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Abstract
Rising marine activity in the arctic has introduced many ice related challenges for
Dynamically Positioned (DP) marine vessels. Current motion control systems for
DP vessels are not designed to handle ice-related disturbances, and will thus need
to be improved to be able to operate in these challenging conditions.

The main goals of this master thesis have been to evaluate opportunities for han-
dling large and sudden unknown external disturbances, and compare these with
existing solutions.

There will be presented a predictive feedforward controller to minimize the im-
pact of an external disturbance. There will also be presented a selective wave filter
with a notch frequency that is adapted by a wave-frequency tracker.

A modified highly responsive PID controller with nonlinear stiffness and damp-
ing terms is derived, and proven globally asymptotically stable using Lyapunov
based stability analysis. There will also be presented a Disturbance Rejection by
Acceleration Feedforward controller that utilizes acceleration feedback from inertial
measurements.

All of the proposed improvements have been implemented and tested in Mat-
lab/Simulink, while some of the methods have been implemented and tested hardware-
in-the-loop in a simulator provided by Marine Technologies. The proposed methods
were shown both theoretically and through simulations to yield improved station-
keeping performances.
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Sammendrag
Økt maritim aktivitet i arktis har introdusert mange is-relaterte utfordringer for
Dynamisk Posisjonerte (DP) marine fartøy. Nåværende regulatorsystemer for DP
fartøy er ikke designet for å takle is-relaterte forstyrrelser, og vil derfor trenge
forbedringer for å ha mulighet til å operere i de vanskelige forholdene.

Hovedmålene i denne masteroppgaven har vært å evaluere mulighetene for å takle
store og plutselige ukjente eksterne forstyrrelser, samt og sammenligne disse med
eksisterende løsninger.

Det vil bli presentert en prediktiv foroverkoblet regulator for å minimere sammen-
støtet av en ekstern forstyrrelse. Det vil også bli presentert et selektivt bølgefilter
med en notch-frekvens som er adaptert av en bølge-frekvens måler.

En modifisert svært responderende PID-regulator med ulineær stivhet og demp-
ing er utledet, og bevist globalt asymptotisk stabil ved bruk av Lyapunov-basert
stabilitetsanalyse. Det vil også bli presentert en forstyrrelsesavvisende regulator
med akselerasjons-foroverkobling som tar nytte av en akselerasjons-tilbakekobling
fra treghetsmålinger.

Alle foreslåtte forbedringer har blitt implementert og testet i Matlab/Simulink,
mens noen av metodene har blitt implementert og testet “hardware-in-the-loop” i
en simulator levert av Marine Technologies. De foreslåtte metodene ble vist å gi
forbedrede posisjonerings-prestasjoner, både teoretisk og gjennom simuleringer.
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Chapter 1

Introduction

Due to the rising global demand for energy, the oil and gas development has been
driven into the arctic region. Global climate changes have also led to increased
arctic ship traffic, research and tourism.

The harsh arctic climate and ice-infested waters make ship operations hazardous
and more complex. These operations include, but are not limited to: dynamic
positioning, towing, drilling and transit. Additional factors such as remoteness,
winter darkness and fog make these operations even more challenging.

1.1 Background and Motivation
Dynamic Positioning (DP) of marine vessels is a challenging practical problem,
where the main purpose is to control and maintain the vessel position and heading
within some accuracy, by the sole use of its propulsion and navigation systems
[2]. DP operations include, but are not limited to: stationkeeping, position moor-
ing and low speed reference tracking. DP control systems were first commercially
utilized in the 1960s petroleum industry, and have been experiencing significant
improvements up to this date [3]. Advanced multivariable optimal control and
Kalman filtering techniques were proposed in the 1970s by [4], and this work was
later modified and extended by [5][6][7][8] and more recently by [9]. These days,
DP systems are in addition to oil and gas applications, used in many other marine
operations such as cable-laying, cruise ships, flotels and even yachts.

With the increasing interest in arctic marine operations, new ships are being de-
signed and built in order to meet the demands for efficiency, survivability and
operability related to the challenging conditions. In arctic waters, there are even
higher standards for safety and environmental protection related to petroleum pro-
duction, so there is clearly a gap that needs to be closed [10]. This motivates for
the exploration of stationkeeping applications in various ice conditions.

Traditional DP systems are designed to operate up to certain limitations with
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2 CHAPTER 1. INTRODUCTION

regards to environmental conditions, limited by power and actuation capacities
[11]. These conditions however, are related to open water phenomena. Due to the
nature of ice related external forces, the environmental loads arising in arctic wa-
ters are very different from those in open waters, but unfortunately, few full scale
experiments have been reported to this regard [3]. A general opinion is that current
DP systems designed for open water applications, are not adequately capable of
handling ice related disturbances [12][13][14]. Several projects have thus recently
been launched to address this matter. Examples include the Research Council of
Norway (RCN) project: “Arctic DP: Safe and Green Dynamic Positioning Opera-
tions of Offshore Vessels in an Arctic Environment” [15], which seeks to increase
knowledge and competence related to offshore stationkeeping operations in arctic
ice-infested waters, and the DYPIC project [16], which involved large ice tank ex-
periments. The DYPIC project also explored the comprehension of ice interactions
on DP vessels, which was found to be of crucial importance for stationkeeping per-
formances in arctic conditions.

In the presence of level ice, [17] proposes a DP control design based on an ice-
load model. However, a more realistic scenario is where the DP vessel operates in
a combination of open and ice infested waters, or in managed ice [11]. According
to [18], managed ice can be considered to be the most likely operating condition
for DP vessels in the arctic. Managed ice is the result of ice management, which
is defined by [19] as “... the sum of all activities where the objective is to reduce
or avoid actions from any kind of ice features”. This includes, but is not limited
to: physical ice management in terms of ice breaking or iceberg towing; threat
evaluation; and detection, tracking and forecasting of sea ice. The latter term
requires ice intelligence, which is the process of collecting and analyzing relevant
information about the ice environment [20]. For a complete ice intelligence system,
several sensor platforms are needed to obtain sufficient ice information, as no single
ice observation system will suffice [21]. Ice observation systems can be found in
the works by [22], where autonomous underwater vehicles (AUVs) are considered
as mobile sensor platforms for underwater ice observation, or in [20], where stud-
ies on aerial ice observation by the use of unmanned aerial vehicles (UAVs) are
presented. The results from several such ice observation systems are necessary for
the determination and compensation of ice loads, as well as for decision support
and risk assessment in arctic operations [18]. This would also tend toward robust
solutions, with regards to the redundancy insured by several sensory platforms [20].
As proposed in [23], ice observation systems can be used to predict short-term ice
load changes, and use these predictions to pro-actively generate thruster forces in
order to minimize the impact of the disturbance.

As managed ice also will experience patches of open water, there will be a need
to consider DP designs that perform well in combinations of open and ice-infested
waters [11]. [24] proposes to ignore the use of wave filtering when the vessel is
subjected to ice, but due to the changing conditions, some form of switching would
be a better approach. [11] suggests the use of hybrid control to switch between
controllers and control settings, but stability may become a concern when non-
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linear controllers are involved. A better approach may be to utilize acceleration
measurements from Inertial Measurement Units (IMUs), which are becoming more
available at low cost and with high quality. According to [25], acceleration feed-
back can be used for better compensation of external forces, without compromising
thruster usage. The use of IMU measurements has also been encouraged by [26],
who addresses environmental disturbance rejection by the use of acceleration feed-
forward, with promising results with regards to arctic operations. This approach
virtually cancels out disturbances, leaving the underlying controller to experience
a calm sea state, and thus making it a favorable approach for constantly changing
arctic conditions.

The main motivation of this thesis was to explore methods for improved handling
of sudden and unknown external disturbances, for the purpose of achieving more
robust and accurate dynamic positioning in ice-infested waters. This includes the
use of inertial measurements, issues related to wave filtering in ice, and short-term
prediction of external forces caused by ice loads.

As real-life applications are time consuming as well as very expensive, it is de-
sirable to test proposed designs in a simulator such as Simulink. Since practical
performances rarely match the theoretical, it is imperative to have the opportunity
to run numerous simulations with an easily modifiable design, [27].

1.2 Contribution
This master thesis shall provide the following contributions:

• A study on inertial measurements with accompanying theoretical examples.

• A nonlinear multivariable PID controller augmented with nonlinear stiffness
and damping terms, with corresponding Lyapunov stability analysis.

• A Disturbance Rejection by Acceleration Feedforward controller.

• A predictive feedforward controller.

• A selective adaptive wave filter.

• Simulations of all proposed methods in Simulink and hardware-in-the-loop
simulations of selected methods.

Although the main focus of this thesis has been on ice-related challenges, the pro-
posed methods are also applicable to handle other unknown or poorly modeled
external disturbances related to e.g. cable-laying, pipe-laying or seismic tracking
operations.

The consideration of thruster use corresponding to eventual position performance
improvements has also been taken, both in the interest of reducing cost and main-
tenance related to wear and tear, as well as the environmental impact of fuel
consumption.



4 CHAPTER 1. INTRODUCTION

1.3 Outline
This thesis is organized in 9 chapters and 4 appendices. The chapters are num-
bered 1 through 9 while the appendices are numbered A through D. The appendix
presents nonlinear stability theory, modeling of the vessel used in Simulink simula-
tions, a description of the attached Matlab files, and additional results and plots.
The content of the chapters is described as follows:

Chapter 2 presents the notation used throughout this thesis, and studies kinetic
and kinematic equations of motion describing a marine vessel.

Chapter 3 presents a brief study on the possible advantages of utilizing inertial
measurements.

Chapter 4 presents an augmented PID controller design and the corresponding
stability properties. A Disturbance Rejection by Acceleration Feedforward con-
troller design is also presented.

Chapter 5 presents the design of a predictive feedforward controller as well as
simulation results.

Chapter 6 presents a selective adaptive wave filter design and corresponding sim-
ulations.

Chapter 7 presents the simulation results of several case studies involving different
external disturbances.

Chapter 8 gives a general discussion of the results in this thesis.

Chapter 9 gives a conclusion on the results, and suggests future work.



Chapter 2

Vessel Modeling

The purpose of this chapter is to study the kinematic and kinetic equations of
motion describing a marine vessel. The 6 DOF equations of motion will be derived
from first principles. The notation and results presented in this chapter are mainly
based on [1].

2.1 Notation and Reference Frames
2.1.1 Reference Frames
To describe the vessel kinematics in 6 DOF, several reference frames are needed,
[1]. The following definitions are obtained from [1] and [25]:

NED: The North-East-Down coordinate system {n} = (xn, yn, zn) has the origin
fixed at an arbitrarily chosen point on the Earth’s surface, where the x axis
points true North, the y axis points East and the z axis points Downwards
normal to the Earth’s surface. Throughout this thesis, this coordinate system
is chosen as the inertial reference frame.

BODY: The body-fixed coordinate system {b} = (xb, yb, zb) has the origin fixed
in the vessel center of origin that coincides with the principal axes of inertia,
where the x axis points in the longitudinal direction, the y axis points in the
lateral direction and the z axis points normal to the xy plane, [1]. The x,
y and z axes are positive in the forward, right and downwards directions,
respectively.

Reference-parallel: The reference-parallel coordinate system {d} = (xd, yd, zd)
is the BODY frame rotated an angle ψd about zb, where ψd is the desired
angle specified by the user or by a reference model.

5
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Body-fixed reference points

CO: Center of origin, i.e. the origin of the BODY coordinate system.

CG: Center of gravity, i.e. the point where the gravitational forces are considered
to act on the body.

2.1.2 Notation of Marine Vessel State-Space Vectors
To describe forces and moments, velocities, positions and angles, the following table
is adopted from [1]:

DOF Description Forces and
moments

Linear and
angular
velocities

Positions
and Euler
angles

1 Motions in the x
direction (surge)

X u N

2 Motions in the y
direction (sway)

Y v E

3 Motions in the z
direction (heave)

Z w D

4 Rotation about the
x axis (roll)

K p φ

5 Rotation about the
y axis (pitch)

M q θ

6 Rotation about the
z axis (yaw)

N r ψ

Table 2.1.1: The notation for vessel forces, moments, velocities, positions and
angles [1].

Note that the notation N is mentioned twice, for the yaw moment and the x
position in NED frame, respectively, but they will not be used in a context where
confusion could arise about which one is being referred to.

2.1.3 Vectorial Notation of Marine Vessel in 6 DOF
For marine craft, the following notation will be used for vectors in the BODY and
NED frames [1]:
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υb
b/n =

[
u
v
w

]
, linear velocity of origin of {b} with respect to {n} expressed in {b} [m/s]

ωb
b/n =

[
p
q
r

]
, angular velocity of {b} with respect to {n} expressed in {b} [rad/s]

pn
b/n =

[
N
E
D

]
, NED position of {b} with respect to {n} expressed in {n} [m]

pb
b/n =

[
x
y
z

]
, BODY position of {b} with respect to {n} expressed in {b} [m]

f b
b =

[
X
Y
Z

]
, force with line of action through origin of {b} expressed in {b} [N]

mb
b =

[
K
M
N

]
, moment about the origin of {b} expressed in {b} [Nm]

Θnb =

[
φ
θ
ψ

]
, Euler angles between {n} and {b} [rad]

rb
g =

[
xg

yg

zg

]
, vector from origin of {b}to CG expressed in {b} [m]

2.2 Kinematics
To transform between different coordinate systems, a rotation matrix R is intro-
duced in [1] with the properties

RRT = RTR = I ⇔ R−1 = RT (2.1)
detR = 1 (2.2)

where R ∈ SO(3), i.e. the special orthogonal group of order 3.

A rotation from frame a to frame b can then be expressed as

vb = Rb
av

a (2.3)
This transformation can now be used to rotate the body-fixed velocity into the
NED-reference frame, such that

υnb/n = Rn
b (Θnb)υbb/n (2.4)

where Rn
b (Θnb) represents three successive principal rotations about the the z, y

and x axis, i.e.
Rn
b (Θnb) = Rz,ψRy,θRx,φ (2.5)
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and its inverse
Rn
b (Θnb)−1 = Rb

n(Θnb) = Rx,φRy,θRz,ψ (2.6)

where, using the notation s· = sin (·) and c· = cos (·), the principal rotations are
given as

Rx,φ =

 1 0 0
0 cφ −sφ
0 sφ cφ

 Ry,θ =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 Rz,ψ =

 cψ −sψ 0
sψ cψ 0
0 0 1


(2.7)

such that Rn
b (Θnb) becomes

Rn
b (Θnb) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.8)

2.3 Equations of Motion
2.3.1 Kinematic Equations of Motion
The kinematic equations for marine craft can be described as translational and
rotational motions of a fixed body with respect to the NED frame, and can be
expressed in terms of the Euler angles, [1]. The kinematic equation for translation
is given in (2.4), and can be expressed in component form as Ṅ

Ė
Ḋ

 = Rz,ψRy,θRx,φ

 u
v
w

 (2.1)

where Rz,ψ, Ry,θ, and Rx,φ are the Euler angle rotational matrices about the z, y
and x axis, respectively, [1].

The kinematic equations for rotation, i.e. attitude, are given by [1] as the rela-
tionship between the body-fixed angular velocity vector ωbb/n and the Euler rate
vector Θ̇nb transformed by the transformation matrix TΘ(Θnb) ∈ R3×3, such that

Θ̇nb = TΘ(Θnb)ωbb/n (2.2)

The transformation matrix TΘ(Θnb) can be found by

ωbb/n =

 φ̇
0
0

+RT
x,φ

 0
θ̇
0

+RT
x,φR

T
y,θ

 0
0
ψ̇

 := T−1
Θ (Θnb)Θ̇nb (2.3)

which gives

TΘ(Θnb) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.4)
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where s· = sin (·), c· = cos (·), t· = tan (·). There is a singularity in θ = ±90◦, but
this is not a problem for surface vessels. For underwater vehicles operating near
this singularity, the use of unit quaternions to represent attitude would avoid this
problem at the cost of a fourth parameter.

The kinematic equations can now be expressed in vector form by introducing the
Earth-fixed position and orientation vector η and the body-fixed velocity vector ν,
as

η =
[
pnb/n
Θnb

]
(2.5)

and

ν =
[
υbb/n
ωbb/n

]
(2.6)

The kinematic equations then becomes [1]

η̇ = JΘ(η)ν (2.7)

where
JΘ(η) =

[
Rn
b (Θnb) 03×3
03×3 TΘ(Θnb)

]
(2.8)

2.3.2 Rigid-Body Kinetic Equations of Motion
The rigid-body equations of motion can be written as [28][1]

Mν̇ +CRB(ν)ν +CA(νr)νr +D(νr)νr +G(η) = τ thr + τ env (2.9)

where M ∈ R6×6 is the inertia matrix, CRB(ν) ∈ R6×6 and CA(νr) ∈ R6×6 are
the skew-symmetrical Coriolis and centripetal matrices of the rigid body and added
mass, respectively, D(νr) ∈ R6×6 is the damping matrix consisting of both linear
potential damping and nonlinear viscous damping, G(η) ∈ R6 is the restoring force
vector consisting of buoyancy and gravitational forces, τ thr ∈ R6 is the controlled
force vector produced by the thruster system, and τ env ∈ R6 are the environmental
forces caused by external disturbances such as e.g. wind, waves and ice. νr is the
relative velocity vector given in [28] as

νr =


u− uc
v − vc
w
p
q
r

 (2.10)

where the horizontal current components uc and vc in surge and sway, respectively,
are defined in [28] as

uc := Vccos(βc − ψ), vc := Vcsin(βc − ψ) (2.11)

where Vc and βc are the current velocity and direction, respectively.
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Rigid-body and Added Mass
The mass matrix is given in [1] as

M = MRB +MA (2.12)

where MA is the hydrodynamic added mass and MRB is the rigid-body mass
given by [1] as

MRB =
[
mI3×3 −mS(rbg)
mS(rbg) Ib

]
(2.13)

where m is the mass and where

Ib = Ig −mS2(rbg) (2.14)

where Ig is the inertia dyadic about CG, defined as

Ig :=

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Ixz −Izy Iz

 (2.15)

and where S ∈ SS(3) is defined in [1] as

S(λ) = −ST (λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 , λ =

 λ1
λ2
λ3

 (2.16)

Damping Forces
The damping matrix D(νr) can be expressed as the sum of linear damping forces,
DL, and nonlinear damping forces, DN (νr), such as viscous forces and wave drift.
The linear damping can be regarded as proportional to the velocity, while the
nonlinear damping can be assumed to be proportional to the square of the velocity
[25]. Marine vessels operating at low velocities will thus experience that linear
damping forces are dominating.

2.4 3 DOF Model
For positioning of conventional marine vessels it is normal to neglect the vertical
motion and only control the horizontal plane [28]. That means that only vessel
dynamics in surge, sway and yaw are considered, and thus the vessel model is
reduced from 6 DOF to 3 DOF. This is done by neglecting every vertical component
and thus letting w = p = q = 0, and reducing the position/orientation and velocity
vectors to η = [x, y, ψ]T and ν = [u, v, r]T , respectively. The 3 DOF model then
becomes

η̇ = R(ψ)ν
Mν̇ +CRB(ν)ν +CA(νr)νr +D(νr)νr = τ thr + τ env (2.1)
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where R(ψ) is the principal rotation about the z axis given in (2.7). To further
simplify the 3 DOF model, the following assumptions are made [1]:

1. The vessel is rigid.

2. The NED frame {n} is inertial.

3. The vessel is symmetric in the xz plane.

4. The {b} frame originates in the centerline of the vessel.

The first assumption implies that all structural points on the vessel remain fixed in
time. The second assumption implies that the forces caused by the Earth’s rotation
can be neglected. The third assumption implies that the products of inertia about
the xz plane equals zero, i.e. Ixy = Iyz = 0. The fourth assumption implies that
yg = 0.

The mass matrix then simplifies to

MRB =

 m 0 0
0 m mxg
0 mxg Iz

 (2.2)

and the added mass matrix to

MA =

 −Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 (2.3)

such that

M = MRB +MA =

 m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

 (2.4)

Notice that surge is decoupled from sway and yaw due to the symmetry about the
xz plane.

The total Coriolis and centripetal matrix C(ν,νr) can now be expressed as

C(ν,νr) = CRB(ν) +CA(νr) (2.5)

where

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (2.6)

and

CA(νr) =

 0 0 Yṙr + Yv̇vr
0 0 −Xu̇ur

−Yṙr − Yv̇vr Xu̇ur 0

 (2.7)
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The linear damping matrix becomes

DL =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (2.8)

2.4.1 DP Model
For dynamic positioning of marine vessels, one often assumes low speed conditions
as DP is used for stationkeeping and low-speed maneuvering (up to about 2 m/s)
[29]. Therefore a low-speed 3 DOF DP model can be derived. Assuming that roll
and pitch angles are small [1], the 3 DOF model (2.1) can be linearized around
ν ≈ 0, which implies that the nonlinear Coriolis, centripetal, restoring, damping
and buoyancy forces and moments can be linearized about ν = 0 and φ = θ = 0.
The DP model can then be expressed as

η̇ = R(ψ)ν
Mν̇ +Dνr = τ +RT (ψ)b (2.9)

where D = DL, τ =
[
τx τy τψ

]T is the control vector and b ∈ R3 is the bias
vector consisting of unknown forces and moments caused by e.g. wave drift, ice
and unmodeled dynamics.

2.5 Actuator Dynamics
As opposed to the ideal case, where thrust is applied at the instant it is requested,
the actuators have their own dynamics with regards to rate limits and total effect.
This introduces a phase lag and reduced amplitude with respect to the commanded
signals. According to [30], the actuator dynamics can conveniently be modeled
with a first-order approximation that satisfyingly reflects realistic behavior. The
actuator model is given as [30]

τ̇ = −A (τ − τ c) (2.1)

where τ is the actual applied thrust vector, while τ c is the thrust vector re-
quested by the controller. The thruster dynamics matrix A is given as A =
diag

([
1/T1 1/T2 1/T3

])
, where T1,2,3 represent the time constants for surge,

sway sand yaw, respectively. This model will limit the rate of which the trust can
change, while it does not limit the maximal thrust in each DOF. A saturation term
is therefore added, such that the applied thrust vector becomes

τ =
{

τ

τmax

if |τ | < τmax
else

(2.2)

where the determination of τmax is discussed in Appendix B.
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2.6 Environmental Forces and Moments
Environmental forces and moments normally represent wind, waves and ocean cur-
rents. However, as this thesis focuses on sudden and unknown external forces, wind
and current models will not be discussed. Even though wind forces account for a
large proportion of the environmental disturbance due to the vessels large surface
area, both current and wind forces can be considered as constant or slowly vary-
ing, and will thus be handled by integral action and or wind feedforward control,
respectively. Gusty winds will not affect the vessel due to its large inertia [1].

2.6.1 Wave Forces and Moments
Wave forces are one the most influencing forces on a controlled marine vessel [31],
not necessarily in magnitude, but in frequency. The wave-induced forces can be
divided into first and second-order forces, where the second-order forces are slowly
varying drift forces, while the first-order are rapid oscillatory zero-mean wave-
frequency (WF) motions [1]. As the second-order forces are slowly varying, they
can be attenuated by integral action, and will thus not be modeled in this thesis.
The first-order forces, however, have great influence on the control system due to
its high-frequency rapid motion. To evaluate the performance and robustness of
the DP controller, the first-order wave-forces must thus be included in the model.
According to [1], response amplitude operators (RAOs) can be used to compute
the wave-induced force vector.

To utilize the RAOs, a wave spectrum must be introduced, where the JONSWAP
spectrum was chosen as it has been adopted as the industry standard [1]. The
JONSWAP spectrum can conveniently be approximated by a second-order trans-
fer function, given in one DOF as [1]

h(s) = 2λω0σs

s2 + 2λω0s+ ω2
0

(2.1)

where λ is a damping coefficient, σ represents the wave intensity, while ω0 is the
dominating wave-frequency. The values for λ and σ can be found by the wavespec.m
function in the MSS toolbox [32], which takes in ω0 and Hs as parameters. Hs

represents the significant wave height, which is the mean of the one-third highest
waves.

The force RAO can now be utilized by approximating the first-order wave-induced
forces τwave by the linear approximation [1]

τwave ≈KH(s)w(s)

where H(s) is a diagonal matrix consisting of the second-order wave transfer func-
tion approximation for each DOF,w(s) is a zero-mean Gaussian white noise process
and spectral density Pww(w) = 1, and K is a tunable constant gain matrix that
should be tuned such that the effect the wave forces have on η, becomes reasonable.
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Chapter 3

Inertial Measurements

3.1 Introduction
Today’s conventional DP control systems typically consist of Kalman filters, and
PID or optimal control strategies to control the position and velocity of the vessel
[26]. The common scheme is to only use measurements of the position and ve-
locity states, while acceleration measurements are not used. These strategies are
model-based, and separate the fast-varying first order wave disturbances from the
slowly-varying forces such as nonlinear wave drift, ocean currents, wind and ice.
The desired thrust is then calculated from the low-frequency (LF) estimates to
reduce wear and tear of the actuators and rudders, as the oscillatory zero mean
wave motions have been filtered out. The DP system thus only reacts to constant
and slowly-varying disturbances, although it should be mentioned that some high-
frequency oscillatory wave components will always find its way into the feedback
loop. When the varying disturbances are measurable, it is desirable to use dis-
turbance feed-forward to cancel them out. However, most disturbances are not
measurable and must be handled by other means. Wind is the only disturbance
that is relatively easy to measure and requiring that the vessel’s wind coefficients
are well known, the wind force can be estimated by the use of wind sensor mea-
surements. Wind feed-forwarding is thus commonly implemented on conventional
DP systems [25].

Conventional DP control systems are usually proved stable and robust, but they do
not necessarily provide adequate compensation of environmental disturbances [26].
This especially applies when these disturbances are unknown external forces, such
as ice loads or cables. A PID control system will efficiently handle constant distur-
bances, but will use unnecessary thruster power as momentum needs to build up
before the controller kicks in. In addition, due to the phase lag, the PID controller
performs poorly when exposed to varying disturbances. This could be compensated
by increased damping, but as there will always be residues of wave frequencies in
the LF velocity estimates, this would lead to increased wear and tear on the actu-
ators [25].

15
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Introducing acceleration feedback (AFB) is an alternative way to handle these
problems. AFB can be viewed as virtually manipulating the mass of the ves-
sel. Negative feedback increases the mass, while positive feedback decreases it.
By applying negative acceleration feedback, the system appears virtually heavier
from the disturbance’s point of view, and thus the effects of the disturbance are
attenuated. This will improve the closed-loop dynamics and thus improve the sta-
tionkeeping performance [25]. AFB can also be used to virtually shape the kinetic
energy of the vessel, later to be used in e.g. backstepping designs [29]. Accelera-
tion measurements are usually gathered from inertial measurement units (IMUs),
which are small, high-precision units that measure linear accelerations, and often
angular rates as well. IMUs are becoming increasingly cheap in cost, and are easily
retrofitted in existing control and navigation systems for increased performance. In
addition, the sensor equipment was initially intended for aircraft and is therefore
very reliable and robust [25]. The use of acceleration measurements are common
in the aerospace industry [33], but are generally considered superfluous in marine
control as the model-based systems tend to perform excellent. However, when sys-
tem parameters are not well known, positioning performance may become poor.
As implied in Newton’s 2. law, the acceleration is proportional with the resulting
force acting on the vessel, and thus by decomposing the absolute acceleration a
into a = aa +ae, where aa represents the acceleration due to known forces and ae
represents accelerations due to unknown environmental disturbances, ae can be di-
rectly compensated by applying AFB [26]. Notice that ae also encapsulates model
uncertainties, and thus by applying AFB, direct compensation will also relax the
need of an accurate model [26].

3.2 Background
To explore the actual effect of AFB, a scalar and a multiple-input multiple-output
(MIMO) example is presented.

3.2.1 Scalar Example
Considering a 1 DOF simplified ship model, the low speed model takes the form of
a linear mass-damper

mẍ+ dẋ = τ + w (3.1)
where m is the mass, d is the linear damping constant, x, ẋ = v and ẍ represent
position, velocity and acceleration, respectively, τ is the control input and w is the
unknown disturbance. By defining the time constant T = m/d > 0, the transfer
function from the velocity to the disturbance can be written as

v

w
(s) = v

τ
(s) = 1

d

1
1 + Ts

(3.2)

Introducing a control law including acceleration feedback as

τ = −Kmv̇ + τPID (3.3)
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where τPID represents a conventional PID controller to be described later, and
Km > 0 is the acceleration feedback gain. The negative Km term will virtually
increase the vessel mass to mtotal = m+Km, such that (3.1) including the control
law (3.3) can now be written as

(m+Km)ẍ+ dẋ = τPID + w (3.4)

or equivalently

ẍ+ d

(m+Km) ẋ = 1
(m+Km)τPID + 1

(m+Km)w (3.5)

It can now be noticed that the disturbance gain has been reduced from 1/m to
1/(m + Km) and the system will thus as expected be less sensitive to external
disturbances. This is also apparent in the velocity to disturbance transfer function
(3.2), which now can be expressed as

v

w
(s) = v

τPID
(s) = 1

d

1
1 + m+Km

d s
(3.6)

where the Bode plot of the transfer function before and after AFB is shown in
Figure 3.2.2.

For improvement, the acceleration term can be expanded to a dynamic system
hm(s), such that the virtual mass of the vessel becomes mtotal(s) = m + hm(s).
The control law then takes the form

τ = −hm(s)v̇ + τPID (3.7)

hm(s) can conveniently be chosen as a low-pass filter to attenuate low-frequency
disturbances [1], as

hm(s) = Km

Tms+ 1 (3.8)

where Km > 0 is the gain and Tm > 0 is the time constant. (3.4) can now be
written as

(m+ Km

Tms+ 1)︸ ︷︷ ︸
mtotal(s)

ẍ+ dẋ = τPID + w (3.9)

This means that for low frequencies, i.e. below ωm = 1/Tm, the total mass in-
creases to m + Km, while for high frequencies, the mass will converge to m as
hm(s)→ 0 for ω � ωm, as seen in Figure 3.2.1.

The transfer function from velocity to disturbance can now be written as

v

w
(s) = v

τPID
(s) = 1

d

1 + Tms

mTms2 + (Tm + T + Km

d )s+ 1
(3.10)

and as seen in Figure 3.2.2, the frequency response is much better than the con-
stant AFB except for a small range near the cutoff frequency. However, this exact
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Figure 3.2.1: Virtual mass hm(s), where blue represents LP and green represents
notch.

response is just a result of the chosen parameters used in the transfer function,
which in this case are as follows: m = 10, Km = 10, d = 3, Tm = 5, ζ = 0.2 and
ωn = 0.2, such that a different tuning of the filters or a different model would yield
a different response.

The AFB filter hm(s) can also be chosen as a notch filter to attenuate first-order
wave-induced forces [1]. Considering a second order notch filter on the form

hm(s) = Km(s2 + ω2
n)

s2 + 2ζωns+ ω2
n

(3.11)

gives the transfer function from velocity to disturbance

v

w
(s) = s2 + 2ζωns+ ω2

n

(m+Km)s3 + (2ζωnm+ d)s2 + (2ζωnd+ ω2
n(m+Km))s+ dω2

n

(3.12)

where the Bode plot is shown in Figure 3.2.2. The frequency response is similar to
the constant AFB, except for a peak around ωn, where the virtual mass approaches
m (as seen in Figure 3.2.1). The effect of this peak will be that the first-order wave-
induced forces will not be fed back to the controller and will thus reduce wear and
tear on the actuators. However, the wave frequency is uncertain, so in the case
of poor accuracy of the chosen notch frequency ωn, the performance may become
poor and the actuator wear will not be reduced for disturbances that does not
fall within the notch frequency. This can be solved by introducing an adaptive
notch filter, were the notch frequency ωn is adapted to match the frequency of the
incoming wave train. This matter is further discussed in Section 6.2.
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Figure 3.2.2: Bode plot of v
w (s) without and with constant and dynamic AFB.

3.2.2 MIMO Example
Considering the 3 DOF model in (2.9) with the corresponding mass matrix given
in (2.4) as

M = MRB +MA =

 m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

 (3.13)

it can be noticed that M is not symmetrical, i.e. M 6= MT , as M23 6= M32.
This is because while the rigid-body mass matrix is symmetrical, the added mass
matrix MA is non-symmetrical due to wave-induced forces and forward speed
effects [29]. For zero speed or low speed (U ≈ 0) it is often assumed thatM = MT ,
but that is under several simplifying assumptions such as neglecting currents and
incident waves. The non-symmetrical property will cause a problem for energy-
based Lyapunov control techniques as they require that the system inertia matrix
is positive definite, i.e. M = MT > 0. This can be solved by including acceleration
feedback, as the system inertia matrix can be reshaped to become symmetrical [29].
Notice that as the IMU only provide measurements of linear accelerations, there
are no available measurements of accelerations in yaw. Recalling the control law
including AFB and PID in (3.3) as

τ = −Kmν̇ + τPID (3.14)

will then yield a gain Km > 0 on the form

Km =

 K11 K12 0
K21 K22 0
K31 K32 0

 (3.15)
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Including AFB will then change the system inertia matrix to

H = M +Km (3.16)

=

 m−Xu̇ +K11 K12 0
K21 m− Yv̇ +K22 mxg − Yṙ
K31 mxg −Nv̇ +K32 Iz −Nṙ


By letting

Km =

 Xu̇ + ∆K11 0 0
0 Yv̇ + ∆K22 0
0 Nv̇ − Yṙ 0

 (3.17)

the reshaped inertia matrix becomes

H =

 m+ ∆K11 0 0
0 m+ ∆K22 mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 (3.18)

which implies that H = HT > 0. The remaining design parameters, ∆K11 and
∆K22, can be viewed as additional mass manipulators in the surge and sway di-
rections, respectively. In addition, by choosing ∆K11 = ∆K22, the mass will be
equal in surge and sway, such that the PID controller will be independent on the
heading angle, which gives an advantage in tuning of the DP controller [29].



Chapter 4

Controller Design

In order to dynamically position a marine vessel, some form of motion control
system is needed. The problems of motion control of marine craft can be roughly
classified into three groups [34]:

• point stabilization (or setpoint regulation), to stabilize the vessel at a given
fixed position with a desired heading.

• trajectory tracking, to have the vessel track a time parameterized reference.

• path following, to have the vessel converge to and follow a desired path, which
is independent of time.

Trajectory tracking is the most common configuration for fully or over-actuated
vehicles, i.e. the number of actuators are equal to or greater than the number of
states that are to be tracked. This is thus a fitting approach for DP vessels, as
they typically have more than three actuators to control horizontal motion. Tra-
jectory tracking can also be used to track targets, e.g. seismic tracking or tracking
of other ships, where the reference points are given by a separate tracking algo-
rithm. The most common applications for DP vessels are low-speed maneuvering
and stationkeeping, where it can be noticed that stationkeeping is tracking control
with a constant position reference, which is equivalent to point stabilization.

Path following is a more common approach for under-actuated vessels [25], i.e.
there are less actuators than the number of states to be tracked, where the typ-
ical configuration is forward speed and turning control. Path following can also
be used on fully or over-actuated vehicles that operate in heading autopilot mode,
such that the forward speed is held constant, while the heading is controlled to
track the path. A popular method for this kind of path following is line-of-sight
(LOS) guidance [1].

21
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4.1 PID
Assuming full state feedback, a DP controller inspired by traditional PID controllers
is proposed. Even though the controller is nonlinear, the linear terms can be iso-
lated and tuned using linear pole placement techniques, while the nonlinearities
are added and tuned later on. As the use of traditional multivariable PID con-
trollers is the most common approach in DP systems today [11], the linear design
techniques gives the advantage of intuitive tuning, compared to certain nonlinear
control approaches that require a more theoretical background. The PID controller
is augmented with nonlinear stiffness and damping terms in order to make it more
responsive with regards to sudden and unknown external disturbances. A non-
rigorous stability analysis is also included to show that the DP system is globally
asymptotically stable.

4.1.1 Nonlinear Horizontal-Plane PID Control Law
Considering the 3 DOF DP model given in (2.9) as

η̇ = R(ψ)ν (4.1)
Mν̇ +Dν = τ +w (4.2)

where the bias termRT (ψ)b has been switched out with a general disturbance term
w, and the relative velocity term νr has been replaced with ν for simplification, i.e.
neglecting current. The objective of the controller is to track a smooth trajectory
given by a reference model, which outputs ηd and νd, the desired positions and
heading angle and velocities and yaw rate, respectively. The desired position and
heading are commonly given in NED-coordinates, while the desired velocity and
yaw rates are given in BODY-coordinates. The deviation vectors e ∈ R3, ν̃ ∈ R3

and z ∈ R3describing the difference between the estimated and the desired states
for position and heading, velocity and yaw rate and integrator states, respectively,
can be expressed as [28]

e =
[
e1 e2 e3

]T = RT (ψd)(η̂ − ηd) (4.3)
ν̃ = ν̂ −RT (ψ)η̇d (4.4)
ż = e (4.5)

where ψd is the desired heading angle, and η̂ and ν̂ represent the estimates for
position/heading and velocity/yaw rate, respectively. Notice that ν̃ is given in the
BODY-frame, while e and ż are given in the reference-parallel frame.

Introducing the control law τ = τPID as described in [28]

τPID = −RT
eKpe−RT

eKp3f(e)−Kdν̃ −RT
eKiz (4.6)

where Kp, Kd and Ki ∈ R3×3 are the non-negative proportional, derivative and
integral gain matrices of a traditional PID controller, respectively. Re ∈ R3×3 is
defined as

Re = R(ψ − ψd) := RT (ψd)R(ψ) (4.7)
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Figure 4.1.1: First-order proportional deviation term vs nonlinear third-order stiff-
ness deviation term.

and can be regarded as a rotation matrix from the BODY-frame to the reference-
parallel frame. This means that the control forces are calculated in BODY-coordinates,
while the gains are given in the reference-parallel frame. It can later be more con-
venient to place the gains in front of RT

e , such that the gains become body-fixed,
which is more intuitive for tuning purposes [25].

The term f(e) is a third order stiffness term proposed in [28] as

f(e) =
[
e3

1 e3
2 e3

3
]T (4.8)

where Kp3 ∈ R3×3 is the corresponding non-negative gain matrix. This nonlinear
term is very aggressive as it will penalize large deviations, i.e. e1,2,3 > 1, much more
than the regular proportional term. However, for smaller deviations, i.e. e1,2,3 < 1,
the proportional term will dominate the stiffness term. This is better visualized
in Figure 4.1.1. The stiffness term thus gives the advantage that the proportional
gain matrix can be reduced, which will reduce the amount of thrust commanded
for small deviations. It will also make the system more responsive against large
and sudden unknown external forces such as ice, which reduces the maximal value
and duration of the offset after such a disturbance interacts with the vessel.

4.1.2 Stability Analysis
It can be of interest to show that the added stiffness term does not affect the sta-
bility properties of a traditional PID controller. The stability analysis is done by
applying energy-based stability proofs as found in [1] and [35].

For simplification of the stability proof, the following assumptions are made: es-
timates are replaced with perfect signals for notational simplification; the desired
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velocity equals zero, i.e. η̇d = 0, such that the regulation of η to ηd is constant;
the desired and actual heading angle equals zero, i.e. ψ = ψd = 0, as this greatly
simplifies the derivation; the integral action can be removed, i.e. Ki = 0, as more
elaborately explained in Section 4.2.1. In addition, for the purpose of general anal-
ysis, the system is reduced to 1 DOF, such that e.g. νTMν can be written as
Mν2. Notice that the use of subscripts to represent a single DOF in each vector
or matrix has been neglected for notational simplification. It should be mentioned
that this approach is not rigorous, but it greatly simplifies the analysis and will
still give a good idea of the stability properties.

The control law in (4.6) can now be expressed as

τPD = −Kpe−Kp3f(e)−Kdν (4.9)

and by noticing that (4.1) can be rewritten as

ν = η̇ (4.10)

and
ė = η̇ − η̇d = η̇ = ν (4.11)

which will be exploited later in the analysis.

Now let the control law (4.9) be written as

τPD = −Kp(t)e−Kdν (4.12)

where a new gain term for the position deviation has been defined as

Kp(t) := Kp +Kp3e
2 (4.13)

where Kp(t) > 0, ∀t as Kp,Kp3 > 0. The Kp(t) gain encapsulates the third-
order stiffness term in a single term, such that the controller takes the form of a
traditional PD controller. Notice that Kp(t) is time-varying as it is a function of
the position deviation e, and will thus have a non-zero derivative.

4.1.2.1 Lyapunov Stability

As described in Appendix A, a Lyapunov function can be used to analyze the sta-
bility properties of the system.

Proposing a Lyapunov function candidate as

V = 1
2Mν2 + 1

2(Kp + 1
2Kp3e

2)e2

= 1
2Mν2 + 1

2Kp2(t)e2 (4.14)

where
Kp2(t) := Kp + 1

2Kp3e
2 (4.15)
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where M > 0 and Kp2(t) > 0, ∀t. Notice that the two terms in (4.14) can be re-
garded as kinetic and potential energy, respectively [1]. Also notice that the more
intuitive Lyapunov function candidate V = 1

2Mν2 + 1
2Kp(t)e2 will not work due

to the e2 term inside Kp(t).

(4.14) is then time differentiated along the trajectories of ν and e, such that

V̇ = Mν̇ν + 1
2K̇p2(t)e2 +Kp2(t)eė (4.16)

where

K̇p2(t) = Kp3eė (4.17)

Inserting (4.17) into (4.16) yields

V̇ = Mν̇ν +Kp2(t)eė+ 1
2Kp3e

3ė

= Mν̇ν + (Kp2(t) + 1
2Kp3e

2)eė (4.18)

and by replacing Kp2(t) with (4.15)

V̇ = Mν̇ν + (Kp + 1
2Kp3e

2 + 1
2Kp3e

2)eė

= Mν̇ν +Kp(t)eė
= (Mν̇ +Kp(t)e)ν (4.19)

where (4.11) was used to switch out ė = ν. Inserting the DP model from (4.2) and
the control law (4.12) into (4.19) then gives

V̇ = (−Kp(t)e−Kdν + w −Dν +Kp(t)e)ν
= wν − (Kd +D)ν2 (4.20)

If the disturbance is neglected, (4.20) becomes

V̇ = −(Kd +D)ν2 ≤ 0, ∀ν (4.21)

which according to [1] proves that the system is globally asymptotically stable
(GAS) by applying Krasovskii-LaSalle’s Theorem (A.1). In addition, the trajecto-
ries of ν and e will converge to the set Ω, which is the set of all points where V̇ = 0,
i.e.

V̇ = −(Kd +D)ν2 ≡ 0 (4.22)

This is true for ν = 0, and thus the set Ω becomes

Ω = {(e, ν) : ν = 0} (4.23)

At the equilibrium point ν = 0, the system becomes

Mν̇ = −Kp(t)e (4.24)
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which yields that the system cannot get stuck at an equilibrium point other than
e = 0, because as long as e 6= 0, the system (4.24) is non-zero. As the equilibrium
point is the origin, i.e. (e, ν) = (0, 0), it is the largest invariant set in Ω, and thus
according to Theorem (A.1), the origin is GAS.

Considering the special case where the disturbance is non-zero, but constant, i.e.
ẇ = 0, the system will be uniformly ultimately bounded (UUB), which means
that the trajectories of ν and e will converge to a ball about the equilibrium point
(e, ν) = (0, 0). The radius of the ball will depend on the magnitude of w [1]. It is
also possible to prove local asymptotic stability (LAS) in the case where integral
action is included to remove the constant disturbance [1].

4.1.3 Cubic Damping
To compensate for the added nonlinear stiffness term, it can be advantageous to
introduce a nonlinear damping term as well. The nonlinear damping gives the ad-
vantage of reduced transmissibility of force around the resonant frequency range,
while leaving the higher frequencies unaffected [36]. In other words, it will reduce
the oscillating effects that may arise when the stiffness term dominates the propor-
tional term, which can be the case for large deviations as seen in Figure 4.1.2. For
small deviations, the effect of the cubic damping becomes negligible, as also seen
in Figure 4.1.2.

The nonlinear damping term d(ν̃) can be described by the general form [1]

d(ν̃) =
[
d1(ν̃1) . . . dn(ν̃n)

]T (4.25)

where

di(ν̃i) = |ν̃i|pi ν̃i (i = 1, . . . , n) (4.26)

where pi > 0 are integers. As the stiffness term in this case is cubic, it is appropriate
to choose cubic damping as well. By letting p1,2,3 = 2, (4.26) becomes

di(ν̃i) = |ν̃i|2ν̃i = ν̃3
i (i = 1, 2, 3) (4.27)

such that
d(ν̃) =

[
ν̃3

1 ν̃3
2 ν̃3

3
]T (4.28)

4.1.3.1 Stability with Cubic Damping

To check the stability properties when nonlinear cubic damping is included, the
same assumptions as in Section 4.1.2 must be applied. As η̇d = 0, (4.4) becomes

ν̃ = ν −RT (ψ)η̇d = ν (4.29)

such that (4.28) reduces to

d(ν̃) = d(ν) =
[
ν3

1 ν3
2 ν3

3
]T (4.30)
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Figure 4.1.2: Comparison of controller performance between PD with stiffness,
with and without cubic damping. The top plot represents a large deviation, while
the bottom plot represents a small deviation.

Again, considering one DOF, the control law in (4.9) can be expressed as

τPD = −Kpe−Kp3f(e)−Kdν −Kd3d(ν) (4.31)

where Kd3 ∈ R3×3 is a non-negative gain. By defining the term

Kd(t) := Kd +Kd3ν
2 (4.32)

where Kd(t) > 0, ∀t as Kd,Kd3 > 0, (4.31) reduces to

τPD = −Kp(t)e−Kd(t)ν (4.33)

and thus again takes the form of a traditional PD controller. By applying the same
Lyapunov function candidate (4.14) as in Section 4.1.2.1, the derivatives along the
trajectories become

V̇ = (Mν̇ +Kp(t)e)ν
= (τPD + w −Dν +Kp(t)e)ν (4.34)
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Again assuming that w = 0, and inserting the new control law (4.33) into (4.34)
gives

V̇ = (−Kp(t)e−Kd(t)ν −Dν +Kp(t)e)ν (4.35)
= −(Kd(t) +D)ν2 ≤ 0, ∀ν (4.36)

which proves that the origin of the system is GAS by applying Krasovskii-LaSalle’s
Theorem (A.1).

4.1.4 Controller Tuning
Again considering 1 DOF at a time, the DP model can be described by the scalar
system

mẍ+ dẋ = τ + w (4.37)

where the control law is
τ = −Kpx̃−Kdẋ (4.38)

where x̃ = x− xd, and the regulation from x to xd is assumed to be constant, i.e.
ẋd = 0. If the disturbance is neglected, then (4.37) becomes

mẍ+ (d+Kd)ẋ+Kpx̃ = 0 (4.39)

Comparing (4.39) with the mass-damper-spring reference model

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nxd (4.40)

where ζ is the relative damping ratio and ωn is the natural frequency, gives

ωn =
√
Kp

m
(4.41)

ζ = d+Kd

2mωn
= d+Kd

2m
√

Kp

m

= d+Kd

2
√
mKp

(4.42)

Pole placement can then be used to make the DP system behave like the reference
model, by specifying ζ and ωn. Solving (4.41) and (4.42) for Kp and Kd yields

Kp = ω2
nm (4.43)

Kd = 2ζωnm− d (4.44)

If integral action is applied, a rule of thumb according to [1] is to use an integrator
that is 10 times slower than the natural frequency, which yields

Ki = ωn
10Kp = ω3

n

10m (4.45)
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4.1.4.1 Control Bandwidth

The control bandwidth ωb is defined as the frequency where the closed loop gain
equals -3 dB, which yields the formula [1]

ωb = ωn

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2 (4.46)

and thus
ωn = ωb

1√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2

(4.47)

For a critically damped system, i.e. ζ = 1, (4.46) reduces to

ωn = ωb
1√√
2− 1

(4.48)

This means that the only parameters needed to tune the controller are ωb and ζ.

4.1.4.2 Tuning with Nonlinear Stiffness and Damping

When it comes to tuning the gains in front of the nonlinear stiffness and damping
terms, the previous mass-damper-spring reference model cannot be applied directly
as it is a linear system. In addition, traditional pole placement cannot be used as it
only applies to linear systems. However, there does exist pole placement techniques
for nonlinear systems, e.g. by the use of neural networks to model the nonlinear
systems [37].

An easier method is to use the same tuning technique as above, but with the
added stiffness and nonlinear damping in the reference model, such that

ẍ+ 2ζωnẋ+Kd3ẋ
3 + ω2

nx̃+Kp3x̃
3 = 0 (4.49)

By exploring the step responses of different setpoints xd, appropriate values for
Kp3 and Kd3 can be found. It is then proposed to choose the gains as

Kp3 = γpKp (4.50)
Kd3 = γdKd (4.51)

where γp ≥ 0 and γd ≥ are design parameters.

Notice that the added nonlinear terms invalidate the chosen relative damping ra-
tio and controller bandwidth, but as the linear terms will dominate the nonlinear
terms for small deviations, it is still a useful property for stationkeeping purposes.

4.2 Acceleration Feedback
The PID controller can now be augmented with acceleration feedback, to take
advantage of the properties discussed in Chapter 3.
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4.2.1 Disturbance Rejection by Acceleration Feedforward
Introducing Disturbance Rejection by Acceleration Feedforward (hereby denoted
as AFF), the control law now takes the form

τ = τPID(t)− τFF (t) (4.1)
where τPID is adopted from (4.6). The term τFF can be viewed as an acceleration
feedforward term, and it is provided by [26] as

τFF (t) = M ˙̂ν(t− δ) +Dν̂(t− δ)− τ (t− δ) (4.2)
where δ > 0 is the time delay from the when actual acceleration occurs, to when the
estimated acceleration is available. τFF thus acts like an estimate of the unknown
external disturbances, which is made clear by recalling the 3 DOF DP model (4.2)

Mν̇(t) +Dν(t) = τ (t) +w(t) (4.3)
such that

τFF (t) = ŵ(t) = w(t− δ) (4.4)
By defining the disturbance estimation error w̃(t) as

w̃(t) := w(t)− ŵ(t) = w(t)−w(t− δ) (4.5)
it can be noticed that fast measuring and processing leads to a fast estimate with
a small delay δ, and as δ → 0 the estimation error w̃(t) → 0, which would imply
that the acceleration feedforward perfectly cancels out the disturbance. However,
this is not possible as δ = 0 would violate causality [26]. It can also be noticed
that the estimate will encapsulate model uncertainties, as their contribution to the
system will be interpreted as disturbances. This property is further explored with
simulations in Chapter 7.

The resulting closed-loop system can then be found by inserting (4.1) and (4.4)
into (4.3) such that

Mν̇(t) +Dν(t) = τPID(t) + w̃(t) (4.6)

If the disturbance rejection was to be perfect, it would remove the need for in-
tegral action in the PID controller. However, some integral effect is recommended
to take care of the residues of the feedforward cancellation [26].

4.2.1.1 Stability with Disturbance Rejection

Under the same assumptions as in Section 4.1.2, and if w̃(t) = 0, the system
will be identical to the one analyzed in Section 4.1.2.1, and thus the origin is
GAS. In the case where the feedforward term is just a fixed-gain AFB, such that
τFF = −Kmν̇ as explored in Section 3.2.2, the system inertia matrix is the only
thing that changes, i.e. H = M +Km. As H = HT > 0, the origin is still GAS.
In the case where the AFB is dynamic such that hm(s) is e.g. a low-pass filter,
the stability analysis becomes much more complex, and will not be explored in this
thesis.



Chapter 5

Predictive Feedforward
Control

5.1 Motivation
As previously mentioned in Section 1.1, a proactive control strategy is a possible
measure against some of the ice-related challenges in arctic DP operations. As
proposed in [23], a predictive system with inputs from an ice observation system,
e.g. as described in [20], can be used to produce a feedforward compensation
control. An advanced ice observation system can be used to measure and estimate
the local time-varying ice characteristics, such as [23]

• ice concentration

• floe size distribution

• ice floe identification, i.e. position, area, shape, mass, etc.

• ice thickness

• ice drift velocity, direction, etc.

A predictive system using numerical simulation tools can then be used to predict
near future incoming ice disturbances. An important application of the information
provided by the predictive system, is the opportunity to prepare the DP controller
for the incoming disturbance. The information can also be used as an input to the
navigation system to guide the vessel efficiently through, or if necessary, around
the ice to minimize applied thrust.

If the DP controller was aware of the incoming ice some time before impact, it
could be designed to prepare the thruster system for the upcoming incident. One
measure would be to position the direction of the thrusters, such that they would
be able to apply thrust in the direction of the incoming ice immediately after im-
pact. As thrusters require several seconds to rotate or reverse, a poorly positioned

31
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Figure 5.2.1: Illustration of the use of a 360◦ scanning radar to detect incoming ice
floes.

thruster allocation can yield poor stationkeeping performance from an unfortunate
point of ice impact. Another measure would be to position the thrusters, and then
apply compensating force before impact. Imagine that the ice load would move
the vessel e.g. 2 meters off position before the controller corrects the deviation. If
some predictive force was applied, the vessel could e.g. move 1 meter toward the
ice, to then move only 1 meter off position the other way. This can be of significant
difference if the allowable operating circle is e.g. 1 meter.

5.2 Ice Floe Detection
To determine what kind of predictive force that is to be set up, the possibility of
compensating thrust must be explored. The predictive thrust will have a general
force vector τ p =

[
Xp Yp Np

]T and a duration tp, where τ p represents force
in surge and sway, and moment in yaw, respectively, while tp is the amount of time
before impact the thrust is to be applied. To determine these values, the proper-
ties of the incoming ice floes must be evaluated. As illustrated in Figure 5.2.1, a
360◦ scanning radar can be used to detect incoming ice floes. As proposed in [20]
the radar can be aided by thermal IR (infrared) sensors and pattern recognition
to better monitor the ice moving close to the vessel. If the radar is implemented
with a tracking algorithm to tag and distinguish between each incoming ice floe,
the basic Algorithm 5.2.1 can be used to estimate the direction, point of impact,
velocity and time of impact of an incoming floe.
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Figure 5.2.2: Ice floe detection.

5.2.1 Ice Floe Detection Algorithm
Figure 5.2.2 illustrates the geometry behind the ice floe detection algorithm. By
assuming that the radar is placed in the vessel center of origin (CO), the coordinate
system of Figure 5.2.2 will coincide with the BODY frame. Let a be the position
of the part of the ice floe that is closest to the vessel at time ta, and let b be the
position at time tb. Assuming that ice floes are considered one at a time, the radar
sensor will output a distance d and a heading θ to the floe, such that da, db are
the distances at time ta and tb, and θa, θb are the angles at time ta and tb. With
these variables it is possible to calculate the angle of impact, θAoI , and the distance
between the radar and the point of impact interpolated along the trajectory of the
ice floe, dR.

By defining the position vectors pba =
[
xa ya

]T and pbb =
[
xb yb

]T where

pba =
[
xa
ya

]
=
[
da sin(θa)
da cos(θa)

]
, pbb =

[
xb
yb

]
=
[
db sin(θb)
db cos(θb)

]
(5.1)

then basic trigonometry yields

θAoI = −atan2(xa − xb, ya − yb) + π

2 (5.2)

where atan2(y, x) ∈ [−π, π] is the four-quadrant version of arctan(y/x) ∈ [−π2 ,
π
2 ],

and where the negative sign and the addition of π
2 is to adapt to yaw, which is

defined clockwise from the x-axis.
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The distance dR can then be found as

dR = xa − ya tan
(
−θAoI + π

2

)
= xb − yb tan

(
−θAoI + π

2

)
(5.3)

As the point of interest is the distance between the point of impact and the center of
gravity (CG), a mapping of the vessel hull must be included as well as a mapping
from the placement of the radar to CG. When considering the simplified vessel
shape in Figure 5.2.1, the lateral distance between the radar and the hull yR,beam
will be half the ships beam. Incorporating this distance into (5.3) yields

dbeam = xa − (ya − sgn (θAoI) yR,beam) tan
(
−θAoI + π

2

)
(5.4)

where dbeam is the distance between the radar and the point of impact, parallel
shifted to the side hull of the vessel. The sgn(θAoI) term is to parallel shift to the
side of the incoming floe. The point of impact pbI =

[
xI yI

]T then becomes
pbI =

[
dbeam yR,beam

]T . If dbeam exceeds the distance between the stern (the
rear) or the start of the bow (the sloped side of the front), the distance must be
corrected to find the point of impact. In the stern, the distance becomes

dstern = ya + sgn (θAoI)
(xa + xR,stern)
tan

(
θAoI − π

2
) (5.5)

where xR,stern is the distance from the radar to the stern. The point of impact
then becomes pbI =

[
xR,stern dstern

]T . The same method can be used to find
the point of impact on the sloped side of the bow, where the point will be the
intersect between the floe trajectory and the sloped line representing the bow.

The point of impact can now conveniently be used to calculate its distance to
CG, to then find the torque produced by the incoming ice floe. The torque
T =

[
Tx Ty Tz

]T is given as the cross product between the force and the
displacement vector between the point of impacting force and the point which the
vessel rotates about, i.e. CG [38]. This yields

T = rbI,CG × F I (5.6)

where rbI,CG =
[
xI − xg yI 0

]
is the Cartesian position displacement vector

in (x, y, z), where xg (as described in Section 2.1.3) is the distance from the origin
of the BODY-frame to the center of gravity (also recall the assumption yg = 0 in
Section 2.4). F I =

[
XI YI 0

]
is the force of the incoming ice (assuming no

angular motion), which is to be determined later. The moment of the disturbance,
Ndist, can now be extracted as the Tz term in the torque vector as it represents
the torque about the z axis, i.e. the yaw moment, such that

Ndist = Tz (5.7)
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In addition, the velocity of the ice floe νice =
[
uice vice rice

]T will be given
by

νice =

 xb−xa

tb−ta
yb−ya

tb−ta
0

 (5.8)

assuming no angular velocity, and thus the speed becomes

Uice =
√
u2
ice + v2

ice (5.9)

The distance to impact, dI , can now be calculated as the distance from pbb, i.e. the
position of the ice floe at time tb, to the point of impact pbI , as

dI =
√

(xb − xI)2 + (yb − yI)2 (5.10)

such that the time to impact tI can be found as

tI = dI
Uice

(5.11)

The estimated velocity can now be fused with information provided by an ice
observation system as explained in [20]. A dynamic ice model can be used to es-
timate the forces acting on the ice floe, i.e. F I , by the use of Newton’s law of
motion.

5.3 Predictive Box
Using the algorithm in Section 5.2.1, an estimate of the incoming disturbance vec-
tor as well as the time of impact is obtained. The remaining issue is to determine
what compensating force that should be applied, and how long before impact it
should be applied. Two different approaches could e.g. be: apply some force a
while before impact, or apply much force right before impact. As the estimates
will be far from perfect, it is important to explore what kind of proactive action
that will improve the stationkeeping performance, and what kind that will degrade
it. Trivially, if proactive thrust is applied in the same direction as the incoming
force, the performance could only get worse.

The estimate for the incoming disturbance consists of the four variables FI , xI ,
yI and θAoI , where

FI := ||F I ||x,y =
√
X2
I + Y 2

I (5.1)

where FI is defined as the magnitude of the impact force, and where it is assumed
that the contribution from angular motion is negligible. The fifth variable will be
the time of impact tI . A simulation of five different variables will yield a problem
in five dimensions, and will thus be hard to illustrate. Therefore, by considering
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Figure 5.3.1: Predictive box.

one point of impact at a time, the problem is reduced to three dimensions, which
is easier to visualize. A predictive box is then proposed as illustrated in Figure
5.3.1, where •u, •l are the upper and lower test limits, respectively. The predictive
thrust force τ p can now be expressed as a function of Fp and θp, such that

τ p(Fp, θp) =

 Xp

Yp
Np

 =

 Fp cos (θp)
Fp sin (θp)

Fp (xp sin (θp)− yp cos (θp))

 (5.2)

where pbp =
[
xp yp

]T is the predicted point of impact with respect to CG. The
moment Np is the torque about the z axis given by (5.6) as

Np = Tz =
[

0 0 1
] ([

xp yp 0
]T × [ Xp Yp 0

]T) (5.3)

= Fp (xp sin (θp)− yp cos (θp)) (5.4)

or equivalently by using the formula [38]

Tz = ‖F p‖
∥∥pbp∥∥ sin (α) (5.5)

where α is the angle between the force vector F p =
[
Xp Yp

]T and pbp. The
angle between two vectors can be found by the dot product rule [38]

cos (α) =
pbp · F p∥∥pbp∥∥ ‖F p‖ (5.6)

By applying the rule [39]

sin (arccos (x)) =
√

1− x2 (5.7)
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(5.5) becomes

Tz = ‖F p‖
∥∥pbp∥∥

√√√√1−
(

pbp · F p∥∥pbp∥∥ ‖F p‖
)2

(5.8)

=
√(

Fp
∥∥pbp∥∥)2 − (pbp · F p)2 (5.9)

where ‖F p‖ = Fp.

5.4 Simulations
The predictive box in Figure 5.3.1 can now be simulated along each axis to test
the effect of applied predictive force. To keep the problem in three dimensions, the
point of impact relative to CG, i.e. pbp, was kept constant for each box, such that
τ p is only a function of the magnitude Fp and the angle θp. The actual disturbance
will be simulated as a step, representing a sudden incoming disturbance caused by
an incoming ice floe or ice berg. A constant disturbance was chosen over an ice-
inspired varying force, as the behavior of the vessel after impact is not a relevant
part of the simulation, since the predictive force will only influence the effect of the
impact. The constant disturbance can then be specified using the same technique
as the calculated proactive force, such that it is a function of the magnitude FI ,
with incoming angle θAoI , impact point pbI,CG and at the time tI . The ice force
vector then becomes

τ ice(FI , θAoI ,pbI,CG) = −

 FI cos (θAoI)
FI sin (θAoI)

FI (xI,CG sin (θAoI)− yI,CG cos (θAoI))

 (5.1)

where pbI,CG =
[
xI − xg yI

]T is the point of impact with respect to CG and
where the negative sign is to direct the disturbance toward the vessel. This yields
the disturbance vector

τ disturbance(t) =
{
τ ice(FI , θAoI ,pbI,CG)

0
if t ≥ tI
else

(5.2)

The limits of the predictive box can now be chosen as functions of the applied
disturbance, such that

Fl = γ1FI , Fu = γ2FI (5.3)

θu,l = θAoI ± γ3 (5.4)

tl = tI − γ4, tu = tI − γ5 (5.5)
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where γ2 ≥ γ1 > 0, 0 < γ3 ≤ π and γ5 ≥ γ4 > 0 are design parameters. The axes
of the cube can then be vectorized from the point of the cube that is closest to the
origin, i.e. (tl, Fl, θl), such that

tp =
[
tl : tu − tl∆− 1 : tu

]T
(5.6)

Fp =
[
Fl : Fu − Fl∆− 1 : Fu

]T
(5.7)

θp =
[
θl : θu − θl∆− 1 : θu

]T
(5.8)

where : represents an operator that creates a vector of ∆ equally distanced points
between the lower and upper limits. ∆ is a non-zero integer representing the num-
ber of simulations per axis, which yields the resolution of the box to become ∆3.

The applied proactive thrust vector can now be expressed as

τ p(t) =
{
τ p(Fp, θp)

0
if tp ≤ t < tI

else
(5.9)

which makes it act like a pulse from time tp, to the time of impact tI . It is
assumed that tI is available from the ice floe detection algorithm (Section 5.2.1),
or that it can be obtained from the disturbance detection in Algorithm 6.2 if it was
augmented to not regard the predictive force as a disturbance. The force vector
(5.9) was calculated using the attached Matlab function pred_force.m.

5.4.1 Finding the Limits
As opposed to finding the appropriate limits by trial and error, which would be time
consuming due to the number of possible parameters, it is proposed to simulate
the predictive box with overestimated limits in order to find suiting γ values. The
attached algorithm find_box_limits.m (see Appendix C) is then used to calculate
if the Integral Square Error (ISE) (as explained in Section 7.1.7) is increased or
reduced compared to without proactive action. Figure 5.4.1 was created with
predictive_sim_find_box_limits.m, where the simulated vessel model is the same
as the one that is used throughout the thesis (see Appendix B). The simulation
model was sim_prediction_report_test.slx with a simulation length of 700 seconds.
The controller used in every simulation in this chapter is the same as the PID+AFF
controller in Chapter 7, and the applied wave is a JONSWAP spectrum created
with the toolbox from [32], with modal frequency ω0 = 1.1 rad/s for each DOF,
and significant wave height Hs = 2.4 meters. To focus on stationkeeping, ηd = 0
was chosen throughout this chapter.
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Figure 5.4.1: Simulation of predictive box with ∆ = 15, where the blue and red
points represent coordinates that yield an improvement in position and heading
ISE, respectively, subject to the disturbance force: FI = 1e5, pbI,CG =

[
40 9

]T ,
θAoI = 80◦ at t = 400.

Figure 5.4.1 shows a simulation of the predictive box, where the following param-
eters were used: γ1 = .01, γ2 = 20, γ3 = .7 (40 degrees), γ4 = .05 and γ5 = 15.
As the vessel actuator time constant is 10 seconds (see Appendix B), tp was thus
chosen to vary from immediately before impact to 15 seconds before impact. Fp
was varied from a small fraction of, to 20 times the incoming disturbance. θp was
varied between θAoI±40 degrees as it should be enough to be well inside a plausible
estimate error range.

The points in Figure 5.4.1 represent the combination of predictive variables that
yields an improvement in position and heading ISE. It is shown that the predictive
action generally improves both position and heading ISE when Fp is around the
lower limit Fl for every tp, as well as when tp is around the lower limit tl for every
Fp. It can also be seen that the angle θp is relatively uninfluencing, expect for
when Fp becomes large and tp is not close to zero, where the position ISE is only
improved in the range around θp = θAoI ± 10 degrees.

It should be mentioned that at this angle and point of impact, an incoming distur-
bance with a magnitude of FI = 1e4 = 10kN, or below, will barely affect the vessel
as it would be a smaller disturbance than the applied wave forces. On the other
hand, a magnitude of FI = 5e5 = 500kN will make the system unstable, as the cor-
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rective force required exceeds the limits of the thrusters. To explore the difference
between a large and small incoming ice disturbance, two additional simulations are
presented in Figures 5.4.2 and 5.4.3. Intuitively, for the large disturbance in Figure
5.4.2, a high Fp within a few seconds before impact yields improvements as the
disturbance approaches the thruster limits, and thus maximum thrust is needed.
For the small disturbance in Figure 5.4.3 however, too much force too long before
impact, will be overcompensating. As shown in all simulations this far, the angle
θp has little effect, and as shown in the figures in Appendix D.1.1, the effect of the
predicted point of impact is also negligible compared to the choice of Fp and tp.
Therefore, by holding θp and pbp constant as they can be assumed to be measured
with high accuracy, the proactive time and force can then be simulated against the
magnitude of the incoming force.

Figure 5.4.2: Simulation of predictive box with ∆ = 10, and with the disturbance
force: FI = 4e5, pbI,CG =

[
40 9

]T , θAoI = 80◦.
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Figure 5.4.3: Simulation of predictive box with ∆ = 10, and with the disturbance
force: FI = 5e4, pbI,CG =

[
40 9

]T , θAoI = 80◦.

Figure 5.4.4 shows that the proactive action improves both position and heading
ISE for both small and large disturbances when force is applied shortly before the
disturbance occurs. The box is thus reduced, such that γ5 = 5 seconds, while
the limits γ1,2 for Fp are left unchanged, since for small disturbances, a large γ2
yields full thrust; while for large disturbances, everything from γ2 > 1 to γ2 � 1
will yield full thrust. Figure 5.4.5 created with the find_box_limits_worse algo-
rithm, shows where the proactive action worsens either the position or heading
ISE. It also illustrates that either tu or γ2 must be reduced to end up with a pre-
dictive box that yields improvements for all magnitudes FI . To decide whether
to reduce tp, γ2, or both, Figure 5.4.6 shows a contour plot (created with pre-
dictive_sim_time_vs_force_contour.m) of the position ISE for a disturbance of
magnitude FI = 4e4, since as shown in Figure 5.4.5, the small disturbance is more
sensitive to the predictive force. Figure 5.4.6 shows that the wrong combinations
of proactive action yields almost 20 times worse performance than without. It also
shows that the maximal advantage lies somewhere below tp = 1 or γ2 = 5, where
the white curved range in the middle represents the bottom as it has no contour
lines. As tp is already relatively small, and since a too high γ2 will eventually
saturate the thrusters, the box was reduced by choosing γ2 = 5.
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Figure 5.4.4: Simulation of predictive box with ∆ = 11, and with varying dis-
turbance force: from FI = 4e4 to FI = 4e5, pbI,CG =

[
40 9

]T , θAoI = 80◦.

Figure 5.4.5: Simulation of predictive box, ∆ = 11, with varying disturbance force:
FI = 4e4 to FI = 4e5, pbI,CG =

[
40 9

]T , θAoI = 80◦. The points represent the
coordinates where the predictive action worsens the position or heading ISE.
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Figure 5.4.6: Contour plot of the position ISE for tp vs Fp, γ2 = 20, where the
z axis represents the ratio of the position ISE without and with proactive action,
such that a height less than 1 represents an improvement. Ice disturbance force:
FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80◦.

The contour plot of the reduced predictive box is shown in Figure 5.4.7, where it
can be seen that every value of the position ISE ratio lies beneath 1, i.e. every
combination of tp and Fp yields an improvement. However, it becomes clear that the
lower limits, tl and γ1 can be raised as they barely yield improvements, represented
by the red contours in the figure. It can also be seen that the error steeply rises in
the upper corner (tu,Fu), so the new limits are now proposed as γ4 = 1.5, γ4 = 3.5,
γ1 = 1 and γ2 = 3.5. Figure 5.4.8 shows the contour plot of the final predictive
time and force. By choosing the fixed time and force tp = tI − γt = tI − 2.5
and Fp = γfFI = 2.25FI , where γt and γf are the fixed predictive parameters for
time and force, respectively, the proactive action will lie in the middle of the box.
This means that an underestimate of the incoming ice force yields an error ratio
that goes toward 1, i.e. the effect of the predictive action goes toward zero, while
an overestimate of the incoming force yields an error ratio that goes toward the
minimal error ratio. Choosing γf = 2.25 means that an estimate of FI within ±55%
of the actual incoming ice force will yield results within the box. Underestimates
below -55% are not of concern, as they will yield a ratio that approaches 1, while
overestimates over 55% will yield ratios that may rise above 1. A safer choice of
γf , e.g. γf = 1 such that Fp = FI , will have overestimates of FI up to 350% inside
the box, but will then have a reduced effect from the proactive action for more
accurate estimates. This means that γf must be tuned according to the observed
accuracy of the estimated incoming ice force, e.g. by letting

γf = γ2

1 + α
(5.10)

where α can e.g. be chosen as twice the standard deviation of an observed ice



44 CHAPTER 5. PREDICTIVE FEEDFORWARD CONTROL

magnitude estimate distribution, which will ensure that the predictive force lies
within the box with a confidence of about 95%.

Figure 5.4.7: Contour plot of the position ISE for tp vs Fp, γ2 = 5. Ice disturbance
force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80◦.

Figure 5.4.8: Contour plot of the position ISE for tp vs Fp, γ1 = 1, γ2 = 3.5, γ4 =
1.5, γ4 = 3.5. Ice disturbance force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80◦.
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5.4.2 Verifying the Limits
Additional contour plots of ice incoming almost straight on the corner of the stern,
and almost straight on the beam near CG, are shown in Appendix D.1.2, to il-
lustrate the performance of the predictive box in other cases. Contour plots of
position and heading ISE are also found in Appendix D.1.2.3, showing the error ra-
tios for predictive heading vs force with a fixed tp. As expected, the plots illustrate
that a choice of θp = θAoI yields the best results, as also visualized in Figure 5.4.9.
However, an issue arises when the ice floe hits straight on the beam near CG. This
kind of impact will produce force in sway, but little torque is produced as the lever
arm is short. This means that the position is very susceptible to predictive force,
while the heading is not. This can be seen in Figure 5.4.10, where an accurately
applied predictive force only yields about 4% improvement on the heading, while
for poor estimates of θAoI , the resulting heading is worsened by proactive action.
This is due to the fact that around CG, poor estimates can cause the predictive
moment to be applied in the wrong direction. A possible solution could be to not
apply any proactive torque if the estimated pbI,CG lies within a range around CG,
or in general if the combination of pbI,CG and θAoI yields a small predicted torque.

Figure 5.4.9: Contour plot of the position ISE for θp vs Fp, tp = 2.5. Small ice
disturbance force: FI = 5e4, pbI,CG =

[
−5 −9

]T , θAoI = −100.
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Figure 5.4.10: Contour plot of the heading ISE for θp vs Fp, tp = 2.5. Small ice
disturbance force: FI = 5e4, pbI,CG =

[
−5 −9

]T , θAoI = −100.

The last step is to verify the early assumption stating that the predicted point of
impact and angle were not very influential. As seen in Figure 5.4.11, for an impact
near the corner of the beam, the proactive action will yield improvements for both
heading and position as long as θp is within θAoI ± 40 degrees. Concerning the
predicted point of impact, pbp, Figure 5.4.12 illustrates that the only area where
the predictive force does not improve neither position nor heading ISE, is the small
box from approximately beneath -20 meters off pbI,CG, beneath -50 degrees off θAoI
and above γ2 ≈ 2.5. In the other areas where θp is outside of θAoI ± 40 degrees,
Figure 5.4.12 shows that either the position ISE, heading ISE or sometimes both,
were improved. Notice that pbp was varied from -30 to only 10 meters, as any fur-
ther would yield an impact point in front of the vessel.
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Figure 5.4.11: Simulation of predictive box with fixed time tp = 2.5, ∆ = 35, dis-
turbance force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80◦. The points represent
coordinates where the predictive action worsens the ISE.

Figure 5.4.12: Simulation of predictive box with fixed time tp = 2.5, ∆ = 35, distur-
bance force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80◦. The blue points represent
position ISE improvements, while the red represent heading ISE improvements.
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As mentioned above, a more challenging case is when pbI,CG is close to CG, and
as shown in Figure 5.4.13, the accuracy of pbp only influences the improvement of
the heading. Figure 5.4.14 shows that the heading is only improved for certain
combinations of predicted heading and position, while it is significantly worsened
for the wrong combinations. This again suggest the need for withholding predictive
moment when the combination of the predicted point of impact and the angle of
impact leads yields a small moment.

Figure 5.4.13: Simulation of predictive box with fixed time tp = 2.5, ∆ = 35, distur-
bance force: FI = 4e4, pbI,CG =

[
4 9

]T , θAoI = 80◦. The blue points represent
position ISE improvements, while the red represent heading ISE improvements.
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Figure 5.4.14: Contour plot of the heading ISE for θp vs pbp, and predictive time
and force fixed at tp = 2.5 γ = 2.25. Small ice disturbance force: FI = 4e4,
pbI,CG =

[
4 9

]T , θAoI = 80.
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Chapter 6

Wave Filtering

As previously mentioned, the total motion of a marine vessel can be modeled as
the sum of low-frequency (LF) and wave-frequency (WF) motions. The LF mo-
tion represents the motion of the vessel and slow-varying disturbances, while the
WF motion represents a high-frequency wave-induced motion. The WF motion is
a rapidly oscillating, zero mean motion with the same frequency as the incoming
wave train, and it is thus a useless task to try to compensate for these motions
[25]. In addition, attempts to compensate would lead to excessive wear and tear
on actuators and rudders, which in turn will lead to increased fuel consumption.
Including wave-filtering to cancel out these motions is therefore a very important
part of a DP control system [31].

Wave filters are usually incorporated in model-based state observers, where lin-
ear models for first-order wave-induced motions are used to estimate WF motion.
Earlier, wave filters consisted of low-pass or notch-filters to reduce thruster wear
caused by WF motion. However, these techniques introduce phase lag around the
cut-off frequency, which usually leads to limited controller performance due to a
decreased phase margin [40].

This thesis was written with the intention of using state estimates provided by
[41]. The observer in [41] is a model-free IMU-based Dynamic Positioning state
estimator, which by this date does not include a wave filter. This means that wave
filtering had to be done between the observer and the applied feedback, such that
WF motions would not enter the feedback loop. If the controller was linear, the
wave filter could be implemented either before or after the controller, but because
of the nonlinearities in the controller, this would not yield the same result. Con-
sequently, the placement of the wave filter will be explored and discussed through
this chapter.

Introducing model-based wave filtering of estimates from a model-free observer
will in a way defeat the purpose of the model-free observer, as it would estimate
the total motion twice. Therefore, a model-free wave-filter will be explored and

51
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simulated.

6.1 Simple Wave Filtering
6.1.1 Low-pass Filter
The simplest form of wave filtering is done using a low-pass filter. Introducing a
first-order low-pass filter as

hlp(s) = 1
1 + Ts

(6.1)

where T = 1/ωc > 0 is the time constant and ωc is the cut-off frequency. The
low-pass filter will suppress forces over the cut-off frequency ωc, while introducing
a phase lag that approaches 90 degrees. The problem with first-order low-pass
filters arises when the wave frequency falls close to the control bandwidth of the
vessel. Wave frequencies typically lie in the interval [1]

0.05 Hz < f0 < 0.2 Hz (6.2)

or equivalently
0.3 rad/s < ω0 < 1.3 rad/s (6.3)

where f0 is the wave-frequency in Hertz and ω0 is the wave-frequency in rad/s.
As the control bandwidth is typically chosen around 0.1 rad/s for large marine
vessels [1], it will fall below the wave frequency. However, the bandwidth of the
actuators typically lies in the frequency range of the wave forces, so filtering must
be applied to reduce wear and tear. The problem with first-order low-pass filtering
comes from the fact that their frequency response is relatively flat. To sufficiently
attenuate the wave-forces, the cut-off frequency must be placed way below the wave
frequency. This is better visualized in Figure 6.1.1, where the frequency response
of two first-order low-pass filters with different cut-off frequencies have been plot-
ted against an inverted JONSWAP wave spectrum with significant wave height
Hs = 4.8 meters, modal frequency ω0 = 0.3 rad/s and peakedness factor γ = 3.3.
The JONSWAP spectrum was found by the second-order transfer function approx-
imation in (2.1) where the constants σ and λ were found using wavespec.m from
the MSS Toolbox [32]. The frequency response was then inverted to illustrate how
much suppression that is needed. It should be mentioned that the modal frequency
was put far to the left to illustrate the possible impact on the controller bandwidth.

Figure 6.1.1 shows that a first-order low-pass filter with the same cut-off frequency
as the dominating wave frequency (modal frequency), will barely attenuate the
wave-induced forces. Moving the cut-off frequency down to ωc = 0.1 rad/s will
be sufficient to suppress this wave spectrum, but then at the cost of moving into
the control bandwidth. Although it would suppress the wave forces, it would also
suppress some of the control forces, and thus lead to decreased performance. This
problem can be solved by introducing a higher-order low-pass filter, as it would
yield a steeper frequency response, such that the cut-off frequency could be placed
closer to the modal frequency (as seen in Figure 6.1.1). However, a higher-order
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Figure 6.1.1: Bode plot of inverted JONSWAP wave spectrum vs low-pass filters.

filter comes with the cost of additional phase lag, as each order adds another 90
degrees.

6.1.2 Notch Filter
A better approach for wave filtering is the use of a notch filter. The notch filter is
sometimes implemented in cascade with a low-pass filter to also remove frequencies
that lie above the wave-frequency, but it is assumed that frequencies higher than
waves will be removed by the observer. A notch filter will attenuate the frequency
range around the notch frequency ωn, while leaving other frequency unaltered. The
lowest available order of notch filters is second-order, and may e.g. take the form
[42]

hn1(s) = s2 + ω2
n

s2 + ωn

Q1
s+ ω2

n

(6.4)

or as [1]

hn2(s) = s2 + 2ζ2ωns+ ω2
n

(s+ ωn)2 (6.5)

where ζ2 is the relative damping ratio, ωn is the notch frequency and Q1 = 1/2ζ1
is the quality factor that determines the width of the notch. Notice that the two
filters will be equal for ζ2 = 0 and Q1 = 0.5. By studying the Bode plot of the
two filters in Figure 6.1.2, it can be noticed that the damping in the numerator
of hn2(s) reduces the magnitude and phase of the notch, compared to hn1(s). As
seen in the figure, both filters will attenuate the wave forces, but while hn1(s) will
suppress more magnitude than what is needed, hn2(s) will also suppress a much
wider frequency range, and thus also suppress more of the control forces. This
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Figure 6.1.2: Bode plot of hn1(s), hn2(s) and hn3(s), with inverted JONSWAP
approximation. ωn = 0.3 rad/s, Q1 = Q3 = 1, ζ2 = 0.2, ζ3 = 0.1 and same
JONSWAP parameters as in Section 6.1.1.

resembles the first-order low-pass filters compared with the higher order ones, as
hn2(s) has a flat magnitude response, while hn1(s) is much steeper at the cost of
more phase. A possible compromise would then be to combine the properties, to
form a third type of notch filter, proposed as

hn3(s) = s2 + 2ζ3ωns+ ω2
n

s2 + ωn

Q3
s+ ω2

n

(6.6)

which has the damping ratio ζ3 in the numerator from (6.5) and the quality factor
Q3 from (6.4) to control the width. As seen in Figure 6.1.2, the depth of the
magnitude and the maximal phase for hn3(s) is the same as for hn2(s), while
the steepness of the magnitude is the same as for hn1(s) such that the control
bandwidth is not attenuated as much. This is also visualized in the phase plot,
where it is shown that the phase of hn3(s) is lower around the control bandwidth
frequency.

6.1.2.1 Cascaded Notch Filter

The problem with the notch filter is that it only covers a small frequency range.
As the actual wave-frequency is uncertain, the problem of where to place the notch
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frequency ωn arises. One alternative is to use a cascaded filter structure, where
two or more notch filters with different frequencies are cascaded to form the filter

hn4(s) =
∏
i

s2 + 2ζiωis+ ω2
i

s2 + ωi

Qi
s+ ω2

i

(6.7)

As seen in Figure 6.1.3, three notch filters with logarithmic increasing frequency
are cascaded to cover a wider frequency band. Around the control bandwidth,
the magnitude of the notch is unchanged, while the phase has dropped by roughly
10 degrees compared to hn3(s). The notch has now become so wide that it will
attenuate wave-frequencies from about 0.3 rad/s to 0.83 rad/s, at the cost of some
added phase. The range could be widened to cover the whole expected wave-
frequency range, but then even more phase would be added, as it would either
require a smaller damping ratio ζ or one or more additional filters in cascade, to
sufficiently suppress the wave force. For a higher sea state, i.e. increased significant
wave height Hs, the damping could be reduced to deepen the magnitude of the
notch, but then again at the price of added phase.

Figure 6.1.3: Bode plot of hn3(s), hn4(s), and inverted JONSWAP approximation.
ωn = 0.3 rad/s, Q3 = 1, ζ3 = 0.1. For hn4(s), ω1 = 0.3, ω2 = .5, ω3 = .83 rad/s,
and Q = 1 and ζ = 0.15 were chosen in each of the three cascaded filters.
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6.2 Adaptive Notch Filtering
Another way to handle the problem of where to place the notch frequency, is to
adapt ωn using e.g. a frequency tracker. If the estimate is good, a single notch
filter with a relatively narrow notch can be applied to attenuate the wave forces,
which would lead to a small phase lag. A frequency tracker algorithm is proposed
as follows:

Algorithm 6.1 Frequency Tracker Algorithm for estimation of the wave-frequency

1. Run the signal through a high-pass filter with cut-off frequency ωc = 0.3
rad/s

2. Differentiate the high-pass filtered signal

3. Mark when filtered signal goes from positive to negative as temp1

4. Mark when filtered signal goes from negative to positive as temp2

5. Set ωn = π| 1
temp2−temp1 |

6. Saturate the output as 0.3 < ωn < 1.3 rad/s

7. Run the saturated frequency through a low-pass filter, where the initial con-
dition of the integrator is ωn

6.2.1 Explanation of Algorithm 6.1
The purpose of first two steps in the algorithm is to pre-process the signal, to ex-
tract the WF component from the signal. The first step is a high-pass filtering of
the signal, which will extract the wave-frequency component from the total force
or motion. The signal is then differentiated to determine where the signal rises
and fall due to the waves, as some LF residues will still exist. This can be seen in
Figure 6.2.2.

Step 3-5 is the frequency counter, which by the use of flags and temporary variables,
measures the period T of the wave by marking when it switches from negative to
positive and vice versa. As the period of a sine wave is twice the duration of one
zero-crossing to the next, and as the frequency f is the inverse of the period, the
frequency estimate becomes

f = 1
T

= 1
2

∣∣∣∣ 1
temp2− temp1

∣∣∣∣ (6.1)

where the absolute value is to prevent negative frequency estimates. The angular
frequency ω is defined as

ω = 2πf (6.2)
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Figure 6.2.1: Low-pass smoothing filter with decreasing cut-off frequency from 0.1
rad/s to 0.001 rad/s.

such that the angular frequency estimate becomes

ωn = 2πf = π

∣∣∣∣ 1
temp2− temp1

∣∣∣∣ (6.3)

Step number 6 is to prevent the estimate from traveling outside the predefined
wave-frequency range, i.e. 0.3 < ω0 < 1.3 rad/s. The saturation also has the
advantage that when external disturbances influence the motion of the vessel, the
wave-frequency estimate is not that affected (as seen in Figure 6.2.3).

The purpose of the low-pass filter in step 7 is to smooth out the discrete esti-
mate, and as seen in Figure 6.2.3, the estimate quickly converges to the applied
wave-frequency. The filter is implemented with a decreasing cut-off frequency (as
illustrated in Figure 6.2.1), such that it initializes by quickly converging to the
correct frequency, and then slows down to better hold the estimate. Notice that
every form of phase lag due to filtering in this algorithm will not affect the feedback
loop. The only phase lag that enters the feedback loop, is the phase that comes
from the actual notch wave filter.
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Figure 6.2.2: The first two steps of the Frequency Tracker algorithm, where the top
figure is the unfiltered total motion of the position in the x direction, vs the high-
pass filtered and differentiated extracted wave-frequency component. An external
disturbance is added from t = 500 to t = 900.



6.2. ADAPTIVE NOTCH FILTERING 59

Figure 6.2.3: Steps 3-7 of the Frequency Tracker algorithm, where the top figure
is the wave-frequency estimate vs the saturated and low-pass smoothed estimate,
and the bottom figure is a snippet to illustrate the advantage of the saturation and
the low-pass smoothing. The applied wave is a JONSWAP distribution with modal
frequency ω0 = 1.1 rad/s and significant wave height Hs = 2.4 m. An external
disturbance is added from t = 500 to t = 900.

6.2.2 Effect of the Adaptive Notch Filter
As the proposed algorithm display good estimates for the wave-frequency, the ap-
plied notch wave filter can then be chosen to be narrow, to only attenuate a small
frequency range around the estimate, and thus provide minimal phase-lag. To ex-
plore how the wave filter affects the applied thrust and posture (i.e. position and
heading) of the vessel, a simulation was executed without external disturbances,
with ηd = 0 and where the applied wave is a JONSWAP distribution with modal
frequency ω0 = 1.1 rad/s for each DOF, and significant wave height Hs = 2.4
meters. This Hs represents a sea state code 4 (moderate), which according to [43]
is the most commonly experienced sea state worldwide as well as in the North Sea.

As seen in Figure 6.2.4, the applied thrust is significantly reduced in surge and
sway, while it is smoothed out in yaw. This is caused by the decreased ampli-
tude of the wave component in each measurement of η, due to the attenuation of
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Figure 6.2.4: Plot of applied thruster force without and with wave filtering, subject
to a wave disturbance.

wave forces. As residues of the wave-frequency will always endure, there are still
oscillations in the thrust, but the actual wear and tear of actuators will be reduced.

The effect of the wave filter on the posture is shown in Figure 6.2.5, where it
can be seen that the difference between the filtered and unfiltered signals is of
small magnitude. The phase lag introduced by the notch filter causes the slowly
varying oscillations. These oscillations are not wave-frequency induced, but as the
plot displays the difference between the non-filtered and filtered posture, the os-
cillations represent the buildup of phase lag induced errors at the occurrence of
large amplitude waves. It can also be noticed that the post-controller wave filtered
posture lags behind the pre-controller signal. This is due to the thruster feedback
into the acceleration feedforward controller, which means that the control output
is filtered twice, thus leading to twice the phase lag.



6.2. ADAPTIVE NOTCH FILTERING 61

Figure 6.2.5: Plot of the difference between unfiltered and wave filtered posture
(position and heading), subject to a wave disturbance.

6.2.2.1 ISE Comparison

The effect of the notch filter can also be illustrated by looking at the Integral Square
Error (ISE) and Integral Square Output (ISO) (as more elaborately explained in
Section 7.1.7). A high-pass filter, similar to the one used in the wave-filter, was
applied to the thrust output, such that only the excessive thrust applied to coun-
teract the waves was measured. Without this, a thrust compensation of an error
that does not oscillate around zero, would dominate the ISO, and thus invalidate
the analysis. The applied thrust that is of interest, is that which oscillates due
to waves and the influence of other external forces, and thus a high-pass filtered
thrust output will reflect the wear and tear on the actuators.

As seen in Table 6.2.1, the wave filtering caused the ISE for x, y and ψ to in-
crease for both placements of the wave filter. The maximal position error, i.e.
max

(√
(x(t)− xd)2 + (y(t)− yd)2

)
, was also affected with an increase. However,

the thrust ISO was greatly reduced for surge and sway, while the yaw moment for
the pre-controller placement was not that affected. The post-controller placement
experienced a significant reduction in ISO for all DOFs. The different placement
performances were similar concerning ISE, while the post-controller placement was
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overall better for ISO. This illustrates the essence of the wave filter, where the
applied thrust is greatly reduced at the cost of some loss of position and heading
performance due to added phase lag.

x
ISE

y
ISE

ψ
ISE

max
pos
error

τx
ISO

τy
ISO

τN
ISO

pre-
controller 1.67 1.40 1.74 1.26 0.33 0.29 0.99

post-
controller 1.71 1.40 1.59 1.25 0.28 0.25 0.73

Table 6.2.1: Ratio between ISE with and without wave filtering for position and
heading, maximal position error and ratio between ISO with and without wave
filtering for high-pass filtered applied forces and moments, when vessel is influenced
by waves. A ratio below 1 represents an improvement.

6.3 Selective Wave Filtering
The challenge of wave filtering arises when unknown external disturbances are intro-
duced. By adding some ice-inspired forces (as more elaborately explained in Section
7.1.1) from t = 150 to t = 300, with the ice-disturbance gain

[
4e4 4e4 4e6

]T
and offset

[
-2e5 3.5e5 5e6

]T , it can be seen in Figure 6.3.1 that the wave
filtered thrust increases as the ice hits and leaves the vessel, compared to the unfil-
tered thrust. The phase lag becomes a problem when sudden external disturbances
occur, as the controller does not respond quickly enough. This is also illustrated in
Figure 6.3.2, where the wave filtering causes the difference between the unfiltered
and filtered posture to increase considerably. Some underdamped behavior can be
also observed in the non-filtered thrust response, which is amplified by the filters
due to the added phase. This may suggest a too aggressive proportional gain or a
too soft damping gain.

The effect of the ice disturbance is even more clearly portrayed in Table 6.3.1,
where the ISE and ISO are increased. While the ISO was greatly reduced by the
wave filter in the last case, when ice is introduced, the thrust ISO is greatly in-
creased. This is also considering that the applied thrust was reduced before the
disturbing ice forces. The post-controller performance was generally poorer in ISE
and maximal offset, while slightly better in ISO. It can be noticed in Figure 6.3.1
that the better ISO performance for the post-controller placement is due to a more
filtered thrust. It is best seen in yaw, where the magnitude is lower, although it lags
behind the pre-controller placement. As mentioned earlier, this is due to double
filtering of the feedback.
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x
ISE

y
ISE

ψ
ISE

max
pos
error

τx
ISO

τy
ISO

τN
ISO

pre-
controller 1.40 1.40 1.67 1.13 1.55 1.50 2.67

post-
controller 1.67 1.60 1.73 1.20 1.44 1.36 1.86

Table 6.3.1: Ratio between ISE with and without wave filtering for position and
heading, maximal position error and ratio between ISO with and without wave
filtering for high-pass filtered applied forces and moments. Ice-disturbance gain[
4e4 4e4 4e6

]T and offset
[
-2e5 3.5e5 5e6

]T .

Figure 6.3.1: Plot of applied thruster force without and with wave filtering. Ice-
disturbance gain

[
4e4 4e4 4e6

]T and offset
[
-2e5 3.5e5 5e6

]T .
One possible solution is to introduce a selective wave filter, which can be turned
off when a sudden unknown external disturbance occurs. A selective wave filter
algorithm is proposed as follows:
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Figure 6.3.2: Plot of the difference between unfiltered and wave filtered posture.
Ice-disturbance gain

[
4e4 4e4 4e6

]T and offset
[
-2e5 3.5e5 5e6

]T .

Algorithm 6.2 Selective Wave Filter Algorithm for switching between unfiltered
and wave filtered signals to handle sudden unknown external disturbances

1. Differentiate the acceleration estimate to calculate the jerk

2. Let the filter be off until the frequency tracker has initialized, i.e. after a
predefined time tinit, then turn on

3. If the jerk exceeds the predefined limits, mark the time as tdisturbance and
turn filter off

4. Keep filter off until the time equals the time of the last disturbance plus a
predefined settle time, i.e. t = tdisturbance + tsettle, then turn on
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6.3.1 Explanation of Algorithm 6.2
The first step in the algorithm is to calculate the jerk ν̈ of the vessel by differenti-
ating the acceleration estimate. The reason for this is to be able to determine when
an unknown external disturbance acts on the vessel. As the wave forces are oscil-
latory, the acceleration estimate will also contain oscillations. When a disturbance
occurs, the force will influence the acceleration of the vessel, but not necessarily by
a factor that is larger than the wave oscillations. Had the notch filter been perfect,
the change in acceleration caused by the disturbance could be recognized from the
filtered signal. However, by calculating the jerk, the sudden change in acceleration
will distinguish itself as a spike in the jerk, as opposed to the oscillating jerk forces.

The second step is to let the frequency tracker initialize and converge to a fre-
quency estimate before the wave filter is turned on.

The third step is to identify a sudden unknown disturbance. The time of oc-
currence is marked as tdisturbance and the filter is turned off. The predefined jerk
limits are calculated by measuring the maximal impact the waves have on the jerk,
such that spikes caused by ice disturbances will be detectable. The predefined jerk
limits in this implementation were found as ±0.8 m/s3 for surge and sway, where
the significant wave height was chosen to represent sea state 7 (high), i.e. Hs = 7.8
meters, such that rough sea will not turn off the filter.

The fourth step keeps the filter off until a predefined settle time tsettle has passed
after the last measured disturbance. This is to keep the filter from turning on and
off again during the disturbance, and unless the vessel settles while the disturbance
is ongoing, i.e. in the case of a constant ongoing disturbance, waits until the vessel
settles after the disturbance before turning the filter back on.

Figure 6.3.3 illustrates how the algorithm turns the filter on after t = tinit, turns
it off at t = 500 when the ice disturbance occurs, and turns it back on again tsettle
seconds after the last disturbance that surpassed the jerk limit at t = 900.
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Figure 6.3.3: Plot to illustrate the jerk in surge and sway when influenced by ice-
inspired forces, and the result of the selective wave filter algorithm. Here tinit = 10
and tsettle = 100.

6.3.2 Effect of Selective Wave Filter
As seen in Figure 6.3.4, the selective wave filter only reduces the applied thrust in
the calm range before and after the disturbance, while the highly responsive thrust
needed to handle the disturbance is intact. Figure 6.3.5 shows that the magnitude
of the difference in posture is reduced significantly with the selective wave filter.
The small deflections are due to the switch between the unfiltered and filtered sig-
nals, as the switch causes a phase shift in the feedback signal, as well as phase lag
influencing the wave-induced control response. Table 6.3.2 shows that the applied
thrust is reduced for surge and sway, while the posture and yaw moment are more
or less unaffected for both placements of the filter. This illustrates the advantage
of the selective filter, when compared to the non-selective.
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Figure 6.3.4: Plot of applied thruster force without and with selective wave filtering.
Ice-disturbance gain

[
4e4 4e4 4e6

]T and offset
[
-2e5 3.5e5 5e6

]T .
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Figure 6.3.5: Plot of the difference between unfiltered and selective
wave filtered posture. Ice-disturbance gain

[
4e4 4e4 4e6

]T and offset[
-2e5 3.5e5 5e6

]T .
x

ISE
y

ISE
ψ
ISE

max
pos
error

τx
ISO

τy
ISO

τN
ISO

pre-
controller 0.99 1.10 1.03 1.03 0.77 0.80 1.03

post-
controller 0.97 1.10 1.02 1.03 0.74 0.79 1.02

Table 6.3.2: Ratio between ISE with and without selective wave filtering for position
and heading, maximal position error and ratio between ISO with and without
selective wave filtering for high-pass filtered applied forces and moments. Ice-
disturbance gain

[
4e4 4e4 4e6

]T and offset
[
-2e5 3.5e5 5e6

]T .
To demonstrate when the selectiveness becomes crucial, a more extreme scenario
is considered. If the disturbance becomes too aggressive, the phase lag in the
wave filter may cause instability. By letting the ice-disturbance gain be raised to
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[
5e5 5e5 5e7

]T and offset
[
-5e5 3e5 8e6

]T , then as seen in Figures 6.3.6
and 6.3.7, the wave filters make the system unstable as they cannot follow the
aggressive disturbance. The selective wave filters, however, have no problems with
these ice-forces and as seen in Table 6.3.3, they again reduce the applied thrust
while hardly affecting the posture. Both filter placements yield very similar results.

Figure 6.3.6: Plot of applied thruster force without and with selective wave filtering.
Ice-disturbance gain

[
5e5 5e5 5e7

]T and offset
[
-5e5 3e5 8e6

]T .
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Figure 6.3.7: Plot of the difference between unfiltered and selective wave filtered
posture. Ice-disturbance gain

[
5e5 5e5 5e7

]T and offset
[
-5e5 3e5 8e6

]T .
x

ISE
y

ISE
ψ
ISE

max
pos
error

τx
ISO

τy
ISO

τN
ISO

pre-
controller 0.97 1.07 1.02 0.99 0.95 0.85 1.02

post-
controller 0.95 1.07 1.02 0.98 0.94 0.84 1.01

Table 6.3.3: Ratio between ISE with and without wave filtering for position and
heading, maximal position error and ratio between ISO with and without wave
filtering for high-pass filtered applied forces and moments. Ice-disturbance gain[
5e5 5e5 5e7

]T and offset
[
-5e5 3e5 8e6

]T .



Chapter 7

Case Study

7.1 Simulink Simulations
To test the performance of the proposed measures against sudden unknown exter-
nal disturbances, a vessel was modeled in Simulink and tested in different scenarios.
The simulated vessel was chosen as a supply vessel created by the MSS toolbox
[32]. A more detailed description of the vessel model can be found in Appendix B.

To explore how the vessel handles sudden unknown external disturbances, the
following scenarios were considered:

• Sideways constant disturbance, Section 7.1.2.

• Head-on constant disturbance, Section 7.1.3.

• Varying ice disturbance, Section 7.1.4.

• Varying ice disturbance with selective wave filter, Section 7.1.5.

• Constant disturbance with predictive action and selective wave filter, Section
7.1.6.

The purpose of first two cases was to test the performance and robustness of the
vessel when subjected to different sudden and unknown, but constant external
forces. The purpose of the third and fourth case was to explore how the different
control strategies were affected by varying ice disturbances, with and without selec-
tive wave filtering. The last case explores the effect on robustness and performance
when all proposed measures against external disturbances are applied at once.

7.1.1 Case Outline
The first three cases were tested with the PID controller in combination with the
Disturbance Rejection by Acceleration Feedforward controller (AFF), the PID with
cubic stiffness (PIDP3), the PID with cubic stiffness and damping (PIDP3D3), and
with the PID controller alone for comparison. The last two cases were tested

71
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Figure 7.1.1: Simulink model.

with the AFF and the AFF with model errors against the PID controller. The
PID controller was tuned as proposed in Section 4.1.4, with the exceptions that
Kd = 2ζωnM −D was tuned as Kd = 2ζωnM as it yielded better performances,
and that the integral gain was reduced to Ki = 0.033

10 M for the AFF controller,
as further explained in Section 4.2.1. The integral gain for the PID controller was
chosen according to the methods in Section 4.1.4. The cubic terms were chosen as
Kp3 = .2Kp and Kd3 = 5Kd after some testing. The controller bandwidth was
chosen such that ωn = 0.1 rad/s and the relative damping ratio to ζ = 1.5. The
AFF controller was implemented as in (4.2) with a measurement delay δ = 0.1
seconds. As the IMU sensor only provides linear accelerations, the control force
from the AFF became

τFF =

 M11âx +D11ν̂x − τx
M22ây +D22ν̂y +D23ν̂ψ − τy

D32ν̂y +D33ν̂ψ − τψ

 (7.1)

where the parameters for M and D are given in Appendix B.

The reference model in Figure 7.1.1 was chosen as a simple first order low-pass
filter, to create a smooth trajectory to eventual changing setpoints. As seen in
Figure 7.1.1, the wave filter was placed before the controller, after reflecting on the
results in Chapter 6.

The constant disturbance was modeled as a step, representing a sudden but con-
stant ongoing or slowly varying disturbance. The varying ice disturbance was
created in an attempt to resemble the ice disturbance presented in [26], which is
a version of the findings in [14], scaled to fit the same vessel model used in this
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Figure 7.1.2: Ice disturbance with gain
[
5e5 5e5 5e7

]T and offset[
-4e5 4e5 1e7

]T .
thesis. As this time-series was not available, white noise subjected to a gain and
an offset were used to mimic the behavior of the disturbance in [26]. An example
of the ice disturbance can be seen in Figure 7.1.2.

In each simulation, the vessel was initialized in η =
[

0 0 0
]T , and subjected

to a disturbance after some time. A JONSWAP wave distribution with ω0 = 1.1
rad/s in each DOF, and significant wave height Hs = 2.4 meters was applied in ev-
ery case. No other external disturbances such as current or wind were turned on, as
they can be viewed as constant disturbances that will be handled by integral action
or wind-feedforward. ηd = 0 was chosen in every case to focus on stationkeeping.
The duration of the simulation was set to 700 seconds for each case.

7.1.2 Case 1: Sideways Constant Disturbance
The vessel was subjected to an external force with magnitude FI = 4e5, point
of impact pbI,CG =

[
40 9

]T and angle of impact θAoI = 80 degrees at time
t = 200. This represents a disturbance impacting on the right corner of the bow.
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The function pred_force.m from Section 5.4 was used to calculate the force vector,
which became τ disturbance =

[
-6.9e4 -3.9e5 -1.5e7

]T (N, N, Nm).

Figure 7.1.3: Case 1, position and heading deviations for four different control
strategies.

As illustrated in Figure 7.1.3, all three proposed control approaches yield better
results than the PID alone. It can be noticed in sway that the cubic controllers
are a little more aggressive and thus oscillate a little more than the AFF alone,
which may indicate a too aggressive tuning. Compared to the PID controller, the
maximal error in surge is reduced by approximately 1.5 meters in surge, 2 meters
in sway and 7 degrees in yaw. In addition, the PID controlled posture converges
significantly slower in all DOFs.
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Figure 7.1.4: Case 1, thruster feedback for four different control strategies.

Figure 7.1.4 shows the corresponding thruster feedback, where it can be seen that
the AFF strategies applies thrust more rapidly than the PID controller, which
reflects the theory on disturbance rejection, i.e. in contrast to the PID, it does
not wait for the error build up to produce control force. The oscillatory behavior
in yaw may suggest that the PID controller could have been tuned softer when
used in combination with the AFF controller. The wave influenced control force
is best seen in surge due to the scaling of the magnitude in each plot, where it
can be noticed that the AFF strategies are much more influenced by wave forces.
This is due to the acceleration feedback, which amplifies the wave forces from the
first-order wave loads. This behavior suggests the need for a wave-filter.

7.1.3 Case 2: Head-on Constant Disturbance
The vessel was subjected to an external force with magnitude FI = 6e5, point
of impact pbI,CG =

[
40 4

]T and angle of impact θAoI = 10 degrees at time
t = 200. This represents a disturbance impacting on the right corner of the bow.
The function pred_force.m from Section 5.4 was used to calculate the force vector,
which became τ disturbance =

[
-5.9e5 -1.0e5 -1.8e6

]T (N, N, Nm).
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Figure 7.1.5: Case 2, position and heading deviations for four different control
strategies.

As seen in Figure 7.1.5, the AFF and AFF with both cubic stiffness and damping
perform better than the PID controller, while the cubic stiffness controller becomes
unstable due to too large errors in surge. The cubic stiffness and damping + AFF
controller has some more oscillating motions in surge and slightly larger offset in
sway, compared to the AFF controller alone, which thus has the best performance.
Compared to the PID controller, the AFF reduced the heading offset with about
1 degree, while the offset in surge is reduced from approximately 16 meters to 10
meters. The sway is as expected not very affected by the head-on disturbance, but
the AFF still performs best. Again, the AFF converges a lot faster than the PID.
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Figure 7.1.6: Case 2, thruster feedback for four different control strategies.

Figure 7.1.6 again demonstrates that the cubic stiffness controller becomes unstable
as it hits the thruster limits. The AFF strategies are more aggressive in yaw, while
the AFF controller in surge is very similar to the PID, though it applies thrust
more rapidly and converge faster to the value of the disturbance.

7.1.4 Case 3: Varying Ice Disturbance
The vessel was subjected to a varying ice-inspired external force with gain[
2e5 2e5 4e7

]T and offset
[
-3e5 4e5 1e7

]T . The disturbance impacts at
t = 200 and discharges at t = 400. This represents a disturbance impacting on the
left side of the vessel.
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Figure 7.1.7: Case 3, position and heading deviations for four different control
strategies.

As illustrated in Figure 7.1.7, the AFF strategies greatly improve the performance
compared to the PID controller in all DOFs. Although the cubic controllers con-
verge slightly quicker after the incoming disturbance, the AFF controller yields
the overall best performance. The PID controller cannot keep up with the varying
disturbance and does not converge before the ice discharges, and thus experiences
a large offset yet again. The initial offset was reduced with about 3 meters in surge,
2 meters in sway and 10 degrees in yaw, when comparing the AFF with the PID
controller.
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Figure 7.1.8: Case 3, thruster feedback for four different control strategies.

The corresponding thruster feedback can be seen in Figure 7.1.8. All control strate-
gies have very similar performance in surge and sway, while the AFF strategies have
higher amplitudes in yaw. This illustrates the lack of angular acceleration feedback,
which as seen in Figure 7.1.7, results in heading errors of up to approximately 6
degrees.

7.1.5 Case 4: Varying Ice Disturbance with Selective Wave
Filter

The vessel was subjected to the same varying ice-inspired disturbance as in the
last case, but with selective wave filtering turned on. As reflected in the discussion
in Chapter 8, the AFF controller yields the best results, resulting in the rejection
of the cubic controllers. Instead, an AFF controller with model errors have been
introduced to illustrate its robustness. As the weight of a real vessel will vary
with loading conditions, the actual mass and damping matrices will be uncertain
[26]. The AFF with model errors was implemented with the adjusted parameters
M̄ = 0.75M and D̄ = 0.9D.
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Figure 7.1.9: Case 4, position and heading deviations for four different control
strategies.

As seen in Figure 7.1.9, the uncertain AFF performs almost as well as the certain
AFF, with the exceptions of some slightly higher amplitude on the deflections at the
occurrence of the impacting and discharging disturbance. Otherwise, it is observed
that the selective wave filter does not affect the position and heading noticeably.
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Figure 7.1.10: Case 4, thruster feedback for four different control strategies.

Figure 7.1.10 shows the corresponding thrust, which is very similar to the last
case. A slightly more aggressive thrust can be observed for the uncertain AFF,
where the amplitudes in surge and sway are a little higher than the AFF at the
times right after the disturbance impacts and discharges. This explains the higher
deflections in position as mentioned above. The effect of the selective wave filter can
be seen in all DOFs, where in comparison with Figure 7.1.8 from the last case, the
thrust is much calmer before and after the disturbance. Upon close observation,
it can be seen that the wave filter is turned back on at approximately t = 500,
which represents a time tsettle = 100 seconds after the last detected disturbance.
The visual effect of the selective wave filter disappears in yaw due to the large
magnitude of thruster feedback. The problem with the wave influence on the AFF
controller mentioned in Section 7.1.2, has been attenuated when the selective wave
filter is turned on.

7.1.6 Case 5: Constant Disturbance with Predictive Action
and Selective Wave Filter

The vessel was subjected to the same disturbance as in Case 1, i.e. an external
force with magnitude FI = 4e5, point of impact pbI,CG =

[
40 9

]T and angle of
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impact θAoI = 80 degrees at time t = 200. In addition, the selective wave filter is
turned on, and a predictive force with Fp = 2.25FI was applied tp = 2.5 seconds
before the disturbance, according to the results found in Chapter 5. The predictive
angle and displacement vector were the same as with the disturbance.

Figure 7.1.11: Case 5, position and heading deviations for four different control
strategies.

As can be seen in Figure 7.1.11, the PID controller benefits very little from the
proactive action, except from about a meter less offset in sway, compared to Figure
7.1.3 from Case 1. The AFF controllers, however, perform very well as especially
seen in surge, where the disturbance is completely canceled out. In sway, the offset
is reduced from about 2.5 meters in Case 1, to approximately 1 meter, and the head-
ing deflection is reduced from about 10 degrees in Case 1, to about 5 degrees. This
demonstrates the benefits of combining all the measures against sudden unknown
external disturbances proposed in this thesis. Although, it should be mentioned
that a more accurately based predictive force would yield even better cancellation
of the disturbance, but it is limited by the previously discussed accuracy of the ice
observation system (see Section 5.4.1).



7.1. SIMULINK SIMULATIONS 83

Figure 7.1.12: Case 5, thruster feedback for four different control strategies.

The corresponding thrust is shown in Figure 7.1.12, which is depicted as very
similar to the applied thrust in Case 1. The wave filter has attenuated the wave
forces to some degree, which have become less oscillating for all three controllers.
The effect of the proactive action can be noticed as a small dip in thrust for the
PID controller in all DOFs, whereas the AFF controllers continues to apply thrust
to handle the disturbance.

7.1.7 ISE
To compare the actual magnitude of the controller errors and the use of thrust, a
measurement called Integral Squared Error (ISE) was logged from the simulations.
The ISE can be expressed as

ISE =
ˆ t

0
e2(κ)dκ (7.2)

where e(t) is the error between the desired and the actual controlled variable, κ
is the integration variable and t is the time span of the simulation. To measure
the use of thrust, the same method was used by substituting e(t) with τ(t). The
measurement of the squared thrust has been labeled as the Integral Squared Output
(ISO) in this thesis.
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ISE is a measurement that will penalize large errors more than small errors, due
to the square [44]. This implies that the errors in Table 7.1.1 are dominated by
the larger errors, and does not necessarily reflect how good the controllers perform
during steadier states.

x ISE y ISE ψ ISE τx
ISO

τy
ISO

τN
ISO

Case 1:
AFF 0.03932 0.1466 0.0749 4.925 1.900 1.924

AFF+CS 0.05110 0.1270 0.0746 4.901 2.284 1.984
AFF+CS+CD 0.0490 0.1259 0.07461 4.918 2.330 1.987

Case 2:
AFF 0.2866 0.03793 0.02945 1.234 6.313 3.107

AFF+CS 1.094 0.1411 0.02825 9.917 6.434 3.156
AFF+CS+CD 0.3024 0.1348 0.02835 3.204 6.455 3.145

Case 3:
AFF 0.05582 0.09928 0.04978 1.317 1.458 2.944

AFF+CS 0.04814 0.07967 0.04920 1.654 1.715 2.924
AFF+CS+CD 0.03794 0.08040 0.04947 1.576 1.750 2.937

Case 4:
AFF 0.05353 0.09988 0.04957 1.192 1.228 2.948

AFF w/ error 0.06261 0.1001 0.05029 1.562 1.439 2.863
Case 5:
AFF 0.01076 0.02449 0.01535 2.604 1.333 2.292

AFF w/ error 0.02051 0.02717 0.01597 2.932 1.496 2.362

Table 7.1.1: ISE and ISO ratios between different control strategies and PID con-
troller.

7.1.7.1 ISE Comparison

Table 7.1.1 presents the ISE/ISO ratios between the proposedly improved con-
trollers and the PID controller, such that a ratio below 1 represents an improve-
ment and vice versa. The ISE in all DOFs was greatly reduced each case, except
for the unstable AFF + cubic stiffness controller in Case 2, to only a couple percent
of the PID ISE. The applied thrust however, was increased in every case compared
to the PID controller. Notice that the thrust ISO is high-pass filtered before it is
squared and integrated, such that only the thrust applied to counteract the dis-
turbances was measured. This implies that a ratio of e.g. 4.925 does not mean
that five times more thrust was applied, but rather that the squared area between
the disturbance value and the applied thrust was five times higher. So rather than
focusing on the magnitudes of the values in Table 7.1.1, the focus should be placed
on the comparison between each control strategy in each case.

In Case 1, all controllers yield similar results, with the exception of better ISO
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Figure 7.2.1: Control Computer (CC) provided by Marine Technologies.

in sway for the AFF controller. In Case 2, the AFF also have better ISE in sway
and ISO in surge compared to the AFF + cubic stiffness and damping controller,
while the cubic stiffness controller can be recalled to be unstable. For Case 3, the
AFF has slightly better ISO performance in surge and sway, while the remaining
measurements are similar. In Case 4 and 5, the AFF slightly outperforms the
uncertain AFF controller in surge and sway ISO and surge ISE, while the other
measurements are similar. One exception is the yaw ISO for the uncertain AFF
controller in Case 4, which is slightly lower than the certain AFF controller.

7.2 MT Simulations
To execute Hardware-in-the-loop (HIL) testing of the performance of some of the
proposed measures against sudden unknown disturbances, a case study was per-
formed with a simulator provided by Marine Technologies (MT). The simulator
consisted of a separate hardware Control Computer (CC) (see Figure 7.2.1) that
was connected to a regular desktop computer via an Ethernet switch. An Operator
Station (OS) ran the interface on the desktop computer (see Figure 7.2.2), while
the actual simulations ran on the CC.

The simulated vessel was a basic vessel resembling a supply vessel, with a displace-
ment of 5000 ton, a 6 meter draught and a length overall (LOA) of 85.2 meters.
The thruster configuration consisted of one bow tunnel thruster, one bow azimuth
thruster, one aft tunnel thruster and two main propellers with rudders in the port
and starboard side of the stern. The thruster locations and capacities are described
in Section B as they were used to limit the available thrust in the Simulink modeled
vessel as well.



86 CHAPTER 7. CASE STUDY

Figure 7.2.2: Operator Station (OS) interface provided by Marine Technologies.

Logging

The simulations were logged to a binary file, which was converted to comma-
separated value (CSV) files (provided by MT), attached as TestXXX.csv. In the
CSV-files, the decimal mark in the variable values were logged as comma separated
instead of dot-separated, i.e. e.g. 0.004 was logged as 0,004, so the CSV file
had to be processed with csvfix.m. Next, a data set was created by extracting the
proper values corresponding to each logged variable (provided by [41]). To be more
comparable with the Simulink case study, the data set was then rotated from BODY
to NED-coordinates by R(ψ), i.e. the principal rotation about the z axis given in
(2.7). In addition, the forces and moments were scaled from ton-force to Newton
and Newton meters. As the logged data from time to time was induced with noise,
a low-pass filter was also introduced, as attached in lowpass.m. Next, the data sets
from the simulations that were to be compared, needed to be time synchronized as
the simulation had to be started and stopped manually. The syncing is implemented
in plot_debug_dataset_final.m, where the different data sets are synced to when
the first occurring thrust exceeds a given limit, which represents the time of the
applied disturbance. The logged data consisted of position and heading deviations,
and applied thruster feedback, in surge, sway and yaw.

7.2.1 Case Outline
MT provided the opportunity to simulate with and without Disturbance Rejection
by Acceleration Feedforward (AFF), as well as with and without cubic stiffness in
the PID controller. Therefore the following scenarios were considered:

• Sideways unknown disturbance, Section 7.2.2

• Head-on unknown disturbance, Section 7.2.3
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• Position change, Section 7.2.4

The purpose of first two cases was to test the performance and robustness of the
vessel when subjected to different sudden unknown external forces. The purpose
of the third case was to explore how the different control strategies affected a basic
DP maneuver, when not exposed to external disturbances.

All cases were tested with four different control strategies: with added AFF, with
added cubic stiffness, with both cubic stiffness and AFF, and with the existing MT
PID controller.

In each simulation, the vessel was initialized in η =
[

0 0 0
]T , and subjected to

a disturbance or reference change after some time. No other external disturbances
such as wind or current was turned on, as to keep the focus on the sudden unknown
disturbances. Simulated wave forces were not available, and thus not included in
the simulations.

The AFF was implemented by MT as described in Section 4.2.1 with no addi-
tional measurement delay, i.e. δ = 0, only with the exception that the mass and
damping matrices M and D are diagonal in the MT simulator, such that the
control force from the AFF reduced to

τFF =

 M11âx +D11ν̂x − τx
M22ây +D22ν̂y − τy

D33ν̂ψ − τψ

 (7.1)

The cubic stiffness term was implemented by MT asKp3e
3 where e is the position

and heading deviation vector. In the Simulink case study, the heading deviation
is given in radians, while MT calculated the deviation in degrees, thus making the
cubic term much more responsive against heading errors. The gains were thus cho-
sen after some trail and error as Kp3 = diag

([
1, 1, π

180
])

= diag
([ 1

3 ,
1
3 ,

π
378
])
Kp,

where Kp is the proportional gain matrix of the PID controller in the simulator.

7.2.2 Case 1: Sideways Unknown Disturbance
The vessel was simulated with ηd = 0, such that the logged deviation vector repre-
sented the position and heading in the NED-frame. The vessel was subjected to an
external force with magnitude FI = 1e5, point of impact pbI,CG =

[
40 9

]T and
angle of impact θAoI = 80 degrees. This represents a disturbance impacting on the
right corner of the bow. The function pred_force.m from Section 5.4 was used to
calculate the force vector, which became τ disturbance =

[
-1.7e4 -9.9e4 -3.8e6

]T
(N, N, Nm).
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Figure 7.2.3: Case 1, position and heading deviations for four different control
strategies.

As seen in Figure 7.2.3, the control strategies with AFF yield the best perfor-
mances, while the cubic controller yields less offset in sway and yaw at the expense
of slower convergence. The AFF controller yields the smoothest performance in all
DOFs, while the cubic+AFF has slightly better performance in yaw and similar
performance in surge, although with some oscillating behavior in sway. This may
imply a too aggressive tuning of the cubic gain. As the disturbance impacts on
the side of the vessel, it can be seen that the sway and heading are most affected.
Compared to the PID controller, the AFF reduces the heading offset with about
5 degrees, while the offset in surge is reduced from approximately 5 meters to 1
meter. In surge, the oscillating deflection experienced with the PID controller is
removed with the control strategies that include AFF.
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Figure 7.2.4: Case 1, thruster feedback for four different control strategies.

Figure 7.2.4 shows the corresponding thruster feedback from Case 1. It can be
seen that the AFF control strategies immediately applies thrust to handle the
sudden external disturbance in surge and sway. As there is no angular acceleration
measurements available, the heading moment will not respond as quickly, but will
still handle the disturbance by quickly converging to the value of the disturbing
moment. The spike seen in the start of the surge force represents the corrective
action by the AFF to damp the oscillating motion in surge illustrated in Figure
7.2.3. In addition, both AFF controllers apply less thrust than the PID as they
have smaller maximal amplitudes and converge quicker to the disturbance value.
The cubic controller applies the most thrust, and demonstrate a jerky thrust in
surge as well as oscillating force in sway. Some rapid oscillatory behavior for the
AFF controllers can be noticed in yaw, but this is most likely due to noise from
the logging.

7.2.3 Case 2: Head-on Unknown Disturbance
The vessel was simulated with ηd = 0, such that the logged deviation vector repre-
sented the position and heading in the NED-frame. The vessel was subjected to a
large external force with magnitude FI = 4e5, point of impact pbI,CG =

[
40 4

]T
and angle of impact θAoI = 10 degrees. This represents a disturbance impacting
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nearly head-on the bow. The function pred_force.m from Section 5.4 was used to
calculate the force vector, which became τ disturbance =

[
-3.9e5 -7.0e4 -1.2e6

]T
(N, N, Nm).

Figure 7.2.5: Case 2, position and heading deviations for four different control
strategies.

As shown in Figure 7.2.5, the cubic+AFF combination has the overall best per-
formance, while the cubic controller yields unstable results. The large disturbance
yields such large errors in surge that the contribution from the cubic gain becomes
too high, which may imply that the tuning of the cubic gain is too aggressive with
respect to the dynamic capabilities of the thrusters. The aggressive tuning is also
reflected in the cubic+AFF in surge, where some oscillations can be noticed. The
AFF alone also yields satisfactory results. As the disturbance hits the vessel nearly
head-on, the surge is most affected, and is thus also where the biggest improvements
are found. The maximal offset from the reference is reduced from approximately
25 meters with the PID, to about 4 meters with the cubic+AFF approach. The
AFF alone yields an offset of about 11 meters. In the sway axis, the AFF and
cubic+AFF improves the offset with about 1.5 meters compared to the PID, while
the heading is improved by approximately 2 degrees.
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Figure 7.2.6: Case 2, thruster feedback for four different control strategies.

Figure 7.2.6 shows the corresponding thruster feedback from Case 2, where sim-
ilarly as in Case 1, the control strategies with AFF respond more quickly to the
disturbance in surge and sway, while the cubic is more aggressive and applies more
thrust than the other combinations. The oscillations in surge from the cubic+AFF
controller are more clearly represented, while the cubic thrust demonstrate some
irregular behavior. Some rapid oscillatory behavior for the AFF controllers can be
noticed in sway, but this is most likely due to noise from the logging.

7.2.4 Case 3: Position Change

The vessel was simulated with ηd =
[

5 5 0
]T to explore how the different con-

trol strategies affect the vessel’s ability to perform a simple low-speed maneuver.
The plots for the yaw axis were left out due to some inconsistencies between the
observed data and the logged data.
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Figure 7.2.7: Case 3, position deviations for four different control strategies.

Figure 7.2.7 illustrates the deviations between the positions and the reference
model, which generates a smooth time-varying reference signal. Apparently, the
reference model is closely followed, such that the errors become very small. As ex-
pected, none of the control strategies affects the behavior significantly compared to
the PID controller. This is due to the fact that there are no external disturbances,
such that the AFF does not have any effect, and the fact that the error is so small
that the cubic contribution becomes negligible.
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Figure 7.2.8: Case 3, thruster feedback for four different control strategies.

Figure 7.2.8 again illustrates that the different control strategies yield the same
results when there are no large deviations due to sudden external disturbances.
Again, some rapid oscillatory behavior for the AFF controllers can be noticed in
sway, but this is likely due to noise from the logging.

7.2.5 ISE Comparison
As each simulation had varying duration, the ISE (see Section 7.1.7) was scaled by
the simulation time to make the comparison valid, such that the ISE calculation
(7.2) becomes

ISE = 1
t

ˆ t

0
e2(κ)dκ (7.2)

The ISO was high-pass filtered with the attached function highpass_thrust.m to
only measure the excessive thrust applied to counteract the disturbances.
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x ISE y ISE ψ ISE τx
ISO

τy
ISO

τN
ISO

Case 1:
AFF 0.3340 0.09526 0.3208 3.619 1.547 2.567
CS 1.53324 0.3752 0.5722 2.864 7.534 1.528

AFF+CS 0.3996 0.07159 0.2745 3.961 1.835 2.220
Case 2:
AFF 0.1519 0.09894 0.3443 0.7304 1.952 1.447
CS 1.169 0.7023 1.486 67.97 16.07 10.86

AFF+CS 0.02544 0.1406 0.2657 3.782 1.454 1.875
Case 3:
AFF 0.6314 0.9390 n/a 0.6380 0.6754 n/a
CS 0.7102 0.7382 n/a 0.7011 0.6940 n/a

AFF+CS 0.3624 0.6729 n/a 0.4748 0.4802 n/a

Table 7.2.1: ISE and ISO ratios between different control strategies and PID con-
troller.

As can be seen in Table 7.2.1, for Case 1, the ISE for the AFF and the cubic+AFF
have similar and good performance, while the cubic controller performs poorly. The
ISE for the AFF and cubic+AFF have been greatly reduced, while the thrust ISO
has increased for all DOFs. The cubic controller alone worsened compared to the
PID in surge ISE as well as sway ISO. For Case 2, the cubic+AFF controller has the
best ISE performance in surge, at the expense of higher surge ISO. The AFF has
the overall best performance, with greatly reduced ISE and moderate increase in
ISO, while the surge ISO is actually improved compared to the PID controller. As
the cubic controller alone was unstable, the ISE/ISO measurements are very high.
As recalled for the third case in Section 7.2.4, each control strategy demonstrated
very similar performances. As the actual deviations were very small, the ISEs were
also small. For instance, the surge ISE for the AFF was 0.0024 m2 and 0.0039 m2

for the PID, which makes the comparison invalid as the logged measurement noise
may be dominant compared to the actual errors.



Chapter 8

Discussion

8.1 Predictive Feedforward Control
In Chapter 5, a predictive feedforward controller was implemented and tested
against different disturbances. The controller was implemented as a pulse gen-
erator, providing proactive thrust at some time before an incoming external dis-
turbance, such as an ice floe. For simplicity, only constant step disturbances were
considered, as the purpose of the chapter was to explore what kind of accuracy
that was needed for the estimate of the disturbance. In addition, as the predictive
force was only applied up to the point of the disturbance, it would only influence
how the impact of the disturbance affects the behavior of the vessel. After impact,
the AFF controller would handle the disturbance and would thus not be influenced
by the choice of a constant or varying disturbance. The same reason also applies to
why the wave filter was not included in the predictive simulations, as it would only
affect the behavior before and after the proactive action was applied. The selective
wave filter however, would probably be triggered by the proactive force, but as it
was only applied seconds before impact, the difference would be negligible. The
general result of the simulations was that the proactive action showed promising
possibilities of counteracting an incoming disturbance. It also showed that proac-
tive force was not very effective for small disturbances, or that proactive moment
would not be effective if the torque produced by the incoming disturbance was low.
This is due to the fact that for small disturbing forces or produced torques, the
room for improvement becomes small, while the room for worsening increases.

Concerning the prediction algorithm, the scenario where only one ice floe at a
time was considered, is not a very realistic one. The algorithm could easily be
augmented to handle several ice floes by calculating the total resulting disturbance
vector, but this requires that there are few enough ice floes, and with distinctive
enough movement patters such that a tracking algorithm can distinguish between
them. It could also easily be augmented to fit a moving vessel, but stationkeeping
has been the main focus in this thesis.

95
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The next step in predictive feedforward control would be to investigate the possi-
bility of correcting the position or heading, to handle large predicted disturbances.
This would be applicable for situations when the DP operation allows a free heading
or a large operating circle. However, as the yaw rate is slow (for the supply vessel
modeled in Appendix B, a yaw rate of approximately 30 degrees/min was experi-
enced), this kind of correction would require a more sophisticated observation and
detection system. The detection of incoming disturbances must be available not
seconds, but several minutes before the disturbance, such that if proactive action is
decided to be taken by an ice intelligence system, the vessel will be able to reposi-
tion or change heading to better handle the disturbance. As the vessel is typically
more slender in the longitudinal direction, ice impacting head-on would be a more
desirable scenario. In addition, head-on impacting ice floes could be assumed to
slide off the bow. The close-range proactive action methods from Chapter 5 could
still be applied right before impact, to minimize the effect of the disturbance. In
the cases of hazardous ice disturbances, such as ice bergs that surpass the DP capa-
bility, the danger must be identified in time, such that the impact can be avoided,
either by aborting the DP operation or by towing the iceberg [20].

It should be mentioned that the limits for required accuracy of the estimated incom-
ing disturbances are not very rigorous. They will vary with the choice of controller
design and tuning, with the condition of other environmental forces such as waves,
and with the properties of the incoming disturbance. They are also strongly cou-
pled with the actuator dynamics with regards to rate limitations, turn times and
capacities. As mentioned in Chapter 5, the choice of predictive parameters must
be made with regards to the accuracy of the ice observation system. In the ideal
case, where the accuracy is very good or perfect, the prediction parameters could in
theory be optimized for a certain configuration, regarding control design, operation
mode, sea state, etc.

It should also be mentioned that the shape of the hull should be more accurately
modeled, to better determine how an incoming disturbance will influence the ves-
sel. It can be noticed that all incoming disturbances in Chapter 5, impacted nearly
normal to the hull. This was chosen as a simple set of cases to realize the constant
disturbance. More realistic scenarios would include ice incoming at sharper angles,
which could be assumed to slide along the hull, and thus produce varying and
drifting forces that would eventually leave the vessel. This kind of disturbance is
better realized as the varying ice-force used in Chapter 7 (see Figure 7.1.2).

8.2 Wave Filtering
In Chapter 6, a selective adaptive wave filter was proposed and tested. The fil-
ter consisted of a notch filter with a frequency that was adapted to fit the wave
frequency, by estimates from a frequency tracker. The filter was made selective
by using jerk measurements to identify sudden external disturbances. As perfect
noise-free signals were used, differentiating the acceleration to find the jerk was
not a problem. However, real measurements from the IMU will be noise-induced,
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and even though they are fed through an observer, some noise residues will still
remain. It is also commonly known that differentiating noise contaminated signals
is not a good solution. A better approach would be to use the thruster feedback
to identify the disturbance, as it would also reflect the presence of a disturbance.
However, a problem of when to turn the wave filter back on again arises. When the
disturbance has passed, the vessel will take some time to settle, but since the wave
filter is off, the applied thrust will have a higher amplitude than before the distur-
bance occurred. This can be solved by setting the limits that trigger the selective
part of the wave filter, large enough to guarantee that the unfiltered wave-induced
thruster feedback will not be considered as a disturbance. This also makes sure
that the wave filter is not turned off at the occurrence of an abnormally large wave
or disturbances that are considered to be too small.

Regarding the placement of the wave filter, the two different approaches yield
very similar results. The pre-controller placement experienced some overall better
performance in ISE, while the post-controller performed better in ISO. As men-
tioned in Chapter 6, the reason for this is due to the fact that the pre-controller
placement only filters the outer feedback loop, while the post-controller placement
filters the inner feedback loop as well, where the inner loop is referred to as the
thruster feedback loop to the AFF controller. The post-controller filter thus yields
a more smooth applied thrust, at the expense of additional phase lag. This fact
will in a way impair the comparison, as the tuning of the notch filter becomes the
deciding factor. The tuning of the controller will also become an important factor,
regardless of the AFF controller, as due to the nonlinearities in the PID controller,
the pre-filtered control command will differ from the post-filtered commands. This
issue makes it hard to conclude on the best performing placement of the filter. Ac-
cording to [45], the filter should be placed in front of the controller, while Section
11.1 in [1] suggests a post-controller placement. The general issue of tuning of the
notch also arises, as there will be a compromise between phase lag and wave-force
attenuation. As can be seen in Figure D.2.1 in Appendix D.2.1, there is a tradeoff
between position ISE and thruster ISO. The user must decide on how to weight
this tradeoff problem, and test several scenarios to end up with a suitable tuning.
This would also involve the choice of the notch filter design, with regards to the
structure of the transfer function, and if low-pass filters or additional notch filters
should be included in a cascade.

It should also be mentioned that a high and low gain scheduling of the PID con-
troller should be considered, as due to the phase lag introduced by the filter, the
control bandwidth is affected. The scheduling variable could be chosen as the trig-
ger variable in the selective wave filter Algorithm 6.2, where the gains could be set
lower when the filter is turned on, and vice versa. Bumpless transfer techniques,
as e.g. proposed in [46], can be used to facilitate smooth transitions between gain
scheduled changes in the controller output. A more comprehensive gain scheduling
approach to handle the varying sea state, as described in [47], could also be advan-
tageously considered.
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Some underdamped behavior was observed at the occurrences of the impacting and
discharging disturbances, which leads to the questioning of correct PID tuning. Re-
calling the fact that the PID controller was tuned without incorporating thruster
dynamics, can be assumed to be the most likely reason for the non-critical tuning.
This unfiltered underdamped behavior was greatly amplified by the wave filter due
to the added phase lag, which is especially seen in Figure 6.3.1. A control strat-
egy with the AFF in combination with cubic damping alone could be considered
as a possible measure, as it would provide additional and more aggressive damping.

The wave frequency tracker was implemented with a low-pass filter with decreasing
frequency to stabilize the estimate. As it can be assumed that the modal wave-
frequency is slowly varying over time, the final filter constant could be set very low
to effectively lock the frequency estimate. However, this would make it vulnerable
for changes in wave frequency, as it would very slowly converge to a new modal
frequency, should the sea state change. This issue can be solved by resetting the
frequency tracker from time to time, as it then would quickly converge to a new
and more current estimate. In addition, it should be kept in mind that when using
real noise-contaminated measurements, the differentiation of the high-pass filtered
signal should be avoided due to the same reasons mentioned above.

Concerning the magnitudes of the ISEs and ISOs in Table 6.3.2, it should be
mentioned that as long as the improved ISO ratios are lower than the ISE ratios
worsen, the effect over time will increase in the general improvements favor. In ad-
dition, as long as the vessel stays inside the desired operating circle, the increased
ISE will not matter, while the magnitude and modulation of the applied thrust
are greatly reduced over time. This will in turn reduce both fuel consumption and
actuator wear and tear.

8.3 Case Study
8.3.1 Simulink
In Section 7.1, five case studies are presented. The case studies represent Simulink
simulations results of the different control strategies proposed in this thesis to im-
prove the handling of sudden unknown external disturbances, compared to existing
solutions, i.e. a nonlinear PID controller. The general result was that the Distur-
bance Rejection by Acceleration Feedforward (AFF) controller in combination with
the nonlinear PID controller, had the overall best performance. The control strat-
egy with an AFF controller in combination with a PID with cubic stiffness, was
rejected after yielding unstable results in Case 2. This demonstrated the need for
an added cubic damping term to compensate for the potential oscillating behavior
from the aggressive stiffness term. The strategy with a PID + AFF + both cu-
bic stiffness and damping, yielded very similar results to the AFF alone, but due
to some oscillating performance in Case 2, this combination was also rejected. Al-
though, it should be mentioned that an improved response could have been achieved
with better tuning. As mentioned in Section 4.1.1, the proportional gain in the



8.3. CASE STUDY 99

PID controller could be reduced when adding cubic stiffness, which would reduce
the control response for small deviations. For large errors however, the cubic term
would quickly become dominating. The scenario without the AFF was also con-
sidered, but was rejected after demonstrating worse performance than the original
PID (see figures in Appendix D.3.1). Furthermore, the three different proposed
designs for acceleration feedback, i.e. constant gain, low-pass filtered gain and
notch-filtered gain, were also examined. However, since the Disturbance Rejection
by Acceleration Feedforward (AFF) method was the one that was implemented
in the MT simulator, the same feedback was used in the Simulink simulation for
more comparable results. A simulation of the three different feedbacks can found
in Appendix D.3.2, where Figures D.3.3 and D.3.4 show that the performance is
almost identical. An exception is that the notch-filtered AFF controller demon-
strates a smoother thrust during the disturbance, although this is due fact that
the selective wave filter is consequently turned off. As this seemingly does not de-
lay the posture, this should maybe have been considered as the favorable approach.

Regarding the simulation results for the AFF controller, the stationkeeping ca-
pabilities were significantly improved compared to the PID controller. The ISEs
were in some cases reduced by over 90%, at the slight drawback that the thruster
feedback was more oscillatory. According to [25], the acceleration feedback should
not increase the thrust use in the ideal case, but due to the rapidly oscillating wave
disturbance, this was not the case. A possible solution would be to reduce the
bandwidth of the PID controller, as since the AFF theoretically cancels out any
external disturbance or unmodeled dynamics, the PID controller virtually experi-
ences a calm sea state [26]. Thus a much less aggressive PID tuning could be used,
which would lead to reduced wave-induced thruster use, which in turn would lead
to lower fuel consumption and reduced actuator wear and tear. Additionally, it
should also be mentioned that the AFF will also compensate for wind feedforward
errors due to incorrect wind measurements, which according to [26] is a common
issue in conventional DP systems.

8.3.2 MT
In Section 7.2, three cases from simulations with a simulator provided by Marine
Technologies are presented. The general result coincided with the Simulink sim-
ulations as the AFF strategy yielded the best results. As the proposed control
strategies were implemented by MT at an earlier stage, the possibility for cubic
damping or filtered acceleration feedback was not included, and thus not available
for testing. However, had the Simulink case study been executed sooner, the cubic
controllers would already have been rejected, such that the focus could have been di-
rected more in the direction of different acceleration feedback designs. In addition,
as no wave-induced forces were available in the MT simulator, there was no need
for including wave filter designs. As mentioned in Section 1.1, it is imperative to
have the opportunity to run numerous simulations with an easily modifiable design,
which is not the case with this simulator. This is due the fact that the simulations
run in real time, such that numerous simulations would be very time demanding.
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In addition, as the source code was not readily available for modifications, or that
pre-designed script-based simulations were not possible, the requirement of an easy
modifiable design was not met. The advantage of the MT simulator however, is a
more realistic thruster response, as the actuation system is modeled with thruster
allocation. Although, it could be observed that the thruster feedbacks were pretty
similar in the Simulink simulations, suggesting that the first-order approximation
of actuator dynamics in Section 2.5, was well suited.

The general result of the MT case study was that the AFF controller showed
promising results, as it significantly reduced both the magnitude and the duration
of the errors. As expected, the performance in surge and sway were most improved
by the AFF, due to the use of the simulated linear acceleration measurements. The
heading was also improved, but the applied moment did not respond as quickly due
to the missing angular acceleration measurements. The ISE comparison was also
consistent with the Simulink study, where the ISE was significantly reduced at the
expense of slightly more aggressive thruster use. Some logging noise was expe-
rienced, but due to a not known, and thus not modifiable logging structure, the
signals were low-pass filtered such that they coincided with the live trend-plots in
the Operator Station (OS) interface. The logging noise can be assumed to originate
from handling of UDP packages, as all exchange of information between the CC
and the OS, goes through an Ethernet switch.



Chapter 9

Conclusion and Future Work

The main goals of this thesis were to evaluate opportunities for better handling of
unknown external forces, compared to current DP controllers.

9.1 Conclusion
The following can be concluded based on the results in this thesis:

• A predictive feedforward control strategy for detection and counteraction of
incoming disturbances has been proposed and tested in Simulink with promis-
ing results. As long as the force or torque exerted on to the vessel by the dis-
turbance was predicted to be of significance, predictive action applied shortly
before and in the general direction of the incoming disturbance, attenuated
the impact. Regarding the predicted disturbance properties, the force was
experienced to be the most influential, while it is also assumed to be the most
difficult property to estimate.

• A selective notch wave filter with the frequency adapted by a wave-frequency
tracker, has been implemented and tested in Simulink with good results. The
selective wave filter greatly reduced the applied thrust force, while hardly
affecting stationkeeping performances. With correct filter tuning such that
the vessel is kept inside the operating circle, this approach would lead to
significantly reduced fuel consumption and actuator wear and tear.

• A PID controller augmented with cubic stiffness was proposed, but even
though proven globally asymptotically stable by Lyapunov stability tech-
niques, the controller was rejected after demonstrating unstable results in
both the Simulink and MT simulations. The proposedly improved PID con-
troller with both cubic stiffness and damping showed stable results, but was
also rejected due to oscillating behavior most likely caused by poor tuning.

• A Disturbance Rejection by Acceleration Feedforward (AFF) controller was
implemented in combination with a PID controller, and simulated in Simulink
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and a simulator provided by Marine Technologies. The controller demon-
strated excellent stationkeeping performance when exposed to different exter-
nal disturbances, and thus greatly outperformed the existing PID controller
configuration. The Simulink simulation results were confirmed by coinciding
test results in the MT simulator. The controller also demonstrated good per-
formance when implemented in combination with the selective wave filter and
the predictive feedforward controller. The robustness of the AFF controller
has also been demonstrated by showing that it performs just as well with
uncertain system parameters.

9.2 Future Work
Several techniques for better handling of external disturbances have been proposed
and simulated with satisfying results. There is, however, great room for improve-
ment, and a few suggestions are listed below:

• The accuracy of the ice observation system should be explored more thor-
oughly, as it would easier justify the limits for the predictive feedforward
controller.

• By modeling incoming disturbances in the NED-frame, the detection algo-
rithm and predictive feedforward controller could be tested more realistically,
instead of just applying a constant force vector in BODY-coordinates. This
would also facilitate for testing of the long range prediction methods discussed
in Section 8.1.

• Tuning of the wave filter parameters and structure should be further inves-
tigated to figure out a desirable compromise between phase lag and wave
attenuation. Adaptive gains or gain scheduling with regards to the varying
sea state could also be considered.

• The Disturbance Rejection by Acceleration Feedforward controller should be
implemented and tested with external disturbances in closed loop on a DP
vessel, to test how real life performances reflect the simulated results.
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Appendix A

Nonlinear Stability Theory

Stability is reviewed by considering the nonlinear time-invariant system

ẋ = f(x), x(0) = x0 (A.1)

where x ∈ Rn and f : Rn → Rn are continuous differentiable functions.
Let xe be the equilibrium point of (A.1), i.e.

f(xe) = 0 (A.2)

Then the solutions x(t) of (A.1) are said to be [1]:

• stable, if, for each ε > 0, there exists a δ(ε) > 0 such that

‖x(0)‖ < δ(ε)⇒ ‖x(t)‖ < ε, ∀t ≥ 0 (A.3)

• unstable, if it is not stable.

• attractive, if, for each r > 0, ε > 0, there exists a T (r, ε) > 0 such that

‖x(0)‖ ≤ r ⇒ ‖x(t)‖ < ε, ∀t ≥ T (r, ε) (A.4)

Attractivity implies convergence, i.e. limt→∞‖x(t)‖ = 0.

• locally asymptotically stable (LAS), if the equilibrium point xe is stable and
attractive.

• globally asymptotically stable (GAS), if the equilibrium point xe is stable
∀x(0) (region of attraction Rn)

Theorem A.1. Krasovskii-LaSalle’s Theorem[1]
Let V : Rn → R+ be a continuously differential positive definite function
such that

V (x)→∞ as ‖x‖ → ∞ (A.5)
V̇ (x) ≤ 0, ∀x (A.6)
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Let Ω be the set of all points where V̇ (x) = 0, that is

Ω =
{
x ∈ Rn | V̇ (x) = 0

}
(A.7)

and M be the largest invariant set in Ω. Then all solutions x(t) converge to M . If
M = {xe} then the equilibrium point xe of (A.1) is GAS.



Appendix B

Vessel Model Description

Vessel Model
The vessel model used in all Simulink simulations in this thesis was implemented
as follows:

η̇ = R(ψ)ν (B.1)
Mν̇ +Dν = τ + τ env (B.2)

where the parametersM andD represent a supply vessel, given in the MSS toolbox
[32] as

M =

 5.3122e6 0 0
0 8.2831e6 0
0 0 3.7454e9

 (B.3)

D =

 5.0242e4 0 0
0 2.7229e5 -4.3933e6
0 -4.3933e6 4.1894e8

 (B.4)

τ represents the applied thrust, while τ env represents environmental disturbances.
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Thruster Configuration

Figure B.0.1: Thruster configuration of vessel model. LOA = 85.2 and BOA =
19.2.

Figure B.0.1 illustrates the thruster configuration for the vessel used in the MT
simulation in Section 7.2. The location of the thrusters with respect to CG are
given in Table B.0.1, and the thruster capacities are given in Table B.0.2. The
total available thrust is listed in Table B.0.3, and was found by the attached Matlab
script find_available_thrust.m, by using the formula

τmax = 9806.65
(∑

F t +
∑

pbt × F t
)

(B.5)

where τmax is the maximal positive thrust, i.e. positive in the x, y and ψ directions.
F t = [X,Y, 0]T are the thruster capacities in ton-force given in Table B.0.2, and
pbt = [x, y, 0]T is a vector from CG to the thrusters, expressed in {b}, from Table
B.0.1. For the torque contribution from the main propellers, the maximal of the
rudder contribution and the main propeller was used, though it is trivial that the
rudders yield the most torque. The limits were scaled from ton-force to Newton
by using 1 ton-force = 9806.65 Newton. The same approach was used to find the
minimal available thrust, i.e. the maximal available thrust in the negative surge,
sway and yaw directions. It should be mentioned that the calculated limits are not
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very rigorous, as a more complex thruster allocation would prevent the possibility of
applying maximal thrust in all DOFs at once, i.e. e.g. the azimuth cannot produce
max thrust in both surge and sway at the same time. These limits together with
a thruster time constant Ttc = 10 seconds for each DOF, were used in all Simulink
simulations. The thruster allocation and dynamics in the MT simulations were not
known, but can be assumed to be more realistically modeled.

x y
Bow Tunnel 34.3 0
Bow Azimuth 29.4 0
Aft Tunnel -35.6 0
Port Main -39.6 -3.9

Starboard Main -39.6 4.1

Table B.0.1: Thruster locations, where x and y represent BODY coordinates with
respect to CG, given in meters.

X Y
Bow Tunnel 0 ±13.7
Bow Azimuth ±16.3 ±16.3
Aft Tunnel 0 ±13.7
Port Main 35.9 0

Port Main reverse -21 0
Starboard Main 35.9 0

Starboard Main reverse -21 0
Port Rudder 0 ±15.5

Starboard Rudder 0 ±15.5

Table B.0.2: Thruster capacities, where X and Y represent force in surge and sway,
given in ton-force.

X (N) Y (N) N (Nm)
Max Thrust 8.6397e5 7.3256e5 2.6129e7
Min Thrust -5.7173e5 -7.3256e5 -2.6129e7

Table B.0.3: Total available thrust, where X, Y and N represent force in surge
and sway, and moment in yaw, respectively.
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Appendix C

Attachment Description and
Matlab Code

Every file use to produce the plots presented in this thesis have been electronically
attached. It is however required that Matlab is installed to be able to run the files.
A Matlab library called MSS GNC is also required, and can be downloaded from
[32]. A brief description of the attached Matlab files and functions follows:

.m files

• init.m - Initialize global constants.

• find_available_thrust.m - Calculate available thrust limits.

• case_study.m - Simulink case study.

• case_study_wave_filtering.m - Wave filter simulations.

• plot_debug_dataset.m - Process and plot data logged from MT simulations.

• MT_find_ISE.m - Find ISE for MT simulations.

• lowpass.m - Low-pass filter MT measurements.

• highpass_thrust.m - High-pass filter MT thrust measurements.

• csvfix.m - Fix CSV file by replacing comma separated decimal-markers with
dots.

• create_log_dataset.m - Create dataset from CSV file.

• predictive_sim_find_box_limits.m - Predictive simulation, find predictive
box limits.

• predictive_sim_find_box_limits_fixed_time.m - Predictive simulation, find
box limits with fixed time.
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• find_box_limits.m - Find predictive box limits that have a ISE ratio less
than 1.

• find_box_limits_worse.m - Find combinations that worsens ISE.

• predictive_sim_heading_vs_force_contour.m - Predictive simulation, head-
ing vs force contour plots.

• predictive_sim_time_vs_force_contour.m - Predictive simulation, time vs
force contour plots.

• predictive_sim_heading_vs_pp_contour.m - Predictive simulation, heading
vs point of impact contour plots.

• pred_force.m - Calculate predictive force.

• error_sampling.m - Error sampling of Simulink cases.

• cube.m - Plot predictive cube.

• pidp3d3_plotting.m - Plot cubic controller testing.

• stiffness_plot.m - Cubic controller plotting.

• JONSWAP_plot.m - Bode plot of JONSWAP and notch wave filters.

• find_filter_parameters.m - Find tuning parameters for notch wave filter.

• case_study_test_LP_notch_AFF.m - AFF controller with filtered acceler-
ation feedback.

• case_study_test_cubic_alone.m - Test with cubic controller alone.

.slx files

• sim_case_report.slx - Simulink model for controller case studies.

• sim_case_wf.slx - Simulink model for wave filter simulations.

• sim_prediction_report_test.slx - Simulink model for predictive case studies.

• sim_case_report_lpAFF.slx - Simulink model for low-pass AFF controller.

• sim_case_report_notchAFF.slx - Simulink model for notch AFF controller.

• pidp3d3.slx - Simulink model for testing of nonlinear stiffness and damping.

.csv files

• TestXXX.csv - Logged CSV-files from the MT simulations.

Simulink functions

• frequency_tracker - Frequency tracker algorithm, to estimate wave-frequency.

• selective_wave_filter - Selective wave filter algorithm.
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Additional Results and Plots

D.1 Predictive Box Plots
D.1.1 Predicted Point of Impact 10 Meters Off

Figure D.1.1: Simulation of predictive box with ∆ = 10 and pbp =
[

30 9
]T ,

with large disturbance force: FI = 4e5, pbI,CG =
[

40 9
]T , θAoI = 80◦.
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Figure D.1.2: Simulation of predictive box with ∆ = 10 and pbp =
[

30 9
]T ,

with small disturbance force: FI = 5e4, pbI,CG =
[

40 9
]T , θAoI = 80◦.
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D.1.2 Additional Plots for Minimal/Maximal Disturbances
on Different Points of Impact and Angles

D.1.2.1 Almost Straight on Corner of Stern

Time vs Force

Figure D.1.3: Contour plot of the position ISE for tp vs Fp. Large disturbance
force: FI = 2e5, pbI,CG =

[
−42 −9

]T , θAoI = 170.
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Figure D.1.4: Contour plot of the position ISE for tp vs Fp. Small disturbance
force: FI = 4e4, pbI,CG =

[
−42 −9

]T , θAoI = 170.

D.1.2.2 Almost Straight on Beam near CG

Time vs Force

Figure D.1.5: Contour plot of the position ISE for tp vs Fp. Large disturbance
force: FI = 5e5, pbI,CG =

[
−5 −9

]T , θAoI = −100. Notice that the error ratio
flats out for γ1,2 >≈ 1.5 due to saturation of the thrusters.
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Figure D.1.6: Contour plot of the position ISE for tp vs Fp. Small disturbance
force: FI = 5e4, pbI,CG =

[
−5 −9

]T , θAoI = −100.

D.1.2.3 Almost Straight on Corner of Bow

Heading vs Force

Figure D.1.7: Contour plot of the position ISE for θp vs Fp, tp = 2.5. Small
disturbance force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80.
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Figure D.1.8: Contour plot of the heading ISE for θp vs Fp, tp = 2.5. Small
disturbance force: FI = 4e4, pbI,CG =

[
40 9

]T , θAoI = 80.
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D.2 Wave Filter Tuning
D.2.1 Tradeoff between ISE and ISO

Figure D.2.1: Comparison of notch filter parameters Q vs ζ. The top layer repre-
sents ratio between position ISE with and without wave filtering, while the bottom
layer represents the ISO ratio for surge. Wave disturbance of Hs = 2.4 meter and
ω0 = 1.1 rad/s.

As seen in Figure D.2.1, there is a tradeoff between what combination of Q and ζ
that yields an improvement in applied thrust, and what combination that worsens
the position ISE. Plot created with the attached Matlab function
find_best_filter_parameters.m.
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D.3 Simulink Case Study
D.3.1 Cubic PID Controller without AFF

Figure D.3.1: Case 4, position and heading deviations for three different control
strategies.
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Figure D.3.2: Case 4, thruster feedback for three different control strategies.
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D.3.2 AFF vs LP AFF and Notch AFF

Figure D.3.3: Case 4, position and heading deviations for regular AFF vs low-pass
filtered AFB and vs notch filtered AFB. Low-pass time constant T = 1 and notch
frequency ωn = ω0 = 1.1 rad/s.
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Figure D.3.4: Case 4, thruster feedback for regular AFF vs low-pass filtered AFB
and vs notch filtered AFB. Low-pass time constant T = 1 and notch frequency
ωn = ω0 = 1.1 rad/s.
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