
Optimal trajectory planning for robotized
tiling of floors

Stein Melvær Nornes

Master of Science in Engineering Cybernetics

Supervisor: Tor Arne Johansen, ITK
Co-supervisor: Håvard Halvorsen, nLink AS

Esten Ingar Grøtli, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description
The candidate will consider the problem of path planning for a 4-wheel
skid-steered mobile platform, intended for use in automated tiling. The
following tasks are to be performed:

1. Literature study on trajectory planning for mobile robots.

2. Determine which performance criteria a path needs to fulfill to be
considered optimal for an automated tilesetting system.

3. Develop and implement strategies for optimal path planning.

4. Verify the performance of the strategies by simulations, focusing on
the quality of the paths, but also considering the calculation time.

Abstract

This thesis describes the strategy of a new approach for automated
tilesetting currently under development by nLink AS in Sogndal. The
main focus of the thesis is the development of an appropriate strategy for
path planning for this robotic system.

A mathematical model of a 4-wheel skid-steering mobile platform with
a model-based nonlinear controller is presented. A brief introduction to
the basics of path planning is offered, before detailing some relevant al-
gorithms. Three different optimization criteria, based on distance time
and energy consumption, are defined and a MATLAB implementation of
a Sampling-Based Model Predictive Optimization algorithm is presented.
The mobile platform is implemented in SIMULINKTMwith input from the
SBMPO-algorithm. Simulation results of three different obstacle cases
with both constant and variable speed are presented and the performance
of the different optimization schemes are reviewed and compared.

The simulations clearly reveal that while optimizing with respect to
energy consumption does present some very promising results, the cur-
rent implementation is far to slow when computing paths with variable
speeds. The most promising optimization method is an optimization with
respect to time, but with a restriction on the turning radius to avoid sharp,
energy-costly turns. This too has some drawbacks, but the ideal optimiza-
tion strategy can be concluded to be a combination of time and energy
efficiency.

Samandrag

Denne oppg̊ava beskriv strategien for ei ny tilnærming til automatisert
flislegging som for tida er under utvikling hj̊a nLink AS i Sogndal. Hovud-
fokuset til oppg̊ava er å utvikla ein passande strategi for baneplanlegging
for dette robotsystemet.

Ein matematisk modell for ein firehjuls differensialstyrt mobil platform
med ei modellbasert ulineær styringseining blir presentert. Det blir gitt
ei kort innføring i grunnleggjande baneplanlegging, før nokon av dei rele-
vante algoritmene blir forklart i større detalj. Tre ulike optimaliseringskri-
terier blir definert og ein MATLAB-implementasjon av ei ”Sampling-Based
Model Predictive Optimization”-algoritme blir presentert. Den mobile
plattforma er implementert i SIMULINK med inndata fr̊a SBMPO-algoritma.
Resultat fr̊a simuleringar av tre ulike hindringsscenario med b̊ade kon-
stant og variabel fart blir presentert, og yteevna til dei ulike optimaliser-
ingsstrategiane blir vurdert og samanlikna.

Simuleringane viser tydeleg at sjølv om optimalisering med hensyn til
energibruk viser lovande resultat, s̊a brukar den noverande implementasjo-
nen alt for lang tid p̊a å berekna banene. Den mest lovande optimaliser-
ingsmetoden er optimalisering med hensyn p̊a tid, men med ein restriksjon
p̊a svingradiusen for å unng̊a skarpe energikrevande svingar. Denne strate-
gien har ogs̊a nokon ulemper, men vi kan konkludera med at den ideelle
optimaliseringsstrategien m̊a ta hensyn til b̊ade tid og energibruk.

ii

Contents

1 Introduction 1

2 Automated tilesetting systems 3

2.1 Case: Rema 1000 Sogndal 4

2.1.1 Step by step scenario 4

2.2 Challenges . 6

3 Equations of motion for a skid-steered mobile platform 9

3.1 Trajectory control . 15

3.2 Segway RMP 440 . 18

4 Path planning for mobile wheelbased platforms 21

4.1 Operating Spaces . 21

4.2 Sampling-Based vs Combinatorial motion planning 22

4.3 Discrete algorithms . 22

4.3.1 Lifelong Planning A* 23

4.3.2 D* Lite . 26

4.4 Sampling-Based algorithms 29

4.4.1 Sampling techniques: Halton points 30

4.4.2 Output Sampling: A* assisted Rapidly-expanding
Random Tree (RRT) 30

4.4.3 Input Sampling: Sampling Based Model Predictive
Control . 36

5 The optimization problem 41

5.1 Optimization with respect to distance(Shortest path) 41

5.2 Optimization with respect to time(Quickest path) 42

5.3 Optimization with respect to energy consumption(Easiest
path) . 42

5.3.1 Defining a power model 43

6 MATLAB implementation of the SBMPO-algorithm 49

6.1 The structure of the path planner 49

6.1.1 The classes . 49

6.1.2 The functions . 51

6.2 The simplified model of the vehicle 52

6.3 Sampling the input . 54

6.4 Smoothing the output . 54

6.5 Obstacle and goal handling 56

iii

6.5.1 The configuration space of the vehicle 56

6.5.2 Obstacle handling 57

6.5.3 Goal handling . 58

7 Simulation 59

7.1 Specification . 59

7.1.1 Assumptions and simplifications in the modelling . . 59

7.1.2 Model parameters 60

7.1.3 Simulation parameters 60

7.2 Simulator structure . 61

7.2.1 Prepared functionality for future work 68

8 Defining the test cases 69

8.1 Test parameters . 69

8.2 Case 1: No obstacles . 69

8.3 Case 2: Simple cluster of obstacles 69

8.4 Case 3: Complex cluster of obstacles 70

9 Simulation results 73

9.1 Case 1: No obstacles (variable speed) 74

9.2 Case 2: Simple set of obstacles 78

9.2.1 Constant speed=1.0 m/s 78

9.2.2 Speed=1.0-1.4 m/s 81

9.3 Case 3: Complex cluster of obstacles 85

9.3.1 Constant speed=1.0 m/s 85

9.3.2 Speed=1.0-1.4 m/s, gridsize=0.2 m 89

9.3.3 Speed=1.0-1.4 m/s, gridsize=0.1 m 92

10 Discussion 95

10.1 Choice and implementation of the path planning algorithm 95

10.1.1 Implementing the SBMPO-algorithm 95

10.1.2 Controller performance 95

10.2 Comparison of the optimization schemes 96

10.2.1 The findings of Collins et.al.[29] 96

10.2.2 Energy vs Time with limited turning radius 97

10.3 Choosing a different algorithm 98

10.3.1 Possible modification: D* Lite 98

10.3.2 Completely different approach? 98

11 Conclusion 101

iv

12 Further work 103

Bibliography 105

List of Figures

1.1 A draft of the nLink robot 2
2.1 Pattern examples formed by a software controlled robot . . 3
2.2 Blueprints of Rema 1000 Sogndal 4
2.3 Workers tiling the new Rema 1000 Sogndal 5
2.4 nLink animation of a multi-robot system at work 8
3.1 Free-body diagram of the vehicle 10
3.2 Active and resistive forces of the vehicle 12
3.3 Implementation of the Karnopp model for friction 14
3.4 Illustration of a Segway RMP 440 mobile platform 19
4.1 Lifelong Planning A* algorithm 25
4.2 D* Lite algorithm . 28
4.3 Comparison of random sample generators 31
4.4 Rapidly-Exploring Random Tree (RRT) algorithm 32
4.5 The distribution of RRT candidate milestones 35
4.6 Illustration of the necessity of an implicit state grid 37
4.7 Sampling-Based MPC algorithm 39
5.1 Wheeled skid-steering vehicle during curving 43
5.2 The α(r) term of the power model 45
5.3 The β(r) term of the power model 46
5.4 2D representation of power model 47
5.5 3D representation of power model 48
6.1 Class diagram of the MATLAB implementation 50
6.2 Accuracy of different simple models for the vehicle 53
6.3 Output smoothing functions 56
7.1 The complete implemented system 63
7.2 The implementation of the skid-steered model 64
7.3 The c func-block from figure 7.2 64
7.4 The R x-block from figure 7.3 65
7.5 Implementation of the modified sign function 65
7.6 The”Optional Deadzone w.rotation”-block from figure 7.2. . 65
7.7 The”Optional Deadzone”-block from figure 7.6. 66
7.8 The implementation of the controller 67
8.1 A simple cluster of obstacles 70
8.2 A more complex cluster of obstacles 71

v

9.1 The Shortest path for no obstacles 75
9.2 The Quickest path for no obstacles 76
9.3 The Easiest path for no obstacles 76
9.4 Comparison of paths for no obstacles 77
9.5 Simple obstacles, const. speed: Shortest path (rmin = 5) . . 78
9.6 Simple obstacles, const. speed: Easiest path 79
9.7 Simple obstacles, const. speed: Shortest path (rmin = 11) . 79
9.8 Comparison of the optimization schemes with simple obsta-

cle set and constant speed 80
9.9 Simple obstacles, var. speed: Shortest path 81
9.10 Simple obstacles, var. speed: Quickest path (rmin = 5) . . . 82
9.11 Simple obstacles, var. speed: Easiest path 82
9.12 Simple obstacles, var. speed: Quickest path (rmin = 11) . . 83
9.13 Comparison of the optimization schemes with simple obsta-

cle set and variable speed 84
9.14 Complex obstacles, const. speed: Quickest path (rmin = 5) 86
9.15 Complex obstacles, const. speed: Easiest path 86
9.16 Complex obstacles, const. speed: Quickest path (rmin = 11) 87
9.17 Comparison of the optimization schemes with complex ob-

stacles and constant speed 88
9.18 Complex obst., var. speed, grid0.2: Quickest path (rmin = 5) 89
9.19 Complex obst., var. speed, grid0.2: Easiest path 90
9.20 Complex obst., var. speed, grid0.2: Quickest path (rmin = 11) 90
9.21 Comparison of the optimization schemes with complex ob-

stacle set, variable speed and gridsize=0.2m 91
9.22 Complex obst., var. speed, grid0.1: Quickest path (rmin = 5) 92
9.23 Complex obst., var. speed, grid0.1: Quickest path (rmin = 11) 93
9.24 Comparison of the optimization schemes with complex ob-

stacleset, variable speed and gridsize=0.1m 94

List of Tables

1 Specification for the Segway RMP440 LE 18
2 Model parameters used in SIMULINK 60
3 Algorithm tuning parameters 74
4 Comparison of the optimization schemes with no obstacles . 77
5 Comparison of the optimization schemes with simple obsta-

cles and constant speed . 80
6 Comparison of the optimization schemes with simple obsta-

cles and variable speed . 83

vi

7 Comparison of the optimization schemes with complex ob-
stacles and constant speed 87

8 Comparison of the optimization schemes with complex ob-
stacles, variable speed and gridsize 0.2m 91

9 Comparison of the optimization schemes with complex ob-
stacles, variable speed and gridsize 0.1 m 93

vii

viii

1

1 Introduction

Tiling floors is hard manual labour which takes its toll on the human body.
Lifting and carrying heavy tiles, combined with a harmful work posture,
make the workers prone to ergonomic injuries which in turn may lead to
early retirement. Since the work is both heavy, damaging and repetitive,
this makes it an ideal place to introduce robotics.

The global ceramic tiles market is estimated to reach 8,6 billion square
meters by 2015 [1]. During the development of a floor tiling system, it
is reasonable to focus this on the large and simple areas of for instance
shopping malls, while leaving the more difficult sections to experienced
manual workers.

This project will be based on a mobile robot under development by
nLink AS (see fig. 1.1) and a real world case provided by Brødr. Olsen,
the largest tiling contractor in Norway. There are too many challenges
associated with this development to address in a single project report.
The modeling of the platform is discussed thoroughly in [2]. The focus of
this report will be on defining the work case, developing and implementing
a path planning scheme for the mobile platform, and running simulations
to test the implemented path planner.

The report will begin by outlining a specific work case and the chal-
lenges associated with it, before reviewing some path planning algorithms.
Three different optimization criteria are proposed and detailed. The skid-
steered platform-model implemented in SIMULINK in [2] is expanded with
a MATLAB implementation of an SBMPO-algorithm to also cover path
planning, and the results of the simulations are used as a basis for a dis-
cussion of the quality of the path planning schemes.

2 1 INTRODUCTION

Figure 1.1: A draft of the nLink robot

3

2 Automated tilesetting systems

Industrial robots are typically mounted in a fixed position next to a con-
veyour belt. This creates a simple, easily describable working environment
for the robot, but limits its uses to inside a factory. Moving the industrial
robots out of the factories and workbenches would create numerous new
areas of application, but not without introducing a significant increase in
complexity.

The process of floor tiling is a useful stepping stone in the learning
curve in the development of an automatic mobile manipulator system that
could eventually carry out any task. This is because the workspace is 2-
dimensional, which makes it a much simpler starting point than a full
3-dimensional workspace. As early as 1996, researchers at Carnegie Mel-
lon University Designed a mobile robot system for automatic floor tiling
[3]. The proposed robot was a four-wheeled robot with omni-directional
wheels and a somewhat complex internal tile-feeding and -placement sys-
tem. Positioning was to be achieved using a planar laser-scanning device
mounted on the robot with active or retroflective targets attached to the
facility.

A design more closely resembling the nLink system is shown in [4].
This robot consists of a robotic arm mounted on a work module, with the
work module attached to a mobility module by a rotating plate. Both
[3] and [4] focus primarily on the tilesetting itself and the demands for
accuracy in the actual placement of the tiles.

Some floor tiling jobs will require intricate mosaic designs. These re-
quire much extra planning and are very labour intensive for a manual tiler,
however for a robot this task is not significantly more complex than any
other tiling job. In [5], Oral and Inal used a four degrees of freedom carte-
sian robot mounted on a fixed workstation to demonstrate how a robot
can improve the tiling process of mosaics by increasing the speed, reducing
the errors and allowing more flexibility for complex patterns, see Fig. 2.1.

Figure 2.1: Pattern examples formed by the software controlled robot of
Oral and Inal[5].

4 2 AUTOMATED TILESETTING SYSTEMS

Figure 2.2: Blueprints of Rema 1000 Sogndal

2.1 Case: Rema 1000 Sogndal

In preparation of the development of the nLink robot, nLink CEO H̊avard
Halvorsen spent a day studying the tiling work process of Brødr. Olsen in
the construction of a new Rema 1000 store in Sogndal (fig. 2.2). Based on
video footage of the work (fig. 2.3) and conversations with the workers,
we have defined the following step-by-step scenario for the operation of
the tilesetting robot:

2.1.1 Step by step scenario

Prerequisites:

• The area to be tiled is empty and ready.

• Tiles are available on one ore more pallets.

• The workers have a clear plan for the work.

• The robot is inside the work area, and is fully loaded with 80
tiles .

• The worker laying the glue has already started.

2.1 Case: Rema 1000 Sogndal 5

Figure 2.3: Workers tiling the new Rema 1000 Sogndal

Work method:

• The whole area indicated is to be tiled. It is assumed that the
workers leave enough room on the outside of the last stretch of
the area for the robot to manoeuvre.

• The worker laying the glue has the remote, and stops the robot
if it catches up with him.

• Tiles are laid out in two rows, and the robot places 2 by 2 tiles
from each stopping point.

• The workers can add/remove pallets in the program during op-
eration, when they run out of tiles.

• The tiles are (at this point in development) loaded manually by
the workers.

Step by step:

1. Workers use a tripod or similar to indicate the work area.

(a) Corners

(b) Position(s) of tile pallet(s)

(c) Position(s) of obstacle(s) like columns, drains etc.

(d) The intended starting position and -direction of the tiling

6 2 AUTOMATED TILESETTING SYSTEMS

(e) The grid for the expansion joints (see section 2.2, paragraph
Precision)

2. The system draws up the work area and the scenario in an ap-
plication, and the worker confirms that the scenario is correct.

3. System startup via remote

4. Robot verifies it’s position

5. Moves to the first position to lay tiles from

6. Verifies position

(a) If the deviation from ideal position is too large to compen-
sate for using the robotic arm, system repeats from 5.

7. Lays 2 by 2 tiles, with the robotic arm compensating for any
deviation from the ideal positioning of the platform

8. Moves to the next position

(a) As long as the robot has got tiles left, repeat from 6

(b) Continue when tile tray is empty

9. Moves to the nearest pallet with tiles, making sure to position
and rotate itself to the position and orientation the operator
has instructed

10. The operator loads the robot with tiles (the robot will do this
automatically in a later stage of development)

11. Moves back to the next position to lay tiles from, then repeat
from 6

2.2 Challenges

There are numerous challenges associated with developing such a system.

Human-Robot interaction
The robot will be operating in close collaboration with human workers,

and this means a number of safety precautions need to be taken. It goes
without saying that a robot that weighs in excess of 100 kg, is capable
of moving freely around the room and has a large moving robotic arm
mounted on top, would pose a serious hazard to the human workers if it
is not properly designed to ensure their safety.

The robot will need to be fitted with several sensors capable of detect-
ing any obstacles in the path of either the platform or the manipulator
arm. Also, there will need to be set reasonable restrictions for operation

2.2 Challenges 7

speeds, for instance restricting the drive speed of the mobile platform to
walking speed (∼1.4 m/s [6]).

Navigation and Obstacle avoidance

The working environment of the robot will contain several potential
obstacles, for instance tile pallets, buckets of glue, strips of already ap-
plied glue, and most importantly the human workers. The obstacles will
constantly be changing, requiring the system to reevaluate the optimum
path. The mobile platform needs to effectively navigate to the correct
position in the work area, so both path planning and trajectory tracking
will be very important aspects to consider.

Precision

The tiles used are 30 cm by 30 cm and the distance between the tiles
is to be 1.5 mm. The accuracy tolerance level is that the tiles do not
overlap, so in the worst-case situation, they can be placed in contact with
each other.

For every 6th meter in each direction, a 5 mm joint with a different
type of grout (tiling glue) is added. This wide joint is added to allow the
flexibility required to account for the difference in temperature-induced
expanding between concrete and ceramic tiles.

The tolerance level for height deviation is 1 mm difference between ad-
jacent tiles. This is the standard of Brødr. Olsen, the norwegian standard
for this is 2 mm.

As stated in section 2.1.1, the robotic arm will compensate for any
error in the position of the mobile platform, however this demands the
position measurements of the platform to be very accurate.

Efficiency

Time is money, and particularly when dealing with such large areas,
any small delay in a small part of the process will accumulate and may
in the end become a significant factor. This means the system needs
to run efficiently, stopping as little as possible and not making to many
unnecessary turns.

Reliability

Even more important than moving the robot efficiently, is making sure
the system is running properly as much of the time as possible. If the
system breaks down frequently and the workers need to spend a lot of

8 2 AUTOMATED TILESETTING SYSTEMS

Figure 2.4: nLink animation of a multi-robot system at work

time repairing and maintaining the unit, it does not matter how efficiently
the system works when it is up and running, the tiling company will be
wasting time and money.

Simplicity
The average tiler does not have a degree in robotics. This needs to

be taken into account when designing user interface, keeping it simple
and intuitive to use, with a minimum of unnecessary functions. How
a system performs in a laboratory with the designers is interesting for
testing purposes only, what really matters is how it performs in the actual
working environment being operated by the ones that are actually going
to be using it.

Scaling
Being able to do a job quickly is a major business advantage, and

because of this the system needs to be able to consist of multiple robots
working in the same space with a larger crew (see fig. 2.4). This of course
adds another layer of complexity, because we now also need to consider
robot-robot interaction.

9

3 Equations of motion for a skid-steered mobile platform

The mobility module of the nLink robot is currently planned to be based
on the Segway RMP 440 [7] presented in section 3.2.

One of the primary advantages of this platform as opposed to other
platforms is the loading capacity. When looking at the proposed step-
by-step work-scenario of the robot in section 2.1.1, it is easy to see that
the efficiency of the tiling system will be highly dependant on how often
the robot needs to be reloaded with tiles, so being able to carry a large
payload of tiles is vital.

Another selling point for this skid-steered alternative is its mechanical
simplicity. A simple and robust design is often more reliable, since there
are fewer moving parts that can fail. In [8], Tlale and de Villiers point to
the high wear a surface like concrete will induce on the omni-directional
Mecanum wheels, and discourage operation of a Mecanum-wheeled plat-
form on surfaces with a high coefficient of friction, like for instance con-
crete. The floors to be tiled using the nLink robot will naturally be made
of concrete.

Skid-steering is a term for the steering of a vehicle with fixed wheels
(no steering wheels) and using different wheel speeds on the opposing
sides to induce a skidding rotation of the vehicle. A platform using skid-
steering (like the one presented in section 3.2) can be made very sim-
ple and mechanically robust, since there is no need for steering wheels.
However, as pointed out in [9], the varying tire/ground interactions and
over-constrained contact makes it quite challenging to obtain accurate dy-
namic models and tracking control systems for such mobile robots. [9] uses
a highly simplified model for friction, and still ends up with a very complex
set of equations that are difficult to implement in a simulator. Since the
tilesetting robot is only going to be operating at walking speed or lower
(in order to guarantee the safety of the human workers in its workspace),
it seems reasonable to base the mathematical model in the simulator pri-
marily on the simpler model derived by [10] instead. In addition to this,
we will utilize some of the elements and notation introduced by [11] and
[9], and introduce a new approach for the modeling of the sliding friction.
A thorough review of the behaviour of the proposed model and controller
is given in [2].

Figure 3.1 shows the schematic of a skid-steered robot. We make the
following assumptions:

1. The vehicle is rigid and moves on a horizontal plane with all four
wheels always in contact with the ground surface.

10 3 EQUATIONS OF MOTION

Figure 3.1: Free-body diagram[11].

2. The vehicle speed is below 2.5 m/s.

3. The longitudinal wheel slippage is negligible.

4. The lateral force on the tires is a function of its vertical load.

5. Each sides two wheels rotate at the same speed.

Define a fixed reference frame F (X,Y) and a moving frame f(x, y)
attached to the vehicle body, with origin at the vehicle center of mass
COM and angle θ with respect to the reference frame (see Fig. 3.1). The
center of mass is located at distances a and b (usually, a < b) from the
front and rear wheels axes, respectively, and is symmetric with respect to
the vehicle sides (at distance c).

Let ẋ, ẏ, θ̇ be respectively, the longitudinal, lateral, and angular veloc-
ity of the vehicle in frame f . In the fixed frame F , the absolute velocities
are [

Ẋ

Ẏ

]
=

[
ẋ cos θ − ẏ sin θ
ẋ sin θ + ẏ cos θ

]
= R(θ)

[
ẋ
ẏ

]
,

11

Differentiation with respect to time gives[
Ẍ

Ÿ

]
= R(φ)

[
ẍ− ẏθ̇
ÿ + ẋθ̇

]
= R(θ)

[
ax
ay

]
,

where ax and ay are the absolute accelerations expressed in the moving
frame f . At each instant the vehicle motion is a pure rotation around a
point C, the instantaneous center of rotation (ICR), in which the linear
velocity components in f vanish. Its coordinates are[

xc
yc

]
=

[
−ẏ/θ̇
ẋ/θ̇

]
The angular velocity θ̇ and the lateral velocity ẏ both vanish during

straight line motion, and the ICR goes to infinity along the y-axis. On a
curved path, the ICR shifts (forwards) by an amount |xc|. When ẏ = 0,
there is no lateral skidding. If xc, goes out of the robot wheelbase, the
vehicle skids dramatically with loss of motion stability.

Finally, note that the longitudinal velocity ẋi and the lateral (skidding)
velocity ẏi of each wheel (i = 1, . . . , 4) are given by

ẋ1 = ẋ3 = ẋ− cθ̇ (left)

ẋ2 = ẋ4 = ẋ+ cθ̇ (right)

ẏ1 = ẏ2 = ẏ + aθ̇ (front)

ẏ3 = ẏ4 = ẏ − bθ̇ (rear)

(3.1)

Figure 3.2 shows the active and resistive forces acting on the vehicle.
The wheels develop the traction forces Fxi and are subject to longitudinal
resistance forces Rxi, for i = 1, . . . , 4. We assume that wheel actuation is
equal on each side so as to reduce longitudinal slip. Thus, the following
always holds: Fx3 = Fx1 and Fx4 = Fx2. Lateral forces Fyi act on the
wheels as a consequence of lateral skidding. Also, an active torque M
around the center of mass is induced in general by the active Fxi forces, and
a corresponding resistive moment Mr is likewise induced by the resistive
Fyi and Rxi forces.

For a vehicle of mass m and inertia I about its center of mass, the
equations of motion can be written in frame f as:

max = 2Fx1 + 2Fx2 −Rx
may = −Fy
Iθ̈ = 2c(Fx2 − Fx1)−Mr.

(3.2)

12 3 EQUATIONS OF MOTION

Figure 3.2: Active and resistive forces of the vehicle[11].

To express the longitudinal resistive force Rx, the lateral resistive force
Fy, and the resistive moment Mr, we should consider how the vehicles
gravitational loadmg is shared among the wheels and introduce a Coulomb
friction model for the wheel-ground contact. We have

Fz1 = Fz2 =
b

a+ b
· mg

2

Fz3 = Fz4 =
a

a+ b
· mg

2
.

At low speed, the lateral load transfer due to centrifugal forces on
curved paths can be neglected. In case of hard ground, we can assume that
the contact patch between wheel and ground is rectangular and that the
vertical load of the tire produces an uniform pressure distribution. Under
this condition, Rxi = frFzi sgn(ẋi), where fr is the coefficient of rolling
resistance, assumed independent from velocity[12]. The total longitudinal
resistive force is then

Rx =
4∑
i=1

Rxi = fr
mg

2

(
sgn(ẋ1) + sgn(ẋ2)

)
. (3.3)

13

Introducing a lateral friction coefficient µ, the lateral force acting on
each wheel will be Fyi = µFzi sgn(ẏi). The total lateral force is thus

Fy =
4∑
i=1

Fyi = µ
mg

a+ b

(
b sgn(ẏ1) + a sgn(ẏ3)

)
(3.4)

while the resistive moment is

Mr = a(Fy1 + Fy2)− b(Fy3 + Fy4) + c[(Rx2 +Rx4)− (Rx1 +Rx3)]

= µ
abmg

a+ b
(sgn(ẏ1)− sgn(ẏ3)) + fr

cmg

2
(sgn(ẋ2)− sgn(ẋ1))

(3.5)
A major disadvantage with using the Coulomb friction model in its

most common form, Ff = Fc sgn(v) , is that it fails to model the correct
physical behaviour when the velocity v is zero and the acting force Fa is
in the interval 0 < |Fa| < Fc. When simulating such a system with a
fixed time-step solver, the numerical solution will suffer from strong oscil-
lations, whereas a variable time-step solver will basically stop because the
time-steps will approach zero in order to reach the specified accuracy[13].
In [11], this problem is avoided by replacing the sign function with the
following approximation:

ŝgn(v) =
2

π
arctan(ksv),

where ks � 1 is a constant which determines the accuracy of the
approximation according to the relation

lim
ks→∞

2

π
arctan(ksv) = sgn(v).

An alternate approach is to implement a Karnopp model as described
in [14], by adding a deadzone of ±δv in the velocity of the vehicle (figure
3.3a) and replacing the sign function with a gain of 1

δv
and a saturation

keeping the output between ±1 (figure 3.3b).
The dynamic model can be rewritten in frame F , introducing the gen-

eralized coordinates q = (X,Y, θ) and matrix notation

Mq̈ + c(q, q̇) = E(q)τ (3.6)

with

M =

m 0 0
0 m 0
0 0 I

 , c(q, q̇) =

Rx cos θ − Fy sin θ
Rx cos θ + Fy sin θ

Mr

 ,

14 3 EQUATIONS OF MOTION

(a)

(b)

Figure 3.3: Implementation of the Karnopp model with δv=0.01m/s. (a)
The deadzone of the velocity, (b) Gain and Saturation as a replacement
for sgn(v).

3.1 Trajectory control 15

and

E(q) =

cos θ/r cos θ/r
sin θ/r sin θ/r
−c/r c/r

 , τi = 2rFxi (i = 1, 2),

with r being the wheel radius, τ1 and τ2 the torques produced by the left
and right side motors at the load side, respectively. An ideal transmission
factor is also assumed.

3.1 Trajectory control

We start by observing that xc (the x-axis projection of the instantaneous
center of rotation) cannot be larger than a. If this happens, the vehicle
would skid along the y-axis thus losing control. In order to have the vehicle
move properly, the following should be fulfilled:∣∣∣∣− ẏθ̇

∣∣∣∣ < a.

Thus, we can introduce the following operative constraint

ẏ + d0θ̇, 0 < d0 < a, (3.7)

or, in terms of generalized coordinates:

[
− sin θ cos θ d0

] ẊẎ
θ̇

 = A(q)q̇ = 0. (3.8)

This relation represents a nonholonomic constraint that can be at-
tached to the dynamic model (3.6) for control design purposes. When this
constraint is enforced, the robot dynamics becomes

Mq̈ + c(q, q̇) = E(q)τ + A(q)λ, (3.9)

where λ is the vector of Lagrange multipliers corresponding to equation
(3.8).

Admissible generalized velocities q̇ can be expressed as

q̇ = S(q)η, η ∈ R2, (3.10)

where η is a pseudo-velocity and S(q) is a 3 × 2 full rank matrix, whose
columns are in the null space of A(q), e.g.,

S(q) =

cos θ − sin θ
sin θ cos θ

0 − 1
d0

 .

16 3 EQUATIONS OF MOTION

We can differentiate (3.10) and eliminate λ from equation (3.9) to
obtain the reduced dynamic model (dropping dependencies)

q̇ = Sη

η̇ = (STMS)−1ST (Eτ −MṠη − c),
(3.11)

If we apply the nonlinear static state-feedback law

τ = (STE)−1(STMSu + STMṠη + STc) (3.12)

where u = (u1, u2) is the vector of new control variables, system (3.11)
becomes a purely (second-order) kinematic model

q̇ = Sη

η̇ = u.

In our case, the control law (3.12) has the explicit form

τ1
τ2

 =


r
2

(
mu1 + m

d0
η22 +Rx

)
+ rd0

2c

((
m+ I

d20

)
u2 − m

d0
η1η2 + Fy − Mr

d0

)
r
2

(
mu1 + m

d0
η22 +Rx

)
− rd0

2c

((
m+ I

d20

)
u2 − m

d0
η1η2 + Fy − Mr

d0

)


(3.13)
and gives

Ẋ = cos θη1 − sin θη2

Ẏ = cos θη1 + sin θη2

θ̇ = − 1

d0
η2

η̇1 = u1

η̇2 = u2.

(3.14)

We show next that, by choosing a particular output, equations (3.14)
can be fully linearized and input-output decoupled by means of a dynamic
state feedback.

We choose as linearizing outputs the position of a point D placed on
the x-axis at a distance d0 from the vehicle frame origin

z =

[
X + d0 cos θ
Y + d0 sin θ

]
, (3.15)

3.1 Trajectory control 17

and add one integrator on the input u1 (dynamic extension)

u1 = ξ

ξ̇1 = v1

u2 = v2.

(3.16)

where ξ is the controller state and v1 and v2 are the new control inputs.

By applying the standard input-output decoupling algorithm (see [15]),
we differentiate equation (3.15) until the input v explcitly appears. We
obtain

...
z =

[
cos θ 1

d0
η1 sin θ

sin θ − 1
d0
η1 cos θ

]
v+

[
2
d0
ξη2 sin θ − 1

d20
η1η

2
2 cos θ

− 2
d0
ξη2 cos θ − 1

d20
η1η

2
2 sin θ

]
= α(q,η)v+β(q,η)

Since

det[α(q,η)] = − 1

d0
η1,

we have that the decoupling matrix α is nonsingular iff1 the vehicle lon-
gitudinal velocity η1 is different from zero. Whenever defined, the control
law

v = α−1(q,η)[r− β(q,η)], (3.17)

where r is the trajectory jerk reference, yields

...
z = r, (3.18)

i.e., two independent input-output chains of three integrators. Combining
equations (3.16) and (3.17) gives the following input-output decoupling
and fully linearizing dynamic controller

ξ̇1 = r1 cos θ + r2 sin θ +
1

d20
η1η

2
2

u1 = ξ

u2 =
d0
η1

(r1 sin θ − r2 cos θ)− 2

η1
ξη2.

(3.19)

We note that the limitation η1 6= 0 does not inhibit the ability to
achieve good tracking performance by means of controller (3.19), as long
as the trajectory is persistent.

1If and only if

18 3 EQUATIONS OF MOTION

It is easy to complete the control design for eq. (3.18) using a expo-
nentially stabilizing state feedback for each integrator chain with input ri.
For i = 1, 2, we choose

ri =
...
z di + ka(z̈di − z̈i) + kv(żdi − żi) + kp(zdi − zi), (3.20)

where the gains are such that λ3+kaλ
2+kvλ+kp is a Hurwitz polynomial,

zd(t) is the desired smooth reference trajectory, and z, ż and z̈ can be
evaluated in terms of q, η and ξ. In order to satisfy the Routh-Hurwitz
criterion, a necessary and sufficient criterion for the polynomial to be
Hurwitz, the gains need to satisfy ka, kv, kp > 0 and kakv > kp.

The state-feedback control law (3.21) can be seen as an output-feedback
linear controller having two (realizable) minimum-phase zeros, character-
ized by the gain ratios kv/ka and kp/ka, and a feedforward action de-
pending on

...
z d. The resulting control scheme has the open-loop transfer

function

F (s) = C(s)Ṗ (s) = (kas
2 + kvs+ kp) (3.21)

3.2 Segway RMP 440

The Segway RMP 440[16] is a commercially available mobile platform, and
it is at present the preferred choice of nLink AS to comprise the mobile
module of their planned tilesetting robot. This mobile platform represents
the simplest type of wheel configuration, as shown in figure 3.4. It has four
ATV wheels that can be controlled independently, giving it the ability to
turn in place. Four lithium-ion battery packs give the platform the power
to carry up to 180 kg payload.

Maximum Payload: 181.4 kg
All-Terrain Payload: 90.7 kg
Dimensions: 1105 mm x 842 mm x 533 mm (LxWxH)
Weight: 120.2 kg
Top Speed: 8 m/s
Run time: Up to 20 hours (stand by)

Table 1: Specification for the Segway RMP440 LE[7]

One of the new features of the RMP 440 over the 400 version, is the
integrated auxiliary power module allowing it to power the manipulator
arm.

3.2 Segway RMP 440 19

Figure 3.4: Illustration of a Segway RMP 440 mobile platform

20 3 EQUATIONS OF MOTION

21

4 Path planning for mobile wheelbased platforms

In order to make a mobile system autonomous, we need to be able to
translate high-level specifications like ”move from point A to point B” into
a series of low-level inputs like longitudinal and angular speed. This trans-
lation is known as motion-, trajectory- or path planning, and algorithms
for solving this type of problems is a fundamental part of robotics. This
section will first present some basic theory (mostly from [17]) needed to
formulate the motion planning problem, before outlining the two main
philosophies for adressing the problem and some of the algorithms that
can be used to solve it.

4.1 Operating Spaces

To define the path planning problem, we need to have a geometric repre-
sentation of the world of the mobile platform. These representations are
referred to as operating spaces, and are generally divided into two types:
The workspace and the configuration space.

The workspace
The workspace W is also sometimes referred to as simply ”the world”.

Most problems are covered by two choices: a 2D world (W = R2) or a 3D
world (W = R3). More complicated worlds, like for instance the surface
of a sphere, are also possible, but their applications are quite limited.

This world generally contains two kinds of entities:

1. Obstacles: Portions of the world that are permanently occupied,
for example the walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable
via a motion plan.

Both types of entities are considered as (closed) subsets of W. The
obstacle region O denotes the set of all points inW that lie in one or more
obstacles, O ⊆ W. Similarly, if we let A refer to the robot, A denotes the
set of all points in W that are occupied by the robot, A ⊆ W. In order to
avoid collisions, the two sets cannot intersect, O ∩A = ∅.

The configuration space
For the purpose of planning, it is also important to define the state

space. Commonly referred to as the configuration space, or C-space, this

22 4 PATH PLANNING

space is an important abstraction that allows numerous seemingly very
different problems to be solved using the same planning algorithms.

The C-space includes all the possible configurations of a physical sys-
tem. If the system has n degrees of freedom, C will usually be n-dimensional,
with one dimension corresponding to each state.

Physical constraints like obstacles or angle restrictions on manipulator
joints cause parts of C to be inadmissible for our system. If we let q ∈
C denote the configuration of our vehicle A, the configurations that are
inadmissible can be defined as:

Cobs = {q ∈ C|A(q) ∩ O 6= ∅} (4.1)

The leftover configurations are called the free space, which is defined
and denoted as Cfree = C\Cobs. The path planning and obstacle avoidance
problem has now been reduced to finding a path from qinit to qgoal inside
Cfree.

4.2 Sampling-Based vs Combinatorial motion planning

There are two main philosophies in motion planning: Sampling-Based and
Combinatorial[17].

Sampling-Based planning utilizes a sampling scheme to avoid explicit
construction of the obstructed configuration space Cobs. The sampling
scheme probes the C-space using a collision detection module that the al-
gorithm considers to be a black box, making the development of algorithms
independent of the geometric models used to represent the obstructions.

Combinatorial planning does not resort to approximations. If the in-
stances have certain convenient properties (e.g., low dimensionality, convex
models), then a combinatorial algorithm may provide an elegant, practical
solution. If the set of instances is too broad, then a requirement of both
completeness and practical solutions may be unreasonable.

4.3 Discrete algorithms

In computing, there are several different algorithms that are able to find
an ideal path in a discrete world of finite resolution. Unfortunately these
will not work in our continuous world. However, as we will see in section
4.4, the use of sampling allows us to adapt the discrete algorithms into
continuous methods.

4.3 Discrete algorithms 23

4.3.1 Lifelong Planning A*

Lifelong Planning A* (LPA*) was first introduced by [18] and later dis-
cussed more thoroughly in [19] and [20], and solves the following path-
planning problems: It applies to path-planning problems on known finite
graphs whose edge costs increase or decrease over time. Such cost changes
can also be used to model edges or vertices that are added or deleted. It
was later extended to the D* Lite algorithm in section 4.3.2.

S denotes the finite set of vertices of the graph. succ(s) ⊆ S denotes
the set of successors of vertex s ∈ S. Similarly, pred(s) ⊆ S denotes the
set of predecessors of vertex s ∈ S. 0 < c(s; s′) ≤ ∞ denotes the cost of
moving from vertex s to vertex s′ ∈ succ(s). LPA* always determines a
shortest path from a given start vertex sstart ∈ S to a given goal vertex
sgoal ∈ S, knowing both the topology of the graph and the current edge
costs. We use g∗(s) to denote the start distance of vertex s ∈ S, the cost
of a shortest path from sstart to s. The start distances satisfy the following
relationship:

g∗(s) =

{
0 if s = sstart

mins′∈pred(s)(g
∗(s′) + c(s′, s)) otherwise.

(4.2)

LPA* maintains two kinds of estimates of the start distance of each
vertex: a g-value and an rhs-value (that is, right-hand side value, a term
borrowed from [21]) . The rhs-value of a vertex is based on the g-values
of its predecessors and is thus potentially better informed than them. It
always satisfies the following relationship:

rhs(s) =

{
0 if s = sstart

mins′∈pred(s)(g(s′) + c(s′, s)) otherwise.
(4.3)

A vertex s is called locally consistent if g(s) = rhs(s), otherwise it is
called locally inconsistent. If all vertices are locally consistent then all of
their g-values are equal to their respective start distances, which allows one
to find shortest paths from the start vertex to any vertex. However, LPA*
does not make every vertex locally consistent after some of the edge costs
have changed. Instead, it shares with A* the fact that it uses nonnegative
and consistent heuristics h(s, sgoal) that approximate the goal distances of
the vertices s to focus its search and updates only the g-values that are
relevant for computing a shortest path from the start to the goal vertex.
Consistent heuristics obey the triangle inequality h(sgoal, sgoal) = 0 and
h(s, sgoal) ≤ c(s, s′) + h(s′, sgoal) for all vertices s ∈ S and s′ ∈ succ(s)
with s 6= sgoal.

24 4 PATH PLANNING

LPA* maintains a priority queue that always contains exactly the lo-
cally inconsistent vertices. These are the vertices whose g-values poten-
tially needs to change to make them locally consistent. The key of vertex
in the priority queue is a vector with two components:

k(s) =

[
min(g(s), rhs(s)) + h(s, sgoal)

min(g(s), rhs(s))

]
(4.4)

Keys are compared according to a lexicographic ordering, meaning
they are sorted first according to the first element, and any ties are then
sorted according to the second element.

The algorithm
The pseudocode for LPA* is shown in figure 4.1, and the numbers in

curly braces in the following explanaition refers to the line numbers. Its
main function Main() first calls Initialize() to initialize the search problem
{17}. Initialize() sets the initial g-values of all vertices to infinity and sets
their rhs-values according to equation (4.3) {03–04}. Thus, initially the
start vertex is the only locally inconsistent vertex and is inserted into the
otherwise empty priority queue {05}. Note that, in an actual implemen-
tation, Initialize() only needs to initialize a vertex when it encounters it
during the search and thus does not need to initialize all vertices up front.

After calling Initialize(), Main() calls ComputeShortestPath() to find
a shortest path from the start to the goal vertex. ComputeShortestPath()
repeatedly recalculates the g-values of locally inconsistent vertices (“ex-
pands the vertices”) in nondecreasing order of their keys {10–16}.

A locally inconsistent vertex s is called locally overconsistent iff g(s) >
rhs(s). When ComputeShortestPath() expands a locally overconsistent
vertex {12–13}, then it holds that rhs(s) = g∗(s), which implies that
k(s) = [f(s); g∗(s)], where f(s) = g∗(s)+h(s, sgoal). During the expansion
of the vertex, ComputeShortestPath() sets the g-value of the vertex to its
rhs-value and thus its start distance {12}, which is the desired value and
also makes the vertex locally consistent. Its g-value then no longer changes
until ComputeShortestPath() terminates.

A locally inconsistent vertex is called locally underconsistent iff g(s) <
rhs(s). When ComputeShortestPath() expands a locally underconsistent
vertex {15–16}, then it simply sets the g-value of the vertex to infinity
{15}. This makes the vertex either locally consistent or overconsistent.
If the expanded vertex was locally overconsistent, then the change of its
g-value can affect the local consistency of its successors {13}.

4.3 Discrete algorithms 25

The pseudocode uses the following functions to manage the priority queue:
U .TopKey() returns the smallest priority of all vertices in priority queue
U . (If U is empty, then U .TopKey() returns [∞;∞].) U .Pop() deletes
the vertex with the smallest priority in priority queue U and returns the
vertex. U .Insert(s; k) inserts vertex s into priority queue U with priority
k. Finally, U .Remove(s) removes vertex s from priority queue U .
procedure CalculateKey(s)

1: return [min(g(s), rhs(s)) + h(s, sgoal); min(g(s), rhs(s))];

procedure Initialize()

2: U = ∅;
3: for all s ∈ S, rhs(s) = g(s) =∞;
4: rhs(sstart) = 0;
5: U.Insert(sstart; [h(sstart); 0]);

procedure UpdateVertex(u)

if (u 6= sstart), rhs(u) =mins′∈pred(u)(g(s′) + c(s′;u));
if (u ∈ U), U.Remove(u);
if (g(u) 6= rhs(u)), U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()

9: while (U.TopKey() <CalculateKey(sgoal) or rhs(sgoal) 6= g(sgoal))
do

10: u = U.Pop();
11: if (g(u) > rhs(u)) then
12: g(u) = rhs(u);
13: for all s ∈ succ(u), UpdateVertex(s);
14: else
15: g(u) =∞;
16: for all s ∈ succ(u) ∪ u, UpdateVertex(s);

procedure Main()

17: Initialize();
18: loop
19: ComputeShortestPath();
20: Wait for changes in edge costs;
21: for all directed edges (u; v) with changed edge costs do
22: Update the edge cost c(u; v);
23: UpdateVertex(v);

Figure 4.1: Lifelong Planning A* algorithm

26 4 PATH PLANNING

Similarly, if the expanded vertex was locally underconsistent, then it
and its successors can be affected {16}.

To maintain equations (4.3) and (4.4), as well as the priority queue,
ComputeShortestPath() therefore updates the rhs-values of these vertices,
checks their local consistency, and adds them to or removes them from the
priority queue as needed {06–08}. LPA* expands vertices until the goal
vertex is locally consistent and the key of the vertex to expand next is no
smaller than the key of the goal vertex.

If g(sgoal) =∞ after the search, then there is no finite-cost path from
the start to the goal vertex. Otherwise, one can find a shortest path
from the start to the goal vertex as follows: One always moves from the
current vertex s, starting at the goal vertex, to any predecessor s′ that
minimizes g(s′) + c(s′, s) until the start vertex is reached (ties can be
broken arbitrarily). This way, one traverses a shortest path from the start
to the goal vertex backward.

After calling ComputeShortestPath(), Main() waits for changes in edge
costs {20}. To maintain equations (4.3) and (4.4) if some edge costs have
changed, it calls UpdateVertex() {23} to update the rhs-values and keys
of the vertices potentially affected by the changed edge costs as well as
their membership in the priority queue if they become locally consistent
or inconsistent, and finally recalculates a shortest path {19} by calling
ComputeShortestPath() again and iterates.

4.3.2 D* Lite

D* Lite, also known as Focused Dynamic A* Lite, is described in [20] and
builds on the LPA* algorithm from section 4.3.1. As the name suggests,
it was developed as a simpler version of D*. Nonetheless, it has been
demonstrated to be at least as efficient as D*.

D* Lite repeatedly determines shortest paths between the current ver-
tex of the robot and the goal vertex as the edge costs of a graph change
while the robot moves toward the goal vertex. D* Lite does not make
any assumptions about how the edge costs change, whether they go up or
down, whether they change close to the current vertex of the robot or far
away from it, or whether they change in the world or only because the
knowledge of the robot changes.

The first version of D* Lite was essentially an inverted version of
LPA*, searching from the goal vertex to the start vertex. The heuristics
h(sstart, s) now describe an estimate of the start distance of the vertex,
and as the robot moves, these heuristics will naturally change. Because

4.3 Discrete algorithms 27

of this, the first version of D* Lite had to update all of the keys in the
entire priority queue every time a change in edge costs were detected. This
had the disadvantage of repeatedly reordering the priority queue, which
can be expensive since the priority queue often contains a large number of
vertices.

The second version of D* Lite, shown in figure 4.2, uses a search
method derived from D* to avoid having to reorder the priority queue. The
heuristics H(s, s′) need to be nonnegative and forward-backward consis-
tent, that is, obey h(s, s′′) ≤ h(s, s′) +h(s′, s′′) for all vertices s, s′, s′′ ∈ S.
They also need to be admissible no matter what the goal vertex is, that
is, obey h(s, s′) ≤ c∗(s, s′) for all vertices s, s′ ∈ S, where c∗(s, s′) denotes
the cost of a shortest path from vertex s ∈ S to vertex s′ ∈ S.

The second version of D* Lite uses keys that are lower bounds on the
keys that the first version of D* Lite uses for the corresponding vertices. It
initializes them in the same way as the first version of D* Lite. After the
robot has moved from vertex s to some vertex s′ where it detects changes
in edge costs, the first component of the keys can have decreased by at
most h(s, s′). The second component does not depend on the heuristics
and thus remains unchanged. Thus, in order to maintain lower bounds,
D* Lite needs to subtract h(s, s′) from the first component of the keys of
all vertices in the priority queue. However, since h(s, s′) is the same for
all vertices in the priority queue, the order of the vertices in the priority
queue does not change if the subtraction is not performed. Then, when
new keys are computed, their first components are by h(s, s′) too small
relative to the keys in the priority queue. Thus, h(s, s′) has to be added
to their first components.

If the robot moves again and then detects cost changes again, then
the constants need to get added up. We do this in the variable km (that
is, key modifier) {30}(curly braces indicate line numbers in figure 4.2).
Thus, whenever new keys are computed, the variable km has to be added
to their first components, as done in {1}. Then, the order of the vertices in
the priority queue does not change after the robot moves and the priority
queue does not need to get reordered. The keys, on the other hand, are
always lower bounds on the corresponding keys of the first version of D*
Lite after the first component of the keys of the first version of D* Lite
has been increased by the current value of km, that is, lower bounds on
the values calculated by CalcKey() {1}.

28 4 PATH PLANNING

procedure CalcKey(s)

1: return [min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))];

procedure Initialize()

2: U = ∅;
3: km = 0;
4: for all s ∈ S, rhs(s) = g(s) =∞;
5: rhs(sgoal) = 0;
6: U.Insert(sgoal, CalcKey(sgoal));

procedure UpdateVertex(u)

7: if (u 6= sgoal), rhs(u) =mins′∈pred(u)(c(u; s′) + g(s′));
8: if (u ∈ U), U.Remove(u);
9: if (g(u) 6= rhs(u)), U.Insert(u, CalcKey(u));

procedure ComputeShortestPath()

10: while (U.TopKey() <CalcKey(sstart) or rhs(sstart) 6= g(sstart)) do
11: kold = U.TopKey();
12: u = U.Pop();
13: if (kold <CalcKey(u)) then
14: U.Insert(u, CalcKey(u));
15: else if (g(u) > rhs(u)) then
16: g(u) = rhs(u);
17: for all s ∈ pred(u), UpdateVertex(s);
18: else
19: g(u) =∞;
20: for all s ∈ pred(u) ∪ u, UpdateVertex(s);

procedure Main()

21: slast = sstart;
22: Initialize();
23: ComputeShortestPath();
24: while (sstart 6= sgoal) do
25: /* if (g(sstart =∞) then there is no known path */
26: sstart =arg mins′∈succ(sstart)(c(sstart, s

′) + g(s′));
27: Move to sstart;
28: Scan graph for changes in edge costs;
29: if any edge costs changed then
30: km = km + h(slast, sstart);
31: slast = sstart;
32: for all directed edges (u; v) with changed edge costs do
33: Update the edge cost c(u; v);
34: UpdateVertex(u);
35: ComputeShortestPath();

Figure 4.2: D* Lite algorithm

4.4 Sampling-Based algorithms 29

We exploit this property by changing ComputeShortestPath() as fol-
lows: After ComputeShortestPath() has removed a vertex u with the
smallest key kold = U.TopKey() from the priority queue {12}, it now uses
CalcKey() to compute the key that it should have had. If kold < CalcKey(u)
then it reinserts the removed vertex with the key calculated by CalcKey()
into the priority queue {13-14}. Thus, it remains true that the keys of
all vertices in the priority queue are lower bounds on the correspond-
ing keys of the first version of D* Lite after the first components of the
keys of the first version of D* Lite have been increased by the current
value of km. If kold ≤ CalcKey(u), then it holds that kold = CalcKey(u)
since kold was a lower bound on the value returned by CalcKey(). In this
case, ComputeShortestPath() performs the same operations for vertex u
as ComputeShortestPath() of the first version of D* Lite.

4.4 Sampling-Based algorithms

When sampling the continuous world to discretisize it, there are two typ-
ical approaches: Input sampling and output sampling. We will look at an
example of each case, but first we need to look at some of the pros and
cons of each approach:

Input sampling is done by sampling the available inputs of the system,
and then calculating the corresponding outputs given a certain timestep.
One of the benefits of this approach is that calculating the outputs is sim-
ply a matter of integrating a system model. If different inputs over some
timesteps result in outputs that are nearly identical and the workspace
contains a local minimum for the search algorithm, we run the risk of
creating an infinite amount of nodes in a small area around the local mini-
mum. In section 4.4.3, we will see examples of this, as well as one approach
to avoid the problem.

Output sampling is done by sampling the outputs of the system, and
calculate the inputs required to get from one sample to the next. As
[22] points out, there are two primary disadvantages to using output (i.e.,
configuration space) sampling, a common approach in robotics. The first
limitation lies within the vertex (sample) selection method, where the al-
gorithm must determine the most ideal vertex to expand. This selection
is typically made based on the proximity of vertices in the graph to a
sampled output point, and involves a potentially costly nearest neighbor
search. The local planning method (generating a path between two states)
presents the second, and perhaps more troublesome problem, which is de-
termining an input that connects a newly sampled node to the current

30 4 PATH PLANNING

node. This problem is essentially a two-point boundary value problem
(BVP) that connects one output or state to another. There is no guaran-
tee that such an input exists. Also, for systems with complex dynamics,
the search itself can be computationally expensive, which leads to a com-
putationally inefficient planner.

4.4.1 Sampling techniques: Halton points

When sampling a space, we want to choose samples randomly, but at the
same time the purpose is to cover the space such that the samples are
uniformly distributed and minimizes gaps and clusters. Choosing samples
truly randomly (or even pseudo-randomly) for a limited set of samples,
will always run the risk of creating clusters of samples with gaps between
them.

A Halton sequence[23] is a quasi-random number sequence that ap-
pears random, but has the added benefit of maintaining good uniformity.
Figure 4.3 shows a set of coordinates generated by the Matlab twister pseu-
dorandom number generator (4.3a), and by the Halton sequence (4.3b).
The Voronoi diagrams2 for the points are drawn to better visualize the
distribution of the points. As seen in the figures, the area of the regions
in (b) are more even than those in (a), clearly suggesting that the coor-
dinates generated by the Halton sequence are more uniformly distributed
than those generated by the ordinary randomized method in Matlab[24].

4.4.2 Output Sampling: A* assisted Rapidly-expanding Random Tree (RRT)

The Rapidly-Exploring Random Tree method (RRT), was introduced by
LaValle in 1998[25]. It is a well known motion planning method that can
plan a path while taking the dynamics of the vehicle into account. As a
randomized method, the RRT can explore a space of possible solutions
several orders of magnitude faster than a complete method. The solution
provided by the RRT is sub-optimal, but will in most cases prove sufficient.

Several different papers have proposed different methods of biasing the
randomization with the intention of guiding the search and improving run-
time, for instance [26]. The following example, developed in [24], utilizes
A* heuristics in order to increase the density of samples in areas likely to
contain the optimal path.

2For a set of points S in a plane, the Voronoi diagram is a partition of the plane
associating a region V (p) with each point p ∈ S. The regions are set up so that all
points in a region V (p) are closer to p than any other point in S

4.4 Sampling-Based algorithms 31

(a)

(b)

Figure 4.3: The set of coordinates generated by the Matlab twister pseu-
dorandom number generator (a), and by the Halton sequence (b)[24].

32 4 PATH PLANNING

The RRT algorithm
The RRT method will as its name indicates, generate a tree structure

during its execution. This tree starts at the state of our vehicle, and
iteration after iteration explores larger portions of the configuration space
C of the vehicle. An important property of the RRT method is that it
not only plans the workspace-coordinates of our vehicle, but all its states,
i.e., coordinates, heading and velocities. The result is a path through the
C-space of the vehicle, or more specifically the admissible part of the C-
space, namely Cfree. If a path has been generated by the RRT method,
we thus know it is a feasible path, at least if no changes have occurred in
the environment after the path was generated.

The RRT algorithm is relatively simple to implement. Given the initial
state of our vehicle xinit and a requested goal configuration xgoal, we get
the algorithm in figure 4.4.

1: T ← TREE({xinit, 0})
2: if CAN CONNECT(xinit, xgoal) then
3: T ← {CONNECT STATE(),CONNECT INPUT()} as child of xinit

4: goal found
5: for k ← 1 . . . N do {The main loop}
6: mc = CANDIDATE MILESTONE()
7: if mc ∈ Cfree then
8: xnear = NEAREST NEIGHBOUR(mc, T)
9: if CAN CONNECT(xnear,mc) then

10: u← CONNECT INPUT()
11: xnext ← CONNECT STATE()
12: T ← {xnext, u} as child of xnear
13: if CAN CONNECT(xnext, xgoal) then
14: T ← {CONNECT STATE(),CONNECT INPUT()} child of

xnext
15: goal found
16: if goal found then
17: return cheapest path from xinit to xgoal in T
18: else
19: return cheapest path from xinit taking us closest to xgoal

Figure 4.4: Rapidly-Exploring Random Tree (RRT) algorithm

The concept of milestones is the heart of the algorithm. At each it-
eration, a candidate milestone mc is chosen. It represents a potentially

4.4 Sampling-Based algorithms 33

unexplored configuration of the controlled vehicle, for instance an unvisited
location in the environment. The algorithm then tries to predict whether
it can get the vehicle to mc from any of the configurations previously
explored, i.e. the configurations currently in the tree. If the algorithm
manages to do this, the candidate is added to the tree as an explored
milestone/node. An attempt is then made to connect this new node to
the goal configuration xgoal.

CAN CONNECT(x,mc) is the function that does most of the work. It
uses a local motion planner to try to connect the vehicle state/configuration
x with the new candidate milestone mc. For the local planner, a compro-
mise has to be made between its accuracy and computational complexity.
An accurate planner will more often be able to connect x with mc, while a
fast planner will be able to make more attempts with different candidate
milestones in the same amount of time.

A vehicle state is connected to a milestone by integrating the ve-
hicle from x while applying a series of inputs u. If the vehicle comes
within a predefined distance of mc within a given time and without ex-
iting Cfree, then the connection was successful, and the function returns
true. CONNECT INPUT() can later be called to get the series of inputs
u that made this possible, and CONNECT STATE() can be called to get
the final state, which by definition must be in the vicinity of mc.

CANDIDATE MILESTONE() returns a random state vector within
the state space of our vehicle. There are many ways of generating these
random states, and the way they are generated can have a serious impact
on the performance of the algorithm. Using a uniform distribution makes
sure all parts of Cfree are explored, while selecting a distribution biased
towards a smaller area may speed up the algorithm signficantly.

NEAREST NEIGHBOUR(m, T) returns the node in T whose state
vector is closest to the milestone m by some metric. Using the Euclidean
distance metric is common since it ensures that the algorithm tries to
connect nodes that are geometrically close, creating a short path through
Cfree.

N is the maximum number of times to run the algorithm. Logic can
be implemented to end the algorithm prematurely if a satisfying path to
xgoal has been found.

The RRT method is not complete. Even though a solution to the
planning problem exists, it cannot be guaranteed that the algorithm will
find one in a limited time interval. This is however not as catastrophic
as it might sound. The most obvious solution to the problem is to re-use
the previously-generated path, which will likely still be valid. Another

34 4 PATH PLANNING

way to solve the problem is to use one of the partial solutions existing in
T . All of these branches are feasible, even though they don’t end up at
the goal. By selecting a branch that makes progress towards the goal, the
vehicle has something to do until the completion of the next iteration of
the algorithm.

The milestone generator

At the heart of the RRT algorithm is the random state generator.
Represented by the function CANDIDATE MILESTONE() in figure 4.4,
it is responsible for generating candidate milestones, or states, which the
local planner of the RRT algorithm then tries to reach.

The distribution of the candidate milestones, and especially their spa-
tial coordinates, can have a serious impact on the performance of the
algorithm. It has been claimed that the distribution given by the Halton
sequence in section 4.4.1 gives better results than ordinary randomized and
biased distributions. The reason for this is probably that the near-uniform
distribution allows the algorithm to quickly explore the entire search space
before creating major branches impeding path optimality.

When trying to find a route through an environment, the search space
for the RRT algorithm can often be very large. Using only the Halton
generator, equal attention is paid to all parts of the search space. This
is good because it allows the algorithm to find alternative and difficult
routes through the environment, but it also has a downside. As the allowed
computation time is limited, the uniform distribution often leads to less
optimal paths since the attention of the algorithm is scattered over the
entire search space.

What if we could direct the attention of the algorithm towards the
area most likely to hold the most optimal path? The algorithm would
then spend more time in this area, and perhaps come up with a better
solution to the path planning problem.

As seen in [27], the A* algorithm (a non-incremental version predeces-
sor of the LPA* algorithm presented in section 4.3.1) consistently found
more optimal paths through the environment than the RRT algorithm.
The idea here is that the optimal path through the environment probably
lies around the route generated by the A* algorithm, although this can-
not be guaranteed since the A* algorithm disregards the dynamics of the
vehicle. We need to direct the attention of the RRT algorithm towards
this route, and this can easily be accomplished by increasing the density
of candidate milestones along the A* route.

Before each run of the RRT algorithm, the A* algorithm is run to find

4.4 Sampling-Based algorithms 35

the A* path through the environment. This generates a set of coordinates
a1, a2, · · · , aN where a ∈ R2. A milestone taken from the A* route is now
generated as follows: [

X
Y

]
= aq +R · s, (4.5)

where q ∈ {1, 2, · · · , N} and s ∈ {x ∈ R2| ‖x‖1 ≤ R} are randomly chosen.
This strategy will produce candidate milestones in close vicinity to

the A* optimal path, but we also want the rest of the search space to be
explored. Every time a candidate milestone is requested by the algorithm,
the CANDIDATE MILESTONE() function has to determine whether to
respond with a candidate generated by the Halton sequence or one chosen
along the A* route. In this implementation, the choice is done by chance:

generator =

{
Halton, if X > f

A∗, if X ≤ f ,
(4.6)

where X ∈ [0, 1〉 is randomly chosen. This means that an A* milestone
is generated with a probability of f . If for instance f = 0.1, an A*
milestone will be generated 10% of the time on average. Care has to
be taken when choosing a value for f , as too high a value will prohibit
exploration of the rest of the search space, possibly resulting in no path
being found. Choosing f too small however, reduces the effect of the A*
assistance to the algorithm. An example is shown in figure 4.5.

(a) Without A* assistance (b) With A* assistance

Figure 4.5: The distribution of RRT candidate milestones[24].

36 4 PATH PLANNING

4.4.3 Input Sampling: Sampling Based Model Predictive Control

SBMPC is a method presented in [22] that can address Nonlinear Model
Prepictive Control (NMPC) problems. It effectively reduces the problem
size of MPC by sampling the inputs of the system. The method also
replaces the traditional MPC optimization phase with LPA* (see section
4.3.1) that can replan quickly (i.e. it is incremental). The objective is to
determine a sequence of control inputs that cause the system to achieve a
given set point while solving the optimization problem.

SBMPC optimization differs from the typical application of A* in that
the nodes are configurations in the output space and an edge is the con-
trol input that links two output nodes. SBMPC retains the computational
efficiency and has the convergence properties of LPA*[19] under two con-
ditions:

1. The graph must be constructed such that a finite number of vertices
exists within a finite state space

2. The implicit state grid (this will be defined shortly) must represent
the full state space and not simply the states used in the planning
objective

At the same time, SPMPC avoids some of the computational bot-
tlenecks associated with sampling-based motion planners. In particular,
the Local Planning Method (generating a path between two nodes) of
sampling-based motion planners is simplified from what is effectively a
two-point boundary value problem by sampling in the input space and
integrating to determine the next output node. Although most sampling-
based planners use proximity to a random or heuristically biased point as
their vertex selection method, the proposed method bases the vertex selec-
tion on an A* criterion. This involves computing the cost to the node and
an optimistic (i.e., lower bound) prediction of the cost from the node to
the goal; this eliminates the need for a potentially costly nearest neighbor
search while promoting advancement towards the goal.

The Implicit State Grid

Although extension of several of the existing sampling-based paradigms
can lead to input sampling algorithms like SBMPC [17], input sampling
has not been used in most planning research. This is most likely due to the
fact that input sampling is seen as being inefficient because it can result
in highly dense samples in the configuration space since input sampling

4.4 Sampling-Based algorithms 37

does not inherently lead to a uniformly discretized state space, such as a
uniform grid.

This problem is especially evident when encountering a local minimum
problem associated with the A* algorithm, which can occur when planning
in the presence of a large obstacle while the goal is on the other side of
the obstacle. This situation is considered in depth for discretized 2D path
planning in the work of [28], which discusses that the A* algorithm must
explore all the states in the neighborhood of the local minimum, shown as
the shaded region of figure 4.6a, before progressing to the final solution.
The issue that this presents to input sampling methods is that the number
of states within the local minimum is infinite because of the lack of a
discretized state space.

(a) (b)

Figure 4.6: Illustration of the necessity of an implicit state grid[22].

The secondary effect resulting from the nature of input sampling as
well as the lack of a grid, is that the likelihood of two states being identi-
cal is extremely small. All A*-like algorithms utilize Bellman’s optimality
principle to improve the path to a particular state by updating the paths
through that state when a lower cost alternative is found. This feature is
essential to the proper functioning of the algorithm and requires a mech-
anism to identify when states are close enough to be considered the same.
The scenario presented in figure 4.6b is a situation for which the lack of
this mechanism would generate an inefficient path. In this situation, ver-
tex v1 is selected for expansion after which the lowest cost vertex is v3.
The implicit state grid then recognizes that v2 and v3 are close enough to
be considered the same and updates the path to their grid cell to be path
c since c < a+ b.

The concept of an implicit state grid is introduced as a solution to both
of these problems. The implicit grid ensures that the graph generated by
the SBMPC algorithm is constructed such that only one active state ex-

38 4 PATH PLANNING

ists in each grid cell, therefore limiting the number of vertices that can
exist within any finite region of the state space. It also allows for the effi-
cient storage of potentially infinite grids by only storing the grid cells that
contain vertices, which is increasingly important for higher dimensional
problems. The resolution of the grid is a significant factor in determining
the performance of the algorithm with more fine grids in general requir-
ing more computation time, due to the increased number of states, with
the benefit being a more optimal solution. The resolution therefore is a
useful tool that enables SBMPC to effectively make the trade off between
solution quality and computational performance. However, it must be
stated that increasing the resolution significantly beyond the accuracy of
the prediction could result in the generation of infeasible solutions.

The algorithm
SBMPC operates on a dynamic directed graph G which is a set of

all vertices and edges currently in the graph.succ(v) denotes the set of
successors (children) of vertex v ∈ G while pred(v) denotes the set of all
predecessors (parents) of vertex v ∈ G. The cost of moving from vertex
v to vertex v′ ∈ succ(v) is denoted by c(v; v′), where 0 < c(v; v′) < ∞.
The optimization component of SBMPC is called Sampling-Based Model
Predictive Optimization (SBMPO) and is an algorithm that determines
the shortest path from a given start vertex vstart ∈ G and a given goal
vertex vgoal ∈ G. SBMPO uses heuristics along with the start distance
estimates to rank the OPEN list, a priority queue containing the locally
inconsistent vertices and thus all the vertices that need to be updated in
order to make them locally consistent.

As we can see in figure 4.7, the Main() and SBMPO() procedures are
essentially the same as the LPA* algorithm in section 4.3.1, the difference
being that LPA* works with a predefined graph, while SBMPC builds
its own graph simultaneously. The main algorithm follows the general
structure of MPC where SBMPO repeatedly computes the shortest path
between the current state xcurrent and the goal state xgoal. After a single
path is generated xcurrent is updated to reflect the implementation of the
first computer control input and the graph G is updated to reflect any
system changes.

4.4 Sampling-Based algorithms 39

procedure SBMPO()

1: while (OPEN.TopKey() <vgoal.key or vgoal.rhs 6= vgoal.g do
2: vbest ⇐ OPEN.TopKey()
3: Generate Neighbours(vbest, B)
4: if vbest.g > vbest.rhs then
5: vbest.g = vbest.rhs
6: for all s ∈ succ(vbest) do
7: Update the vertex, s
8: else
9: vbest ⇐∞

10: for all s ∈ succ(vbest) ∪ vbest do
11: Update the vertex, s

procedure Generate Neighbours (Vertex v, Branching B)

1: for i=0 to B do
2: Generate sampled input,u ∈ Ru ∩Ufree

3: for t = t1 : dtinteg : t2 do
4: Evaluate model: x(t) = f(v.x, u)
5: if x(t) /∈ Xfree(t) then
6: Break and jump to next iteration of i
7: xnew = x(t2)
8: if xnew ∈ STATE GRID and xnew ∈ Xfree then
9: Add Edge(v.x, xnew) to graph, G

10: else if xnew ∈ Xfree then
11: Add V ertex(xnew) to graph, G
12: Add Edge(v.x, xnew) to graph, G

procedure Main()

1: xcurrent ⇐ start
2: repeat
3: SBMPO()
4: Update system state, xcurrent
5: Update graph, g
6: until the goal state is achieved

Figure 4.7: Sampling-Based MPC algorithm

40 4 PATH PLANNING

The neighbour generation method generates a set of pseudorandom
samples in the input space that are then used to predict a set of paths to a
new set of states with the xcurrent being the initial condition. The branch-
ing factor B, determines the number of paths that will be generated. The
path is represented by a sequence of states x(t) for t = t1, t1 + ∆t, · · · , t2,
where ∆t is the model step size. The set of states that do not violate
any state or obstacle constraints is called Xfree. If x(t) ∈ Xfree then the
new vertex xnew and the connecting edge can be added to the graph. If
xnew ∈ STATE GRID then the vertex currently exists in the graph and
only the new path to get to the existing vertex needs to be added.

One of the downfalls of SBMPC is that it uses a nonstandard opti-
mization method. Therefore, it is not likely that SBMPC can be easily
implemented using readily available optimization tools and involves a great
deal of programming effort.

41

5 The optimization problem

After reviewing the litterature presented in section 4, it was decided to
base the path planning module in section 7 on the SBMPO algorithm
from section 4.4.3. The calculation time of the algorithm is not a primary
factor in the efficiency, the only demand being that it is fast enough that
the vehicle does not have to stop and wait for the algorithm to finish.
This, combined with the number of dimensions discourages a combina-
torial approach. The reason for choosing the SBMPO-algorithm for the
path planning module was primarily the very positive results in [29] with
regards to planning of energy efficient paths. The use of input sampling
rather than the more common output sampling was deemed an interesting
area of research. The use of a state grid to control the amount of nodes
generated, supposedly eliminating the drawback of input sampling, also
made it seem like a more viable option than output sampling, since output
sampling would include some costly search procedures. [29] also proposed
numerous extensions which seemed interesting to explore.

Before we can run our algorithm to find the optimal path, we first need
to define what we want to optimize. The primary goal for the tilesetting
robot will be to work as efficiently as possible. A contractor using the
system wants the job done as quickly as possible while still maintaining
the necessary quality. Being able to do the job quicker than the competing
contractors will not only allow them to ask a higher price for the service,
but also decrease the number of working hours they need to pay their
workers for the given job, thus further increasing their profit margin.

There are two major factors in the path choice that affects the efficiency
of the robot. The most obvious factor is of course how quickly it can
get from A to B. But because the robot will be battery powered, energy
consumption may also become a critical factor. As will be shown in section
5.3.1, sharp turns are far more energy consuming than smooth curves for a
skid-steered platform. If the robot constantly needs to recharge or switch
the depleted batteries for fresh ones, the time saved by making many sharp
turns is lost, and the performance of the system declines.

5.1 Optimization with respect to distance(Shortest path)

The most common optimization goal in path planning is probably to find
the shortest path. In the case of the tilesetting robot, the traveling distance
in itself is not really interesting. This optimization criterium is primarily
discussed in this thesis because it is such a standard optimization goal,

42 5 THE OPTIMIZATION PROBLEM

and serves as a benchmark with which to compare the other two criteria.

In order to implement Shortest Path in the SBMPO-algorithm from
section 4.4.3, the cost of the arcs needs to be defined as their length, and
the heuristic function is defined as the straight line distance from the node
to the goal:

cost(arc) = Darc, heuristic(node) = Dnode→goal (5.1)

5.2 Optimization with respect to time(Quickest path)

When assuming constant speed like in [29], optimizing with respect to
time and optimizing with respect to distance are identical. When adding
the option of variable speed however, differences emerge.

In order to implement Quickest Path in the SBMPO-algorithm from
section 4.4.3, the cost of the arcs needs to be defined as the time taken to
traverse them, and the heuristic function is defined as the time it takes to
drive the straight line distance from the node to the goal at top speed.

cost(arc) = tarc, heuristic(node) = tnode→goal (5.2)

5.3 Optimization with respect to energy consumption(Easiest path)

[29] showed the benefit of running an optimization based on energy con-
sumption. While highly beneficial, this criterium is somewhat more com-
plicated to implement, and it requires some more information about the
system.

In [29], Easiest Path was implemented in the SBMPO-algorithm by
defining the cost of the arcs as the energy required to traverse them, and
the heuristic function as the energy it takes to drive the straight line
distance from the node to the goal:

cost(arc) = P (r, v)tarc, heuristic(node) = P (∞, v)tnode→goal (5.3)

where P (r, v) is the power it takes to drive in a curve with radius r and
speed v. We will derive an expression for this function in section 5.3.1

This heuristic was found to be a large underestimate of the actual cost
of traveling from the given node to the goal, due to the high amount of
energy required to change the orientation of the vehicle. In addition to the
heuristic function in [29], we therefore add an extra term to the heuristic
function, corresponding to the energy it would require to turn the vehicle
to face the goal directly while standing still:

5.3 Optimization with respect to energy consumption(Easiest path) 43

cost(arc) = P (r, v)tarc, heuristic(node) = P (∞, v)tnode→goal+W (θ̃) (5.4)

where θ̃ is the angle between the orientation of the current node and
the straight line between the node and the goal, and W (θ) is the energy
required to turn-in-place for an angle θ.

In order to implent this optimization criterium, we need to define a
power model for the robot.

5.3.1 Defining a power model

Following some of the same procedure as [30], we first derive a function
for the power consumption assuming pure rolling. This assumption can
be reasonably applied to an Ackermann steered vehicle or a differentially
steered vehicle, which have some wheels that are passive and used for
balancing. However, this assumption is invalid for skid steered vehicles.
The results of this analysis are used as an intermediate step in the analysis
of power consumption for skid steered vehicles in curved motion.

Figure 5.1: Representation of wheeled skid-steering vehicle force/torque
and moment of turning resistance during curving[30].

As shown in figure 5.1, consider a skid-steered wheeled vehicle moving
in circular motion of radius r about point G with a linear velocity v and an
angular velocity of ω on a flat surface. In figure 5.1, as in section 3, COM
denotes the geometric center of the vehicle, 2c is the width of the vehicle,
Fi and Fo denote respectively the force of the inner and outer wheels, Rx
denotes the force caused by rolling resistance, and Mr denotes the moment

44 5 THE OPTIMIZATION PROBLEM

of resistance that under the assumption of pure rolling is purely due to the
longitudinal resistances. It follows that under constant linear and angular
velocity

Rx = Fo + Fi = Factive (5.5)

Mr = c(F0 − Fi) = Mactive (5.6)

where Factive and Mactive are the active longitudinal force and angular
torque developed by the wheels, respectively. Using the formula for in-
stantaneous power

P = Factivev +Mactiveω

and recognizing that ω = v/r, we see that the power consumption is the
function of r and v given by

P (r, v) = α(r)v (5.7)

where

α(r) = (Fo + Fi) +
c(F0 − Fi)

r
= Rx +

Mr

r
(5.8)

Equations (5.7) and (5.8) show that, as would be expected, the effect
of the moment of turning resistance decreases as the turning radius r
increases. It should be noted that mass transfer during curving is not
considered in the analysis since the vehicle is assumed to be moving at
low speed.

The motion power consumption described by equation (5.7) was de-
rived under the assumption of pure rolling and hence does not capture the
effects of skidding. Now, we assume that the actual power consumption is
given by

P (r, v) = α(r)v + β(r) (5.9)

where from equation (5.8) it is assumed that if r2 > r1, then α(r2) < α(r1),
and the term β(r) has been added to take into account the power loss due
to skidding.

In order to determine α(r) and β(r), a large number of simulations
were run on the simulator described in section 7. In these simulations,
the path planning block was replaced by a block generating a path with
a fixed linear velocity vd and a fixed turning radius rd. The simulation
was set to run for 50 seconds, and the power consumption was recorded as
the average of the last 30 seconds, in order to avoid any large influence of
transient spikes. This basic experiment was performed for all combinations
of vd and rd in the sets {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,

5.3 Optimization with respect to energy consumption(Easiest path) 45

Figure 5.2: α(r) as obtained through simulation (blue), analytical analysis
(red) and regression (green)

1.3, 1.4} m/s and {5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 100, 200, 300, 400, 500,
1000, 10000, ∞} m.

Analytically, we would expect α(r) to be the same as in equation (5.8),
but when comparing the blue (simulation) and red (analytical solution)
curves in figure 5.2, we clearly see a difference, although the shape of the
curve is similar. If we assume that the function has the same form, only
with different values forRx andMr, and run the matlab regression function
polyfit on the curve, we get the values Rx = 24.7442 and Mr = 586.818,
shown in figure 5.2 by the green curve. The value for Rx is reasonably
close to the correct value of 25.3, whereas the Mr-value is quite far from

46 5 THE OPTIMIZATION PROBLEM

the correct 700.

The reason for this difference is assumed to lie in the shortcomings of
the controller, as pointed out in [2]. The model does not drive in a smooth
curve, but rather in a series of short straight lines, which may cause an
artificially lower power value. Nevertheless, the goal of this power model
is to describe the behaviour of our simulated system, and the results of
polyfit is deemed to be the most accurate description of the currently
implemented system with controller.

For the energy function in equation (5.4) for turning-in-place, we define
the following:

W (θ) = Mrθ (5.10)

where Mr is the value found through regression.

Figure 5.3: β(r) as obtained through simulation.

In [30], β(r) displayed the same steadily decaying characteristics as
α(r) and was negligible for straight line motion. From figure 5.3, it is quite
clear that this is not the case for our system. Once again, this is likely due
to the weaknesses of the implemented tracking controller. When travelling
in a straight line, the vehicle turns back and forth across the designated

5.3 Optimization with respect to energy consumption(Easiest path) 47

trajectory, causing it to consume more energy. The controller struggles
more with this at lower speeds, up to the point where 0.1 m/s actually
had to be omitted from the experiment set, because the simulator simply
failed to run the full 50 seconds.

While it naturally would have been better to work with a more ideal
controller, the time it would take to find and implement a new controller
seems inappropriate when the performance of the controller is not a pri-
mary goal of this thesis. The controller works reasonably well and the
β(r)-function describes the power behaviour satisfactorily. Since no con-
tinuous function to accurately describe β(r) could be found, it was decided
to interpolate it using the values found in the simulation with the matlab
function interp1.

Figure 5.4: Power consumption for different speeds with respect to turning
radius. Each curve represents a speed ranging from 1.4 m/s for the upper
line to 0.1 m/s for the lower line in 0.1 m/s increments.

Figures 5.4 and 5.5 display the behaviour of our final power model.
We clearly see that the cost of sharp turns are far higher than for gentler
curves. As a result of the peculiar behaviour of the β(r)-function, some
sharper turns (r ≈ 11) will be more energy efficient than gentler turns,
particularly at low speeds. At speeds over 0.6 m/s, this effect is over-

48 5 THE OPTIMIZATION PROBLEM

shadowed by the larger α(r)v term, making the power curve a steadily
decreasing function with respect to turning radius. Since the simulations
in section 9 use speeds ranging from 1.0 to 1.4 m/s, this effect will not
have an impact on these simulations.

It should be noted that these power curves will be highly dependant
on the friction properties between the wheels and the surface. The simu-
lations used to derive this power model assumed rubber tires and concrete
floor. Other combinations will naturally have different friction properties,
resulting in different power models. The general shape of the power model,
with power consumption increasing exponentially with decreasing turning
radius, will remain the same.

Figure 5.5: Power consumption with respect to curvature and speed

49

6 MATLAB implementation of the SBMPO-algorithm

In the conclusion of section 4.4.3, it was mentioned that implementation
of the algorithm would involve a great deal of programming effort. In an
attempt to lighten the required programming effort and make the code
more readable and intuitive, it was decided to implement the algorithm in
MATLAB. This choice was also made for compatibility reasons, since the
simulator described in section 7.2 was already implemented in SIMULINK.
The use of MEX-files (MATLAB EXecutable C/C++ code) was consid-
ered to boost speed, but simplicity and readability was deemed more im-
portant than computation speed.

Choosing a high-level programming language like MATLAB over lower-
level languages like for instance C++, will obviously have a massive impact
on the runtime of the algorithm. [31] shows a comparison of MATLAB ver-
sus C++ runtime, where C++ consistently achieved runtimes of approxi-
mately 1/500th that of MATLAB. Obviously, this means we will abandon
any hope of making an online path planner in this implementation.

No previous implementations of SBMPO could be found in any avail-
able programming language. While MATLAB offers many large and use-
ful libraries and tools, they unfortunately do not cover all the needs of
the SBMPO algorithm either, and as a result, all necessary classes and
functions had to be implemented from scratch. While the pseudo code in
figure 4.7 is only 29 lines long, the need to implement custom built libraries
caused the final MATLAB code to exceed 1000 lines of code. Granted, this
number could probably have been significantly reduced by removing func-
tions needed for debugging and plotting, and sacrificing some readability
for a lower number of lines. Again, the need for visual demonstrations and
simple, intuitive code was deemed more important.

In this section, the structure and functionality of the implementation
will be explained, along with some of the modifications that had to be
developed to make the algorithm work satisfactorily.

6.1 The structure of the path planner

6.1.1 The classes

At the heart of the implementation are the four classes shown in figure
6.1. All of them are derived from the handle superclass, so each instance
of a class is a pointer to an object containing the attributes. This means a
single object can be stored in several arrays without demanding memory
space for more than one object.

50 6 MATLAB IMPLEMENTATION

Figure 6.1: Class diagram of the MATLAB implementation

The Node and Arc classes are the basis classes. In addition to variables
concerning the states in a node and on an arc, each arc contains a pointer
to its start and end node, while each node contains an array of all the arcs
leading to it and one array for all arcs leaving from it.

The Graph class is the main class, containing an array of all the arcs
and an array of all the nodes in the graph, a State Grid to avoid infinite
density of nodes, and an OPEN Heap to prioritize the locally inconsistent
nodes (node.g 6= node.rhs).

The StateGrid of the graph is a 4D array (corresponding to the four
states X, Y, theta and v of the nodes). Each cell of the array represents

6.1 The structure of the path planner 51

an interval in position, angle and speed. If there is a node in this interval,
the cell contains the nodenumber of the node in the interval, otherwise
the cell contains 0 indicating an empty interval.

The Heap class is an array implementation of a binary min heap that
sorts the nodes in it according to the key variable. The heap structure is
ideal for priority queues, since it remains sorted while inserting or removing
a node has a runtime3 of only O(log n).

6.1.2 The functions

In addition to multiple smaller functions, there are 5 major functions
that are implemented either as separate functions or as part of one of
the classes: sbmpo alg(Graph), generate neighbours(Graph, Node),
get path(Graph), translate path([Arc], Node) and path planner(time,
state).

Both sbmpo alg and generate neighbours is implemented accord-
ing to the pseudocode in figure 4.7, with a few tweaks that will be outlined
in the following subsections.

get path traverses the graph by starting at the goal, always choosing
the arc to the predecessor node that minimizes (node.g + arc.cost), until
the start node is reached. The output of the function is an array of the
arcs that compose the optimal path.

The controller presented in section 3.1 takes input in the form of zdes =
[X+d0 cos θ, Y +d0 sin θ]T and its derivatives. It was decided to translate
the array of arcs from get path into zdes in two steps, with the intention
of making it easier to switch to a better controller with a different input
at a later stage.

The first step is translate path, which converts an arc into a 5-by-
N array containing [X,Y, θ, v, ω]T for each timestep of the arc (with N
being the number of timesteps in an arc). This function also performs a
smoothing of the output, as will be further explained in section 6.4.

The second step is path planner, which is the function being called
by the SIMULINK model presented in section 7. This function takes
as its input the time and state of the model, along with the array of
arcs from get path. It keeps an array of [X,Y, θ, v, ω]T -values which it
updates every time it reaches the end of an arc using translate path,
and translates the appropriate [X,Y, θ, v, ω]T -values into an 1-by-8 vector

3Big O notation (O(f(n))) defines an upper limit for a function. If an algorithm has
a runtime of T (n) = O(f(n)), this means that T (n) ≤ C · f(n) holds for some constant
C.

52 6 MATLAB IMPLEMENTATION

of zdes and its first, second and third derivatives.

6.2 The simplified model of the vehicle

In order to use the sampled input of the system to generate the output
nodes in the configuration space, we need a mathematical model for the
system. The model derived in section 3 is quite extensive and requires a lot
of calculation, primarily because we need to consider the effects of friction.
If we were to use the complete model in the path planning algorithm, the
algorithm would end up with a runtime far too high to be of any use.
Therefore, we need to define a much simpler model.

As demonstrated in [2], the implemented Simulink model with con-
troller is able to follow a trajectory given the the input of longitudinal
speed and angular speed. This means we can make a simple model with
inputs [vx, ω], and outputs [X,Y, θ]. The simplest and most intuitive model
is probably the one derived by the euler method:

X(t2) = X(t1) + vx∆t cos θ(t1)

Y (t2) = Y (t1) + vx∆t sin θ(t1)

θ(t2) = θ(t1) + ω∆t

(6.1)

where t2 = t1 + ∆t. While this model is very simple, there are some
accuracy issues: The red line in figure 6.2 represents a path with vx = 1
and ω = 0.3. While this is a sharper turn than the path planner is intended
to allow, it is used to demonstrate the weakness of the model in equation
(6.1) (represented by the blue line) as it makes the flaw so obvious. The
accuracy is directly tied to the size of the timestep ∆t.

Since the model is intended for use in creating arcs with a fixed vx and
ω, we can exploit the fact that we know the arcs will be part of a circle
with radius r = vx

ω . As demonstrated in figure 6.2, the model in equation
(6.1) finds the next point in the iteration using a tangent to the curve with
length v∆t, and immediately diverges from the correct curve.

If we instead use a chord of the curve (represented by the green lines),
we can make the accuracy of the model independent of the timestep ∆t.
This would allow us to choose the timestep ∆t solely based on how often
we wish to check for obstacles, and not how accurately we want the output
to correspond to the given input.

For a circular sector with radius r = vx
ω and central angle θ̃ = ω∆t, we

have

chordlength = 2r sin
θ̃

2
= 2

vx
ω

sin
ω∆t

2
, ∀ω 6= 0 (6.2)

6.2 The simplified model of the vehicle 53

Figure 6.2: Accuracy of different simple models for the vehicle

In the case of ω = 0, the chordlength reduces to vx∆t. The angle of the
chord line can be found by taking the average of the vehicle orientation
θ before and after the chord. Combining this, we arrive at the following
model:

X(t2) = X(t1) + 2
vx
ω

sin
ω∆t

2
cos

θ(t1) + θ(t2)

2

Y (t2) = Y (t1) + 2
vx
ω

sin
ω∆t

2
sin

θ(t1) + θ(t2)

2
θ(t2) = θ(t1) + ω∆t

(6.3)

54 6 MATLAB IMPLEMENTATION

6.3 Sampling the input

To avoid generating paths that the full system is unable to follow without
using excessive amounts of power, we put the following restrictions on the
inputs of the model in (6.3):

vx ∈ [vx0 − ax, vx0 + ax]

ω ∈
[
− vx
rmin

,
vx
rmin

]
⇐⇒ r ∈ [rmin,∞)

(6.4)

where vx0 is the speed at the start node, with ax = 0.2 and rmin = 5
chosen after some experimentation with the simulator.

To limit the amount of reachable speed states, it was decided that the
speed input vx would only take three values when expanding a vertex:
maximum acceleration (vx0 + ax), maximum decelleration (vx0 − ax), and
no acceleration (vx0).

Since moving in a straight line is by far the least energy demanding, it is
natural to assume that straight lines will be part of the optimal path. Also,
for a vehicle with a constraint on the turning radius, Dubins demonstrated
in [32] that the shortest path will be made up of arcs with maximum
curvature and/or straight line segments. So for each longitudinal speed,
a set of B angular speeds were sampled using a halton set (B being the
branching factor), and in addition it was decided to add the two angular
speeds corresponding to maximum turning in each diriection as well as
ω = 0 for moving in a straight line.

6.4 Smoothing the output

The vehicle controller presented in section 3.1 and implemented in section
7 is designed to track a smooth trajectory. As a result of the necessary
introduction of the state grid (see sections 4.4.3 and 6.1), there is a high
chance that there will be discontinuities between some of the arcs that
make up the computed optimal path. What happens is that the end of
one arc is close enough to the startingpoint of the next arc to be considered
the same in the state grid, and the algorithm considers this point to have
been reached, although this might not be the case. The risk for this
behaviour increases if the number of nodes and arcs is high. Naturally,
the coarser the resolution of the state grid, the larger the discontinuities.
Also, because of the choice of [vx, ω] as constants on the arcs, they will
have step changes between arcs.

While these discontinuities don’t have a large impact on the final dis-
tance travelled and the time it takes, the impact on the energy consump-

6.4 Smoothing the output 55

tion is massive. The first simulations of an optimal path with respect to
energy consumption, revealed the actual energy consumption to be over
300% of the estimated consumption in some cases. The cause of this is of
course that a sudden step in position error causes the controller to com-
mand a large power surge to correct the error. The sudden changes in vx
and ω also cause some violent spikes in the motor torque.

It would have been preferable to have modified the controller to handle
this, but due to time constraints it was decided to smooth the output of
the SBMPO-algorithm instead.

To smooth the discontinuities, we want the error between the endpoint
of an arc and the startpoint of the next arc to be distibuted over the
entire arc. To do this, we will derive two smoothing functions f1, f2 :
{1, . . . , n, . . . , N} → [0, 1] that are to be multiplied with the errors in the
following scheme:

Xsmooth(n) = X(n) +Xerrorf1(n)

Ysmooth(n) = Y (n) + Yerrorf1(n)

θsmooth(n) = θ(n) + θerrorf1(n)

vsmooth(n) = v(n) + verrorf2(n)

ωsmooth(n) = ω(n) + ωerrorf2(n)

(6.5)

where n is the number of the timestep and N is the total number of
timesteps. This approach is not ideal, and will yield some outputs that are
conflict with each other (for instance changes in θ that don’t correspond
to the value of ω and vice versa), but the performance improvement of
the controller with this approach over the unsmoothed output makes it a
viable option.

We want the f1-function to be as smooth as possible, with no abrupt
changes. The requirements of this function, in addition to being continu-
ously differentiable, can be summarised as follows:

f1(0) = 0

f ′1(0) = 0

f1(N) = 1

f ′1(N) = 0

(6.6)

where the first two expressions ensure the start of the arc does not make
any abrupt changes to position and orientation, and the last two expression
ensure the same for the end of the arc. One function that meets these
criterea is

f1(n) = −2
(n
N

)3
+ 3

(n
N

)2
(6.7)

56 6 MATLAB IMPLEMENTATION

which is shown in blue in figure 6.3.

The speeds should ideally stay the same for the entire arc, but to avoid
spikes in the motor torque the acceleration needs to be distributed to a
certain degree. In our case, we choose to implement a constant accellera-
tion in the final 0.05 seconds of a 1 second arc, as shown in green in figure
6.3.

Figure 6.3: Output smoothing functions for X,Y, θ (blue) and vx, ω
(green).

6.5 Obstacle and goal handling

How we choose to handle the regions around the obstacles and the goal
can have a major impact on the performance of the algorithm. In the
following paragraphs, we will present an approach to require a minimum
of calculation.

6.5.1 The configuration space of the vehicle

The mobile platform has three degrees of freedom, resulting in a configu-
ration space C ∈ R3. In order to simplify the obstacle handling, we will
approximate the configuration space by collapsing the vehicle orientation
in C, resulting in C ∈ R2. In essence, we now consider the vehicle to be a
circle centered in the origin of the vehicle with a large enough radius to
cover the entire vehicle.

6.5 Obstacle and goal handling 57

This approximation does come with a few tradeoffs: In stead of a
roughly rectangular vehicle measuring 110 by 85 centimeters, we now have
a circular vehicle measuring approximately 135 centimeters in diameter.
This will obviously mean that while the platform could easily drive through
a meter wide gap, the path planning algorithm will consider it to be too
tight. Since the tilesetting system is intended to be working in a large
open space with relatively few obstacles, this does not seem like a severe
disadvantage. The platform will also not be able to get as close to the
position to be tiled since the tiling glue will be defined as an obstacle.
The robotic manipulator should be able to compensate for this, but this
obviously needs to be assesed when the type, range and placement of the
robotic manipulator are to be decided.

On the plus side, the added distance required will create a buffer,
reducing the risk of minor collisions due to inaccuracies.

In MATLAB, the configuration space is implemented by adding the
radius of the vehicle to the obstacles, so in stead of considering a vehicle
with radius 67.5 cm and obstacles with radius 50 cm, the algorithm con-
siders the vehicle to be a point and the obstacles to have a radius of 117.5
cm.

6.5.2 Obstacle handling

If we look back to the Generate Neighbours function of the SBMPO algo-
rithm in figure 4.7, we see that the obstacle check in line 5 (x(t) /∈ Xfree(t))
is inside a double for loop, so the function will be called frequently, and
optimizing it will be essential in improving the runtime of the algorithm.

In section 6.5.1, we made some simplifications to the configuration
space. The most important with respect to obstacle handling is that we
decided that the vehicle center of mass need to be at least a specific dis-
tance from the center of any obstacle to be in Cfree. Finding the specific
euclidian distance4 requires a potentially costly square root operation,
but we can avoid the squareroot entirely using a simple trick: Instead of
comparing the actual distance to the required minimum distance, we can
compare the square of the actual distance to the square of the required
minimum distance. The relation is the same, and we avoid having to use
the sqrt function.

We can reduce the computational load further by reducing the number
of obstacles we consider the distance to. As we start expanding a node
using the Generate Neighbours, we already know that the obstacles that

4d =
√

∆x2 + ∆y2

58 6 MATLAB IMPLEMENTATION

are too far away to collide with after driving straight towards it at full
speed for the time length of one arc, will not be reached at any point
between the nodes either, and can therefore be ignored in this running of
Generate Neighbours.

Another opportunity to reduce the computations even further is the
case where no obstacles are within collidable distance. In this case, we
can skip the obstacle test entirely, and because of the accuracy properties
of the model in equation (6.3), we can even skip the intermediate points
between nodes and just calculate the state of the new node directly by
simply exchanging ∆t with the time length of an entire arc.

6.5.3 Goal handling

Since the arcs have a certain length, it is possible that a node expansion
close to the goal node would create an arc going through the goal node,
but overshooting it. In [29] this was solved by expanding the goal node to
a larger goal region. We wish to be able to travel to a specific position, so
we therefore use a different approach:

If the node picked for expanding is close enough in distance to the goal
node that it should be able to reach it within a single arc, a new method
Calculate Goal Arc is called instead of Generate Neighbours. This func-
tion calculates the distance and turning radius required to reach the goal
node using equation (6.3), and if the turning radius is large enough to be
admissible creates an arc for each admissible speed, and then performs the
same tests as Generate Neighbours on the arcs.

Note that this implementation does not require the vehicle to reach the
goal with a specific orientation. This is proposed as one of the possible
extensions in section 12.

59

7 Simulation

In this section, a simulator of a mobile platform model with a tracking
controller is presented. The simulator is implemented in SIMULINK, and
was built from scratch and thoroughly tested in [2], using the equations
of motion derived in section 3.

7.1 Specification

Before implementing the system in SIMULINK, some considerations need
to be made, and the input parameters need to be chosen.

7.1.1 Assumptions and simplifications in the modelling

Further assumptions have been made in addition to the ones already cov-
ered in section 3:

• The platform and robot arm is modeled as a single cuboid with the
measurements 84.2×110.5×53.3 cm, weight 109+28.9=137.9 kg and
uniform density.

• The robot is assumed to be carrying 80 tiles, each measuring 30 ×
30 cm, weighing 1.5 kg each and being stacked exactly above the
vehicles’ center of mass.

• The friction between the wheels and surface is assumed to be uni-
form, with reasonable values selected from [33]. The friction will
be implemented using the Karnopp model described in [14], with a
combination of deadzone, gain and saturation blocks.

The specifications[34] unfortunately do not offer the maximum torque
of the wheel motors on platform, only the maximum payload of 181 kg and
that the platform has an ability to turn-in-place. Based on equations (3.5)
and (3.6), with µ = 0.8 and fr = 0.01, this gives an absolute minimum
differential torque (|τ1 − τ2|) of 737 Nm. A reasonable assumption based
on these numbers would have been τi ∈ [−400, 400].

If the torque output of the controller exceeds the maximum torque of
the wheel motors, saturation will add a nonlinear effect to the system. If
a controller’s output is saturated and the controller contains an integral
effect, we may experience the integral windup effect, where integral terms
accumulate excessive error when the outputs are limited.

60 7 SIMULATION

It has not been possible to procure any definite numbers for maximum
torque, and the proposed controller from section 3.1 does not employ any
anti-windup strategies. Because of this, it has been decided not to im-
plement saturation of the torques in the simulator itself, but rather leave
them unconstrained and instead comment on the validity of the outputs.

7.1.2 Model parameters

The implemented model is the one derived in section 3. The model pa-
rameters are shown in table 2. The values for the vehicle are based mostly
on the numbers of the Segway RMP400 (the predecessor of the RMP440
LE discussed in section 3.2), since the full specifications found in table 1
unfortunately were not made available until after all the simulations had
been run and documented.

Description variable Value

Mass of platform[34] and arm[35] m 0 137.9 kg
Moment of inertia of platform and arm I g 22.1427 kgm2

Weight per tile tile weight 1.5 kg
Distance in x between COM and wheels a,b 0.3456 m
Distance in y between COM and wheels c 0.2859 m
Radius of wheel R wheel 0.265 m
Deadzone in friction model delta v 1 cm/s
Coefficient of sliding friction mu 0.8
Coefficient of rolling resistance f r 0.01
Gravitational accelleration g 9.81

Acceleration error gain k a 10
Velocity error gain k v 65
Position error gain k p 97.5
x-position of ICR d 0 0.18

Table 2: Model parameters used in SIMULINK

7.1.3 Simulation parameters

The system is simulated with SIMULINK using the Bogacki-Shampine
ode3 fixed-step solver with step size 0.001, and a runtime of 50 seconds.

7.2 Simulator structure 61

7.2 Simulator structure

The overall structure of the simulator is presented in figure 7.1. The
path planner-function described in section 6.1 is implemented in the
interpreted matlab function block. All relevant values are stored in MAT-
LAB using the ”To Workspace”-blocks, and then plotted using a script.
The vector q is the same as in section 3, q = (X,Y, θ), with q dot and
q ddot representing its derivative and second derivative, respectively. The
z d vect variable is a collection of the desired smooth reference trajectory
variables with 1st-3rd order derivatives, and can be summarized as follows:

zd =

[
zd1
zd2

]
, zdi =


zdi
żdi
z̈di...
z di


Figure 7.2 shows the implementation of the Skid-steered mobile plat-

form using equation (3.6). The mass calc-block takes the number of tiles
as an input, and adds the mass and moment of inertia of the stack of tiles
to the total mass and moment of inertia of the platform to construct the
necessary M−1-matrix.

The c func-block in figure 7.2 is further elaborated in figure 7.3. The
find eta-block calculates the vehicle-frame velocities from the general co-
ordinates. The three blocks representing the friction forces and moment
(R x, F y and M r) are implemented from equations (3.3)-(3.5).

In figure 7.4, we see the contents of the R x-block (the F y- and M r-
blocks also contain a similar structure). Note that where Caracciolo et
al.[10] used a regular sign-block, we have a modsgn-block instead (details
in figure 7.5). This is implemented with a switch in order to easily toggle
between the two modes, with mode 1 being the standard sign-block, and
mode 2 being the gain/saturation strategy discussed in section 3.

Combined with the gain/saturation strategy, we also need a dead-
zone on the velocity of the vehicle. Since this needs to be implemented
on the vehicle-frame velocities, the ”Optional Deadzone w.rotation”-block
has been constructed (see figure 7.6). This block transforms the fixed-
reference-frame velocitites to vehicle-frame velocities, implements the dead-
zone, and then transforms the velocities back to the fixed-reference-frame.
Like the modsgn-block, the implemented deadzone (figure 7.7 has been
implemented with a switch in order to easily toggle between a model with
or without a deadzone on the vehicle-frame velocities.

In figure 7.8, we see the implementation of the controller from 3.1.

62 7 SIMULATION

Equation (3.13) is implemented in ”Partially linearizing static feedback”,
equation (3.19) in ”Linearizing dynamic feedback”, and equation (3.21) in
”Linear stabilization for tracking”. The Z vect-block calculates the lin-
earizing outputs z (see equation (3.15)) along with its first and second
derivatives, and sends them on the form zvi = (zi, żi, z̈i)

7.2 Simulator structure 63

Figure 7.1: The complete implemented system

64 7 SIMULATION

Figure 7.2: The implementation of the skid-steered model

Figure 7.3: The c func-block from figure 7.2

7.2 Simulator structure 65

Figure 7.4: The R x-block from figure 7.3

Figure 7.5: Implementation of the modified sign function discussed in
section 3

Figure 7.6: The”Optional Deadzone w.rotation”-block from figure 7.2.

66 7 SIMULATION

Figure 7.7: The”Optional Deadzone”-block from figure 7.6.

7.2 Simulator structure 67

Figure 7.8: The implementation of the controller

68 7 SIMULATION

7.2.1 Prepared functionality for future work

The model has been implemented with the intention of expanding it to
a simulation of the entire system described in section 2.1.1. In the full
simulation, the robot’s mass and moment of inertia will be varying de-
pending on the number of tiles it is currently carrying. Presently it is
merely simulated as being loaded with a constant number of tiles at all
times.

69

8 Defining the test cases

All of the chosen test cases start at position (X,Y) = (1, 1) with ori-
entation θ = 0 and speed v = 1m/s. They also end at the same goal,
(X,Y) = (25, 15), with no demands on speed and orientation.

8.1 Test parameters

For each case, we will be looking at the performance of our three optimiza-
tion criteria: Time, distance and energy consumption. Naturally, we need
to consider both the quality of the chosen paths and the computational
time required to find them.

There are also several tuning factors implemented in the SBMPO-
algorithm (step-length, number of steps per arc, branching factor, and the
resolution of the Implicit State Grid.

While originally not intended as a tuning parameter, altering the min-
imum turning radius of the vehicle turned out to yield very interesting
results for the time (and distance) optimization. The optimizations with
respect to time or distance tend to choose very sharp turns in order to cor-
rect the orientation quickly. If we look back to figure 5.4, we see that the
power consumption is very high for sharp turns. The power consumption
decreases very rapidly with increasing turning radius for small radii, but
for radii above 11 meters, the decrease is much less significant. An extra
optimization method based on time with an increased minimum turning
radius of 11 meters is therefore added, since it is assumed this could give
good results both with respect to time and energy consumption.

8.2 Case 1: No obstacles

We include this trivial case, merely to prove the algorithm actually works,
and to use as a basis for placing the obstacles in the subsequent cases.

8.3 Case 2: Simple cluster of obstacles

This case contains 3 obstacles blocking the ideal path in case 1, creating
a large obstacle/local minimum for the cost function. How well the al-
gorithm copes with such local minima is crucial to avoid excessively high
computational runtimes.

70 8 DEFINING THE TEST CASES

Figure 8.1: A simple cluster of obstacles

8.4 Case 3: Complex cluster of obstacles

This case contains a larger collection of obstacles chosen so as to resemble
the obstacle set used in [29], in order to confirm their findings for fixed
speed operation, and investigate how the addition of variable speed affects
these findings. This case is specifically designed to contain a shortest
path with several sharp turns, which will cause high power consumption.
This will therefore demonstrate the fundamental differences of the different
optimization criteria.

8.4 Case 3: Complex cluster of obstacles 71

Figure 8.2: A more complex cluster of obstacles

72 8 DEFINING THE TEST CASES

73

9 Simulation results

All of the simulations in this section were done using SIMULINK, the
model described in section 7 and the path planner described in section 6.

In the case of no obstacles, both the arcs and the nodes of the graph
are plotted, to display the entire graph. In the more complicated cases, the
arcs are omitted, simply because the amount of nodes and arcs is so high
that adding the arcs only increases file size without adding any relevant
information.

When using variable speed, the speeds are restricted to the set {1.0, 1.2, 1.4}
m/s. The reason for this is simply to get the simulations to terminate
within reasonable time. The time-based algorithm can handle larger sets
of possible speeds, because the algorithm naturally will be biased towards
choosing the nodes with higher speeds for expanding, since these will lead
to the goal in shorter time. The algorithms for distance and energy don’t
have the same incentive to prefer one speed over the other, and therefore
end up expanding many unnecessary nodes. Initial tests suggested that
each added speed-option doubled the number of nodes in the final graph,
even though the added speed-options did not appear in the final computed
path.

The number of nodes is very closely related to the algorithm runtime.
As mentioned in section 6.1, the priority queue of the algorithm is imple-
mented as a min heap. From the properties of a min heap, we can expect
a runtime of O(n log n) for n insertions. In addition, every time a nodes
priority key changes, we can expect a runtime of O(log n) for the updat-
ing of the queue. A very rough estimate based on the initial tests with
the energy optimization algorithm would indicate a runtime of O(n2) (the
runtime is also likely to be affected by the number of arcs), so controlling
the amount of nodes being created is crucial. To avoid the algorithm run-
ning infinitly, a breakoff criteria of a maximum of 20,000 nodes was added
to the SBMPO-procedure.

Unless specifically stated otherwise for the separate subcases, the tun-
ing parameters of the algorithm are as presented in table 3.

Due to the SBMPO-algorithm being based on randomizing of the in-
puts, some runs of the algorithms might get lucky and find a very good
path, while other runs might get unlucky and end up with a considerably
worse path. To avoid chance having a too large effect on the results, all
cases that terminated within reasonable time were run multiple times.

All tables display the average parameter values of at least three runs,
while all figures display the path that was deemed most representative of

74 9 SIMULATION RESULTS

Tuning parameter Value

Branching factor B 6

Steps per arc 8

Total arc length [s] 2

State grid position gridsize [m] 0.1

State grid angle gridsize [degrees] 10

Table 3: Algorithm tuning parameters

the runs (closest to the average). When viewing the graphs, keep in mind
that in this representation, the obstacle circles represent the necessary
distance to the center of the vehicle, meaning the paths are allowed to
come arbitrarily close to the obstacle circles.

9.1 Case 1: No obstacles (variable speed)

Already in the case of no obstacles we start to see some characteristic
differences between the different optimization schemes. The time scheme
has an incentive to choose the nodes with the highest speeds, and as a
result, ends up with much fewer nodes and significantly lower computation
time than the other two schemes.

As we would expect, the time and distance schemes both compute the
shortest path, the time scheme computes the lowest vehicle runtime, and
the energy scheme gives the lowest estimated energy consumption.

However, when running the computed paths in the simulator, the ac-
tual energy consumption tells a very different story. While the distance
and time schemes have an energy consumption of ∼110% of the estimate,
the energy scheme ends up consuming 133% of the estimate.

While the actual consumption being higher than the estimate can be
attributed to the issues with the controller and the output smoothing
discussed in section 6.4, the fact that the energy scheme has a much worse
ratio of actual to estimated energy consumption (from here on referred to
as the estimate ratio) is very interesting. In this case it is so bad that the
energy scheme actually gives the poorest performance of all the algorithms
in terms of actual energy consumption. In figure 9.3 and 9.4, we also see
that the path seems to angle a bit back and forth, while the paths of
the other schemes seem to move in straighter lines. This would indicate
that the resolution of the angle part of the state grid is to low, but while
this seemed to improve the estimate ratio, increasing this resolution led
to such an increase in the amount of nodes that it was decided to keep

9.1 Case 1: No obstacles (variable speed) 75

the grid size at 10 degrees. The energy scheme’s apparent tendency to
choose paths with discontinuities in the orientation of the vehicle will be
discussed further in section 10.

Figure 9.1: The graph for finding the Shortest path(blue) and the path
itself(red).

76 9 SIMULATION RESULTS

Figure 9.2: The graph for finding the Quickest path(blue) and the path
itself(red).

Figure 9.3: The graph for finding the Easiest path(blue) and the path
itself(red).

9.1 Case 1: No obstacles (variable speed) 77

Figure 9.4: Comparison of Shortest (red), Quickest (green) and Easiest
path (blue).

hhhhhhhhhhhhhhhhhhParameters

Optimization scheme
Distance Time Energy

Distance travelled [m] 27.93 27.93 28.15

Vehicle runtime [s] 23.91 20.24 21.46

Estimated energy consumption [J] 1506 1439 1257

Actual energy consumption [J] 1669 1544 1673

Actual/Estimated ratio 111% 107% 133%

Number of nodes 1166 238 4572

Number of arcs 2140 302 8441

Algorithm runtime [s] 8.79 0.598 105.26

Table 4: Comparison of the optimization schemes with no obstacles

78 9 SIMULATION RESULTS

9.2 Case 2: Simple set of obstacles

9.2.1 Constant speed=1.0 m/s

Since the speed is constant, optimizing with respect to time or distance
reduces to the same problem. The table values for time therefore apply
to optimizing with respect to distance as well. The constant speed also
cause the nodes to cluster together in lines, since all the arcs will have the
same length.

In figure 9.8, we see that the paths found by the energy and time(rmin =
11 m) schemes take a very similar route. If we look at table 5 instead,
we see that the energy scheme gives a path that is approximately 10%
more energy efficient than time(rmin = 11 m) and 33% more efficient than
time(rmin = 5 m) in this case.

As algorithm runtimes, time(rmin = 11 m) is clearly faster than the
other two.

Figure 9.5: The Shortest path for simple obstacle set with constant speed
and rmin = 5 m.

9.2 Case 2: Simple set of obstacles 79

Figure 9.6: The Easiest path for simple obstacle set with constant speed.

Figure 9.7: The Shortest path for simple obstacle set with constant speed
and rmin = 11 m.

80 9 SIMULATION RESULTS

Figure 9.8: Comparison of the paths of the optimization schemes with
simple obstacleset and constant speed. Blue=energy, green=time(rmin =
5 m), red=time(rmin = 11 m).

hhhhhhhhhhhhhhhhhhParameters

Optimization scheme Time
(rmin = 5)

Time
(rmin = 11)

Energy

Distance travelled [m] 28.56 29.04 29.24

Vehicle runtime [s] 28.50 28.98 29.27

Estimated energy consumption [J] 2314 1759 1498

Actual energy consumption [J] 2470 1822 1655

Actual/Estimated ratio 107% 104% 110%

Number of nodes 2422 669 3095

Number of arcs 5347 2365 5722

Algorithm runtime [s] 47.15 8.39 61.14

Table 5: Comparison of the optimization schemes with simple obstacles
and constant speed=1 m/s.

9.2 Case 2: Simple set of obstacles 81

9.2.2 Speed=1.0-1.4 m/s

With variable speed enabled, we once again see a massive difference in
number of nodes created and subsequent computation times in table 6.
Both of the time schemes terminate in less than 100 seconds, while the
distance and energy schemes need over 10 times as long.

We see that the time(rmin = 11 m) and energy schemes choose to
drive on the right side of the obstacles, and have much better energy
efficience (>25%) than the schemes choosing the left side. The energy
scheme has an estimated path that is ∼12% more energy efficient than the
time(rmin = 11 m) scheme, but due to the aforementioned bad estimate
ratio of the energy scheme, the actual energy consumption is actually ∼8%
lower for the time scheme than for the energy scheme. As for the driving
time, this is naturally lower for the time scheme, by almost 15%.

Figure 9.9: The Shortest path for simple obstacle set with variable speed.

82 9 SIMULATION RESULTS

Figure 9.10: The Quickest path for simple obstacle set with variable speed
and rmin = 5 m.

Figure 9.11: The Easiest path for simple obstacle set with variable speed.

9.2 Case 2: Simple set of obstacles 83

Figure 9.12: The Quickest path for simple obstacle set with variable speed
and rmin = 11 m.

XXXXXXXXXXXPar.
Opt. scheme

Distance
Time

(rmin = 5)
Time

(rmin = 11)
Energy

Distance travelled [m] 28.44 28.51 28.99 29.09

Vehicle runtime [s] 22.81 20.64 20.96 24.50

Est. energy cons. [J] 2189 2359 1526 1349

Act. energy cons. [J] 2468 2569 1683 1827

Actual/Estimated ratio 113% 109% 110% 135%

Number of nodes 11261 3909 1918 13774

Number of arcs 41516 6295 5350 23106

Algorithm runtime [s] 2773 79.01 37.00 1315

Table 6: Comparison of the optimization schemes with simple obstacles
and speed 1.0-1.4 m/s

84 9 SIMULATION RESULTS

Figure 9.13: Comparison of the paths of the optimization schemes with
simple obstacle set and variable speed. Blue=energy, green=time(rmin = 5
m), red=time(rmin = 11 m), cyan=distance.

9.3 Case 3: Complex cluster of obstacles 85

9.3 Case 3: Complex cluster of obstacles

9.3.1 Constant speed=1.0 m/s

Once again, the table values for time apply to optimizing with respect to
distance as well, since the speed is constant. All in all, the differences
between the algorithms display the same behaviour as in the constant
speed case with a simpler obstacle set in section 9.2.1.

The main point of this case was to compare it to the findings of [29],
and if we compare the energy scheme with the time(rmin = 5 m) scheme
in table 7, we see a very similar behaviour:

The distance/time algorithm has a much longer computational time
than the energy algorithm. If we compare figure 9.14 to figure 9.15, we see
that while the energy scheme only searches the outer path, the distance
scheme searches both the inner path and a large part of the outer path.
The inner path is also obviously more comlex.

Just like in [29], we also see that the energy scheme computes a some-
what longer path that demands considerably less energy. In fact the dif-
ference in our case is even more extreme: In [29], a 6.48% increase in
distance led to a 34.6% decrease in energy consumption, while in our cor-
responding case, a 3% increase in distance led to a 58% decrease in energy
consumption.

When comparing to the time(rmin = 11 m) scheme instead, we see that
the difference is far less pronounced, with a difference in estimated energy
consumption of ∼12% and a difference in actual energy consumption of
less than 5%. The computational time of time(rmin = 11 m) is even faster
than for the energy scheme.

86 9 SIMULATION RESULTS

Figure 9.14: The Quickest path for complex obstacle set with constant
speed and rmin = 5 m.

Figure 9.15: The Easiest path for complex obstacle set with constant
speed.

9.3 Case 3: Complex cluster of obstacles 87

Figure 9.16: The Quickest path for complex obstacle set with constant
speed and rmin = 11 m.

hhhhhhhhhhhhhhhhhhParameters

Optimization scheme Time
(rmin = 5)

Time
(rmin = 11)

Energy

Distance travelled [m] 29.40 29.73 30.25

Vehicle runtime [s] 29.45 29.61 30.27

Estimated energy consumption [J] 4131 1880 1658

Actual energy consumption [J] 4564 2026 1932

Actual/Estimated ratio 110% 108% 117%

Number of nodes 12505 2193 7255

Number of arcs 35070 8900 16653

Algorithm runtime [s] 2080 101.7 462.3

Table 7: Comparison of the optimization schemes with complex obstacles
and constant speed=1 m/s.

88 9 SIMULATION RESULTS

Figure 9.17: Comparison of the paths of the optimization schemes
with complex obstacle set and constant speed. Blue=energy,
green=time(rmin = 5 m), red=time(rmin = 11 m).

9.3 Case 3: Complex cluster of obstacles 89

9.3.2 Speed=1.0-1.4 m/s, gridsize=0.2 m

The gridsize for position had to be increased to 0.2 m for the energy opti-
mization to terminate within reasonable time. Even with this decrease in
resolution, the distance optimization did not terminate within reasonable
time. Since it has already been established in the previous cases that the
distance optimizations behave like the time optimizations, only with longer
algorithm runtimes, the distance optimization is omitted in the remaining
subcases.

Again, we recognize the same relationships between the optimization
schemes as in the previous variable-speed cases. The energy scheme has an
estimated path that is∼18% more energy efficient than the time(rmin = 11
m) scheme, but due to the now even worse estimate ratio of the energy
scheme, the actual energy consumption is ∼2.5% lower with the time
scheme than with the energy scheme. The driving time for the time scheme
is once again almost 15% lower than the energy scheme, and the compu-
tational time is much faster.

Figure 9.18: The Quickest path for complex obstacle set with variable
speed, gridsize=0.2 m and rmin = 5 m.

90 9 SIMULATION RESULTS

Figure 9.19: The Easiest path for complex obstacle set with variable speed
and gridsize=0.2 m.

Figure 9.20: The Quickest path for complex obstacle set with variable
speed, gridsize=0.2 m and rmin = 11 m.

9.3 Case 3: Complex cluster of obstacles 91

Figure 9.21: Comparison of the paths of the optimization schemes with
complex obstacle set variable speed and gridsize=0.2m. Blue=energy,
green=time(rmin = 5 m), red=time(rmin = 11 m).

hhhhhhhhhhhhhhhhhhParameters

Optimization scheme Time
(rmin = 5)

Time
(rmin = 11)

Energy

Distance travelled [m] 29.45 29.93 29.84

Vehicle runtime [s] 21.30 21.59 25.16

Estimated energy consumption [J] 4050 1767 1447

Actual energy consumption [J] 4352 2040 2092

Actual/Estimated ratio 107% 115% 145%

Number of nodes 9790 3915 16579

Number of arcs 28470 20228 61341

Algorithm runtime [s] 1370 587.8 6995

Table 8: Comparison of the optimization schemes with complex obstacles,
speed 1.0-1.4 m/s and gridsize 0.2m.

92 9 SIMULATION RESULTS

9.3.3 Speed=1.0-1.4 m/s, gridsize=0.1 m

Optimizing with respect to time could still terminate with the original
resolution, and is therefore presented here in order to compare it to the
corresponding values with lower grid resolution.

While we do see some minor improvements in the performance of the
paths, the nodecount and algorithm runtime basically doubles, indicating
that the increased resolution may not be worthwhile.

Figure 9.22: The Quickest path for complex obstacle set with variable
speed, gridsize=0.1 m and rmin = 5 m.

9.3 Case 3: Complex cluster of obstacles 93

Figure 9.23: The Quickest path for complex obstacle set with variable
speed, gridsize=0.1 m and rmin = 11 m.

hhhhhhhhhhhhhhhhhhParameters

Optimization scheme Time
(rmin = 5)

Time
(rmin = 11)

Distance travelled [m] 29.15 29.67

Vehicle runtime [s] 21.08 21.42

Estimated energy consumption [J] 3947 1797

Actual energy consumption [J] 4312 2018

Actual/Estimated ratio 109% 112%

Number of nodes 16108 7635

Number of arcs 33236 31708

Algorithm runtime [s] 2562 1393

Table 9: Comparison of the optimization schemes with complex obstacles,
speed 1.0-1.4 m/s and gridsize 0.1 m.

94 9 SIMULATION RESULTS

Figure 9.24: Comparison of the paths of the optimization schemes with
complex obstacle set variable speed and gridsize=0.1m. Blue=time(rmin =
5 m), green=time(rmin = 11 m).

95

10 Discussion

The original task received from nLink AS was very open and without any
particular guidelines on what would be an optimal path, which approach
should be used to find it, and how quickly it needed to be computed. As
a result of this, the main purpose of this report became to gather relevant
information, test different approaches, and review which approaches that
seem worth to look further into.

10.1 Choice and implementation of the path planning algorithm

The positive results achieved in [29] was the primary reason for choosing
the SBMPO-algorithm. While the simulations in section 9 do confirm
these findings, they also demonstrate some weaknesses to the approach,
particularly with respect to excessive node generation.

10.1.1 Implementing the SBMPO-algorithm

The programming effort required to implement the SBMPO-algorithm
proved to be much more monumental than anticipated. The 29 lines of
pseudocode became 1000 lines of MATLAB code before the algorithm was
operational.

Implementing the algorithm in MATLAB as opposed to a lower-level
language like C++ came with both pros and cons. In the development
phase, the familiarity of the MATLAB language, the useful function li-
braries and the instant SIMULINK compatibility made the daunting pro-
gramming task somewhat more manageable.

In the testing phase, however, the slow performance of the MATLAB-
implemented algorithm made testing with many different parameter mod-
ifications a very time consuming task. Any hope of testing with dynamic
obstacles was also eradicated. Of course, the initial planning of the graph
will take longer time than the subsequent replannings, but the performance
of the MATLAB-implementation is still far too slow.

10.1.2 Controller performance

From [2], it was already known that the implemented controller of the
SIMULINK model was far from perfect. Unfortunately, the requirement
of a smooth trajectory had not been considered when deciding to keep
working with this controller.

96 10 DISCUSSION

The results of the simulation clearly shows that the controller is unable
to achieve the energy efficiency the algorithms estimate, particularly in
the case of energy optimization. How much of this difference in energy
consumption can be attributed to the controller using more power than
necessary, and how much can be attributed to the algorithm giving an
underestimate of the true cost, is uncertain, but both definitely hav an
effect.

One possible addition to the energy cost function that should be con-
sidered is the cost of accelleration. In the current implementation, the
algorithm assumes that the vehicle instantly changes speed and angular
velocity from one arc to the next without any cost. Obviously, with a
large, heavy robot, this is not the case, and adding a term corresponding
to overcoming the moment of inertia might improve the estimates.

Adding this estimate for the change in speed should be trivial with the
current implementation, sinve the start speed of a node is part of the state
of the node. However, for the change in angular velocity it might require
adding the initial angular velocity to the state of the node, which would
lead to an extra dimension in the state grid, causing even more nodes,
which is not a desired outcome.

10.2 Comparison of the optimization schemes

We have been looking at four different optimization schemes: Distance,
time(rmin = 5 m), time(rmin = 11 m) and energy.

10.2.1 The findings of Collins et.al.[29]

As mentioned before, the positive results achieved in [29] was a major
factor in choosing the SBMPO-algorithm for the path planner, so naturally
we would hope to replicate the results of this paper.

There are several differences in the approaches, notably the choice of
programming language and simplified model of the vehicle. One difference
that should be noted is the change in the heuristic function: [29] only used
the cost of travelling in a straight line to the goal as the heuristic. When
attempting to use this heuristic function with the setup in this paper, the
algorithm would not reach the goal even in the case with no obstacle.
The algorithm was unwilling to try nodes with any significant change in
orientation, and ended up considering only the nodes more or less straight
in front of it.

A possible reason why this was not an issue in the original article, may
be the increased speed in this thesis. With a speed of 1.0 m/s as opposed

10.2 Comparison of the optimization schemes 97

to 0.2 in [29], the α term of the power model in equation (5.9) becomes
much more prominent, making turns much more costly. Adding the extra
term for changing the orientation to face the direction of the goal caused
the algorithm to behave as desired.

10.2.2 Energy vs Time with limited turning radius

The distance scheme, only included for comparison purposes, was shown
to both have far too high computation times for variable speed and use
excessive amounts of energy. We can therefore immediately exclude this
scheme as an area of interest.

The unrestricted time scheme (rmin = 5 m) does have far more reason-
able computation times, however, it too uses excessive amounts of energy,
particularly in the case in section 9.3.

This leaves us with the time(rmin = 11 m) and energy schemes.

It seems that the energy algorithm is prone to choose paths with many
discontinuities. This might be because the cost of moving in a straight line
is so much lower than turning, that the algorithm chooses a path that has
many straight lines and exploits the discontinuities caused by the state
grid to turn, rather than choosing arcs that actually turn. This will cause
an artificially low estimate of the energy cost of a path.

The excessive amount of nodes and high computational times of the
energy scheme demonstrate its inability to handle variable speed in the
current implementation. If the energy scheme is to be implemented as
a variable speed planner, some way of biasing nodes with higher speeds
needs to be implemented. One approach might be to have a combined
time-and-energy scheme where the start distance g and the heuristic h are
both a weighted sum of the start distances and heuristics of the time and
energy schemes. This scheme should in theory give a tunable compromise
between speed and efficiency.

The time(rmin = 11 m) scheme does seem to present itself as a very
reasonable alternative with good computation time, low driving time, and
very reasonable energy efficiency. The major drawback is that the self-
imposed limitation on the turning radius may cause the algorithm to not
find a path if the only possible route demands a sharp turn. If this scheme
is to be used, some form of exception routine needs to be defined, so that
the robot may use sharper turns if the obstacles require it.

Another possibility for a modification of the time scheme is to have
a maximum power limit instead of a minimum radius limit. This would
allow the vehicle to perform sharper turns if it slows down first. This

98 10 DISCUSSION

would probably not save much energy compared to making the turns at
full speed, since the vehicle would take a longer time to make the turn.
But since the scheme optimizes with respect to time, the arcs with lower
speeds and sharp turns should only be chosen when all full-speed options
fail. This will obviously require some testing and verification, but should
not be too difficult to implement when the main algorithm is already
implemented.

Since the primary objective of the system is to work as fast as possible,
time is our primary concern and energy consumption is only interesting
with regards to the extra downtime the charging or switching of batter-
ies will cause. The battery capacity, the charging time and the energy
demands of the rest of the system are all factors that will need to be
determined before deciding how much the energy efficiency of the path
should count.

Also, it is apparent that the structure of the obstacle set has a large
impact on how the different optimization schemes perform. The obstacles
in [29] and subsequently this thesis are designed to favor the energy algo-
rithm. Some other sets that are more randomized, or preferably illustrate
actual cases that the robot is likely to encounter, should be tested with
the different schemes before deciding on which scheme to implement.

10.3 Choosing a different algorithm

The SBMPO-algorithm in its currently implemented form does not seem
like it is ideal for the given task. It requires substantial modifications if it
is to handle dynamic obstacles.

10.3.1 Possible modification: D* Lite

Switching the LPA* part of the SBMPO-algorithm with a D*-Lite ap-
proach should make replanning much simpler and less time consuming.

10.3.2 Completely different approach?

After seeing how good the time scheme with limited turning radius per-
formed compared to the energy scheme, one can not help but wonder if the
SBMPO-algorithm is a bit overkill for this task. When the project is to
be implemented in a prototype, the entire algorithm will have to be imple-
mented in a different programming language. Wether the performance of
the SBMPO-algorithm is good enough to warrant the large programming

10.3 Choosing a different algorithm 99

effort required to implement it, will have to be assessed, and looking into
some simpler algorithms might be a good use of time.

100 10 DISCUSSION

101

11 Conclusion

This project has described a concept for a tilesetting robot currently under
development. A mathematical model of a 4-wheel skid-steered vehicle has
been presented, along with several different path planning algorithms.

A complete simulator of the model of the skid-steered vehicle has been
constructed in SIMULINK with a Sampling-Based Model Predictive Op-
timization algorithm for path planning. A series of simulations has com-
pared the performance of the algorithm with different optimization crite-
ria: Distance, time and energy.

Optimization with respect to energy consumption does present som
very promising results, particularly for fixed-speed operation. However,
the current implementation is clearly unable to handle varying speed.
With variable speed, the method generates an excessive amount of nodes,
with a correspondingly high computation time.

The optimization strategy that performed the best was based on time
with a lower limit on the turning radius. This path planning scheme
produced paths that were fast, reasonably energy efficient and had by far
the fastest computation times. It does have some drawbacks, since it has
a higher risk of not finding a feasible path if sharp turns are required.

From this, we conclude that the ideal path planning strategy needs
to incorporate elements from both time optimalization and the energy
optimalization. Possible candidates include a time optimalization with a
maximum limit on power consumption, and an optimalization based on a
weighted compromise between time and energy consumption.

102 11 CONCLUSION

103

12 Further work

Even though the SBMPO-algorithm with limited turning radius and opti-
mization with respect to time has been shown to be able to plan fast and
efficient paths for the vehicle with good computational runtimes, some
modifications need to be made and tested. The most obvious is the need
to use a faster programming language than MATLAB, but the already im-
plemented MATLAB code might be useful for some initial testing. Some
of the possible modifications include:

1. Improving the model and controller by building on the work of [11].

2. Rewrite the time optimization to utilize a maximum power limit
rather than a minimum radius limit.

3. Combine the time and energy optimization to an optimization scheme
that could result in both low computational time and energy efficient
paths.

4. Switching the LPA* part of the SBMPO-algorithm to instead use
the D*-Lite algorithm from section 4.3.2, which would simplify fast
replanning for dynamic obstacles.

5. Adding a criteria for the final orientation. A simple solution for this
is to add three virtual obstacles surrounding the goal: If the vehicle
is to face north, virtual obstacles to the north, east and west would
ensure the final path approaches from the south.

6. Replacing the SBMPO-algorithm with a simpler algorithm, while
maintaining the principle of avoiding sharp turns in order to increase
energy efficiency.

When the system is nearing the prototyping stage, it might be a good
idea to add an online estimator for the power consumption for different
turning radii and speeds. Thus, the system would be able to continually
update the power lookup tables and improve the accuracy of them. Keep
in mind that different concrete floors will have different friction properties,
and the wear and tear of the wheels will also impact this.

Eventually, the tiling system should be expanded to have several robots
tiling the same area. Implementation of multiple robots will mean we will
be adding a new obstacle for which we know the planned trajectory. The
current approach will be able to avoid colliding with any obstacles, but
since the robots know eachothers trajectories, they should exploit this

104 12 FURTHER WORK

knowledge to find a more optimal trajectory. A scenario where this would
be particularly useful, could for instance be the scenario where two robots
meet head on, one from the east and one from the west, and they both
intend to turn north.

In Sogndal, nLink are currently working with a newly acquired robotic
arm from Universal robots[35] on a separate project. This will be used as
a testing platform for different approaches for the tilesetting itself.

BIBLIOGRAPHY 105

Bibliography

[1] Prweb. global ceramic tiles market to reach 92.78 billion square
feet by 2015, according to a new report by global industry an-
alysts, inc. http://www.prweb.com/releases/ceramic/tiles/

prweb4447044.htm. Accessed 2012.09.11.

[2] S. M. Nornes. Modeling and simulation of a mobile platform for a
tilesetting robot. Department of Engineering Cybernetics, Norwegian
University of Science and Technology, 2012.

[3] D. Apostolopoulos, H. Schempf, and J. West. Mobile Robot for Au-
tomatic Installation of Floor Tiles. Robotics Inst., Carnegie Mellon
Univ., Pittsburgh, USA, 1996.

[4] R. Navon. Process and quality control with a video camera, for a
floor-tilling robot. Dept. of Civil Engineering, Technion, Israel Inst.
of Technology, Haifa, Israel, 1999.

[5] A. Oral and E.P. Inal. Marble mosaic tiling automation with a four
degrees of freedom cartesian robot. Mech. Eng. Dept., Balikesir Univ.,
Balikesir, Turkey, 2009.

[6] http://en.wikipedia.org/wiki/Preferred_walking_speed.

[7] http://en.manu-systems.com/SegwayRMP_LE_and_SE_2012_web.

pdf.

[8] N. Tlale and M. de Villiers. Kinematics and dynamics modelling
of a mecanum wheeled mobile platform. Council for Sci. & ind.
Res.,Pretoria, South Africa, 2008.

[9] D. Song J. Yi, J. Zhang, and Z. Goodwin. Adaptive trajectory track-
ing control of skid-steered mobile robots. Dept. of Mech. Eng., San
Diego State Univ., CA, USA, 2007.

[10] L. Caracciolo, A. De Luca, and S. Iannitti. Trajectory tracking control
of a four-wheel differentially driven mobile robot. Dipt. di Inf. e
Sistemistica, Rome Univ., Italy, 1999.

[11] K. Kozlowski and D. Pazderski. Modeling and control of a 4-wheel
skid-steering mobile robot. Inst. of Control & Syst. Eng., Poznan
Univ. of Technol., Poland, 2004.

http://www.prweb.com/releases/ceramic/tiles/prweb4447044.htm
http://www.prweb.com/releases/ceramic/tiles/prweb4447044.htm
http://en.wikipedia.org/wiki/Preferred_walking_speed
http://en.manu-systems.com/SegwayRMP_LE_and_SE_2012_web.pdf
http://en.manu-systems.com/SegwayRMP_LE_and_SE_2012_web.pdf

106 BIBLIOGRAPHY

[12] J.Y. Wong. Theory of Ground Vehicles. John Wiley, New York, 1978.

[13] O. Egeland and J.T. Gravdahl. Modeling and Simulation for Auto-
matic Control, pages 191–199. Marine Cybernetics AS, Trondheim,
Norway.

[14] L. Ravanbod-Shirazi and A. Besançon-Voda. Friction identification
using the karnopp model, applied to an electropneumatic actuator.
Lab. d’Automatique de Grenoble, ENSIEG, Saint Martin d’Heres,
France, 2003.

[15] A. Isidori. Nonlinear Control Systems. Springer-Verlag, London, 3rd
edition, 1995.

[16] http://en.manu-systems.com/RMP-2316100001.shtml.

[17] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[18] S. Koenig and M. Likhachev. Incremental a*. Proceedings of the
Neural Information Processing Systems, 2001.

[19] M. Likhachev S. Koenig and D. Furcy. Lifelong planning a*. Artificial
Intelligence, v 155, n 1-2, p 93-146, 2004.

[20] S. Koenig and M. Likhachev. Fast replanning for navigation in un-
known terrain. IEEE TRANSACTIONS ON ROBOTICS, VOL. 21,
NO. 3, 2005.

[21] G. Ramalingam and T. Reps. An incremental algorithm for a gen-
eralization of the shortest-path problem. Journal of Algorithms 21,
1996.

[22] C. V. Caldwell D. D. Dunlap and E. G. Collins Jr. Nonlinear
model predictive control using sampling and goal-directed optimiza-
tion. Proceedings of the IEEE International Conference on Control
Applications, 2010.

[23] J. H. Halton. On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathe-
matik, 1960.

[24] Ø. A. G. Loe. Collision avoidance for unmanned surface vehicles.
Master’s thesis, NTNU, 2008.

http://en.manu-systems.com/RMP-2316100001.shtml

BIBLIOGRAPHY 107

[25] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, Computer Science Dept., Iowa State Uni-
versity, 1998.

[26] C. Urmson and R. Simmons. Approaches for heuristically biasing
rrt growth. IEEE International Conference on Intelligent Robots and
Systems, v 2, p 1178-1183, 2003.

[27] Ø. A. G. Loe. Collision avoidance concepts for marine surface craft.
Norwegian University of Science and Technology, 2007.

[28] M. Likhachev and A. Stentz. R* search. AAAI, pp. 1–7, 2008.

[29] N. Gupta A. Sharma and E. G. Collins Jr. Energy efficient path
planning for skid-steered autonomous ground vehicles. Proceedings of
the SPIE - The International Society for Optical Engineering, v 8045,
2011.

[30] W. Yu O. Chuy Jr., E. G. Collins Jr. and C. Ordonez. Power modeling
of a skid steered wheeled robotic ground vehicle. Proceedings - IEEE
International Conference on Robotics and Automation, p 4118-4123,
2009.

[31] T. Andrews. Computation time comparison between matlab and c++
using launch windows. California Polytechnic State University San
Luis Obispo, 2012.

[32] L. E. Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents. American Journal of Mathematics 79 (3): 497–516,
1957.

[33] http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_

frict.htm.

[34] http://rmp.segway.com/downloads/RMP_400_Specsheet.pdf.

[35] http://media1.limitless.dk/UR_Tech_Spec/UR10_GB_2012.pdf.

http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm
http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm
http://rmp.segway.com/downloads/RMP_400_Specsheet.pdf
http://media1.limitless.dk/UR_Tech_Spec/UR10_GB_2012.pdf

	Introduction
	Automated tilesetting systems
	Case: Rema 1000 Sogndal
	Step by step scenario

	Challenges

	Equations of motion for a skid-steered mobile platform
	Trajectory control
	Segway RMP 440

	Path planning for mobile wheelbased platforms
	Operating Spaces
	Sampling-Based vs Combinatorial motion planning
	Discrete algorithms
	Lifelong Planning A*
	D* Lite

	Sampling-Based algorithms
	Sampling techniques: Halton points
	Output Sampling: A* assisted Rapidly-expanding Random Tree (RRT)
	Input Sampling: Sampling Based Model Predictive Control

	The optimization problem
	Optimization with respect to distance(Shortest path)
	Optimization with respect to time(Quickest path)
	Optimization with respect to energy consumption(Easiest path)
	Defining a power model

	MATLAB implementation of the SBMPO-algorithm
	The structure of the path planner
	The classes
	The functions

	The simplified model of the vehicle
	Sampling the input
	Smoothing the output
	Obstacle and goal handling
	The configuration space of the vehicle
	Obstacle handling
	Goal handling

	Simulation
	Specification
	Assumptions and simplifications in the modelling
	Model parameters
	Simulation parameters

	Simulator structure
	Prepared functionality for future work

	Defining the test cases
	Test parameters
	Case 1: No obstacles
	Case 2: Simple cluster of obstacles
	Case 3: Complex cluster of obstacles

	Simulation results
	Case 1: No obstacles (variable speed)
	Case 2: Simple set of obstacles
	Constant speed=1.0 m/s
	Speed=1.0-1.4 m/s

	Case 3: Complex cluster of obstacles
	Constant speed=1.0 m/s
	Speed=1.0-1.4 m/s, gridsize=0.2 m
	Speed=1.0-1.4 m/s, gridsize=0.1 m

	Discussion
	Choice and implementation of the path planning algorithm
	Implementing the SBMPO-algorithm
	Controller performance

	Comparison of the optimization schemes
	The findings of Collins et.al.energyplanning
	Energy vs Time with limited turning radius

	Choosing a different algorithm
	Possible modification: D* Lite
	Completely different approach?

	Conclusion
	Further work
	Bibliography

