameworkNodeManager class creates and manages the custom boiler model.
It overrides and implements some functions from the QuickstartNodeManager
class which is part of a support library in the SDK. The QuickstartNodeM-
anager class is covered by the RCBL license, 2.3.1.4 on page 22, and over-
rides the interfaces INodeManager2(from Opc.Ua.Server), INodeIdFactory(from
Opc.Ua.Core) and IDisposable(from System). It is assumed that a production
server will implement its own NodeManager(s) as there may be platform speci�c
methods for increasing performance. But for the purpose of the framework it is
su�cient as it can handle a custom Information Model.

• Constructor FrameworkNodeManager()

� De�nes the namespaces used in the FrameworkNodeManager, sets
the NodeIdFactory and loads the con�guration from Framework-
ServerCon�guration. The namespace is divided into types and in-
stances of those types.

• Dispose()

� A function used for �...Use this method to close or release unmanaged
resources such as �les, streams, and handles held by an instance of the
class that implements this interface. By convention, this method is
used for all tasks associated with freeing resources held by an object,
or preparing an object for reuse.� according to [30].

• New()

� New overrides New from INodeIdFactory and lets developers create
a custom NodeId scheme for keeping track of Nodes that are created.
New is part of the NodeId factory. NodeIds are unique identi�ers for
the objects in the Address Space.

• LoadPrede�nedNodes()

� Loads a prede�ned Information Model from a binary �le. The syntax
for loading a �le consists of the default namespace for the solution,
any project folder names and the �le name of the binary �le. The
resource name will then be DefaultNamespace.PathToFile.Filename.
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• CreateAddressSpace()

� This function creates the server address space by reading in the pre-
de�ned Nodes and creates �Boiler #1� and then creates �Boiler #23�
dynamically.

• DeleteAddressSpace()

� Deletes the address space, freeing created Nodes.

• GetManagerHandle()

� Returns a NodeHandle to a Node if this NodeManager controls the
Node. A NodeHandle stores information about a NodeId.

The framework server's Address Space is seen as in �gure 4.1 when viewed from
OPC UA Viewer.

Figure 4.1: The Framework servers Address Space
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4.3.3 Boiler.Classes.cs

This is a C# class which is the output of the Model Compiler, the Model
Compiler is explained in 3.3.1. Boiler.Classes.cs contains the class de�nitions
for the Nodes and References in the boiler Information Model.

4.4 Implementation Challenges for the Prototype

The implementation of the prototype server o�ered new challenges with regards
to e�ciency, caching of data and creating solutions to work around di�erences
between OPC UA and DynamicProcessAPI.

4.4.1 For versus Foreach Loops

Foreach loops are used to iterate data structures like lists and dictionaries safely,
i.e. there is no need to worry about indexing. The only requirement is that the
size of the data structure does not change during the loop iteration. For loops
can handle size changes. As seen in listing 4.1 a Foreach loop should result in
more understandable code. Foreach loops may also have a slight performance
disadvantage compared to for loops according to [31, 32]. It will not always be
the case that the performance is worse but it could be. For this project mostly
Foreach loops were used as they suit dictionary and list iteration better and
resulted in better code.

Listing 4.1: Foreach vs for loop
1 foreach(Book in books)
2 Book.name = ...
3

4 for(int i = 0; i < books.length; i++)
5 books[i].name = ....

4.4.2 Loading and Using C++ Dlls in C#, or Using Un-
managed Code in Managed Code

The prototype retrieves data from PIMAQ and need a wrapper to use PIMAQ.
C# is part of the .NET platform and is called managed code. It does not
have pointers or memory management, but references and garbage collection.
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References work more or less like pointers but they do not cause memory leaks
if they are not deleted. C++ does have pointers and memory management and
is called unmanaged code. As PIMAQ is mostly written in C++ a wrapper
must be created to utilize the DynamicProcessAPI in PIMAQ. Using C++ dlls
in C# is fairly straightforward:

1. Add System.RunTime.InteropServices to the declarations.

2. Create a class for containing the imported functions.

3. Import the individual functions from the dll by using DllImport before
the function name.

4. Managed code has less data types than unmanaged code. For instance
managed code has one string type, whereas unmanaged code has many
di�erent string types(a introduction can be had from [33]). So if there is a
need to send a C# string or another data type into a C++ function then
the data type must be marshaled as the correct data type.

Listing 4.2 shows an example of the technique used in DynamicProcessAPI-
wrapper.

Listing 4.2: Example of importing a function and marshaling the parameters.
1 [DllImport("ProcessDataUtilities.dll", CharSet = CharSet.Unicode)]
2 static extern int pInvokeDisconnect ([ MarshalAs(UnmanagedType.LPStr)] string

provider_name , bool last);
3

4 static static int Disconnect(string provider , bool last)
5 {
6 int return_code = pInvokeDisconnect(provider , last);
7 return return_code;
8 }

4.4.3 Di�erences Between DynamicProcessAPI and OPC
UA

There are principal di�erences between OPC UA and DynamicProcessAPI which
have been taken into consideration when implementing the server.
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4.4.3.1 Data is Saved as a String

DynamicProcessAPI only exposes data as strings. This is a loss of precision as
the di�erent data may originally be strings, integer, double, �oat, guid or other
data types. For example a process value could be a �oat, an engineering unit
could be a string and a status word could be an 8 bit binary value. OPC UA
o�ers a large selection of prede�ned data types, like the standard data types
from programming but also image formats, date structures, and the possibility
to create your own data type. The server implementation contains functions
which show how to do type conversion. This works by assuming that when
reading the value for a �eld in the Tag.Field model the data type is also re-
turned. At the moment this is hard coded in the ReadField function in the
DynamicProcessAPIwrapper and has been tested with double and string.

4.4.3.2 Reading Forwards

DynamicProcessAPI reads values forward in time from a start time to a end
time, where the start time ≤ end time and returns all values in the interval.
OPC UA supports more dynamic reading options, these are:

• Forwards with start time, no end time and a maximum number of returned
values.

• Backwards with no start time, with end time and a maximum number of
values.

• Forwards with start ≤ end time with or without a maximum number of
values.

• Backwards read with end time ≤ start time with or without a maximum
number of values.

• For all requests if there is more data than the maximum number of values
a continuation point is created so that the read can be continued from
there.

To accommodate these reads there is preprocessing of the requests, and in the
case of backwards requests post processing of the values.
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4.4.3.3 Dead Band Resolution

DynamicProcessAPI uses dead band resolution for saving historical data. When
a value changes enough it goes outside the dead band and it is historized. This
gives a dynamical resolution which has many values saved for periods of fast
change and fewer values for periods of slow change. The OPC UA read function
has a parameter which is called maxAge. Maxage gives the maximum age for a
value to be valid. As DynamicProcessAPI has dead band the last value is still
valid even if it is over maxAge, and this parameter is ignored even though the
value may have a timestamp older than maxAge.

4.4.3.4 Bounding Values

Bounding values can be explained as �...When making a request for historical
data using the ReadHistory Service, required parameters include a start time
and end time. These two parameters de�ne the Time Domain of the ReadHis-
tory request. This Time Domain includes all values between the StartTime and
EndTime, and any value that falls exactly on the StartTime, but not any value
that falls exactly on the EndTime. For example, assuming bounding values are
not requested, if data is requested from 1:00 to 1:05, and then from 1:05 to 1:10,
a value that exists at exactly 1:05 would be included in the second request, but
not in the �rst..� from chapter 4.4 in [34]. The problem here is that Dynam-
icProcessAPI returns the value either at start time or the value before start
time. So if a client asked for data from 11.00 to 12.00 and the value valid at
11.00(because of dead band) was logged at 10.45 it will return the timestamp
of 10.45, not 11.00. This is currently left as is but it may have to be changed
when the OPC Foundation releases a compliance test for Historical Access.

4.4.3.5 Fields vs Properties

Values in OPC UA are represented as properties or data variables. Properties
�...characterize what the Node represents, such as a device or a purchase order.�
and data variables �...represent the content of an Object.� from chapter 4.4
in[35]. For example the engineering unit of a tag describes the tag and is a
property. The measured value for a tag would be a data variable. DynamicPro-
cessAPI uses the Tag.Field model where each �eld is considered a property of
the tag. This is a loss of precision and a conversion function has been imple-
mented. Siemens has a wish to have to con�gure the server as little as possible
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so using the DatavaluesFilter is optional, and if it is left empty all �elds are
modeled as properties of the tag.

4.4.3.6 Time

OPC UA assumes all values are saved/stored/sampled in UTC time. Dynam-
icProcessAPI uses epoch/Linux time given in local time with/without summer-
time (depends on the computer settings). To compensate for this the di�erence
between DateTime.UtcNow and DateTime.Now is found and subtracted from
the start and end times before doing a call into DynamicProcessAPI. If there
are time problems this should be checked.

4.4.4 Implementation Challenges Which Arise From Be-
havior in the OPC UA Client SDK

The general advice from the OPC Foundation on developing the server was to
make no assumptions about what a client would do. During development and
testing there was some issues concerning e�ciency and stability which arose from
client behavior. The steps taken to correct these issues are described below.

4.4.4.1 Epoch Requests

The client SDK(s) does an open data request from 1970.1.1 00.00.00 (or epoch
time) to current time when opening the history read dialog. This is done to �ll
in the start time �eld. The commercial client that has been tested also does
the same operation. Doing such an open request in DynamicProcessAPI is very
far from ideal, and can crash the system. This is because there can easily be
3 million values or more for a �eld. Considering that the return value from
DynamicProcessAPI contains dates, values, quality and quality status (around
50 characters for each set of data) the total number of characters can be around
150-200 million. According to Siemens such large requests does not happen
during normal operation.

As there is no sure way to identify these requests directly, they are �ltered out
and �lled with empty values. This problem is both an issue with client design
and the fact that DynamicProcessAPI can not restrict the number of values
returned in a request. However this is not a perfect solution as large requests



4.5. THE IMPLEMENTED CLASSES FOR THE PROTOTYPE SERVER53

can still be done, so a full commercial implementation might have to restrict
the time span for requests.

4.4.4.2 Year 1 Request

This is another request which comes in with start and EndTime at 0001.1.1
or midnight year 1. These requests were discovered during software tests. As
DynamicProcessAPI uses epoch time there will never be data for these requests
so they are �ltered out and �lled with empty data.

4.5 The Implemented Classes for the Prototype
Server

Below is the intended functionality for each implemented class explained, along
with important functions in the class. If more in depth knowledge is required
then the source code or Documentation.chm can be consulted.

4.5.1 DynamicProcessAPIwrapper

This class imports functions from pInvokeInterface in ProcessDataUtilities.dll.
These functions allow communication with DynamicProcessAPI. As can be de-
duced from the class name it is a wrapper; for using C++ dlls in the C# server.

4.5.1.1 ReadData()

ReadData reads in historical values for a given �eld under a tag. It works as seen
in algorithm 4.1 on the next page. Using a dictionary is not ideal as the data
structure does not support direct access of the �rst and last elements. There
are solutions to this but they are as mentioned not ideal. Initially a List of
KeyValuePairs was used to save the value and timestamp but later the quality
was needed as it is important information. Adding the quality to the value string
and then do string operations to retrieve both was considered and tested but
it came with performance issues. Adding another list consisting of only quality
was also considered but it adds complexity as one has to deal with two lists. In
the end a dictionary sorted by DateTime worked as a good compromise.
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Algorithm 4.1 The algorithm for reading historical values from

DynamicProcessAPI
Convert start and end time in UTC to local epoch time

Read in values from DynamicProcessAPI into a result string

while result string contains �;�

extract date, time and ms

create a DateTime object using date, time and ms

extract tag

extract value

extract quality

extract quality status

Save DateTime, value and quality in a sorted Dictionary

end (while)

return sorted Dictionary

4.5.1.2 ReadField()

ReadField reads in the last saved value for a �eld. This function also returns
the data type for the value. Currently it is hard coded but if conversion needs
to be tested/expanded this is the place to do changes.

4.5.2 DynamicProcessAPIinterface

This class is intended as the interface to be used for any class that needs to
interact with DynamicProcessAPI. If more complex functionality needs to be
implemented, by using the wrapper function, then this is the class intended to
implement this functionality in. Currently it uses the functions in the wrapper
directly except in Disconnect and Initialize.

4.5.2.1 Initialize()

Initialize reads in the providers and the connection string for each provider from
DynamicProcessAPIinterfaceCon�g.xml. Next it initializes each provider and
retrieves a list of all the tags from the providers.
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4.5.2.2 Disconnect()

Disconnect iterates through a Dictionary of providers and disconnects each one.
When disconnecting from the last provider a bool parameter must be passed as
true to avoid memory leaks in DynamicProcessAPI.

4.5.3 DynamicProcessAPINodeManager

When initial development of the prototype started this was the NodeManager
that was created and used during most of the development. It uses about 1.5
seconds to create a tag in the Tag.Field model which is too slow for the �nal
prototype but it su�ced for most of the development. The slowness comes
from doing rather ine�cient string operations which are used when collecting
status word bits together. It is now obsolete and not used but it was kept for
comparison.

4.5.4 DescendingOrder

When extending the ReadData function in the wrapper to include quality, a
sorted dictionary was used. As OPC UA data can also be backwards in time
and Dictionaries have no standard method for iterating backwards the class De-
scendingOrder was created. This class extends IComparable to create a reverse
sorted dictionary which is used for backwards requests. This method was had
from [36].

4.5.5 TagFieldModelNodemanager

This class mirrors the data structure in DynamicProcessAPI in the server's Ad-
dress Space. It also handles all client requests which involve the Nodes in the
Tag.Field model. It makes no assumptions about the data in DynamicProcess-
API, except that it follows the Tag.Field model and that the status words are
called AlarmByte, StatusWord and StatusWord2. Bits for each status word are
collected together, as seen in the example below and in �gure 4.2 on page 57:

• AlarmByte

� AlarmByteHH
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� AlarmByteLL

� AlarmByteWH

� AlarmByteWL

� AlarmByteYF

Collecting status bits together reduces the amount of �elds under each tag and
improves the presentation.

4.5.5.1 New()

New is part of the NodeId factory. A NodeId is the unique identi�er for a
Node. There are 10 di�erent methods for creating NodeIds. The one that is
used for this NodeManager is the combination of a uint and the namespace for
the NodeManager. The uint is a counter which may be used to keep track the
number of Nodes the NodeManager handles. The namespace is the same as
the namespace for the Tag.Field model with an added �/Instance�, this is to
di�erentiate between prede�ned static Nodes and dynamically created Nodes.
It is di�erentiated to avoid giving dynamically created Nodes the same NodeId
as static Nodes.

4.5.5.2 LoadPrede�nedNodes()

When compiling the Information Model created by either an xml editor or the
CAS OPC UA Address Space Model designer a binary �le is created, this
contains all prede�ned Nodes. These Nodes can be loaded by the applica-
tion on start up and used. LoadPrede�nedNodes does this. When loading
a binary resource the path to the �le must consist of DefaultSolutionNames-
pace.PathToFile.Filename and the �le must be included as an embedded re-
source. This is not documented and the OPC UA message board at [37] had to
be consulted.

4.5.5.3 CreateAddressSpace()

This function adds the Tag.Field model to the server's Address Space. The prin-
ciple is similar as in DynamicProcessAPINodeManager but because of mapping
Function block Types to status word bits before creating the Nodes it is a lot
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Figure 4.2: Example of collecting status bits together as seen from a client

faster, around 1000 times. Creating 2000 tags takes about 2-2.5 seconds whereas
DynamicProcessAPINodeManager used 1.5 seconds per tag. The drawback is
the Dictionary doing the mapping which has its de�nition as:

Dictionary<string, Dictionary<string, Dictionary<string, string>�>�>

a rather complex structure. As an example this Dictionary maps an "MA" (FB
type) to "AlarmByte" (status word name) to "AlarmByte->HH" (long version)
to "HH" (short version). The end result for a client is a seen in �gure 4.2.

Clients can subscribe to Nodes in the Address Space for updates. The function
UpdateMonitoredItem is called every 500 ms. UpdateMonitoredItem iterates a
list of MonitoredItems and publishes updates to the Subscription manager.

4.5.5.4 Read()

This function reads in the current value for a �eld from DynamicProcessAPI.
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Algorithm 4.2 The algorithm for adding the Tag.Field model to the

servers Address Space

Map Function Block type to status word to long name of bit to short name of bit

Create Function Blocks

Foreach tag in TagsToFbType

create tag and connect to FB type

Foreach field in the fields belonging to the tag

CreateField()

end (Foreach)

end (Foreach)

Connect Function Block Types to the Root folder for the Address Space

Start MonitoredItem thread

4.5.5.5 HistoryRead()

Requests for historical data values for �elds are cached to minimize the load
on DynamicProcessAPI. The HistoryRead function follows the structure of the
SDK where �rst the type of historical request is identi�ed and then support
functions are created to handle each type of request as seen in algorithm 4.4 on
page 60. Currently only historical requests for raw sampled data is supported.
Other requests return empty values for Nodes belonging to this NodeManager
and return a BadHistoryOperationUnsupported status code for the operation.
The di�erent requests are for raw historical data in an interval (modi�ed/in-
terpolated or directly sampled), historical values at given times, processed his-
torical data for an interval (like average, standard deviation, median etc) called
aggregates and historical events.

Clients can for instance request 10 values between start and end time. If there
are more than 10 values in the interval a continuation point is created so that a
client can continue the request. Continuation points and data values are saved,
retrieved and deleted in the caches by combining a client ID with the tag and
�eld. This means that a client can read historical values for many di�erent �elds
at a time but can only have one read at a time per �eld.

Originally continuation points were used directly by returning the next times-
tamp to the client and the client used that timestamp as either start or end
time for the next request. After the cache for data values was implemented
continuation points are no longer needed. The framework for using them is still
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Algorithm 4.3 The algorithm for reading the current value for a

field
for each Node in NodesToRead

if Node.Processed

continue

if Node.AttributeID == VALUE and the Node belongs to the NodeManager

Create a DataValue

Read in a value from DynamicProcessAPI

Save the value in DataValue

Save DataValue in a List of returned values

Set the processed flag for the Node

end (for)

Let the base class Quickstart NodeManager handle other attribute requests

there but it is not used. The reason for this is that a fresh request for data
values either returns all values or returns x number of values, these x values
are removed before caching the data. When the client continues the request the
cache is used directly.

4.5.5.6 HistoryReadRawData()

This is the support function for reading raw historical data from DynamicPro-
cessAPI. The sequence of function calls is as shown in �gure 4.3. Its main
purpose is to �rst convert the OPC UA request into a request that can be used
in DynamicProcessAPI, then it will get data values either from the cache or
DynamicProcessAPI and convert these into historical data values for OPC UA.

ReadHistoricalData()HistoryReadRawData()

ReadHistoricalData()

ReadHistoricalDataFromCacheOrSource()

ReadHistoricalDataFromCacheOrSource()

Historical values from DynamicProcessAPI or cacheHistorical values from DynamicProcessAPI or cache

CreateHistorydata()

CreateHistorydata()

OPC UA Historical Data

Figure 4.3: Sequence diagram for reading raw historical data values
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Algorithm 4.4 The algorithm for HistoryRead
if releaseContinuationPoint

lock

Foreach HistoryReadValueId Node in nodesToRead

remove request from data values cache

remove continuation from continuation point cache

end (Foreach)

unlock

return

if invalid timestamp request

throw ServiceResultException and return empty data values

if raw historical data request

if modified raw data

HistoryReadEmptydata()

if raw data request

HistoryReadRawData()

if read historical value at times request

HistoryReadEmptydata()

if read processed historical values request

HistoryReadEmptydata()

if historical events request

HistoryReadEmptydata()

4.5.5.7 ReadHistoricalData()

Before using DynamicProcessAPI or the cache to get data values this function
handles the continuation point, in the case of a backwards request the end time
is switched to the continuation point timestamp and in the case of a forwards
request the start time is switched to the continuation point timestamp.

4.5.5.8 ReadHistoricaldataFromCacheOrSource()

This function gets the data values from the cache or DynamicProcessAPI. In the
case of a backwards request it post processes the values from DynamicProcess-
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Algorithm 4.5 The algorithm for HistoryReadRawData
if midnight year 1 request

HistoryReadEmptyData()

return

if number of values to read per Node == 0

set number of values to read = Int32.MaxValue

//convert historical request to DynamicProcessAPI request

if no start time is given

backwards == true

else if only start time is given

end time = current time

else

if start time > end time

backwards = true

switch start and end time

for each Node in nodesToRead

if Node.Processed

continue

if Node belongs to the NodeManager

if backwards

DynamicProcessAPIdata values = ReadHistoricalData(start, end, backwards)

UA Historydata data = CreateHistoricalData(values, backwards)

if there are values left

Create a continuation point

else

Remove request from data values cache

Node.Processed = true

else

DynamicProcessAPIdata values = ReadHistoricalData(start, end, backwards)

UA Historydata data = CreateHistoricalData(values, backwards)

if there are values left

(for instance average)Create a continuation point

else

Remove request from data values cache

Node.Processed = true

else

continue

end (for)
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Algorithm 4.6 The algorithm for ReadHistoricalData
if backwards

if continuation point

if the continuation point is cached

ReadHistoricalDataFromCacheorSource(start, continuation point time, backwards)

else

ReadHistoricalDataFromCacheorSource(start, end, backwards)

else

ReadHistoricalDataFromCacheorSource(start, end, backwards)

else

if continuation point

if the continuation point is cached

ReadHistoricalDataFromCacheorSource(continuation point time, end, backwards)

else

ReadHistoricalDataFromCacheorSource(start, end, backwards)

else

ReadHistoricalDataFromCacheorSource(start, end, backwards)
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Algorithm 4.7 The algorithm for ReadHistoricalDataFromCacheOrSource
if the request is cached

return cached values

else

Dictionary values = read data from DynamicProcessAPI

if no values are returned

create an empty value with bad quality

add the empty value to values

if backwards

Foreach date, value and quality in values

add date, value and quality to reverse sorted Dictionary

end (Foreach)

add reverse sorted Dictionary to cache

return reverse sorted Dictionary

else

add values to cache

return values

API and creates a reverse order sorted Dictionary. Because of this, backwards
requests use more time and are slightly less e�cient.

4.5.5.9 CreateHistoryData()

After data has been retrieved from the cache or DynamicProcessAPI it must
be converted into the format/data structure OPC UA uses for historical values.
CreateHistoryData converts DynamicProcessAPI values into OPC UA DataVal-
ues.

4.5.5.10 ReadDatavaluesFilter()

This function reads in the data values that is de�ned in DataValuesFilter.xml
and saves them in a dictionary.
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Algorithm 4.8 The algorithm for CreateHistoryData
OPC UA Historydata data

if the number of values > number of values returned per Node

stop = number of values returned per Node

else

stop = number of values

//convert to OPC UA Historydata

while number of values > 0 and number of values in data < stop

current = get timestamp from Dictionary

value = get value from Dictionary

quality = get quality from Dictionary

//handle not returning bounds

if backwards

if not return bounds and current == start time

continue

else

if not return bounds and current == end time

continue

Create a DataValue using value and current

Convert the DataValue to correct data type

Convert quality to quality for the DataValue

Save the DataValue in data

Remove current from values

end (while)

return data
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Algorithm 4.9 The algorithm for CreateAddressSpace for the ISO

model NodeManager
Load in the platform model

Convert the untyped object to a typed Platform object

Read in the filter which maps Displaynames to tags

Add the platform object to a stack

//Do a depth first search on the model

while stack size != 0

Node = stack.pop()

Add Node.children to the stack

if Node.Displayname exists in the filter

Create a new field �ProcessValue�

Convert the field to the correct data type

Connect the field to Node

end (while)

Connect the platform object to the root folder for the Address Space

Start MonitoredItem thread

4.5.6 ISOModelNodeManager

The NodeManager for the ISO model shares most of the functions in the Tag-
FieldNodeManager, these are explained earlier. The ISOModelNodeManager
does not add the ISO model to the server's Address Space dynamically but it
loads the model from a binary �le, ISO 15926.Prede�nedNodes.uanodes, and
then connects tags from DynamicProcessAPI to Nodes in the model.

4.5.6.1 CreateAddressSpace()

First the Snorre B platform ISO model is loaded from the binary �le and then
converted into a PlatformState (type de�nition). To connect DynamicProces-
sAPI tags to Nodes in the platform model a �lter was created, this �lter is
further explained in section 4.6.5 on page 71. The �lter maps Displaynames
in the ISO model to tag names in DynamicProcessAPI. Only the ProcessValue
and ControlOutput �elds are connected at the moment, this is hard coded in.
In the future which �elds to connect can be decided and hard coded or the �lter
can be extended. As it is now, it shows how to connect the model.
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4.5.6.2 ReadModelFilter()

This function reads in values from ISOModelFilter.xml and saves these in a
Dictionary. The Dictionary maps Displaynames for Nodes in the ISO 15926
model to tag names in DynamicProcessAPI. Currently only one tag can be
mapped to each Node. It can be extended to handle multiple tags per Node by
mapping Displaynames to lists of tags.

4.5.7 Conversion functions

The NodeManagers may use four functions to implement Node, data type and
quality conversion.

4.5.7.1 CreateField()

Creates �eld Nodes under a tag or a status word collection. The Nodes them-
selves are created using CreateFieldofType().

4.5.7.2 CreateFieldOfType()

Creates �eld Nodes of the correct type (currently string/double data variable
or string/double property) using the Dictionary created from DataValuesFil-
ter.xml.

4.5.7.3 DataTypeConversion()

This function implements data type conversion between a DynamicProcessAPI
value to an OPC UA DataValue.

4.5.7.4 QualityConversion()

This function implements quality conversion between a DynamicProcessAPI
quality to quality for an OPC UA DataValue.
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4.6 Filters and Con�guration Files

Starting the server begins in the Program.cs �le where an ApplicationInstance
is created. The ApplicationInstance class creates, installs and runs an UA ap-
plication by using the con�guration �les. The sequence of calls is shown in
�gure 4.4.

Figure 4.4: Sequence diagram for creating and starting an OPC UA server

The prototype server is con�gured with six XML �les. For this server the set-
tings was kept more or less unchanged from the SDK with the exception of
adding logs, changing the server name, certi�cate location, and signing/encryp-
tion was removed from the communication options. It was found that the ability
to view logs helped with debugging.
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4.6.1 App.Con�g

App.Con�g.xml de�nes the behaviors of the services used for communication,
and logging and diagnostics options. It also links to the con�guration �le for
the speci�c server as seen in listing 4.3 on the facing page.

4.6.2 UaFramework.Con�g.xml

On the last lines App.Con�g.xml links to UaFramework.Con�g.xml. UaFrame-
work.Con�g.xml con�gures the server with a name, a certi�cate location, trusted
certi�cate authorities, communication options (like ports and the security for the
communication), timeouts, sampling intervals and log locations. An abridged
version of UaFramework.Con�g.xml is shown in listing 4.4 on page 70.

The server prototype is con�gured with TCP/IP and SOAP/HTTP commu-
nication with binary and XML data encoding. As the server is a prototype,
and the focus of the thesis is information modeling, security is not used and
anonymous clients are accepted. The only requirement for communication is a
valid certi�cate. The prototype uses the �Quickstart Information Model Server�
certi�cate installed by the SDK.

4.6.3 InstallCon�g.xml

This con�guration �le allows one among others things to set the name of the
server, de�ne a trusted certi�cate store and sets the �install the server as a
windows service� option. An example is seen in listing 4.5 on page 71.

4.6.4 DynamicProcessAPIinterfaceCon�g.xml

When connecting to/starting DynamicProcessAPI the data providers must be
loaded. They are loaded by naming the correct dll and using a connection
string. Choosing the providers is done by �rst de�ning the provider dll and
then de�ning the connection string for the provider. As seen in listing 4.6 on
page 71 the connection string for the Staticprovider consist of either relative
or absolute paths to cvs �les separated by a �;�. For a remote IP21 database
the connection string consists of an IP address and communication options and
then which NORSOK function blocks types to load separated by a �,�.
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Listing 4.3: App.Con�g.xml example
1 <?xml version="1.0"?>

2 <configuration >

3 <configSections >

4 <section name="UaFramework" type="Opc.Ua.ApplicationConfigurationSection ,Opc.Ua.Core"/>

5 </configSections >

6 <system.serviceModel >

7 <!--

8 UA servers built with the SDK use the Opc.Ua.SessionEndpoint class to implement the ISessionEndpoint

9 contract. It is possible to add additional behaviors in the configuration file by referencing this

10 service. For example , the configuration in this file turns on meta data publishing.

11 -->

12 <services >

13 <service name="Opc.Ua.SessionEndpoint" behaviorConfiguration="Opc.Ua.SessionEndpoint.Behavior">

14 <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>

15 </service >

16 </services >

17 <!-- Servers deployed in production environments should turn the

18 httpGetEnabled and includeExceptionDetailInFaults options off -->

19 <behaviors >

20 <serviceBehaviors >

21 <behavior name="Opc.Ua.SessionEndpoint.Behavior">

22 <serviceMetadata httpGetEnabled="true"/>

23 <serviceDebug includeExceptionDetailInFaults="true"/>

24 </behavior >

25 </serviceBehaviors >

26 </behaviors >

27 <!--

28 Uncommenting this <diagnostics > block will turn on message logging. The contents and the location of

the

29 log file are specified in the <system.diagnostics > block.

30 -->

31 <!--

32 <diagnostics >

33 <messageLogging logEntireMessage="true" maxMessagesToLog="3000"

34 logMessagesAtServiceLevel="true" logMalformedMessages="true" logMessagesAtTransportLevel="true"/>

35 </diagnostics >

36 -->

37 </system.serviceModel >

38 <!--

39 <system.diagnostics >

40 <sources >

41 <source name="System.ServiceModel" switchValue="Verbose , ActivityTracing">

42 <listeners >

43 <add type="System.Diagnostics.DefaultTraceListener" name="Default"/>

44 <add name="ServiceModel Listener"/>

45 </listeners >

46 </source >

47 <source name="System.ServiceModel.MessageLogging">

48 <listeners >

49 <add type="System.Diagnostics.DefaultTraceListener" name="Default"/>

50 <add name="ServiceModel Listener"/>

51 </listeners >

52 </source >

53 </sources >

54 <sharedListeners >

55 <add initializeData="Quickstarts.BoilerServer.svclog" type="System.Diagnostics.

XmlWriterTraceListener ,

56 System , Version =2.0.0.0 , Culture=neutral , PublicKeyToken=b77a5c561934e089"

57 name="ServiceModel Listener"

58 traceOutputOptions="LogicalOperationStack , DateTime , Timestamp , ProcessId , ThreadId , Callstack"/>

59 </sharedListeners >

60 </system.diagnostics >

61 -->

62 <UaFramework >

63 <ConfigurationLocation xmlns="http:// opcfoundation.org/UA/SDK/Configuration.xsd">

64 <FilePath >UaFramework.Config.xml</FilePath >

65 </ConfigurationLocation >

66 </UaFramework >

67 <startup/></configuration >
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Listing 4.4: An abridged UaFramework.Con�g.xml example
1 <?xml version="1.0" encoding="utf -8"?>

2 <ApplicationConfiguration

3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

4 xmlns:ua="http:// opcfoundation.org/UA /2008/02/ Types.xsd"

5 xmlns:s1="http:// opcfoundation.org/UA/Sample/Configuration.xsd"

6 xmlns:s2="http:// opcfoundation.org/UA/SDK/COM/Configuration.xsd"

7 xmlns="http:// opcfoundation.org/UA/SDK/Configuration.xsd">

8 <ApplicationName >PIMAQ UA Server </ApplicationName >

9 <ApplicationUri >urn:localhost:PIMAQ </ApplicationUri >

10 <ProductUri >http://NTNU.no/PIMAQ</ProductUri >

11 <ApplicationType >Server_0 </ApplicationType >

12 <SecurityConfiguration >

13 <ApplicationCertificate >

14 <StoreType >Directory </StoreType >

15 <StorePath >%CommonApplicationData %\OPC Foundation\CertificateStores\MachineDefault </StorePath >

16 <SubjectName >Quickstart Information Model Server </SubjectName >

17 </ApplicationCertificate >

18 <TrustedPeerCertificates >

19 <StoreType >Windows </StoreType >

20 <StorePath >LocalMachine\UA Applications </StorePath >

21 </TrustedPeerCertificates >

22 </SecurityConfiguration >

23 <TransportConfigurations ></TransportConfigurations >

24 <TransportQuotas >

25 <OperationTimeout >600000 </OperationTimeout >

26 <MaxStringLength >1048576 </MaxStringLength >

27 <MaxByteStringLengImplementation of the prototypeth >1048576 </MaxByteStringLength >

28 <MaxArrayLength >65535 </MaxArrayLength >

29 <MaxMessageSize >4194304 </MaxMessageSize >

30 <MaxBufferSize >65535</MaxBufferSize >

31 <ChannelLifetime >300000 </ChannelLifetime >

32 <SecurityTokenLifetime >3600000 </SecurityTokenLifetime >

33 </TransportQuotas >

34 <ServerConfiguration >

35 <BaseAddresses >

36 <ua:String >http: // localhost:62540/Quickstarts/PIMAQ </ua:String >

37 <ua:String >opc.tcp:// localhost:62541/Quickstarts/PIMAQ</ua:String >

38 </BaseAddresses >

39 <SecurityPolicies >

40 <ServerSecurityPolicy >

41 <SecurityMode >None_1 </SecurityMode >

42 <SecurityPolicyUri >http:// opcfoundation.org/UA/SecurityPolicy#None</SecurityPolicyUri >

43 <SecurityLevel >0</SecurityLevel >

44 </ServerSecurityPolicy >

45 </SecurityPolicies >

46 <UserTokenPolicies >

47 <ua:UserTokenPolicy >

48 <ua:TokenType >Anonymous_0 </ua:TokenType >

49 </ua:UserTokenPolicy >

50 </UserTokenPolicies >

51 <DiagnosticsEnabled >true</DiagnosticsEnabled >

52 <AvailableSamplingRates >

53 <SamplingRateGroup >

54 <Start>5</Start>

55 <Increment >5</Increment >

56 <Count>20</Count >

57 </SamplingRateGroup >

58 </AvailableSamplingRates >

59 <MaxRegistrationInterval >30000</MaxRegistrationInterval >

60 <NodeManagerSaveFile >PIMAQ.nodes.xml</NodeManagerSaveFile >

61 </ServerConfiguration >

62 <TraceConfiguration >

63 <!--<OutputFilePath >%LocalApplicationData %\OPC Foundation\Logs\UaFramework.log.txt</OutputFilePath >-->

64 <OutputFilePath >Logs\PIMAQ.log.txt</OutputFilePath >

65 </TraceConfiguration >

66 </ApplicationConfiguration >
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Listing 4.5: InstallCon�g.xml for the prototype
1 <?xml version="1.0" encoding="utf -8" ?>

2 <s0:InstalledApplication xmlns:s0="http: // opcfoundation.org/UA/SDK/Installation.xsd" xmlns="http://

opcfoundation.org/UA/SDK/Configuration.xsd" xmlns:ua="http:// opcfoundation.org/UA /2008/02/ Types.xsd

">

3 <Name>Siemens PIMAQ UA Server </Name>

4 <ConfigurationFile >UaFramework.Config.xml</ConfigurationFile >

5 <TrustedPeerStore >

6 <StoreType >Windows </StoreType >

7 <StorePath >LocalMachine\UA Applications </StorePath >

8 </TrustedPeerStore >

9 <s0:DeleteCertificatesOnUninstall >true</s0:DeleteCertificatesOnUninstall >

10 <s0:ConfigureFirewall >false</s0:ConfigureFirewall >

11 <s0:SetConfigurationFilePermisions >false </s0:SetConfigurationFilePermisions > <

s0:SetExecutableFilePermisions >false</s0:SetExecutableFilePermisions >

12 <s0:InstallAsService >false</s0:InstallAsService >

13 <s0:TraceConfiguration >

14 <OutputFilePath >Logs\PIMAQ.InstallLog.xml</OutputFilePath >

15 <DeleteOnLoad >true</DeleteOnLoad >

16 <TraceMasks >1023</TraceMasks >

17 </s0:TraceConfiguration >

18 </s0:InstalledApplication >

Listing 4.6: Example of DynamicProcessAPIinterfaceCon�g.xml
1 <?xml version="1.0" encoding="utf -8" ?>

2 <dynamicProcessAPI >

3 <provider >SiemensIP21ProviderRemote </provider >

4 <connectionString >10.234.239.178 200 /FATAL;Custom Records;MAObjectDef ,CSObjectDef </connectionString >

<provider >StaticDataProvider </provider >

5 <connectionString >MLS -LIC -113. csv;20 BLIC4007.csv</connectionString >

6 </dynamicProcessAPI >

4.6.5 ISOModelFilter.xml

This �lter connects tags in DynamicProcessAPI to Nodes in the ISO 15926
model. This is done by writing the Displayname for the Node from the model
and adding a connection with the name of the DynamicProcessAPI tag. Cur-
rently only one tag with the �eld ProcessValue can be connected to a ISO model
Node. It should however be easy to expand this by changing the ReadModelFil-
ter function in ISOModelNodeManager. An example is seen in listing 4.7 on
the following page.

4.6.6 DatavaluesFilter.xml

The data values �lter is used to identify �elds in the tag.�eld model which are
considered as data values for the tag, other �elds are then by default properties
of the tag. If it is left empty all �elds are properties of the tag in the server's
Address Space.
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Listing 4.7: Example of the ISO model �lter
1 <?xml version="1.0" encoding="utf -8" ?>

2 <SnorreB >

3 <C6_Subsea_Sand_Detector >

4 <Connection >11B-LST 0367</Connection >

5 </C6_Subsea_Sand_Detector >

6 <C6_Subsea_Pressure_Element_1 >

7 <Connection >11C-LST 4018</Connection >

8 </C6_Subsea_Pressure_Element_1 >

9 <C6_Subsea_Temperature_Element_1 >

10 <Connection >11D-LST 4013A</Connection >

11 </C6_Subsea_Temperature_Element_1 >

12 <C5_Producing_Well >

13 <Connection >MLS -LIC -113</Connection >

14 </C5_Producing_Well >

15 </SnorreB >

Listing 4.8: Example of the DataValues �lter
1 <?xml version="1.0" encoding="utf -8" ?>

2 <DataValues >

3 <DataValue >ProcessValue </DataValue >

4 <DataValue >ControlOutput </DataValue >

5 <DataValue >AnalogInputValue </DataValue >

6 </DataValues >
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Testing

The OPC Foundation provides the Compliance Test Tools (CTT) which can
test an OPC UA application for its compliance to the speci�cations. The func-
tionality of the OPC UA application is described by its Pro�le(s). A Pro�le
is built up using ConformanceUnits and Facets. ConformanceUnits are unique
features of an OPC UA application, like the ability to read attributes for Nodes
or an application that supports TCP communication. A facet is a collection of
ConformanceUnits that is intended to be part of a complete Pro�le, as the facet
does not have enough features by itself. When describing the compliance of an
OPC UA application one will say that the application conforms to for instance
Pro�le1, Pro�le2 and Pro�le 3[6, 38].

To setup the CTT:

1. First the URL and port to the server must be de�ned along with the
server's certi�cate.

2. After this it is possible to connect to the server and add the References
and Nodes in the Address Space to the CTT. As seen in �gure 5.1 on the
next page the ReferenceType hasDownhole is used as the ReferenceType
for the CTT. The CTT will then use this Reference for any tests involving
ReferenceTypes.

Once the CTT is con�gured the OPC UA application can be tested. Tests can
be done on Pro�les, ConformanceUnits and individual tests within each Confor-

73
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Figure 5.1: Connecting Nodes in the server to the CTT

manceUnit. Figure 5.3 on page 77 shows an example of a ConformanceUnit test
while �gure 5.4 on page 78 shows an example of a Pro�le test. The tests can be
debugged within the CTT and one can de�ne new tests or change existing tests.
Figure 5.2 on the facing page from [39] shows to how to interpret the results of
testing.

The CTT cannot test all ConformanceUnits yet. For this thesis this means
that the TCP and SOAP communication protocols cannot be tested along with
reading of historical values. Testing of historical read/write is expected in Q3
2011.

5.1 Read and Write Compliance Test

While writing of values has not been implemented, the Write() function itself
shall let clients know that the operation is unsupported. If an operation is
unsupported it should show up as a question mark in the CTT test. The Read
function is implemented and was tested.
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Figure 5.2: Guide to interpreting CTT results

The �rst compliance test revealed that the returned service result for the Write
function was wrong and the service result was changed to BadWriteNotSup-
ported.

The �nal result of testing the ConformanceUnits for read and write is as seen
in �gure 5.3 on page 77. By reading the results it is seen that the Read Confor-
manceUnit passes the compliance tests with warnings for minor non-compliance.
For Write there is one error in test 5.8.2-004.js else it passes, because of writing
to invalid Nodes, which is detected, or it is returned that Write is not supported.
When examining test 5.8.2-00.js closer it was found that the test assumes that
Write is supported. This means that even though the server returns not sup-
ported the test does not take this into consideration and it fails with the result
that the Write ConformanceUnit test failed rather than being unsupported.

5.2 Server Compliance Test

A complete server consists of many di�erent Pro�les, these have been collected
into server Pro�les which should �t into di�erent hardware. The server Pro�les
in the CTT are:

• Standard UA Server, standard UA server running on a PC.

• Embedded UA Server, for devices with more than 50mb of memory and a
CPU equivalent of a Intel 486 processor.
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• Low End Embedded Device Server, for small devices with limited re-
sources. This server assumes that security is not used.

As part of this thesis is about building a server that is to be used in an industrial
context, the server was tested against the Standard UA Server Pro�le. The
results are in �gure 5.4 on page 78. As can be seen the prototype is not ready to
be deployed as an OPC UA server. Most of these ConformanceUnits and Facets
are handled by the Quickstart NodeManager in the SDK. As the Quickstart
NodeManager is under the RCL license and can not be modi�ed without sharing,
a custom NodeManager should be built from scratch.
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Figure 5.3: The results of the Read and Write attributes compliance tests
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Figure 5.4: The results for the Standard UA Server Pro�le test



Chapter 6

Discussion

Chapter 6 discusses some of the lessons learned during implementation and
design, and the weaknesses of the prototype server.

6.1 Unifying OPC UA and DynamicProcessAPI

One of the properties for the server Siemens speci�ed was to have as little
con�guration as possible before starting the server. This property has resulted
in problems when trying to balance between the property and trying to unify
OPC UA and DynamicProcessAPI. There are fundamental di�erences between
what OPC UA speci�es/assumes and how DynamicProcessAPI works. The
di�erences that have been balanced are:

• Data type conversion of �elds.

• Fields vs properties and values.

Field values are saved as string but they may be for example �oats, bits or
integers when they are used in the process. Conversion could have been hard
coded into the source code, not very �exible, or a �lter could have been created
which maps �eld names to data type, resulting in more con�guration. The
solution was to assume a future extension of DynamicProcessAPI would also
include information about data type.
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For the Tag.Field model all �elds are considered as properties of the tag. OPC
UA di�erentiates between properties, which describe a value, and the data
value(s) itself. As with data type conversion two solutions presents themselves;
hard coding the conversion into the source or creating a �lter which maps �elds
as properties. This �lter should be less work than data type conversion as there
are less data values than properties and anything not a data value is automat-
ically a property. Currently a �lter has been created which may be left empty,
in which case all �elds are modeled as properties of the tags.

Other di�erences has resulted in special solutions when implementing, these are

• Read requests.

• Time.

Historical read requests have to be converted from OPC UA format into a
request DynamicProcessAPI can understand. This adds to the response time
between clients and the server as it involves both preprocessing of the requests
and post processing of the returned values. Unfortunately it also can crash
the server if the conversion (or the original request) results in a too large time
span and too many returned values. Currently request asking for data from
1970.1.1 to now are �ltered out. In the future it should ideally be possible
to restrict the number of values in DynamicProcessAPI. An solution would be
to restrict the time frame of all requests into something which is considered
safe. This restriction should be a part of any commercial deployment unless
DynamicProcessAPI is changed.

OPC UA assumes UTC time whereas DynamicProcessAPI uses epoch time in
local time. This has resulted in conversion between the di�erent formats and
currently it has been tested and it works. However there can be software/hard-
ware conditions later which may not have been accounted for.

The small di�erences between OPC UA and DynamicProcessAPI have in some
cases resulted in special solutions where requests are ignored or data is post
processed. This seems to be inevitable when trying to unify two data models.

By trying to respect Siemens's property the server implementation has been
a�ected and the property has placed restrictions on the attempt to unify OPC
UA and DynamicProcessAPI. Solutions have been suggested but they do require
changes in the existing code base, a code base which is proven to work. Or the
solutions can be hard coded which makes the server non �exible. Changes



6.2. INHERITANCE 81

in existing code base may also a�ect old applications and may render them
incompatible. Siemens may have to modify or remove the property if they
decide to create a commercial solution. To put it simply, without con�guration
or with little con�guration DynamicProcessAPI must be changed to conform
more to OPC UA or the server must be non �exible.

Another problem is that ISO 15926 models are expected to be rich in information[19],
so that they may be used to automate tasks as much as possible. Lack of infor-
mation about data types and properties reduces the richness of the model and
may make it unsuitable.

6.2 Inheritance

As both the ISOModelNodeManager and the TagFieldNodeManager consist of
mostly the exact same functions, then ideally a base class should have been
implemented for the read, the history read and the support functions which
could be inherited by the NodeManagers. At the moment most changes done
in one NodeManager must be mirrored in the other. This is an easy source
of errors and it is not good objective design. The main reason this happened
was because the SDK overrides the Quickstart NodeManager to implement its
own NodeManagers and this recipe was followed. As it is now it is not an ideal
design.

6.3 Modularity

As mentioned in the chapter 3 on page 25 there were not many design choices to
make for the server. Siemens speci�ed that the server should be modular so that
it is easy to extend and easy to modify. Though not a lot design choices were
made, the prototype is modular and consists of classes with clear and separate
functionality.

6.4 HistoryRead and Cache

Reading historical values has not been solved in the most e�cient way as the
values could have avoided post processing by moving the creation of the reverse
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sorted Dictionary into DynamicProcessAPIwrapper. The DynamicprocessAPI
to OPC UA Historydata conversion may also be moved into the wrapper.

The cache works but if a client crashes the values will not be deleted from the
cache. This can cause memory issues in the long run.



Chapter 7

Conclusion

When trying to unify OPC UA and DynamicProcessAPI there was a need for
con�guration and special solutions. The special solutions are an inevitable result
of small di�erences between the two. But the con�guration that was needed is
a direct result of the larger di�erences and assumptions made in the design of
OPC UA and DynamicProcessAPI.

When Siemens requested to have as little con�guration as possible this was a
hard request to respect as the only other methods is to make DynamicProces-
sAPI conform more to OPC UA or hard code the con�guration. Hard coding
makes the server non �exible and changing DynamicProcessAPI may not be
ideal for the reasons mentioned in 6.1 on page 80. The end result is a com-
promise with a server requiring con�guration and which also requires future
changes in DynamicProcessAPI. Without con�guration there is a loss of meta
data which is not ideal as ISO 15926 models requires as much data as possible
to facilitate automation.

The server has been tested with di�erent clients using TCP and SOAP/HTTP
and the Read and HistoryRead functions works. The server can re�ect data
in DynamicProcessAPI in its Address Space. The compliance testing of the
server revealed that it is not ready for industrial deployment, however the read
attribute service for string has only minor non-compliance.

The ISO model of Snorre B has been converted into an Information Model for
the OPC UA server using the method described on page 36. The server presents
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this model for clients and connects current and historical data from PIMAQ to
the model. While the entire platform Snorre B has not been modeled because
of time constraints, enough has been modeled to show that OPC UA is capable
of representing ISO 15926 models. This also leads to the conclusion that OPC
UA is a technology that can be used when a company implements Integrated
Operations.

7.1 Future Work

A commercial UA server should implement NodeManager(s) from scratch, both
for e�ciency and because the Quickstart NodeManager is under a license which
means it cannot be modi�ed without sharing the change or payment. For com-
pliance testing it will be a must to be able to change the entire NodeManager.

Implement writing of current and historical values, the framework is there but
it is not connected to DynamicProcessAPI.

There was a wish to change the Information Model without recompiling, just
restarting the server, this is not possible directly. However the Address Space
model service set can modify (add/delete Nodes) and save the Address Space
while the server is running. The functionality for this is very similar to the way
the Address Space is created in the Tag.Field NodeManager. This service set
can be implemented in the future.

Add data type information to the ReadField function in DynamicProcessAPI
for conversion in the server.

Restrict the number of returned values in DynamicProcessAPI or �lter out
requests in the server by not allowing requests to span more than a safe time
period.

Allow DynamicProcessAPI to read backwards and forwards.

Make the reading of historical values more e�cient as discussed in chapter 6.4.
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