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Abstract

In conjunction with the Open Porous Media (OPM) Initiative, SINTEF Applied
Mathematics in Oslo have developed the Matlab Reservoir Simulation Toolbox
(MRST) with the purpose to function as a an efficient testing platform for im-
plementation of new solution and discretisation methods in reservoir simulations
applications. MRST has been released as an open-source program under the GNU
General Public License (GPL1), and in this thesis, the author intends to mod-
ify the existing source code of MRST release 2012b2 to implement a surfactant
model as an extension to a black-oil framework of equations. The governing equa-
tions are evaluated using the finite-volume method and the system of equations
is solved fully-implicitly using the Newton-Raphson method. The model created
in this thesis is based on the surfactant model in Eclipser which is described in
the Eclipser Technical Description.

A central part of MRST is the use of automatic differentiation. This is a way
to compute function derivatives of coded equations without the tedious, explicit
coding of derivative with respect to each separate variable. This is useful when
implementing new physics to the already existing framework of equations, as the
Jacobian matrix in the Newton-Raphson method can be obtained automatically
for newly implemented equations, simply by associating them with a specific
Matlab class. A feature of MRST is that it supports industry standard input
formatting, so the surfactant model specific keywords in Eclipser have also been
implemented in MRST to allow for an easy transition when comparing the results
from the two simulation programs.

Based on observations made, the authors concludes that the work of implementing
a surfactant model to an existing black-oil formulation for general grids in MRST
has been successful. The model compares well with Eclipser and predicts largely
the same behaviour in terms of surfactant distribution, saturation and pressure

1http://www.gnu.org/licenses/gpl.html
2Source code, related article, tutorials etc. can be found at www.sintef.no/MRST
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profile along with production data. However, it is not able to fully replicate
the results from Eclipser. The reason for this is largely undetermined, but
the author points to two possible explanations : 1) The observed smearing of the
results in the surfactant profile is indicative of differences in the numerical solution
between Eclipser and the implemented surfactant model. This difference results
in a higher degree of numerical dispersion in the implemented surfactant model
than for Eclipse r. 2) The implementation of fluid transport properties, perhaps
relative permeability especially, is also pointed out as a reason for the observed
differences.

The author means that the model is a good foundation for further research and
development in surfactant injection modelling.
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Sammendrag

I forbindelse med Open Porous Media (OPM) Initiative har SINTEF Anvendt
Matematikk i Oslo utviklet Matlabr Reservoir Simulation Toolbox (MRST) som
har som hensikt å fungere som en effektiv test-plattform for implementering av
nye løsnings- og diskretiseringsmetoder i reservoar-simulering. MRST er lansert
som et åpen kildekode-program gjennom GNU General Public License (GPL), og
i denne avhandlingen skal forfatteren implementere en surfaktant-modell som en
utvidelse av rammeverk av black-oil ligninger. De gjeldende partielle differensial-
ligningene løses ved å ta i bruk en finite-volume metode og løser det resulterende
ligningssystemet fullt-implisitt ved hjelp av Newton-Raphson metoden. Mod-
ellen utviklet i denne avhandlingen er basert på surfaktant-modellen inkludert i
Eclipser og en beskrivelse finnes i Eclipser Technical Description.

En sentral del av MRST, er bruken av automatisk derivasjon. Dette er en måte
å beregne deriverte av kodede matematiske funksjoner, uten eksplisitt å imple-
mentere ny kode for å beregne den deriverte med hensyn på hver funksjonsvari-
abel. Dette er nyttig for å inkludere ny fysikk til et allerede eksisterende ram-
meverk av ligninger, da Jakobi-matrisen i Newton-Raphson metoden kan bereg-
nes automatisk for nye ligninger ved å assosiere hver variabel med en spesifikk
Matlab-klasse. En av MRSTs funksjonaliterer er at det støtter industri-standard
input-formatering. For å sørge for en enkel overgang mellom MRST og Eclipser,
ble kodeordene spesifikke til surfaktant-modellen i Eclipser implementert i mod-
ellen i denne avhandlingen. Dette for å lettere kunne sammenligne resultatene
fra de to modellene.

Basert på observasjoner, konkluderer forfatteren med at arbeidet med å im-
plementere en surfaktant-modell i den allerede eksisterende black-oil-modellen
for generelle grid i MRST, har vært vellykket. Modellen samsvarer godt med
Eclipser, og predikerer stort sett den samme adferden med tanke på surfaktant-
fordeling i reservoaret, metning- og trykk-profiler og produksjonsdata. Den im-
plementerte modellen klarer likevel ikke å replikere resultatene fra Eclipser ned
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til minste detalj. Årsaken til dette er i stor grad ubestemt, men forfatteren
peker på to mulige forklaringer: 1) Den observerte utsmøringen av resultater
er en indikasjon på at det er forskjeller i den numeriske løsningsmetoden imple-
mentert i surfatant modellen i avhandlingen. Denne forskjellen ser ut til å gi
en større numerisk dispersjon enn hva Eclipser gir. 2) Implementasjonen av
fluidtransport-egenskaper, kanskje spesielt relativ permeabilitet, pekes også på
som en mulig årsak til forskjellene.

Forfatteren mener modellen er et godt grunnlag for videre utvikling og forskning
innen modellering av surfaktant-injeksjon i EOR.
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Chapter 1

Introduction

Since Phillips Petroleum initiated production from Ekofisk in 1971, kick-starting
Norwegian petroleum industry, oil and gas has been one of the largest sources of
revenue for the Norwegian state, cumulative adding more than NOK 9000 billion
to the national GDP over the past 40 years. The Norwegian Petroleum Direc-
torate stated that 23 % of the total state revenue in 2012 came from the oil and
gas sector (Norwegian Petroleum Directorate), constituting a total of NOK 270
billion. The revenues from oil and gas are transferred to the Norwegian Govern-
ment Pension Fund – Global which, by the end of 2012, was valued to NOK 3
816 billion. The petroleum production originates from 76 fields on the Norwegian
Continental Shelf totalling in 225.14 million Sm3 of produced oil equivalents in
2012, ranking Norway as the worlds number 7th largest oil exporter and the 14th
largest oil producer in the world.

As the oil and gas sector is one of the highest grossing industry in Norway, be-
ing able to maintain production rates from the existing petroleum reservoirs is a
sought after goal. With the giant, "easy to access" fields discovered and producing,
attention is being directed at enhancing production from existing oil fields to sus-
tain a declining revenue (Njå, 1994). Enhanced oil recovery (EOR) is a collective
term for measures aimed at increasing the cumulative amount of hydrocarbons
extracted from reservoirs, by utilizing various mechanisms applied in a tertiary
recovery scenario. There are several categories of EOR processes, exploiting dif-
ferent physical effects to improve both sweep efficiency and microscopic sweep.
Among these methods are thermal, miscible and chemical methods.

The chemical processes involve injection of various chemicals such as polymers,
surfactants and alkaline. In a surfactant injection scheme, surfactants are added

1



CHAPTER 1. INTRODUCTION

to the injected brine to decrease the interfacial tension (IFT) between the brine
and the in situ oil to ultra-low levels. This lowered IFT will result in a significant
decrease in capillary pressure and thus reduce capillary trapping of residual oil,
manifesting it-self as incremental oil production in form of an oil-bank (Sulaiman
and Lee, 2012 and Pope, 1980). Another important feature is the surfactant’s
ability to promote flow properties, improving phase relative permeability in the
ultra-low IFT zones.

Surfactant EOR operations are often expensive and a well developed planning
stage prior to making a costly investment decision is invaluable in terms of NPV
calculations. Being able to accurately predict how the reservoir fluid flow and
surface production rates will be affected by injecting surfactants is paramount for
maximising revenue. Because of the industry’s need for such tools to predict reser-
voir recovery, not purely for chemical EOR processes, several operator and service
companies have created their own simulation tools. Among these are SINTEF
Applied Mathematics in Oslo, which have developed an open source reservoir
simulation program. The Matlab Reservoir Simulation Toolbox (MRST), has
been developed in conjunction with the Open Porous Media (OPM) initiative
to function as an efficient testing platform for new discretisation and solution
methods in reservoir simulation applications (Lie et al., 2012).

The objective in this thesis is to modify the MRST source to include a module
for simulating chemical EOR processes using surfactant. In order to do this, the
physical effects that will result in improved flow properties and an increased oil
recovery have to be implemented. The model is based on the surfactant model
which is included in Schlumberger’s Eclipser, with which the simulation results
will be verified against. Also, a feature of MRST is the industry standard input
formatting support (Lie et al., 2012) and for an easy transition from MRST to
Eclipser, the surfactant model specific keywords implemented in Eclipser were
also implemented in the model.

2



Chapter 2

Fundamentals of Flow in
Porous Medium

In this chapter, fundamentals of fluid flow in porous medium are presented to
better give understand of various effects and governing equations used later in
this thesis.

2.1 Relative and Absolute Permeability

When fluids are produced from a reservoir, they move through the interconnected
pore space towards the well. The ability of the porous medium to transmit fluid
throughout the interconnected pore system is characterized by its permeability
(Zolotukhin and Ursin, 2000). Permeability is clearly a dependent on reservoir
porosity, but also of pressure, though this dependency is relaxed in most reservoir
engineering applications. Absolute permeability refers to single-phase flow in the
porous media. The rock permeability is a proportionality coefficient, relating fluid
flow rate through a porous medium to viscous pressure drop. This relationship
was proposed by Henry Darcy in 1856.

Due to the nature of porous rocks, the permeability is often not isotropic, mean-
ing that fluids are more easily conducted through the pores in some directions
than others. Because of this, permeability is often expressed as a symmetric and
positive definite tensor in reservoir simulation applications. The principal direc-
tions are often assumed to fall along the axis in a Cartesian coordinate system,

3



CHAPTER 2. FUNDAMENTALS OF FLOW IN POROUS MEDIUM

which results in a diagonal tensor. The most common orientation is that perme-
ability in Z direction is perpendicular and X and Y are parallel to the sediment
layers.

K =

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz


When a porous medium is saturated with two or more phases, as is the case in
most reservoir engineering applications, its ability to conduct fluids is altered,
reducing each fluid’s effective permeability. A fluid’s relative permeability is a
dimensionless ratio of effective permeability to absolute permeability.

kr,i = ke,i
K

Where:

• kr,i is the relative permeability of phase i

• ke,i is the effective permeability of phase i

Phase relative permeability is strongly correlated with phase saturation in the
porous medium. It is important to note that relative permeability is a semi-
empirical parameter, which does not describe the physical effects occurring on
pore scale. Rather it describes how these effects are correlated with the phase
saturation in a certain volume. Behrenbruch and Goda (2006) presents the Corey
type equations which can be used to correlate relative permeability of oil and
water to water saturation in a porous rock.

krw(Sw) = k0
rwSwn(Sw)n (2.1)

kro(Sw) = k0
ro(1− Swn(Sw))n (2.2)

Where:

• Swn is the normalized water saturation

• k0
r,i is the end-point relative permeability of phase i

• n is the Corey curve exponent

4
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2.2 Darcy’s Law

Darcy’s law relates fluid velocity and viscosity to pressure drop over a porous
medium. It is a vectorial equations, expressing fluid flow as a vector.

~vi = −K
µi
∇Φi (2.3)

Where:

• ~v is the velocity vector of fluid i

• K is the permeability tensor from section. 2.1.

• µ is the viscosity of fluid i

• Φ is the potential of fluid i which is equal to the sum of pressure and
hydrostatic head, p+ ρig∇z, where ρi is the density, ~z is the depth vector,
p is the pressure and ~g is the gravity acceleration vector.

Darcy’s law is important for understanding how fluids flow through porous medium,
and is used to derive flow equations used in commercial reservoir simulation pro-
grams. Refer to chapter 6 for details on use.

2.3 Capillary Pressure

In a porous medium, there most often exist two or more immiscible fluids at the
same time. At the interface between these fluids, there exist a finite pressure
difference because of interfacial tension, referred to as capillary pressure. The
capillary pressure may be defined as the pressure difference between two immis-
cible fluids over a curved interface such as a sphere or a droplet. By convention,
it is defined as oil pressure minus water pressure (po−pw), but if any other fluids
than oil and water are used it is defined as

pc ≡ pnw − pw (2.4)

Where:

• pc is the capillary pressure

• pnw is the non-wetting phase pressure

• pw is the wetting phase pressure

5
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Capillary pressure is related to interfacial tension (IFT) by Young-Laplace equa-
tion and presented by Adamson and Gast (2010).

pc = σi,j

(
1
r1

+ 1
r2

)
(2.5)

Where:

• σi,j is the IFT between the two phases i and j

• r1,2 is the principal radii of curvature of an interface

Eq. 2.5 can be applied to calculate capillary pressure between oil and water in
pore systems, where r1 and r2 are the principal radii of the pore. Although this
equation is not extensively used in reservoir engineering applications, it is useful
for seeing the effect of increasing/decreasing pore size and understanding the
capillary pressure/water saturation relationship during drainage and imbibition.
Various geometrical variations for the capillary pressure/pore size relationship
are used in pore-network simulation softwares to describe the physics occurring
at the pore-scale during a displacement process (Nilsen et al., 1996).
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Chapter 3

Reservoir Recovery

A thorough evaluation of recovery methods is a vital part of the field develop-
ment work essential for a successful production. Understanding how different
recovery methods will affect the reservoir and what the expected recovery po-
tential is, is crucial. In order for reservoir engineers to make the best decisions
for a cost effective production, understanding the nature of oil and gas recovery
is important. Dake (1985) distinguishes between two types of oil recovery: 1)
Primary and 2) supplementary recovery. A perhaps more common distinction is
1) primary, 2) secondary and 3) tertiary recovery. Tertiary recovery is what is
commonly referred to as EOR methods.

1. Primary recovery is the first production from a reservoir, extracting the
’easy oil’ by the means of natural driving mechanisms. It utilizes the energy
available in the reservoir to produce hydrocarbons, exploiting fluid and rock
compressibility to expel oil and gas from the pore space by decreasing the
pressure. The recoverable potential is often very limited and it is not a
strategy maintained for long periods of time.

2. Where primary recovery aims at producing hydrocarbons by lowering the
pressure, secondary recovery aims at maintaining production rates by rais-
ing or maintaining an elevated reservoir pressure. This is commonly done
by injecting either water or gas in large quantities into the reservoir. The
injected water or gas also displaces the hydrocarbons in place, "sweeping"
the reservoir.

3. Tertiary recovery is recovery processes initiated after the onset of secondary
recovery processes. It involves a number of different methods.
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CHAPTER 3. RESERVOIR RECOVERY

3.1 Secondary Recovery by Water Injection

The water injected into the reservoir during a secondary recovery process serves
two purposes: 1) acting as pressure support to maintain reservoir pressure and
2) functioning as a way to displace the oil in the pore system by pushing it ahead
of the injected water front.

Buckley and Leverett (1941) points out that the displacing fluid does not act as a
’piston’ pushing all the oil in front of the injected water, but rather flows simul-
taneously through the same pores. This implies that the relative permeability of
the displaced fluid in presence of the displacing fluid is affecting how both fluids
flow and then the overall efficiency of the flooding.

To better understand the effects of a water injection, it is beneficial to study how
two immiscible fluids flow together through the porous medium. By applying
Darcy’s equation for the two flowing fluids in a one dimensional reservoir with
an angle α, the fractional flow equation can be derived.

qo = −kxxkroA
µo

(
∂po
∂x

+ ρog sinα
)

(3.1)

qw = −kxxkrwA
µw

(
∂pw
∂x

+ ρwg sinα
)

(3.2)

Where:

• qi is the volumetric flow rate of phase i

• A is the area available to fluid flow

• α is the dip angle of the flow direction

By recalling the definition of capillary pressure in eq. 2.4 and introducing a new
parameter fw, the expression can be solved for fw.

fw =
1 + kxxkroA

qtµo

(
∂Pc

∂x −∆ρg sinα
)

1 + kro

µo

µw

krw

(3.3)

Where fw = qw/qt and expresses what fraction of the total flow rate water
accounts for and qt is the total flow rate. In the case of horizontal flow and no
capillary pressure, the expression can be reduced to:
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CHAPTER 3. RESERVOIR RECOVERY

fw = 1
1 + kro

µo

µw

krw

(3.4)

In eqs. (3.3) and (3.4), kro, krw and Pc are all functions of water saturation, so
fw is also a function of water saturation, fw(Sw). This means that during an oil-
water immiscible displacement, the flow rate fraction which is attributed water
depends mainly on its own saturation. Among the topics significant for future
discussion in this thesis, are the effect of relative permeability on the fractional
flow. Generic relative permeability curves can be constructed by assuming the
Corey type equations are valid (eqs. 2.1 and 2.2). The flow fraction of water
changes as the relative permeability curves change (fig. 3.1). The first set of
relative permeability curves predict a higher flow fraction of water at lower water
saturations (Sw ≈ .2→ .5).

Figure 3.1: Water flow fraction plotted against water saturation for two sets of
relative permeability curves. Corey equation parameters for the two sets are 1)
Swc = Sor = 0.18, k0

ro = k0
rw = 0.8, n = 2.8 and 2) Swc = Sor = 0.2, k0

ro = k0
rw =

0.7, n = 3.

9



CHAPTER 3. RESERVOIR RECOVERY

3.1.1 Buckley-Leverett Frontal Advance

As the fractional flow relationship for an oil-water immiscible displacement has
been introduced, how the displacing and displaced fluids propagate through the
reservoir during a water flood can be investigated. The equation below is derived
by applying a mass balance for water over a control volume and is presented by
Dake (1985). The following equation is known as the Buckley-Leverett equation,
first derived by S. E. Buckley and M. C. Leverett in 1941. It states that the
velocity of a plane of constant water saturation is proportional to the rate of
change in the flow fraction of water at that particullar saturation.

dx

dt

∣∣∣∣
Sw

= q

Aφ

dfw
dSw

∣∣∣∣
Sw

(3.5)

Where:

• φ is the porosity

• Sw is the water saturation

Considering eq. 3.5 and noticing the curving nature of the flow fraction curve
in fig. 3.1, it is evident there exist a saturation value for which the velocity
reaches a maximum value. The result of this, as explained by Pope, is that
some saturation planes upstream travels faster than downstream planes. The
faster saturation planes will eventually catch up to the slower moving saturation
planes, and this will create a shock front where the saturation discontinuously
drops from Swf to Swi. Upstream from the front, the saturation increase and the
velocity decrease. To calculate the magnitude of the shock and to visualize the
saturation distribution, a material balance is applied over the front.

v∆Sw
= q

Aφ

fwf − fwi
Swf − Swi

(3.6)

Where Swf is the shock front water saturation.

Pope (1980) notes that at the contact between the saturation shock and the
continuous saturation distribution, the velocities must be equal. The left hand
side of eq. 3.7 represents the velocity of the shock front given by eq. 3.6. The
right hand side is the velocity of a plane of saturation Swf which travels at the
same velocity. This can be solved for Swf to obtain the shock front saturation.

fwf − fwi
Swf − Swi

= ∂fw
∂Sw

∣∣∣∣
Sw=Swf

(3.7)
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CHAPTER 3. RESERVOIR RECOVERY

(a) Sw profile at t1 (b) Sw profile at t2

(c) Sw profile at t3 (d) Sw profile at t4

Figure 3.2: Saturation profile for two different sets of relative permeability
curves, visualising the Buckley-Leverett frontal advance. The first set uses Swc =
Sor = 0.18, k0

ro = k0
rw = 0.8, n = 2.8 and 2) Swc = Sor = 0.2, k0

ro = k0
rw = 0.7,

n = 3. Results from MRST reservoir simulation program
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CHAPTER 3. RESERVOIR RECOVERY

3.1.2 Recovery Potential During an Immiscible Water Flood

Figure 3.2 shows the saturation profile at different times during a constant bottom
hole pressure water flood in a homogeneous one-dimensional reservoir. The front
propagating through the reservoir as water is continuously injected is spotted.
Downstream of the front, the water saturation is at Swi, and upstream of the
front it is increase towards an upper value. As time goes on from fig. 3.2a on
to 3.2d, a general trend is forming: The water saturation approaches a uniform
distribution equal to an upper target value. This is the largest possible water
saturation during an immiscible flood, and injecting additional water will not
displace any of the remaining oil.

The two different saturation profiles correspond to the fractional flow curve plot-
ted in fig. 3.1, with the same Corey equation parameters. As the relative perme-
ability curves are straightened out (decreasing the exponent, n), end-points move
outwards and end-point relative permeability increased, the water flood changes
characteristics (fig. 3.2): At the given times plotted in fig. 3.2, the water flooding
with the more straight curves and largest end-points is more effective, displacing
more oil efficiently.

The remaining oil saturation can be determined in connection with the relative
permeability curves. As the oil saturation decreases, the relative permeability of
oil decreases. When it reaches zero, the remaining oil can not move and thus the
end point on the relative permeability curve determine residual saturations.

Considering this fact and the displacement fronts in fig. 3.2, it is evident that
shifting the end point saturation and relative permeabilities as well as straight-
ening the curves will result in increased oil recovery.
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Chapter 4

Enhanced Oil Recovery

EOR refers to the process of further improving the recovery of the reservoir be-
yond the limitations imposed by primary and secondary recovery. The incremen-
tal oil production as a result of an EOR process, can be expressed as the product
of two entities (eq. 4.1), 1) sweep efficiency and 2) microscopic sweep. Sweep
efficiency is how well the reservoir rock is exposed to the fluids injected during
the EOR process, and subsequently displaces the in place volumes. Microscopic
sweep is how well the EOR process is able to displace remaining hydrocarbons on
pore scale. These two terms are fundamentally different, and have EOR processes
designated to enhancing each one separately.

Np = EsEm (4.1)

Where:

• Np is the dimensionless incremental oil

• Em is the microscopic sweep

• Es is the sweep efficiency

From an academic perspective, an increase in oil recovery is always interesting.
From the industry perspective however, the EOR process has to be considered
in relation to cost and revenue. EOR processes are expensive, so the expected
returns have to be thoroughly calculated. Even though there might be a potential
for increased oil recovery, the cost of the correct EOR measures may not be
justified by the expected returns.
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CHAPTER 4. ENHANCED OIL RECOVERY

4.1 EOR Methods

There are a variety of methods constituting the EOR terminology, involving
methods such as injection of gases under miscible conditions, thermal recovery
methods with steam injection and the injection of various chemicals. The general
idea is to create more favourable flow conditions to allow for better production.
Some EOR methods are better suited than others, and the correct EOR method
should be carefully chosen to best suit the reservoir conditions under which they
are applied. The main classifications of EOR methods are listed below.

4.1.1 Thermal Methods

Thermal recovery methods are most commonly applied to improve oil recovery
from heavy oil reservoirs, where the high crude oil viscosity makes flow conditions
unfavourable. The idea is to inject hot fluids, such as steam or hot water, to
reduce crude oil viscosity and promote flow. A common method of thermal
recovery is steam assisted gravity drainage (SAGD). As explained by Mobeen and
Kharrat (2011), this methods employs two horizontal wells placed in a vertical
plane. The steam is continuously injected from the upper most well, condensing
and heating up the oil in the area around it. As the oil is heated up, the viscosity
drops and the oil flows more easily towards the producing well below.

4.1.2 Miscible Methods

When two fluids are completely miscible, the IFT between the two fluids is zero.
As will become apparent in the next section, the absence of capillary forces will
increase the recovery potential significantly. Miscible methods involves injection
of a fluid that completely mix with the in situ hydrocarbons. For a gas field,
ordinary gas injection will behave in a miscible way since gases mix. Injecting
gas in an oil field will not have the same effect and will result in immiscible flow
conditions, as described in section 3.1. For a certain combination of oil and gas
(in terms of composition), there exist a lower pressure limit over which miscible
conditions will arise. This is known as the minimum miscibility pressure (MMP)
and is significant in EOR applications. Exploiting this mechanism, increasing
the pressure of the injected gas will form miscible displacement which is applied
to improve microscopic sweep.
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CHAPTER 4. ENHANCED OIL RECOVERY

4.1.3 Chemical Methods

In chemical recovery processes, a variety of chemicals are utilized to improve
oil recovery, involving the injection of polymers, surfactants, alkaline solution
and/or various combinations of these. Polymers are added to the injected water to
increase its viscosity and create more favourable mobility ratios, thus improving
sweep efficiency. Surfactant injection utilizes the surfactant’s ability to reduce
IFT between the oil and water, similar to miscible methods. This will result in less
trapping of remaining oil and increased recovery. Alkaline injection exploits the
chemical properties in the crude oil to produce surfactants in situ. Surfactant and
alkaline injection both aim to increase microscopic sweep. In field applications
of chemical EOR processes, polymer slugs are often used in combination with a
surfactant slug for proper mobility control.
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CHAPTER 4. ENHANCED OIL RECOVERY

4.2 Increasing Microscopic Sweep

As pointed out in section 3.1.2, the maximum recovery potential during an immis-
cible water flooding is determined by the end-point saturation of oil. Additional
water flooding at these conditions will only displace the already injected water,
leaving trapped oil behind.

Batycky and McCaffrey (1978) expresses the microscopic sweep in eq. 4.1 as:

Em = 1− Swi − Sor
1− Swi

(4.2)

Where:

• Swi is the irreducible water saturation

• Sor is the residual oil saturation

From eq. 4.2 it is evident that decreasing the residual oil saturation will result
in an increase in microscopic sweep.

The reason why the remaining oil is immobile, is because the forces holding the oil
drops in place exceeds the exerting forces trying to mobilize it. This phenomenon
is known as capillary trapping.

Imagine a drop of oil, trapped in a pore with water on both sides. To more easily
understand the mechanisms behind capillary trapping, a force balance is derived.
Forces trying to mobilize the oil drop is exerted from the injected water as a
viscous pressure drop, equal to L×∂Pw/∂x, where L is the length of the oil drop.
The forces trying to keep the oil drop in place is cause by the pressure difference
across the oil/water interface due to surface tension, which can be expressed as
2σ/r. This is a special case of eq. 2.5 assuming r1 = r2. The pressure drop is
derived from Darcy’s law in eq. 2.3. In order to move the trapped oil drop, the
viscous forces have to locally exceed the capillary forces.

L
∂pw
∂x
≥ 2σ

r
(4.3)

The dimensionless quantity, Nc, is introduced as the ratio of viscous to capillary
forces. It describes the in situ conditions for mobilization of trapped oil.

Nc = Fv
Fc

= vµ

σ
(4.4)
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CHAPTER 4. ENHANCED OIL RECOVERY

Where:

• Nc is the capillary number

• Fv are the viscous forces

• Fc are the capillary forces

• v is the flow velocity of the displacing fluid

According to Sheng (2011), the capillary number in eq. 4.4 should be consid-
ered a semi-empirical parameter and the author presents several other forms of
Nc. These variations include wettability effects, Darcy velocity, permeability
and buoyancy effects. Regardless, they all express the ratio of viscous forces to
capillary.

It is important to note that this trapping mechanism is represented on the pore
scale. Heterogeneity effects are very difficult to express in a way such that they
are correctly accounted for. It is therefore important to be able to sufficiently
describe how viscous and capillary forces relate to mobilized oil in a way that can
be used in engineering applications. As pointed out by Bashiri and Kasiri (2011),
when performing a simulation on a reservoir model, local heterogeneities and the
intricacy of trapping mechanisms on pore level are not easily accounted for and
are often expressed as empirical correlations. The capillary de-saturation curve
(CDC) is such a correlation and links residual oil saturation to the capillary
number, representative for each type of reservoir rock under different wetting
conditions (fig. 4.1).
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CHAPTER 4. ENHANCED OIL RECOVERY

Figure 4.1: Capillary de-saturation curve for an untreated Berea core, clearly
showing the effect of increased capillary number. Above a certain critical value,
N∗c , the residual oil saturation decreases - taken from Delshad et al. (1986)

From fig. 4.1 a region of constant residual oil saturation can be seen at low values
for Nc. Displacement with a capillary number in this range is often referred
to as "capillary dominated" flow and is commonly assumed to be the case for
water injections. Above a critical capillary number, N∗c , the trapped oil starts to
mobilize and the residual oil saturations drops. Note that in fig. 4.1, the capillary
number is defined as K∆P/Lσ, which differs from the definition in eq. 4.4.

From equation 4.4, the capillary number can be increased to exceed the critical
value by either increasing the mobilizing viscous forces, Fv or decreasing the
restraining capillary forces, Fc.

Increasing the viscous forces is be done by applying a greater pressure drop,
i.e. increasing injection pressure, decrease production pressure or increasing the
viscosity of the injected fluid. The effect of this is quite limited and will not
result in an significant increase in Nc. The alternative is to decrease the capillary
forces and this the primary objective in a surfactant injection EOR.
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Chapter 5

Surfactants

In this chapter, an introduction to surfactants in general is given. Chemical
structure, phase behaviour, types of surfactants employed in EOR practice and
the effect these has on flow conditions are among the topics discussed.

5.1 Chemical Structure

Surfactants are a class of molecules with a distinct chemical structure. They are
composed of two parts: a non-polar lipophilic tail and a polar hydrophilic head.
Lipophilic and hydrophilic refers to the two parts’ affinity to oil and water respec-
tively, where lipophilic means a high affinity to oil ("oil loving") and hydrophilic
means a high affinity to water ("water loving") 1.

This chemical structure ensures that the surfactant molecules have good solubil-
ity in both oleic and aqueous phase2. Rosen and Kunjappu (2012) explains that
when the surfactant is added to the oleic phase in a oil/water two-phase system,
the hydrophilic group may distort the structure of the oil which in turn will in-
crease the free energy of the system. The system will then respond by minimizing
the contact with the hydrophilic group in order to reduce the free energy. Equiv-
alently, when the surfactant is added to the aqueous phase, lipophilic group will

1Lipophilic and hydrophilic are equivalent to hydrophobic and lipophobic respectively.
2It is distinguished between water and aqueous phase. Aqueous refers to the phase and

water refers to the water component in the aqueous phase. The same logic applies to oil and
oleic phase. This distinction is made due to the possibility of dissolving other components in
both phases, though the difference is not emphasized in this study.
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CHAPTER 5. SURFACTANTS

distort the structure of the water and the same reaction is expected. Because of
these reactions, the surfactant molecules are adsorbed at the oil/water interface
and replace the initial water and oil molecules.

5.1.1 Reduction of IFT

Fluid molecules close to or at a fluid-fluid interface have less kinetic energy than
molecules in the bulk of the fluid. This is because of the intermolecular surface
forces between fluids holding them in place. As a result, molecules close to or at
the interface are in a state of higher potential energy than molecules in the bulk.
It is therefore required a finite amount of energy to move the molecules from the
bulk to the interface, i.e. to increase the surface area of the fluid. The potential
energy for a fluid molecule at the interface is larger than for a molecule in the
bulk by an amount equal to 1) the interaction energy with the same molecule in
the bulk minus 2) the interaction energy with a non-similar molecule across the
interface. Following the convention applied by Rosen and Kunjappu (2012), the
potential energy for a fluid molecule a at the interface which is interacting with
a similar molecule in the bulk and a non-similar molecule b across the interface,
may be expressed as Aaa − Aab. The potential energy for a molecule b may be
expressed equivalently as Abb − Aab. Here Aaa and Abb is the interaction with a
similar molecule in the bulk and Aab is the interaction with a non-similar molecule
across the interface. The potential energy of all fluid molecules at the interface is
larger than for those in the bulk equal to the sum Aaa −Aab +Abb −Aba, which
adds up to Aaa+Abb−2Aab. The surface energy per unit area, which is the IFT,
is then:

σl = σaa + σbb − 2σab (5.1)

Where σaa and σbb are the surface free energies per unit area and σab is the
interaction energy over the interface. The interaction energy σab depends on the
similarity of the two molecules, so when the molecules are different, as for two
pure fluids, the interaction energy across the interface can be neglected. However,
when surfactant molecules are introduced to fluid-fluid interface, as explained
in the previous section, the interaction energy between the two, now similar,
molecules, is significant. This way, the surfactants reduce the IFT between the
two fluids.

Increasing the surfactant concentration in the system will thus cause the IFT to
drop. However, as more and more surfactant molecules are introduced to the
fluid-fluid interface, it will gradually "fill up", and at some critical concentration,
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the additional surfactant molecules will start aggregating into micelles while a
decrease in IFT is not observed. The formation of micelles is also a way for
the system to minimize the contact with the non-soluble groups in the molecules.
This concentration is referred to as the critical micelle concentration (CMC), and
any further increase in surfactant concentration will only cause more micelles to
form. The CMC is typically very small, so for nearly all surfactant flooding
applications, the surfactants are in micelle form, either as 1) water external and
oil internal micelles or a 2) water internal and oil external micelles, depending
on in which phase the micelles partition out in.

5.2 Microemulsion Phase Behaviour

The surfactant’s ability to dissolve in either water or oil, is strongly dependent on
the salinity of the brine. For low salinities, the surfactants exhibit good solubility
in aqueous phase, but poor solubility in oleic phase. The surfactant molecules
then tend to partition out in the aqueous phase and micelles are formed here. We
then have a two-phase system: 1) excess oleic phase which is free of surfactants
and 2) a water external - oil internal micellar solution, hereby referred to as
a microemulsion. This microemulsion phase contain water, surfactant and oil.
Since the microemulsion is in the aqueous phase, which is denser than the oil, it
is referred to as a lower phase microemulsion.

For high salinities, the surfactant displays the opposite behaviour. It exerts good
solubility in oleic phase and a poor solubility in aqueous phase. By the same logic,
the surfactant molecules now partition in the oleic phase and micelles are formed.
Again, we have a two-phase system, only now with 1) excess aqueous phase which
is free of surfactants and a 2) oil external - water internal microemulsion phase
which contains oil, surfactants and water. Since the microemulsion is in the
oleic phase which is lighter than the water, it is referred to as a upper phase
microemulsion.

The effects of salinity on microemulsion phase behaviour is best investigated with
the use of a ternary diagram, using the pseudo components 1) water, 2) oil and 3)
surfactant. Microemulsion phase behaviour for different salinity values is plotted
in fig. 5.1 with increasing salinity from left to right.
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Figure 5.1: Ternary diagrams showing microemulsion phase behaviour at in-
creasing salinity levels. At some intermediate salinity values, the formation of a
three-phase region is possible.

From fig. 5.1, the two situations described above can be seen at each of the salinity
values. The areas beneath the curves are the two-phase regions for type II(-) and
type II(+) microemulsions. The shaded regions above these curves denote the
one-phase region. At some salinity range between type II(-) and type II(+), there
exist a type III microemulsion. At these salinity values, up to three phases may
be observed. The light shaded area is the one-phase region in this regime. The
dark shaded region is the three-phase region where we have excess water, excess
oil and a microemulsion solution with both types of micelles (oil internal and
oil external). The microemulsion composition is given at the invariant point,
denoted IP. The blank areas between the one- and three-phase regions are the
two-phase regions.

Figure 5.2: Solubilization ratio for oil and water for different salinity values in
a salinity scan. At some intermediate salinity value, oil and water solubilization
ratios are equal. This salinity is the optimum salinity. Taken from Shen et al.
(2006)
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The salinity regions for which a type II(-), type III and type II(+) is observed
are identified through a salinity scan, during which brine/surfactant solutions
at varying values of salinity are added to the investigated reservoir oil. After
phases have properly settled and microemulsions formed, the ratio of solubilized
water and oil volume to surfactant volumes are calculated. This is known as the
solubilization ratio, and is plotted against salinity value (fig. 5.2). The "optimum
salinity" is where the surfactants ability to solubilize water and oil is equal and
is where the IFT for the entire system reaches its minimum. This is the target
salinity value used in surfactant flooding.

5.3 Types of Surfactants

Sheng (2011) lists four main categories of surfactants, distinguished by different
properties:

• Anionic surfactants

• Cationic surfactants

• Non-ionic surfactants

• Zwitterionic surfactants

The anionic surfactants have a negative charge and are thus adsorb very little
onto the negatively charged sandstone surface. Anionic surfactants are also able
to effectively reduce IFT, which makes them the most used type of surfactant in
EOR applications.

As opposed to anionic surfactants, the cationic surfactants have a positive charge
which promotes adsorption onto the rock surface and are therefore generally not
used for EOR in sandstone reservoirs.

Non-ionic surfactants does not have an electric charge. They are more tolerant
to high salinities than the anionic surfactants, but their ability to reduce IFT
between water and oil is not as good. Non-ionic surfactants are often applied as
co-solvents in a surfactant injection scheme.

Zwitterionic surfactants contain two active groups and can be different combina-
tions of anionic-, cationic- and non-ionic groups. Lake (1989) refers to this type
as amphoteric surfactants.

23



CHAPTER 5. SURFACTANTS

5.4 Use of Surfactants in EOR

Section 4.2 presented the capillary de-saturation curve and its significance in
correlating viscous and capillary forces to residual oil saturation. Eq. 4.4 and fig.
4.1 show that decreasing the surface tension between the two immiscible fluids
will help mobilize trapped oil.

Oil/water IFT typically lies around 20 - 30 mN/m. A good surfactant will have
the ability to reduce the IFT to the range of 1E-4 - 1E-3 mN/m, an increase of
three to four orders of magnitude in Nc, which will put it above the critical value
N∗c . From fig. 4.1, this will significantly lower the residual oil saturation. It is
the ability to strongly reduce IFT that make surfactants such a viable option in
EOR.

5.4.1 Low IFT Oil-Water Relative Permeability Curves

Not only does lowering the IFT have an impact on the residual oil saturation,
it also alters the two-phase flow properties. As capillary number increase and
residual saturation decrease, the end-points on the relative permeability curve
are obviously shifted. A lower IFT will cause changes to the oil-water relative
permeability which is not limited only to this shifting, but also changing the
shape of the curves. Harbert (1983) presented the results of a series of normal
range IFT and ultra-low IFT flooding experiments. The general trend was that
the curves were found to shift upwards to more straight lines, which suggest a
less degree of interference between the flowing fluids. Shen et al. (2006) presented
a study where they correlated oil-water relative permeability to IFT. What they
found was that there exist a critical value for IFT, σc, for which the relative
permeability curves behaved differently above and below. For normal range IFT,
σc < σ, the relative permeabilities for oil and water were unaltered. As the
IFT goes below σc, an increase in relative permeability was experienced. The
experimental observed and associated fitted data are presented in fig. 5.3 at
water saturation of 0.5.
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Figure 5.3: Oil and water relative permeability plotted against IFT for Sw = 0.5.
At some critical value for IFT, σc, an increase in relative permeability is observed.
Laboratory data is plotted along with fitted data. Presented by Shen et al. (2006)

Shen et al. (2006) normalized and plotted relative permeability values against
normalized saturation values to see the overall trend.
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Figure 5.4: Normalized relative permeability plotted againts normalized water
saturation. The overall trend as IFT decreases is that the relative permeability
curves straighten out. Presented by Shen et al. (2006)

From the discussion presented by Shen et al. (2006), it is not explicitly noted
whether a type II(-) or type II(+) system was investigated. Since the microemul-
sion phase flow behaviour is affected by the micellar structure (oil internal / oil
external), this would be an important aspect to relate to the presented results.
Also the presence of a third phase, type III system, would affect the results.
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5.5 Oil Production During Surfactant Injection

When the injected surfactant solution comes into contact with the residual oil,
the IFT between the oil and the injected brine is reduced in the exposed regions.
This causes the contacted trapped oil to be mobilized and start flowing. The
region contacted by surfactant-brine solution will have (according to discussion
in section 5.4.1) a higher relative permeability than in the regions down stream
of the injected surfactant, in the region in which IFT has yet to be reduced.

From Darcy’s law, since the velocity is proportional to relative permeability,
oil velocity will increase in these regions. By applying similar logic as in the
discussion of shock front in Buckley-Leverett displacement, the faster moving oil
will now "catch up" to slower moving oil in unaffected regions. Because of this, a
new shock will form. This shock and its corresponding saturation is referred to
as the oil bank. Pope (1980) presented the same results, derived from a fractional
flow perspective.

Figure 5.5: Saturation profiles for tertiary recovery surfactant injection. The
oil bank saturation can be seen at Sw2 and the initial water saturation after the
water flood is 1 − Sorw. The saturation region left of the oil bank is the region
with ultra-low IFT. The new residual oil saturation is Sorc. Figure taken from
Pope (1980)

When a surfactant flood is applied in a tertiary recovery scheme, the water is
at maximum saturation, 1− Sorw. Injecting surfactants at these conditions will
result in the formation of the oil bank, resulting in a region of lower water satura-
tion (higher oil saturation) between the injection front and the areas of 1− Sorw
(fig. 5.5). The oil bank saturation is Sw2. This is also observed in field appli-
cations of surfactant flooding: when surfactant injection is applied as tertiary
recovery, the incremental oil production is observed as a "slug" of oil.
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Chapter 6

Numerical Simulation of
Two-Phase Flow

Equations describing the physics in a porous medium during fluid flow are well
known and can be expressed with a set of partial differential equations (PDE).
As these mathematical models become increasingly more complex, there does not
exist an analytical solution. Because of this, the equations are spatially and tem-
porally approximated to make them applicable in a computer solution scheme,
where they are discretized and solution values calculated at computational nodes
throughout a simulation grid, rather than as continuous functions. The grid in
which the computational nodes are placed, is a discrete representation of the
problem domain, i.e. the reservoir. The idea is to divide the geological model
into a number of cells, in which the solution variables such as pressure and satu-
ration, are held constant. The placement of computational nodes in the grid and
discretisation methods of the governing PDEs are done in accordance with the
specific numerical solution method applied in the simulation software.

This chapter will focus on the mathematical aspect of the reservoir simulation
program used in this thesis. Derivation of governing partial differential equations,
how these equations are discretized and applied in a grid model and how they
are used to assemble a system of equations is thoroughly discussed. This is
followed by a detailed walk-through of the how the governing equations are used
in the Newton-Raphson method to obtain a solution. A short presentations of
alternative solution methods for PDEs are also given.
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6.1 Matlab Reservoir Simulation Toolbox

The Matlab Reservoir Simulation Toolbox (MRST) is an open-source program
developed in conjunction with the Open Porous Media initiative by SINTEF
Applied Mathematics in Oslo. The purpose of MRST is to function as an efficient
testing platform for new implementations of discretisation and solution methods
in reservoir simulation applications. It contains modules for generating structured
and unstructured grids, industry standard input format support, a complete set
of functions and routines for handling fluid parameters and wells- and boundary
conditions, post-processing and visualization tools for 2D and 3D scalar cell and
face data as well as a number of modules for numerical solution methods and
optimization.

The objective in this thesis is to modify the source code of MRST to be able
to investigate the effects of a surfactant injection. The goal is to mimic the
surfactant model included in Schlumberger’s Eclipse r, with which the model
will be verified against in chapter 8. This is done by incorporating numerous
physical effects resulting form the presence of surfactant in the system, along
side with several function calls, Eclipse format keyword implementations and
various post-processing functions.

6.1.1 Model Description

The Eclipse surfactant model assumes a black-oil fluid representation. Here, the
surfactant is assumed to only be dissolved in the aqueous phase1 and is added
to the injected water as a mass per volume concentration (kg/Sm3). As the
surfactant concentration propagates throughout the reservoir, it will result in a
number of effects altering the flow properties. These effects will be covered in
chapter 7.

As pointed out in the Eclipse Technical Description, Schlumberger (2011a), the
surfactant concentrations in the system is updated fully-implicitly at the end of
each time step, after water, oil and gas flows have been computed. The same
methodology is adopted by MRST, although limiting the flowing fluids to oil and
water only.

A thorough description of Eclipse’s surfactant model and the use of model specific
keywords is included in the Eclipse Technical Description and Eclipse Reference
Manual, Schlumberger (2011b), and the implementation of these effects is given

1Oil dissolved in aqueous phase and water dissolved in oleic phase has been neglected. The
terms are hereby used interchangeably
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in chapter 7. In this thesis, the MRST 2012b release was used, but the code will
be backwards compatible with previous versions of MRST.

6.2 Governing Flow Equations

The governing partial differential equations used to describe fluid flow in a porous
medium can be derived from the mass-balance principle for each phase present.
The general conservation equation is used to derive the mass balance equation.

{Mass in} − {Mass out} +/- {Generation/Consumption} = {Accumulation}
(6.1)

White (2008) introduces the The Reynolds transport theorem which is applied
for mass conservation over a control. Applying the balance equation over an
arbitrarily shaped control volume, Ω, with the confining boundary, ∂Ω, yields:

∂

∂t

∫
Ω

(cβiSiρiφ) dν +
∫
∂Ω

(cβi~viρi) · ~n dS =
∫

Ω
cβiQi dν (6.2)

Where cβi is the concentration of component β in phase i. The first term on the
left hand side is the rate of change in saturation of phase i in control volume
Ω. The second term is the flux term, which accounts for mass transfer of phase
i across the control volume boundaries. The term on the right hand side is the
sink and source term. The governing units are mass per volume time and the
source term, Qi, is the average generation of mass of phase i per volume time.

Qi = ρiqi
V

(6.3)

Where V is the volume of the control volume in which the source is placed.

The densities in eq. 6.2 can be expressed at surface conditions by using the
formation volume factors: ρi,sc = ρiBi, where Bi has the units m3/Sm3. Re-
writing eq. 6.2 with surface densities allows us to cancel them out, and further
re-write eq. 6.2 as:

∂

∂t

∫
Ω

(
cβiSiφ

Bi

)
dν +

∫
∂Ω

(
cβi~vi
Bi

)
· ~n dS =

∫
Ω

cβiqi
V Bi

dν (6.4)
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Recalling Gauss’ theorem from calculus, the surface integral of ~vi·~n can be written
as the volume integral of ∇ · ~vi.∫

Ω
∇ · ~vi dΩ =

∫
SΩ

~vi · ~n dS (6.5)

Inserting the relationship in eq. (6.4) to produce:

∂

∂t

∫
Ω

(
cβiSiφ

Bi

)
dν +

∫
Ω
∇ ·
(
cβi~vi
Bi

)
dν =

∫
Ω

cβiqi
V Bi

dν (6.6)

Dropping the integrals and terming the fraction qi/V Bi = q̃i

∂

∂t

(
cβiSiφ

Bi

)
+∇ ·

(
cβi~vi
Bi

)
= cβiq̃i (6.7)

Where q̃i is the volumetric flow rate of phase i per volume in surface conditions.

This is the vectorial form of the general continuity equation used to describe the
fluid flow problems in this thesis. The governing PDEs for the two-phase surfac-
tant model are then the continuity equations for the two phases and surfactant.
Assuming that coil/oleic and cwater/aqueous (concentration of oil and water in the
oleic and aqueous phase respectively) is 1. The governing PDEs are then:

Oil:

∂

∂t

(
Soφ

Bo

)
+∇ ·

(
~vo
Bo

)
= q̃o (6.8)

Water:

∂

∂t

(
Swφ

Bw

)
+∇ ·

(
~vw
Bw

)
= q̃w (6.9)

Surfactant:

∂

∂t

(
Swφcs
Bw

)
+∇ ·

(
~vwcs
Bw

)
= q̃wcs (6.10)
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6.3 Solving the Flow Equations in Discrete Form

The governing equations derived in section 6.2 are used to describe fluid flow
in a porous medium in the reservoir simulation program. As mentioned in the
beginning of this chapter, to solve sets of partial differential equations (without an
apparent analytical solution), the equations have to be discretized and evaluated
at computational nodes in a discrete problem domain. The derivation of discrete
equations from the continuous PDEs is shown in this section.

6.3.1 The Finite-Volume Method

Schafer (2006) points out that an important property of the finite-volume method
(FVM) is the balance principle which makes it well suited for solving conserva-
tion problems. This is one of the reasons why the finite-volume method is very
applicable in reservoir simulation, and is used in this study. It is also the industry
standard in reservoir simulation softwares.

In the finite-volume method, the discrete problem domain is composed of a set
of control volumes, either as a structured or unstructured grid representation. A
structured grid is way to discretize the problem domain by using cells with fixed
shapes, as opposed to unstructured grids which may consist of grid cells with
varying shapes. This way, the finite-volume is superior to the finite-difference
method as it is able to represent the curved confining boundaries of the problem
domain by using differently shaped grid cells as opposed to purely rectangular
cells. Grid cells are often constructed as corner-point grids, where the confining
region of each grid cell is determined by its corner points.

The solution values in a finite-volume method approach is assumed to be cell-
constant quantities and the nodes where the solution values are computed are
either placed in a 1) cell-centred (CC) or 2) vertex-centred (VC) scheme. In a
CC configuration, the computational nodes are located in the cell centres and in
a VC configuration, they are located at the cell vertices making up the control
volume.

The general idea of the finite-volume method is to integrate the governing PDEs
over the control volumes, Ωi, with the confining boundary, ∂Ωi, which is a subset
of the entire problem domain, Ωi ∈ Ω. Consider the continuity equation in eq.
6.7. In order to derive the discrete form of this equation, a spatial integral over
the control volume and a temporal integral from t to t+ ∆t is applied.
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t+∆t∫
t

∫
Ω

∂

∂t

(
cβiSiφ

Bi

)
dνdt+

t+∆t∫
t

∫
Ω

∇ ·
(
cβi~vi
Bi

)
dνdt =

t+∆t∫
t

∫
Ω

cβiq̃i dνdt

(6.11)

Again, invoking Gauss’ theorem for divergence to express the second term on the
left hand side as a surface integral of the flux (essentially going the opposite way
from eq. 6.4 to 6.5):

t+∆t∫
t

∫
Ω

∂

∂t

(
cβiSiφ

Bi

)
dνdt+

t+∆t∫
t

∫
∂Ω

(
cβi~vi
Bi

)
· ~n dS dt =

t+∆t∫
t

∫
Ω

cβiq̃i dν dt

(6.12)

The saturation terms are expanded and the equation is discretized in time and
space to produce:

V

[(
cβiSiφ

Bi

)l+1
−
(
cβiSiφ

Bi

)l]
+ ∆t

(
fi
Bi

)
= cβiq̃iV∆t (6.13)

Where:

• l and l+1 denotes discrete times at which the quantities are evaluated

• ∆t is the discrete step size between time l and l+1

• fi is the flux of phase i across the grid cell boundaries

Dividing through by ∆t to obtain the final form shown below. This equation is
applied for oil, water and surfactant in all the grid cells constituting the solution
domain and results in a system of equations, as will be shown.

V

∆t

[(
cβiSiφ

Bi

)l+1
−
(
cβiSiφ

Bi

)l]
+
(
fi
Bi

)
=
(
cβiqi
Bi

)
(6.14)

This is the discrete form of eq. 6.7 used in the two-phase model in this thesis.
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Determining the flux term
The step from eqs. 6.12 to 6.13 defines the flux, fi, as

∫
∂Ω ~vi · ~n dS and from

Darcy’s law, we have that the fluid velocity in a porous medium is governed by
mobility, λ, and fluid potential as:

~vi = −λi∇Φ (6.15)

Where:

• λi is the fluid mobility, defined as: Kkr,i

µi

Plugging eq. 6.15 into the flux term will result in:

fi = −
∫
∂Ω
cβiλi∇p dS (6.16)

In the finite-volume evaluation of the governing two-phase fluid flow PDEs, a
structured hexahedral2 grid representation with sides aligned to the principal
axes is used. A generic grid cell is shown in the figure below. This means
that each control volume, Ωn ∈ Ω, is made up of six planar faces, each face
connecting control volume n to a neighbouring control volume across an interface,
γn,m = ∂Ωn ∩ ∂Ωm. With this control volume representation, the flux term for
control volume n is the sum of the flux across all six interfaces.

Figure 6.1: Hexahedral control volume with planar faces and corresponding
perpendicular vectors

Across each planar face on the control volume in fig. 6.1 (assuming it does con-
stitute any reservoir boundaries), the flux is calculated using the fluid potential

2A hexahedral is any polyhedron with six faces
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in the centre of the grid cell and its neighbouring grid cells, i.e. in a cell cen-
tred configuration. This method is known as the two-point flux approximation
(TPFA), and utilizes two points in the flux calculations. This is most often used
for structured grids, as opposed to for unstructured grids where a multi-point flux
approximation (MPFA), which employs several points, is used. Using the TPFA
method, the integral in eq. 6.16 is evaluated for each face on block n.

First consider the flux across the interface between block n and m with normal
vector in positive x-direction, (1, 0, 0)T . The pressure gradient across this face
γn,m is then given below, ignoring gravity effects.

δpm,n = 2(pm − pn)
∆xm + ∆xn

(6.17)

Where:

• ∆xm and ∆xn are the distance from the cell-centred computational node
to the interface γn,m in cell m and n respectively.

• δPm,n is the discrete pressure drop from cell centred computational nodes
in cell m to n.

Inserting this relationship into the eq. 6.16, the result is:

fi,m→n = − 2(pm − pn)
∆xm + ∆xn

∫
γm,n

cβiλidS (6.18)

The absolute permeability, K, is in most cases spatially varying throughout the
reservoir and have different values associated with each principal direction in
different grid cells. This, and the fact that permeability is not defined at the grid
cell interfaces, complicates the calculation of the flux terms. This means that as
the fluid travels from the centre of block m to the centre of block n, the mobility
changes along the flow path. To account for this, a distance weighted harmonic
average of the fluid mobilities in the two blocks is used (Lunde, 2007). Notation
is adopted from this author.

λi,m→n = (∆xn + ∆xm)(
∆xn

λi,n
+ ∆xm

λi,m

) (6.19)

Inserting eq. 6.19 in eq. 6.18 results in:
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fi,m→n = −2(pm − pn)
∫
γm,n

cβi

(
∆xn
λi,n

+ ∆xm
λi,m

)−1
dS (6.20)

Because all quantities are held constant in a control volume, there are no varia-
tions in mobility within each grid block. This means that the integral over the
surface of the interface will produce:

fi,m→n = −2cβiAγm,n(pm − pn)
(

∆xn
λi,n

+ ∆xm
λi,m

)−1
dS (6.21)

Where Aγm,n is the area of the interface. Transmissibility is defined such that the
flux between grid block m and n across one face is calculated with the equation
below. This term is summed up for all faces connecting two grid blocks.

fi,m→n = cβiTi,m→n(pm − pn) (6.22)

Where T is the transmissibility. The total transmissibility is the distance weighted
harmonic average of grid cell half-transmissibilities, which is the transmissibility
in one of the two blocks in which the fluid travels to get from m to n.

The total flux of phase i for a control volume is the sum of eq. 6.22 over all
interfaces connecting it to a neighbouring cell.

fi =
∑

cβiTi∆p (6.23)

Where ∆p is the pressure difference between the grid cell centre and the centre
of the neighbouring grid cell.

Inserting the transmissibility relationship into the discrete continuity equation,
it is applied for oil, water and surfactant. Again assuming that the concentration
of water and oil in the aqueous and oleic phase respectively, is 1. The discrete
form of eqs. 6.8, 6.9 and 6.10 can then be written as eqs. 6.24, 6.25 and 6.26.
Notice that pressures are evaluated at l+i, consistent with an implicit solution.
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Oil:

V

∆t

[(
Soφ

Bo

)l+1
−
(
Soφ

Bo

)l]
+
∑

To
∆p
Bo

l+1
=
(
qo
Bo

)
(6.24)

Water:

V

∆t

[(
Swφ

Bw

)l+1
−
(
Swφ

Bw

)l]
+
∑

Tw
∆p
Bw

l+1
=
(
qw
Bw

)
(6.25)

Surfactant:

V

∆t

[(
Swcsφ

Bw

)l+1
−
(
Swcsφ

Bw

)l]
+
∑

csTw
∆p
Bw

l+1
=
(
qwcs
Bw

)
(6.26)

The observant reader might have noticed that the phase in which the pressure is
evaluated in, is not specified. In MRST, the pressure is evaluated in the oil phase,
and the water pressure is calculated using the capillary pressure relationship.
The Matlab code where the discrete conservation equations are implemented is
included in appendix C.

Upwinding
An important concept when calculating fluxes in numerical applications, is up-
winding. This means that low parameters are evaluated in the grid cell where
the fluid flow from, i.e. where the potential is highest. This is a way to ensure
a physically realistic solution as it e.g. limits the saturation to stay above the
irreducible saturation values. The equations above may be extended to using
fluid potential.
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6.4 Other Solution Methods

There are also other ways to evaluate PDEs in a discrete environment. The two
other used methods are the 1) finite-difference method and the 2) finite-element
method. Though these are not implemented in MRST, alternative solution meth-
ods should be mentioned.

6.4.1 Finite-Difference Method

In the finite difference method (FDM), the solution variables are computed at
computational nodes in the discrete grid, which are most commonly cell centre
placed. The continuous governing PDEs are replaced by an approximation ob-
tained using Taylor polynomials, to create a discrete function in time and space
which is evaluated at these points (Peaceman, 1977). Due to the nature of the
finite-difference method, it is difficult to implement for unstructured grids. This
limits the usage of the finite-difference method as it is unable to accurately rep-
resent the curved confining regions of a reservoir.

6.4.2 Finite-Element Method

Similar to the finite-difference and finite-volume method, the computational do-
main is divided into discrete parts, now called finite elements. These elements
may be assign a various shapes and are therefore excellent for constricting the
discrete domain to the continuous problem domain boundary. The finite-element
method is mostly applied in solid mechanics engineering application, and is not
wide spread for continuum mechanics. Note though, that even though it is not a
common approach, it does occur.

The goal of the finite-element method (FEM) is to approximate the continuous
solution function as a set of N functions defined over sub-domains of the total
solution domain. An ansatz function3 to the solution function is defined, consti-
tuting a set of N linearly independent element equations. These functions fulfils
the restrictions given in the boundary conditions and the ansatz function is in-
serted into the governing PDE. Also, introducing a set of shape functions, the
ansatz function can be expressed as variable values at computational nodes in
each element, Ei.

3An ansatz function is an approximation to the real solution function, e.g. how Taylor
polynomials describe a continuous function.
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The shape functions can be thought of as an on/off switch, similar to Heaviside
step function, which is 0 for all computational nodes except for the ones defined
in the input xi vector for element Ei. All the nodes in the problem domain is
enumerated and each sub-domain or element, Ei holds a sub-set of these nodes.
This way, the ansatz functions can be defined in the global domain, assembled
and solved for the solution variable. Similar to FDM and FVM, this method
constitutes a system of equations which can be solved numerically by applying
the appropriate solution algorithm.

6.4.3 Remarks

The different discretisation schemes all have advantages and disadvantages. The
finite-element method more accurately represent the problem domain in terms
of curved boundaries, but again is more slow in terms of computation time.
The finite-difference method assumed squared or rectangular grid cells and thus
poorly represent the curves boundaries of the geological reservoir model. Due to
the simplicity of this approach, it is significantly faster than the finite-element
approach and also provide good accuracy. The finite-volume is a sort of middle
approach, with the ability to more accurately represent domain boundaries, al-
though inferior to the finite-element method and also computationally faster. It
is well suited for conservation problems such as the fluid flow presented above,
and is the industry standard in reservoir simulation.
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6.5 Solving the System of Equations

The equations derived in section 6.3.1 are evaluated for each grid block in the
discrete domain, meaning that for each grid cell, i = 1, 2, 3, . . . , N , there are
three calculated values associated with it. By computing the flux terms, values
for pressure, water saturation and surfactant concentration in one cell will be
related to values in adjacent cells, resulting in a system where the change in one
cell is a function of the changes in neighbouring cells. This can then be written as
a system of equations that can be solved to obtain the pressure, water saturation
and concentration values in every grid cell. Note that in the eqs. 6.24, 6.25 and
6.26, the source term is only evaluated for cells that contain either a production
or injection well. In most of the grid cells, the qi term is thus zero and vanishes.
The Newton-Raphson method is a numerical solution method for solving system
of equations, and is implemented in MRST in the 2012b release.

6.5.1 The Newton-Raphson Method

Given a mathematical function, the Newton-Raphson method is a numerical
method to calculate an increasingly accurate approximation to the real solu-
tion through an unknown number of iterations. This approximation implies that
there exist an error which is the difference between the approximated solution
and the real solution. This error is most often not possible to compute, but there
exist different criteria for terminating the iterative algorithm when a "sufficiently"
good approximation to the real solution is obtained.

The Newton-Raphson method can be derived by approximating the function with
Taylor series and ignoring higher order terms:

f(x∗) = f(xn) + f ′(xn)(x∗ − xn) + R (6.27)

The purpose of the Newton-Raphson is to find the solution, x∗, such that the
function f(x∗) = 0. Inserting this and solving x∗:

x∗ = xn −
f(xn)
f ′(xn) − R (6.28)

An approximation to the solution x∗ is obtained by ignoring the remaining terms
(R) and iterating until the approximation is sufficiently accurate.
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xn+1 = xn −
f(xn)
f ′(xn) (6.29)

Where:

• xn is the approximation to the real solution after n iterations

• xn+1 is the approximation to the real solution after n+1 iterations

For a single-variant function, the Newton-Raphson method can be visualized with
the figure below.

Figure 6.2: Step-wise visualization of the Newton-Raphson algorithm for a
single-variant system. The calculated slopes f(x) brings the variable x closer
to the solution where f(x) = 0.

Given an initial "guess" to the real solution, x0, the slope of the function at x0,
f ′(x0), is calculated. Following the slope until y = 0 is reached at x1 and then
computing f ′(x1). These steps are repeated and a new and better approximations
to the real solution is calculated for every iteration. This method will eventually
make the x-values close enough to the real solution to terminate the loop.
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Now consider a system of n equations with n unknowns

f1(x1, x2, x3, · · · , xn) = 0
f2(x1, x2, x3, · · · , xn) = 0

...
fn(x1, x2, x3, · · · , xn) = 0

(6.30)

By approximating the functions with the multi-variant Taylor series and applying
the same logic, the result is a system of equations, though the form differs slightly
from what previously shown.


∂f1
∂x1

∂f1
∂x2
· · · ∂f1

∂xn
∂f2
∂x1

∂f2
∂x2
· · · ∂f2

∂xn...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn




∆x1
∆x2
...

∆xn

 = −


f1
f2
...
f3

 (6.31)

This system can be written in short notation as

J∆x = −F (6.32)

This linear system of equations is solved for ∆x, which is the difference between
the first approximated solution, xn, and the "new and better" approximated
solution, xn+1. J is known as the Jacobian, and is a matrix consisting of the
n different functions differentiated with respect to the n different variables. F
contains the residuals, which goes to zero as the approximated solution closes on
the real solution.

For each iterative loop, a new ∆x is calculated to find a new approximated
solution.


x1
x2
...
xN


n+1

=


x1
x2
...
xN


n

+


∆x1
∆x2
...

∆xN

 (6.33)
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Convergence
After an unknown number of iterations, the approximated solution is sufficiently
close to the real solution and the system is said to have converged. This ter-
minates the iteration algorithm. The criterion may vary (Igarashi, 1984), and
a common stop criterion for single variant problems is to look at the relative
change solution variable. If it does not change much, then this is interpreted as
that a solution is close. The iteration is terminated if the following inequality is
fulfilled.

ε >
xi+1 − xi
xi+1

(6.34)

Where ε is a predetermined tolerance level. The obvious pitfall to this termination
criterion is if the approximated solution lands on a value where the solution does
not change much, but is in truth not close to the real solution. This will lead
to premature termination and erroneous results. This may also lead the user to
believe the solution has converged, though in reality it has not.

Another way is to use the function residuals as the termination criterion. This
means that for each iteration, as a new approximation to the solution is obtained,
xn+1, F is calculated. Since this is zero for the real solution, the infinity norm of F
is compared with a pre-determined tolerance level and the algorithm terminated
when or if the criterion is fulfilled.

ε > ||F||∞ (6.35)

Something to keep in mind when using this termination criterion, is the relative
scale of the equations. This means that if one equation operates on with values
several orders of magnitude smaller than the others, the termination criterion
has to be specified accordingly.

One of the downsides to the Newton-Raphson method, is that a suitable first
approximation to the solution has to be provided in order to arrive at a sufficiently
good approximated solution after a reasonable number of iterations.
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6.5.2 Solving the Conservation Equations Using Newton-
Raphson

Setting up the multi-variant system on the same form as seen in eq. 6.30. Note
that the equations have to transformed to the form f(x) = 0 to be applicable
in the Newton-Raphson solution. This is done by simply subtracting the source
terms on both sides of each equation, producing the equations shown below:

Oil, f1:

V

∆t

[(
Soφ

Bo

)l+1
−
(
Soφ

Bo

)l]
+
∑

To
∆p
Bo

l+1
−
(
qo
Bo

)
= 0 (6.36)

Water, f2:

V

∆t

[(
Swφ

Bw

)l+1
−
(
Swφ

Bw

)l]
+
∑

Tw
∆p
Bw

l+1
−
(
qw
Bw

)
= 0 (6.37)

Surfactant, f3:

V

∆t

[(
Swcsφ

Bw

)l+1
−
(
Swcsφ

Bw

)l]
+
∑

csTw
∆p
Bw

l+1
−
(
qwcs
Bw

)
= 0 (6.38)

Setting up the solution system on the same form as found in eq. 6.31.


∂f1
∂p

∂f1
∂Sw

∂f1
∂cs

∂f2
∂p

∂f2
∂Sw

∂f2
∂cs

∂f3
∂p

∂f3
∂Sw

∂f3
∂cs




∆p

∆Sw
∆cs

 = −


f1

f2

f3

 (6.39)

Here, p, Sw and cs are vectors containing pressures, saturations and concentra-
tions values for each of the N grid cells. This means that p = [p1, p2, . . . , pN ],
Sw = [Sw1, Sw2, . . . , SwN ] and c = [cs1, cs2, . . . , csN ], which also implies that ∆x
is 3 × N elements long.

The three conservation equations are evaluated in each grid cell, which means
that each element in the Jacobian is a 3N × 3N matrix and F is a 3 × N vector.
The linear system of equations in the Newton-Raphson method applied for this
problem consists of the following:
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• The residual values of each function evaluated at each grid cell:

f1 =



f11

f12

...

f1N


f2 =


f21

f22

...

f2N

 f3 =


f31

f32

...

f3N



• The change in solution approximation vector:

∆p =


∆p1

∆p2

...

∆pN

 ∆sw =


∆Sw1

∆Sw2

...

∆SwN

 ∆c =


∆cs1
∆cs2
...

∆csN



• The derivative of the oil-equation with respect to pressure:

∂f1

∂p
=



∂f11
∂p1

∂f11
∂p2

· · · ∂f11
∂pN

∂f12
∂p1

... . . .
∂f1N

∂p1
· · · ∂f1N

∂pN



• The derivative of the oil-equation with respect water saturation:

∂f1

∂Sw
=



∂f11
∂Sw1

∂f11
∂Sw2

· · · ∂f11
∂SwN

∂f12
∂Sw1

... . . .
∂f1N

∂Sw1
· · · ∂f1N

∂SwN
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• The derivative of the oil-equation with respect to surfactant concentration:

∂f1

∂cs
=



∂f11
∂cs1

∂f11
∂cs2

· · · ∂f11
∂csN

∂f12
∂c1

... . . .
∂f1N

∂cs1
· · · ∂f1N

∂csN



Here, ∂f1
∂p ,

∂f1
∂sw

and ∂f1
∂c constitutes the first row in the Jacobian matrix defined in

eq. 6.39. In these matrices, the derivative of the f1 with respect to the pressures,
water saturation and surfactant concentration in all the grid cells in the system
is evaluated. Obviously, as only the pressure, water saturation and surfactant
concentration only affects neighbouring cells, the matrices will be sparse. Similar
matrices can be expressed for the second and third row in the Jacobian defined
in eq. 6.39

The system in eq. 6.39 containing the elements above is solved4 for ∆x. The
pressures, saturations and surfactant concentrations are then updated , as shown
below in eq. 6.33.



p1

p2

...

pN



n+1

=



p1

p2

...

pN



n

+



∆p1

∆p2

...

∆pN


(6.40)



Sw1

Sw2

...

SwN



n+1

=



Sw1

Sw2

...

SwN



n

+



∆Sw1

∆Sw2

...

∆SwN


(6.41)

4In MRST, this is solved by using the backslash operator in Matlab
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cs1

cs2

...

csN



n+1

=



cs1

cs2

...

csN



n

+



∆cs1
∆cs2
...

∆csN


(6.42)

When the new approximated solution variables are calculated, they are plugged
back into eqs. 6.36, 6.36 and 6.38 to calculate the residual terms on the right
hand side in eq. 6.39. The infinity norm of the residual vector is computed and
compared with a termination criterion. The iteration process proceeds until the
criterion is met.

Automatic differentiation
In conjunction with the Newton-Raphson method, MRST contains a module for
efficiently computing function derivative. By incorporating the use of automatic
differentiation (AD), the Jacobian can be computed for any function that is
made up of a number of pre-defined mathematical operators, with the general
idea that differentiation rules for can be implemented numerically. The concept
of automatic differentiation is explained thoroughly by Neidinger (2010).

When a function is implemented and evaluated at a certain point, the function
derivative with respect to the different variables is also computed at the same
point. This is therefore useful when implementing new equations to an existing
framework of equations in MRST. By associating the solution vectors p, Sw and cs
with an ADI Matlab class and implementing the discrete conservation equations
in eqs. 6.36, 6.37 and 6.38, the Jacobian matrix is easily computed.

Below is a code section extracted from Matlab with the use of MRST code to
illustrate how AD is used in Matlab.
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P = rand(10,1); % Generate 10 random values for variable #1
S = rand(10,1); % Generate 10 random values for variable #2

[P,S] = initVariablesADI(P,S); % Associate P and S with the ADI
% class

F = @(P,S) P.^2 + S.^2 % F is now a function of P and S, but
% is not associated with the ADI
% class

VAR = F(P,S) % Computing VAR(P,S)

VAR =

ADI

Properties:
val: [10x1 double]
jac: {[10x10 double] [10x10 double]}

The Matlab variable VAR now has function values and the corresponding Jacobi
values associated with it, in VAR.val and VAR.jac. Note that VAR.jac has
two entries, one for each function variable, namely P and S.
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6.6 Robustness and Optimization

There are several ways to better ensure that the system of equations will arrive
at a sufficiently good solution in a practical amount of time. Among these are
two methods implemented in the current version of MRST: 1) step cutting and
2) line search.

6.6.1 Step Cutting

Step cutting is a way to control the maximum step size, ∆x, by imposing an
upper pre-defined limit. This can be advantageous if the investigated function
has a very flat slope for an approximated solution. Consider the same function
as in fig. 6.2.

Figure 6.3: The calculated slope at the initial guess, f ′(x0) results in a large
step, bringing the approximated solution further away from the real solution where
f(x) = 0. It is here beneficial to limit the step length.

Notice that in fig. 6.3, the initial guess, x0, is close to the local maximum value
of f. The slope at this point f ′(x0). By following the slope until y = 0 is reached,
this will result in a large step length and bring the new approximated solution
further away from the real solution. Cutting the step would in this situation
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resolve in a more efficient iteration process, obtaining the true solution for a
fewer number of iteration steps.

This is implemented in MRST along with a capping of solution values. What this
does is ensuring that solution variables make physical sense, i.e. to cap saturation
values between zero and one and ensure that surfactant concentration is always
larger than zero. This ensures code robustness and helps to optimize the solution.

6.6.2 Line Search

Line search is an algorithm often applied in optimization theory in numerical
solutions. It is as a way to find the most suitable step length in any numerical
method, not necessarily just Newton-Raphson. The most suitable step length
is the one that minimizes the residuals along the step direction. Sun and Yuan
(2006) uses the following notation. Let dk be the direction vector and αk be the
step length in that direction in a multi-variant system.

φ(αk) = f(xk + αkdk) (6.43)

The idea is to find the step length, αk, which minimizes the residual along the
step.

f(xk + αkdk) = min
α>0

f(xk + αdk) (6.44)

A more elaborate explanation is given by Sun and Yuan (2006).

During the Newton-Raphson algorithm, inverting and solving the linear system in
eq. 6.32 is far more computationally expensive than calculating the residuals F.
Being able to reduce the number of iterations by calculating less computationally
expensive residuals along the step is a good optimization strategy. Line search is
implemented as an option in MRST, but has been switched off for this work.
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Chapter 7

Surfactant Model Specifics

This chapter gives the reader insight to the physical effects and keyword imple-
mentations required in the surfactant model. The reader is expected to have a
minimum knowledge regarding Eclipser input formatting.

7.1 Keywords

MRST is designed to read deck input in the same format as for Eclipser. This
means that all information required to run the simulation is initialized by spec-
ifying a set of keywords. Since the model implemented in MRST during in this
study is based on the surfactant model included in Eclipser, the same keywords
were used to define necessary parameters. This is convenient for model verifica-
tion since the same input file can be used in MRST and Eclipser simultaneously
without any major changes necessary. Apart from the standard keywords used
for grid and reservoir initialization, well data etc., the surfactant model specific
keywords are listed in table 7.1. Note that some of these keywords are optional
to use. The Matlab codes for different keyword implementations is provided in
appendix A.
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Table 7.1: Surfactant model specific keywords. Presented in Eclipse r Technical
Description.

Keyword Description Notes
SURFACT Model initialization Obligatory
SURFST IFT data Obligatory
SURFVISC Viscosity modifier Obligatory
SURFCAPD Capillary de-saturation Obligatory
SURFADS Surfactant adsorption Optional
SURFROCK Rock properties Obligatory if SURFADS is used
SURFNUM Grid region specification Obligatory
WSURFACT Injected concentration Optional

SURFACT
This is a keyword for initialization of the surfactant model in Eclipser. Though
not strictly required in MRST, it has been implemented for an easy transition.

SURFST
This keywords controls the IFT between oil and water as a function of surfactant
concentration. The data is supplied in a set of tabulated values with surfactant
concentration in kg/Sm3 and IFT in N/m.

SURFVISC
Tabulated data determines the viscosity of the aqueous solution as a function
of concentration. The equation used to determine the effective aqueous phase
viscosity is given by eq. 7.11.

SURFCAPD
This keyword largely controls the overall effects of the surfactant on transport
properties. It contains logarithmic values for the capillary number, Nc, tabulated
against a miscibility factor, (m, ranging from 0 (immiscible conditions) to 1
(fully miscible conditions). This is an alternative representation of the commonly
used capillary de-saturation curve. The miscibility factor is used to quantify the
changes in transport properties as the IFT decreases.

SURFADS
Surfactant retention is assumed to only be caused by adsorption, where surfac-
tant molecules are adsorbed onto the rock surface and not partitioned in the
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water. The mass of adsorbed surfactant is dependent on the amount in solution
and the rock density, so this keyword contains tabulated values for surfactant
concentration against adsorbed surfactant mass per reservoir rock mass, kg/kg.
Adsorbed amount of surfactant is calculated using eq. 7.1.

SURFROCK
There is two types of surfactant adsorption mechanisms: 1) only adsorption and
2) both adsorption and desorption. Desorption is the opposite of adsorption,
meaning that previously adsorbed surfactant molecules can go from the rock
back into solution. This keyword contains two parameters: adsorption index and
rock density in kg/m3. The index values can be either 1 or 2, where 1 means
that surfactant desorption may occur and 2 means that it can not. The different
rock densities and adsorption indices are used in the different grid regions defined
with the keyword SURFNUM.

SURFNUM
This keyword specifies in which regions the fully miscible conditions may ap-
ply. In the Eclipser input deck, the keyword TABDIMS controls the number
of entries in tabulated data. The first parameter in TABDIMS is NTSFUN,
which specifies how many saturation dependent functions each keyword hold.
For instance, relative permeability curves hold NTSFUN sets of tabulated data
for relative permeability. The keyword SURFNUM is specified by an integer for
the number of cells (from 1 to N) in the same manner as the SATNUM key-
word is used. The SURFNUM keyword tells MRST which active cells are prone
to interpolated relative permeability and other functions dependent on satura-
tion. Among the discussed keywords do SURFST, SURFVISC, SURFCAPD and
SURFADS contain two sets of tabulated data.

WSURFACT
In the schedule section in the input file, this keyword may be used to define
what wells are injecting surfactants. The input data under this keyword are
the name(s) of the specific well(s) matching the names of previously defined
wells under the WELSPECS and COMPDAT keywords, followed by an injected
surfactant concentration. If not defined, MRST will set the injected concentration
to 0.0 by default.
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7.2 Physical Effects

The physical effects implemented in this model for describing effect of surfactant
injection is described in this section. All of the described effect occur on a cell-
to-cell basis, meaning that the presented equations are evaluated for all grid cells
in the model. The Matlab code is provided in appendix. B.

7.2.1 Oil-Water IFT

For a given surfactant concentration, the IFT value is obtained by interpolating
the tabulated data supplied under the SURFTST keyword.

7.2.2 Surfactant Adsorption

The surfactant adsorption follows the tabulated data provided under the SUR-
FADS keyword. The adsorbed surfactant is obtained by interpolated the tabu-
lated data for a given surfactant concentrations. Depending on the SURFROCK
adsorption index, the amount of adsorbed surfactant may decrease if the injected
concentration decreases. After the amount of adsorbed surfactant computed, it
is added to the left hand side in the discrete conservation equation for surfactant
in eq. 6.38 that needs to be fulfilled in order to solve for the new concentration.
The amount of surfactant adsorbed is calculated using eq. 7.1, presented in the
Eclipser Technical Description.

ADS = P.V. 1− φ
φ

ρrock f(cs) (7.1)

The f(cs) is the interpolated tabular value supplied under the SURFADS keyword
and P.V. is the pore volume of the cell.

7.2.3 Miscibility

As the surfactant reduce the IFT, it also increase the capillary number. From
the description of capillary de-saturation curves, the same effect on the residual
oil saturation is expected.

Nc = |K · ∇P |
σ

(7.2)
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The capillary number is calculated with eq. 7.2, provided in the Eclipser Tech-
nical Description. To find the miscibility condition, the logarithmic value for the
capillary number is interpolated in the supplied table under SURFCAPD.

7.2.4 Relative Permeability Alterations

Another effect of lowered IFT is the changes in relative permeability, as presented
in section 5.4.1. To account for this, there are supplied two sets of relative
permeability curves in the input deck. One for immiscible conditions and one for
fully miscible conditions. Consider the relative permeability curves for water in
fig. 7.1.

Figure 7.1: Two sets of relative permeability curves for water. One curve for
immiscible conditions (m = 0) and one curve for fully miscible conditions (m =
1).

After m has been determined, the two relative permeability are scaled and aver-
aged according to a specific method. The lower and upper end-points on the two
relative permeability curves are used to calculate new end-point saturations by
a weighted average with m (eqs. 7.3 and 7.4). This now constitutes the mobile
saturation region, and an effective saturation variable is introduced (eq. 7.5).
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Swc,new = mSwc,misc + (1−m)Swc,immisc (7.3)

1− Sor,new = m(1− Sor,misc) + (1−m)(1− Sor,immisc) (7.4)

Seff = Sw − Swc,new
1− Sor,new − Swc,new

(7.5)

As m vary between 0 and 1, the relative permeability calculations vary. Since
the relative permeability defined in the input deck consist of a number of discrete
points and is not described by a continuous function, direct scaling of the curves
to fit the new end-point saturations is not possible. Instead, a code that creates
two new saturation variables is implemented(eqs. 7.6 and 7.7). These two sat-
uration values are used to calculate the relative permeability for both miscible
and immiscible conditions at the target saturation, Sw.

S̄1 = Seff
[
(1− Sor,immisc)− Swc,immisc

]
+ Swc,immisc (7.6)

S̄2 = Seff
[
(1− Sor,misc)− Swc,misc

]
+ Swc,misc (7.7)

Example
Assume Sw = .15 and the original saturation end-point are also 0.15 and 0.8
(initially immobile water). Assuming that the end-points for miscible conditions
are 0 and 1, the new lower saturation end-point is .12 for the semi miscible case
with m = .2 (eq. 7.3). According to eq. 7.5, Seff = 0.047. Because of the semi-
miscible conditions, Sw = .15 is now inside the mobile region. With the values for
Seff , lower and upper limit previously calculated, the new saturation values S̄1
and S̄2 are calculated from eqs. 7.6 and 7.7 to be 0.1805 and 0.047 respectively.
These saturation points correspond to Sw = 0.15 for the scaled immiscible and
miscible curves.
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Figure 7.2: The calculated parameters shown on the relative permeability curves
plotted in fig. 7.1. S̄1 and S̄2 are the scaled water saturation value for the
case where m = 0.2. They are used to calculate a weighted average of relative
permeability

In short: new saturation values are calculated, one for the miscible curve and one
for the immiscible curve. The two new saturation values correspond to the input
saturation value, in this case 0.15, for the scaled miscible and immiscible curve.
Using these new saturation values, the relative permeability is interpolated in the
miscible and immiscible table. The approach is visualized in the fig. 7.2.

The effective relative permeability in the grid cell with saturation Sw and mis-
cibility factor m is then a weighted average of the two curves (eqs. 7.8 and
7.9).

kr,w
∣∣
Sw

= m · kr,w,misc
∣∣
S̄2

+ (1−m) · kr,w,immisc
∣∣
S̄1

(7.8)

kr,o
∣∣
Sw

= m · kr,o,misc
∣∣
S̄2

+ (1−m) · kr,o,immisc
∣∣
S̄1

(7.9)
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7.2.5 Capillary Pressure Alterations

When the IFT decreases, so does capillary pressure, according to eq. 2.5. The
new capillary pressure is found by multiplying the capillary pressure with the
ratio of IFT at a given saturation to the IFT at zero surfactant concentration.

pcow = pcow(Sw) σcs

σ(cs=0)
(7.10)

7.2.6 Water Viscosity Alterations

Adding surfactant to the injected brine will increase its viscosity. The viscosity is
related to the pressure dependent viscosity function supplied under the keyword
PVTW, reference water viscosity and the surfactant viscosity tabulated from the
SURFVISC keyword. An effective water viscosity is then calculated with eq.
7.11.

µws(cs, p) = µw(p) µs(cs)
µw(pref ) (7.11)
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Chapter 8

Simulation Results and
Discussion

As the equations, numerical model and solution method have been presented,
this chapter focuses on simulation results obtain with the surfactant model im-
plemented in MRST. These results will be compared with simulation results
obtained using the Eclipser surfactant model and a qualitatively and quantita-
tively analysis will be given. The goal here is to validate the model created in
this thesis by applying simple surfactant injection schemes in a generic 1D, 2D
and 3D reservoir model.

The simulations are first conducted with Eclipser. The deck files are then run
with the newly implemented surfactant model and a set output parameters are
compared for the two runs. These two data sets are then presented in a way to
better see any differences that might arise.

Along with studying the production data for the 1D validation case the oil sat-
uration, pressure and surfactant concentration profiles are compared to better
understand differences that might arise.

For the 2D and 3D case, surfactant distribution in the reservoir at different times
during a cycling surfactant injection from four injection wells is visualized. The
grid cells where ultra-low IFT conditions have been met are visualized and the
results linked to distinct features in the production data.
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8.1 Input Data

Before running the surfactant model in both Eclipser and the newly implemented
surfactant model, the appropriate input data have to be provided. The surfactant
specific data consists of tabulated values of different parameters supplied under
each of the surfactant model specific keywords.

1. Oil-water IFT tabulated against surfactant concentration

2. Water viscosity tabulated against surfactant concentration

3. A miscibility factor between 0 and 1 tabulated against logarithmic value of
Nc

4. Surfactant adsorption isotherm tabulated against surfactant concentration

Feng et al. (2011) provided all the necessary data for the surfactant model, which
are listed in tables 8.1, 8.2, 8.3 and 8.4.

Table 8.1: Oil-water IFT at different surfactant concentration

Surfactant concentration [ kg/m3 ] 0 0.1 0.5 1 30 100
Interfacial tension [N/m] 0.05 0.0005 1E-5 1E-6 1E-6 1E-6

Table 8.2: Water viscosity at different surfactant concentrations

Surfactant concentration [ kg/m3 ] 0 30 100
Water viscosity [mPa s] 0.61 0.8 1

Table 8.3: Miscibility condition for different capillary numbers

log ( Nc ) -10 -5.5 -4 -3 2
Miscibility factor 0 0 0.5 1 1
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Table 8.4: Surfactant adsorption at different concentrations

Surfactant concentration [ kg/m3 ] 0 1 30 100
Surfactant adsorption [kg/kg] 0.0005 0.0005 0.0005 0.0005

The two relative permeability curves used for the miscible and immiscible con-
ditions in these simulations have been obtained by assuming the Corey type
equations are valid.

By using eqs. 2.1 and 2.2 presented in section 2, the end-point saturation, end-
point relative permeability for both phases and curve exponent for the two con-
ditions have to be specified prior to conducting the simulations. Keep in mind
that this, in a way, determines the ultimate recovery potential for surfactant in-
jection in terms of residual oil saturation as the oil saturation can not go below
the lowest specified value in these tables. The values chosen for this study are
shown in table 8.5. These values produce the relative permeability curves seen
in fig. 8.1.

Table 8.5: Corey type equation input values

n Swc 1− Sor k0
ro k0

rw

Immiscible 3 0.2 0.8 0.5 0.6
Miscible 1.5 0.05 0.95 1 1

Evans (1970) tabulated capillary pressure against water saturation for a water
flood. This data was converted to SI units and then fitted with a sixth degree
polynomial. This polynomial equation was then used to calculate the capillary
pressure value at the same saturation points as the relative permeability values
are specified. This produced the capillary pressure curve seen in fig. 8.2.
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Figure 8.1: The two sets of relative permeability curves used as input values.
Curves were constructed by assuming Corey equations were valid and using the
parameters listen in table 8.5.

Figure 8.2: Capillary pressure data used as input values. Tabulated data were
extracted from Evans (1970) and fitted with a polynomial.
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Fluid and rock properties such as compressibility, density, viscosity and formation
volume factor was provided for this study and their validity is not subject to
discussion. Reservoir and fluid parameters used in all three validation cases are
presented in tables 8.7 and 8.6 respectively.

Table 8.6: Fluid parameters used in the validation cases

Reservoir parameters
φ 0.3
kxx 100 mD
kyy 100 mD
kzz 20 mD
Pi 300 bar
Top depth 1000 m

Table 8.7: Reservoir parameters used in the validation cases

Fluid parameters
Sw,i 0.2
ρw,sc 1080 kg/Sm3

ρo,sc 800 kg/Sm3

µw,ref 0.61 mPa s
µo,ref 5.0 mPa s
Pref 300 bar
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8.2 Horizontal Displacement Validation Case

In the first validation case, a simple 1D horizontal displacement is investigated.
In this case, an initial water flood is first conducted for two years at a constant
injecting and producing bottomhole pressure of 320 and 280 bar respectively.
This is followed by a constant surfactant injection with a concentration of 50
kg/m3 for another two years, while keeping the well pressures unchanged. The
simulation is concluded with a two year long water flood after the surfactant
slug, to see how the surfactant behaves when injected as a slug. This way, the
adsorption effects on the slug’s "head" and "tail" will be observed.

Table 8.8: Grid properties

Nx ×Ny ×Nz 100× 1× 1
∆x×∆y×∆z 1× 5× 5
Physical dimensions 100m× 5m× 5m

Figure 8.3: The grid used in this case. Red denotes injection well placement
and blue production well. Grid and well configuration chosen to investigate the
validity of 1D flow in the surfactant model implemented in MRST

The physical dimensions and an overview of the reservoir is given in table 8.8
and fig. 8.3 respectively. Injection well is located in the cell highlighted in red
and the producing well in the cell highlighted blue.

After the simulation, surfactant concentration, oil saturation and oil pressure
profile is plotted for two different times, 848 and 1548 days. These times were
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chosen to capture the effects of an increasing and decreasing surfactant concen-
tration, as the surfactant slug is entering and leaving the reservoir at these times.
The simulation results obtained from the newly implemented surfactant model
are plotted together with the simulation results from Eclipser in dotted and full
lines respectively.

Figure 8.4: Surfactant concentration profile. After 848 days denoted with blue
markers and 1548 days with red markers. A clear difference is seen as the surfac-
tant model implemented in MRST show a more smeared out profile than Eclipser

From figs. 8.4 an obvious discrepancy is seen and a few key observations can
be noted. As the injected surfactant slug enters and propagates the reservoir
(from the left to right), the model implemented in MRST predicts a less sharp
concentration front than Eclipser. This is illustrated at 848 days with blue
lines. As the slug flows through the reservoir and exiting on the right side, the
surfactant model predicts a longer concentration "tail" where the surfactant slug
have moved through. The end effects of the concentration in the surfactant slug
can be interpreted as a dispersion effect, though the physics behind this has not
been implemented in this study. Instead, the dispersion effect on the ends of
the slug are interpreted as numerical dispersion, an artefact of implicit numerical
solutions which cause the results to smear out.

Overall, the model developed in this thesis seem to predict a more smeared out
surfactant concentration profile with distance than Eclipser which will produce a
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more "bell-shaped" curve. Eclipser predicts a steeper concentration decrease and
increase around the slug ends and will produce a more column like concentration
profile, more like a shock front.

Figure 8.5: Oil saturation at 848 and 1548 days. The surfactant model im-
plemented in MRST shows the same qualitative trend as Eclipser, but a faster
moving oil bank

The saturation profiles in fig. 8.5 show the same similarities and differences as
the surfactant concentration profile. The oil saturations at 848 days show the
same qualitative trend, but compared with Eclipser, the oil saturations leading
up to the ultimate oil bank saturation is under-predicted in thesis model. On the
other hand, the oil bank is moving faster in the thesis model, reaching a longer
distance at 848 days. It is worth mentioning that the formation of the oil bank
is consistent with the theory presented in section 5.5.

At 1548 days, the oil saturation profile coincide well, although a somewhat smaller
value can be seen at around 40 meters and from 70 to 100 meters in the imple-
mented surfactant model. Using Matlabs’ embedded trapz function to numer-
ically integrate the plotted function, and thus calculating the area under the
curves, the total amount of oil can be calculated. By subtracting the volume of
the immobile oil (under So = 0.05), the oil in the oil bank is found.
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Oil bank volume = Aφ

L∫
x=0

So(x) dx− 25m2 · 100m · 0.3 · 0.05 (8.1)

Table 8.9: Table showing oil bank volume at 848 days and 1548 days and relative
error to Eclipser. The difference at 848 days is smaller than at 1548 days because
of volume balancing each other out.

Eclipser Thesis model Relative error, %
848 days 250.05 249.81 0.096
1548 days 35.04 34.09 2.787

From the results in table 8.9, we can see that when the oil bank propagates, the
same volume of oil is moved within a margin of less than 0.1 percent. This is
because the smaller saturation values from the thesis model leading up to the
oil bank saturation is to a certain degree balanced out by the fact that the oil
bank is longer. So the excess volume that arises from having a longer oil bank is
almost the same as the smaller area during the build up of saturation.

However, when the oil bank breaks through, there is no excess volume to balance
out the error. This means that since the thesis surfactant model predicts the oil
to move faster through the reservoir, the amount of produced oil at any given
time after the oil bank break through, will be larger than for Eclipser. This is
why the relative error increases after break through.

Since the oil bank moves faster in the thesis model, the amount of produced oil
will always be a few "steps ahead" of Eclipser. This means that the response from
the oil bank break through will be observed at different times on the cumulative
oil production plot, shown below, and, as mentioned above, at any given time
after oil bank break through, the thesis model will predict a higher recovery
than Eclipser, though only marginal. Another observation is the fluctuating oil
saturation values near the saturation front. This effect is also reproduced by the
surfactant model implemented in MRST, although at a distance further away,
coinciding with the above discussion.
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Figure 8.6: Pressure at 848 and 1548 days. Eclipser is plotted with red markers
and the implemented surfactant model in MRST with blue markers. An obvious
discrepancy is seen, coinciding with the concentration and saturation profile in
figs. 8.4 and 8.5.

The pressure profile in fig. 8.6 reflects the saturation distribution from fig. 8.5.
At 848 days, the change in pressure gradient coincides with the different oil bank
saturation fronts. As water viscosity increases moderately with surfactant con-
centration, the water viscosity is expected to gradually change over the changing
regions of the surfactant concentration. Since the two surfactant profiles at 848
days are not equal, the spatial variation in water viscosity is not expected to be
the same. Because of this, and the fact that the thesis model predicted a slightly
smaller oil saturation leading up to the oil bank front, the pressure profile at
848 days predicted by the thesis model and Eclipser are different. The thesis
model predicts a slightly more curved pressure profile in the region before the
oil bank front. The pressure profile at 1548 days also deviates from Eclipser,
even though the saturation profiles match rather well. This might also be related
to the surfactant concentration once again, resulting in a region of higher water
viscosity in the thesis model and a higher pressure drop.
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(a) Cumulative oil production with time.

(b) Producing oil rate with time

Figure 8.7: Cumulative and producing oil rate plotted against time
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(a) Cumulative water production with time

(b) Producing water rate with time

Figure 8.8: Cumulative and producing water rate plotted against time
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In terms of production data, figs. 8.7a, 8.7b, 8.8a and 8.8b suggest that the sur-
factant model implemented in MRST is able to reproduce Eclipser’s surfactant
model with great accuracy, being almost identical for oil production. As men-
tioned in the discussion on the oil bank saturation front, the break through of the
oil bank is seen earlier in fig. 8.7a at around 950 days. This causes the predicted
oil production curve to always lie "on top" of the one predicted by Eclipser. This
effect can also be seen in fig. 8.7b, where the sharp increase in oil rate (due to oil
bank break through) comes earlier in the data from the thesis model than from
Eclipser.

The highest oil rate predicted for the thesis model is seen to be moderately lower
than for Eclipser. This can be seen in context with fig. 8.5, where the oil
saturation in the oil bank is lower for the thesis model than for Eclipser. This
also coincides well with the water rate plotted in fig. 8.8b, which shows a larger
water rate from the thesis model than Eclipser for the same period in time.

At around 1500 days the oil production rate plateaus out more for the thesis
model than for Eclipser, though not a major difference. This time coincides
with the time when the surfactant is stopped being injected. The calculated
cumulative oil and water at the end of the simulation is shown in table 8.10,
presented in Sm3. The relative error is calculated using eq. 8.2.

∣∣∣∣{Thesis Model} − {Eclipser}
{Eclipser}

∣∣∣∣ (8.2)

Table 8.10: Oil and water cumulative production in standard cubic meters and
relative error to Ecipser.

Eclipser Thesis model Relative error, %
Oil 504.9 505.7 0.157

Water 1.1873E4 1.2033E4 1.348

As a final remark, the author would like to point out that a shock front would
be expected in the surfactant and oil saturation profiles. However, this is not
observed and is attributed to the numerical solution. As pointed out by Swami-
nathan (1994), an artefact of implicit methods is smearing, referred to as false
diffusion or artificial dispersion. This accounts for the absence of shock fronts
in the profiles and can also be seen in fig. 3.2, as the results are obtained in the
thesis model. The results presented in this section indicate that Eclipser has
less numerical dispersion than the implemented surfactant model in MRST.
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8.3 Five Well Spot Pattern Validation Case

In the next case, a five well spot pattern configuration is investigated. Here,
a producing well is located near the centre of the reservoir surrounded by an
injection well in each corner, A, B, C and D. The placement of the wells are
shown in fig. 8.9. Red denotes injection well placement and blue denotes the
production well. The physical dimensions of the simulation grid are given in
table 8.11.

Table 8.11: Grid and reservoir properties

Nx ×Ny ×Nz 20× 20× 1
∆x×∆y×∆z 5× 5× 5
Physical dimensions 100m× 100m× 5m

Figure 8.9: Cells where injection wells (red) and producer (blue) are located.
Grid and well placement chosen to investigate the validity of 2D flow in the
surfactant model implemented in MRST

Similar to the previous case, injection wells operate at a fixed bottomhole pressure
of 320 and 280 bar. In this case, the reservoir first is water flooded for 1025 days.
After the water flood, surfactant is injected with a concentration of 50 kg/m3

from one well at the time for 525 days each. While one well injects surfactant,
the other three inject water. When one well stops the surfactant injection, a new
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well commences its. This continues until all four injection wells have injected one
slug each, and the cycle is A, B, C and D. The simulation is concluded with a
525 days long water flood to see the end effects on the surfactant slug from well
D.
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(a) Cumulative oil production with time

(b) Oil production rate with time

Figure 8.10: Cumulative and producing oil rate plotted against time
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(a) Cumulative water production with time

(b) Water production rate with time

Figure 8.11: Cumulative and producing water rate plotted against time
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By studying the producing oil rate in fig. 8.10b, the breakthrough of four oil
banks can clearly be seen between 1000 and 3000 days as distinct spikes in the
producing rate. As discussed in section 8.2, the oil bank move faster in the thesis
model than in Eclipser, and the effect of this can be as the blue line (thesis
model) spikes and subsequently decreases before the red line (Eclipser).

Also, as mentioned in the previous section, the oil saturation in the oil bank is
smaller in the thesis model than in Eclipser and is why the ultimate production
rate at these spikes is lower for the thesis model. At the time when the last oil
bank breaks through, Eclipser predicts somewhat fluctuating production rates
which can not be seen in the results from the thesis model. The reason for this
is not known. The four spikes can also be located in the production profile in fig.
8.10a as incremental production as the curve starts to flatten out. Since each oil
bank front arrives at the producing well earlier in thesis model than in Eclipser,
the amount of produced oil will be higher for the thesis model at any given time
after break through of one bank. In this case, however, the producing reservoir
volume is greater and there are formed four oil banks, so this effect will be even
greater and result in a larger discrepancy in cumulative produced oil at the final
plateau than for the 1D case. In table 8.12, the cumulative oil and water produced
is presented in Sm3 at the end of the simulation run, calculated for Eclipser and
the thesis model. The relative error to Eclipser is also calculated.

Table 8.12: Cumulative oil and water produced in standard cubic meters at the
end of the simulation. Error is relative to Eclipser

Eclipser Thesis model Relative error, %
Oil 9.543E3 9.617E3 0.775

Water 2.875E5 2.994E5 4.158

The production data for oil is well matched. The small discrepancy may be
related to the discussion for producing oil in the 1D case, and may give a false
impression.

Considering the production profile for water, the cumulative water production is
well matched, but due to the scaling of the axis, minor differences between the
two simulation results are difficult to detect. Considering the producing water
rate in fig. 8.11b, a clear difference is easily spotted. As the first oil bank arrives
at the producing well, the water rate also increases. The general trend is that the
thesis model predicts a higher water rate than Eclipser for the entire simulation
run. The thesis model is also not able to capture the effects of the fluctuating
water rates as seen from around 2600 days. The reason for this is now known.

In figs. 8.12 and 8.13 below, surfactant concentration at different times is visual-
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ized to see how surfactant is transported throughout the reservoir. A lower limit
cut off value of 1 kg/Sm3 is used to ensure that only the grid cells where the IFT
has been reduced to the minimum value, as according to the data in table 8.1, is
visualized.
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(a) Surfactant distribution at 1100 days (b) Surfactant distribution at 1100 days

(c) Surfactant distribution at 1615 days (d) Surfactant distribution at 1615 days

(e) Surfactant distribution at 2120 days (f) Surfactant distribution at 2120 days

Figure 8.12: Surfactant distribution at different times during the simulation
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(a) Surfactant distribution at 2665 days (b) Surfactant distribution at 2665 days

(c) Surfactant distribution at 3180 days (d) Surfactant distribution at 3180 days

Figure 8.13: Surfactant distribution at different times during the simulation

From the surfactant concentration distribution plots in figs. 8.12 and 8.13 show
a difference in surfactant distribution throughout the simulation. The thesis
model predicts, as concluded before, that the surfactant has more gradual sur-
factant concentration fronts around the edges of the slug. Considering fig. 8.12a,
Eclipser shows a more concentrated slug, with a sharper, more well defined front
than the thesis model, but this model predicts the slug to reach more grid cells
at by the same time. Since the IFT reaches a minimum at 1 kg/Sm3, the entire
plotted regions in figs. 8.12 and 8.13 represent areas with minimum IFT values.

Since the thesis model predicts a more dispersed concentration front, a larger
portion of the reservoir is exposed to the surfactant and is thus at minimum IFT
conditions. This is the general trend at all times plotted in figs. 8.12 and 8.13.
In practice, what this means is that a greater portion of immobile oil has been
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mobilized and is being produced in the thesis model than in Eclipser. These
results are also supported by the concentration profiles plotted in section 8.2 as
well as the production data plotted in figs. 8.10a and 8.10b.
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8.4 Layered Five Well Spot Pattern Validation
Case

In the final validation case, the same five spot well configuration is investigated,
though this time the injection wells are perforated only in the upper most layer
and the production well only in the lower most layer. This way, the full effect of
3D flow can be investigated as the stream will flow diagonally from the corners
towards the centre and also vertically from the upper to the lower layer. The
physical dimensions of the reservoir grid is listen in table 8.13 and the grid cells
where producing and injection wells are perforated is show in fig. 8.14. The run
schedule is the same as in the previous case.

Table 8.13: Grid and reservoir properties

Nx ×Ny ×Nz 10× 10× 5
∆x×∆y×∆z 10× 10× 1
Physical dimensions 100m× 100m× 5m

Figure 8.14: Cells where injection wells (red) and producer (blue) are perforated.
Grid and well placement chose to see the validity of 3D flow in the implemented
surfactant model in MRST
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(a) Cumulative oil production with time

(b) Oil production rate with time

Figure 8.15: Cumulative and producing oil rate plotted against time
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(a) Cumulative water production with time

(b) Water production rate with time

Figure 8.16: Cumulative and producing water rate plotted against time
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As can be seen from the cumulative oil production profile in fig. 8.15a, there
is a discrepancy between the results from newly implemented surfactant model
and Eclipser, not only limited to the times after oil bank break through, but
also during the water flooding. This is a deviation from the observed trend, as
the production profiles aligned perfectly during the times prior to oil bank break
through in the two other cases. It is therefore reasonable to suspect that the a
problem might have been caused in the fluid potential calculations.

At around 1600 days, one can see that the thesis model predicts the oil banks to
break through earlier than in Eclipser as is consistent with the trend presented
in the two previous cases. As the effect of the injected surfactant is observed
on the oil production curve, the results from the thesis model and Eclipser
seem to coincide well. The producing oil rate in fig. 8.15b shows a significant
difference in the early times as the oil rates predicted by Eclipser exceeds the
thesis model’s. The reason for this is undetermined. After the break through of
oil banks, the thesis model predicts the same qualitative trend as Eclipser. The
most significant difference is that the oil rate for the thesis model is always larger
than for Eclipser and does not drop as much in the "valleys". For the producing
water rate in fig. 8.16b, the situation is opposite as the water rate for Eclipser
is overall larger than for the thesis model, predicting the same qualitative trend,
but not capturing the fine details.

Table 8.14: Cumulative oil and water produced in standard cubic meters. Error
is relative to Eclipser

Eclipser Thesis model Relative error, %
Oil 8.161E3 8.203E3 0.517

Water 8.948E4 7.894E4 11.776

In table 8.14 can see that the cumulative oil production only has a relative error
of .517%. On the other side, the cumulative water produced has a relative error
of 11.776 %, which is very significant.
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(a) Surfactant distribution at 1100 days (b) Surfactant distribution at 1100 days

(c) Surfactant distribution at 1615 days (d) Surfactant distribution at 1615 days

(e) Surfactant distribution at 2120 days (f) Surfactant distribution at 2120 days

Figure 8.17: Surfactant distribution at different times
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(a) Surfactant distribution at 2665 days (b) Surfactant distribution at 2665 days

(c) Surfactant distribution at 3180 days
(d) Surfactant distribution at 3180 days

Figure 8.18: Surfactant distribution at different times
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In the figs. 8.17 and 8.18, the model has been rotated such that the well that
is injecting surfactant is facing the viewer. As in the previous section, cells with
surfactant concentration above 1 kg/Sm3 are highlighted. The results in figs.
8.17 and 8.18 show that the surfactant propagation for the 3D validation case
differs from the 1D and 2D cases. Here, Eclipser is observed to predict a larger
area in the reservoir exposed to surfactant at 1100 days in fig. 8.17a. At the other
times, the thesis model predicts a larger number of grid cells with a concentration
above 1, consistent with the previous observations.

In figs. 8.18a and 8.18c, there are regions in the central parts of the lower
most layer with surfactant concentration values above 1. These values are not
consistent with Eclipser, and is an indication of a erroneous result during the
simulation. It might also originate from adsorption calculation, as the thesis
model predicts a longer "tail" on the surfactant concentration profile.
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Chapter 9

Conclusion

Based on the observations made and discussed in sections 8.2, 8.3 and 8.4, a few
key conclusions can be drawn.

1. From the presented results, the author concludes that the work of imple-
menting a surfactant model as an extension to a black-oil model on general
grids in MRST has been successful. The use of automatic differentiation
has proved invaluable in the work of implementing new equations.

2. Comparing key features such as surfactant transport, oil saturation profile,
pressure profile and production data, the implemented model compares
well with the formulation from Eclipser. The model is able to qualitatively
predict the same behaviour as Eclipser, however it is not able to reproduce
the results in full detail.

3. The most interesting difference, which largely can explain the other dis-
crepancies, is the smeared out surfactant concentration profile presented in
section 8.2. This results in a larger region where the IFT has reaches ultra-
low levels and thus improving the flow properties in a larger region in the
implemented surfactant model than in Eclipser. This is manifested in the
production curves as an earlier break through in oil bank and a marginally
larger cumulative oil production at any given time after break through.
It is reasonable to conclude that the difference is surfactant distribution
between the two models is the reason for all the other observed differences.

4. The reasons for the observed differences are not determined, but the author
points out the most likely reasons: 1) The smeared nature of the surfactant
concentration profile is indicative of a differences in the numerical solu-
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tion which results in more numerical dispersion in the newly implemented
surfactant model in MRST than in Eclipser (Swaminathan, 1994). 2)
Implementation of fluid transport properties, mainly relative permeability,
in the ultra-low IFT zones ar also considered a reason for the observed
differences.

5. The work in this thesis is a solid foundation for further research and develop-
ment in surfactant injection EOR modelling in an open-source framework.
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Future Improvements

Concluding this thesis, suggestions to elements that would further improve the
authors implementation of a surfactant model to the MRST source code is noted.
The use of the automatic differentiation is invaluable for including new physics
to an existing framework of equations.

• Three-phase flow - In the present model, formation of a microemulsion
phase is not considered. For a more realistic modelling approach, the for-
mation of type II(-), II(+) and III microemulsions should be considered.

• Salinity - the author suggests implementing conservation and mixing equa-
tions for brine salinity.

• Ions - The effect of ions (especially divalent ions) on surfactant’s ability to
reduce IFT and increase recovery is quite significant (Jamaloei and Rafiee,
2008). This is effect could also be combined with salinity effects, to see the
effect of effective salinity.

• Temperature - Surfactant adsorption which are dependent on tempera-
ture conditions (Ziegler and Handy, 1981) is suggested to be implemented.

• Compositional effects - Implementing a compositional module to the
developed surfactant model would allow for compositional changes in oil and
gas. Surfactants ability to reduce IFT is dependent on the oil composition,
so this would allow for a more representative model. How well the surfactant
properties are documented for compositional changes in oil is unknown to
the author.
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Nomenclature

~vi Velocity vector of fluid i [m/s]

αk Step length along direction vector

α Dip angle [radians]

∆x Vector of incremental change to solution variables

δpm,n Discrete pressure drop from cell centred computational nodes in cell m
to n [Pascal]

∆t Time step length [s]

∆xn Distance from cell centre to cell interface in cell n [m]

ε Predetermined tolerance level

γn,m Interface between two grid cells, m and n, ∂Ωn ∩ ∂Ωm
F Residuals

J Jacobian

K Permeability tensor [m2]

µs Surfactant viscosity [mPa s]

µi Viscosity of fluid i [mPa s]

µws Viscosity of the surfactant/water mixture [mPa s]

∇z Depth gradient [ - ]

Ω Control volume

∂Ω Confining boundary of control volume Ω

Φi Potential of fluid i [Pascal]
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φ Porosity [ - ]

ρi Density of fluid i [kg/m3]

σi,j Interfacial tension between fluid i and fluid j [N/m]

q̃i Volumetric flow rate of phase i per volume in surface conditions [Sm3/s]

A Area available to fluid flow [m2]

ADS Surfactant adsorption [kg]

Bi Formation volume factor of phase i [m3/Sm3]

cs Surfactant concentration [kg/Sm3]

dk Direction vector

Em Microscopic sweep [ - ]

Es Sweep efficiency [ - ]

Fc Capillary forces [Newton]

fi Flux of phase i across the control volume boundaries [m3/s]

Fv Viscous forces [Newton]

fw Flow fraction of water [ - ]

ke,i Effective permeability of phase i [ - ]

kr,i Relative permeability of phase i [ - ]

k0
r,i End-point relative permeability of phase i, [ - ]

l Discrete time step in the finite-volume evaluation [ - ]

m Miscibility [ - ]

n Corey curve exponent, [ - ]

Nc Capillary number [ - ]

N∗c Critical capillary number [ - ]

Np Dimensionless incremental oil from an EOR process [ - ]

P.V. Cell pore volume [m3]

pc Capillary pressure [Pascal]

pi Pressure of phase i [Pascal]

pnw Non-wetting phase pressure [Pascal]
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pref Reference pressure [Pascal]

pw Wetting phase pressure [Pascal]

Qi Average generation of mass of phase i per volume time [kg/m3s]

qi Volumetric flow rate of fluid i [m3/s]

qt Total flow rate [m3/s]

R Remaining terms in a Taylor series

r1,2 Principal radii of curvature of an interface [m]

Si Saturation of phase i [ - ]

Seff Effective saturation [ - ]

Sorc Residual oil saturation to chemicals [ - ]

Sorw Residual oil saturation to water [ - ]

Sor Residual oil saturation [ - ]

Swf Shock front water saturation [ - ]

Swi Irreducible water saturation [ - ]

Swn Normalized water saturation [ - ]

T Transmissibility [m3/Pascal s]

t Time [s]

V Grid cell volume [m3]

N Number of grid cells
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Appendix A

Implemented Keywords

A.1 SURFST

Function interpolating tabulated IFT data at a given surfactant concentration.

function f = assignSURFST(f, surfst, reg)
f.iftOWsurf = @(c) iftOWsurf(c, surfst, reg);
end

function v = iftOWsurf(c, surfst, reg)
satinx = getRegMap(c, reg.SATNUM, reg.SATINX);
surfst = extendTab(surfst);
v = interpReg(surfst, c, satinx);
end
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A.2 SURFVISC

Function interpolating tabulated surfactant viscosity data at a given surfactant
concentration.

function f = assignSURFVISC(f, surfvisc, reg)
f.muS = @(c) visc(c, surfvisc, reg);
end

function v = visc(c, surfvisc, reg)
satinx = getRegMap(c, reg.SATNUM, reg.SATINX);
surfvisc = extendTab(surfvisc);
v = interpReg(surfvisc, c, satinx);
end
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A.3 SURFROCK

Function assigning rock density and adsorption index in different regions in the
grid. This function is used in adsorption calculations.

function f = assignSURFROCK(f, surfrock, reg)

f.surfrock=[];
ind = 1;

if ischar(reg.SATINX)
if reg.SATINX == ':'

f.surfrock.type = surfrock{1}(1);
f.surfrock.rhoR = surfrock{1}(2);

else
end

else
for i = 1:numel(reg.SATINX)

for j = 1:numel(reg.SATINX{i})
f.surfrock.type(ind,1) = surfrock{i}(1);
f.surfrock.rhoR(ind,1) = surfrock{i}(2);
ind = ind + 1;

end
end

end
end
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A.4 SURFADS

Function to interpolate adsorption data at a given surfactant concentration

function f = assignSURFADS(f, surfads, reg)
f.surfads = @(c, varargin) ads(c, surfads, reg, varargin{:});
end

function v = ads(c, surfads, reg, varargin)
satinx = getRegMap(c, reg.SATNUM, reg.SATINX, varargin{:});
surfads = extendTab(surfads);
v = interpReg(surfads, c, satinx);
end
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A.5 SURFCAPD

Function for interpolating the logarithmic value of Nc in tabulated data fo find
the miscibility conditions.

function f = assignSURFCAPD(f, surfcapd)

f.misc = @(logCAPN)misc(logCAPN, surfcapd);
end

function v = misc(logCAPN, surfcapd, varargin)
surfcapd = extendTab(surfcapd);

logCAPN(isinf(logCAPN))= min(surfcapd{1}(:,1));
v = interptable(surfcapd{1}(:,1), surfcapd{1}(:,2), logCAPN);
end
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Appendix B

Physical effects

B.1 Surfactant adsorption

This function calculates the adsorption term in the discrete conservation equation
for surfactant. tmp is an output variable used for de-bugging.

function [ads,tmp] = ...
surfactantAds(f,s,poro,cmax,state0,pvMult,pvMult0,dt,c,c0)

ads.type2 = ...
(s.pv/dt).*(f.surfrock.rhoR.*((1−poro)./poro). ...

*(pvMult.*f.surfads(c) − pvMult0.*f.surfads(state0.cmax)));
ind=c<state0.cmax;
ads.type2(ind)=ads.type2(ind)*0;

tmp.type2 = (f.surfrock.rhoR.*((1−poro)./poro). ...

*(pvMult.*f.surfads(cmax)));

ads.type1 = ...
(s.pv/dt).*(f.surfrock.rhoR.*((1−poro)./poro). ...

*(pvMult.*f.surfads(c) − pvMult0.*f.surfads(c0)));
tmp.type1 = (f.surfrock.rhoR.*((1−poro)./poro).*(pvMult. ...

*f.surfads(c)));

ads = (1−rem(1,f.surfrock.type)).*ads.type1 + ...
rem(1,f.surfrock.type).*ads.type2;

tmp = (1−rem(1,f.surfrock.type)).*tmp.type1 + ...
rem(1,f.surfrock.type).*tmp.type2;

end
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B.2 Computing Capillary Number

Function for computing Nc.

function CAPN = computeNcSurf(p, f, state, g, G, s)

bO = f.bO(p);
bO = bO.val;
p_temp = state.pressure + bO.*f.rhoOS.*g.*(G.cells.centroids(:,3));
gradp = s.grad(p_temp);
Kgradp = s.T.*gradp;
term = s.divnc(((1./G.faces.areas(s.internal)).*Kgradp).^2);

CAPN = ((term./2).^0.5)./f.iftOWsurf(state.c);
end
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B.3 Capillary Pressure and Relative Permeabil-
ity Calculations

The SWOF keyword is used for saturation dependent relative permeability and
capillary pressure data. This function calculates and averaged relative permeabil-
ity for the miscible and immiscible curve. It also interpolates capillary pressure
from tabulated data at a given surfactant concentration.

function f = assignSWOF(f, swof, reg)

f.krW = @(sw, varargin)krW(sw, swof, reg, varargin{:});
f.krWmisc = @(sw, varargin)krWmisc(sw, swof, reg, varargin{:});

f.krOW = @(so, varargin)krOW(so, swof, reg, varargin{:});
f.krOWmisc = @(so, varargin)krOWmisc(so, swof, reg, varargin{:});

f.avgRelPerm = @(m, sw)avgRelPerm(m, sw, swof, reg);

f.pcOW = @(sw, varargin)pcOW(sw, swof, reg, varargin{:});
swcon = cellfun(@(x)x(1,1), swof);
ntsat = numel(reg.SATINX);
if ntsat == 1

f.sWcon = swcon(1);
else

f.sWcon = swcon(reg.SATNUM);
end
end

function [u, v] = avgRelPerm(m, sw, swof, reg)
satinx = getRegMap(sw, reg.SATNUM, reg.SATINX);
surfinx = getRegMap(sw, reg.SURFNUM, reg.SURFINX);

lower = m*swof{2}(1,1) + (1−m)*swof{1}(1,1);
upper = m*swof{2}(end,1) + (1−m)*swof{1}(end,1);

Seff = (sw − lower)./(upper − lower);
Sbar_1 = Seff.*(swof{1}(end,1) − swof{1}(1,1)) + swof{1}(1,1);
Sbar_2 = Seff.*(swof{2}(end,1) − swof{2}(1,1)) + swof{2}(1,1);

Tw = cellfun(@(x)x(:,[1,2]), swof, 'UniformOutput', false);
Tw = extendTab(Tw);

To = cellfun(@(x)x(:,[1,3]), swof, 'UniformOutput', false);
To = extendTab(To);
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krMiscW = interpReg(Tw,Sbar_2,surfinx);
krImmiscW = interpReg(Tw,Sbar_1, satinx);
krMiscO = interpReg(To,Sbar_2, surfinx);
krImmiscO = interpReg(To,Sbar_1, satinx);

u = m.*krMiscW + (1−m).*krImmiscW;
v = m.*krMiscO + (1−m).*krImmiscO;

end

function v = krW(sw, swof, reg, varargin)
satinx = getRegMap(sw, reg.SATNUM, reg.SATINX, varargin{:});
T = cellfun(@(x)x(:,[1,2]), swof, 'UniformOutput', false);
T = extendTab(T);
v = interpReg(T, sw, satinx);
end

function v = krWmisc(sw, swof, reg, varargin)
surfinx = getRegMap(sw, reg.SURFNUM, reg.SURFINX, varargin{:});
T = cellfun(@(x)x(:,[1,2]), swof, 'UniformOutput', false);
T = extendTab(T);
v = interpReg(T, sw, surfinx);
end

function v = krOW(so, swof, reg, varargin)
satinx = getRegMap(so, reg.SATNUM, reg.SATINX, varargin{:});
T = cellfun(@(x)x(:,[1,3]), swof, 'UniformOutput', false);
T = extendTab(T);
v = interpReg(T, 1−so, satinx);
end

function v = krOWmisc(so, swof, reg, varargin)
surfinx = getRegMap(so, reg.SURFNUM, reg.SURFINX, varargin{:});
T = cellfun(@(x)x(:,[1,3]), swof, 'UniformOutput', false);
T = extendTab(T);
v = interpReg(T, 1−so, surfinx);
end

function v = pcOW(sw, swof, reg, varargin)
satinx = getRegMap(sw, reg.SATNUM, reg.SATINX, varargin{:});
T = cellfun(@(x)x(:,[1,4]), swof, 'UniformOutput', false);
T = extendTab(T);
v = interpReg(T, sw, satinx);
end
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Implemented conservation
equations and surfactant
specific mechanisms

This is the .m file containing the discrete conservation equations for oil, water
and surfactant. It also contain calculations for transport properties and imple-
mentation of the surfactant specific mechanisms described in chapter. 7.

function [eqs, hst] = eqsfiOWSurfactantExplicitWells(state0, ...
state, dt, G, W, s, f, varargin)

%% Generate equations for a Oil−Water−Surfactant system.

opt = struct('Verbose', mrstVerbose, ...
'reverseMode', false, ...
'scaling', [], ...
'resOnly', false, ...
'history', []);

opt = merge_options(opt, varargin{:});

if ¬isempty(opt.scaling)
scalFacs = opt.scaling;

else
scalFacs.rate = 1; scalFacs.pressure = 1;

end

hst = opt.history;
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%% current variables:
p = state.pressure;
sW = state.s(:,1);
c = state.c;
g = gravity();

pBHP = vertcat(state.wellSol.pressure);
qWs = vertcat(state.wellSol.qWs);
qOs = vertcat(state.wellSol.qOs);
% surf_num = vertcat(state.wellSol.surf);
% surf = surf_num;

wciSurf_num = getWellSurfactant(W);
wciSurf = wciSurf_num;

%% previous variables
p0 = state0.pressure;
sW0 = state0.s(:,1);
c0 = state0.c;

%% Initialization of independent variables
zw = zeros(size(pBHP));

if opt.resOnly
% ADI variables aren't needed since we are only computing the ...

residual.
elseif ¬opt.reverseMode

[p, sW, c, qWs, qOs, wciSurf, pBHP] = initVariablesADI(p, ...
sW, c, qWs, qOs, wciSurf_num, pBHP);

else
[p0, sW0, c0, ¬, ¬, ¬, zw] = initVariablesADI(p0, sW0, c0,...

zeros(size(qWs)), ...
zeros(size(qOs)), ...
zeros(size(wciSurf_num)), ...
zeros(size(pBHP))...
);

end

cmax = max(c,state0.cmax);

g = norm(gravity);
[Tw, dzw, Rw, wc, perf2well, pInx, iInxW] = getWellStuff(W);

%−−−−−−−−−−−−−−−−−−−−
% Check for pressure−dependent transmissibility multiplier
trMult = 1;
if isfield(f, 'tranMultR')

trMult = f.tranMultR(p);
end
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% Check for pressure−dependent pore−volume multiplier
pvMult = 1; pvMult0 = 1;
if isfield(f, 'pvMultR')

pvMult = f.pvMultR(p);
pvMult0 = f.pvMultR(p0);

end

% Surfactant injection well:
cw = c(wc);
cw(iInxW) = wciSurf;

%% Compute surfactant specific mechanisms
% Compute capillary pressure
pcOW = 0;

if isfield(f, 'pcOW');
pcOW = ...

f.pcOW(sW).*f.iftOWsurf(c0)./f.iftOWsurf(zeros(G.cells.num,1));
pcOWw = pcOW(wc);

end

% Compute capillary number and determine miscibility
CAPN = computeNcSurf(p, f, state0, g, G, s);
logCAPN = log10(CAPN);
m = f.misc(logCAPN);

% Determine rel. perms for near miscible conditions
[krW, krO] = f.avgRelPerm(m, sW);

% Viscosities
muW = f.muW(p−pcOW); %Added "−pcOW" term to evaluate at water ...

pressure
muS = f.muS(c0); % Interpolerer fra tabell
muWeff = muW.*muS./f.muWref;

%% Water props

bW = f.bW(p−pcOW);
rhoW = bW.*f.rhoWS;

rhoWf = s.faceAvg(rhoW);
mobW = trMult.*krW./muWeff;
dpW = s.grad(p−pcOW) − g*(rhoWf.*s.grad(G.cells.centroids(:,3)));

% water upstream−index
upc = (double(dpW)≥0);
bWvW = s.faceUpstr(upc, bW.*mobW).*s.T.*dpW;
bWvS = s.faceUpstr(upc, bW.*mobW.*c).*s.T.*dpW;
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%% Oil props
bO = f.bO(p);
rhoO = bO.*f.rhoOS;
rhoOf = s.faceAvg(rhoO);
mobO = trMult.*krO./f.BOxmuO(p);
dpO = s.grad(p) − g*(rhoOf.*s.grad(G.cells.centroids(:,3)));

% oil upstream−index
upc = (double(dpO)≥0);
bOvO = s.faceUpstr(upc, mobO).*s.T.*dpO;

%% Values for cells containing wells
bWw = bW(wc);
bOw = bO(wc);

mobWw = mobW(wc);
mobOw = mobO(wc);
mobSw = mobW(wc).*cw;

%producer mobility
bWmobWw = bWw.*mobWw;
bOmobOw = bOw.*mobOw;

bWmobSw = bWw.*mobSw;

%set water injector mobility: mobw = mobw+mobo, mobo = 0;
bWmobWw(iInxW) = bWw(iInxW).*(mobWw(iInxW) + mobOw(iInxW));
bOmobOw(iInxW) = 0;

pw = p(wc);

% Residual equations for source terms
% Transmissibility and pressure differential is common to water and
% surfactant

%% Source terms
% Water
tmp = Tw.*(pBHP(perf2well) − pw + pcOWw + g*dzw.*rhoW(wc));
bWqW = −bWmobWw.*tmp;

% Surfactant
bWqS = −bWmobSw.*tmp;

% Oil
bOqO = −bOmobOw.*Tw.*(pBHP(perf2well) − pw + g*dzw.*rhoO(wc));

%% EQUATIONS
% oil:
eqs{1} = (s.pv/dt).*( pvMult.*bO.*(1−sW) − ...

pvMult0.*f.bO(p0).*(1−sW0) ) + s.div(bOvO);
eqs{1}(wc) = eqs{1}(wc) + bOqO;
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% water:
eqs{2} = (s.pv/dt).*( pvMult.*bW.*sW − pvMult0.*f.bW(p0).*sW0 ...

) + s.div(bWvW);
eqs{2}(wc) = eqs{2}(wc) + bWqW; % bWqW = qW/Bw (bW = 1/Bw)

% Surfactant:
poro = s.pv./G.cells.volumes;

% Calculates adsorption term
[ads,tmp] = surfactantAds(f, s, poro, cmax, state0, pvMult, ...

pvMult0, dt, c, c0);

eqs{3} = (s.pv/dt).*(pvMult.*bW.*sW.*c − ...
pvMult0.*f.bW(p0).*sW0.*c0) + s.div(bWvS) + ads;

eqs{3}(wc) = eqs{3}(wc) + bWqS;

% Well equations
zeroW = 0*zw;

eqs{4} = Rw'*bWqW + qWs + zeroW;
eqs{5} = Rw'*bOqO + qOs + zeroW;

% Trivial constraint − this is only to get the adjoint partial ...
derivatives

eqs{6} = wciSurf − wciSurf_num + zeroW(iInxW);

% Last eq: boundary cond
eqs{7} = handleBC(W, pBHP, qWs, qOs, [], scalFacs);% + zeroW;
end

%% Functions
function wciSurf = getWellSurfactant(W)
if isempty(W)

wciSurf = [];
return

end
inj = vertcat(W.sign)==1;
surfInj = cellfun(@(x)¬isempty(x), {W(inj).surf});
surfVal = zeros(nnz(inj), 1);
surfVal(surfInj) = vertcat(W(inj(surfInj)).surf);
wciSurf = rldecode(surfVal, cellfun(@numel, {W(inj).cells}));
end
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