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Abstract

For persons diagnosed with diabetes mellitus, measuring the blood glucose level
is important for the insulin administration. Convential glucose measuremet meth-
ods are both uncomfortable and not always reliable. Therefore, alternative meth-
ods for glucose measuremet are under development. This work, in cooperation
with Prediktor AS, was about studying a mathematical model describing the glu-
cose metabolism the human body. The glucose model is intended to be used
in a non-invasive glucose measurement device, where the glucose model is sup-
posed to be used in a Kalman filter for glucose level prediction. Different glucose
metabolism models were studied, and a literature review was given. A model was
chosen, which roughly seemed to predict the blood glucose level when compared
to real glucose data.

The model parameters are already found in the literature, but in order to
calibrate the model, the identification properties of the model was studied. The
analysis showed that parameters p1, p2, Td, α, β and kemp had a certian influence
on the glucose output, and were not strongly correlated. However, the choice of
parameter vector was not too obvious. Therefore, an algorithm was used to find
a suitable parameter vector. Because the algorithm needed real glucose data, real
glucose data was collected. Because the collected data did not contain enough
information, the algorithm failed to find a suitable parameter vector. For this
reason, an optimal experiment was designed, and real glucose data was again
collected, in order to use the algorithm and to check if optimal parameter values
could be found. The collected data revealed unmodeled dynamics in the chosen
glucose model. Therefore, the algorithm in question could not be used, and pa-
rameter identification could not be performed. The importance of the unmodeled
dynamic should be considered. The chosen model may need to be changed.
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1Project overview

1.1 Diabetes

Energy is a necessity for all living organisms. Thus, for a human to be able to perform
daily activities, the body has a certain need of energy. The energy comes from food
and drink in the form of carbohydrates, protein and fat. The body can not make
use of carbohydrates, protein and fat directly. Hence, almost all food needs to be
converted into a simple sugar called glucose. Glucose is absorbed by the bloodstream,
where its level is regulated by insulin - to be stored, produced, or broken down and
used to form ATP, which in turn powers every activity in the cell. Insulin keeps the
blood glucose level in a certain range, and is therefore very important in the glucose
metabolism.

A person diagnosed with type 1 diabetes mellitus do not produce insulin, which
means that no insulin is present to regulate the blood glucose level. The same prob-
lem occurs for a person diagnosed with type 2 diabetes mellitus, where the insulin
production is insufficient in combination with insulin resistance. Because no, or too
small, amounts of insulin is present to store and distribute blood glucose, both types
may suffer from high glucose blood levels, known as hyperglycemia. Long-term hy-
perglycemia may have serious consequences, which include heart disease, strokes
and kidney failure and diabetic reinopathy where eyesight is affected, which in turn
may result in blindness. In addition, it may results in poor circulation of limbs, which
may lead to amputations. There is also a risk for hypoglycemia, which is when the
blood glucose level is too low. Because the brain almost exclusively use glucose as
energy source, a blood sugar too low may not meet the brains glucose requirements.
Hence, diabetic hyperglycemia may cause effects on the function of the brain. This
effects may have the form of unconsciousness or diabetic coma. In some rare cases,
hypoglycemia even cause permanent brain damage and death. To avoid this, the di-
abetic person needs to inject exogenous insulin into the body in order to keep the
glucose level in the target range.

The exact reason for both type 1 and type 2 diabetes mellitus are not completely
understood. Type 1 diabetes mellitus is most likely due to genetic predisposition,
whereas type 2 diabetes mellitus seem to depend highly on environmental factors.
Excess caloric intake, inactivity and obesity all seem to play a part in the pathogen-
esis of type 2 diabetes mellitus. Today, over 340 million people are diagnosed with
diabetes, and type 2 diabetes mellitus comprises 90% of these people. Because of so-
cial changes, obesity and overweight has more than double since 1980 [25], and since
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this trend most likely will continue, diabetes is projected to increase by over 80% in
upper-middle-income countries [24].

The critical part being diagnosed with diabetes, is the insulin administration. Each
year about 3.2 million diabetes-related deaths worldwide are reported annually [20],
and this number is assumed underestimated. In addition, diabetes may cause blind-
ness, kidney failure and more than 60% of nontraumatic lower-limb amputations
occur in people with diabetes [1]. Hence, diabetes may lead to various negative
consequences for the diabetic person, which in turn cause enormous national health
costs. This emphasizes the importance of insulin administration, and to be able to
decrease the personal and national side effects of diabetes, more reliable insulin ad-
ministration methods are needed.

1.2 Insulin administration
Different types of devices are available to help persons with diabetes to manage
their disease. Today, the most common method is self-monitoring of blood glucose
(SMBG), where insulin is injected directly into the fat tissue. In that case, a specific
insulin dose is injected by a syringe or an insulin pen. A syringe is the simplest de-
vice, and need to be filled with insulin solution before it can be injected into the body.
Insulin pens, on the other hand, automatically release the pre-selected quantity of in-
sulin when pushed into the body, and is able to store insulin using cartridges. During
the day, there is also a need of checking glucose levels to see if the insulin dose is able
to keep the glucose level in the target range. This is done by a blood glucose meter,
where a small drop of blood, obtained by pricking the skin with a lancet, is placed
on a strip. Afterwards, the strip is placed in the meter, and the blood glucose level is
calculated. These measurements are often logged, to check if the given insulin dose
is able to keep the blood glucose levels within the range.

For both diabetes type 1 and type 2, the time course of insulin action requires three
or more injections per day. Because of the expected increase in blood glucose during
a meal, the injection is often set 15-30 minutes before a meal. The time for when
the injection is set, mainly depends on the type of insulin. In addition, the blood
glucose needs to be measured - for a type 1 diabetic as much as 4-6 times a day. The
timing, the type and amount of insulin, is individual and is somewhat decided by
a doctor. However, the amount of needed insulin depends on the daily activities,
which means that a diabetic must be able to calculate the insulin dose according to
the given guidelines. Some factors which may affect the needed dose of insulin are:

• Type of food

• Amount of food

• Number of meals

• Physical activities

Imagine a meal, which is often a composition of carbohydrates, protein and fat.
Carbohydrates enter the bloodstream quite fast - in contradiction to proteins and fat,
which take about four to eight hours to show up in the bloodstream. Even though
the amount of protein and fat will affect the blood glucose, the amount of needed



insulin depends mostly on carbohydrate intake. Therefore carbohydrate counting is
important for a diabetic. However, different kind of carbohydrates, have different
effect on the glucose levels. Sweets, fruits and mashed potato are examples of rapid-
acting carbohydrate, which will cause high glucose spikes. On the other side, beans
and nuts are examples of slow-acting carbohydrate, and the glucose will be absorbed
slowly into the bloodstream. Hence, counting carbohydrates is not an easy task. If
a meal contained mostly slow-acting carbohydrate and insulin is injected to match
the amount of carbohydrate, the insulin may work too quickly. This could make the
blood glucose levels fall before the carbohydrate is absorbed, which could result in
blood glucose levels both below and over the target range. Hence, the type of food
is important, but also the amount of food. If the food portion is bigger than normal,
more insulin is also needed - and conversely. The number of meals during a day
needs also to be taken into consideration. If a meal is skipped, this may lead to
low glucose levels and cause hypoglycemia. Exercise and physical activities increase
glucose utilization, which is also an important factor. Because of the natural reduction
of glucose in the blood stream during physical activities, less insulin is needed. If a
insulin dose too big is set before expected or unexpected exercise, this might result in
hypoglycemia. On the other hand, if an expected exercise is skipped, this may result
in hyperglycemia because of lack of insulin. Other factors that may affect blood
glucose level is certain types of illnesses and effect of other medical medicines.

As stated above, knowing how much insulin, and when the injection should take
place, is not easy. The blood-glucose meter gives an indication of the current glu-
cose level and may work as a long-term guide for the needed amount of insulin.
However, hyperglycemia may occur in long periods between glucose measurements,
and glucose levels may change rapidly after a measurement. Because of this cur-
rent issues regarding insulin administration, and the economic potential due to the
huge diabetes care device market, companies are competing to develop new methods
for insulin administration. The goal is automatic control of the blood glucose level,
where feedback of real-time blood glucose data is connected to an insulin pump,
which reads the glucose level and dispense the precise amount of insulin needed.
Hence, continuous glucose monitoring plays an important role in order to improve
insulin administration, and give the diabetic an easier life.

1.3 Continious glucose monitoring

Even though self-monitoring of blood glucose has been used since the first blood
glucose meter was introduced in 1970, current methods for glucose monitoring is not
ideal. The finger-pricking, which is the most common method, has several disadvan-
tages; the method is not painless, and many people dislike seeing blood and using
sharp objects. In addition, there is a risk of infection, and over long term this practice
can result in damage of the finger tissue. Because this method involves blood, and
taking the size of the glucose meter into consideration, glucose measurements need
to be planned, and is not practical for continuous monitoring of blood glucose.

Because of the problems regarding conventional glucose monitoring, and because
of the development of insulin pumps, other blood glucose meters have been devel-
oped. The new devices focus on continuous measurements with a glucose sensor
inserted into the abdomen. Further, the sensor takes reading and reports to a moni-



tor. After two or three days, the sensor is removed and replaced with a new sensor.
In this way, the diabetic is able to check the glucose level during the day, and on some
devices an alarm is triggered if hyperglycemia or hypoglycemia occur. However, the
monitor needs to be calibrated several times a day. This is done by the person in-
putting the results from conventional finger sticks, which means that this method
do not necessary reduce the number of needed finger sticks. There has also been
problems regarding the reliability of the measurements; drifting and/or diminishing
of the sensor signal has been reported due to the formation of proteins and other
biological matter on the sensor surface.

Figure 1.1: Continious blood glucose sensor with insulin pump

The glucose monitoring methods that have been mentioned so far, have been in-
vasive. To avoid the consequences regarding finger-pricking, and to be able to con-
tinuous monitor the glucose level, it is clearly desirable with noninvasive glucose
measurements. Different methods for non-invasive glucose measurements are un-
der study, and an overview is given by So et al.(2012)[5]. Some of these methods
are based on ultrasound technology or different types of spectroscopy, where near
infrared spectroscopy (NIR) has become a promising technology, among others [5].
NIR is a spectroscopic method which uses the near-infrared region of the electromag-
netic spectrum, where the measurements of the absorption of NIR-beams are used to
characterize the tissue. This in turn can be used to calculate the level of glucose in
the subcutaneous tissue.

Regarding noninvasive technologies, many research groups have explored the
wide variety of approaches, and tried to develop a non-invasive blood glucose mea-
surement device that can provide stable and reliable results. Unfortunately, none of
these technologies have produced a commercially available, clinically reliable device
[5]. Because of the huge market for a successful, noninvasive glucose monitor, there
is a race for research teams to develop a precise and accurate equipment.

1.4 Aim of the project

The aim of the project is to study a mathematical model of the glucose metabolism,
which is supposed to be used in order to develop a non-invasive glucose measure-
ment device. This device is supposed to estimate and predict blood glucose level
in both healthy persons, and persons with diabetes. With the combination of non-
invasive measurements from NIR and dielectric spectroscopy, this measurements is



processed and used in a Kalman filter with the glucose metabolism model. It is as-
sumed that this will make it possible to estimate the glucose level in real-time. The
project is in cooperation with Prediktor AS, where the noninvasive glucose measure-
ment device currently is under development.

In more detail, this project will contain the following:

1. Study existing mathematical models regarding glucose metabolism in the liter-
ature, and choose a model which fits the requirements

2. Discuss different measurements that may be needed for calibration and real-
time updates for the model

3. Analyze the model with regard to parameter identifiability





2Literature study

2.1 Introduction
A dynamic model describing the glucose metabolism in order to control glucose level,
has been studied for decades. It began with simple models of the insulin-glucose sys-
tem - also known as minimal models, and later progressed to large-scale simulation
models, known as maximal models. Minimal models is one class of models, which
are based on the concept that the dynamics of the biological system should be de-
scribed by a minimum number of identifiable parameters [8]. Therefore, the model
only describes the main characteristics of the system. The basis for the minimal
model is the information content in a glucose test, where blood glucose and insulin
samples of a fasting person are collected after a meal, where the information is used
for parameter identification. Because the minimal model strategy has been, and still
is,very successful [8], the minimal model has been widely employed by more than
one thousand papers. Maximal models, on the other hand, are comprehensive de-
scriptions, which consolidate large amount of biological knowledge. These models
are often nonlinear with a high order, and with a large number of parameters. Hence,
maximal models are generally not identifiable without massive experimental inves-
tigation. These models are often used for simulation, and have made it possible to
perform simulation trials in replacement of animal testing.

One may wonder why there is such a large number of different mathematical
models describing the glucose metabolism. This is partly because some issues re-
garding the glucose metabolism are not completely understood. Also, in the model, it
is not possible to include every single process which affects the glucose metabolism.
Therefore, the models are often based on different theories regarding the glucose
metabolism; therefore, in some models a specific process may be modeled, while the
same process is ignored in another model. In this chapter we will take a look at
some models which might be relevant according to this project. These are models
that describe some of following properties

• The general glucose-insulin dynamic in both healthy, and persons with diabetes

• How exercise affect the blood glucose level

• Insulin secretion in healthy persons

In order to understand the concepts behind the glucose metabolism models, a
short review describing the glucose metabolism is given in the following section.

7



2.2 Theory

2.2.1 Glucose metabolism in a healthy person

The level of plasma glucose concentration depends on the in- and outflow within
the bloodstream. The inflow depends on the food intake and the glucose production
from liver. The outflow depends on the glucose utilization by the muscle and skeleton
cells, and the brain cells. The utilization in muscle and skeleton cells depends highly
on the level of physical activity, while the cells in the brain is assumed to be rather
constant. The outflow is also affected by the rate at which glucose is stored in the
liver, and the clearance of glucose through urine. The glucose utilization in muscle
and skeleton cells, and the liver production and storing process, are mainly controlled
by insulin to keep the glucose level within the range of 70-150 [mg/dl]. This can be
shown in figure 2.1, which illustrates the main processes affecting the blood glucose
level. Dashed lines indicate the flows which is insulin dependent, while solid line
represent insulin independent flows.

STORING
Glycolysis

GLUCOSE IN
PLASMA

GLUCOSE IN
TISSUE

PRODUCTION
Glycogenolysis

Glycogeneogenesis

FROM FOOD

LIVER

UTILIZATION
Skeleton muscle

Other tissue

CLEARANCE
Kidney

UTILIZATION
Brain

Erythrocytes

Figure 2.1: Glucose metabolism process

Insulin and glucagon are two hormones secreted from the islets of Langerhans in the
pancreas. Glucagon is secreted from the α-cells when the blood glucose level needs
to be increased. Glucagon triggers glycogenolysis, which is a process where stored
glycogen in the liver is broken down to glucose and released into the bloodstream.
When the storage of glycogen is empty, glucagon triggers gluconeogenesis, where
glucose is generated from non-carbohydrate and released into the bloodstream.
Insulin is secreted in pulses by the β-cells in the pancreas. This is a complex process,
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Figure 2.2: Insulin control

and the secretion process is not completely understood. Insulin is secreted in order
to keep the glucose level in the target range, and works as described in the following

• Insulin enhance the insulin dependent glucose utilization. Insulin binds to the
receptor of skeleton muscle cells. This activates the glucose transporter GLUT4
inside the cell, which in turn transport glucose from the membrane and into
the cell to form ATP. How much the insulin enhance these utilization is not
completely known.

• If the cells have sufficient supplies of ATP, insulin triggers glycogenesis, which
is a process transforming glucose into glycogen in the liver, where it is stored.

• Insulin inhibits the secretion of glucagon [29], and therefore indirectly controls
glycogenolysis and gluconeogenes.

How sensitive the body is to the effect of insulin - in other words; the decrease in
glucose plasma due to a certain amount of insulin, is described by the insulin sensitiv-



ity, which varies among individuals. The sensitivity depends on the level of physical
activity, which has proven[18] to increase the insulin sensitivity both during exercise
and a certain time afterwards. How insulin controls the glucose level is illustrated
in figure 2.2. As can be seen, insulin do not affect glucose level directly, but through
remote insulin, which is the insulin in the intracelluar space which directly affects the
glucose utilization and storing. The processes described do not happen immediately,
but are a delayed response which occur after several biochemical processes triggered
by the two hormones.

2.2.2 Glucose metabolism in a diabetic

In type 1 diabetes, the islets of Langerhans are destroyed by the immune system,
which makes the number and size of the islets eventually reduced. Therefore, the
secretion of insulin by the β-cells are almost nonexistent. In type 2 diabetes, the islet
cells are decreased and cannot produce sufficient amounts of properly-functioning
insulin. In addition, the cells within the muscles, liver and fat tissue do not respond
normally to the insulin level. I both cases, there are not enough insulin present which
means that processes go forth at high rates, completely unregulated. Hepatic glucose
production will not be inhibited, and there are no insulin to enhance the glucose
utilization. This may cause the diabetic to suffer of constant hyperglycemia.

2.3 Minimal model approach
The minimal model was published by Bergman, and consists of three equations de-
scribing plasma glucose concentration G(t), plasma insulin concentration I(t) and
remote insulin X(t). This is shown in equations 2.1, 2.2 and 2.3. The model de-
scribes glucose utilization and hepatic production, which is both insulin-dependent
and insulin-independent. U(t) is the plasma insulin appearance rate, and D(t) de-
scribes the exogenous glucose input.

dG
dt

= −p1G(t)− X(t)G(t) + p1Gb + D(t) (2.1)

dX
dt

= −p2X(t) + p3[(I(t)− Ib] (2.2)

dI
dt

= −nI(t) + p4
U(t)

VI
(2.3)

This model assumes that glucose and insulin are intravenous injected into the blood-
stream. If this is the case, the model is proven to be a priori uniquely identifiable.
Because intravenous injections are not the case for neither healthy persons or per-
sons with diabetes, the model have been both modified and extended in order to
describe the glucose metabolism when insulin is injected in the subcutaneous layer.
If a Bergman model is chosen to describe the glucose-insulin dynamic, the following
needs to be added to the model:



• Description of how an oral glucose intake is being absorbed into the blood-
stream

• Description of the pancreatic β-cell production

• Description of how an injection of insulin in the subcutaneous layer appears
into the bloodstream

• How physical activity affect blood glucose

2.3.1 Oral glucose intake

A model is needed to describe how an oral food intake appears into the bloodstream.
This is usually done by a model describing how a meal carbohydrate load Dg(t) is
processed through the digestive system. There is some differences in the complex-
ity of the models. Some models describe the process as a two-compartment model
representing a certain delay, while some models are more physiological correct and
describes the rate of glucose absorption via the gut wall according to the rate of
gastric emptying.

2.3.2 Pancreatic production

For a healthy person, the insulin which controls the blood glucose, is secreted by the
pancreatic β-cells in the portal vein. Some diabetic also produce a certain amount of
insulin. In this case, U(t) in equation 2.3 needs to be modeled to describe secreted
insulin, which is described in different ways in the literature. In the work of Sturis et
al. (2000) [21], the pancreatic production is a function depending on the plasma glu-
cose level. The pancreatic production has also been described by a two-compartment
model depending on both the glucose level and its rate of change.

2.3.3 Effect of physical activity

The minimal model needs to describe the physiological changes due to physical ac-
tivity. During, and a certain period after exercise, the insulin sensitivity is increased,
which seems to be because of insulin-dependent augmented availability of GLUT4.
In the model by Breton et al. (2008) [2], the increased insulin sensitivity is due to in-
creased insulin action described by a parameter Z, which depends on the measured
heart rate. Another exercise model by Parker et al. (2007) [27], is more complex. This
model uses the percentage PVOmax

2 of the maximal oxygen consumption VOmax as an
input to the model in order to quantify exercise intensity. In addition to augmented
availability of GLUT4, this model describes the following

• The increase in glucose uptake due to increasing exercise intensity

• The increase in hepatic glucose release due to increasing exercise intensity

• The decrease in glucose production from glycogenolysis because of limited sup-
ply of glycogen in the liver

• The removal of insulin in the circulatory system due to physiological changes



The added effect of physical activity is seen in more recent years, and not many
models which describes this effect are found in the literature.

2.3.4 Subcutanous insulin injection

Because insulin is not injected directly into the bloodstream, there is a need to in-
corporate the subcutaneous insulin kinetics into the model, which applies to both
diabetic type 1 and type 2 patients. The major difficulties in modeling include ac-
counting for the distribution in the subcutaneous depot and transport to plasma [16].
The time between the injection of insulin and its appearances in the plasma takes
about 30 min to 1 hour. Many factors, such as the injected volume of insulin, the
depth of the injection, and changes of blood flow around the injection site, affects
the insulin absorption. In addition, the absorption rate of subcutaneously injected
insulin decreases with increasing insulin concentrations and increasing volumes. The
quantitative description of insulin absorption is thus a difficult task, and everything
from simple one-compartment models, to nonlinear partial differential equations,
have been developed to describe the process.

kd kd

k1 k2u(t)
S1 S2

Figure 2.3: Example of subcutaneous insulin kinetics

For minimal models, a one- or a two-compartment is often used to describe the sub-
cutaneous insulin kinetics. A two-compartment model is shown in figure 2.3. In this
model u(t) is the injected insulin in the subcutaneous layer, and kd is the degradation
rate. The rate of appearance in insulin plasma equals U(t) = k2

Vd
, where Vd is the

distribution volume of insulin. Other models are various forms of the one shown in
figure 2.3. Some models may have a degradation rate in the second compartment or
no degradation rate at all, and in some cases the flow rate k1 equals the flow rate k2.

2.4 Maximal model approach

Different maximal models have been developed to describe the glucose-insulin inter-
action. These models are often complex, and describe all processes which affects the
glucose level.



2.4.1 Meal simulation model

The simulation model in Cobelli et al. (2007) [7] describes the glucose-insulin sys-
tem in the postprandial state, which focus on quantitative physiological events after
a meal. The model consists of a glucose and insulin subsystem. The glucose sub-
system is described by a two-compartment model, one representing glucose mass
in plasma and rapidly equilibrating tissues, Gp(t). The other represents glucose in
slowly equilibrating tissues, Gt(t). The insulin subsystem is also represented by a
two-compartment model, which describes the insulin masses in liver, Il(t) and in
plasma, Ip(t). The simulation model has been extended and modified to also include
the effect of physical activity.

The glucose subsystem is shown in equation 2.4. Both Gp and Gt depends on
a number of submodels describing the various unit processes. EGP(t) is the en-
dogenous glucose production, Ra(t) is the rate of appearance of glucose from food,
E(t) is the renal extraction, and Uid(t) and Uii are insulin-dependent and insulin-
independent utilization.


Ġp(t) = EGP(t) + Ra(t)−Uii(t)− E(t)− k1 · Gp(t) + k2 · Gt(t)
Ġt(t) = −Uid(t) + k1 · Gp(t)− k2 · Gt(t)
G(t) = Gp

Vg

(2.4)

The insulin submodel is shown in equation 2.5, where Il is the insulin in liver
and Ip is insulin in plasma. As can be seen, additional submodels is also necessary
to describe the different processes, where S(t) is the insulin secreted into the portal
vein.


İl(t) = −(m1 + m3(t)) · Il(t) + m2 Ip(t) + S(t)
İp(t) = −(m2 + m4) · Ip(t) + m1 · Il(t)
I(t) = Ip

VI

(2.5)

2.4.2 Model at molecular level

In Liu et al. (2008) [32], a mathematical model is made at the molecular level. Because
of cross talk and feedback among metabolic pathways and signaling, it was stated that
more details of the system could be included at the molecular level. The following
processes are considered

• The concentration of insulin and glucagon in plasma, and the transition process
time delay for insulin and glucagon in plasma to enter the cellular space.

• The dynamics between intracellular and receptor-bounded insulin and glucagon.

• The concentration of glycogen and plasma glucose, which depends on the con-
centration of receptor-bounded insulin and glucagon.



2.4.3 Oscillatory insulin secretion

Experiments have revealed that the release of insulin from the pancreas occurs in an
oscillatory fashion with a typical period of 80-150 min [21]. These slow oscillations
is mainly in the portal vein, and they are assumed to have a important influence on
several hepatic processes. The underlying mechanisms for the oscillations is most
likely a result from an instability in the insulin-glucose feedback system. Because
experiments have shown that a pulsating supply of insulin can have a higher hy-
poglycemic effect than a constant supply, models describing this phenomenon have
been of interest.

Sturis et al.(2000) [21] suggested the model viewed in equations 2.6, 2.7 and 2.8
for the description of slow oscillations. The model has three main variables; plasma
insulin Ip, intracellular insulin Ii and plasma glucose G. The purpose of both Ip and
Ii is to represent the delay between insulin action and plasma insulin. f5(x3) is a
function describing the hepatic glucose production, which is a delayed response to
the insulin level represented by x3. The delay is described by a third order model,
and is actually a part of the model. Insulin secretion, rate of appearance of glucose
and glucose utilization, is described by different functions.

dIp

dt
= f1(G)− E

(
Ip

Vp
− Ii

Vi

)
−

Ip

tp
(2.6)

dIi

dt
= E

(
Ip

Vp
− Ii

Vi

)
− Ii

ti
(2.7)

dG
dt

= Gin − f2(G)− f3(G) f4(Ii) + f5(x3) (2.8)

The function f1(G) describes the pancreatic insulin production and is controlled by
the glucose concentration. The function f2(G) is the insulin-independent glucose
utilization, and f3(G) describes the glucose utilization by muscle and fat cells.

Instead of a third order model representing the delay, similar models have been
represented by delay differential equations in order to represent the delay between
plasma and intracellular insulin, and the delayed response according to the hepatic
production.

2.5 Parameter identification techniques
Various methods have been used to identify the parameters in glucose metabolism
describing models, where the complexity of the identification method often depends
on the complexity of the model. For the simple minimal model, intravenous glucose
tolerance tests (IVGTT) have been used to identify the parameters. In an IVGTT,
glucose is intravenously injected, and then both glucose blood level and insulin level
are measured with blood samples. Using the injected glucose input, and insulin and
glucose output data, it is possible to identify the parameters.

More complex models, such as maximal models, are using other methods for es-
timating the parameters. A common method is to use tracer studies. Tracers, which



is some chemical composition, is given in the food or injected into the bloodstream
and tissue. Technology such as positron emission tomography or nuclear magnetic
resonance, are able to detect the tracers inside the body. This have made it possible to
calculate such as the rate of glucose appearance, glucose and insulin fluxes, glucose
utilization and insulin secretion. In this way, the parameters for the different sub-
models have been found. The tracer experiments have usually been done on several
people, and then the mean value is used for the final model.





3Glucose metabolism model

3.1 Choice of model
In chapter 2, a short literature review described different ways to model the glucose
metabolism. For our purposes, it is desirable that the model predicts the glucose
level at some accuracy and is suited for real-time estimation. Because biochemical
processes affecting the glucose metabolism are assumed to be highly individual, it
seems to be a need for calibrating the glucose metabolism model to each specific
person. The glucose metabolism is normally described by a maximal model, or an
extended and modified minimal model. Because of the complexity, the model param-
eters of maximal models need enormous amounts of testing to be identified, and can
only be identified by tracer tests. Such complex test techniques are not supposed to
be performed for this project, which means that calibrating can not be performed for
a maximal model. In various tests done by Prediktor [17], the model developed by
Cobelli et al. (2007)[7] did not give a satisfactory result. On the other hand, a mod-
ified and extended minimal model showed the ability to estimate the blood glucose
level, where the minimal model was implemented in a Kalman filter together with
measurements of blood glucose values. This model is shown in the following, and is
the foundation for the future work.

In equations 3.1 and 3.2, the minimal model is shown. This model is found in
Bergman et al. (1979)[26], and is extended to also include the plasma insulin con-
centration I. As stated in section 2.3, there is a need to define D(t) to describe the
oral glucose intake, and to define U(t) to describe the subcutaneous insulin injection.
In addition, the model does not describe the pancreatic insulin secretion which also
needs to be added.

dG
dt

= −p1G(t)− X(t)G(t) + p1Gb + D(t) (3.1)

dX
dt

= −p2X(t) + p3[(I(t)− Ib] (3.2)

dI
dt

= −nI(t) + p4
U(t)

VI
(3.3)
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Oral glucose intake

In order to describe the appearance of glucose D(t) in the blood after a carbohydrate
intake, a submodel describing the glucose through the stomach and gut was added.
The submodel is taken from Cobelli et al. (2007) [8], which is given as

Qsto

dt
= Qsto1 + Qsto2 (3.4)

Qsto1

dt
= −kgriQsto1 + Dd(t) (3.5)

Qsto2

dt
= −kemp(Qsto)Qsto2 + kgriQsto1 (3.6)

Qgut

dt
= −kabsQgut + kemp(Qsto)Qsto2 (3.7)

where rate of apperance of glucose into the bloodstream is given as

Ra =
f kabsQgut

BW
(3.8)

All parameters are constants, except from kemp which is the rate of gastric emptying.
The gastric emptying depends nonlinearly on the size of the meal and the amount of
nutrient in the stomach, and is given by the following function

kemp = kmin +
kmax − kmin

2
· {tanh[α(Qsto − b · umeal)]− tanh[β(Qsto −C · umeal) + 2]

(3.9)

Four differential equations and the function describing kempt really increases the com-
plexity of the model. Therefore, this submodel was simplified to a two-compartment
model

dQsto

dt
= −kempQsto + umeal (3.10)

dQgut

dt
= −kabsQgut + kempQsto (3.11)

Ra = f kabsQgut (3.12)

The glucose intake is the input umeal, while kabs is the rate of intestinal absorption.



The rate of appearance is described by Ra, and the parameter f is the fraction of
intestinal glucose absorption which appears in plasma. Because of the simplification
of the model, the function describing kempt cannot be used. It is assumed that this
parameter will be defined as a constant. The oral glucose intake is found as

D(t) = Ra/Vp (3.13)

Carbohydrate-containing food can actually be classified by the concept called glycemic
index (GI). The GI compares the suddenly increase in in the plasma glucose concen-
tration from a fixed amount of available carbohydrate in a test food, with the glycemic
response excited from the same amount of carbohydrate in a standardized reference
food [28]. Carbohydrates affect the blood glucose differently depending on the GI,
where carbohydrates with high GI result in an earlier rise in the blood glucose level.
The glucose model does not take this into consideration, and does only take the
amount of carbohydrate as input.

Subcutaneous insulin injection

Because insulin is assumed intravenously injected in the original minimal model, the
minimal model need to be extended to the describe the subcutaneous insulin injec-
tion. This is done by describing the insulin injection as a two-compartment model
as described in equation 3.14 and 3.15. This is a quite simple model, with no degra-
dation rate and with equal time constants. The injection uins takes place in S1, and
insulin enters the bloodstream in plasma insulin through the second compartment
S2.

dS1

dt
= − 1

Td
S1 + uins (3.14)

dS2

dt
=

1
Td

(S1 − S2) (3.15)

Now, the insulin injected insulin U(t) from equation 3.8 can represented as U(t) = S2.
Setting parameter p4 = 1/Td, the plasma insulin concentration can be written as

dI
dt

= nI(t) +
1

VITd
S2 (3.16)

The input uins represents both the constant basal insulin ub and the bolus insulin ul.
The basal insulin is the insulin which is always present, and is independent from
glucose intake. For a diabetic person, ul is the needed injected insulin depending on
the carbohydrate intake. Therefore, uins is given as

uins = ub + ul (3.17)

where

ub = nVI Ib (3.18)



Even though the basal insulin is missing for a diabetic type 1 person, it is assumed
that the injected long-acting insulin approximates the basal insulin ub. Further, the
rapid-acting injected insulin which is needed before meals, is represented by the term
ul. For a healthy, there is no injected insulin, which means that the input is given as
uins = ub. Hence, the input uins represents a healthy person as well as a diabetic
person.

Pancreatic insulin production

For a healthy person, the input uins represents the constant basal insulin. In addition,
we also need to add the pancreatic insulin secretion in equation 3.16, which cause
the rise of insulin after a carbohydrate intake. To describe the insulin secretion in a
healthy person, a function from Sturis et al.(2000)[21] was chosen. The function is
shown in equation 3.19, where Rm represents the maximal rate of insulin production,
C1 is the parameter which decides when insulin is secreted, while a1 in simple term
decides how much insulin is secreted. In type 1 diabetes patients, fG(G) is set to zero.

fG(G) =
Rm

1 + exp((C1 − G)/a1)
(3.19)

Exercise

The glucose metabolism model also need to account for the effect of exercise. The
chosen exercise model is shown in equations 3.20, 3.21 and 3.22, and is a modified
form of the exercise model by Breton et al.(2008) [2]. The model describes the changes
in insulin sensitivity and insulin-independent glucose uptake due to physical activity.
The increase in insulin sensitivity is described by insulin action Z, which represents
the increased insulin-dependent glucose utilization. Z depends on the measured
heart rate HR, and decreases slowly after HR equals the basal heart rate HRb. This is
according to the assumed increase in insulin sensitivity, which occurs after exercise.

dZ
dt

= −
(

f (Υ) +
1

Tex

)
· Z + f (Υ) (3.20)

Υ =
HR
HRb

− 1 (3.21)

f (Y) =
aYnE

1 + aYnE (3.22)

In practice, this means that two terms need to be added in the plasma glucose differ-
ential equation Ġ. The term αZXG which described the increased insulin dependent
glucose utilization, and the term βYG which describes the insulin independent glu-
cose utilization due to physical activity.



Final model

When adding the description of oral glucose intake, pancreatic insulin secretion, sub-
cutaneous insulin injection and effects of physical activity, the minimal model take
the following form

dG
dt

= −(p1 + (1 + αZ)X)G + p1Gb − βYG +
Ra

Vp
(3.23)

dX
dt

= −p2X(t) + p3[(I(t)− Ib] (3.24)

dI
dt

= −nI(t) +
1

VITd
S2 + fG(G) (3.25)

Because the insulin dynamic is assumed fast, the equation describing plasma insulin
in equation 3.25 is reduced and shown in equation 3.26. In some cases the diabetic
person is able to some extent, produce small amounts of insulin. Therefore, the term
Iadd which describes unmodeled insulin generation, was added.

I =
1
n

[
1

VITd
S2 +

Rm

1 + exp((C1 − G)/a1)
+ Iadd

]
(3.26)

where

dIadd
dt

= 0 (3.27)

Hence, the glucose model is described by equation 3.23, 3.24, 3.26 and 3.27. In addi-
tion to the gut model in equations 3.10 and 3.11, the subcutaneous insulin submodel
in 3.14 and 3.15, the pancreatic insulin secretion function 3.19 and the exercise model
given in equation 3.20 to 3.22. All parameters are shown in table 2 in the appendix.

The additional submodels increased the complexity of the original minimal model.
The final model represents a nonlinear system which consists of 8 differential equa-
tions, where the state vector x is given as

x =
[
G X S1 S2 Qsto Qgut Z Iadd

]
(3.28)

and input vector

u =
[
umeal uins Y

]
(3.29)

The model will take different form depending on whether it is supposed to describe
a healthy or a diabetic type 1 person. However, the only difference is the pancreatic
insulin secretion function fG(G), which for a diabetic person is set to zero.



3.2 Simulation of the glucose model

Simulation plays an important part in order to check the qualitative behavior of a
system. In our case, the simulation of the glucose metabolism model involves the
numerical solution of the differential equations presented in the previous section.
Different types of numerical integrators can be applied in order to solve the differ-
ential equations. Every method has its own properties, and which method to use
depends on the system to be simulated. The numerical solution is approximated at
each time step h which needs to be defined. If the time step is set too high, the error
in each iteration may be very high which results in a poor simulation. In some cases
the accumulated error in each time step is so big, that it results in an unstable system.
Therefore, the choice of time step h is important.

Different simulation tool exists, but in this project only Matlab will be used. In
the case of solving the differential equations, we can either implement a numerical
scheme on our own or use one of the Matlab built-in differential equation solvers. The
advantage of the Matlab differential equation solvers is that we don’t need to specify
the time step. The solver is able to choose a step size which meets a specified error
tolerance. The solvers will vary the step size in order to produce a solution which is
accurate to the given error. Even though implementing a numerical scheme on our
own would reduce the computational cost, the model was simulated with the Matlab
built in differential equations solver ode45, which is based on an explicit Runge-Kutta
method At each iteration, the function calculates the numerical solution to the initial
value problem. The parameters in the model are taken from the literature and can be
found in the appendix.

3.2.1 Simulation for a healthy person

When the equations describing the glucose model from the previous chapter is orga-
nized, and functions are inserted into the differential equations, we get the following
system:

f (xk, uk) =



−(p1 + (1 + αeZ)X)G + p1Gb − βeYG +
f kabsQgut

Vp

−p2X + p3

(
Ti
Vi

(
S2
Td

+ Rm
1+exp((C1−G)/a1)

)
− Ib + Iadd

)
− 1

Td
S1 + uins

1
Td
(S1 − S2)

−kempQsto + umeal

−kabsQgut + kempQsto

−
(

f (Υ) + 1
Tex

)
· Z + f (Υ)

0



(3.30)



with state vector

X =
[
G X S1 S2 Qsto Qgut Z Iadd

]
(3.31)

and input vector

u =
[
umeal uins Y

]
(3.32)

and initial value conditions



G0
X0
S1,0
S2,0

Qsto,0
Qgut,0

Z0
Iadd,0


=



Gb
0

nVI IbTd
nVI IbTd

0
0
0
0


(3.33)

where uins only corresponds to the constant basal insulin level uins = ub. The initial
conditions for the states is shown in equation 3.33, and correspond to a healthy person
in a fasting state. The initial conditions for S1 and S2 is given in order to keep the
basal insulin level at ub = nVI Ib.

The predicted blood glucose value from the simulation was compared to real
blood glucose measurements. These blood glucose measurements was taken when
a healthy person did the following test; a meal of 39 100 [mg] carbohydrates at t=25
and t=236, and a meal of 63 100 [mg] carbohydrates at t=565. At t=570, the person
started an exercise session driving a spinning cycle machine for around 30 minutes.
During exercise, there was no heart beat measurements. Therefore, the input Y was
just set to a guessed value during the session. The parameter values were taken from
the literature, and can be found in appendix.
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Figure 3.1: Insulin level



In figure 3.1 we can see how remote insulin X changes regarding to the insulin level
I. As expected, the insulin level rises almost immediately after the meals, and there is
some delay before the insulin appears in the intracellular space. After the third meal,
which was followed by a exercise session, the insulin level doesn’t rise that much. Ex-
ercise is suppose to increase insulin sensitivity, which means that not as much insulin
is needed to decrease the plasma glucose level. In addition, the insulin independent
glucose utilization increases, which result in a natural decrease in plasma glucose.
The increased insulin sensitivity can be seen as the rise in Z during, and after exer-
cise.
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Figure 3.2: Level of glucose through the digestive system

The amount of glucose through the digestive system can be seen in figure 3.2. We
can see that the amount of glucose in the gut is decreased and delayed compared to
the amount of glucose in the stomach.

In figure 3.3, we can compare the predicted and real plasma glucose value. As we
can see, the predicted output roughly follows the real data.
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Figure 3.3: Real and estimated blood glucose

3.2.2 Simulation for a healthy person with Kalman filter

In order to improve the blood glucose prediction, a Kalman filter is used. The Kalman
filter is an optimal state estimator, and is often used to estimate states from noisy data,
or to estimate a state from different uncertain measurements, in order to estimate a
state value that is closer to the real value. In our case, we want to improve the
prediction by NIR and dielectric spectroscopy measurements.



The Kalman filter need a mathematical model of the system, which in the time
discrete case can be described as [3]

xk+1 = f (xk, uk) + wk (3.34)

zk+1 = Hxk + vk (3.35)

where H is a vector or matrix which gives the ideal connection between the mea-
surement and the state vector. wk is a vector with process noise and vk is a vector of
measurement error. Both wk and vk are assumed to be white noise processes with a
known covariance structure

E[wkwT
i ] =

{
Qk, i = k
0, i 6= k (3.36)

E[vkvT
i ] =

{
Rk, i = k
0, i 6= k (3.37)

E[wkvT
i ] = 0, f or all k and i (3.38)

In order to relate an error to the estimated states x̂−k , the estimation error is given in
equation 3.39, with its corresponding error covariance matrix P̄k.

e−k = xk − x̂k (3.39)

P̄k = E[e−k e−T
k ] (3.40)

Different types of Kalman filter exists to fit different kinds of models and applica-
tions. Due to the nonlinearity of the glucose model we need to use a linearized
version of the Kalman filter, also known as the extended Kalman filter.

The Kalman Filter is actually a loop and is shown in figure 3.4, where a mathe-
matical model of the system - together with measurements and covariance matrices,
are used to calculate the Kalman gain. The Kalman gain is essential in calculating
a predicted state, which is closer to the real state value. The loop starts with a pre-
diction of the state x̄k and error covariance matrix P̄k, which is known as the a priori
estimate. Then, the Kalman gain K, and the a posteriori state and error covariance
matrix is calculated

K = P̄kHT(HP̄kHT + R)−1 (3.41)



x̂k = x̄k + K(zk − Hx̄k) (3.42)

Pk = (I − KH)P̄k(I − KH)T (3.43)

Then, the prediction of the a priori state and covariance matrix is updated

x̄k+1 = f (x̂k, uk) (3.44)

P̄k+1 = FPkFT + Q (3.45)

K=P k H
T H P k H

TR−1

x k=xkK  z k−H x k

P k= I−KH  Pk  I−KH T

xk1= f  xk , uk 
P k1=FP k F

TQ

Compute Kalman gain

Compute error covariance 
for updated estimate

Update estimate with 
measurement z

Project ahead

Enter prior estimate

x0 , P0

Estimated state
x0, x1, ...

Figure 3.4: Extended Kalman filter loop

The matrix F = ∂ f /∂x is the jacobian matrix, which is computed at each time step
to linearize the non-linear function around the current estimate. The predicted, im-
proved state which is the output of the system is x̂k. In most practical applications,
the exact information of the covariance matrices Q and R are not known, and is often
referred to as filter tuning parameters [23]. These matrices are found in the appendix
together with the a priori estimate P̄0. In our case, we only want the measure the
blood glucose. Hence, H is a vector given as

H =
[

1 0 0 0 0 0 0 0
]

(3.46)



The Kalman filter was implemented for the same healthy person with the same model
and input data as in section 3.1 The result can be shown in figure 3.5. Except from
some deviations from the true value, especially at t=490, the predicted value of the
blood glucose is highly improved. The result might be even further improved by
tuning on the covariance of the process noise Q.
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Figure 3.5: Real and simulated blood glucose with Kalman filter





4Identifiability analysis

4.1 The system identification problem
In chapter 3, the model representing the glucose metabolism was introduced. Because
it is desired to calibrate the model for each specific person to make the model as
accurate as possible, there is a need for identifying the parameters in the model,
which are stated in the parameter vector θ. To be able to estimate the parameter
vector θ, we need to look at the theory of system identification. System identification
have a wide application area, and are often needed in mathematical modeling. The
overall goal of system identification is about estimating the parameters in order to
minimize

Φ =
n

∑
i=1

[(ȳi − yi)]
2 (4.1)

where ȳ is the real signal, and y is the simulated system with estimated parameters.
Hence, we want to find the parameter vector which makes the predicted value as
close to the real value as possible. The parameters are estimated from known input
and output data. When this data are known, the parameter vector θ can be estimated
by various regression techniques, such as least square.

The parameter vector θ may represent the parameters of a black box model or
parameters from another kind of structure. Therefore, the first step in system identi-
fication is actually to define a model which describes the system. Because the param-
eters are estimated from input and output data, we need to perform an experiment
and measure certain outputs. When this is done, we are able to fit the model to the
data by estimating the parameters. Afterwards, the model needs to be validated by
comparing the real data and the model with the estimated parameter vector. If the
validation fails, there is a need for designing another type of experiment or change
the model, or both. This is shown in figure 5.4

The problem is that it may exist several parameter vectors θ which satisfy the rela-
tion between the given input and corresponding output for the model. In other cases,
some of the parameters may be set to zero, even though this make no sense regarding
the dynamics of the system. This can be explained by the identification properties of
the model, which often explains why the validation fails or not. Following definitions
to explain identifiability of a system is given in Ljung et al. (1994) [22]

Global identifiability: A system structure is said to be globally identifiable if for any ad-
missible input u(t) and any two parameter vectors θ1 and θ2 in the parameter space Θ,
y(u, θ1) = y(u, θ2) holds if and only if θ1 = θ2

29



Local identifiability: A system structure is said to be locally identifiable if for any θ within
an open neighborhood of some point θ∗ in the parameter space, y(u, θ1) = y(u, θ2) holds if
and only if θ1 = θ2

As indicated, we often distinguish between local and global identifiability . If the
model is only local identifiable, there may exists several local solution for the param-
eter vector θ, while global identifiability indicates the existence of only one unique θ.
It is of course desired to find a unique parameter vector, but most often we are only
able to find a local solution.

Design of 
experiment

Collection of
data

Choice of 
model

Fit model to data

No

Yes

Validate
 model

Can the model 
be accepted?

Prior
knowledge

Figure 4.1: The parameter identification process

Because the parameter vector θ is estimated from the known input u(t) and corre-
sponding output y(t), the identifiability properties will highly depend on the input
vector. If u(t) is constant during the whole experiment which corresponds to small
changes in the output vector, it will most likely exist several parameter vector θ that
satisfy the system. On the other hand, if u(t) is varying which results in a varying
output y(t), it may only exist one unique parameter vector. Therefore, in order for
a model to be identifiable, the input needs to be persistent exciting. This means that
the input signal u(t) need to change sufficiently in order to excite the system so that
the experimental data contains enough information. When the system is sufficiently
excited, the data contains enough information to estimate model parameters that con-



verge to their true values in a finite time. Hence, the performed experiment is crucial
for the identification properties.

4.2 Identifiability analysis theory
Before the parameters in the glucose model can be estimated, there is a need to find
a suitable parameter vector and check for the identifiability. Different methods for
investigating the identifiability properties for a model are available in order to solve
the system identification problem. These methods can also help us choosing an iden-
tifiable parameter vector θ for the system. The most common methods are structural
identifiability analysis, practical identifiability analysis and sensitivity-based identifi-
ability analysis.

4.2.1 Sensitivity-based analsys

With sensitivity analysis we can see how a model’s output depends on variations
in the parameter values. The model parameters have different impact on the out-
put, where a small change in one parameter causes a huge change in the output, a
change in other parameters might not affect the output at all. Hence, we can state
the sensitivity of the output to each parameter in the model. Therefore, the analysis
can be used to find which parameters are critical, and which parameters that have
little effect on the output. If some parameters have little effect on the output, these
parameters might be hard to identify and one may consider to do some changes in
the given model. The sensitivity is quantified by calculating the variation in the out-
put, with respect to changes in the qth component θq of the parameter vector θ. This
can be defined in terms of partial derivatives and is often called the local sensitivity
function. This is given by

si,j(tk) =
∂yi(tk, θ∗)

∂θj
(4.2)

where si,j is known as the sensitivity coefficient and is calculated on each time step
tk for k = 1, 2, ..., N. The system contains the state vector X = [x1 x2 ... xd], and
yi(tk, θ∗) is the measured output i for the system driven by the nominal parameter
vector θ∗ = [θ∗1 θ∗2 ... θq], and θj is a parameter component θ ε Rq. The sensitivity
matrix S for all time points consists of all the sensitivity coefficients, and is given as

SdN×q =



s11(t1) ... s1q(t1)
. . .

sd1(t1) ... sdq(t1)
. . .
. . .

s11(tN) ... s1q(tN)
. . .

sd1(tN) ... sdq(tN)


(4.3)

In practical applications, the sensitivity matrix can be calculated using the direct
differential method, where the column sensitivity vector Sj = ∂X/∂θj and the system



states are obtained simultaneously by solving the joint state and sensitivity profiles
in equation 4.4, where J = ∂ f /∂X is the Jacobian matrix, and Fj = ∂ f /∂θj.

{
Ẋ = f (X, θ, t), X(t0) = X0

Ṡj = J · Sj + Fj, Sj(t0) = 0
(4.4)

How sensitive the output is with respect to different parameters, is described by the
sensitivity coefficients. The larger the sensitivity coefficient are, the more notable
the system response are with respect do the changes in parameters. If the system
output is highly sensitive to a small perturbation of the parameter, the parameter
is likely to be identifiable, otherwise, the parameter is likely to be unidentifiable.
Since the local sensitivity function depends on both t and θ, the sensitivity is not
constant. If the sensitivity sq is close to zero on the time interval [t− δ, t + δ] for θ in
a neighborhood of the true value θ0, the model output is insensitive to the parameter
θq at that particular time interval. However, same function sq might take large values
on a different time interval. Therefore, sensitivity analysis can also tell when each
parameter has the greatest effect on the output.

The sensitivity analysis do not require actual experimental data to be performed,
but enough information need to be given such that the model can be simulated. That
requires a pre-specified parameter values θ∗, and a given input vector. In addition,
the number and locations of measurements time points need to be defined. Then,
equation 4.4 can be solved. Since the nominal parameter vector for the glucose model
can take values from the literature, it is possible to perform sensitivity analysis for
the glucose metabolism model to study the identification properties.

Sensitivity analysis is a rich topic, and different techniques based on the sensitivity
matrix in 4.3, can be applied to investigate the identification properties of the system.
It can be used to rank which parameters that affect the output the most, check for
dependencies among parameters and used to state whether a model is identifiable
or not. There is also a link between sensitivity analysis and practical identification
methods, which make sensitivity analysis a key element in order to design an optimal
experiment.

Local identifiability

In 4.2.1, parameter identifiability was studied according to the respective sensitivities
for each parameter. Another way to check for identifiability is to consider the first or-
der Taylor expansion of the system output near the pre-specified nominal parameter
vector θ∗ [19]:

yk(θ) = y(x(tk), u(tk), θ) (4.5)

yk(θ) ≈ y(x(tk), u(tk), θ∗) +
∂y(x(tk), u(tk), θ)

∂θ

∣∣∣∣
θ=θ∗
· ∆(θ − θ∗) (4.6)

where k = (1, 2, ... , N) denotes the index of the measurement time points. Let rk



denote the error-free measurement ∆(θ − θ∗) = 0 on each time step k. Then the
residual sum of squares between the exact measurement and the linear approximation
is

RSS(∆θ) =
N

∑
k=1

[
rk − yk(θ

∗) +
∂y(x(tk), u(tk), θ)

∂θ

∣∣∣∣
θ=θ∗
· ∆θ

]2

(4.7)

we assume that the parameters is estimated with a certian accuracy such that rk −
yk(θ

∗) = 0, then

RSS(∆θ) =
N

∑
k=1

[
∂y(x(tk), u(tk), θ)

∂θ

∣∣∣∣
θ=θ∗
· ∆θ

]2

(4.8)

which corresponds to

RSS(∆θ) = (S∆θ)T · (S∆θ) (4.9)

RSS(∆θ) represents the sum of squares that we of course want to equal zero. This
can only be true if STS · ∆θ = 0, which implies that ∆θ = θ − θ∗ = 0, and that
the estimated parameter vector θ̂ equals θ∗. This requires STS to have full rank.
Hence, the parameters are identifiable if S has full rank. Thus, it only states local
identifiability, and is only valid near the pre-specified parameter vector θ∗. If STS
does not have full rank, there exists at least one non-trivial solution θ̂ 6= θ∗ such that
the model parameters are not identifiable at θ∗.

Ranking of parameters

The sensitivity analysis enables us to plot how much different parameters affect the
output. However, it can still be difficult to get an overview of which parameters that
affect the output the most. Therefore, it is common to rank the parameters according
to how much a given parameter influences the output.

Ranking the parameters can be done in different ways. In Miao et. al. (2011)[19],
ranking of parameters is done by taking into consideration the overall sensitivity. It
starts by normalizing the sensitivity matrix. Because the sensitivity function in 4.19
is simply output over input, it is sometimes difficult to attach meaning to the values.
The absolute sensitivity can be useful for assessing the times at which parameter has
its greatest or least effect, but is not ideal for comparing parameters. The normal-
ized sensitivity function is dimensionless, and show which parameters that have the
greatest effect on the output for a certain percent change in the parameters [14]. The
normalized sensitivity coefficient are calculated as

si
i,j(tk) =

θj

yi
· ∂yi(tk, θ∗)

∂θj
(4.10)



which forms the normalized sensitivity matrix

Si
dN×q =



si
11(t1) ... si

1q(t1)

. . .
si

d1(t1) ... si
dq(t1)

. . .

. . .
si

11(tN) ... si
1q(tN)

. . .
si

d1(tN) ... si
dq(tN)


(4.11)

Then, the overall sensitivity can be obtained and expressed in terms of the dimen-
sionless sensitivities coefficient [19]

os(θj) =
N

∑
k=1

d

∑
i=1

(si
k,j)

2 (4.12)

where k is the time steps, and i represent each output y = y1, y2, ..., yd.
The larger the overall sensitivity parameter os(θ) for each parameter, the more

sensitive the system response is with respect to small perturbations of this parameter.

4.2.2 Practical identifiability analysis

Identifiability analysis is often divided in structural identification analysis and prac-
tical identification analysis. For the structural identifiability analysis, also known as
theoretical identifiability analysis, the analysis only depends on the model structure
itself, and can be performed without the need of input and measured data. If the
parameters in the model shows not be identifiable, the model structure itself needs to
be changed to achieve identifiability. The analysis assumes that the model structure is
absolutely accurate with exact measurements with no error. For nonlinear ODE, such
as the glucose metabolism model, there exists different methods to state a structural
identifiability. However, structural identifiability analysis is not usually performed
[19], mostly due to computational complexity, and will not be performed here.

In the real world, the mathematical model is not exact and measurement errors
will always be present. Therefore, all models need further practical identifiability
analysis even though a theoretical analysis has been performed. Different methods
can be used to state practical identifiability, where the most commonly used methods
are Monte Carlo Simulation and to study Fischer Information Matrix (FIM).

The Monte Carlo simulation is used to evaluate whether the theoretically identi-
fiable parameters can be reliably estimated with acceptable accuracy from noisy data
[19]. This is done by determine the nominal parameter values, and solve the ODE
model to get the output measurement. Afterwards, N sets of these measurements
is generated, where measurement noise is added to each set. Then, the parameters
is estimated for each set, and the relative estimation error is calculated for each pa-
rameter. If the relative estimation error for a given parameter is unacceptably high,



it is claimed that this parameter is not practically identifiable. Because this method
required to estimate the parameters values, and the relative estimation error for each
parameter, in each set N, this method is very computational demanding.

Fisher Information Matrix

The other approach is to calculate FIM, which is linked to the sensitivity analysis in
chapter 4.2.1, where the FIM is calculated as follows

FIM =
N

∑
k=1

(DS(tk))
TQ−1(DS(tk)) (4.13)

where matrix Q is a measurement-noise covariance matrix.The matrix S(tk) is the sen-
sitivity matrix calculated for each time step k, and the matrix D is the measurement
matrix. This result in a q× q matrix.

FIM is a measure of the information content of the measured signal relative to
a particular parameter, and can therefore be used to quantify the richness of the
experimental data. Hence, the FIM states the ability to estimate a specific set of
parameters. The inverse of the FIM can also tell something about the identification
properties, and is known as the Cramer-Rao bound . The Cramer-Rao bound is a
lower bound on the error variance of the best estimator[12]. A solution with low
bounds, results in a possible low mean squared error between the real and estimated
data. Hence, a small Cramer-Rao bound corresponds to a more accurate result for
the estimated parameters

The inverse of the FIM is also known as the covariance matrix C. With the covari-
ance matrix make it possible to calculate the covariance between parameters in the
parameter vector θ.

C = FIM−1 (4.14)

Since the covariance is a measure on how much two variables change together, the
covariance matrix can be used to state whether a parameter is identifiable or not. If
there is a large covariance between two parameters, this indicates that the parameters
will be hard to identify. This is because the parameter show the same behavior, and is
therefore hard to distinguish. Because the covariance is calculated in different scales,
the covariance are often hard to compare. Therefore, the correlation matrix is often
used instead, which is the normalized covariance matrix. The correlation shows the
dependency among the parameters, which is quantified between -1 and 1. A corre-
lation of 1 means that the two variable are equal, and a correlation near 1 indicates
that the two parameters is strongly dependent. Hence, if the correlation between two
parameters is near 1, this may indicate non-identifiability. The correlation matrix R is



calculated in the following way

R =


r11(θ1, θ1) r12(θ1, θ2) ... r1q(θ1, θq)
r21(θ2, θ1) r22(θ2, θ2) ... r2q(θ1, θq)

.

.

.
rq1(θq, θ1) rq2(θq, θ2) ... rqq(θq, θq)

 (4.15)

where

rij = 1 , i = j (4.16)

rij =
Cij√
CiiCjj

, i 6= j (4.17)

As can be seen, the FIM is most important in its inverse form, where it reveals de-
pendencies among parameters. Since the inverse is a measure in the lower bound of
the error variance of the parameter estimates, this can be used directly in the design
of an optimal experiment. In that case, a scalar measure of the covariance matrix is
used by one of the following forms:

• A-optimal design: min(Trace(C))

• D-optimal design: min(det(C))

• E-optimal design: min(λmax(C)

• Modified E-optimal design: min ((λmax(C)/λmin(C))

where C = FIM−1. The A-optimal design tries to minimize the trace of C. How-
ever, this criterion is rarely used [9]. The D-optimal design tries to minimize the
determinant of C, and results in the smallest volume of the confidence region in
the parameter space. While E-optimal design corresponds to a minimization of the
largest eigenvalue of the covariance matrix, and intends to minimize the maximum
error. The modified E-optimal design minimizes the ratio of the largest to the smallest
eigenvector. D-optimality and E-optimality is the most common methods [15].

To be invertible, the FIM should have a determinant different from zero and
should not be ill-conditioned. To match these requirements, any pair of matrix
columns should not be very similar. As each column of the matrix represents a
parameter, the determinant of the FIM provides a reasonable measurement of the
correlation of a set of parameters [31]. A large determinant value means lower values
of the diagonal elements of the covariance matrix, which means a lower bound of
the error variance. Hence, the Fisher Information Matrix is important regarding the
identifiability of a model.



4.3 Identifiability analysis of the glucose model

In order to calibrate the glucose model, there is a need for identifying parameters
by performing an experiment on each individual. In our case, all the parameters
are known in advance, which means that not all parameters need to be estimated.
Because the glucose model consist of 16 parameters, this would not have been pos-
sible with blood glucose as the only output. Therefore, we need to choose which
parameters that seem reasonable to identify in order to make the model as accurate
as possible.

In chapter 4.2.1, it was stated that sensitivity analysis plays an important role in
finding a suitable parameter vector. This is also true in our case, but we also have to
take the glucose-insulin interaction theory from chapter 2.2.1 into consideration. If
we put all the parameters in the parameter vector we get the following

θ =
[

Gb Ib p1 p2 p3 Ti Vp VI
1
Td

C1 a1 kemp kabs f HRb α β a Tex
]

Because certain body fluids have known volumes, the parameters Vp and VI which
represents the plasma and insulin distribution space, can be assumed known. The
basal glucose Gb and basal insulin Ib for a healthy person, can be found by blood
measurements after a fasting state. These basal values can also be found for a diabetic
by skipping activities that would alter their blood glucose such as eating, exercise
and bolus insulin. Then, use a blood glucose monitor to check the amount of insulin
needed to keep the blood glucose in a specific range [10]. For the basal heart rate HRb,
this can be found by simple measuring the resting heart rate. Hence, there is no need
to use parameter estimation techniques to estimate these parameters. Because the
pancreatic insulin secretion function is only valid for a healthy person, the parameters
C1 and a1 may be disregarded from the parameter vector.

Intuitive, it may seem reasonable to identify those parameters that varies the most
among individuals. However, the rate of biochemical processes in our bodies de-
pends on age, gender, external temperature, genetics, body fat percentage and weight.
Hence, most likely all parameters in the glucose model is individual. Therefore, the
model and its parameters need further study. We are left with the following vector of
parameters which we want to take closer look upon:

θ =
[

p1 p2 p3
1
Td

α β a kabs kemp Ti f Tex

]
(4.18)

4.3.1 Ranking of parameters with different experiments

Sensitivity analysis might give us a clue for which parameters that should be in-
cluded in the parameter model, where the parameters that have little influence on
blood glucose perhaps should be removed. The sensitivity of the glucose output to
the different parameters, depends on the experimental data. For example, if there
is no carbohydrate intake during an experiment, the glucose concentration will be
insensitive to the parameters kemp and kabs.



A sensitivity analysis for the glucose model could give us an indication in which
parameters that affect the glucose output, and when. Therefore, two different exper-
iments representing a healthy person were simulated, and the sensitivity was calcu-
lated for the parameter vector 4.18. The model was simulated in Matlab, where the
jacobian matrix ∂ f /∂x was calculated numerically, while ∂ f /∂θ was found as

∂ f
∂θ

=


∂ f1
∂θ1

... ∂ f1
∂θq

... . . . ...
∂ fd
∂θ1

... ∂ fd
∂θq



∂ f
∂θ

=


Gb − G 0 0 0 −XZG −YG

0 −X I − Ib p3TiS2/VI 0 0
0 0 0 −S1 0 0
0 0 0 S1 − S2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 f Qgut/Vp 0 0 kabsQgut/Vp 0
0 0 0 (p3/VI)(S2/Td + Iown) 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −Qsto 0 0 0
0 −Qgut Qsto 0 0 0

dZda 0 0 0 0 Z/T2
ex


where

dZda =
(1− Z) f (Y)(1− f (Y))

a
(4.19)

and

Iown =
Rm

1 + exp((C1 − G)/a1)
(4.20)

where 4.20 is zero for a diabetic type 1 person.

Healthy person

In experiment one, a meal of 50 000[mg] carbohydrates were taken at t=50, with a
following 30 minutes exercise session at t=150. In the second simulation, a meal of 40
000 [mg] carbohydrates were taken at t=30 and a meal of 50 000[mg] of carbohydrate
was taken at t=150. At t=60, a 30 minutes exercise session started. The duration of
all simulations were 500 minutes, and with a constant heart rate HR = 120 during
exercise.

The sensitivities was plotted for the first experiment and can be seen in figure 4.2,
4.3 and 4.4. For parameter p1, the glucose level is most affected during the meal and
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Figure 4.2: Sensitivity for parameters 1 to 4

exercise. The same is also true for parameter p2 Parameter p3 is only influencing the
glucose level during the meal. As can be seen, time constants Td and Ti are the only
parameters which affect the glucose level in the fasting state.

As expected, plasma glucose is only influenced by parameters kabs, kemp and f
after the meal. After about 250 minutes, glucose in not affected by these parameters
at all, which indicates that all the glucose has passed through the digestive system.
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Figure 4.3: Sensitivity for parameters 5 to 8

We can see that the glucose level is not influenced by the exercise parameters α, β,
a and Tex until the start of the exercise session at t=180, which is true because Z = 0
when HR = HRb. The parameter β which describes the insulin independent glucose
utilization during exercise, is only influencing the glucose level during the exercise.
The parameter α which describes the increased insulin sensitivity, affect the blood
glucose level both during and after exercise. As can be seen, the time constant Tex
seems to have a small influence the glucose level.

From the plots, it can be seen that the glucose output is affected by the different
parameters at different time slots depending on input umeal and the exercise describ-
ing input Y. To see which parameters that totally have most effect on the glucose level,
the parameters were ranked according to equation 4.12. The rankings are shown in
table 4.1 for both experiment one and two. The parameters are ranked based on
sensitivity calculations every 30 seconds to give an overall view.
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Figure 4.4: Sensitivity for parameters 9 to 12

Diabetic type 1 person

Two simulations were also done in the case of a diabetic type 1 person. In the first
simulation an insulin injection of 3U was taken at t=50, followed by meal of 50 000
[mg] of carbohydrates at t=60. At t=150 a 30 minutes exercise session started. In the
second simulation started with an exercise session of 30 minutes at t=30. A meal of 65
000 [mg/min] of carbohydrates was taken at t=100, followed by an insulin injection
at t=110 of 3U.

How much fast-acting insulin that is needed for a diabetic person after eating
meal of carbohydrates, is highly individual. A rule of thumb is that 1U of insulin for
every 10-18 grams of carbohydrate. However, for a very young child, as little as 0.1U
of fast-acting insulin might cover 15 grams of carbohydrate. Therefore, the size of the
insulin injection inputs are varying, but are chosen in such a way that 1U is supposed
to cover 10-18 grams of carbohydrates.

0 100 200 300 400 500
0

2

4
x 10

−4 dG/dp2

Time [min]
0 100 200 300 400 500

−1

−0.5

0
x 10

−3 dG/dp3

Time [min]

0 100 200 300 400 500
−1

−0.5

0
x 10

−3 dG/d(1/Td)

Time [min]
0 100 200 300 400 500

−4

−2

0
x 10

−5 dG/dTi

Time [min]

Figure 4.5: Sensitivity for a diabetic type 1 person

Because the first simulation was quite similar to the first simulation for the healthy
person, not all sensitivities were plotted. The most interesting with this simulation
was the time constant Td which is the delay for the subcutaneous insulin injection.
This parameters is plotted in figure 4.5 together with the sensitivities regarding p2,
p3 and Ti. In this simulation, the output glucose is affected more by Td the moment



after the insulin injection. The same is true for parameter Ti, while both parameter
p2 and p3 show the same behavior as for the healthy person.

The overall sensitivity ranking was computed for both simulations and is shown
in table 4.1. The parameters show the same tendencies in all experiments, for both a
healthy and a diabetic type 1 person. For all experiments, the glucose level is quite
insensitive to the parameters a, Ti and Tex. The glucose level seems to be most affected
by parameters f and kabs. The glucose level is also highly affected by parameter β,
but also of parameter α. We can see that the glucose level was particular affected
by parameter α in simulation 2 for both the case of a healthy and a diabetic type 1
person. In these simulations, a meal was taken after the exercise session, where the
increased insulin sensitivity caused by parameter α results in an increase in overall
sensitivity. The remaining parameters do not seem to have a huge impact on the
glucose output.

Table 4.1: Overall sensitivity for healthy and diabetic type 1 person

Parameter Simulation 1 Simulation 2 Simulation 1 Simulation 2
(healthy) (healthy) (diabetic) (diabetic)

p1 243.80 77.18 176.66 196.85
p2 0.10 0.19 0.16 0.55
p3 0.16 0.32 0.26 1.27
1
Td

1.37 1.50 1.78 3.14
α 18.40 155.83 23.01 455.91
β 368.34 366.51 336.79 371.10
a 6.27E-13 8.67E-13 7.88E-13 9.96E-15
kabs 603.28 1236.40 838.52 1493.10
kemp 0.97 1.69 1.27 2.06
Ti 1.87E-4 3.17E-4 2.36E-4 7.49E-4
f 639.95 1311.60 889.51 1583.90
Tex 7.14E-6 9.57E-5 8.76E-6 3.12E-4

4.3.2 Calculating the covariance matrix

In the previous section, a sensitivity analysis was performed and the parameters were
ranked according to the parameter vector

θ =
[

p1 p2 p3
1
Td

α β a kabs kemp Ti f Tex

]
(4.21)

If we calculate the rank of the STS matrix for the simulations of a healthy person
described in section 4.3.1, where a simple meal was followed by an exercise session,
we find that the rank equals 9 for all simulations when the glucose output is assumed
measured every 15 minute. There may exist an input vector that increases the rank,
but the results indicate that the parameter vector in 4.21 is not identifiable. Hence, it
not possible to find a unique, local parameter vector.

As stated in section 4.2.2, the correlation matrix can tell something about the
dependencies among parameters. If two parameters show the same behavior in a



model, these two parameters might be difficult to distinguish by parameter identi-
fication techniques. Therefore, the correlation matrix can show were identifiability
might be a problem. The correlation was calculated by equations 4.15, 4.16 and 4.17
according to the first simulation described in section 4.3.1 for a healthy person. The
result is shown in table 4.2. The FIM was found by assuming a glucose measurement
every 15 minutes. Another experiment, or another glucose measurement time, would
have given a different result.

Table 4.2: Correlation matrix for a healthy person

1.0000 -0.5575 0.6932 -0.1465 -0.5227 -0.4175 -0.4389 -0.6876 -0.5353 0.1797 -0.6878 -0.5041
-0.5575 1.0000 -0.7927 -0.4941 -0.1795 -0.1272 -0.0913 0.7878 0.4994 -0.7080 0.7883 -0.1590
0.6932 -0.7927 1.0000 0.3875 0.0779 0.0173 0.0039 -0.8584 -0.6251 0.7140 -0.8587 0.0811

-0.1465 -0.4941 0.3875 1.0000 0.8178 0.2669 0.2207 -0.3867 -0.3113 0.9221 -0.3868 0.8545
-0.5227 -0.1795 0.0779 0.8178 1.0000 0.6141 0.5898 -0.0367 -0.0166 0.6538 -0.0367 0.9572
-0.4175 -0.1272 0.0173 0.2669 0.6141 1.0000 0.8533 -0.0524 -0.0238 0.2099 -0.0525 0.3860
-0.4389 -0.0913 0.0039 0.2207 0.5898 0.8533 1.0000 -0.0347 -0.0157 0.1692 -0.0347 0.4524
-0.6876 0.7878 -0.8584 -0.3867 -0.0367 -0.0524 -0.0347 1.0000 0.8988 -0.6540 1.0000 -0.0223
-0.5353 0.4994 -0.6251 -0.3113 -0.0166 -0.0238 -0.0157 0.8988 1.0000 -0.4988 0.8984 -0.0100
0.1797 -0.7080 0.7140 0.9221 0.6538 0.2099 0.1692 -0.6540 -0.4988 1.0000 -0.6542 0.6830

-0.6878 0.7883 -0.8587 -0.3868 -0.0367 -0.0525 -0.0347 1.0000 0.8984 -0.6542 1.0000 -0.0223
-0.5041 -0.1590 0.0811 0.8545 0.9572 0.3860 0.4524 -0.0223 -0.0100 0.6830 -0.0223 1.0000

It is also interesting to see if the correlation matrix will change when exogenous
insulin is added. Therefore, the correlation matrix was also calculated for the first
simulation described in section 4.3.1 for a diabetic type 1 person. The result is shown
in table 4.3. The FIM was found by assuming a glucose measurement every 15 min-
utes.

Table 4.3: Correlation matrix for a diabetic person

1.0000 -0.2196 0.0138 -0.3428 -0.6647 -0.4414 -0.5419 -0.3149 -0.2430 -0.3411 -0.3150 -0.7586
-0.2196 1.0000 -0.5652 -0.6360 -0.3026 -0.2742 -0.1895 0.9633 0.8795 -0.6395 0.9633 -0.2397
0.0138 -0.5652 1.0000 0.5540 0.0009 0.0013 0.0005 -0.4676 -0.5574 0.5540 -0.4672 0.0003

-0.3428 -0.6360 0.5540 1.0000 0.5971 0.2371 0.1923 -0.4642 -0.4423 1.0000 -0.4641 0.6675
-0.6647 -0.3026 0.0009 0.5971 1.0000 0.8017 0.7622 -0.1531 -0.0825 0.5967 -0.1532 0.9285
-0.4414 -0.2742 0.0013 0.2371 0.8017 1.0000 0.8399 -0.1719 -0.0932 0.2369 -0.1720 0.5623
-0.5419 -0.1895 0.0005 0.1923 0.7622 0.8399 1.0000 -0.1133 -0.0607 0.1922 -0.1134 0.6694
-0.3149 0.9633 -0.4676 -0.4642 -0.1531 -0.1719 -0.1133 1.0000 0.9445 -0.4692 1.0000 -0.1022
-0.2430 0.8795 -0.5574 -0.4423 -0.0825 -0.0932 -0.0607 0.9445 1.0000 -0.4482 0.9443 -0.0544
-0.3411 -0.6395 0.5540 1.0000 0.5967 0.2369 0.1922 -0.4692 -0.4482 1.0000 -0.4690 0.6670
-0.3150 0.9633 -0.4672 -0.4641 -0.1532 -0.1720 -0.1134 1.0000 0.9443 -0.4690 1.0000 -0.1022
-0.7586 -0.2397 0.0003 0.6675 0.9285 0.5623 0.6694 -0.1022 -0.0544 0.6670 -0.1022 1.0000

Because of the size of the table, it might be a bit hard to compare the different pa-
rameters. However, a close look indicates that there is no big differences between the
two correlations matrices. It can be seen in both tables that the correlation is strong
between certain parameters. In our case, if the correlation between two parameters
is strong, we can choose between changing the model to avoid the identifiability
problem, or simply just add one of the two parameters to the parameter vector, and
simply find the other parameter value from the literature. In the following we will
look closer to the correlation among the different parameters.

The correlation among the parameters in the exercise model is strong. A correla-
tion of 1 is found between parameters kabs and f , and the correlation between kempt



and f , and kabs and kemp, is both over 0.89. The only input affecting the gut submodel
is the input umeal. No other input will possibly have any influence on the dynamic
of the gut submodel, which means that the identifiability of these parameters can
not be improved by exciting the system by other inputs. Even though exciting the
system with several meals, the parameters are still correlated. Hence, it most likely
not possible to separate parameter kabs and f . Therefore, one of these two parameters
might need to be taken from the literature, or the model needs to be changed in order
to avoid the identifiability problem.

Among the parameters in the exercise model, the strongest correlation is 0.9572
and is found between parameters α and Tex. There is also a correlation of 0.8533
between β and a. As can be seen from the sensitivity plots, the glucose level to not
show the same sensitivity behavior regarding parameters β and a.

In the case for the diabetic person, it seems to be strong correlations between kabs
and p2, and kempt and p2. In addition, a strong correlation is also seen between 1/Td
and Ti.

4.3.3 Comparing different parameter vector by using the Fishers
Information Matrix

In section 4.2.2, it was stated that an optimal experiment could be found by minimiz-
ing the determinant of the inverse of the FIM. Minimizing this criteria maximizes the
expected accuracy of the parameter estimates. In order to find the parameter vector
that maximized the accuracy of the parameter estimates, optimal experiments could
be calculated for all combinations of parameter vectors. Then, the parameter vectors
could be compared, and parameter combinations could be disregarded based on the
results. However, all possible combinations for a parameter vector of size k are found
by the binomial coefficient given as

Ck =
n!

(n− k)!k!
(4.22)

where n is the number of parameters to choose from. Hence, if we want to find all
combinations for a parameter vector of size 6 when there is a total of 12 parameters
to choose from, this corresponds to a 924 different combinations. Hence, solving an
optimal experiment for each parameter combination is too computational demand-
ing.

In order to compare the identifiability properties of parameter vectors of different
sizes, 14 different experiments was simulated. In each experiment, the D-optimality
value det(C)) was calculated for all possible combinations of parameter vectors of
size six, seven and eight parameters. The value was calculated corresponding to
blood glucose measurements every 10, 20, 30 and 40 minutes. In order to compare
the different parameter vectors, the Fisher Information Matrix was calculated based
on a normalized sensitivities.

In addition to the D optimal criteria, the rank of the STS matrix was calculated
to state identifiability or not. The experiments were designed to contain one or two
meals, and a 20 minutes exercise session corresponding to a heart rate of 132[beat-
s/min]. In the case of a diabetic person, insulin was injected before or after the meal,
or a small dose was given both before and afterwards. Because it is limitations in the



duration and how the experiment possibly can be performed, 14 different simulations
seemed like an adequate number to reveal the dynamic of the model.

From the ranking of parameters in section 4.3.1, both parameters parameter Ti
and Tex showed to have a very small impact on the glucose output. Therefore, to
reduce the complexity of the calculations, these two parameters were disregarded.
This means that the ten parameters [p1 p2 p3 1/Td α β a kabs kemp f ] were used to
combine different parameter vectors.

The calculation of the D-optimality value showed, in general, that the same pa-
rameter vector combinations minimized the D-optimality value for all 14 simulations.
Therefore, the results in table 4.4 only shows the D-optimality value calculated for
simulation 13, where a meal was taken in the early beginning of the experiment,
followed by an exercise session after about 130 minutes.

Table 4.4: Parameter vector of size 3 for healthy person

Parameter vector θ T = 10 T = 20 T = 30 T = 40

[α β f ] 1.0233e+16 6.1571e+16 2.3106e+17 6.2632e+17
[p1 α f ] 1.0266e+16 5.2782e+16 1.0398e+17 3.8245e+17

[p2 p3 a] 1.0067e+37 5.5132e+37 2.4897e+38 2.0600e+38
[p2 p3 kemp] 8.8228e+35 4.7378e+36 4.6051e+37 4.1652e+39

Table 4.5: Parameter vector of size 3 for diabetic person

Parameter vector θ T = 10 T = 20 T = 30 T = 40

[α β f ] 3.2262e+16 6.7952e+17 6.9953e+17 2.1287e+18
[p1 α f ] 2.8617e+16 1.3975e+17 2.8046e+17 9.4991e+17

[p2 p3 a] 4.0596e+36 3.7890e+37 2.5470e+37 1.2832e+38
[p2 p3 kemp] 2.5495e+35 1.9030e+36 8.0547e+38 1.1086e+40

In table 4.4, we can see the lowest and highest value of the D-optimality value
for a parameter vector of size 3. We can see the value increases with an increase in
supposed glucose measurement times, which is true because fewer glucose measure-
ments result in a FIM matrix which contain less information about the system. We
can see that [α β f ] produces the lowest values for all sampling times. This is also
true in the case of a diabetic type 1 person, which is shown in table 4.5. The param-
eter vector combinations which corresponds to the one with the lowest and highest
value of the D-optimality value, are equal for both a diabetic type 1 person and a
healthy person. In addition, the calculated value of the D-optimality value is quite
similar in both cases.

The results in the case of a parameter vector of size 6 is shown in table 4.6 in the
case of a healthy person, and in 4.7 in the case of a diabetic type 1 person. Again,
the parameter vector combinations for both a diabetic type 1 person and a healthy
person seem to show the same results.

Therefore, only one parameter vector combination for a parameter vector of size
8, has proved full rank of the STS matrix. In some experiments it did not prove full



Table 4.6: Parameter vector of size 6 for healthy person

Parameter vector θ T = 10 T = 20 T = 30 T = 40

[p1, 1/Td α β kemp f ] 1.1898e+42 3.7467e+43 4.1240e+46 5.0946e+48
[p1, 1/Td α β kabs kemp] 2.8509e+44 8.9778e+45 9.8676e+48 1.2183e+51

[p1 p2 p3, 1/Td β kemp] 5.3304e+58 2.3792e+60 9.7178e+61 1.0945e+66
[p1 p2 p3, 1/Td kabs, kemp] 7.4035e+58 5.6762e+60 3.0532e+63 4.9064e+67

Table 4.7: Parameter vector of size 6 for diabtic person

Parameter vector θ T = 10 T = 20 T = 30 T = 40

[p1, 1/Td α β kemp f ] 1.7192e+42 4.5279e+43 4.4174e+48 7.8674e+50
[p2 1/Td α β kabs kemp] 5.6950e+48 7.8742e+50 8.2766e+52 6.7586e+58

[p1 p2 p3, 1/Td β kemp] 1.0369e+58 6.0479e+59 8.4828e+62 1.0178e+69
[p1 p2 p3, 1/Td kabs, kemp] 1.3548e+59 1.9299e+61 3.0595e+65 2.7894e+71

rank for a glucose measurement every 30 and 40 minutes. In the case of parameter
vector of size 9, only one parameter vector proved to have full rank in the case of
glucose measurement every 10 and 20 minutes.

It can be seen that the different parameter vector combinations for both a healthy
and diabetic type 1 person, have the almost the same calculated D-optimality value.
Hence, a chosen parameter vector of a certain size will show almost the same iden-
tifiability properties for both a healthy and a diabetic type 1 person. How the D-
optimality criterion changes with different sizes of the parameter vector, is shown in
table 4.8. The calculation is done in the case of a healthy person.

Table 4.8: Overview of parameter vector with lowest optimality criterion for healthy
person

Size of parameter Lowest det(C) for Parameter vector
vector T = 20

2 1.5769e+09 [α f ]
3 5.2782e+16 [p1 α f ]
4 2.2218e+24 [p1 α β f ]
5 4.4816e+33 [p1 α β kemp f ]
6 4.5279e+43 [p1 1/Td α β kemp f ]
7 2.3929e+56 [p1 p2 1/Td α β kemp f ]
8 1.0764e+72 [p1 p2 p3 1/Td α β kemp f ]
9 - -

In order to get an overview of the column rank of the STS matrix, the rank was
calculated for all combinations of all sizes of the parameter vector. In the case of
parameter vector of size 9, no vectors proved to have full column rank for all four
glucose measurement times. It was also revealed that parameter vectors containing a
were not identifiable when the size of the parameter vector was five or higher.



Table 4.9: Overview of rank for a healthy person

Size of parameter Number of combinations Comments
vector with full coulum rank

2 38
3 83
4 108
5 91 Parameter a no longer identifiable
6 49
7 15
8 2
9 0

The differences between the vector with the lowest and highest value of the D-
optimality value, have shown that the choice of parameter vector is important for
accuracy of the parameter estimates. It has also been shown that parameter a is only
identifiable if the size of the parameter vector is four, or lower. In addition, parameter
vectors containing a have shown poor values of the D-optimality criterion.

4.4 Summary

The sensitivity analysis shows that the parameters a, Ti and Tex have a very small in-
fluence on the blood glucose output. Because of its small influence on the output, this
parameters are hard to identify. In addition, one may question the reason for identify-
ing a parameter which does not have any affect on the output. The practical analysis,
shows strong correlations between a and α, and a and β. Parameter Ti shows s strong
correlation to both Td and p2, while Tex is highly correlated with Td and α. The rank
of the STS matrix, showed that no parameter vectors of size 5 or higher, contain-
ing parameter a, were identifiable. In addition, calculating the D-optimality criterion
showed that parameter vector containing a, the D-optimality value was much higher.
Hence, this parameter is not suited for parameter identification.

The sensitivity analysis also shows that parameters kabs, f , α, β and p1 have a
huge influence on the glucose output. Identifying these parameter will be of great
importance of the accuracy of the model. However, the practical analysis shows
strong correlations among the parameters. The practical analysis shows a correlation
of 1 between kabs and f , which means that it will be practically impossible to separate
these two parameters. In addition, they are both highly correlated to parameter kemp.
Hence, most likely only one of these parameters can be identified. Both kabs and f
also show strong correlations to parameters p2 and p3. In the case of a healthy person,
there is also a strong correlation between p1 and p3, and p2 and p3. This may suggest
that p3 should not be identified. In the case of a diabetic person, there is also s strong
correlation between kemp and p2. In the case of a healthy person, there seem to be
some correlation between 1/Td and α.

Calculation of the D-optimality value, shows that the accuracy of the estimated
parameters highly depend on the choice of parameter vector. As expected, the value
increases with an increase between each glucose measurement. How much this in-



crease means in practice, is a bit hard to say. However, the glucose measurement
sampling time, should perhaps not be constant.

If kemp is not calculated by a function, but need to be identified, kabs and f can most
likely not be a part of the parameter vector. Taken into consideration the correlation
between α and 1/Td, this means that parameters p1, p2, 1/Td, β and kemp is a vector
set without strong correlations.





5Calibration and choice of
parameter vector based on real
glucose data

5.1 RDE criterion
Until now we have analyzed the model regarding its identifiability properties. We
have looked at the ranking of parameters to state which parameters affect the glucose
output the most, and we have calculated the D-optimality criteria and compared
different parameter vectors of different sizes. Even with all this information, we still
don’t know how many parameters that should be added to the parameter vector.
Even though the theoretical analysis have showed which parameters that may be
added - will the estimation of parameters work in practice? The glucose model is
only an approximation of the process, and blood glucose measurement meters are
known for occasionally incorrect readings. Therefore, the error between the glucose
measurements and the estimated may become large. A natural step might be to look
at real glucose data.

Inspired by a method given in Machada et. al. (2008)[31], we might be able to get
a better overview of the identifiability regarding the number of possible parameter
vector combinations. The method is based on what is called the RDE-criterion, which
is given as [31]:

RDE =
normD
modE

(5.1)

It was stated that the covariance matrix C = FIM−1 represented the lower bound on
the error variance of the best estimator. Therefore, we wanted det(C) to be as low as
possible. In this case, normD is given as the normalized determinant of the FIM

normD = D‖θ‖2 (5.2)

where

D = det(FIM) (5.3)
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and ‖θ‖ is the Euclidean norm. Since we want the lower bound of the error variance
of the estimator to be as low as possible, we want normD as big as possible. The
normalization able us to compare normD for different subsets. For modE, this is
defined as the ratio between the highest and the lowest FIM eigenvalue

modE =
max(λFIM)

min(λFIM)
(5.4)

A modE criterion close to unity indicates that all the involved parameters indepen-
dently affects the outputs. Because normD gives an indication of how good the
estimator may perform, and modE represents the dependencies among parameters,
both normD and modE are interesting parameters. Calculating the ratio of normD
and modE gives us the RDE, which we want to be as large as possible and work as
an index to compare the different combinations of parameter vectors.
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Figure 5.1: Real and simulated blood glucose level



The method described in Machada et. al. (2008)[31] is an algorithm, where the
RDE-criterion is used in a systematic procedure to define the dimension of the pa-
rameter subset. The procedure was made in order to find a suitable parameter subset
from a number of current of parameters. The procedure is based on the RDE crite-
rion, and is illustrated in figure 5.1. The overall sensitivity is calculated for a certain
experiment. Then, the first half of with the largest overall sensitivity is chosen, where
each parameter works as a ”seed” which will make the subset grow. The FIM and
RDE criterion is calculated for the seed plus one parameter. When every combina-
tions the seed and the different parameters are calculated, the RDE is sorted. The
model is calibrated using real data for the subset with the largest RDE. Then, RDE
is calculated in the optimal point, which is now called RDEc. If the current RDEc is
larger than the previous, the model is updated with the calibrated values. Then, a
new parameter is added to the subset, and a new iteration is started. The subset with
the largest RDEc is a subset which is able to provide a good fitting to the available
experimental data [31].

5.1.1 Parameter estimation methods

A general framework for parameter estimation, or calibration, is to estimate the pa-
rameters in the model given experimental data. However, parameter estimation in
nonlinear models is known to be difficult [34], where the problem is not fitting the
data, but rather the ability of the model to make predictions under conditions differ-
ent from the ones used in the fitting. Most current methods for parameter estimation,
are to formulate the parameter estimation problem as a nonlinear optimization prob-
lem with constraints. The objective function of the optimization is defined as the
discrepancy between model prediction with estimated parameters, and the experi-
mental data. Various optimization methods have been used to solve the formulated
nonlinear dynamic optimization problem [34].

The parameter identification can also be performed with an extended Kalman
filter, and other various methods. However, the method of finding a suitable parame-
ter subset with the RDE-criterion, is based on calibration an optimization algorithm,
where the following cost function is minimized:

J =
N

∑
k=1

(Greal,k − Gestimated,k)
2 (5.5)

5.1.2 Collecting glucose data

In order to perform the algorithm, real data was needed. From the simulation in
chapter 2, there was a leak of data regarding the heart rate during exercise. There-
fore, in order get real experimental data, I tested myself. The total time of the test
was 320 minutes, and the blood glucose was measured with a Bayer Ascensia Con-
tour blood glucose meter every 10 minutes. I started in fasting state, and then a meal
of 70 grams carbohydrates was taken between t=11 and t=14. At t=162, a 25 minutes
exercise session started on a cross trainer. The heart rate was measured every minute.



Between t=213 and t=214 a meal of 25 grams of carbohydrates were taken. A plot of
the real and estimated data is shown in figure 5.2.
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Figure 5.2: Real and simulated blood glucose level

It was shown that the parameters in the gut submodel stopped influencing the glu-
cose output about 150 minutes after a meal. Therefore, the exercise session in the
test was also chosen to start about 150 minutes after the meal. It was assumed that
the ability of identify the gut parameters would increase when the model was not
affected by the parameters in the exercise model. A certain time after the exercise,
a meal was taken. It was assumed that the meal might show the increase in insulin
sensitivity caused by the state Z.

As we can se from the plot, the model is roughly able to follow the real glucose
measurements. However, it seems like the model expects a certain decrease in blood
glucose during the exercise session. From the glucose measurements, there is no
significant sign of any decrease in the blood glucose level during exercise.

5.1.3 RDE algorithm for the glucose model

Because the algorithm is not that computational demanding, parameters Ti and Tex
were also regarded, even though it was not expected that it would cause any dif-
ference in the results. Hence, the 12 parameters used in the sensitivity analysis, as
shown in 4.18, were regarded. In order to find the ”seeds” for the parameter subset,
the overall sensitivity was calculated, and can be seen in table 5.1. The six parameters
with the highest ranking were β, α, f, kabs, p1 and p3, and were therefore used as seed.
Subsets were found corresponding to all available glucose measurement, which cor-
responds to a glucose measurement every 10 minutes. The result are shown in table

Table 5.1: Overall sensitivity of parameters

p1 p2 p3 1/Td α β a kabs kemp Ti f Tex

36.48 0.16 0.28 0.13 154.73 399.76 2.28E-15 110.36 0.13 2.84E-4 117.07 4.73E-5

5.2, were the subsets with the highest RDE are presented in an decreasing order. This



method suggest that the parameter vector should only consist of α and f . We can
see that the found optimal values sometimes varies from subset to subset. For the
parameter vector θ = [α f ], the parameter α is estimated to be 60 times higher than
for the parameter vector α = [p1 α].

In almost every subset, parameter α is defined at its lower bound, which corre-
spond to 0.0097. The reason for this, is most likely due to the experimental data. The
glucose measurements shown in figure 5.2 shows no reduction in the glucose level
during exercise, while the sensitivity analysis showed that both α and β only have a
huge influence on the glucose output during exercise. Because the exercise does not
seem to affect the glucose output in the experiment, α are estimated to be small in
order to fit the experimental data. For the plot 5.2, a small α as possible will reduce
the negative peak during exercise. With no variation in the glucose output during
exercise, the estimation of parameter α will not be possible.

Table 5.2: RDE results

Seed Parameter vector Optimized values RDEc

f [α f ] 0.5870, 1.8155 0.1563
α [p1 α] 0.0084, 0.0097 0.0134
f [p1 α f ] 0.1073, 0.1055, 2.5120 0.0019
p3 [p3 α] 3.26e-05, 0.0097 3.33e-06
β [α β] 0.0097, 0.0013 1.48e-06
p1 [p1 1/Td α] 0.0162, 0.0324, 0.0097 4.34e-07
f [p1 1/Td α f ] 0.1073, 0.0425, 0.1039, 2.3848 7.60e-08
kabs [α kabs] 0.0097, 0.1426 3.73e-09
p1 [p1 1/Td α kemp] 0.0201, 0.0234, 0.0097, 0.0530 1.01e-09

Parameter f has been assigned with an optimal value of 1.1885, or higher. Be-
cause parameter f is supposed to be a number between 0 and 1 to represent the
fraction of glucose appearance from the gut, this value is meaningless. In Slezak
et. al.(2010) [11], the problems estimating the parameters by an optimization solver,
was discussed. When the cost function is minimized, the optimization process can
force the search to go to a corner of the parameter space which, while fitting the data
exquisitely, results in meaningless data. This may especially happen if the model is
not an accurate fit to the true process, which it rarely is [11]. The article pointed
out that especially the global minimum could result in meaningless parameters in
biological systems. However, finding a global solution is most likely very hard, and
a local solution might be satisfactory.

Based on these results, it is not possible to draw any conclusions. The parameter
vector with the highest RDE value, include one parameter with a meaningless high
value and a parameter which is most likely non-identifiable from the experimental
data. If parameter f had upper bound equal to 1 and the experimental data was
more informative, perhaps this would no longer be a suitable parameter vector. The
big deviations in the calculated values and the values from the literature, is most
likely due to lack of information in the experimental data. This may indicate that
collecting enough informative data from experiments, might be challenging. Even
with a moderate exercise session, it was not possible to see any reduction in the



blood glucose. Perhaps the exercise session should have started when the blood
glucose level was higher, in order to see if the level would reduce.

5.2 Optimal experimental design
As we saw in the previous section, we was not able to identify parameters α and β.
Was this due to the experimental setup, or is it practically impossible to identify these
parameters without clamp techniques? What should be done in order to increase
the identifiability? To answer these questions we may need to perform an optimal
experiment.

We have seen that the identification properties depends on the performed exper-
iment, and the resulting experimental data. Changing the input, the sampling time
or the experimental duration, the covariance matrix will change and the system may
not be identifiable. Therefore, the design of the experiment is of great importance.
An optimal experiment will make the information data as rich as possible, which
increase the ability to identify a unique parameter vector. The design of an identifi-
cation experiment includes several choices that need to be evaluated, such as

• Which signals to measure

• Which signals to manipulate

• How much the signals should be manipulated

• Sampling time for measurements

• Duration of experiment

• Initial conditions for the states

Even though an optimal experiment design exists in theory, it might be impossible
to perform in real life. Some inputs might not be able to be manipulated, and the
input will have a limited amplitude. In other cases, neither the desired sampling
time or experimental duration are possible. Sometimes, the experiment is possible to
perform, but might be too expensive, too dangerous or in conflict with ethical norms.
The optimal experiment is the most optimal experiment in the feasible region defined
by these constraints.

Our experiment is supposed to be performed on a human being, which is either
healthy or a diabetic. For a healthy person, the experiment involves measuring the
blood glucose, while the manipulated variables are given by the input vector u =
[umeal Y]. This means that the person need to be physical active and have an intake
of carbohydrates during the experiment. For a diabetic person, insulin can also be
injected, which corresponds to the input vector u = [umeal uins Y].

In our case, there is obviously limitations in how the experiment can be per-
formed. It is an upper limit in how much carbohydrate that can possibly be eaten
during a certain time, and upper limit in how high the heart rate can possibly be. A
rule of thumb is that the maximal heart rate is given as HRmax = 220− age. There is
also other practical limit, such as in how long the experiment can possibly last. If the
glucose measurement need to be taken by the finger pricking method, there is also
a practical limit in how often this can be done. An optimal experiment may require



specific initial conditions. However, because of lack of measurements and the diffi-
culty to achieve these conditions within great accuracy, this seem hard to perform in
practice. In addition, there are other practical limitations. It is also other practical
reasons, for example, it will be difficult to inject insulin, exercise and eat at the same
time.

5.2.1 Numerical solution to the optimal experimental design

In order to find an optimal experiment, we need to look into optimization theory. In
general, an optimization problem consists of maximizing or minimizing a function by
choosing input values, and additional parameters, within an allowed set. In our case,
we want to use the D-optimality criterion and minimize det(C). In order to find an
optimal experiment, the problem can be described as a dynamic optimization prob-
lem. However, the dynamic optimization problem is time continuous, and can not
be solved directly. In order to solve the dynamic optimization problem, we need to
apply some level of discretization that converts the original continuous time problem
into a discrete problem [4]. When the input is discretized, the idea is to approximate
the infinite dimensional dynamic optimization problem by a finite dimensional opti-
mization problem. This finite dimensional optimization problem can be solved as a
nonlinear programming (NLP) problem.

Control variables

State variablesOptimizer

Cost and
constraints

Numerical
integration

t

t

x(t)

u(t, ω)

Figure 5.3: Optimal experimental design loop

In figure 5.3, we can see how we want to solve the optimality problem. The
optimization starts with a guess regarding the initial state and input vector. Then,
the differential equations which describe the system is solved at each iteration by a
differential equation solver. At each iteration, the sensitivities and the corresponding
Fisher Information matrix is calculated. This produces the value of the objective



function, which is used by a nonlinear programming solver to find the optimal control
input.

Control vector parameterization

The methods that discretize the system can be divided into two categories according
to the level of discretization, where partial discretization only discretize the control
vector, while in full discretization both the states and control vector is discretized.
For our purposes, there is no need for a full discretization. Therefore, we only want
to discretize the control vector u. For partial discretization, there are several alter-
natives such as control vector parameterization and the multiple shooting approach.
Although all of them have their own advantages and disadvantages, the CVP ap-
proach seems to be the most adequate for optimal experimental design [13]. The
CVP proceeds by dividing the duration of the experiment [t0, t f ] into a number of
ρ ≥ 1 intervals.

The input can have a linear or a more complex parabolic form in each interval.
However, in our case, it is natural to think of both the carbohydrate intake umeal and
the insulin injection uins as constant inputs in each interval. For the input Y, a linear
input might seem as a natural choice because of the time it taks to reach a certain
heart rate. However, to reduce the complexity, the input Y will also be seen as a
constant during each interval. Because we want to set the input as a constant during
each interval, the parameterization becomes very simple and is only about keeping
the input constant during each interval as shown in figure 5.4

t k

u t 

t k1 t t ft−1 t f=t k2 =
t

Figure 5.4: CVP and constant input

Each input umeal, uins and Y will therefore be a vector which depends on the duration
and number of stages ρ for each input. For example, if the experimental duration
t f = 150, and we want the input Y to be divided into constant workout sessions of
15 minutes, the input will be divided into ρ = 10 intervals, and Y will be a vec-
tor of ten elements. The time spot for when the input is able to change its value



(tk, tk+1, ..., tρ), is called the switching time. The simplest choice for the control
switching time intervals is to choose them equal for all controls. However, in our case
it might be necessary to have different switching points for every input. This because
an insulin injection is done in a few second, while a carbohydrate intake might take
several minutes.

Nonlinear Programming

When the control vector is discretized by control vector parameterization, the dy-
namic optimization problem can be approximated by solving the system as a nonlin-
ear programming problem. The nonlinear programming problem is about minimiz-
ing the objective function F(p), and can be written as [30]:

min
p

F(p) (5.6)

with constraints

ce(p) = 0 (5.7)

ci(p) ≥ 0 (5.8)

pi,min ≤ pi ≤ pi,max (5.9)

where p = (p1 p2 ... pN)
T is a finite set of parameters uniquely defining the parame-

ters to be optimized. Equation 5.7 defines a vector of equality constraints for the opti-
mal parameter vector p, while equation 5.8 defines a vector of inequality constraints.
In order to find an optimal experiment, the p-vector in the nonlinear programming
problem consists of the inputs umeal, uinsa and Y at each time step i. In addition,
parameters such as the duration of the experiment can also be added.

5.2.2 Design of experiment

In order to see if it is possible to identify the parameters in the exercise submodel,
an optimal experiment was designed and performed. The free variables in the opti-
mization problem was the inputs umeal and Y. The total duration of the experiment
could also have been included, but it was set to 320 minutes. In order to solve the
NLP problem, the Matlab optimization solver fmincon was used, which is able to find
the minimum of a constrained, nonlinear multivariable function. The input umeal
was divided into intervals of 3 minutes, while Y was divided into intervals of 25
minutes. For a total time of 320 minutes, this corresponds to 107 possible umeal in-
puts and 12 different inputs for Y. The result of the optimal experiment depends
on the parameter vector. For no special reason, the parameter vector was chosen as
θ = [p1 p2 1/Td α β kemp]. This vector includes the exercise parameters which we
are interested in.



The optimal experiment with only upper and lower limits for the inputs, is showed
in figure 5.5, where the upper limit were 12000mg and 1.2 respectively. The glucose
was supposed measured every 10 minutes. The optimal experiment requires a huge
carbohydrate intake, and exercise sessions both before, during, and after the meals.
This experiment will certainly give a rich output, which in turn will increase the iden-
tifiability of the parameters. However, because of the huge carbohydrate intake and
as many as four exercise sessions, this experiment cannot be performed in practice
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Figure 5.5: Optimal experiment

Allowing for a maximum 3 meals and 1 exercise session, where meals and exercise
cannot happen simultaneously, an optimal experiment was supposed to be found. In
addition, the upper limits was set to 12000 mg for the carbohydrate intake and 1.2 for
the exercise input Y, which corresponds to a heart rate of 143 beats/min. However,
including more constraints made the optimal solution highly dependent on the initial
guess of the input. The added, nonlinear constraints tightens the feasible region, only
making the it possible to find a local solution very near the initial guess. Therefore,
10 different initial guesses where chosen, and the one which showed the best perfor-
mance was not seen as an optimal experiment, but as a satisfying experiment for its
practical purpose.
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Figure 5.6: Optimal experiment with nonlinear constraints



The result is shown in figure 5.6. The three meals can be assumed to increase the
ability to identify the parameters which affect the glucose output after a meal. The
exercise session starts about 40 minutes after the last meal, which is the time where
the blood glucose should be around its maximum. Therefore, we might be able to
measure the reduction in the blood glucose due to exercise. Hence, this seem like
reasonable experiment to perform.
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Figure 5.7: Real and simulated blood glucose level

The result from the new experiment performed on myself is shown in figure 5.7,
where the blood glucose was measured every 10 minutes with the same glucose mea-
surement meter. In order to capture the effect of exercise, the blood glucose was
measured every 5 minutes during exercise. The meals were taken at t=36, t=120 and
t=186, and contained 37 000 mg, 36 500 mg and 38 700 mg carbohydrates. The meal
consisted of medium fiber crispbread with different toppings, and a small amount of
banana in the last meal. The exercise started at t=225 and ended at t=250, and was
done by following an aerobic program with dumbbells.

We can see the model follows roughly until half into the exercise session. The real
blood glucose starts to rapidly decrease when the exercise starts, and then starts to
increase after t=240. The simulated glucose model also starts to drop at the begin-
ning of the exercise session, but instead of increasing it only flattens. This is true
regarding to the exercise submodel, which expects a decrease during exercise, fol-
lowed by increased insulin sensitivity. Hence, the exercise model seem to have some
unaccounted dynamics.

In different articles, it is stated that strenuous exercise such as weight lifting, or
only moderate exercise, may cause rise in the blood sugar [33]. During exercise the
liver pumps out glucose, and a rate that can be very high. Sometimes the produc-
tion is greater than what the body needs, which may cause the blood glucose to
increase both during and after exercise. Factors such as exercise intensity, and how
well trained you are, affect this process. The exercise session in my experiment was
not that hard, and was interrupted for some time every 5 minutes because of the
blood measurement. Still, it shows this effect, which is not considered in the glucose
model. This may indicate that the glucose model is only suited for describing exer-
cise with low intensity. Hence, one may consider to change the exercise submodel. In
Dalla man et. al. (2009) [6], an exercise model was developed to take into consider-



ation the intensity of exercise. However, it does not describe the dynamics that may
cause the rise in blood glucose level during or after exercise.

Because of the unmodeled dynamics, parameter identification with the collected
glucose data will only result in wrong values for the identified parameters. It is not
possible to find the exercise submodel parameters, and it is not possible to perform
the RDE algorithm. One should consider the importance of this phenomenon.



6Discussion of results and
conclusion

6.1 Discussion

One may question the identification analysis, especially the correlation analysis. The
correlation among the parameters will change when changing the input and the glu-
cose measurement times. Therefore, it is a bit hard to draw conclusions regarding the
correlation. Calculating the D-optimality value for different experiments and glucose
measurement times, was supposed to give a bigger overview. However, this criterion
is used in designing an optimal experiment, and it is hard to add some meaning to
the D-optimalitiy value itself. The algorithm based on the RDE criterion also failed,
most likely beacuse of lack of information in the real glucose data. However, the
method may have failed even with suitable glucose data.

In order to find a suitable parameter vector, and increase the ability to estimate
the parameters as accuaratley as possible, I think that all perhaps should be solved
when designing the optimal experiment. For the glucose measurement time, the
measurement time should most likely not be constant, but be placed at strategic time
spots solved together with the optimal design.

6.2 Conclusion

This project was about finding a model describing the glucose metabolism model,
and studying its identification properties. The model is supposed used for real-time
blood glucose level prediction in a non-invasive glucose measurement device. In
the literature, two certain types of glucose metabolism models were found, where
the simplest minimal model described the glucose metabolism at a general level and
proven to be identifiable with simple test methods. The second type of model was the
maximal model, which is often complex and describes separate processes affecting
the glucose level. These models often consists of a huge number of equations, and
is used for research groups for simulation purposes. The parameter identification
techniques are often demanding, and the parameter values found in the literature is
a mean value found in a population test group.

The final model, which was chosen by Prediktor, was a minimal model where sub-
models describing subcutaneous insulin injected, oral glucose intake and the effect
of physical activity, were added. From real glucose test data, the simulated model
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showed to roughly follow the glucose test data, and the prediction was greatly im-
proved introducing a Kalman filter.

Because biochemical processes in the body are highly individual, and because we
want the glucose model to be as accurate as possible, it is desired to calibrate the
model and fit the parameters to each specific person. Therefore, the identifiability
of the chosen model was studied. The calculation of the D-optimality value, showed
that value of the D-optimality value depend highly on the choice of parameter vector.
As expected, it was also shown that the D-optimality criterion decreases with an in-
crease in glucose measurement sampling time. The calculated rank of the STS matrix
showed that no parameter vectors of size 9 were identifiable, and that a parameter
vector of size 8 was not identifiable for all glucose measurement sampling times. This
was the same in the both the case of a healthy person and a diabetic type 1 person.

Because of the small influence on the glucose output, and the strong correlations
between other parameters, parameters a and Tex should be found from the literature,
and not be identified. On the other hand, parameters kabs, f , α, β and p1 have a huge
influence on the glucose output. Based on the sensitivity and practical analysis, the
parametersp1, p2, 1/Td,α, β and kemp are not strongly correlated and have a certain
effect on the blood glucose output, and seems to be suited for parameter identifi-
cation. In order to pick the parameter vector in a systematic way, and too see if it
was possible to find optimal values for the parameters, an algorithm based on the
RDE-criterion was implemented. However, the method failed.

Collecting the last real glucose data, the data revealed that there is unmodeled
dynamics in the glucose model. While the glucose model predicts that the glucose
level flattens after exercise, the glucose level actually starts to increase and reach as
high as 118 [mg/dL] before it decreases. The literature gives the impression of this
being a common phenomenon. Hence, this perhaps makes the current model only
able to predict blood glucose under low intensity exercise.
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Appendix

Table 1: Parameter values form the litteraturel

Parameter Value

Gb 81.0
Ib 10.0
p1 0.0275
p2 0.035
p3 0.000046
Ti 0.142
VP 117.0
VI 11.0
Td 10.0
Rm 80.0
C1 120.0
a1 10.0
kemp 0.03
kabs 0.06
f 0.9
HRb 65.0
a (1/0.049)4

α 0.974
β 0.000339
Tex 600.0
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Table 2: Model parameter description for the minimal model

Parameter Description Unit

G Plasma glucose concentration [mg/dL]
Gb Basal plasma glucose [mg/dL]
X Remote insulin action parameter [1/min]
I Plasma insulin concentration deviation from basal value [mU/L]
Ib Basak plasma insulin concentration [mU/L]
p1 Insulin dependent glucose removal parameter [1/min]
p2 Remote insulin removal rate [1/min]
p3 Insulin action sensivity parameter [L/mU/min]
n Plasma insulin decay parameter [1/min]
Ra The rate of glucose appearance from gut [mg/min]
VP Plasma distribution space [dL]
VI Insulin distribution space [L]
U Insulin appearance rate [mU/min]
Td Time delay for subcutanous insulin injection [min]
S1 Insulin in compartment one [mU]
S2 Insulin in compartment two [mU]
u Fast acting insulin injection [mU/min]
ub Fast acting insulin bolus [mU/min]
ul Short acting insulin [mU/min]
Rm Insulin production max rate [mU/min]
C1 The level of glucose which turn on the insulin production [mg/dL]
a1 Insulin production steepness parameter [mg/dL]
Qsto Amount of glucose in the stomach [mg]
Qgut Amount of glucose in the intestine [mg]
kemp Rate of gastric emptying [1/min]
kabs Rate of intenstinal absorption [1/min]
Ra Rate of glucose appearance in plasma [mg/min]
f Fraction [dimensionless]
Z Insulin action due to exercise [dimensionless]
Y Energy consumption [dimensionless]
HR Measured heart rate [beats/min]
HRb Basal heart rate [beats/min]
a parameter [dimensionless]
α Increased insulin-depentent glucose utilization parameter [dimensionless]
β Increased insulin-indepentent glucose utilization parameter [1/min]
Tex Exercise time delay [1/min]
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