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Abstract

The main goal of this thesis has been to develop a new model-free state estimator for dy-
namic positioning, based on an inertial measurement unit, a gyrocompass and a position
reference system. The state estimator should provide estimates for position, velocity and
attitude.

A literature study was given on different navigation systems and the associated sen-
sors, where the nonlinear observer presented by Grip, Fossen, Johansen and Saberi has
been described thoroughly. This model-free state estimator was modified to include a
gyrocompass and to perform under varying position measurement rates. The modified
nonlinear observer was tested both in simulations and experimental tests.

The simulations were realized with the use of MATLAB and Simulink, and was divided
in different case studies. To begin with, two accelerometer bias estimation methods were
compared to see which one was best suited. Secondly, the state estimator was tested
during consistent and inconsistent position measurement rates. In the next case, the
dead-reckoning capabilities of the nonlinear observer was tested under the presence of
simulated noise and bias on the inertial measurement unit. Lastly, a comparison between
the model-free state estimator and the model-based Kalman filter was carried out.

The experimental tests were realized in collaboration with Marine Technologies LLC in
Egersund, Norway. The tests were conducted on a trolley using a MEMS based inertial
measurement unit. The nonlinear observer was implemented on a computer, tested in
different scenarioes, and compared with a reference system using a logging system. The
tests were divided in three main case studies. From the first case, ideal sensor rates were
considered. The second case tested the performance of the observer without gyrocompass
measurements. Lastly, the performance of the observer without the position reference
system was tested.

The modified nonlinear observer was found to provide satisfactory estimates, in both the
simulations and the experimental tests. Due to a minor implementation problem in the
experimental setup, the performance of the observer was at some degree degraded. Since
the raw data from the sensors were logged, additional simulations were carried out with
the use of MATLAB. These simulations gave good results. Because of sensor errors on
the inertial measurement unit, the performance without aiding by the position reference
system was degraded. On the other hand, the observer performed with great results in
the absence of gyrocompass measurements.
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Sammendrag

Hovedmålet med denne masteroppgaven har vært å utvikle en ny modellfri tilstandsesti-
mator for dynamisk posisjonering, basert på en treghetsmåleenhet, et gyrokompass og et
posisjonsreferansesystem. Tilstandsestimatoren skulle gi estimater for posisjon, hastighet
og holdning.

Et litteraturstudie ble gitt for forskjellige navigasjonssystemer og tilhørende sensorer,
hvor den ulineære observatøren presentert av Grip, Fossen, Johansen og Saberi har blitt
grundig beskrevet. Denne modellfrie tilstandsestimatoren ble modifisert til å inkludere
et gyrokompass og for å yte under varierende rater fra posisjonsreferansesystemet. Den
modifiserte estimatoren ble testet både med simuleringer og eksperimentelle tester.

Simuleringene ble realisert med MATLAB og Simulink, og ble delt i forskjellig case-
studier. To estimasjonsmetoder for akselerometerskjevhet ble testet til å begynne med.
Dette ble gjort for å se hvilken metode som passet best. Tilstandsestimatoren ble så testet
under konsistente og ukonsistente rater for posisjonsmålingene. Videre ble bestikknav-
igasjonsevnene til estimatoren testet med simulert støy og skjevhet på treghetsmåleen-
heten. Til slutt ble en sammenligning mellom den modellfrie tilstandsestimatoren og et
modellbasert Kalman filter gjennomført.

De eksperimentelle testene ble realisert i samarbeid med Marine Technologies LLC i
Egersund, Norge. Testene ble gjennomført på en tralle med bruk av en MEMS-basert
treghetsmåleenhet. Tilstandsestimatoren ble implementert i en datamaskin, testet i ulike
scenarier, og sammenlignet med et referansesystem ved bruk av et loggesystem. Testene
ble delt i tre case-studier. I den første casen ble ideelle sensorrater ansett. Den andre
casen testet ytelsen til estimatoren når gyrokompassmålinger var utilgjengelig. Til slutt
ble ytelsen til tilstandsestimatoren testet under fravær av posisjonsreferansemålinger.

Den modifiserte tilstandsestimatoren ble funnet til å gi tilfredsstillende estimater, både
under simuleringene og de eksperimentelle testene. På grunn av et lite implementasjon-
sproblem i de eksperimentelle testene ble ytelsen til estimatoren noe redusert. Logget
rådata fra sensorene gjorde det mulig å utføre tilleggssimuleringer i MATLAB. Resul-
tatene fra disse simuleringene ga gode resultater. Ytelsen til tilstandsestimatoren under
bestikknavigasjon ble redusert på grunn av målefeil i treghetsmåleenheten. På den andre
siden ga estimatoren gode resultater under fravær av gyrokompassmålinger.
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Chapter 1

Introduction

Model-based state estimators for dynamic positioning doesn’t handle external forces op-
timally, i.e. ice loads and similar. On the contrary, inertial measurement units (IMUs)
are becoming availible at a low cost with high accuracy. The integration of an IMU with a
global navigation satellite system (GNSS) could complement the model based approach,
resulting in a model-free state estimator.

1.1 Motivation

The most used navigation system for dynamic positioning systems today is the Kalman
Filter (KF), [27] and [41]. The KF can provide position, velocity and attitude (PVA)
estimates based on a stastical approach used to minimize the errors on the estimates.
The nonlinear version of the KF is the Extended Kalman Filter (EKF), [16].

The KF is normally based on a model of the system it’s going to navigate, which makes
it dependent on the quality of the chosen model. Any deviations/noise in the model
are filtered by the KF with appropriate tuning of the KF’s design matrices, under the
assumption that the process and measurement noise have zero mean and some variance.
In addition, the KF rely on solving the computationally demanding Ricatti equation for
the compution of KF gain, utilized on the system’s injection term.

Since marine operations in the arctic is becoming an area with increasing interests, mostly
due to petroleum extraction, the demand for precise navigation in higher latitudes are
required, [2]. This is an area where ice is a problem for both control and navigation.
Ice gathering around the hull of the ship would introduce an external force to the vessel,

1
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which would lead to errors in the KF approach, due to not being included in the model
and incorrect design matrices for the new sea state.The KF also introduce a significant
computational overhead, because of the Ricatti equation, and require time-consuming
tuning of the design matrices.

The above reasons gives the motivation to develop a model-free state estimator for dy-
namic positioning, using an Inertial Measurement Unit (IMU) as a substitute for the
model. This model-free approach can be realized with the nonlinear observer of Grip et
al. [20], which uses nonlinear theory.

State estimators based on nonlinear theory give rise to several advantages over the KF
estimation approach: The computational overhead is greatly reduced due to the removal
of the Ricatti equation. Since the number of differential equations to solve is reduced, ta
more maintainable code is achieved, less prone to faulty implementation. Using nonlinear
techniques, a state estimator based on nonlinear theory can be proven to have global
stabilty [29], unlike the EKF [13].

The nonlinear observer presented in [20] exploited measurements from an IMU to achieve
rotational and translational motion on the system it was mounted on, i.e. the specific
force and angular velocity measurements. These quantities could be integrated once and
twice to acquire the PVA estimates. As the IMU directly measures the forces inflicted
on the system, the nonlinear observer would be able to handle unknown forces, such as
ice.

1.2 Theory Basis

The development of a model-free nonlinear observer for dynamic positioning requires
insight in the following diciplines: Mathematics, physics, signal processing and marine
terminology.

The kinematics and kinetics are needed to describe the motion of a marine vessel. The
kinematics describe the motion of a vessel in different coordinate systems, whereas the
kinetics describe the forces and moments causing the motion of the vessel. More informa-
tion on these subjects are found in [15]. Further, the equations presented in the observer
are based on the strapdown equations, containing the fundementals of position, velocity
and attitude. See [39], [38] and [15] for references on this subject.

The nonlinear observer utilized in this thesis was originally introduced by Salcudean
[35]. The work of Salcudean was further extended to include GNSS aiding and gyroscope
bias estimation by Vik and Fossen [40], with the assumption of independent attitude
measurements.
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Since independent attitude measurements in most cases are unavailible, the use of vector
measurements was pursued in the work of Hamel et al. [22] and Mahony et al. [30],
assuming stationary reference vectors. Mahony et al. [34] and Hua [24] extended this
research to include time-varying reference vectors, but without the capability of gyroscope
bias estimation.

Grip, Fossen, Johansen and Saberi [17, 18] extended this work to include gyroscope bias
estimation, in the case of time varying reference vectors. In addition, estimation of vector
bias was included, i.e. accelerometer and magnetometer bias.

Grip et al. [20] augmenteded the results from [17, 18] to express estimates of position,
velocity and attitude in the ECEF frame, using a unit quaternion to represent the atti-
tude. This augmented observer will be the basis when deriving the modified nonlinear
observer for dynamic positioning.

1.3 Contribution of the Thesis

This thesis should include these main contributions:

• Set up a logging system in collaboration with Marine Technologies LLC (MT) to
collect data from sensors, state estimator and reference system.

• Develop a model-free state estimator for position, velocity and attitude, using IMU,
gyrocompass and GNSS.

• Implement the estimator in MATLAB/Simulink and evaluate its performance in
open loop. Compare with a model-based estimator in the presence of external
forces.

• Test the state estimator using the ADIS16485 MEMS based IMU on a trolley in
collaboration with MT.

The logging system was implemented on a control computer (CC) delivered by MT. The
performance of the the model-free state estimator was compared with the TSS Orion
INS, a navigation system with high-quality position and attitude estimates.

As earlier mentioned, the state estimator was based on the nonlinear observer from
Grip et al. [20]. Since this observer used magnetometer measurements in the attitude
observer’s injection term, this had to be modified to utilize the gyrocompass heading
measurements.
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1.4 Outline of the Thesis

The thesis started with describing the kinematics and kinetics of the motion of an object
in different coordinate systems. Secondly, an overview over different navigation systems
and sensors are given, before presenting the modified observer used to achieve the results
from the simulations and experimental tests. The results are then discussed before a
conclusion is presented with a proposed list of future work.

The thesis is organized in the following way:

Chapter 1 Gives an introduction which includes the motivation, theory basis and con-
tribution of the thesis.

Chapter 2 Studies the motion of an object in terms of kinematics and kinetics.

Chapter 3 Gives an overview of different navigation systems and sensors.

Chapter 4 Presents the nonlinear observer with necessary modifications to include a
gyrocompass.

Chapter 5 Presents the setup utilized to test and vailidate the modified observer.

Chapter 6 Presents the results and discussion obtained from the simulations.

Chapter 7 Presents the results and discussion obtained from the experimental tests.

Chapter 8 Gives a conclusion and proposes future work based on the results of the
thesis.

The following appendices are included:

Appendix A The simulator design.

Appendix B The Kalman filter and nonlinear observer comparison.

Appendix C The nonlinear observer code.

Appendix D Additional data.

Appendix E The digital appendix.



Chapter 2

Kinematics and Kinetics

This chapter describes the dynamics of an object using kinematics and kinetics. Section
2.1 studies the kinematics used to describe the motion of an object in different coordinate
systems, using geometrical aspects. Section 2.2 studies the forces and moments causing
the motion, more specifically denoted as the kinetics. The contents of the following
sections are mainly based on [15] and [39].

2.1 Kinematics

When studying the motion of a marine vessel the knowledge of different reference frames
are needed. Four main reference frames are going to be revised. The first two frames are
the Earth-Centered Inertial (ECI) frame and the Earth-Centered Earth-Fixed (ECEF)
frame, where both have their respective origins located in the center of the earth.

The next two reference frames are the North-East-Down (NED) frame and the body-fixed
(BODY) frame, with defined origins relative to the Earth’s reference ellipsoid (World
Geodetic System, 1984 (WGS84)) and fixed to the vessel, respectively. See Figure 2.1
for an illustration of the different reference frames.

5
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2.1.1 Reference Frames

Figure 2.1: Illustration of different reference frames, Photo: [15]

Earth-Centered Reference Frames

ECI The Earth-Centered Inertial (ECI) frame {i} = (xi, yi, zi) is a global inertial ref-
erence frame with origin oi in the center of the earth. The axes of the ECI frame
are fixed in space, where the x-y plane coincides with the earth’s equatorial plane
and the z-axis extends through the earth’s rotational axis.

ECEF The Earth-Centered Earth-Fixed (ECEF) frame {e} = (xe, ye, ze) has its origin
oe in the center of the earth. The x-y plane of the ECEF frame rotate relative
to the ECI frame with an angular rate ωie = 7.2921 × 10−5 [rad/s], whereas the
z-axis goes through the north pole. For a marine vessel moving at relatively low
speed, the Earth’s rotation rate can be neglected. The ECEF frame be considered
as inertial. This frame is the most commonly used coordinate system for global
navigation.

LLA Another way of representing position coordinates in {e} can be done with the use
of Latitude, Longitude and Altitude (LLA) coordinates {l} = (µl, ϕl, hl), where µl
and ϕl are represented in degrees and hl in meters. The latitude µl = ±90 [deg]
and ϕl = ±180 [deg] cover the whole planet, where µl = 0 [deg] and ϕl = 0 [deg] is
the intersection between the equator and the prime meridian. The ECEF’s x-axis
goes through this point.
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Geographic Reference Frames

NED A North-East-Down frame {n} = (xn, yn, zn) with origin on is a geographic co-
ordinate system defined relative to the Earth’s reference ellipsoid (WGS84). It’s
defined as the tangent plane on the surface of the Earth, with the x-axis pointing
to the true North, y-axis pointing to the East, and the z-axis pointing downwards.
For local navigation with nearly constant latitude, longitude and altitude, the NED
frame can be considered to be inertial.

BODY A body-fixed frame {b} = (xb, yb, zb) with origin ob is a moving coordinate
system fixed to the vehicle. The axis xb is directed forward (from aft to fore), the
axis yb is directed to the right (starboard), and the axis zb is directed downwards
(from top to bottom). The origin ob will be referred as the center of origin (CO)
of the vessel.

Notation

Scalar parameters and variables will be represented with lowercase notation throughout
this thesis. Vectors and matrices are represented with bold lower and upper case typing,
respectively. Superscripts will be used to denote which coordinate system the variable is
expressed in. Subscripts will be used to denote which frames the variable is relative to.

Consider these vectors as examples:

Θnb =
[
φ θ ψ

]>
∈ S3 Attitude between {b} and {n} in Euler angles.

qnb =
[
η ε>

]>
, ε ∈ R3, η ∈ R Attitude between {b} and {n} in quaternions.

pnb/n =
[
xn yn zn

]>
∈ R3 Position of {b} with respect to {n} expressed in {n}.

vnb/e =
[
un vn wn

]>
∈ R3 Velocity of {b} with respect to {e} expressed in {n}.

vbb/e =
[
ub vb wb

]>
∈ R3 Velocity of {b} with respect to {e} expressed in {b}.

where R3 denotes the Euclidian space of three dimensions and S3 denotes a sphere of three
dimensions. Most of the vectors in this thesis are described in R3, whereas matrices are
described in R3×3. Unless otherwise stated, this will be the case. Mathematical notations
can also be found in [15].
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2.1.2 Transformation between BODY and NED

There exists a rotation matrix R between two arbitrary reference frames {a} and {b}
denoted as Ra

b , which is a member of the special orthogonal group of order 3 (SO(3)),
defined in [15] as:

SO(3) = {R|R ∈ R3×3, R is orthogonal and det(R) = 1} (2.1)

The group SO(3) is a subset of all orthogonal matrices of order 3, which means that
SO(3) ⊂ O(3) where O(3) is defined as:

O(3) := {R|R ∈ R3×3, RR> = R>R = I3×3} (2.2)

where I3×3 is defined as a matrix with ones on the diagonal, denoted as the identity
matrix. The subscript of the identity matrix denotes its dimensions, in rows and columns,
respectively.

A rotation matrix Rβ,γ , which corresponds to a rotation angle β about the γ axis, can
according to [28] be defined as:

Rβ,γ = I3×3 + sin(β)S(γ) + [1− cos(β)]S2(γ) (2.3)

where γ =
[
γ1 γ2 γ3

]>
is a unit vector parallel to the rotation axis, and S(γ) is a

skew-symmetric matrix defined from [15] as:

S(γ) = −S>(γ) =

 0 −γ3 γ2

γ3 0 −γ1

−γ2 γ1 0

 (2.4)

Euler Angles

The most intuitive way to understand the attitude of an object is with the use of the
Euler angle vector Θnb =

[
φ θ ψ

]>
which describes the angles between BODY and

NED, where φ is roll, θ is pitch and ψ is yaw.
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Linear Velocity

A rotation matrix Rn
b (Θnb) can be created from the Euler angles Θnb. This matrix can

be used to transform vectors between the BODY and NED frame, such as the velocity
and acceleration.

The following equation illustrates the transformation of the velocity vector between the
two respective frames:

ṗnb/n = Rn
b (Θnb)vbb/n ⇔ vbb/n = Rn

b (Θnb)>ṗnb/n ⇔ vbb/n = Rb
n(Θnb)ṗnb/n (2.5)

The rotation matrix Rn
b (Θnb) contains three principal rotations which corresponds to

the x-, y- and z- axis:

Rx,φ =

1 0 0
0 cφ −sφ
0 sφ cφ

 , Ry,θ =

 cθ 0 sθ

0 1 0
−sθ 0 cθ

 , Rz,ψ =

cψ −sψ 0
sψ cψ 0
0 0 1

 (2.6)

where c· = cos(·) and s· = sin(·).

It is common to describe the rotation matrix Rn
b (Θnb) with combinations of three prin-

ciple rotations in the following order: First rotate around the z-axis, then about the
y-axis, and last about the x-axis. This rotation order is called the zyx-convention and is
mathematically equivalent to, [15]:

Rn
b (Θnb) := Rz,ψRy,θRx,φ (2.7)

Combining (2.6) and (2.7) yield the extended form:

Rn
b (Θnb) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (2.8)

Angular Velocity

The relationship between the Euler rate vector Θ̇nb =
[
φ̇ θ̇ ψ̇

]>
and the body-fixed

angular velocity vector ωbb/n =
[
p q r

]>
are related through a transformation matrix

TΘ(Θnb).



10 CHAPTER 2. KINEMATICS AND KINETICS

Θ̇nb = TΘ(Θnb)ωbb/n (2.9)

This transformation matrix was derived in [15] in the following way:

ωbb/n =

φ̇0
0

 + R>x,φ

0
θ̇

0

 + R>x,φR>y,θ

0
0
ψ̇

 := T−1
Θ (Θnb)Θ̇nb (2.10)

Expanding TΘ(Θnb) gives:

TΘ(Θnb) =

 1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.11)

where c· = cos(·), s· = sin(·) and t· = tan(·).

It’s worth noticing that the transformation matrix has a singularity for θ = ±90◦. For
marine surface vessels this will not be a problem since the pitch never would reach this
boundary.

Linear and Angular Velocities

The complete equation set for the kinematics between BODY and NED, using Euler
angles, can be represented as:

η̇ = JΘ(Θnb)ν (2.12)

where

η̇ =
[
(ṗnb/n)> Θ>nb

]>
(2.13)

ν =
[
(vbb/n)> (ωbb/n)>

]>
(2.14)

JΘ(Θnb) =
[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
(2.15)

03×3 denotes a matrix with zeroes on all of its entries.
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Unit Quaternions

Representing the attitude as a unit quaternion, instead of Euler angles, would be a
singularity free approach. Unit quaternions are less intuitive to understand, but gives a
more elegant solution both mathematically and for implementations on a computer.

A unit quaternion q is according to [15] defined as:

q =
[
η ε1 ε2 ε3

]>
=

[
η ε>

]>
(2.16)

where η is the real part and ε =
[
ε1 ε2 ε3

]>
is the imaginary part.

A set of unit quaternions Υ possesses the following property, [15]:

Υ := {q|q>q = 1, q =
[
η ε>

]>
, ε ∈ R3 and η ∈ R} (2.17)

The conjugate of q is denoted q∗ and is defined in [20] as:

q∗ =
[
η −ε>

]>
(2.18)

When deriving the strapdown equations and the nonlinear observer in Chapter 3 and
Chapter 4, the following notation was found useful, [20]:

ā =
[
0 a>

]>
(2.19)

where a =
[
a1 a2 a3

]>
is a vector and can be defined in quaternion notation with

real part η = 0 and imaginary part ε = a.

Linear Velocity

The real and imaginary parts η and ε in the unit quaternion q can be be defined as, [15]:

η := cos(β2 ) (2.20)

ε := γ sin(β2 ) (2.21)
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where γ is a unit vector satisfying:

γ = ± ε√
ε>ε

, if
√
ε>ε 6= 0 (2.22)

Combining (2.3), (2.20) and (2.21) give the following rotation matrix Rn
b (qnb) between

BODY and NED:

Rn
b (qnb) := Rη,ε = I + 2ηS(ε) + 2S2(ε) (2.23)

where the expansion of (2.23) yields:

Rn
b (q) =

1− 2(ε2
2 + ε2

3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2 + ε3η) 1− 2(ε2

1 + ε2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε2

2)

 (2.24)

The rotation matrix Rn
b (qnb) has the same properties as the rotation matrix Rn

b (Θnb),
obtained from the Euler angles Θnb. Rn

b (qnb) can therefore be used in the same manner
to rotate between BODY and NED:

ṗnb/n = Rn
b (qnb)vbb/n ⇔ vbb/n = Rn

b (qnb)>ṗnb/n ⇔ vbb/n = Rb
n(qnb)ṗnb/n (2.25)

Another way of representing rotations with quaternions can be given as, [20]:

v̄bb/n = qnb ⊗ ¯̇pnb/n ⊗ q∗nb (2.26)

where ⊗ denotes the quaternion product, and the velocity vectors are defined on the
notation given by (2.19).

Angular Velocity

The differential equation for a rotation matrix Rn
b can be defined as, [15]:

Ṙ
n

b = Rn
b S(ωbb/n) (2.27)
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Substituting (2.24) into (2.27) gives the relationship between the quaternion rate vector
q̇nb and the body-fixed angular velocity vector ωbb/n:

q̇nb = Tq(qnb)ωbb/n (2.28)

where Tq(qnb) is the transformation matrix, with the expanded form:

Tq(qnb) = 1
2


−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

 (2.29)

An alternative way of representing (2.28) is, [20]:

q̇nb = 1
2qnb ⊗ ω̄bb/n (2.30)

where ω̄bb/n is defined with the use of (2.19).

Linear and Angular Velocities

The complete equation set for the kinematics between BODY and NED, using quater-
nions, can be represented as

η̇ = Jq(qnb)ν (2.31)

where

η̇ =
[
(ṗnb/n)> q̇>nb

]>
ν =

[
(vbb/n)> (ωbb/n)>

]>
Jq(q) =

[
Rn
b (qnb) 03×3

04×3 Tq(qnb)

]
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Transformation between Euler Angles and Unit Quaternions

The transformations between Euler angles and unit quaternions can be done using the
functions q2euler and euler2q in MATLAB, which were found in the gnc library within
the mss toolbox1. For more information on this topic the reader is referred to [15].

Transformation between Body-Fixed Coordinates

The body-fixed coordinate system {b} has its center in CO. In addition to {b}, two other
body-fixed coordinate systems will be defined as:

{m} The origin of the IMU, where the lever arm rbm =
[
xbm ybm zbm

]>
denotes

the position of {m} with respect to {b}.

{gnss} The origin of the GNSS receiver, where the lever arm rbgnss =
[
xbgnss ybgnss zbgnss

]>
denotes the position of {gnss} with respect to {b}.

Position transformations between these body-fixed frames expressed in the NED or ECEF
frame can be illustrated through an example, [15]:

pnb/n = pnm/n −Rn
b (Θnb)rbm ⇔ pnm/n = pnb/n + Rn

b (Θnb)rbm (2.32)

where Rn
b (Θnb) is the rotation matrix obtained from the Euler angle vector Θnb.

The velocity transformation can be realized using (2.27):

vnb/n = vnm/n −Rn
b (Θnb)S(ωbb/n)rbm ⇔ vnm/n = vnb/n + Rn

b (Θnb)S(ωbb/n)rbm

Since the angular acceleration ω̇nb/n is not utilized or availible in this thesis, the acceler-
ation transformation is not considered.

1The toolbox can be found in http://www.marinecontrol.org/
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2.1.3 Transformation between ECEF and LLA

Parameters Description

f = 1
298.257223563 Ellipsoid flattening

a = 6378137 [m] Semi-major axis
b = a(1− f) [m] Semi-minor axis

e =
√

a2−b2

a2 First eccentricity

e′ =
√

a2−b2

b2 Second eccentricity
ωie = 7.292115× 10−5 [rad/s] Turn rate of the Earth

Table 2.1: WGS-84 parameters

LLA to ECEF

The transformation from LLA coordinates plb/l =
[
µ ϕ h

]>
to ECEF coordinates

peb/e =
[
xe ye ze

]>
can be done using the closed method defined in [31]:

xe = (R+ h) cos(µ) cos(ϕ)

ye = (R+ h) cos(µ) sin(ϕ) (2.33)

ze = ( b
2

a2R+ h) sin(µ)

where

R = a√
1− e2 sin2(µ)

(2.34)

The remaining parameters can be found in Table 2.1.

ECEF to LLA

The transformation from ECEF coordinates peb/e =
[
xe ye ze

]>
to LLA coordinates

plb/e =
[
µ ϕ h

]>
can be done using the closed method defind in [31]:
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µ = arctan(z
e + e′2b sin3(β)
r − e2a cos3(β) )

ϕ = arctan(y
e

xe
) (2.35)

h = p

cos(µ) −R

where R is defined in (2.34), and

r =
√

(xe)2 + (ye)2 (2.36)

β = arctan(z
ea

rb
) (2.37)

The remaining parameters can be found in Table 2.1.

2.1.4 Transformation between ECEF and NED

From the LLA coordinates plb/e =
[
µ ϕ h

]>
a new vector Θen =

[
µ ϕ

]>
∈ S2 can

be defined, containing the latitude µ and longitude ϕ. A principal rotation ϕ about the
z-axis and a rotation −µ− π

2 about the y-axis can be carried out to obtain the rotation
matrix Re

n(Θen) = Rz,ϕRy,−µ−π2 between NED and ECEF, [15]:

Re
n(Θen) =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


 cos(−µ− π

2 ) 0 sin(−µ− π
2 )

0 1 0
− sin(−µ− π

2 ) 0 cos(−µ− π
2 )

 (2.38)

Which after some calculations yields the expanded form:

Re
n(Θen) =

− cos(ϕ) sin(µ) − sin(ϕ) − cos(ϕ) cos(µ)
− sin(ϕ) sin(µ) cos(ϕ) − sin(ϕ) cos(µ)

cos(µ) 0 − sin(µ)

 (2.39)

The relationship between ṗeb/e and vnb/e can be expressed through Re
n(Θen) with:

ṗeb/e = Re
n(Θen)vnb/e (2.40)
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where the position peb/e can be found by integrating (2.40).

When considering navigation in a small local area, Re
n(Θen) can be approximated using

a constant latitude µ0 and longitude ϕ0 to obtain Re
n(Θ0).

With this approximation (2.40) gets simplified to:

ṗeb/e = Re
n(Θ0)vnb/e (2.41)

which will be sufficient when deviations from µ0 and ϕ0 are small.

2.2 Kinetics

This section will shortly derive the equations of motion for a marine vessel with six degrees
of freedom (6-DOF), both the generalized and the linearized version. The linearized
version will be used to design a Kalman filter for comparison with the nonlinear observer
in Chapter 6. The NED frame is utilized to describe the position, velocity and attitude.

2.2.1 Generalized

The generalized equations of motion for a 6-DOF marine vessel can according to [15] be
given as:

MRBν̇ + CRB(ν)ν = τRB (2.42)

where

ν =
[
(vbb/n)> (ωbb/n)>

]>
(2.43)

τRB =
[
(f bb )> (mb

b)>
]>

(2.44)

where ν is the velocity vector and τRB is the generalized force and moment vector.
Further, f bb and mb

b are defined as the force and the moment vectors, respectively. MRB

is the rigid-body mass matrix and CRB is the rigid-body Coriolis and centripetal matrix.
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2.2.2 Forces and Moments

The generalized vector τRB from (2.42) is further defined as, [15]:

τRB = τhd + τhs + τwind + τwave + τ pid (2.45)

where τhd is the hydrodynamic forces, τhs is the hydrostatic forces, τwind is the wind
induced forces, τwave is the wave induced forces, and τ pid is the forces made by the
thrusters.

The hydrodynamic forces τhd are generated by the liquids in motion and is given as,
[15]:

τhd = −MAν̇r −CA(νr)νr −D(νr)νr (2.46)

where MA is the added mass matrix, CA(νr) is the added Coriolis and centripetal matrix,
D(νr) = D + Dn(νr) is the damping matrix, containing a linear part D and a nonlinear
quadratic part Dn(νr).

Further, the hydrostatic forces τhs include buoyancy and gravitational forces and is
defined as:

τhs = −g(η) (2.47)

where g(η) is the restoring force and moment vector.

2.2.3 Maneuvering Model

The complete nonlinear 6-DOF maneuvering model is given by combining (2.12), (2.42),
(2.45), (2.46) and (2.47):

η̇ = JΘ(Θnb)νr (2.48)

Mν̇r + C(νr)νr + D(νr)νr + g(η) = τwind + τwave + τ (2.49)

where
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M = MA + MRB (2.50)

C(νr) = C(νr) + C(νr) (2.51)

D(νr) = D + Dn(νr) (2.52)

The relative velocity vector νr is defined as:

νr := ν − νc (2.53)

where νc is the current velocity.

Linearized Model for Low-Speed Applications

For low-speed applications, i.e. dynamic postioning, the current velocity can be treated
as a slowly varying bias b and compensated by the use of integral action, [15]. The
current velocity can therefore be neglected and νr = ν.

Another reasonable assumption when linearizing the nonlinear manevering model (2.49),
is to assume small roll and pitch angles, φ = 0 and θ = 0. This assumption will sim-
plify the rotation and transformation matrices such that Rn

b (Θnb) = R(ψ) = Rz,ψ and
TΘ(Θnb) = I3×3, [15].

(2.12) can then be reduced to:

η̇ = JΘ(Θnb)ν (2.54)

⇓ φ = θ = 0

η̇ = P(ψ)ν (2.55)

where

P(ψ) =
[
R(ψ) 03×3

03×3 I3×3

]
(2.56)

When working with linear theory, it is useful to define a vessel parallel (VP) coordinate
system, [15]:
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ηvp := P(ψ)>η (2.57)

where ηvp is the position and attitude in {n} expressed in {b}. Further, the differential
equation η̇vp for low-speed applications can be approximated to, [15]:

η̇vp ≈ ν (2.58)

for small attitude variations.

The hydrostatic forces g(η) can then be approximated with:

g(η) ≈ P(ψ)>Gη = Gηvp (2.59)

where G is the linear restoring force and moment matrix.

In the case of low speed ν ≈ 0 the nonlinear Coriolis and centripetal matrix C(ν),
in addition to the nonlinear quadratic damping matrix Dn(ν), can be neglected. This
reduce (2.49) to the linearized system:

η = P(ψ)ηvp (2.60)

η̇vp = ν (2.61)

Mν̇ + Dν + Gηvp = τwind + τwave + τ (2.62)

ḃ = 0 (2.63)

where b is the slowly varying bias vector added to compensate for ocean currents. Equa-
tions (2.60-2.63) are useful when implementing a Kalman Filter for dynamic positioning.



Chapter 3

Navigation Systems and
Sensors

This chapter will review different navigation systems, such as the inertial navigation
system (INS), the global navigation satellite system (GNSS), and the integration of both
systems (INS/GNSS). Different integration architectures will be described, mentioning
strengths and weaknesses. In addition, the fundementals about the inertial measurement
unit (IMU) and the gyrocompass will be revised.

3.1 The Inertial Navigation System (INS)

3.1.1 The Fundementals

Inertial navigation utilize measurements of mainly two sensors, accelerometers and gyro-
scopes. The accelerometer measures the specific force, which can be integrated once to
get the velocity and twice to get the position, after subtracting the gravitational com-
ponents. The gyroscope measures the angular velocity, and can be integrated once to
get the attitude. These sensors will in combination with proper electronics and software
result in an inertial navigation system (INS), [39].

Three accelerometers and three gyroscopes are usually combined in one unit, measuring
linear and angular motion about the main three axes in a body-fixed frame. This unit is
referred to as the inertial measurement unit (IMU) with 6 degrees of freedom (6-DOF).

21
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A navigation system usually estimate the position, velocity and attitude (PVA) expressed
in a known Cartesian reference frame, i.e. global navigation coordinates in the ECEF
frame or local navigaition in the NED frame. To acquire this, the inital position, velocity
and attitude of the vessel in the respective navigation frame is supposed to be known.

The knowledge of the gravity in the navigation frame is needed to subtract static com-
ponents from the accelerometers. This can be aquired by the use of an gravitational
model, see [32] for more information. In combination with proper rotation and transfor-
mation matrices, estimates of PVA expressed in the navigation frame is achieved. This
way of navigation is referred to as dead-teckoning (DR). More information about inertial
navigation can be found in [39] and [15].

3.1.2 The Strapdown Equations

The navigational equation in the fixed inertial ECI frame is given as, [38, 39]:

p̈i = f i + ği(pi) (3.1)

where p̈i is the total acceleration, ği(pi) is the gravitational acceleration given at a
specific postition pi, and f i is the specific force.

Position and Velocity

The relationship between pi and pe can be expressed through the transfomation matrix
Ri
e as:

pi = Ri
epe (3.2)

where the velocity can be achieved by taking the derivative of (3.2):

ṗi = Ṙi
epe + Ri

eṗe (3.3)

and the acceleration can be calculated by the derivative of (3.3):

p̈i = R̈i
epe + 2Ṙi

eṗe + Ri
ep̈e (3.4)
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The derivative of Ri
e is given by using (2.24):

Ṙ
i

e = Ri
eS(ωeie) (3.5)

with ωeie =
[
0 0 ωie

]>
, where ωie is the Earth’s rotational rate, see Table 2.1.

Taking the derivative of (3.5) yields:

R̈i
e = Ṙ

i

eS(ωeie) +Ri
eS(ω̇eie) (3.6)

The Earth’s rotational rate is assumed to be constant, hence ω̇eie = 03×1. With this
assumption, substitution of (3.5) into (3.6) gives:

R̈i
e = Ri

eS(ωeie)S(ωeie) (3.7)

Then, by inserting (3.7) and (3.5) into (3.4):

p̈i = Ri
eS(ωeie)S(ωeie)pe + 2Ri

eS(ωeie)ṗe + Ri
ep̈e (3.8)

Rearranging (3.8) with the substitution of (3.1) yields:

p̈e = (Ri
e)>(f i + ği(pi))− (Ri

e)>Ri
eS(ωeie)S(ωeie)pe (3.9)

−2(Ri
e)>Ri

eS(ωeie)ṗe (3.10)

p̈e = fe + ğe(pe)− S(ωeie)S(ωeie)pe − 2S(ωeie)ṗe (3.11)

The differential equations for position and velocity can further be expressed as:

ṗe = ve (3.12)

v̇e = −2S(ωeie)ṗe + fe + ge(pe) (3.13)

where ge(pe) is the plumb bob gravity vector defined as:
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ge(pe) = ğe(pe)− S(ωeie)S(ωeie)pe

= ğe(pe)− ωeie × (ωeie × pe)

using the cross product definition in [15]:

a × b := S(a)b (3.14)

where a =
[
a1 a2 a3

]>
and b =

[
b1 b2 b3

]>
.

The specific force measured by the accelerometers f b can be rotated to {e} with:

fe = Re
b(qeb)f b (3.15)

where qeb is the attitude quaternion between {e} and {b}, revised in the next section.

Attitude

The differential equation for the unit quaternion qeb between {e} and {b} is defined as,
see (2.27) in Section 2.1.2:

q̇eb = Tq(qeb)ωbeb (3.16)

where ωbeb is achieved by substracting the Earth’s rotational vector ωeie from the angular
velocity ωbib, where the latter is measured by the gyroscopes. This gives the following
expression for ωbeb :

ωbeb = ωbib −R
e
b(qeb)>ωeie (3.17)

By substituting (3.17) in (3.16), an alternative representation of q̇eb can be achieved by
using (2.19), (2.26) and (2.30), [20]:

q̇eb = 1
2qeb ⊗ ω̄bib −

1
2 ω̄

e
ie ⊗ qeb (3.18)
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Position, Velocity and Attitude

The complete strapdown equations in ECEF coordinates can be written as:

ṗe = ve

v̇e = −2S(ωeie)ve + fe + ge(pe) (3.19)

q̇eb = 1
2qeb ⊗ ω̄bib −

1
2 ω̄

e
ie ⊗ qeb

which will be the fundament when deriving the nonlinear observer dynamics in Chapter
4.

3.1.3 Errors

With error free measurements and integration techniques, the INS would yield corre-
sponding PVA estimates. Unfortunately, measurements from an IMU are never com-
pletely free of errors. Sensor noise, bias and calibration errors will at some degree always
be present, [15]. These errors will propagate through the strapdown equations by inte-
gration and will cause the INS estimates to drift from the true values.

To prevent the INS from drifting, there is a need for an additional system such as the
global navigation satellite system (GNSS). By integrating these two systems, the INS
errors can by bounded by the GNSS to prevent any drift. This INS/GNSS integration is
revised in Section 3.3, whereas the GNSS will be revised in the following section.

3.2 The Global Navigation Satellite System (GNSS)

A GNSS receiver computes the three dimensional position in the ECEF (or LLA) coordi-
nate system with the use of a process called trilateration, [33]. The concept trilateration
is based on knowing the distances from at least three known points to determine the po-
sition. A GNSS receiver needs to know the distances to at least four satellites to compute
its location, for reasons explained later.

There exist different constellations of GNSS satellites, orbiting the earth at about 20000 [km]
above the Earth’s surface. These constellations are groups of 20 − 30 satellites working
together to provide regional or global coverage, with examples such as GPS, GLONASS
and Galileo. Each of these systems will be explained in the following sections. For more
information about GNSS, the reader is referred to [23] and [25].
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3.2.1 The Fundementals

According to [25], each GNSS satellite broadcasts a signal containing its identification
(ID), the date and time when the signal was broadcasted, its orbit and status. These
signals are broadcasted with certain frequencies travelling at the speed of light (SOL).
The SOL travels in vaccum at 3.0 · 108 [m/s], covering about 300 [m] in 1.0× 10−6 [s].

To compute the distance/range from the receiver to the satellite, the propagation time is
multiplied with the SOL. This propagation time is the time elapsed from the satelletite
sending the signal to the receiver recieves the signal. Since the light doesn’t travel in
a straight line in mediums other than vacuum, the signal is being curved and delayed
traveling through the Earth’s atmosphere. These delays make the range to the satellite
appear longer than it really is, and will therfore be denoted as the pseudorange.

Since the GNSS receiver clock doesn’t appear to be nearly as accurate as the GNSS
satelitte clock, a receiver need the pseudoranges of four satellites to determine its loca-
tion. With only having three satellites availible, the receiver will not have an intersecting
postition with the use of the trilaterion method, caused by it’s inaccurate clock. Ac-
cording to [25] a fourth satellite should be added to make receiver’s internal clock to
synchronize with the satellite clocks. This will result in an intersecting position.

The GNSS architecture consists of three main segments,[23]: The space segment, the
control segment and the user segment. The space segment includes all of the satellites
in the respective GNSS constellation. The control segment is a ground based segment
including monitor stations, control stations and data uploading stations, where the satel-
lites’ orbit and clock are adjusted, when needed. The user segment is where the GNSS
signals are being processed, i.e. GNSS receivers owned by end-users.

3.2.2 Different GNSS Systems

GPS

The US Department of Defense established the Global Positioning System (GPS) in the
late 1970’s, being the first GNSS system. It was originally named NAVSTAR and was
intended for militrary use only, which was the case until 1983,[25].

In 1983, the GPS system was available for civilian use, where a GPS receiver will see
minimum six GPS satellites at any time from any location on the Earth, given that the
receiver is placed appropriate. The GPS constellation has 31 healthy satellites orbiting
the Earth, with an orbit period of approximately 12 hours, [10].
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GLONASS

The Global’naya Navigatsionaya Sputnikovaya Sistema (GLONASS) was, similar to the
GPS system, developed with military intensions by the Soviet Union during the 1970’s,
[23]. The system was fully operational in 1993 and availible for civilian use in 1995. The
GLONASS constellation has 28 satellites in orbit [9], whereas eight satellites are equally
spaced in three orbital planes, giving 24 operational satellites for navigation. Since the
GLONASS system orbits at a lower altitude than the GPS system, the orbit period for
each satellite is about 11 hours and 15 minutes, [23].

Galileo

The Galileo constellation is Europe’s answer to a GNSS system. Unlike GPS and
GLONASS, this navigation system is intended for civilian use, when planned fully oper-
ational in 2019, [11]. The full constellation will consist of 27 satellites orbiting in three
orbital planes, giving the user a position accuracy within one meter and with better focus
on coverage in higher latitudes, [25].

3.2.3 Additional GNSS Abbreviations

DGNSS

Differential GNSS (DGNSS) utilize two or more receivers to improve the position ac-
curacy of the remote GNSS receiver, [23]. The additional receivers are placed at fixed
locations with known coordinates, i.e. ground base stations. These base stations trans-
mits corrections of the pseudoranges to the remote GNSS receiver, such that any position
miscalculation is removed.

HDOP

The horizontal dillution of precision (HDOP) can be obtained from the GNSS receiver.
The HDOP represents a value dependent on the position accuracy in the horizontal plane,
[23].
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3.2.4 Errors

There are six main error sorces affecting the obtained position from a GNSS receiver [25],
listed in Table 3.1.

Error source Error range

Satellite clocks ±2 [m]
Orbit errors ±2.5 [m]

Ionospheric delays ±5 [m]
Trophosperic delays ±0.5 [m]

Receiver noise ±0.3 [m]
Multipath ±1 [m]

Table 3.1: GNSS Errors, [25]

Satelitte and Orbit Errors

Since the propagation time is being used to calculate the pseudorange to a satellite, errors
in the clock of that specific satellite will degrade the receiver’s calculated position. Slight
shifts of the satellite’s orbit affected by the Earth’s gravitation will affect the position.
Both clock and orbit errors will be adjusted and corrected by the control segment when
necessary.

Atmospheric Errors

Ionospheric delays are influenced by ultraviolet rays from the sun. These rays ionize
gas molecules resulting in a release of electrons. The electrons affect the GNSS satel-
lite’s broadcast signal, adding a delay to the propagation time. This delay is frequency
dependent and can be eliminated by the receiver with the use of different broadcast
frequencies.

Trophosperic delays are affected by temperature, humidity and pressure in the tropho-
sphere. These delays are harder to eliminate since they vary with location, and can not
be handled in the same manner as ionospheric delays. Although, according to [25], it’s
possible to model the trophosphere, which can be used to eliminate most of the delay.
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Multipath and Receiver Errors

A multipath error is a result of the GNSS satellite signal taking multiple paths from the
satelitte to the receiver, by reflection from buildings and other objects. The reflected
signal will introduce a delay compared to the original signal, and may interfere with the
orignal signal if the reflected signal is strong enough. These errors can be handled by
making the receiver take action on the first received signal. In addition, receiver errors
may be caused by an unsynchronized clock, antenna offset and additional white noise.

3.3 The INS/GNSS Integration

The INS and the GNSS are complementary in many ways. The INS provide a high data
rate with a relatively low short-term error. Unfortunately, the error increases unbounded
in the long-term. The GNSS provide bounded errors in the long-term, but suffer from a
low data rate. The INS provide translational and rotational data, whereas the GNSS do
not. Integrating these two systems would make the resulting system better.

There are different architectures on how this integration can be done, [39]. These are:
Uncoupled systems, loosely coupled systems, tightly coupled systems, and deep or ultra-
tightly coupled systems. A short review of each architecture will be carried out in the
following sections.

3.3.1 Uncoupled

According to [39], the uncoupled system is the simplest INS/GNSS architecture, where
the two systems work independently of each other. The GNSS is used to reset the INS,
giving bounds to the INS errors. In the case of an GNSS outage, the INS estimates would
drift unbounded. For this reason, the uncoupled architeture is not often used.

3.3.2 Loosely Coupled

In the loosely coupled scheme [39], the INS and the GNSS are put together in cascade.
Estimates from both systems are provided to a INS/GNSS integrated Kalman filter (KF).
This system provide simplicity and rendundancy by providing a stand-alone navigation
solution from the GNSS, with the INS/GNSS integration filter acting as an alternative.
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The integration filter provide estimates of the INS errors, which in turn can be used to
correct the INS for better performance. In addition, the GNSS uses estimates from the
INS to aid the satellite signal.

The main problem with this architecture is a result by having a two KF in series - a
GNSS receiver is normally implemented with a KF to provide position estimates.. The
architecture may therefore violate the requirement of delivering uncorrelated inputs to
the second KF, [39]. The loosely coupled architecture can be shown in Figure 3.1.

Figure 3.1: INS/GNSS: Loosely coupled architecture, [39]

3.3.3 Tightly Coupled

In the tightly coupled scheme [39], the KF in the GNSS receiver is implemented within
the INS/GNSS integration block as one KF. The INS/GNSS block will then use pseudo-
range and pseudo-range rate measurements, obtained from the tracking-loops within the
GNSS receiver. As with the loosely coupled scheme, the INS is being corrected by the
INS/GNSS estimates while the INS provides additional aiding to the GNSS receiver.

The main benefit lies in the combination of the two KFs from the loosely coupled scheme,
removing the previous problem in the Kalman filter design. The use of pseudo-range data
from the GNSS will also make this architecture functionable in the case of having only
one available satellite, at the expense of degraded accuracy.

Compared to the loosely coupled scheme the tightly coupled scheme will provide better
performance, both in terms of robustness and accuracy. The tightly coupled architecture
is illustrated in Figure 3.2.



3.3. THE INS/GNSS INTEGRATION 31

Figure 3.2: INS/GNSS: Tightly coupled architecture, [39]

3.3.4 Deep or Ultra-Tightly Coupled

In the ultra-tightly coupled scheme the signal tracking-loops within the GNSS receiver
are integrated with the INS into a single complex Kalman filter. The benefits from
this solution lies in a better signal-to-noise ratio (SNR), an improvement in multi-path
errors, and better handling when GNSS signals are being jammed. This archtecture may
be hard to achieve as the source-code within the GNSS receiver may be difficult, or even
impossible, to access. The deeply integrated INS/GNSS scheme is illustrated in Figure
3.3.

Figure 3.3: INS/GNSS: Deeply coupled architecture, [39]



32 CHAPTER 3. NAVIGATION SYSTEMS AND SENSORS

3.4 The Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) normally consist of three accelerometers and three
gyroscopes providing information in six degrees of freedom (6-DOF), see [15] and [39].
The accelerometers and gyroscopes are presented in three pairs, where each accelerometer
and gyrocscope pair describe translational and rotational information about one axis in
the body-fixed frame. Together, the three pairs give the complete knowledge about the
inertia in three dimensions.

Today, the inertial measurement technology can be found everywhere: In game con-
trollers, mobile cellphones and other electronical gadgets. The result of this availabilty
has made the cost of this technology to rapidly fall, making it possible to integrate an
IMU with a GNSS receiver with low costs. The components and technology within and
behind an IMU will be explained in the following sections.

3.4.1 Accelerometers

The Fundementals

An accelerometer detects translational motion and is based on Newton’s second law on
a rigid body, [39].

Newton’s second law is defined as:

F = ma (3.20)

where F is the sum of forces, m is the mass and a is the total acceleration.

Equation (3.20) can further be split into:

F = ma = mf +mg (3.21)

where g is the acceleration caused by gravity and f is the acceleration produced by other
forces than gravity, also denoted as the specific force.

The total forces acting upon the rigid body can be expressed in terms of forces per unit
mass, which redefines (3.21) to:



3.4. THE INERTIAL MEASUREMENT UNIT (IMU) 33

F = a = f + g (3.22)

Rearranging (3.22) yields the output from an ideal accelerometer:

f = a− g (3.23)

An single accelerometer experiencing free fall in vacuum, normal to the ground, will yield
f = 0 as a = g. In the case of being stationary (a = 0), the accelerometer output will
yield f = −g. This will be the case since gravity keeps it stationary by acting normal
upwards from the medium it rests on.

Different Technologies

According to [15], there are different types of accelerometers such as mechanical and
solid-state accelerometers. The mechanical accelerometer can be defined as a mass-
spring-damping type (MSD). The MSD relates to a proof mass being defined at an
initial position, hold by a spring and a damper. Deflection by the mass with respect
to its initial position will result in a spring force proportional to the acceleration being
measured.

Solid-state accelerometers are small and reliable sensors which have gained intensive
research during the last years. One solid-state accelerometer is a vibratory device com-
monly based on quarts crystal technology. Two quartz chrystal beams are mounted
symmetrically vibrating at different resonant frequencies. When an acceleration is in-
flicted to the device, one beam is strechted and the other is compressed, resulting in
the beams having different frequencies. The frequency difference between the two beams
is proportional to the acceleration experienced by the device. More on this and other
technologies can be found in [39].

3.4.2 Gyroscopes

The Fundementals

A gyroscope can either detect angle displacement or angular rate about an axis. The
latter type of gyroscopes are normally used in an IMU. The conventional gyroscope
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utilizes the inertia of a wheel spinning at a high speed, supported by a pair of gimbals,
[39]. The inertia of the spinning wheel define a fixed direction in space.

The equation below describe the behaviour of a gyroscope under the influence of a torque,
[39]:

T = dH
dt

= d(Iω)
dt

= Iα (3.24)

where T describe the tourque, H the angular momentum, I the moment of inertia, ω
the angular velocity and α the angular acceleration.

When a torque T is applied perpendicular to the axis of rotation, a motion called pre-
cession occur. The precession, denoted ωp, is normal to the spin axis and the torque T,
which can be defined in the following equation using Newton’s second law, [39]:

T = ωp ×H (3.25)

From the precession principle accurate angular velocities can be obtained. For detailed
information about how a gyroscope works, the reader is referred to [39].

Different Technologies

In addition to the conventional gyroscope, there exist other types. One of them is the
ring laser gyroscope (RLG). The RLG is according to [39] based on the concept of having
two independent laser beams being reflected by three mirrors in a trangular fashion back
to the starting point.

On beam travels clockwise, while the other travels anti-clockwise. When the RLG is
stationary, both laser beams have the same frequency. But in the case of being rotated
perpendicular to the plane covered by the laser beams, a difference in the path length of
the two lasers occur. This result in a frequency difference which can be used to determine
the angular rate.

Another type is the fibre optic gyroscope (FOG), where the technology is based on a light
source sending a light beam through a beam splitter, [39]. The splitted light travels in
opposite directions around a fibre optic coil, before returning back to a second splitter.
This second beam splitter sends the returning light to a photo-detector, where any phase
changes between the two beams are detected. Rotating the FOG normal to the light plane
result in one beam traveling longer than the other, thus a change in phase is detected
and the angular rate can be calculated.
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3.4.3 Error Sources

The gyroscope and accelerometer measurements are subject to different error sources,
such as noises, biases, scale factors and axis misalignments, see [15, 39, 8]. The handling
of these error sources can either be done using different algorithms online, i.e. noise
filtering, bias estimation or coning/sculling algorithms. There also exists different cali-
bration methods offline, but require expensive calibration equipment. Thus, choosing an
appropriate IMU with low errors is essential.

Sensor Noise

Due to electrical interference in the sensors, the measurments will be affected by noise.
The integration of noisy measurements will lead to values which walk randomly. In
the case of acquiring a position estimate, a second integration will lead to a rapidly
drifting estimate. To remove the effect of noise, one can either use analog or digital
low-pass filters. The downside to this approach, is additional delay on the filtered signal.
Therefore, choosing a sensor with a high signal-to-noise ratio (SNR) is important.

Sensor Bias

The sensor bias has a big impact when integrating the measurements in an INS. Both
the gyroscope and accelerometer biases are temperature dependent, where the latter
is most affected by temperature variations. For this reason, a look-up table for the
accelerometer can be made to correct the sensor at different temperatures. Additionally,
there exist a random walk component making the bias change randomly with time. This
component can not be removed using offline calibrations, making online calibrations the
best approach.

Scale Factors

The scale factor for each sensor axis is important to scale the sensors such that the
output, with the selected unit, represent the real translational or rotational motion. For
an accelerometer utilized to decide orientation, an incorrect chosen scale factor will affect
the attitude dramatically. An IMU will be calibrated at the factory before being delivered
to the customer, with the default scale factors equal to one. To ensure that this default
scale factor is correct, appropriate calibration equipment is needed.
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Axis Misalignments

The accelerometers and gyroscopes represent translational and rotational motion about
three axes. Ideally, these axes should be perpendicular to each other. Unfortunately, this
isn’t always the case due to inaccurate sensor design and mounting. This means that
for each axis, movement in the other to axes would cause a small impact on the first
axis. Cross-coupling between the axes can degrade the system performance, especially in
the case of high frequency vibrations. Vibrations with frequencies higher than half the
IMU sampling rate will result in drifting estimates, [26]. To compensate for this error, a
coning/sculling algorithm is needed, [39].

3.4.4 MEMS Technology

The micro-machined electromechanical system (MEMS) has changed the industry in
terms of low-cost sensors for inertial navigation. MEMS devices have few components
and is based on a solid-state archtecture, using silicon as the base material, [39]. The
use of silicon result in robust and cost-effective components, with devices offering low
weight, low power consumption and low maintenance.

Accelerometers

There are two classes of MEMS based accelerometers, [39]: The first is the displacement
of a proof mass, which was explained in the introduction of Section 3.4, only being
manufactured with silicon materials. The second is the vibrating element, similar to the
quartz vibrating technology described earlier, where frequency changes caused by tension
in the vibrating element is proportional to the acceleration.

Gyroscopes

A MEMS based gyroscope uses the Coriolis acceleration’s effect on a vibrating proof
mass to sense angular rotation, [39]. With this approach, no rotating parts are needed,
resulting in very small sensor. There exist different types of MEMS gyroscopes, i.e.
resonant ring and tuning fork gyroscopes. The tuning fork gyroscope utilizes a pair of
masses which oscillate in opposite directions. When applying a rotational motion about
the axis perpendicular to the velocities of the masses, the Coriolis force acts upon the
masses, which in turn can be utilized to calculate the angular rate.
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3.5 The Gyrocompass

A gyrocompass seeks the true north, [36]. It is not affected by magnetic disturbances
created by ferromagnetic materials, as a magnetic compass would be. For this reason
the gyrocompass is widely used to determine the heading in marine applications. The
gyrocompass is based on the same principles as a gyroscope, but should not be mixed.

3.5.1 The Operation

The gyrocompass rely on the Earth’s rotation, gravity, gyroscopic inertia and precession,
see Section 3.4.2. To end up with a gyrocompass a gyroscope is mounted on a sphere,
denoted gyrosphere, and supported on a vertical ring. The north seeking process is done
in the following order, [14]:

The gyroscope is forced to align itself horizontally by seeking the meridian (line of a
certain longitude), with the use of a weight at the bottom of the vertical ring. To
prevent any oscillatory movements, a second weight is mounted on the side of the ring.

Secondly, the gyrocompass is made to seek the true north by applying a force against the
spin axis of the rotating gyroscope. This force is made by reservoirs filled with mercury,
denoted mercury ballistics. The ballistics is placed slightly to the east of the vertical
plane such that the center of gravity (CG) of the gyroscope coincides with the ballistics’
CG.

This results in precession, which makes the spin axis trace a spiral before settling down
pointing towards the true north, [14].
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Chapter 4

Nonlinear Observer Design

This chapter will present the nonlinear observer used in the simulations and experimental
tests in Chapter 6 and 7. The observer was chosen to be expressed in the ECEF frame,
due to the access of GNSS measurements in LLA coordinates. The GNSS measurements
could, according to Marine Technologies LLC, be delayed before reaching nonlinear ob-
server. These delays could affect the stability of the onlinear observer, due to a resulting
inconsistent GNSS rate. Motivated by this reason, a dynamic GNSS gain will be pro-
posed, such that the observer would handle inconsistent GNSS measurement rates. The
observer dynamics and sensor configuration will be revised first. Secondly, the complete
nonlinear observer will be presented, both in the continuous and discrete time domain.
Lastly, the tuning of the observer will be given.

4.1 Observer Dynamics

The strapdown equations for position, velocity and attitude (PVA) expressed in ECEF
coordinates are given in (3.19), from Section 3.1.2. By assuming that both the accelerom-
eters and gyroscopes are subject to sensor biases, the complete dynamic equation set is
given as, [20]:

39
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ṗe = ve (4.1)

v̇e = −2S(ωeie)ve + fe + ge(pe) (4.2)

q̇eb = 1
2qeb ⊗ ω̄bib −

1
2 ω̄

e
ie ⊗ qeb (4.3)

ḃbg = 0 (4.4)

ḃba = 0 (4.5)

where ḃbg and ḃba represent the differential equations for gyroscope and accelerometer
bias, respectively.

4.2 Sensor Configuration

Before the nonlinear PVA observer is derived, the following sensors are assumed availible:

• The posistion measurement (GNSS receiver): peGNSS = pe or plGNSS = pl

• The heading measurement (Gyrocompass): ψGY C

• The acceleration measurement (IMU): f bIMU = f b + bba

• The angular velocity measurement (IMU): ωbib,IMU = ωbib + bbg

The velocity measurement veGNSS = Cvve from the GNSS receiver is not utilized in this
thesis, but its presence will be included in the nonlinear observer equations. When the
velocity measurement is availible, Cv may be the identity matrix or another matrix with
satisfying dimensions.

4.3 The Nonlinear Observer

The attitude observer presented in [20] is based on having inertial vector measurements f b

and mb from accelerometers and magnetometers, respectively. Both measurement vectors
have corresponding reference vectors fe and me. With theses quantities, a vector-based1

attitude observer can be presented, see [30] and [24].
1The inertial vector measurement and its corresponding reference vector is denoted as a vector pair
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Since magnetometer measurements aren’t availible, the observer had to be complemented
in another way. The proposed method in the next section utilize measurements from a
gyrocompass to create substitutes for the vector pair mb and me . The block diagram
of the modified nonlinear observer is given in Figure 4.1.

Figure 4.1: The Modified Observer of Grip

4.3.1 The Gyrocompass Substitute

This method assumes partial or complete knowledge of the Euler angle vector Θnb =[
φ θ ψ

]>
and the latitude and longitude vector Θen =

[
µ ϕ

]>
. Both Θnb and Θen

are used to derive a vector pair in {b} and {e}, with the use of the north-seeking unit

vector cn =
[
1 0 0

]>
in {n}.

The Inertial Measurement Vector

With the knowledge of Θnb, the rotation matrix Rn
b (Θnb) can be computed. By rotating

the true north vector cn to {b}, the inertial measurement vector cb =
[
cbx cby cbz

]>
can

be given as:



42 CHAPTER 4. NONLINEAR OBSERVER DESIGN

cb = Rn
b (Θnb)>cn

m

cb =

 cψcθ sψcθ −sθ
−sψcφ+ cψsθsφ cψcφ+ sφsθsψ cθsφ

sψsφ+ cψcφsθ −cψsφ+ sθsψcφ cθcφ


1

0
0

 (4.6)

⇓

cb =

 cψcθ

−sψcφ+ cψsθsφ

sψsφ+ cψcφsθ



The inertial measurement vector cb can replace the inertial magnetometer measurement
mb .

The Euler Angle Vector

The yaw angle ψ ∈ [−π, π] can be transformed from the heading angle ψGY C ∈ [0,∞),
which is provided by the gyrocompass. The following relationship between ψ and ψGY C
can be given, assuming that both angles are given in radians:

ψ = ψGY C − 2π · round(ψGY C2π ) (4.7)

where round(·) is a function rounding to the nearest integer.

The roll and pitch angles φ and θ can be assumed small, i.e. φ ≈ 0 and θ ≈ 0 , which
should be a valid asumption for marine surface vessels, [15].

Another way to determine φ and θ is based on the assumption of the vessel being at
rest, i.e. in DP or at low speeds, where the non-gravitational accelerations are zero, [15]
. This method assumes zero bias and noise on the accelerometer measurements:

f bimu ≈ −gb =
[
gx gy gz

]>
(4.8)

where the roll and pitch angles can be calculated as:
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φ ≈ arctan(gy
gz

) (4.9)

θ ≈ − arctan( gx√
g2
y + g2

z

) (4.10)

Since the accelerometer is influenced by noise, the latter approach presented by (4.8-4.10)
will not be utilized in the observer.

The Reference Vector

With the knowledge of Θen, and thus Re
n(Θen), the true north vector cn can be rotated

to {e} to obtain ce =
[
cex cey cez

]>
:

ce = Re
n(Θen)cn

m

ce =

−cϕsµ −sϕ −cϕcµ
−sϕsµ cϕ −sϕcµ
cµ 0 −sµ


1

0
0

 (4.11)

⇓

ce =

−cϕsµ−sϕsµ
cµ



The reference vector ce can replace the magnetic field reference vector me. If the
nonlinear observer is represented in the NED frame, the reference vector is given as
cn =

[
1 0 0

]>
.

The Latitude and Longitude Vector

The GNSS position measurements can be used to set the latitude and longitude vector
Θen. In cases of GNSS outage, Θen should be set to the last known value until the GNSS
return. This assumption is valid when navigating in small areas, since the reference vector
ce is nearly constant between each GNSS sample, even in the case of GNSS noise.
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4.3.2 Attitude and Gyroscope Bias Estimation

When deriving the attitude and gyroscope bias observer, the accelerometer bias bba is
assumed to be zero, i.e. f bIMU = ab − gb.

Known Specific Force

The attitude and gyroscope bias observer, based on (4.3) and (4.4), is presented in [20]
as:

˙̂qeb = 1
2 q̂eb ⊗ (ω̄bib,IMU −

¯̂beb + σ̄)− 1
2 ω̄

e
ie ⊗ q̂eb (4.12)

˙̂bbg = Proj(b̂bg,−kIσ) (4.13)

where Proj(b̂bg,−kIσ) is the projection of b̂bg within the the compact set ‖b̂bg‖ ≤ Mb̂g
,

where kI > 0 is the bias tuning parameter and Mb̂g
is chosen to be slightly larger than

the real upper bound Mbg .

The attitude observer is based on the comparison between two body-fixed measurement
vectors with respect to their corresponding vectors in the reference frame. Replacing
the magnetometer vector pair, mb and me, with the gyrocompass substitute, cb and ce,
gives the following injection term:

σ := k1f b ×Re
b(q̂eb)>fe + k2cb ×Re

b(q̂eb)>ce (4.14)

where cb, ce, f b and fe are unit length vectors defined as:

cb = cb

‖cb‖ , ce = ce

‖ce‖ , f b = f bIMU

‖f bIMU‖
, fe = fe

‖fe‖ (4.15)

where k1 > 0 and k2 > 0 are tuning parameters.

The attitude observer presented in this section is a stand-alone attitude observer, made
possible with access to the specific force fe. This force is in practical cases not known,
but can be estimated, which will be the case in the next section.
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Unknown Specific Force

Since the specific force fe is an unknown quantity, fe is replaced by its estimate f̂e.
The specific force estimation is made possible by combining the proposed attitude and
gyroscope bias observer (4.12-4.13) with the position and velocity observer, which will
be revised in the next section.

In the case of the estimated specific force f̂e, the attitude and gyroscope observer is
defined as, [20]:

˙̂qeb = 1
2 q̂eb ⊗ (ω̄bib,IMU −

¯̂beb + ¯̂σ)− 1
2 ω̄

e
ie ⊗ q̂eb (4.16)

˙̂bbg = Proj(b̂bg,−kI σ̂) (4.17)

where

σ̂ := k1f b ×Re
b(q̂eb)>f̂e + k2cb ×Re

b(q̂eb)>ce (4.18)

with the following unit length vectors

cb = cb

‖cb‖ , ce = ce

‖ce‖ , f b = f bIMU

‖f bIMU‖
, f̂e = f̂e

max{‖f̂e‖, δ}
(4.19)

The delta parameter δ is defined such that 0 < δ < mf , and makes f̂e well-defined in
cases of being near zero. The parameter mf is defined as 0 < mf ≤ ‖f bIMU‖ ≤Mf , where
‖f bIMU‖ = ‖ge(pe)‖ when the vessel experience zero non-gravitational accelerations. The
constant Mf is the upper bound on the norm of the accelerometer measurement f bIMU .

4.3.3 Position and Velocity Estimation

When deriving the position and velocity observer, the accelerometer bias bba is not
present, i.e. f bIMU = ab − gb.
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With GNSS Velocity

The position and velocity observer from [20] is presented as:

˙̂pe = v̂e + θGNSSKpp(peGNSS − p̂e) + Kpv(veGNSS −Cvv̂e) (4.20)
˙̂ve = −2S(ωeie)v̂e + f̂e + ge(p̂e)

+θ2
GNSSKvp(peGNSS − p̂e) + θGNSSKvv(veGNSS −Cvv̂e) (4.21)

ξ̇ = −Re
b(q̂eb)S(σ̂)f bIMU

+θ3
GNSSKξp(peGNSS − p̂e) + θ2

GNSSKξv(veGNSS −Cvv̂e) (4.22)

f̂e = Re
b(q̂eb)f bIMU + ξ (4.23)

where the tuning parameter θGNSS ≥ 1 is chosen to guarantee stability.

The tuning matrices Kpp, Kpv, Kvp, Kvv, Kξp and Kξv are designed such that the
matrix HK = A−KC is Hurwitz and ‖HK(s)‖∞ < ρ, where ρ is chosen sufficiently low.

The matrices A, K and C are defined as:

A =

03×3 I3×3 03×3

03×3 03×3 I3×3

03×3 03×3 03×3

 , K =

Kpp Kpv

Kvp Kvv

Kξp Kξv

 , C =
[

I3×3 03×3 03×3

03×3 Cv 03×3

]
(4.24)

Without GNSS Velocity

In the case of not having access to the velocity measurement veGNSS , the observer can
be reduced to:

˙̂pe = v̂e + θGNSSKpp(peGNSS − p̂e) (4.25)
˙̂ve = −2S(ωeie)v̂e + f̂e + ge(p̂e)

+θ2
GNSSKvp(peGNSS − p̂e) (4.26)

ξ̇ = −Re
b(q̂eb)S(σ̂)f bIMU

+θ3
GNSSKξp(peGNSS − p̂e) (4.27)

f̂e = Re
b(q̂eb)f bIMU + ξ (4.28)
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where the terms dependent on veGNSS are removed, i.e. Kpv = Kvv = Kξv = 03×3 and
Cv = 0, using appropriate dimensions of 0.

4.3.4 Accelerometer Bias Estimation

The accelerometer bias bba =
[
bba,x bba,y bba,z

]>
is always present in real applications,

and will therefore be included from this point.

The accelerometer measurement is defined as:

f bIMU = ab − gb + bba

Estimating the accelerometer bias is the most challenging part when designing the com-
plete nonlinear observer. Two methods were proposed, both working ideally when the
neccessary assumptions/conditions are met.

The Vector Bias Estimation Method

Grip et al. [20] presents a method based on an over-parmeterized observer, which can be
used for all vector measurements with corresponding reference vectors, i.e. vector pairs
for magnetometers and accelerometers.

The body-fixed biased vector measurement is defined as vbm = vb + bb, where vb is the
unbiased vector and bb is the bias vector. The corresponding bias-free reference vector
is vem = ve = Re

bvb.

The observer can be derived using the squared norms ‖vem‖2, ‖vbm‖2 and p = ‖bb‖2 ,
and the relationship between them:

y = ‖vem‖2 + ‖vbm‖2 (4.29)

m

y = p− 2(vbm)>bb = φ>w (4.30)

where φ =
[
1 −2(vbm)>

]>
and w =

[
p (bb)>

]>
.

The over-parameterized observer is given as:
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˙̂w = Υφ(ŷ − φ>ŵ) (4.31)

where Υ is a constant positive-definite matrix. With a constant gain Υ, this particular
observer is represented by linear regression. The recursive least-squares estimate of w
can be obtained if the constant gain is replaced by a time-varying gain, which satisfies:

Υ̇ = αΥ−Υφφ>Υ (4.32)

where α ≥ 0 is the forgetting factor.

The vector based estimation method (4.31) can be defined such that the estimate ŵ stays
within the compact set ‖ŵ‖ ≤Mŵ , where Mŵ ≥Mw = ‖w‖:

˙̂w = Proj(ŵ,Υφ(ŷ − φ>ŵ)) (4.33)

where Proj(·, ·) is the same projection method used in the gyroscope bias observer, [20].

One requirement that is needed for the vector bias method to converge, is the satisfaction
of the persistency-of-excitation (PE) condition. The PE condition says that the input

vector φ =
[
1 −2(vbm)>

]>
must vary independently in a sufficient way. This makes

the vector bias estimation method dependent on the application.

The Mean Filter Estimation Method

Another way to estimate the accelerometer bias is under the assumption that the roll and
pitch angles φ and θ have the mean values φmean = 0 and θmean = 0, over a sufficient
long time period. This should be valid for an evenly loaded vessel when it’s stationary,
only exposed to waves.

The assumption is mathematically expressed as:

φmean = 1
tw

ts+twˆ

t=ts

φ(t)dt = 0 (4.34)

θmean = 1
tw

ts+twˆ

t=ts

θ(t)dt = 0 (4.35)
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where ts is the start of the time window, and twin = te − ts is the properly chosen time
window.

When (4.34) and (4.35) are true, the mean of the unbiased and noise-free accelerometer
measurements yield:

f bIMU,x,mean = 1
tw

ts+tw´
t=ts

f bx(t)dt = 0 (4.36)

f bIMU,y,mean = 1
tw

ts+tw´
t=ts

f by(t)dt = 0 (4.37)

f bIMU,z,mean = 1
tw

ts+tw´
t=ts

f bz (t)dt = −gm (4.38)

where f bIMU =
[
f bIMU,x f bIMU,y f bIMU,z

]>
, and gm ≤ g = ||gb|| is a value dependent

on the characteristics of the waves.

In the biased case, f bIMU = ab − gb + bb, where bb =
[
bbx bby bbz

]>
, the mean ac-

celerometer output should be:

f bIMU,x,mean = 1
tw

ts+tw´
t=ts

f bx(t)dt = bbx (4.39)

f bIMU,y,mean = 1
tw

ts+tw´
t=ts

f by(t)dt = bby (4.40)

f bIMU,z,mean = 1
tw

ts+tw´
t=ts

f bz (t)dt = −gm + bbz (4.41)

The biases, bbx and bby, can therefore be estimated by filtering f bIMU,x and f bIMU,y using
a low-pass filter with a cut-off frequency fc . fc should be chosen low enough such that
the filtered output is unaffected by single waves, but gives out the true mean values over
the chosen time window .

The bias bbz can be estimated by filtering f bIMU,z + ĝbz, where ĝbz is available from the

estimated gravity vector ĝb = Re
b(q̂eb)>ge(p̂e) =

[
ĝbx ĝby ĝbz

]>
in {b}.

The complete differential equation for the mean filtering estimation method, using a first
order low-pass filter, can be stated as:
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˙̂bba = ωc(f bIMU + ĝbz − b̂ba) (4.42)

where b̂ba =
[
b̂ba,x b̂ba,y b̂ba,z

]>
, ĝbz =

[
0 0 ĝbz

]>
and ωc = 2πfc is the cut-off frequency

in radians per second.

4.3.5 The Complete Observer

The complete nonlinear observer, including the mean filter accelerometer bias estimation
method, is presented as:

˙̂pe = v̂e + θGNSSKpp(peGNSS − p̂e) (4.43)
˙̂ve = −2S(ωeie)v̂e + f̂e + ge(p̂e)

+θ2
GNSSKvp(peGNSS − p̂e) (4.44)

ξ̇ = −Re
b(q̂eb)S(σ̂)(f bIMU − b̂ba)

+θ3
GNSSKξp(peGNSS − p̂e) + Re

b(q̂eb)
˙̂bba (4.45)

f̂e = Re
b(q̂eb)(f bIMU − b̂ba) + ξ (4.46)

˙̂qeb = 1
2 q̂eb ⊗ (ω̄bib,IMU −

¯̂bbg + ¯̂σ)− 1
2 ω̄

e
ie ⊗ q̂eb (4.47)

˙̂bbg = Proj(b̂bg,−kI σ̂) (4.48)
˙̂bba = ωc(f bIMU + ĝbz − b̂ba) (4.49)

where

σ̂ = k1f b ×Re
b(q̂eb)>f̂e + k2cb ×Re

b(q̂eb)>ce (4.50)

and

cb = cb

‖cb‖ , ce = ce

‖ce‖ , f b = f bIMU − b̂ba
max{‖f bIMU − b̂ba‖, δ}

, f̂e = f̂e

max{‖f̂e‖, δ}
(4.51)
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Since the accelerometer bias estimation is included, the bias is subtracted from the mea-
sured specific force f bIMU . In the case of the estimated bias making ‖f bIMU − b̂ba‖ small
or close to zero, the parameter δ is added to ensure well-definition of f b. The derivative
of the accelerometer bias is added to complete the dynamics, [20].

Alternative Representation of Velocity and Attitude

It is convenient to represent the nonlinear observer in the ECEF frame due to the availible
GNSS measurements in ECEF/LLA. Nonetheless, this may not be the best representation
for a control system or viewing the estimates to an operator. Grip et al. [20] presents a
way to convert the velocity to NED, and to achieve the attitude quaternion q̂nb between
BODY and NED. This method utilizes the estimated position in LLA, which can be
found with the use of (2.35) from Section 2.1.3.

The method from [20] yields:

q̂nb = q̂ne ⊗ q̂eb (4.52)

where q̂ne could be calculated using

q̂ne = q̂µ ⊗ q̂ϕ (4.53)

where

q̂µ =
[
cos( µ̂+π/2

2 ) 0 sin( µ̂+π/2
2 ) 0

]>
(4.54)

q̂ϕ =
[
cos( ϕ̂2 ) 0 0 − sin( ϕ̂2 )

]>
(4.55)

The Euler angle vector Θnb can then be calculated from q̂nb using the function q2euler
in MATLAB.

4.4 Observer Implementation

The notation in Table 4.1 is needed when implementing the discrete nonlinear observer
with multiple sensor rates, and in the case of having an observer loop integrating mea-
surement buffers. The integration loop within the observer loop will therefore have a
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different discrete time step than the observer loop. In this thesis the observer integra-
tion time step will be equal to the IMU measurement time step, T̄obs = Timu, with the
corresponding frequency F̄obs = Fimu.

Parameter Description

T̄obs [s] Observer integration time step
F̄obs = 1

T̄obs
[Hz] Observer integration frequency

Tobs [s] Observer iteration time step
Fobs = 1

Tobs
[Hz] Observer loop frequency

Tgnss [s] GNSS measurement time step
Fgnss = 1

Tgnss
[Hz] GNSS measurement rate

Kgnss = F̄obs
Fgnss

GNSS integration scale factor
Tgyc [s] Gyrocompass measurement time step

Fgyc = 1
Tgyc

[Hz] Gyrocompass measurement rate
Kgyc = F̄obs

Fgyc
Gyrocompass integration scale factor

Timu [s] IMU measurement time step
Fimu = 1

Timu
[Hz] MU measurement rate

Table 4.1: Discrete observer parameters

4.4.1 Corrector-Predictor Representation

The corrector-predictor representation in the discrete time domain is useful when han-
dling sensors with multiple measurement rates, and when the observer is in the dead-
reckoning state, i.e. unaided by GNSS position measurements. This representation is
mainly used when implementing Kalman filters (KFs), but can also be utilized for non-
linear observers, [15].

The corrector-predictor representation for (4.43) utilizing using forward Euler integration
is given as:

p̂e[k] corr= p̂e[k] + T̄obsKgnssθgnssKpp(pegnss[k]− p̂e[k]) (4.56)

p̂e[k + 1] pred= p̂e[k] + T̄obsv̂e[k] (4.57)

The second term in the corrector step occurs every time a new GNSS position measure-
ment is availible, whereas the predictor step occurs one or multiple times every observer
loop iteration step. In the case of F̄obs = Fimu = Fobs, the predictor step happens every
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observer iteration. In dead-reckoning, the second term in the corrector step is absent
until the GNSS measurements return.

Inconsistent GNSS Rate

The corrector-predictor representation method given in [15] is given for a constant Kgnss.
To make the observer able to handle variable measurement rates, a corrector-predictor
presentation for inconsistent measurement rates is realized. This method assumes that
the observer loop frequency Fobs and the IMU measurement rate Fimu are known and
constant. This method also matches the GNSS measurement with the corresponding
IMU measurement.

Algorithm 4.1 Corrector-predictor representation for inconsistent GNSS rates

1 %% START OBSERVER THREAD
2 % F_OBS_ = F_IMU
3 k_GNSS = 0 ;
4 n_GNSS = 0
5 % Observer I t e r a t i o n Loop
6 whi le ( true ) ,
7 % Observer I n t e g r a t i o n Loop
8 f o r ( k =1: I m u B u f f e r S i z e ) ,
9 K_GNSS = 0 ;

10 % I n c r e a s e Counter
11 k_GNSS = k_GNSS + 1 ;
12 % New GNSS Measurement
13 i f ( n_GPS = 1) && ( idIMU = idGNSS ) ,
14 F_GNSS = 1/( k_GNSS ∗ T_OBS_ ) ;
15 K_GNSS = F_OBS_ / F_GNSS ;
16 % Reset Counter and Flag
17 k_GNSS = 0 ;
18 n_GNSS = 0 ;
19 end
20 % CORRECTOR
21 p_e = p_e_ + T_OBS ∗ K_GNSS ∗ . . .
22 THETA_GNSS ∗ K_pp ∗ . . .
23 ( p_e_GNSS−p_e_ ) ;
24 % PREDICTOR
25 p_e_ = p_e + T_OBS ∗ v_e ;
26 end
27 end
28 %% END OBSERVER THREAD
29
30 %% START GNSS THREAD
31 whi le ( true ) ,
32 i f ( N e w G N S S M e a s u r e m e n t ) ,
33 idGNSS = idIMU ;
34 n_GNSS = 1 ;
35 p_e_GNSS = N e w M e a s u r e m e n t ;
36 end
37 end
38 %% END GNSS THREAD
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4.4.2 The Dynamic GNSS Gain

The matrix HK = A −KC must be Hurwitz to ensure stabilty. This means that the
eigenvalues of HK must be strictly negative, but lie within the unit circle, [12]. In
addition, the infinity norm of HK(s) must be sufficiently small [21], i.e. ‖HK(s)‖∞ < ρ.

For the discrete case, HK is replaced with HKd = A −KdC, where the discrete GNSS
tuning matrix Kd is defined as Kd = T̄obsKgnssK. Recall that Kgnss = F̄obs

Fgnss
from Table

4.1, which results in the following simplification Kd = 1
Fgnss

K. The stability matrix HKd

is therefore highly dependent on the GNSS measurement rate Fgnss.

The Discrete Constant Gain

There exist different methods for choosing K, e.g. pole placement, manual tuning and
LMI-based methods, [20]. In this thesis an already chosen K will be used. The matrices
contained in K will be held constant during simulations and experimental tests. From
[20] they were found to be:

Kpp = 0.6I3×3, Kvp = 0.11I3×3 Kξp = 0.006I3×3 (4.58)

Since the magnitude of the GNSS noise may vary, dependent on the satellite coverage,
the need for an additional GNSS gain kp is carried out. The kp parameter is multiplied
with each of the tuning matrices in (4.58):

Kpp = kp0.6I3×3, Kvp = kp0.11I3×3 Kξp = kp0.006I3×3 (4.59)

The tuning matrix Kd gets redefined to Kd = kp
Fgnss

K, which says that for each different
combination of kp and Fgnss, there exist corresponding eigenvalues of HKd(kp,Fgnss) with
an infinity norm ‖HKd(kp,Fgnss)(s)‖∞ = ρ(kp, Fgnss).

Different GNSS Sampling Rates

The complete set of eigenvalues of HKd(kp,Fgnss) for different combinations of kp and
Fgnss can be seen in Figure 4.2, more specifically called a root locus. To cover the
domain of common GNSS frequencies, Fgnss is chosen from 0.25 [Hz] to 10 [Hz] with
0.25 [Hz] increment. For each Fgnss, the tuning parameter kp starts near zero with very
small increments until the eigeinvalues go outside the unit circle.
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Figure 4.2: Eigenvalues of HKd for different kp and Fgnss

The imaginary part of the eigenvalues followed the arrows denoted by 1, 2 and 3, whereas
the corresponding real part follows the arrow denoted by 123. When the imaginery part
gets close to the intersection between 3 and 4, the real values went rapidly to the left,
see Figure 4.2.

Each unique Fgnss with the corresponding set of kp-values give the same root locus, which
make sense since the tuning matrix K is held constant. The difference lays in the set of
kp-values making HKd(kp,Fgnss) Hurwitz, where each Fgnss has a unique lower and upper
boundary denoted by kp,low and kp,high, respectively. See Figure 4.3 for illustration.
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Figure 4.3: Upper and lower bound on kp for each unique Fgnss

The corresponding ‖HKd(kp,Fgnss)(s)‖∞-values can be seen in Figure 4.4, where each line
represents an unique frequency Fgnss, starting from the left at 0.25 [Hz] and ends to the
right at 10 [Hz], with 0.25 [Hz] increment.

Figure 4.4: Infinity norm of HKd for different kp and Fgnss
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Preliminary Conclusion

The study of Figure 4.2, 4.3 and 4.4 result in the following preliminary conclusion:

• The set of kp-values within the set kp,low ≤ kp ≤ kp,high, which makes HKd(kp,Fgnss)

Hurwitz, increases proportionally with the GNSS frequency Fgnss. This means that
the system will be more robust in the presence of high GNSS frequencies, and more
sensitive at low frequencies.

• Increasing kp beyond a certain value, give a significant increase in the norm ‖HKd(kp,Fgnss)(s)‖∞.
Since ‖HKd(kp,Fgnss)(s)‖∞ should be chosen sufficiently low [20], an upper bound
ρhigh ≥ ‖HKd(kp,Fgnss)(s)‖∞ should be defined to ensure stability.

The Dynamic GNSS Gain

When the value kp makes the eigenvalues of HKd(kp,Fgnss) go beyond the intersection
between 3 and 4 in Figure 4.2, a dramatic increase in ‖HKd(kp,Fgnss)(s)‖∞ is observed.
From simulations in Chapter 6, any values of kp beyond this intersection results in ob-
server instability.

Two infinity norm values ρlow ≤ ‖HKd(kp,Fgnss)(s)‖∞ ≤ ρhigh, between 1 and the inter-
section in Figure 4.2, are chosen to define the region kp,low ≤ kp ≤ kp,high for different
values of Fgnss.

The lower and upper bound on ‖HKd(kp,Fgnss)(s)‖∞ are defined as:

ρlow = 1.7572, ρhigh = 2.3644 (4.60)

with the corresponding eigenvalues:

eigval(HKd(ρlow)) =



−0.0021 + 0.1037i
−0.0021− 0.1037i
−0.0021 + 0.1037i
−0.0021− 0.1037i
−0.0021 + 0.1037i
−0.0021− 0.1037i
−0.0557 + 0.0000i
−0.0557 + 0.0000i
−0.0557 + 0.0000i


, eigval(HKd(ρhigh)) =



−0.2
−0.1
−0.3
−0.3
−0.3
−0.2
−0.2
−0.1
−0.1


(4.61)
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Figure 4.5 shows the upper and lower bound kp,low ≤ kp ≤ kp,high for the chosen infinity
norms of ‖HKd(kp,Fgnss)(s)‖∞, given by (4.60).

Figure 4.5: Chosen upper and lower bound on kp

The red and blue dots in Figure 4.5 are found using:

||eigval(HKd(ρlow or ρhigh))− eigval(HKd(kp,Fgnss))|| ≤ εeig (4.62)

where εeig defined the chosen error region and eigval(·) denotes a function which calcu-
lates the eigenvalues.

As the relationship between kp and Fgnss was linear, the following functions were found
using linear regression:

kp,low(Fgnss) = 0.1Fgnss (4.63)

kp,high(Fgnss) = 1Fgnss (4.64)

This results in the dynamic GNSS gain being defined as:

kp(χ, Fgnss) = χFgnss, 0.1 ≤ χ ≤ 1 (4.65)
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where χ is denoted as the GNSS weighting parameter, and should be chosen based on
the quality of the GNSS measurements.

Using (4.65) with a constant χ will result in HKd(kp,Fgnss) always being Hurwitz, with
‖HKd(kp,Fgnss)(s)‖∞ ≤ 2.3644 and consistent eigenvalues for different GNSS frequencies.
The dynamic GNSS gain kp(χ, Fgnss) would complement the corrector-predictor method
for inconsistent GNSS rates, revised in 4.4.1, resulting in consistent error dynamics.
Section 6 will include a case study to illustrate this.

4.4.3 The Discrete Observer

The position and velocity equations, (4.43) and (4.44), will be implemented using the
combination of the forward and backward Euler discretization methods, which according
to [15] is suited for a well-damped second-order system. The rest of the differential
equations should be implemented using the forward Euler method. For more information
about numerical integration the reader is referred to [15] and [37].

The final observer equations from 4.3.5 get the following discrete representation, using
the corrector-predictor scheme for inconsistent GNSS rates:

Position

p̂e[k] corr= p̂e[k] + kp(χ, Fgnss)
Fgnss

θgnssKpp(pegnss[k]− p̂e[k])

p̂e[k + 1] pred= p̂e[k] + T̄obsv̂
e[k + 1]

Velocity

v̂e[k] corr= v̂e[k] + kp(χ, Fgnss)
Fgnss

θ2
gnssKvp(pegnss[k]− p̂e[k])

v̂e[k + 1] pred= v̂e[k] + T̄obs(−2S(ωeie)v̂e[k] + f̂e[k] + ge(p̂e[k]))

Acceleration

f̂e[k] = Re
b(q̂eb [k])(f bimu[k]− b̂ba[k]) + ξ̂

e
[k]
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where

ξ̂
e
[k] corr= ξ̂

e

[k] + kp(χ, Fgnss)
Fgnss

θ3
gnssKξp(pegnss[k]− p̂e[k])

ξ̂
e

[k + 1] pred= ξ̂
e
[k] + T̄obs(−Re

b(q̂eb [k])S(σ̂[k])(f bimu[k]− b̂ba[k])

+ωcRe
b(q̂eb [k])(f bimu[k] + ĝbz[k]− b̂ba[k]))

Attitude

q̂eb [k] corr= q̂eb[k]

q̂eb[k + 1] pred= q̂eb [k] + T̄obs(
1
2 q̂eb [k]⊗ (ω̄bib,imu[k]− ¯̂bbg[k] + ¯̂σ[k])

−1
2 ω̄

e
ie ⊗ q̂eb [k]))

Gyroscope bias

b̂bg[k] corr= ¯̂bbg[k]
¯̂bbg[k + 1] pred= b̂bg[k] + T̄obs(Proj(b̂bg[k],−kI σ̂[k]))

Accelerometer bias

b̂ba[k] corr= b̂
b

a[k]

b̂
b

g[k + 1] pred= b̂ba[k] + T̄obsωc(f bimu[k]− ĝbz[k]− b̂ba[k])

Injection term

σ̂[k] = k1f̂ b[k]×Re
b(q̂eb [k])>f̂e[k]+ k2cb[k]×Re

b(q̂eb [k])>ce[k] (4.66)

where



4.5. OBSERVER TUNING 61

cb[k] = cb[k]
‖cb[k]‖

ce[k] = ce[k]
‖ce[k]‖

f b[k] = f bimu[k]− b̂ba[k]
max{‖f bimu[k]− b̂ba[k]‖, δ}

f̂e[k] = f̂e[k]
max{‖f̂e[k]‖, δ}

In the discrete injection term, the scale factor Kgyc is added to compensate for the
gyrocompass’ lower sampling rate, compared to the IMU rate.

4.5 Observer Tuning

4.5.1 Sensor and System Parameters

The sensor and system parameters given in Table 4.2 should be found based on the
knowledge of the specific system and sensors.

Description Parameter Condition

Upper bound of the specific force norm Mf [ms2 ] Mf ≥ ‖f b‖
Lower bound of the specific force norm mf [ms2 ] mf ≤ ‖f b‖

Ensure well-defined specific force δ [ms2 ] 0 < δ < mf

Norm of the real gyroscope bias Mbg [ rads ] Mbg = ‖bbg‖
Upper bound on the estimated gyroscope bias Mb̂g

[ rads ] Mb̂g
> Mbg

Table 4.2: Observer sensor parameters

The lower bounds 0 < δ < mf ≤ ‖f b‖ can be set using the fact that non-accelerated
systems have ‖f b‖ = ‖ge(pe)‖. The norm of the gyroscope bias Mb̂g

can be estimated
using stationary measurements from the gyroscopes, in addtion to the sensor datasheet.

4.5.2 Tuning Parameters

After finding the appropriate sensor and system parameters defined in Table 4.2, the
main tuning parameters for the observer are given in Table 4.3.
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Description Parameter Condition

Parameter to guarantee stability θgnss θgnss ≥ 1
Dynamic or constant GNSS gain kp(χ, Fgnss) or kp A−KdC is Hurwitz

IMU parameter k1 k1 > 0
Gyrocompass parameter k2 k2 > 0
Gyroscope bias parameter kI kI > 0

Accelerometer bias cut-off frequency fc(t) fc,high > fc,low > 0
Additional accelerometer bias parameters T and β T > 0, 1 > β > 0

Table 4.3: Observer Tuning parameters

The observer tuning should be done in the following order, under the assumption that
the system being estimated is stationary:

1. Tune the attitude and gyroscope bias observer in open-loop, i.e. the GNSS aiding
should be turned off.

2. When acquiring good attitude estimates, turn on the GNSS aiding and find the
appropriate GNSS gain.

Without doing any adjustments to the injection term under the first stage, this would
result in poor estimates since the estimated specific force f̂e is dependent on GNSS
measurements for convergence. This can be solved by replacing f̂e with the gravity ge(pe)
obtained from the gravity model. This should be valid since the system is assumed to
be stationary at rest, i.e f̂e = −ge(pe). When the estimated attitude stops drifting, and
the gyroscope measurements have a zero mean, the attitude observer is assumed to be
correctly tuned.

Accelerometer Bias Gains

The accelerometer bias cut-off frequency ωc = 2πfc should be chosen low enough such
that single waves don’t affect the filtered mean. Choosing fc to small, would make the
filter’s response too slow, which result in a long convergence time.

To solve this issue, an exponentially decaying fc(t) is chosen:

fc(t) = fc,low + (fc,high − fc,low) exp(−t
α

) (4.67)

where α is the decay rate of fc(t), defined as:
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α = T

log(fc,high − fc,low)− log(βfc,low) (4.68)

where fc,low is the lower cut-off frequency, s.t. filtered output doesn’t react on single
waves. The higher cut-off frequency fc,high shortens the initialization phase greatly. The
decay rate α define when fc(t) reaches (1 + β)fc,low at t = T . With this solution a
quick initialization phase is achieved, defined by fc,high, before it slowly converge to the
mean values by decreasing the cut-off frequency over a time period T until it reaches
(1 + β)fc,low.
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Chapter 5

Experimental Setup

This chapter describes the setup utilized in the experimental tests, which is given in
the next chapter. Marine Technologies LLC (MT) was the provider of the hardware
equipment, as well as the base software for implementation of the nonlinear observer.
The software included an empty 50 [Hz] loop, where the observer equations was supposed
to be implemented.

The first section revise the reference system used for comparison with the observer,
whereas the second section gives a short overview on the GNSS receiver and the chosen
IMU. The third section describes the observer implementation, the logging software, and
the graphical user interface (GUI). Lastly, the final setup is given.

5.1 Reference System

The Teledyne TSS Orion INS was the availible reference system for comparison. The
Orion provided accurate estimates of roll, pitch, heading, heave and position in LLA
coordinates, see Table 5.1. The system had three solid-state accelerometers and three
ring laser gyroscopes (RLGs) with high quality. More information about the Orion can
be found in [6].

65
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Figure 5.1: TSS Orion INS, Photo: [6]

The Orion had a relatively long initialization time period, i.e. approximately 30 [min],
before being fully operational with the accuarcy from Table 5.1. This was beacause of the
fine alignment process using the inertial sensors to acquire precise heading estimates. The
Orion hardware was provided with software which made possible for the operator to insert
the location of the GNSS receiver, and to correct roll, pitch and heading misalignments.

Estimate Accuracy

Roll and Pitch 0.01 [deg]
Heading 0.1 [deg]
Heave 0.05 [m]

Position drift < 9.26 [km/hour]

Table 5.1: TSS Orion INS accuracy, [6]

5.2 Sensors

This section shortly describes the sensors utilized in the experimental setup. A stand-
alone gyrocompass was not availible during the tests. Instead, the heading from the
Orion INS was considered as a valid substitute. The heading measurement rate from
Orion was set to be 10 [Hz], which according to MT was a reasonable choice.

5.2.1 GNSS

The GNSS receiver availible for testing was the Fugro SeaSTAR 9200-G2, which utilized
both GPS and GLONASS satellite constellations. This receiver yielded position estimates
in LLA coordinates at 1, 2, 5 or 10 [Hz]. Due to limits in the cable baudrate, the highest
stable measurement rate achieved was 5 [Hz].
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Figure 5.2: Fugro SeaSTAR 9200-G2, Photo: [5]

5.2.2 IMU

The chosen inertial measurement unit was the ADIS16485, including a triaxial gyroscope
and a triaxial accelerometer. The IMU was based on MEMS technology and had the
ability to provide measurements at 2.4 [kHz]. The ADIS was able provide low-pass
filtering and sensor bias correction, before transmitting the measurements. It was decided
that the measured data from the sensors should be processed as little as possible before
utilized by the nonlinear observer. This was realized by setting the proper registers in
the device. The highest possible sampling rate for the ADIS16485 with the current setup
was 500 [Hz]. The units for the gyroscopes and accelerometer were set to be [deg/s]
and [mg], which was converted to [rad/s] and [m/s2] in the observer, respectively. The
specifications of the ADIS16485 can be found in the datasheet, [1].

Figure 5.3: ADIS MEMS IMU, Photo: [7]

5.3 Implementation

The first section describes the observer implementation. Secondly, an overview of the log-
ging system will be given. Lastly, the graphical user interface (GUI) used for supervision
will be revised.
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5.3.1 Nonlinear Observer

The discrete nonlinear observer was implemented using Microsoft Visual Studios 2008
on a control computer (CC1). This CC was provided by Marine Tehnologies LLC (MT),
where the neccessary modules for communication with the GNSS, gyrocompass and IMU
were included. The observer was implemented using the C++ programming language.

Inside the CC there was an observer loop running at 50 [Hz]. This loop included the
discrete equations for the observer with an integration loop running at the IMU’s mea-
surement rate, i.e. 500 [Hz].

Each sensor had its own thread inside the CC, which was triggered each time a new
measurement was availible. The measurements were stored in a buffer in the case of a
sensor thread being triggered more than once per observer loop iteration.

The IMU measurements were always stored in its respective buffer, with 10 measurements
per observer iteration, since the IMU rate was 10 times faster than the observer loop.
As the IMU had the fastest rate, an identification number (ID) was utilized for each
of the 10 measurements in the IMU buffer, ranging from 1 to 10 in chronological order.
Every time a new measurement arrived at the GNSS or gyrocompass thread, the arriving
measurement was marked with the current IMU measurement ID. This made it possible
to synchronize the measurements inside the observer integration loop, see Algorithm 4.1
in Chapter 4.

Figure 5.4: Nonlinear Observer Control Computer

To make the implementation intuitive and easy to troubleshoot, a matrix library was
utilized, [3]. Even though calculation with matrices require more processing speed, no
mentionable time delays were added. The matrix library should be removed in future
applications to reduce computational overhead. Some modifications in the matrix library
were done to improve the performance, such as a memory leak caused by an incorrect
constructor.

1A CC runs on the Windows CE 7.0 Operating System
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5.3.2 Logging System

It was important to log the raw data from all of the sensors, such that future improve-
ments could be carried out with additional MATLAB simulations. The estimates from
the nonlinear observer and the Orion INS were also logged, such that the two systems
could be compared. MT made this possible by implementing proper logging software on
a second control computer. The data was logged at different sampling rates, where the
estimates from the nonlinear observer and the reference system were sampled at 25 [Hz].
The GNSS receiver, gyrocompass and IMU were logged at their respective frequencies,
5 [Hz], 10 [Hz] and 500 [Hz].

During the first test runs in Egersund, it was discovered that the logs were degraded due
to non-unique time samples in the datasets. The main idea was that the data should be
written directly to file, when they arrived at the logging computer. But because of the
high data rate, the received data was stored in buffers before being written to file. Each
time the buffers were flushed, all of the data got the same time sample. This affected the
IMU raw data logs the most. The magnitude of this issue was greatly reduced by further
improvement of the logging software, but was never completely removed in the resulting
data sets. With the use of post-processing methods offline, the time sample problem was
further reduced.

5.3.3 Graphical User Interface

A graphical user interface (GUI) in C# was prepared by MT with the purpose of tuning
observer parameters online. The GUI was modified to show the norm of different observer
variables. These variables were the individual terms in the injection term, the injection
term itself, the main observer error ξ, and the position error. All of these variables
should be small in the case of observer convergence and stability, and made it easy for
the operator to see if everything worked properly.

In addition to the parameters and variables mentioned above, the GUI was further im-
proved to plot the accelerometer bias, the gyroscope bias, the estimated position, and
the GNSS measurements. This made the GUI a powerful tool, both in terms of real time
tuning and supervision.
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Figure 5.5: Graphical User Interface

5.4 Final Setup

The different sensors and systems communicated through an ethernet switch with power-
over-ethernet (PoE). The PoE capability was necessary to power the IMU. The GNSS
receiver and the TSS Orion INS used a serial interface to transfer measurements and
estimates to the logging computer. The logging computer received additional data from
the ethernet switch, such as estimates from the nonlinear observer. Furthermore, the
heading from the Orion and the position measurement from the GNSS were converted
for transmission over ethernet through a serial/ethernet interface. This made it possible
for the nonlinear observer to receive the measurements. An analog to digital conversion
was also utilized for the ADIS16485 IMU, where a Microsemi Smartfusion [4] board
with an embedded FPGA2 converted the data. The nonlinear observer received the
measurements as illustrated in Figure 5.4. An extra CC (DPCC1) was included for
additional plotting of data. A block diagram of the final setup can be seen Figure 5.6.

2Field-programmable gate array
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Figure 5.6: Block Diagram

All of the devices were mounted on a plate and placed in a metal box, such that the
equipment was shielded from the weather. The Orion INS and the IMU were placed such
that their axis was aligned, where the distance between the sensors was reduced by placing
the IMU on top of the Orion. The metal box was further placed in a wooden box and
placed on a trolley, where the wooden box was made high, such that the GNSS antenna
would get sufficient reception from the satellites. The GNSS antenna was placed directly
above the reference system and the IMU, more specifically 1.3 [m] above the sensors.

This setup aligned the x- and y-axis of all sensors, such that rbimu ≈ rborion =
[
0 0 0

]>
and rbgnss =

[
0 0 −1.3

]>
. See Figure 5.7 for the practical setup.
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Figure 5.7: Practical Setup



Chapter 6

Simulation Results and
Discussion

Simulations in MATLAB and Simulink were carried out to prepare the nonlinear observer
for the experimental tests, revised in Chapter 7. The choice of vessel in the simulations
was the semi-submersible rig with 6-DOF, which can be found in the mss toolbox1

in MATLAB. The only environmental disturbance was the wave induced forces and
moments, which was realized by a linear approximation of the JONSWAP spectrum.

The IMU measurements were added noise and bias, to make the simulations more real-
istic. In addition, the GNSS receiver was placed some distance above the IMU, where
the latter was placed in CO. The sensor sampling rates and the observer loop frequency
were set to be the same as in the experimental tests. The complete simulation setup and
design can be found in Appendix A, whereas the main simulation parameters can be seen
in Table 6.1. The observer sensor and system parameters are given in Table 6.2 and 6.3.

The nonlinear observer was tested in different cases. The first case compared the two
accelerometer bias methods proposed in 4.3.4, and studied the effect of an incorrect
estimated accelerometer bias. Secondly, the observer was tested with consistent and
inconsistent GNSS rates, with and without the dynamic GNSS gain. The obsever was also
tested in dead-reckoning, i.e. without GNSS aiding, to see how the observer performed
in the presence of IMU errors. Lastly, an comparison between the nonlinear observer
and the model-based Kalman filter was carried out. All of the cases were realized in
open-loop2.

This chapter is organized in the following way:
1The mss toolbox can be found at http://www.marinecontrol.org/
2Open-loop implies that the estimates of the observer are not utilized by the controller
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• Section 6.1: Case 1: Accelerometer Bias Estimation

• Section 6.2: Case 2: Consistent GNSS Measurement Rate

• Section 6.3: Case 3: Inconsistent GNSS Measurement Rate

• Section 6.4: Case 4: Dead-Reckoning

• Section 6.5: Case 5: Nonlinear Observer versus Kalman Filter

• Section 6.6: Discussion

Remarks

The setup for all of the case studies were represented by the parameters in Table 6.1,
6.2 and 6.3, unless otherwise stated. To ensure a faster convergence of the observer,
the attitude observer gains k1, k2 and kI were multiplied by 20 during the initialization
phase, which ended at t = Tinit,[20].

The NED frame was chosen for intuitive interpretation of the position and velocity esti-
mates, where the attitude was represented with Euler angles. This was achieved with the
alternative representation given in Section 4.3.5. The position was also represented in
LLA coordinates, where the initial LLA coordinate was subtracted from the date before
being plotted. This was carried out to see the variation in latitude and longitude, due
to very small increments for LLA coordinates in a small area.

Description Value

Wave peak frequency (JONSWAP) ω0 = 1.2 [ rads ]
Significant wave height (JONSWAP) Hs = 1.0 [m]

Placement of the GNSS relative to CO rbgnss =
[
0 0 −30

]>
[m]

Placement of the IMU relative to CO rbm =
[
0 0 0

]>
[m]

Accelerometer noise (RMS) Aacc,n = 0.0121 [ms2 ]
Gyrosopenoise noise (RMS) Agyr,n = 0.0026 [ rads ]

Accelerometer bias bba = 10−1
[
2.30 −3.10 −4.15

]>
[ms2 ]

Gyrosope bias bbg = 10−3
[
4.00 2.50 −3.00

]>
[ rads ]

GNSS frequency Fgnss = 5 [Hz]
Gyrocompass frequency Fgyc = 10 [Hz]

IMU frequency Fimu = 500 [Hz]
Observer frequency Fobs = 50 [Hz]

Table 6.1: Main Simulation Parameters
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Description Value

Upper bound of the specific force norm Mf = 9.81 [ms2 ]
Lower bound of the specific force norm mf = 0.98Mf [ms2 ]

Ensure well-defined specific force δ = 0.98mf [ms2 ]
Norm of the real gyroscope bias Mbg = 5.6 · 10−3 [ rads ]

Upper bound on the estimated gyroscope bias Mb̂g
= 1.1Mbg [ rads ]

Table 6.2: Observer Sensor Parameters

Description Value

Parameter to guarantee stability θgnss = 2
Dynamic GNSS gain kp(0.5, Fgnss) = 0.5Fgnss

IMU parameter k1 = 1.5
Gyrocompass parameter k2 = 5.0
Gyroscope bias parameter kI = 0.005

Accelerometer bias cut-off frequency (high) fc,high = 5 · 10−2 [Hz]
Accelerometer bias cut-off frequency (low) fc,low = 5 · 10−6 [Hz],
Additional accelerometer bias parameters T = 1000 [s], β = 0.1

Observer initialization time Tinit = 360 [s]

Table 6.3: Observer Tuning Parameters

6.1 Case 1: Accelerometer Bias Estimation

To see which accelerometer bias method was best suited for the remaining case studies,
a comparison study between the mean filtering (MF) method and the vector bias (VB)
method were carried out, see Section 4.3.4 for more information. The vessel was station-
ary during the whole simulation, with constant position and heading references. The VB
method was implemented with the recursive least-squares method, with the parameters
seen in Table 6.4.

Description Value

Upper bound on the estimated accelerometer bias Mŵ = 1.2 [ms2 ]
Initial gain matrix Υ(0) = 0.01I4×4

Forgetting factor α = 0

Table 6.4: Parameters for the VB Method
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Since the VB method utilized the estimated specific force f̂e as the bias free reference vec-
tor, the bias estimation started at t = Tinit [s]. This would give the estimate f̂e some time
to converge, as recommendend in [20]. The same yielded for the MF method, since the
estimated bias b̂ba,z utilized the estimated gravity ĝbz obtained from ĝb = Re

b(q̂eb)>ge(p̂e).
As this only affected the z-axis estimate, the bias estimation in the two other axes started
at t = 0 [s].

6.1.1 Results

Figure 6.1 and 6.2 illustrate that the MF method rapidly converged to the true values,
whereas the VB method used a very long time, considering the x- and y-estimate. This
was as expected, since the VB method highly relies on the PE condition to be fulfilled.
The current sea-state realized by the JONSWAP spectrum seemed to be insufficient.

The z-axis estimate for the VB method was observed to converge faster than the MF
method, but with a small constant error. This sudden transient was a result of the z-
axis containing the gravity constant, which resulted in a higher energy density at low
frequencies.

Figure 6.1: Case 1: Accelerometer Bias
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Figure 6.2: Case 1: Accelerometer Bias Error

By studying the main observer error ξ in Figure 6.3, it was easy to observe the effect of
the bias from the accelerometers. Since the MF method started to estimate the bias in
the x- and y-axis at t = 0 [s], ξ experienced a lower value than the VB method. The
most dominating change occured at t = 360 [s], when both methods removed the bias in
the z-axis, which resulted in ξ ≈ 03×1.
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Figure 6.3: Case 1: Main Observer Error (ξ)

From Figure 6.4 and 6.5, the estimated attitude with the VB method was observed to
have a constant error proportional to the remaining accelerometer bias. This was due
to the biased vector pair in the attitude observer’s injection term, which concerned the
specific force. The MF method had succesfully removed most of the bias, and resulted
in an error close to zero. The deviations from zero were caused by the IMU sensor noise.
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Figure 6.4: Case 1: Attitude (Euler angles)

Figure 6.5: Case 1: Attitude Error (Euler angles)

Estimating the position, under the presence of a nearly constant attitude error, results in
the GNSS being incorrectly transformed from {gnss} to {m}. The VB method illustrates
this in Figure 6.6, 6.7 and 6.8.
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Figure 6.6: Case 1: Position (Latitude and Longitude)

Figure 6.7: Case 1: Position (NED)
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Figure 6.8: Case 1: Position Error (NED)

Figure 6.9 and 6.10 show the estimated velocities in the NED frame. The velocities were
not affected by the accelerometer bias in the same manner as the attitude, due to the
GNSS corrections.

Figure 6.9: Case 1: Velocity
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Figure 6.10: Case 1: Velocity Error

The estimated gyroscope bias was not affected by the accelerometer bias, which can be
seen in Figure 6.11. Although the attitude observer utilized the biased vector pair in the
injection term σ̂, it still provided information whether the vessel was rotating or not.

Figure 6.11: Case 1: Gyroscope Bias
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6.2 Case 2: Consistent GNSS Measurement Rate

The reference values to the controller were set to be constant during the initialization
phase. At t = 1000 [s] the reference values changed and caused the vessel move in a
diagonal fashion, approximately 20 [m] south and 30 [m] east. During the transition, the
vessel rotated approximately 70 [deg] about the z-axis. At t = 1400 [s] the vessel stopped
and held its position for the rest of the simulation. The main agenda with this case study
was to test the performance of the observer during transit and change of heading. Since
the mean filtering method provided the best estimates during the previous case study,
this method was utilized in the remaining case studies.

6.2.1 Results

Figure 6.12: Case 2: Position (Latitude and Longitude)
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Figure 6.13: Case 2: Velocity

Figure 6.14: Case 2: Attitude
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The position, velocity and attitude estimates can be seen in Figure 6.12, 6.13 and 6.14.
The observer provided good estimates with relative small errors, i.e. position errors under
0.03 [m], velocity errors under 0.02 [m/s] and attitude errors under 0.025 [deg], compared
to the true values. The noisy errors were due to the inflicted measurement noise on the
IMU. The more aggressive observer gains can be observed during the initialization phase.
See Figure 6.15 for illustration.

Figure 6.15: Case 2: Position, Velocity and Attitude Errors

Both the gyroscope and accelerometer biases were estimated with small errors, i.e. under
1 · 10−3 [deg/s] for the gyroscope biases and under 7 · 10−4 [m/s2] for the accelerometer
biases. It was difficult to remove these error residuals completely due to the aggressive
IMU measurement noise, see Figure 6.16 and 6.17.
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Figure 6.16: Case 2: Accelerometer and Gyroscope Bias

Figure 6.17: Case 2: Accelerometer and Gyroscope Bias Error
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The most interesting result from this case study can be seen in 6.18, where the mean of
the main observer error ξ was observed to slightly lie over the zero error line. This was
most likely caused by small remaining errors in the estimated acceleration bias, which in
a larger scale can be seen in Figure 6.3, in the previous case study. The black line in the
figure represent the norm of ξ, which is a useful variable when studying the performance
of the observer.

Figure 6.18: Case 2: Main Observer Error (ξ)

6.3 Case 3: Inconsistent GNSS Measurement Rate

This case study will show that the dynamic GNSS gain kp(χ, Fgnss) makes the error
dynamics consistent, under the influence of a varying GNSS rate. The GNSS frequency
was chosen to vary aribtrary between 0.5, 1, 2, 5 and 10 [Hz], holding each frequency for
40 [s]. The results from the dynamic gain will be compared to a constant GNSS gain kp.

The dynamic GNSS gain was chosen as kp(1, Fgnss) = Fgnss, whereas the constant
weighting gain was chosen to be kp = 1. This constant gain made the error dynamics
stable for all frequencies. Choosing this value too big would make ‖HKd(s)‖∞ not
sufficiently low, whereas a too low value would result in HKd not being Hurwitz. These
conditions had to be fulfilled to achieve stable error dynamics.

The GNSS gains intersected at 1 [Hz], which should result in the same behaviour for
both systems. When the GNSS frequency went below 1 [Hz], the constant GNSS gain
system should provide estimates with lower accuracy, since the ‖HKd(s)‖∞ would be at
a higher value. The vessel followed the same path as in the previous case study.
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6.3.1 Results

Figure 6.19 shows that both methods provided good position estimates. This was as
expected, since both methods provided stable error dynamics at the different GNSS
frequencies.

Figure 6.19: Case 3: Position

The comparison of the PVA errors in Figure 6.20 with the errors in Figure 6.21, revieled a
slightly bigger error in the position estimates for the system with the constant gain. This
was especially noticeable at the lowest frequency (0.5 [Hz]). The system with constant
gain had a position error under 0.051 [m], where the dynamic gain system had an error
under 0.042 [m]. This was due to ‖HKd(s)‖∞ having a slightly higher value under 1 [Hz]
for the system with a constant gain. See Figure 6.22 and 6.23 for the different frequencies
at the different time intervals.
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Figure 6.20: Case 3: PVA Errors (Dynamic GNSS Gain)

Figure 6.21: Case 3: PVA Errors (Constant GNSS Gain)
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Figure 6.22 and 6.23 illustrate the main observer error ξ for both systems. The system
with the dynamic GNSS gain seemed to have a more consistent behaviour, in terms of
variance and aggresivity on each GNSS measurement. This coincided with the assertion
of having consistent error dynamics.

The system with the constant gain had the opposite behaviour, where each frequency
resulted in HKd having different poles, which again results in a system with uniqe error
dynamics at each particular frequency. At 1 [Hz], both systems were observed to have
the same error. This was because both systems had the same gain at this particular
frequency.

Figure 6.22: Case 3: Main Observer Error (ξ) (Dynamic GNSS Gain)



6.4. CASE 4: DEAD-RECKONING 91

Figure 6.23: Case 3: Main Observer Error (ξ) (Constant GNSS Gain)

6.4 Case 4: Dead-Reckoning

This case will demonstrate the performance of the nonlinear observer when the GNSS
was absent. Without GNSS aiding the observer would be sensitive to IMU sensor errors,
such as bias and white noise. The latter was found to be the hardest error to handle, and
caused the estimates to drift away rapidly. Two simulations were therfore carried out:
With and without noise. The reason for not including a low-pass filter will be explained
under the discussion in Section 6.6. The GNSS aiding was turned off between t = 1050 [s]
and t = 1250 [s], where the vessel followed the same position and heading references as
the previous case studies.

6.4.1 Results

Figure 6.24 shows the position estimates without measurement noise. The slight devi-
ation from the vessel’s true position was due to small errors in the accelerometer bias
estimates, which had an error under 7·10−4 [m/s2]. Figure 6.25 illustrates the substantial
effect of adding white gaussion noise to the IMU mesaurements.
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Figure 6.24: Case 4: Position (Without Noise)

Figure 6.25: Case 4: Position (With Noise)

The velocity estimates can be seen by comparing Figure 6.26 with Figure 6.27. It can
clearly be observed that the integration of white aggressive noise would give a randomly
walking velocity estimate. A second integration would lead to a rapidly drifting position
estimate, as illustrated in Figure 6.25.
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Figure 6.26: Case 4: Velocity (Without Noise)

Figure 6.27: Case 4: Velocity (With Noise)
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Furthermore, it can be seen that the rapid drift in the position estimates affected the
Euler angle estimates in a negative manner, see Figure 6.29 and 6.27. This was a result of
the nonlinear observer which utilized the position estimate for calculation of the attitude
quaternion between BODY and NED. This calculation was done with the alternative
representation in Section 4.3.5.

Figure 6.28: Case 4: Attitude (Without Noise)
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Figure 6.29: Case 4: Attitude (With Noise)

The PVA errors in the noise free simulation illustrated the effect of the small residuals
between the true and estimated accelerometer biases, see Figure 6.30. Figure 6.31 showed
the PVA errors under the influence of the additional sensor noise. Considering the east
axis, the noise free case almost reached −3.0 [m], whereas the noise inflicted case almost
reached −300.0 [m]. The velocity ended up at with an error of −0.028 [m/s] without
noise, and −4.080 [m/s] with noise. The noise free attitude estimate had an error under
−0.02 [deg], compared to the noise affected case with an error of nearly −0.23 [deg]. The
noise affected case resulted in the estimates being approximately 100 times worse than
the noise free case.
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Figure 6.30: Case 4: Position, Velocity and Attitude Errors (Without Noise)

Figure 6.31: Case 4: Position, Velocity and Attitude Errors (With Noise)
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6.5 Case 5: Nonlinear Observer versus Kalman Filter

This case study will compare the nonlinear observer with a Kalman filter (KF) in open-
loop. The simulation was conducted under the presence of an unknown constant external
force, using the same semi-submersible rig as in the previous case studies. The comparison
was carried out by comparing the estimated position from both estimators. The constant
external force was chosen to simulate ice gathering around the hull of the ship, moving
the vessel in the direction of the moving ice. The force’s magnitude was found by testing,
such that the vessel was noticeably moved by the external force.

The external force was modeled by a fraction of the following vector:

τ ext = MRB

[
0 1 0 0 0 0

]>
(6.1)

which would mainly affect the vessel from the east, when the rig has the heading ψ = 0.
The force was inflicted using a unit time step. The value of MRB can be found in
Appendix A.

Both state estimators were for simplicity expressed in the NED frame, see Appendix B
for the setup of both estimators, with the corresponding design matrices for the KF. The
KF was linearized under a constant heading ψ = 0, and implemented to only estimate the
north and east position, in addition to the heading. The wave induced forces, previously
included by the JONSWAP spectrum, were not included in this case. Instead, a small
white noise process noise was included, such that the KF criteria of having process noise
was fulfilled. The nonlinear observer was implemented using the same parameters as in
the previous case studies.

The GNSS measurements was not affected by noise, due to the assumption of having a
good satellite covarge. With a good coverage, the GNSS receiver would give noise free
measurements, due to the assumption of being implemented by another KF. This would
defy one of the criterias when implementing a KF, but would be realistic since this could
occur in real applications under good conditions. In addition, the location of the GNSS
was set to be same as the location of both state estimators, i.e. {gnss} = {m} = {b}.
This would result in the lever arms rbgnss = rbm = 03×1. The GNSS and gyrocompass
measurement rates were set to 1 [Hz] and 10 [Hz], respectively. The IMU rate was set
to 100 [Hz]. Both observers were implemented at the same rate as the IMU.

The simulation was divided in four phases: Between t = 0 [s] and t = 300 [s] the vessel
was stationary; At t = 300 [s], the vessel started moving diagonally to a new position
reference, approximately 20 [m] south and 30 [m] east, while always keeping a constant
heading ψ = 0; At t = 500 [s] , during the transit, the vessel was exposed to the
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unknown external force from the east, with a magnitude equal to 5
100τ ext; At t = 950 [s],

the external force increased to 1
10τ ext; Lastly, at t = 1400 [s], both state estimators lost

the GNSS aiding. The KF was tuned to approximately give same errors as the nonlinear
observer, when the vessel wasn’t affected by the external forces. The complete setup for
this case can be found in Appendix B.

6.5.1 Results

From Figure 6.32 and 6.33, the effect of the external force can easily be observed. The
yellow and green dot denote when the first and second unknown forces were applied,
respectively. Since the forces were applied from the east, the north position was nearly
unaffected. It is possible to see that the position estimates from the KF starts to struggle
when the forces were inflicted. The cyan colored dot denoted when the GNSS aiding was
lost.

Figure 6.32: Case 5: Position (North vs. East)
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Figure 6.33: Case 5: Position (North and East)

Figure 6.34 shows the position error during the first 500 seconds. Both state estimators
had an error equal to zero when being stationary. At t = 300 [s], the vessel started
moving, which can be reflected in the position error. Both navigation systems provided
relatively small errors, whereas the KF estimates were somewhat larger. This was due
to the bias term b needing time to converge to its new values, because of small nonlin-
earities in the model. The bias term b estimates the unmodeled dynamics in the KF,
see Appendix B.
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Figure 6.34: Case 5: Position Error (Without External Forces)

When the vessel was affected by the external forces, the KF clearly deviated from the
true position, which can be seen in Figure 6.35. The first external force resulted in the
KF having a constant estimation error between −0.030 [m] and −0.073 [m] to the east,
whereas the increased force gave an error between −0.157 [m] and −0.290 [m]. The
estimates from the nonlinear obseserver was nearly unaffected by the external forces,
with an error smaller than 2 · 10−3 [m]. The KF error seemed to increased proportional
with the size of the external force.

Figure 6.36 illustrated the position error between two GNSS measurements, when the
KF was affected by the second force. This was clearly a result of the external force not
being properly handled by the KF.
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Figure 6.35: Case 5: Position Error (With External Forces)

Figure 6.36: Case 5: Position Error for the KF between two GNSS measurements (With
External Forces)

At t = 1400 [s], the GNSS aiding was turned off. The resulting effect of the external
force without GNSS measurements can be observed in Figure 6.37, where the KF drifted
almost 1227 [m] in 200 [s]. The nonlinear observer drifted approximately 2.3 · 10−4 [m]
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in the same time period, probably due to numerical errors.

Figure 6.37: Case 5: Position Error (With External Forces and Dead-Reckoning)

6.6 Discussion

The mean filtering method gave the best accelerometer bias estimates. This was due
to the assumption of having an evenly loaded vessel with roll and pitch angles with
zero mean, which was the case for the simulations. In the case of having an unevenly
loaded vessel, the mean filtering method would result in incorrect attitude and position
estimates. This problem could be solved by having some apriori information about the
vessel’s angle offset during different loads, which could be used to correct this particular
estimation method.

The vector bias method relied on having an independent and sufficient varying input
vector for convergence, due to the PE condition. Under the current seastate, provided
by the JONSWAP spectrum with Hs = 1 [m] and ω0 = 1.2 [rad/s], the input vector φ
resulted in slowly converging bias estimates. The vector bias method was also sensitive
to sensor noise, which according to [19] would lead to biased estimates. In the case of
having a sea-state with sufficient frequencies and wave amplitudes, the vector bias method
should still be considered for future testing, where any sensor noise can be filtered to
prevent any bias in the estimates.



6.6. DISCUSSION 103

The solution to the accelerometer bias problem can be carried out with a combination
of the two proposed methods. Some logic could be created and implemented to achieve
the best possible accelerometer bias estimates, by utilizing additional knowledge of the
ship’s angle offset during different loads, measurements from VRUs/MRUs, and the
IMU’s sensor characteristics.

The nonlinear observer provided great estimates when it was consitently aided by the
GNSS, both at constant and varying GNSS frequencies. This was realized by the dynamic
GNSS gain, where the results showed that this gain provided consistent error dynamics
during inconsistent GNSS measurement rates.

It was also discovered that the nonlinear observer was robust on the choice of the
GNSS gain, especially at higher GNSS frequencies. As long as HKd was Hurwitz and
‖HKd(s)‖∞ was sufficiently low, the observer resulted in estimates with small errors.
At lower GNSS frequencies, the observer was found to be more sensitive to the choice
of GNSS gain, see 4.4.2. Any additional time delays in the GNSS measurements could
therefore cause instability in the error dynamics. In this particular case, the dynamic
gain should be utilized for stability.

The presence of error residuals, between the true and estimated biases, clearly affected
the estimates when the GNSS aiding was absent. To reduce these errors, the nonlinear
observer should be further tuned. But at a certain point, these residuals will be limited
by the sensor characteristics of the chosen IMU.

The noise was discovered to affect the estimates with a substantial impact during the
dead-reckoning phase. To solve this problem a first order digital low-pass filter with
different cut-off frequencies was implimented to remove the noise from the IMU. This
was carried out without any mentionable success, due to the aggressive sensor noise. A
third order Butterworth filter was also tested without any luck.

As the cut-off frequency for the filters got lower, the noise diminished at the cost of larger
phase-delay. Before the noise was satisfactionally removed, the time delay of the filtered
measurements was so big that it resulted in a synchronization mismatch between the
IMU and the GNSS measurements. This made the position transformation from {gnss}
to the {m} too erroneous.

Fortunately, it was later discovered that the real IMU measurement noise was far more
gracious than the simulated noise. Both the simulated and the real measurement noise
had approximately the same power density, but it was discovered that the real measure-
ment noise was more correlated with the real signal. This increased the signal-to-noise
ratio (SNR) and resulted in better estimates. It should be mentioned that the use of
a low-pass filter did improve the performance of the nonlinear observer at some degree,
but not sufficiently due to the simulated noise characteristics.
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The results from the state estimator comparison illustrated a weakness in the model-based
estimation approach. Unless all of the dynamics were modeled or sufficiently accounted
for, deviations from the true states would occur. To handle this unmodeled dynamics, the
Kalman filter tried to estimate the nonlinear dynamics in real-time. The design matrices
were designed such that the unmodeled dynamics were sufficiently handled under the
current sea-state. When the external forces were applied to the vessel, the Kalman filter
didn’t manage to adapt to the new sea-state. This resulted in inaccurate estimates.
In practical cases, the Kalman filter will be designed such that it handles a variety of
different sea states, [15]. But at some point, when the forces are big enough, deviations
will occur. The nonlinear observer measured the inflicted forces using the IMU, and was
unaffected by the external forces.

The position estimate was found to negatively affect the Euler angle estimate in the ob-
server, which was a result of the position dependancy when calculating the unit quater-
nion between BODY and NED, see Section 4.3.5. Since the nonlinear observer was
expressed using the ECEF frame, the attitude observer’s main task was to estimate the
attitude quaternion between BODY and ECEF. This attitude estimate was not affected
by the posisition estimate in the same manner.

Since the heading was calculated from the Euler angle ψ, and because it’s crucial to
have a good heading estimate for marine navigation, the nonlinear observer should in
future applications be concidered in the NED frame. This would make the roll, pitch and
heading estimates independent of erroneous position estimates. Complete independancy
was difficult to achieve, since the injection term utilized the estimated specific force, which
was dependent on GNSS measurements for convergence. An alternative approach could
be to replace the estimated force with the gravity vector obtained from the gravity model.
This should be sufficient when the vessel is non-accelerating, i.e. dynamic positioning.

The gyrocompass substitute in the injection term seemed to result in great heading
estimates from the observer. Since the substitute assumed φ = 0 and θ = 0, only the
z-axis in the corresponding term was utilized in the attitude observer’s injection term.
This modification should remove any errors when φ 6= 0 and θ 6= 0.

The redefined injection term is:

σ̂ := k1f b ×Re
b(q̂eb)>f̂e + k2Igyccb ×Re

b(q̂eb)>ce (6.2)

where

Igyc =

0 0 0
0 0 0
0 0 1

 (6.3)



Chapter 7

Experimental Results and
Discussion

The experimental tests were executed in Egersund, Norway, in collaboration with Marine
Technologies LLC. The tests were carried out on a trolley, using the ADIS16485 MEMS
based IMU. The original plan was to test the nonlinear observer on a supply boat, but
this wasn’t realized due to restrictions when accessing the boat’s GNSS and gyrocompass.
The setup for the tests can be reviewed in Chapter 5.

The mean filtering method, chosen to estimate the accelerometer bias, assumed that the
roll and pitch angles had zero mean. To make this assumption valid, the Orion INS
was used as a reference to level the trolley during the initialization phase. The Orion
had a roll and pitch accuracy at 0.01 [deg], see 5.1 in Chapter 5. The gyroscope bias
was assumed correct estimated when the mean values of all three axis were zero over
some time period. The trolley was kept stationary and level for about 1000 [s] to ensure
that all estimates had converged, using the GUI as aidance. This exact initialization
procedure was executed for each test.

It was observed that the nonlinear observer missed a considerable number of GNSS
measurements during the experimental tests. This was due to some unfortunate logic
when handling and matching new GNSS measurements with the corresponding IMU
measurement. This resulted in a degraded performance of the estimates, especially the
position estimates. For this reason, an offline MATLAB simulation was carried out
for each experimental test, using the improved version of the nonlinear observer which
included the dynamic GNSS gain. This was made possible since the logging software
successfully logged the raw data from the sensors.

105
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In the first case, ideal measurement rates were considered, see Table 7.1 for the rates.
Due to the GNSS matching problem mentioned above, this was hard to realize in the
experimental test. Secondly, the gyrocompass was turned off to see how much the heading
drifted. Lastly, the performance during GNSS outage was tested. The latter case was
divided in three parts and tested the dead-reckoning performance of both the nonlinear
observer and the reference system.

This chapter is organized in the following way:

• Section 7.1: Case 1: Ideal Measurement Rates

• Section 7.2: Case 2: Loss of Gyrocompass

• Section 7.3: Case 3: Loss of GNSS

• Section 7.4: Discussion

The sensor and observer configuration setup can be seen in Table 7.1. Table 7.2 shows
the sensor parameters for the online1 experimental tests and the additional offline2 sim-
ulation. The upper bound on the estimated bias was found by taking the mean of the
gyroscopes during the initalization phase. Further, the observer tuning parameters for
the experimental tests can be seen in Table 7.3, where the tuning parameters for the
offline simulation can be found in Table 6.3 in Chapter 6.

Remarks

The Orion INS wasn’t able to correctly interprete the altitude from the GNSS receiver,
where the estimated altitude consistently gave estimates around 0 [m]. This was trou-
bleshooted for a long time, without any luck. Despite this error, the estimated position
in the horizontal plane seemed to be correct and precise. Beacuse of this problem, the
GNSS location wasn’t taken into account, due to fear of introducing additional errors.
The lever arms for the state estimators and the GNSS can be seen in Table 7.1.

To ensure a faster convergence of the observer, the attitude gains k1, k2 and kI were
multiplied by 20 during the initialization phase, which ended at t = Tinit. The NED
frame was chosen for intuitive interpretation of the position estimates from both the
nonlinear observer and the Orion INS. Since the logging software logged the estimated
positions in LLA coordinates, the coordinates were transformed to the NED frame using
geodetic2ned in MATLAB. This would introduce neglible errors, since the navigation

1Denotes the actual experimental test
2Denotes the offline simulation based on the logged raw data
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area was small. The original LLA data was additionally plotted in the same manner as
in Chapter 6, where the initial LLA coordinate was subtracted from the original data.
Additionaly, the IMU measurements in the experimental tests were filtered by a first
order low-pass filter with cut-off frequency fc,lp = 5 [Hz]. This cut-off frequency did not
add any noticeable time delay to the measurements.

Description Value

Placement of the GNSS relative to CO rbgnss =
[
0 0 0

]>
[m]

Placement of the IMU relative to CO rbm =
[
0 0 0

]>
[m]

GNSS frequency Fgnss = 5 [Hz]
Gyrocompass frequency Fgyc = 10 [Hz]

IMU frequency Fimu = 500 [Hz]
Observer frequency Fobs = 50 [Hz]

Table 7.1: Test Configuration (Online and Offline)

Description Value

Upper bound of the specific force norm Mf = 9.81 [ms2 ]
Lower bound of the specific force norm mf = 0.98Mf [ms2 ]

Ensure well-defined specific force δ = 0.98mf [ms2 ]
Upper bound on the estimated gyroscope bias Mb̂g

= 1.6 · 10−3 [ rads ]

Table 7.2: Observer Sensor Parameters (Online and Offline)

Description Value

Parameter to guarantee stability θgnss = 2
Constant GNSS gain kp = 1

IMU parameter k1 = 0.5
Gyrocompass parameter k2 = 5.0
Gyroscope bias parameter kI = 0.001

Accelerometer bias cut-off frequency (high) fc,high = 5 · 10−2 [Hz]
Accelerometer bias cut-off frequency (low) fc,low = 5 · 10−6 [Hz],
Additional accelerometer bias parameters T = 1000 [s], β = 0.1

Observer initialization time Tinit = 550 [s]
Cut-off frequency First order low-pass filter fc,lp = 5 [Hz]

Table 7.3: Observer Tuning Parameters (Online)
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7.1 Case 1: Ideal Measurement Rates

This section will consider the performance of the nonlinear observer when it was ideally
aided by the GNSS at 5 [Hz]. As earlier mentioned, the observer randomly missed out
some measurements, making the GNSS rate somewhat inconsistent with a mean below
the ideal rate. The trolley was moved at a low speed in a pattern as illustrated in Figure
7.1.

7.1.1 Results

From Figure 7.1, 7.2, 7.3 and 7.4, the GNSS measurements suddenly jumped away from
its initial position almost immidiately after moving the trolley. This was caused by
satellite interference. Both the Orion and the nonlinear observer experienced the same
behaviour during the first seconds of the transit, before once again converging to position
measurements. When studying the offline simulations, the nonlinear observer performed
better than the corresponding online test due to a consistent GNSS rate.

Figure 7.1: Case 1 (Online): Position (Latitude and Longitude)
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Figure 7.2: Case 1 (Offline): Position (Latitude and Longitude)

Figure 7.3: Case 1 (Online): Position (North and East)
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Figure 7.4: Case 1 (Offline): Position (North and East)

The position error in Figure 7.5 and 7.6 show the deviation between the Orion and the
nonlinear observer during the experimental test and the offline simulation, respectively.
Without considering the GNSS position jump, the online test yielded position errors
under 0.45 [m] and 0.36 [m] in north and east, respectively. For comparison, the offline
test resulted in an position error under 0.19 [m] and 0.15 [m] in the same axes. This
gave an improvement of approximately 58 [%] for the offline simulation, compared to the
online test.
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Figure 7.5: Case 1 (Online): Position Error (North and East)

Figure 7.6: Case 1 (Offline): Position Error (North and East)

Due to the lower k1 gain from Table 7.3 and the loss of GNSS measurements, the Euler
angle attitude was observered to have a delay behind the reference system, see Figure



112 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSION

7.7. This was a result of the alternative attitude representation given in Section 4.3.5,
which was dependent on the estimated LLA coordinate. As the position estimates in the
offline simulations were better, this gave rise to better attiude estimates. See Figure 7.8
for illustration.

The attitude errors, for both the online test and the offline simulation, can be seen in
Figure 7.9 and 7.10. The errors were reduced in the offline simulation, compared to the
online test. The offline simulation resulted in a roll error under 0.22 [deg], pitch error
under 0.27 [deg] and a heading error under 0.17 [deg]. These errors were most likely due
to sensor errors and misalignments of the trolley during the initialization phase.

Figure 7.7: Case 1 (Online): Attitude (Euler Angles)
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Figure 7.8: Case 1 (Offline): Attitude (Euler Angles)

Figure 7.9: Case 1 (Online): Attitude Error (Euler Angles)
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Figure 7.10: Case 1 (Offline): Attitude Error (Euler Angles)

Both the estimated gyroscope and accelerometer bias seemed converge in both the ex-
perimental test and the offline simulation, see Figure 7.11 and 7.12. The stippled lines
indicated the offline estimate of the true sensor bias, and were calculated by taking the
mean of measurements when the trolley was level and stationary during the initialization
phase. Due to a higher gyroscope gain kI in the offline simulation, the bias was estimated
more aggressively.

The deviation from the indicated sensor bias and the estimated values were most likely
due to a random walk in the biases. This random walk will be considered in more detail
in Section 7.3.3, where the trolley was stationary and level during the whole test. The
spikes observed right after t = 600 [s] was due to a bug in the logging software.



7.1. CASE 1: IDEAL MEASUREMENT RATES 115

Figure 7.11: Case 1 (Online): Gyroscope Bias and Accelerometer Bias

Figure 7.12: Case 1 (Offline): Gyroscope Bias and Accelerometer Bias

The main observer error ξ was observed to be sensitive to the GNSS deviation, which
occured during the first seconds of the transit, see Figure 7.13 and 7.14. The offline
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simulation resulted in a higher spike during this GNSS offset, due to the more aggressive
dynamic gain. This more aggressive behaviour can also be reflected in the position
estimates in Figure 7.2 and 7.4, where the estimates followed the GNSS measurements
more closely. During the offline simulation, ξ was observed to have an overall lower error,
compared to the online test result.

Figure 7.13: Case 1 (Online): Main Observer Error (ξ)

Figure 7.14: Case 1 (Offline): Main Observer Error (ξ)
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7.2 Case 2: Loss of Gyrocompass

This section will consider the drift of the heading estimate obtained from the nonlinear
observer, when the gyrocompass was unavailible for a certain time period. During the
test the trolley was moved in a pattern as illustrated in Figure 7.15, starting and ending
at the initial position. The gyrocompass aiding was turned off during the whole transit,
i.e. between t = 1530 [s] and t = 1620 [s]. This was the same time period used to
plot the data. When the gyrocompass was absent, the observer completely relied on the
integration of gyroscope measurements to provide heading estimates.

7.2.1 Results

The position estimates were satisfactory for both the online and offline results, under
the absense of gyrocompass aiding. See Figure 7.15, 7.16, 7.17 and 7.18 for illustrations.
The offline simulation performed better for reasons mentioned in the previous section.
At t = 1593 [s], the GNSS measurements experienced a jump in the position, similar to
the previous case. The corresponding position errors can be seen in Figure 7.19 and 7.20.

Figure 7.15: Case 2 (Online): Position (Latitude and Longitude)
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Figure 7.16: Case 2 (Offline): Position (Latitude and Longitude)

Figure 7.17: Case 2 (Online): Position (North and East)
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Figure 7.18: Case 2 (Offline): Position (North and East)

Figure 7.19: Case 2 (Online): Position Error (North and East)
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Figure 7.20: Case 2 (Offline): Position Error (North and East)

The heading estimate managed to keep track of the true heading with a low error during
the whole transit, both for the online test and the offline simiulation. See Figure 7.21,
7.22, 7.23 and 7.24 for illustrations. The online test performed worse during the transit
compared to the offline simulation, due to a lower k1 gain and a higher position error.
The heding error was during the transit under 3.36 [deg] for the online test. For compar-
ison, the offline simulation yielded a transit error under 0.45 [deg]. This resulted in an
improvement of 87 [%] for the offline simulation. Both cases ended up at approximately
the same error at the end of the test, with a heading error under 0.30 [deg].
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Figure 7.21: Case 2 (Online): Attitude (Euler Angles)

Figure 7.22: Case 2 (Offline): Attitude (Euler Angles)
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Figure 7.23: Case 2 (Online): Attitude Error (Euler Angles)

Figure 7.24: Case 2 (Offline): Attitude Error (Euler Angles)
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Figure 7.25: Case 2 (Online): Gyroscope Bias and Accelerometer Bias

Figure 7.26: Case 2 (Offline): Gyroscope Bias and Accelerometer Bias

The position offset from the GNSS receiver at t = 1593 [s] can be reflected in the main
observer error ξ, see Figure 7.27 and 7.28. The offline simulation acted more aggressively
on the position measurement due to the higher position gain.
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Figure 7.27: Case 2 (Online): Main Observer Error (ξ)

Figure 7.28: Case 2 (Offline): Main Observer Error (ξ)

7.3 Case 3: Loss of GNSS

This section studied the behaviour of the observer when the GNSS was absent under
defined time periods, i.e. dead-reckoning. Three different tests were carried out:
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• Observer: Under the first test only the nonlinear observer lost the GNSS aiding.
The trolley was moved in a similar manner as the previous case studies.

• Observer and Orion: In the second test, both the nonlinear observer and the
Orion lost the GNSS. The trolley was moved approximately 10 [m] south, before
returning back to the initial position.

• Observer and Orion (stationary): In the third and last test, the trolley was
stationary and level during the whole period. This was carried out to see how much
both systems drifted.

The green dots in the position plots denoted when the GNSS was absent, and when the
aiding reappeared.

7.3.1 Results: Observer

Figure 7.29, 7.30, 7.31 and 7.32 illustrate the movement of the trolley during test test.
The observer lost the GNSS aiding at the first green dot, while the Orion still was being
aided. Furthermore, the GNSS measurements were observed to contain more noise than
the previous tests, because of increased satellite interference. On the other hand, the
IMU measurement noise wasn’t as dominant as predicted in the simulation case studies
in Chapter 6. This improved the dead-reckoning capabilities substantially.

The position estimates were observed to overshoot at some degree when the GNSS was
absent. It seemed that the Orion also tried to overshoot its estimates, but was held back
by the GNSS. For this reason it was hard to validate the quality of the estimates due
to inconsistency in the GNSS measurements. When comparing the norm of the position
errors for both the online and offline test, the offline results yielded an overall lower
position error than the online test.
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Figure 7.29: Case 3 (Online): Position (Latitude and Longitude)

Figure 7.30: Case 3 (Offline): Position (Latitude and Longitude)
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Figure 7.31: Case 3 (Online): Position (North and East)

Figure 7.32: Case 3 (Offline): Position (North and East)

The position error can be seen in Figure 7.33 and 7.34, where the nonlinear observer
in the online test drifted 2.21 [m] north and 0.35 [m] east, at the end of the dead-
reckoning phase. In the offline simulation, the corresponding errors were 0.29 [m] north
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and 1.15 [m] east. The cause of the degraded performance in the east direction, for the
offline simulation, was due to the more aggressive GNSS gain. This caused the initial
trajectory of the position estimate to be more sensitive to GNSS noise before the GNSS
became absent.

Figure 7.33: Case 3 (Online): Position Error (North and East)
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Figure 7.34: Case 3 (Offline): Position Error (North and East)

The absence of the GNSS caused the Euler angle estimate and the corresponding error
to slightly drift, see Figure 7.35, 7.36, 7.37 and 7.38. The reasons for this deviation was
explained in Section 7.1.
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Figure 7.35: Case 3 (Online): Attitude (Euler Angles)

Figure 7.36: Case 3 (Offline): Attitude (Euler Angles)



7.3. CASE 3: LOSS OF GNSS 131

Figure 7.37: Case 3 (Online): Attitude Error (Euler Angles)

Figure 7.38: Case 3 (Offline): Attitude Error (Euler Angles)
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Figure 7.39: Case 3 (Online): Gyroscope Bias and Accelerometer Bias

Figure 7.40: Case 3 (Offline): Gyroscope Bias and Accelerometer Bias

Right before the GNSS aiding was lost, the norm of the main observer error ||ξ|| in the
offline simulation had a lower value than the online test. This can be seen in Figure 7.41
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and 7.42. This was due to the more agressive GNSS gain in the offline simulation. It was
also noticed that ||ξ|| was increasing right before the GNSS was lost. This was caused by
an increase GNSS noise, and seemed to affect the estimates during the dead-reckoning
phase.

Figure 7.41: Case 3 (Online): Main Observer Error (ξ)

Figure 7.42: Case 3 (Offline): Main Observer Error (ξ)

Figure 7.43 shows the position estimates from another offline simulation, where the GNSS
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aiding was turned off 1 [s] earlier with a decreasing observer error ξ, see Figure 7.44.

Figure 7.43: Case 3 (Offline): Position (Latitude and Longitude): Decreasing ξ

Figure 7.44: Case 3 (Offline): Main Observer Error (ξ): Decreasing ξ

7.3.2 Results: Observer and Orion

In this case, both navigation systems lost the GNSS aiding. The trolley was moved 10 [m]
south, before it returned back to the initial position. This test was carried out to see the
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performance of both navigation systems during a straight line maneuver.

Figure 7.45, 7.46, 7.47 and 7.48 show the position estimates from both systems. Not
surprisingly, the Orion performed better than the nonlinear observer with a drift of
approximately 2 [m] error in the east direction, and a negligible error to the north. The
nonlinear observer provided the best overall position estimates in the offline simulation.
The corresponding error was 5.5 [m] in the north direction, compared to a −10 [m]
position error in the online test. The position drift to the east seemed to be the same
for both the online test and the offline simulation, with approximately −25 [m] drift. In
this particular direction, the offline simulation performed slightly worse due to the more
aggressive GNSS gain.

Figure 7.45: Case 3 (Online): Position (Latitude and Longitude)
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Figure 7.46: Case 3 (Offline): Position (Latitude and Longitude)

Figure 7.47: Case 3 (Online): Position (North and East)



7.3. CASE 3: LOSS OF GNSS 137

Figure 7.48: Case 3 (Offline): Position (North and East)

Figure 7.49: Case 3 (Online): Attitude (Euler Angles)
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Figure 7.50: Case 3 (Offline): Attitude (Euler Angles)

The position estimate’s impact on the Euler angle estimate, when the GNSS measure-
ments returned, can be seen in Figure 7.51 and 7.52. This was because of the position
error at the end of the dead-reckoning phase.
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Figure 7.51: Case 3 (Online): Attitude Error (Euler Angles)

Figure 7.52: Case 3 (Offline): Attitude Error (Euler Angles)
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Figure 7.53: Case 3 (Online): Gyroscope Bias and Accelerometer Bias

Figure 7.54: Case 3 (Offline): Gyroscope Bias and Accelerometer Bias
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7.3.3 Results: Observer and Orion (Stationary)

The results in this section was based on the trolley being stationary, during the whole
test. Since the trolley was stationary, it was possible to calculate a better estimate of
the true gyroscope and accelerometer bias. This was done by taking the mean over
several predefined time windows. The time window was defined to be 10 [s] and resulted
in a mean based on 5000 samples from each IMU sensor. This was sufficient to see
the variation in the sensor biases, due to the random bias walk. See Figure 7.55 for
an illustration of the estimated true biases, compared to the observer’s estimates in
the online test. The true sensor biases were denoted with the stippled lines. Between
t = 1210 [s] and t = 1340 [s] the GNSS aiding was turned off for both navigation systems.

Figure 7.55: Case 3 (Online): Gyroscope Bias and Accelerometer Bias

From Figure 7.55 it was clear that the variation in the sensor bias were significant,
especially for the gyroscope bias. It was discovered that when the GNSS aiding was
gone, the first term in the attitude observer’s injection term became zero, or very small,
see (7.1). This was a result of not having feedback from the GNSS for correction of f̂e.

σ̂ = k1f b ×Re
b(q̂eb)>f̂e + k2Igyccb ×Re

b(q̂eb)>ce (7.1)

This resulted in the gyroscope bias not being correctly estimated when the GNSS aid-
ing was absent, for the x- and y-axis. This was also the case for the z-axis when the
gyrocompass was turned off.
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To solve this problem, the estimated specific force in the injection term got replaced with
the gravity vector from the J2 gravity model, i.e f̂e = −ge(p̂e). This could be realized
since the trolley was stationary with zero non-gravitational accelerations. The gyroscope
bias gain kI was increased such that the estimated biases would follow the true gyroscope
biases more aggressively. See 7.56 for the improved gyroscope bias estimates.

Figure 7.56: Case 3 (Offline): Gyroscope Bias and Accelerometer Bias

Figure 7.57 and 7.58 illustrate the position drift when the trolley was stationary for
the online and offline tests, respectively. The online test utilized the estimated specific
force in the attitude observer’s injection term, whereas the offline simulation utilized the
gravity vector.
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Figure 7.57: Case 3 (Online): Position (Latitude and Longitude)

Figure 7.58: Case 3 (Offline): Position (Latitude and Longitude)
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Figure 7.59: Case 3 (Online): Position (North and East)

Figure 7.60: Case 3 (Offline): Position (North and East)

The position drift of the Orion reference system can be illustrated in Figure 7.61, where
the drift of the nonlinear observer in the experimental test can be viewed in Figure 7.62.
The drift in the improved offline simulation can be viewed in Figure 7.63.
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The reference system drifted 10.3 [m] north and −42.8 [m] east, where the nonlinear
observer drifted −395.9 [m] north and −529.3 [m] east in the online test. By replacing
the estimated specific force with the gravity, the offline simulations yielded 29.7 [m] drift
to the north and −202.5 [m] to the east. This improved the estimates 92.5 [%] in the
north direction and 61.7 [%] in the east direction. Compared to the Orion, the nonlinear
observer performed 2.9 and 4.7 times worse in the north and east axes, respectively.

Figure 7.61: Case 3: Position Error (North and East): Orion
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Figure 7.62: Case 3 (Online): Position Error (North and East): Observer

Figure 7.63: Case 3 (Offline): Position Error (North and East): Observer

The attitude, and its corresponding error, for the online and offline results can be viewed
in Figure 7.64, 7.65, 7.66 and 7.67. The effect of the position estimate on the estimated
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Euler angle estimate can clearly be illustrated in Figure 7.64. Since the attitude observer
utlized the gravity for corrections in the injection term, and because of the higher kI
gain, the attitude estimates were more affected by the IMU sensor noise.

Figure 7.64: Case 3 (Online): Attitude (Euler Angles)
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Figure 7.65: Case 3 (Offline): Attitude (Euler Angles)

Figure 7.66: Case 3 (Online): Attitude Error (Euler Angles)
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Figure 7.67: Case 3 (Offline): Attitude Error (Euler Angles)

7.4 Discussion

The results from the first test gave an almost satisfactional performance of the nonlin-
ear observer, even though GNSS measurements were lost during the online tests. The
corresponding offline simulation results removed this erroneous behaviour, resulting in
much better estimates. The dynamic GNSS gain was maybe set to aggressive, where
the observer postion estimates followed the GNSS measurements closely. By setting this
gain lower the observer should be less affected by errors in the position measurements.
The GNSS matching problem was solved in the time after the tests were carried out.

The results showed that the observer managed to estimate the heading with great pre-
cision when the gyrocompass was absent, using only the gyroscope measurements from
the IMU. The resulting error, when the trolley was placed back at its initial position,
was under 0.30 [deg] for both the online and offline test. It was discovered that when the
gyrocompass was absent, the attitude observer struggled to estimate the gyroscope bias
in the z-axis, due to no heading references. This means that the z-axis estimate would
become more errouneous over time, due to the random walk in the sensor bias.

It was additionally discovered that the observer didn’t manage to properly estimate the
gyroscope bias in the x- and y-axis when the GNSS was absent. This was due to not
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having feedback from the GNSS for correction of the estimated specific force, which was
utilized in the attitude observer’s injection term. Since the true gyroscope bias was
shown to vary rapidly because of the bias walk in Section 7.3.3, this explained some of
the errors in Section 7.3.1 and 7.3.2.

By replacing the estimated specific force with the gravity vector, the observer seemed to
be able to continue it’s estimation process. This modification is valid when the system
experience small or zero non-gravitational accelerations, and was shown when the trolley
was stationary in Section 7.3.3. Unfortunately, the same approach would induce errors
in Section 7.3.1 and 7.3.2, since the trolley was accelerated under these particular tests.

Making the nonlinear observer perform during dead-reckoning was by far the most chal-
lenging task. When the GNSS aiding was gone, the nonlinear observer was strongly
influenced by the IMU sensor errors such as noise, bias and axis misalignments. This
made the position estimates grow unbounded at an exponential rate. This was also the
case for the Orion INS, but a much lower rate.

The resulting error due to IMU sensor noise was observed to affect the estimates at a
much smaller degree compared to the results in Cahpter 6. It seemed as the real noise
was more correlated with the real signal, increasing the SNR substantially. In addition,
the sensor biases on the ADIS16485 IMU were found to be within small regions, i.e.
Mb̂g

= 1.6 · 10−3 [ rads ] and Mb̂a
= 4.3 · 10−2 [ms2 ] for the gyroscopes and accelerometers,

respectively. These regions were found by taking the norms of the estimated biases. If
the accelerometers were used uncalibrated in the nonlinear observer, the estimates can
be utilized to calculate maximum attitude error:

φ ≈ arctan(gy
gz

) = ±0.073 [deg]

θ ≈ − arctan( gx√
g2
y + g2

z

) = ∓0.024 [deg]

Since the attitude errors were found to be φ < 0.22 [deg] and θ < 0.27 [deg] in Section
7.1, the biggest source of error in the current setup could be IMU misalignments.

The mounting process was found difficult to achieve with high accuracy, where the small-
est adjustment could result in an axis misalignment up to several degrees between the
IMU and the Orion. In addition, the IMU was listed with an axis-to-frame misalignment
of ±1 [deg] [1], where the frame represented the housing of the MEMS sensors. To reduce
this error, the IMU had to be mounted with a better accuracy.

Vibrations could also be a substantial source of errors. By studying the freqeuncy spec-
trum of the IMU measurements it was possible to see some high frequent vibrations, see
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Figure 7.68. The Orion INS was most likely the cause of some of these frequencies, due to
its high frequent noise. Other sources of vibrations could be caused by nearby computer
fans. Furthermore, it was clear that the placement of the IMU was not optimal due to
these vibrations.

Figure 7.68: Frequency Spectrum of the Accelerometer Measurements (x-axis)

The main problem with vibrations occur when the IMU’s sampling rate isn’t fast enough
to cover the high frequent vibrations. According to the Nyquist theorem, the sampling
rate must be at least twice the highest frequency component in the measured signal,
[26]. This meant that the IMU wasn’t able to correctly sample vibrations higher than
250 [Hz], due to its sampling rate of 500 [Hz]. Integrating the IMU’s measurements
under the presence of vibrations higher than 250 [Hz] would lead to non-zero values,
which again would lead to a fast position drift due to a second integration.

To solve the possible vibration problem, the IMU should be mounted away from known
vibrations. In addition, the IMU sampling rate should be chosen to be as high as possible,
such that any unknown vibrations are sampled. Last, a coning/sculling algorithm should
be implemented such that any vibrations are accounted for in real-time, [39].

Noisy position measurements right before the GNSS aiding was lost affected the position
estimates during the dead-reckoning phase. The noisy position measurements could
project the observer in the wrong direction, and additionally induce larger errors in future
estimates. To reduce the influence of noisy GNSS measurements, the GNSS weighting
function kp(χ, Fgnss) should be combined with the main observer error ξ. The main
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observer error gave an early indication of inconsistency in the GNSS measurements.
In addition, the HDOP value from the GNSS receiver should be utilized for further
improvement, see Section 3.2.3 for definition.

The overall performance of the nonlinear observer was experienced to be satisfactory
when comparing the estimates with the reference system. When the GNSS aiding was
present, the IMU errors was bounded and within a small region. By reducing the errors
mentioned above, the future performance of the state estimator will be improved.



Chapter 8

Conclusion and Future Work

The main objective in this thesis was to develop a model-free state estimator for dy-
namic positioning using IMU, gyrocompass and GNSS. The estimator was compared to
a reference system for validation and evaluation of the estimates using a logging system.
Section 8.1 gives the conclusion of this thesis, whereas Section 8.2 lists the recommended
future work.

8.1 Conclusion

Based on the results of this thesis, the following can be concluded:

• The nonlinear observer of Grip et al. [20] was successfully modified, implemented
and tested using IMU, gyrocompass and GNSS, by utilizing simulations in MAT-
LAB. The observer provided good results when it was consistently aided by the
GNSS. This resulted in small errors in the presence of noise and bias on the IMU.

• The observer was implemented and tested on a real system using the ADIS16485
MEMS based IMU. Because of some minor implementation problems, the observer
missed a significant number of GNSS measurements. This resulted in degraded
performance under the experimental tests. Due to the implemented logging sys-
tem, the results were improved using logged raw data from the sensors in offline
MATLAB simulations. These simulations were compared and validated with the
TSS Orion INS. When the observer was aided by the GNSS, these results were
found promising.
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• It was shown that the observer provided great heading estimates under gyrocompass
outage, using only gyroscope measurements from the IMU. Under GNSS outage, the
observer provided degraded estimates due to IMU sensor errors. It was discovered
that the observer didn’t manage to correctly estimate the gyroscope bias when
gyrocompass and GNSS was absent. A partial solution was presented to solve this
problem. This solution yielded good results when the system was stationary, i.e.
dynamic positioning.

• A dynamic frequency dependent GNSS gain for the nonlinear observer was de-
veloped and implemented with promising results. This generalized the discrete
observer to have consistent error dynamics under inconsistent GNSS rates.

• A comparison between the nonlinear observer and the linear Kalman filter were
presented to illustrate the effect of unknown external forces on a model-free and a
model-based estimation approach. The nonlinear observer was found to be unaf-
fected by the external forces.

• The nonlinear observer implemented in the ECEF frame was found to negatively
affect the heading estimate under GNSS outage. This was because of the position
dependancy when calculating the Euler angles. The observer should in future
applications be implemented in the NED frame to remove this dependancy.

8.2 Future Work

A list of future recommended work are listed below:

• Implement the nonlinear observer in the NED frame, such that the estimated head-
ing is independent of the position estimate.

• Make the nonlinear observer fault-tolerant in the case of GNSS failures. Comple-
ment the dynamic GNSS gain such that it utilize HDOP values from the GNSS
receiver in addition to the main observer error ξ. The observer should also be
made fault-tolerant in terms of gyrocompass and IMU failures. Consider the use
of MRUs/VRUs to improve the gyroscope bias estimation during GNSS outages.

• Develop and implement logic to improve the accelerometer bias estimation method
when the vessel has an angle offset due to different loading setups. The logic should
include knowledge about the vessel and IMU sensor characteristics. Consider the
inclusion of the vector bias estimation method and MRUs/VRUs for additional
information.
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• Consider having more than one IMU for redundancy and reduction of errors on the
measurements. By taking the mean between measurements of two or more IMUs,
the resulting measurement should be less affected by axis misalignments, noise, bias
and scale factors.

• The final model-free state estimator should include wave-filtering. Consider how
wave-filtering can be combined with the nonlinear observer.

• A complete stability analysis of the modified nonlinear observer should be carried
out.
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Appendix A

Simulator Design

A marine vessel simulator was designed using Simulink to achieve data for testing of
the nonlinear observer in MATLAB. The simulator was based on the 6-DOF model of
a semi-submersible rig found in the gnc library. A nonlinear PID-controller was utilized
to control the semi-sub. Both the model and the controller were implemented by Thor
I. Fossen using the NED coordinate system as the inertial frame.

Since the observer was designed in the ECEF frame, some modifications/transformations
was needed to achieve the corresponding measurements. The GNSS receiver was placed
a defined distance over the center of origin (CO) and was set to give noise and bias free
position measurements in LLA coordinates. Whereas the accelerometer and gyroscope
measurements from the IMU were implemented using proper measurement models. As
the purpose of the simulator was to test the functionality of the observer, the only
environmental disturbance included was the wave-induced forces and moments τwave,
realized by the JONSWAP spectrum. See Figure A.1 for the setup in Simulink.
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Figure A.1: Simulink Setup

A.1 Vessel

The 6-DOF semi-submersible model was:

η̇ = JΘ(Θnb)ν

Mν̇ + Dν + Gη = τwave + τ

where

η =
[
(pnb/n)> (Θnb)>

]>
(A.1)

ν =
[
(vbb/n)> (ωbb/n)>

]>
(A.2)

The system matrices M = MRB +MA, D and G were found in the Simulink model with
the following values:
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MRB = 1010



0.0027 0 0 0 −0.0530 0
0 0.0027 0 0.0530 0 −0.0014
0 0 0.0027 0 0.0014 0
0 0.0530 0 3.4775 0 −0.0265

−0.0530 0 0.0014 0 3.8150 0
0 −0.0014 0 0 −0.0265 3.7192


(A.3)

MA = 1010



0.0017 0 0 0 −0.0255 0
0 0.0042 0 0.0365 0 0
0 0 0.0021 0 0 0
0 0.0365 0 1.3416 0 0

−0.0255 0 0 0 2.2267 0
0 0 0 0 0 3.2049


(A.4)

D = 109



0.0004 0 0 0 −0.0085 0
0 0.0003 0 0.0067 0 −0.0002
0 0 0.0034 0 0.0017 0
0 0.0067 0 4.8841 0 −0.0034

−0.0085 0 0.0017 0 7.1383 0
0 −0.0002 0 −0.0034 0 0.8656


(A.5)

G = 1010



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0006 0 0 0
0 0 0 1.4296 0 0
0 0 0 0 2.6212 0
0 0 0 0 0 0


(A.6)

The position pnb/n was transformed to LLA coordinates, before being converted the the
ECEF poisition peb/n. The position was then derived once and twice to get the velocity
veb/n and acceleration aeb/n. A small local area was assumed when transforming from
NED to ECEF.

A.2 Controller

The controller was implemented as a 3-DOF nonlinear PID controller:

τ pid = Kpe + Ki

ˆ
e−Kdė
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with the error e = Rb
n(ψ)(ηref − ηpid) and the error derivative ė = νpid.

The set point was defined as ηref =
[
xnref ynref ψref

]>
, the position/attitude input

was defined as ηpid =
[
xn yn ψ

]>
, and the velocity input was defined as νpid =[

u v r
]>

.

The controller design matrices Kp, Ki and Kd were already defined in the controller in
Simulink, with the following values:

Kp = 0.1 · 0.1 · 1010

0.0440 0 0
0 0.0069 0
0 0 6.9241

 (A.7)

Ki = 2 · 0.1 · 1010

0.0440 0 0
0 0.0069 0
0 0 6.9241

 (A.8)

Kd = 0.13

10 · 1010

0.0440 0 0
0 0.0069 0
0 0 6.9241

 (A.9)

A.3 Measurements

A.3.1 GNSS Model

The lever arm rbgnss =
[
xbgnss ybgnss zbgnss

]>
denoted the position of the receiver with

respect to {b}, where the position pnb/n was transformed to pngnss/n using (2.32) from
Section 2.1.2:

pngnss/n = pnb/n + Rn
b (Θnb)rbgnss (A.10)

The NED position pngnss/n was then transformed to LLA coordinates plgnss/n, without
adding noise or bias.

A.3.2 Gyrocompass Model

The Gyrocompass heading ψGY C [deg] was calculated from the Euler angle ψ [rad] in
the following way:



A.3. MEASUREMENTS 165

ψπ,3π = ψ + 2π

ψGY C = 180
π

(ψπ,3π − 2πround(ψπ,3π4π ))

The heading output ψGY C yielded an output between 0 [deg] and 360 [deg]. No noise or
bias was added to the heading measurement.

A.3.3 IMU Model

The position of the IMU, denoted with the body-fixed coordinate system {m}, was

assumed to be in CO. This means that the lever arm rbm =
[
xbm ybm zbm

]>
= 03×1 ,

where rbm denoted the position of {m} with respect to {b}. The position, velocity and
acceleration could therefore be set as:

pem/n = peb/n, vem/n = veb/n, aem/n = aeb/n.

Then the accelerometer and gyroscope models were defined from [15] to be:

f bimu = Rb
e(qeb)[aem/n + 2S(ωein)vem/n − ge(pem/n)] + bbacc + wb

acc

ωbimu = ωbb/n + Rb
e(qeb)>ωene + bbgyr + wb

gyr

where ge(pem/n) was modeled with the J2 gravity model from [32], and Rb
e(qeb) was found

using appropriate function boxes in the Simulink library.

The biases bbacc and bbgyr were for simplicity defined to be constant during the simulations,
i.e. ḃbacc = 03×1 and ḃbgyr = 03×1. The accelerometer and gyroscope noise, wb

acc and
wb
gyr, will be defined in the next section.

Noise

For practical reasons bias and noise were added during offline simulations in MATLAB
after collecting the perfect data from the Simulink simulation. The measurement noise
wb was implemented as a normal distributed white gaussian noise with zero mean and
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Noise density Value
Accelerometers 0.055 [mg/

√
Hz]

Gyroscopes 0.0066 [deg/s/
√
Hz]

Table A.1: Simulation: Noise RMS amplitudes, [1]

a variance σ2
n = Pn = A2

n , where Pn was the mean noise power and An was the root
mean square (RMS) amplitude . This can be realized since white noise has a flat power
spectrum with Pn = σ2

n. The RMS amplitudes for the sensors were found using the ADIS
datasheet, see Table A.1.

The RMS amplitudes Aacc,n and Agyr,n, for a sampling rate of Fimu = 500 [Hz] and
1 [mg] = 9.81× 10−3 [m/s2], can be approximated to:

Aacc,n = 9.81× 10−3 × 0.055×
√

500 = 0.0121 [m/s2] (A.11)

Agyr,n = π

180 × 0.0066×
√

500 = 0.0026 [rad/s] (A.12)

The noises wb
acc and wb

gyr were then implemented with Pacc,n = A2
acc,n = 0.01212 and

Pgyr,n = A2
gyr,n = 0.00262.

A.4 Environment

The only environmental force being modeled was the wave-induced forces τw, which was
carried out with the use of the JONSWAP spectrum. This spectrum describes the non-
fully developed wave spectra of the North Sea, where fully developed means that the sea
is a result of winds blowing over large distances for a long time period.

A.4.1 JONSWAP

The spectral density function is described as, [15]:

S(ω) = 155H
2
s

T 4
1
ω−5exp(−944

T 4
1
ω−4)γY (A.13)

where γ = 3.3 is a normal choice with:
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Y = exp(−(0.191ωT1 − 1√
2σ

)2)

and

σ =

0.07 for ω ≤ 5.24
T1

0.09 for ω > 5.24
T1

(A.14)

T1 is the average wave period and Hs is the significant wave height.

In the next section the wave spectrum will be approximated using a nonlinear least-
squares method.

A.4.2 Approximated Wave Model

From [15] it’s possible to approximate first-order wave induced forces using a second-order
transfer function Hw(s) = diag{h{1}(s), ..., h{6}(s)} for a system with 6-DOF, where:

h{i}(s) = K
{i}
ω s

s2 + 2λ{i}ω{i}0 s+ (ω{i}0 )2
, for i = 1, ..., 6 (A.15)

where K{i}ω is defined as:

K{i}ω = 2λ{i}ω{i}0 σ{i}

where λ{i} is the damping coefficient, ω{i}0 is the peak frequency and σ{i} is the wave
intensity chosen as:

P
{i}
h (ω{i}0 ) = S(ω{i}0 )

m

(σ{i})2 = max
0<ω<∞

S(ω)

where S(ω) is the spectral density function of the JONSWAP wave spectra, defined
by (A.13), and P

{i}
hh (ω{i}0 ) is the spectral density function of the corresponding h{i}(s)

defined from [15] as:
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P
{i}
hh (ω) = |h{i}(jω = s)|2 = 4(λ{i}ω{i}0 σ{i})2ω2

((ω{i}0 )2 − ω2)2 + 4(λ{i}ω{i}0 ω)2
(A.16)

The damping coefficient λ{i} can be chosen such that P {i}hh (ω{i}0 ) matches S(ω{i}) using
a nonlinear least-squares method. For simplicity, the approximation was chosen to be
the same for each DOF, i.e. h(s) = h{i}(s).

Further, by selcting the peak frequency ω0 = 1.2 [rad/s] and the significant wave height
Hs = 10 [m] the approximation is illustrated in Figure A.2, for σ = 0.3218 and λ = 0.1017
.

According to [15] τw can be approximated linearly as:

τw ≈ KwHw(s)ww(s) (A.17)

where Kw is designed such that the position and attitude vector η is affected desirely. The
elements of Hw(s) are found from (A.15), and ww(s) =

[
w
{1}
w w

{2}
w w

{3}
w w

{4}
w w

{5}
w w

{6}
w

]>
where w{1}w is a Gaussian white noise process with zero mean and the spectral density
P
{i}
ww(ω) = 1.

A.4.3 The Simulated Seastate

By choosing the wave peak frequency as ω0 = 1.2 [rad/s] and the significant wave height
Hs = 1 [m], the JONSWAP wave spectrum can be linearly approximated using wavespec
and lsqcurvefit in jonswap.m, found in the gnc library in from the mss toolbox in
MATLAB. This resulted in σ = 0.3218 and λ = 0.1017. See Figure A.2 for plot of linearized
spectrum.
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Figure A.2: Linearized JONSWAP Spectrum
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Appendix B

Kalman Filter and Nonlinear
Observer (NED)

This appendix gives an overview of the nonlinear observer and the Kalman filter (KF)
for DP utilized in the comparison in Section 6.5, with corresponding initial conditions
and design matrices for the KF. Both state estimators were implemented in the NED
frame. Figure B.1 illustrates the Simulink setup.

171
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Figure B.1: Simulink Setup

B.1 Nonlinear Observer

When deriving the nonlinear observer in the NED frame, the Earth’s rotational rate
can be neglegted since the vessel is assumed to navigate in a small local area. The
gravitational model can be replaced with gn =

[
0 0 9.81

]>
and the north seeking

vector in the gyrocompass substitute is cn =
[
1 0 0

]>
. With these simplifactions, the

nonlinear observer in the NED frame can be given by:
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˙̂pn = v̂n + θGNSSKpp(pnGNSS − p̂n) (B.1)
˙̂vn = f̂n + gn

+θ2
GNSSKvp(pnGNSS − p̂n) (B.2)

ξ̇ = −Rn
b (q̂nb )S(σ̂)f bIMU

+θ3
GNSSKξp(pnGNSS − p̂n) (B.3)

f̂n = Rn
b (q̂nb )f bIMU + ξ (B.4)

˙̂qnb = 1
2 q̂nb ⊗ (ω̄bib,IMU −

¯̂bbg + ¯̂σ) (B.5)
˙̂bbg = Proj(b̂bg,−kI σ̂) (B.6)

where

σ̂ = k1f b ×Rn
b (q̂nb )>f̂n + k2cb ×Rn

b (q̂nb )>cn (B.7)

and

cb = cb

‖cb‖ , ce = cn

‖cn‖ , f b = f bIMU − b̂ba
‖f bIMU‖

, f̂n = f̂n

max{‖f̂n‖, δ}
(B.8)

Since the accelerometer bias was absent, the corresponding terms were removed.

B.2 Kalman Filter

The linear discrete KF has the well-known structure, [15]:

K(k) = P̄(k)H>[H(k)P̄(k)H> + R]−1 (B.9)

x̂(k) = x̄(k) + K(k)[y(k)−Hx̄(k)] (B.10)

P̂(k) = [I−K(k)H]P̄(k)[I−K(k)H]>

+K(k)RK>(k) (B.11)

x̄(k + 1) = Φx̂(k) + ∆u(k) (B.12)

P̄(k + 1) = ΦP̂(k)Φ> + ΓQΓ>(k) (B.13)
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where (B.9) represents the kalman gain matrix, (B.10) the state estimate update, (B.11)
the error covariance update, (B.12) the state estimate propagation and (B.13) the error
covariance propagation.

The design matrices Q and R represent the process noise covariance matrix and the
measurement covariance matrix, respectively, defined as Q = Q> > 0 and R = R> > 0.
Further, the initial conditions are defined as x̄(0) = x0 and P̄(0) = E[(x(0)−x̂(0))(x(0)−
x̂(0))>] = P0, where P̂(k) = P̂>(k) > 0 is computed online.

The discrete Kalman Filter (B.9-B.13) is based on the following discretized system model,
[15]:

x(k + 1) = Φx(k) + ∆u(k) + Γw(k)

y(k) = Hx(k) + v(k)

where

Φ = exp(Ah) ≈ I + Ah, ∆ = A−1(Φ− I)B, Γ = A−1(Φ− I)E (B.14)

Φ, ∆ and Γ represent the discretized system matrices based on the linear state space
model:

ẋ = Ax + Bu + Ew (B.15)

y = Hx + v (B.16)

where x is the state vector, u is the input vector w is the process noise vector, y is the
output vector, v is the measurement noise vector, A is the system matrix, B is the input
matrix, E is the process noise matrix and H is the output matrix.

B.2.1 Kalman Filter for Dynamic Positioning

The Kalman Filter utilized in 6.5 is based on the model for the semi-submersible rig used
to achieve the simulation data for comparison. Since the Kalman filter was supposed to
estimate η =

[
N E ψ

]>
and ν =

[
u v r

]>
, the system matrices for the rig was

reduced to:
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MRB = 1010

0.0027 0 0
0 0.0027 −0.0014
0 −0.0014 3.7192

 (B.17)

MA = 1010

0.0017 0 0
0 0.0042 0
0 0 3.2049

 (B.18)

D = 109

0.0004 0 0
0 0.0003 −0.0002
0 −0.0002 0.8656

 (B.19)

G = 1010

[
0 0 0
0 0 0

]
(B.20)

The linearized system (2.60-2.62), with b ∈ R3×1 representing the unmodeled nonlin-
ear dynamics and the gaussian noise vectors w1 ∈ R3×1 and w2 ∈ R3×1 representing
uncertainty of the linearized model, can be given as, [15]:

η̇ = ν (B.21)

Mν̇ + Dν + Gη = τ + b + w2 (B.22)

The unmodeled nonlinear dynamicsb is normally modeled as:

ḃ = w1

By defining the state vector x =
[
η b ν

]>
, (B.21-B.22) can be represented by the

linear state space model:

ẋ = Ax + Bu + Ew (B.23)

y = Hx (B.24)

where
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A =

 03×3 03×3 I3×3

03×3 03×3 03×3

−M−1G M−1 −M−1D

 (B.25)

B =

03×3

03×3

M−1

 (B.26)

E =

03×3 03×3

I3×3 03×3

03×3 M−1

 (B.27)

H =
[
I3×3 03×3 03×3

]
(B.28)

Then the discretized system matrices can be achieved by (B.14), such that the Kalman
filter can be calculated using (B.9-B.13).

The initial conditions for the KF were defined as:

P̄(0) = 10−6I9×9 (B.29)

x̄(0) = 09×1 (B.30)

After some trial, the design matrices were calculated as:

Q =



0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 0.001 0 0 0
0 0 0 107 0 0
0 0 0 0 107 0
0 0 0 0 0 107


(B.31)

R = 10−10I3×3 (B.32)
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Observer Code

C.1 MATLAB

The MATLAB code listed under illustrate the nonlinear observer represented in ECEF,
with the mean filtering accelerometer bias estimation method, and additional estimates
such as NED velocity and the Euler angles. The complete source code for both C++
and MATLAB can be found in the digital appendix, in addition to the processing code
for the logged data.

1 f u n c t i o n . . .
2 [ p_e , v_e , xi_e , q_be , b_g , w , . . . % Obs . e s t .
3 k_GYC , k_GPS , n_GYC , n_GPS , . . . % Msr . c o u n t e r s and f l a g s
4 eul_nb , v_n ] . . . % Extra e s t i m a t e s
5 = observer ( . . .
6 p_e_L , v_e_L , xi_e_L , q_be_L , b_g_L , w_L , . . . % Obs . l a s t e s t .
7 IMU_buff , GYC_buff , GPS_buff , . . . % Msr . b u f f e r s
8 k_GYC_L , k_GPS_L , n_GYC_L , n_GPS_L , . . . % Msr . c o u n t e r s and f l a g s
9 t , r_GNSS , r_IMU ) % Time and l e v e r arms

10
11 %OBS Summary o f t h i s f u n c t i o n goes here
12 % D e t a i l e d e x p l a n a t i o n goes here
13 % Observer : 50 Hz
14 % IMU: 100 Hz
15 % Gyrocompass : 10 Hz
16 % GPS: 1 Hz
17
18 % Tuning parameters
19 theta = 2 ;
20 X = 0 . 5 ;
21 k_0_r = 2 0 ;
22 k_1 = 1 . 5 ;
23 k_2 = 5 ;
24 k_0_I = 2 0 ;

177
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25 k_I = 0 . 0 0 1 ;
26
27 % System and s e n s o r parameters
28 M_f = 9 . 8 0 6 6 5 ;
29 M_bg = .3 5∗ pi /180 ; M_bg_h = .3 6∗ pi /180 ;
30 m_f = 0.98∗ norm ( M_f ) ; delta = 0.98∗ m_f ;
31 Mw = 0 . 6 ; a_w = 0 ;
32 mg = 9 . 8 0 6 6 5 / 1 0 0 0 ;
33 % For the gyrocompass i n j e c t i o n
34 % term at smal l l o c a l a r e a s
35 const_lat = 4 0 ;
36 const_lon = 1 0 ;
37
38 % Increment e s t i m a t e s
39 p_e = p_e_L ; v_e = v_e_L ; xi_e = xi_e_L ; q_be = q_be_L ;
40 b_g = b_g_L ; w = w_L ;
41 k_GPS = k_GPS_L ; k_GYC = k_GYC_L ;
42 n_GPS = n_GPS_L ; n_GYC = n_GYC_L ;
43 Gamma = Gamma_L ;
44
45 % I n i t i a l ga in boost
46 t_init = 360 ;
47 i f t < t_init ,
48 k_1 = k_1 ∗ k_0_r ;
49 k_2 = k_2 ∗ k_0_r ;
50 k_I = k_I ∗ k_0_I ;
51 e l s e
52 t_gyr = t−t_init ;
53 beta0 = 1 . 1 ; T_gyr1 = 2∗ t_init ; k_I_h = k_I ∗ k_0_I ; k_I_l = 5∗ k_I ;
54 tau0 = T_gyr1 /( l o g ( k_I_h−k_I_l )−l o g ( ( beta0−1)∗ k_I_l ) ) ;
55 k_I = k_I_l +(k_I_h−k_I_l ) ∗exp(−t_gyr / tau0 ) ;
56 end
57
58 % WGS84
59 a = 6378137; f = 1/298 .257223563 ; b = a∗(1−f ) ;
60 e = s q r t ( ( a^2−b ^2) /a ^2) ; e_ = s q r t ( ( a^2−b ^2) /b ^2) ;
61
62 % Measurements in d i f f e r e n t f r e q u e n c i e s
63 F_OBS = 5 0 ; F_IMU = 50 0 ;
64 % Euler d i s c r e t e i n t e g r a t i o n time
65 T_OBS = 1/ F_OBS ; T_IMU = T_OBS / s i z e ( IMU_buff , 2 ) ;
66
67 % Arm from CG {c} to IMU {m} (BODY)
68 r_cm = r_IMU ' ;
69 % Arm from CG {c} to GNSS {g} (BODY)
70 r_cg = r_GNSS ' ;
71 % Arm from IMU {m} to GNSS {g} (BODY)
72 r_mg = r_cg−r_cm ;
73
74 % I n t e g r a t i o n loop
75 f o r i =1: s i z e ( IMU_buff , 2 ) ,
76 % Extract msr . from b u f f e r
77 f_IMU_b = mg ∗ [ f_IMU_b ( 1 , 1 ) ; f_IMU_b ( 2 , 1 ) ; f_IMU_b ( 3 , 1 ) ] ;
78 o_IMU_b = ( pi /180) ∗ [ o_IMU_b ( 1 , 1 ) ; o_IMU_b ( 2 , 1 ) ; o_IMU_b ( 3 , 1 ) ] ;
79
80 % Rotation matrix (BODY to ECEF)
81 R_be = eye ( 3 ) +2∗q_be ( 1 ) ∗ Smtrx ( q_be ( 2 : 4 ) )+2∗Smtrx ( q_be ( 2 : 4 ) ) ^ 2 ;
82
83 % C a l c u l a t e g r a v i t y in ECEF
84 GM = 3986005 e8 ; J2 = 108263 e−8; a = 6378137; omega_ie = [ 0 ; 0 ; 7 . 2 9 2 1 1 5 e−5] ;
85 p_norm = norm ( p_e ) ; gti2 = J2 ∗a ^2/ p_norm ^ 2 ;
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86 gti3 = J2 ∗a ^2∗ p_e ( 3 ) ^2/ p_norm ^ 4 ;
87 g_p1 = −p_e ( 1 ) ∗ GM / p_norm ^3∗(1+3/2∗ gti2−15/2∗ gti3 )+p_e ( 1 ) ∗ omega_ie ( 3 ) ^ 2 ;
88 g_p2 = −p_e ( 2 ) ∗ GM / p_norm ^3∗(1+3/2∗ gti2−15/2∗ gti3 )+p_e ( 2 ) ∗ omega_ie ( 3 ) ^ 2 ;
89 g_p3 = −p_e ( 3 ) ∗ GM / p_norm ^3∗(1+9/2∗ gti2−15/2∗ gti3 ) ;
90 g_p = [ g_p1 ; g_p2 ; g_p3 ] ;
91
92 % Estimate o f ECEF s p e c i f i c f o r c e
93 b_a = w ( 2 : 4 , 1 ) ;
94 f_IMU = f_IMU_b−b_a ;
95 f_e = R_be ∗ f_IMU+xi_e ;
96
97 % GNSS MEASUREMENT
98 k_GPS = k_GPS + 1 ;
99 F_GPS = 1/( k_GPS ∗ T_IMU ) ;

100 K_GPS = F_IMU / F_GPS ;
101 i f n_GPS == 1 && i == s i z e ( IMU_buff , 2 ) && open_loop == 0 ,
102 % Compute ECEF from LLA ( c l o s e d method )
103 % GPS [ deg]−>[ rad ]
104 GPS_buff = [ ( p i /180) ∗ GPS_buff ( 1 , 1 ) ; ( p i /180) ∗ GPS_buff ( 2 , 1 ) ; . . .
105 GPS_buff ( 3 , 1 ) ] ;
106 p_GPS_l_g = GPS_buff ;
107 N = a/ s q r t (1−e ^2∗ s i n ( p_GPS_l_g ( 1 ) ) ^2) ;
108 p_GPS_e_g ( 1 ) = ( N+p_GPS_l_g ( 3 ) ) ∗ cos ( p_GPS_l_g ( 1 ) ) ∗ cos ( p_GPS_l_g ( 2 ) ) ;
109 p_GPS_e_g ( 2 ) = ( N+p_GPS_l_g ( 3 ) ) ∗ cos ( p_GPS_l_g ( 1 ) ) ∗ s i n ( p_GPS_l_g ( 2 ) ) ;
110 p_GPS_e_g ( 3 ) = ( b ^2/ a ^2∗ N+p_GPS_l_g ( 3 ) ) ∗ s i n ( p_GPS_l_g ( 1 ) ) ;
111 p_GPS_e_g = p_GPS_e_g ' ;
112 % P o s i t i o n o f GNSS with r e s p e c t to {m}
113 p_GPS_e = p_GPS_e_g − R_be ∗ r_mg ;
114 % Reset counter and new measurement f l a g
115 k_GPS = 0 ;
116 n_GPS = 0 ;
117 % Set d i s c r e t e gain
118 D_GPS = K_GPS ;
119 % Dynamic pos . gain
120 k_p = X∗ F_GPS ;
121 K_pp = k_p ∗ eye ( 3 ) ∗ . 6 ;
122 K_vp = k_p ∗ eye ( 3 ) ∗ . 1 1 ;
123 K_xip = k_p ∗ eye ( 3 ) ∗ . 0 0 6 ;
124 e l s e
125 K_pp = z e r o s ( 3 ) ;
126 K_vp = z e r o s ( 3 ) ;
127 K_xip = z e r o s ( 3 ) ;
128 D_GPS = 0 ;
129 end
130
131 % GYROCOMPASS MEASUREMENT
132 k_GYC = k_GYC + 1 ;
133 F_GYC = 1 0 ;
134 K_GYC = F_IMU / F_GYC ;
135 i f n_GYC == 1 && i == s i z e ( IMU_buff , 2 ) ,
136 phi = 0 ;
137 the = 0 ;
138 % Heading to yaw
139 GYC_buff = ( pi /180) ∗( GYC_buff−round ( GYC_buff /(360) ) ∗360) ;
140 psi = GYC_buff ;
141 % BODY v e c t o r
142 s_ph = s i n ( phi ) ; c_ph = cos ( phi ) ;
143 s_th = s i n ( the ) ; c_th = cos ( the ) ;
144 s_ps = s i n ( psi ) ; c_ps = cos ( psi ) ;
145 gc_b = [ c_ps ∗ c_th ;−s_ps ∗ c_ph+c_ps ∗ s_th ∗ s_ph ; . . .
146 s_ps ∗ s_ph+c_ps ∗ c_ph ∗ s_th ] ;
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147 % ECEF v e c t o r
148 lat_gc = degtorad ( const_lat ) ; lon_gc = degtorad ( const_lon ) ;
149 s_la = s i n ( lat_gc ) ; c_la = cos ( lat_gc ) ;
150 s_lo = s i n ( lon_gc ) ; c_lo = cos ( lon_gc ) ;
151 gc_e = [−c_lo ∗ s_la ;−s_la ∗ s_lo ; c_la ] ;
152 % Reset counter and new measurement f l a g
153 k_GYC = 0 ;
154 n_GYC = 0 ;
155 % Set d i s c r e t e gain
156 D_GYC = K_GYC ;
157 e l s e
158 gc_b = ones ( 3 , 1 ) ;
159 gc_e = ones ( 3 , 1 ) ;
160 D_GYC = 0 ;
161 end
162
163 % Determine o b s e r v e r g a i n s
164 i f D_GPS > 0 && D_GYC > 0 , % GPS && GYC
165 K_1 = k_1 ;
166 K_2 = k_2 ;
167 K_I = k_I ;
168 e l s e i f D_GPS > 0 && D_GYC == 0 , % GPS && !GYC
169 K_1 = k_1 ;
170 K_2 = 0 ;
171 K_I = k_I ;
172 e l s e i f D_GPS == 0 && D_GYC > 0 , % !GPS && GYC
173 K_1 = k_1 ;
174 K_2 = k_2 ;
175 K_I = k_I ;
176 e l s e % !GPS && !GYC
177 K_1 = k_1 ;
178 K_2 = 0 ;
179 K_I = k_I ;
180 end
181
182 % Body−f i x e d v e c t o r s and ECEF r e f e r e n c e v e c t o r s
183 v1b = f_IMU /max( norm ( f_IMU ) , delta ) ;
184 v1e = f_e /max ( [ norm ( f_e ) , delta ] ) ;
185 v2b = gc_b /norm ( gc_b ) ;
186 v2e = gc_e /norm ( gc_e ) ;
187
188 % P r e d i c t i o n
189 v1b_p = R_be ' ∗ v1e ;
190 v2b_p = R_be ' ∗ v2e ;
191
192 % I n j e c t i o n term
193 sig = K_1 ∗ c r o s s ( v1b , v1b_p )+K_2 ∗ c r o s s ( v2b , v2b_p ) ;
194 i f t > t_init ,
195 sig = K_1 ∗ c r o s s ( v1b , v1b_p )+K_2 ∗ [ 0 ; 0 ; 1 ] . ∗ c r o s s ( v2b , v2b_p ) ;
196 end
197
198 % Accelerometer b i a s : Mean F i l t e r i n g Method
199 beta1 = 1 . 1 ; T_acc1 = 1000; fch1 = 0 . 0 5 ; fcl1 = 0 . 0 0 0 0 0 5 ;
200 tau1 = T_acc1 /( l o g ( fch1−fcl1 )−l o g ( ( beta1−1)∗ fcl1 ) ) ;
201 fc1 = fcl1+(fch1−fcl1 ) ∗exp(−t/ tau1 ) ;
202 wc1 = 2∗ pi ∗ fc1 ; Tf1 = 1/ wc1 ;
203 db_a = 1/( Tf1+T_IMU ) ∗ [ f_IMU_b ( 1 : 2 )−b_a ( 1 : 2 ) ; 0 ] ;
204 i f t >= t_init ,
205 t_acc = t−t_init ;
206 beta2 = 1 . 1 ; T_acc2 = 50 0 ; fch2 = 0 . 0 2 ; fcl2 = 0 . 0 0 0 2 ;
207 tau2 = T_acc2 /( l o g ( fch2−fcl2 )−l o g ( ( beta2−1)∗ fcl2 ) ) ;



C.1. MATLAB 181

208 fc2 = fcl2+(fch2−fcl2 ) ∗exp(−t_acc / tau2 ) ;
209 wc2 = 2∗ pi ∗ fc2 ; Tf2 = 1/ wc2 ;
210 f_g = R_be ' ∗ g_p ;
211 db_a_z = 1/( Tf2+T_IMU ) ∗( f_IMU_b ( 3 )+f_g ( 3 )−b_a ( 3 ) ) ;
212 db_a ( 3 ) = db_a_z ;
213 end
214 %db_a = z e r o s ( 3 , 1 ) ; % NO ACC BIAS
215 b_a = b_a+T_IMU ∗ db_a ;
216 w ( 1 , 1 ) = norm ( b_a ) ^ 2 ;
217 w ( 2 : 4 , 1 ) = b_a ;
218
219
220 % Corrector
221 i f D_GPS > 0 ,
222 p_e_i = p_e ;
223 p_e = p_e + T_IMU ∗ D_GPS ∗ theta ∗ K_pp ∗( p_GPS_e−p_e_i ) ;
224 v_e = v_e + T_IMU ∗ D_GPS ∗ theta ^2∗ K_vp ∗( p_GPS_e−p_e_i ) ;
225 xi_e = xi_e + T_IMU ∗ D_GPS ∗ theta ^3∗ K_xip ∗( p_GPS_e−p_e_i ) ;
226 end
227 % P r e d i c t o r
228 v_e = v_e + T_IMU ∗(−2∗ Smtrx ( omega_ie ) ∗ v_e+f_e+g_p ) ;
229 p_e = p_e + T_IMU ∗ v_e ;
230 xi_e = xi_e + T_IMU ∗(−R_be ∗ Smtrx ( sig ) ∗ f_IMU+R_be ∗ db_a ) ;
231
232 % Att i tude e s t i m a t i o n
233 omegah = o_IMU_b−b_g+sig ;
234 Theta = [ 0 , −omegah ' ;
235 omegah , −Smtrx ( omegah ) ] ;
236 Thetae = [ 0 , −omega_ie ' ;
237 omega_ie , Smtrx ( omega_ie ) ] ;
238 dq_be = . 5 ∗ ( Theta−Thetae ) ∗ q_be+(1−q_be ' ∗ q_be ) ∗ q_be ;
239 q_be = q_be+T_IMU ∗ dq_be ;
240 q_be = q_be /norm ( q_be ) ;
241
242 % Gyroscope b i a s e s t i m a t i o n
243 db_g = −K_I ∗ sig ;
244 i f b_g ' ∗ b_g > M_bg ^2 && b_g ' ∗ db_g > 0
245 c = min ( [ 1 , ( b_g ' ∗ b_g−M_bg ^2) /( M_bg_h^2−M_bg ^2) ] ) ;
246 db_g = ( eye ( 3 )−c ∗( b_g ∗ b_g ' ) /( b_g ' ∗ b_g ) ) ∗ db_g ;
247 end
248 b_g = b_g+T_IMU ∗ db_g ;
249 end
250
251
252 % Compute LLA in {c} from ECEF {c} ( c l o s e d method )
253 lon = atan ( p_e_c ( 2 ) / p_e_c ( 1 ) ) ;
254 p = s q r t ( p_e_c ( 1 ) ^2+p_e_c ( 2 ) ^2) ;
255 theta_ = atan ( ( p_e_c ( 3 ) ∗a ) /( p∗b ) ) ;
256 lat = atan ( ( p_e_c ( 3 )+e_ ^2∗ b∗ s i n ( theta_ ) ^3) /( p−e ^2∗ a∗ cos ( theta_ ) ^3) ) ;
257 N = a/ s q r t (1−e ^2∗ s i n ( lat ) ^2) ;
258 h = p/ cos ( lat )−N ;
259 p_l_c = [ lat ; lon ; h ] ;
260
261 % Quaternion from ECEF to NED
262 q_lon = [ cos ( lon /2) ;0 ;0 ; − s i n ( lon /2) ] ;
263 q_lat = [ cos ( ( lat+pi /2) /2) ; 0 ; s i n ( ( lat+pi /2) /2) ; 0 ] ;
264 q_en = [ q_lat ( 1 ) ∗ q_lon ( 1 )−q_lat ( 2 : 4 ) '∗ q_lon ( 2 : 4 ) ;
265 q_lat ( 1 ) ∗ q_lon ( 2 : 4 )+q_lon ( 1 ) ∗ q_lat ( 2 : 4 )+c r o s s ( q_lat ( 2 : 4 ) , q_lon ( 2 : 4 ) ) ] ;
266 R_en = Rquat ( q_en ) ;
267
268 % Compute a t t i t u d e
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269 q_nb = [ q_en ( 1 ) ∗ q_be ( 1 )−q_en ( 2 : 4 ) '∗ q_be ( 2 : 4 ) ;
270 q_en ( 1 ) ∗ q_be ( 2 : 4 )+q_be ( 1 ) ∗ q_en ( 2 : 4 )+c r o s s ( q_en ( 2 : 4 ) , q_be ( 2 : 4 ) ) ] ;
271 q_nb = q_nb /norm ( q_nb ) ;
272 R_nb = Rquat ( q_nb ) ;
273 eul_nb = [ atan2 ( R_nb ( 3 , 2 ) , R_nb ( 3 , 3 ) ) ;
274 −a s i n ( R_nb ( 3 , 1 ) ) ;
275 atan2 ( R_nb ( 2 , 1 ) , R_nb ( 1 , 1 ) ) ] ;
276
277 % Convert to d e g r e e s ( and yaw to heading )
278 eul_nb ( 1 : 2 , 1 ) = (180/ pi ) ∗ eul_nb ( 1 : 2 , 1 ) ;
279 psi_3pi = eul_nb ( 3 , 1 ) +2∗ pi ;
280 eul_nb ( 3 , 1 ) = (180/ pi ) ∗( psi_3pi−2∗ pi ∗ round ( psi_3pi /(4∗ pi ) ) ) ;
281
282 % Rotate v e l c o i t y from ECEF to NED
283 v_n = R_en ∗ v_e ;
284
285 end



Appendix D

Additional Data

D.1 Raw Data

This appendix lists the sensor raw data for Case 1 in 7.1 from Section 7, which was
used to generate the frequency spectrum in Figure 7.68, and run the observer offline.
The plotted data contain measurements obtained from the logging software, which was
interpreted in MATLAB to a viewable format.
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Figure D.1: Raw Data: GNSS

Figure D.2: Raw Data: Gyrocompass (Orion)
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Figure D.3: Raw Data: IMU (Accelerometers)

Figure D.4: Raw Data: IMU (Gyroscopes)
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Appendix E

Digital Appendix

The following list represents the contents of the digital appendix:

• Dynamic GNSS Gain: The MATLAB code for plotting the eigenvalues and
infinity norms of the error dynamic matrix.

• GUI: The C# code for the graphical user interface.

• Kalman Filter versus Nonlinear Observer: The MATLAB and Simulink code
for running the state estimator comparison.

• Logging Data with Processing Tools: The logging data and MATLAB code
for processing the corresponding data.

• Logging System: The C++ code for the logging system.

• Nonlinear Observer C++: The C++ code for the nonlinear observer imple-
mented in the experimental setup.

• Simulator Design: The MATLAB and Simulink code for running the state esti-
mator in the simulator.

Due to the large amount of logging data, only Case 1 in Section 7.1 was included.
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