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Abstract	
 

This report presents the results obtained during the master thesis done at NTNU in the 
department of applied geophysics and is part of the: “Quantitative geology from petrophysical 
measurment” project. 

The goal of this thesis was to develop a tool in Matlab to automatically interpret 
fractures on images logs. Since many fractures show as sinusoids on images logs this work 
focuses on detecting sinusoidal events in images. The programs were tested on resistivity and 
acoustic images provided respectively by Geostress and Statoil. 

Image processing is usually made of two main steps: edge detection and feature 
extraction. Two different kinds of edge mapping were tested on real data: gradient based and 
Fourier transform based. Finally the Fourier based edge mapping was kept because it could 
enhance the signal of fractures and reduce the impact of lithology. Some pre-processing steps 
like the interpolation of images had however to be added to enable the use of Fourier. In a 
second part of the thesis, three different feature extraction methods found in the literature 
where tested on synthetic data: the correlation method, the Hough transform and the Radon 
transform.  

  The understanding of the limits of each of the three extraction methods tested 
previously led to the creation of an interpretation program of the “edge-following” type that 
uses a partitioning algorithm. An “edge-following” type was chosen for its ability to interpret 
fractures with imperfect sinusoidal shapes. The program was finally tested on electric and 
sonic image logs. The chances of properly interpreting a fracture on electric images were 
found to be of two over three and the processing speed of 200m/min. 

 The tests on real data showed that the program has troubles interpreting low contrast 
or high dip fractures. There are also some issues when applied on images with break outs or 
wash outs.  

 In a word, a fracture interpretation program was built using Matlab but it can still be 
improved. 
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Introduction	
 

With the continuous demand for hydrocarbons and the depletion of reservoirs, it is 
critical to extract as much hydrocarbons from reservoir as possible. This means increasing the 
knowledge we have of reservoirs in order to design the best production strategy and achieve a 
high recovery factor. 

At NTNU this issue is addressed from different point of views and especially through 
the project called Quantitative Geology from Petrophysical Measurements, which this work is 
a part of. The idea is to extract more information from high resolution logs than is done today.  

The work presented here focuses on studying and implementing automatic methods to 
interpret fractures on image logs. 

 
Borehole images are acquired by lowering a tool in the well and measuring a physical 

quantity (resistivity, travel time, wave amplitude) when pulling it up. This gives an image of 
the wellbore which contains a lot of information about fractures, sedimentary structures, layer 
properties, etc.  Although it does not give as much information as cores, image logs can be a 
good substitute when some cores are missing or when the information provided by the image 
logs is sufficient. These images can even have information that the core has lost since the logs 
are acquired at reservoir conditions. 

It has been decided to focus on fractures for the reason that they are of major 
importance to understand the behavior of reservoirs from a geomechanical and from a 
production point of view. Moreover, image logs are the only method giving direct 
measurements of fracture properties at reservoir conditions. Other indirect methods exist 
which involve inversion of seismic and production data or the use of outcrop analogs. 

 
Still, image logs do not have only advantages. One of their drawbacks is their 

processing which might prove to be very time consuming if done manually, hence our 
purpose to make it automatic. Even if the ultimate goal would be to have a software 
interpreting as a geologist, for the moment someone needs to check that the proposed 
interpretation is coherent. To sum up, one can think of this work as the development of a tool 
in Matlab which makes the geologist’s work faster and easier when it comes to fracture 
interpretation on image logs. 

 
  



I) Image	logs	
 

Historically, the ancestors of image logs are dip meters which have been used in the 
industry since the 1930’s. They were introduced to evaluate the dip magnitude and direction 
of rock strata. They were made of 4 or 8 electrodes measuring resistivity in equally distributed 
directions along the wellbore circumference. Hence, they could only give an idea of what the 
wellbore looked like. New imaging tools have up to 192 traces and provide a high resolution 
image, however one should not forget that dip meters were precursors and because of this 
many of the processing steps were initially designed to deal with them. 

 In the following, all the image logs that are presented have been oriented to give a 
proper representation of the wellbore so you cannot consider them as being raw data. Other 
corrections like tool velocity correction for example have been applied depending on the tool 
used for the acquisition. 

1) Concept	
 

Image logs are high resolution images of the borehole wall. They contain a lot of 
information about sedimentary structures, layer properties, and also fractures. There are 
usually two types of image logs: micro resistivity and acoustic images. Micro resistivity 
images are obtained thanks to many electrodes measuring how much current flow into the 
formation while acoustic images are obtained by measuring the travel time and amplitude of 
an ultrasonic wave propagating in the borehole.  Even though micro resistivity and acoustic 
images do not measure the same physical property they are often very similar so it is 
interesting to compare them.  Figure 1 shows an example of FMI (Full-bore Formation 
Microloger) and UBI (Ultrasonic Borehole Imager) images put side by side. The two images 
look very alike with the UBI image showing maybe more clearly the fractures.  Even if 
electric and acoustic images are very similar, they have differences. One of them being that 
acoustic images can be acquired in any type of muds whereas resistivity logs need to be run in 
water based muds. 

 



 
Figure 1 Comparison between acoustic (UBI) and electric (FMI)  images. The fractures are more clearly seen on the UBI 
image because the background of the image is more homogeneous. [8] 

 
In this study both micro resistivity and acoustic images have been considered. Thanks 

to the interest of Statoil for this project acoustic data acquired with a UBI was available. The 
micro resistivity images are a courtesy of Geostress, acquired by their tool: the HTPF 
(Hydraulic Testing on Pre-existing Fractures). Fortunately the two sets of data cover the 
whole well so the images present a complete coverage and the processing is made easier 
thanks to it. 

 
A UBI is made of a rotating transducer (Figure 2 ) sending an ultrasonic wave and 

recording the reflected wave from the borehole wall for different channels. The UBI data 
presented in the following sections has been acquired with 180 channels meaning that the 
image is made of 180 traces. The amplitude of the wave gives some information about the 
texture of the surface and the transit time shows changes in the borehole radius. Although the 
UBI may not always reflect lithology changes accurately it is very effective to detect 
fractures. Figure 3 shows the UBI measurement specifications. 

 



 
Figure 2 Transducer used in the UBI. The transducer can turn at different frequencies depending on 
the resolution of the image (I) 

 

 

Figure 3 Measurement specification of a UBI tool (I) 

 

Figure 4 View of the imaging part of the HTPF. It is made of 24 equally spaced electrodes 



  The HTPF is used to calculate in-situ stress by reactivating pre-existing fractures [2]. 
Because the dip direction and dip of pre-existing fractures must be known to apply the method 
an imaging tool has been added to measure these.  The imaging part of the HTPF is made of 
24 equally spaced electrodes covering the whole borehole circumference. The electric current 
received by each of the electrodes is proportional to the conductance of the part of the 
borehole wall it is facing. Some focalization electrodes have been added to ensure that the 
direction of the current is normal to the wall. 

 

2) Fractures	on	image	logs	
 

  Fractures are a key parameter to understand the behavior of the underground from a 
geomechanical or hydrodynamical point of view. They can help you understand the stress 
situation, they can transform tight formations into producible ones, they can seal some parts 
of the reservoir, etc. Still, the main issue with them is that they are difficult to characterize. 
Many methods have been developed to characterize the fracture sets involving seismics, AVO 
analysis or reservoir engineering but image logs are yet the only way that allows a direct 
measure of fractures. Image logs are even more effective than cores for fracture analysis 
because there can be some drilling induced factures in the cores.  

 If one assumes fractures to be planar features and the wellbore to be cylindrical then 
the unwrapping of the cylindrical image will show fracture crossing the wellbore as sinusoids 
(Figure 5). The dip direction of a fracture can be directly read from the image by looking at the 
x axis of the minimum while the dip angle can be simply derived from: 

 
2

 (1)  

 

Where  is the dip angle, R is the borehole radius, and A is defined in the figure below.  

  

Figure 5 Sketch showing that a fracture intersecting a well shows on an unwrapped image as a sinusoid. [8] 
Dip direction Fracture 



However if the well is not a straight cylinder anymore or if the fracture is not planar 
(Figure 6) it is more difficult to identify fractures on the images because they are not showing 
as sinusoids anymore (Figure 7).  

 

Figure 6 Schematic depicting an apparent overturned  fold  in a horizontal well and  in a slightly undulating well with a 
horizontal fracture 

 

 

Figure 7 Example of an image acquired in one of the situations presented in Figure 6 [8] 

 

This shows that sometimes fractures do not show as sinusoids on the image logs. 
Nevertheless, the following work is focusing on finding sinusoids in images so one should 
keep in mind that not all of the fractures might be detected by the methods presented here. 



 Now that the issue of interpreting fractures in image logs has been narrowed to the 
search of sinusoids in images, it is possible to move on to the actual processing of images. 
This processing is made of two major steps: edge mapping and reconstruction of sinusoids. 
Different methods have been considered and are thus being presented hereafter. Different 
synthetic cases are also shown as well as the results given by the latest version of the code. 

 

II) Pre‐Processing	&	Edge	Mapping	
 

  In the following the images shown are resistivity images acquired with Geostress’ 
HTPF tool. The images were acquired thanks to 24 equally spaced electrodes in a vertical well 
which was crossing some fractures. To compare every step of the workflow the same data is 
presented at different steps of the workflow. 

1) Pre‐processing	
 

  Before the fracture interpretation workflow can start, images need to be pre-processed 
in order to remove some undesired effects related to the acquisition or to the tool. 
Unfortunately not all of the noise has been corrected for and some issues remain when dealing 
with images containing breakouts or washouts. 

 The first step is to perform an interpolation of the data. When images are acquired the 
spacing between two measurements is often different because the tool can have a stick/slip 
behavior which is often due to varying well diameter. To correct for this, an interpolation is 
performed on every trace using a simple linear approximation. This step is compulsory if one 
wants to perform a Fourier transform so it is usually the first one in the processing workflow. 
In order to keep a similar image one usually chooses the theoretical sampling interval used 
during acquisition; hence it corrects the image without changing its resolution. 

Figure 8 shows the original image used throughout the report to illustrate the effects of the 
different processing steps. Figure  9 shows how the image looks like once interpolated at 
regularly spaced depths. One can see that there is no major difference between the two images 
because the original data had already been interpolated but not at equally spaced depths. 



 

Figure 8 Original image of the HTPF data considered throughout this report. Some fractures are clearly visible for 
example there is one at 38.2042 m, 39.1642 m … 

 

 

Figure 9 Figure 8 once it has been interpolated at regular depths. The depth interval here is equal to 1 cm. 

 

The second pre-processing step is to filter the images horizontally. As seen from the 
two previous figures there can be some miscalibrated or broken electrodes that do not read the 
same values as their neighbors. Horizontal filtering allows to minimize the impact of the 
broken electrodes and to make features like fractures more homogeneous. This is very 
important when it comes to fracture interpretation because one looks for continuous events 
and if there is some heterogeneity the edge mapping and the interpretation of sinusoids can go 
wrong. This is especially true for UBI images which have 180 electrodes but it can actually be 



neglected in our reference case because it has only 24 electrodes. A horizontal filtering has 
still been applied using a 3*1 window (Figure 10). 

 

Figure 10 Reference image (left) and the same image when it has been filtered horizontally with a 3*1 window 
(right). 

Now that some of the undesired signal has been removed one can move on to the edge 
mapping step. Edge mapping is the process that finds changes in images and creates new 
images containing only the contour of features. It simplifies images by only considering the 
features in them hence it is the first step in every feature extraction algorithm. This step is 
critical because a lot of information is lost so one has to be careful when doing it. If 
information is lost at this stage it won’t be possible to retrieve it at a later one. In the 
following, two different edge mapping methods will be presented: one based on gradient 
calculation and a second one using Fourier transform. 

 

2) Gradient	based	edge	mapping	
 

  There are many different gradient based edge mapping methods but they all have the 
same skeleton: 

- compute the gradient of the image  

- find and keep the local maxima and minima of the gradients bigger than a pre-defined 
threshold 



 The difference between all gradient based methods is the way the gradients are 
approximated. There are many different methods to approximate the gradients like: the Sobel, 
Prewitt, or Canny approximation. It is also possible to calculate a simplistic gradient by 
subtracting a line to the following one.  

If one assumes a fracture to look like a roof edge (Figure 11), then the gradient based 
edge mapping will draw the contours of the fracture where the gradient is either maximum or 
minimum. One of the drawbacks of this method is that it will also find many other contours 
that do not characterize fractures; basically it will find any events that are sharp enough. 

 

Figure 11 Roof edge representation of a fracture in a single trace [6] 

 

To calculate the gradient of the image two methods have been tested. The first one is 
very simplistic because it calculates the difference line by line of an image. The results of 
these simplistic gradient calculations are presented in Figure 12. The second one is using the 
Canny filter to create an edge map (Figure 13). Canny is applying a 2D filter to process the 
whole image and is not identifying edges trace by trace; luckily it was already coded in 
Matlab (2) so it was quite easy to apply. Unfortunately the results given by the two gradient 
based edge mappings were not satisfying enough so it has been decided to focus more on the 
one using the Fourier transform. 

 



 

Figure 12 Gradient based edge map (right) of the reference image (left).Here the gradient was 
calculated by subtracting two consecutive lines. 

 

          

Figure 13 Gradient based edge map (right) of the reference image (left).Here the edge map was calculated using a Canny 
filter. 

 

 



3) Fourier	based	edge	mapping	
 

The second edge mapping considered is based on the Fourier transform [6]. The idea 
is to increase the signal from the fractures while reducing the one from the lithology. To 
accomplish this, the images are first Fourier transformed, then the data is filtered in the 
frequency domain and finally a back transformation is applied. 

 Fourier allows looking at the images from a different perspective, instead of looking at 
it in the space domain one can see the spatial frequency content of the data. Thanks to this, 
one can choose the spatial frequency content one wants to keep in every trace. In the case of 
fracture detection in images, it is well known that some of the signal is coming from the 
lithology. This latter has often a larger thickness than fracture aperture. If a pre-defined band 
pass filter is applied, one should be able to keep the sine and cosine functions constructing the 
fractures and remove the one involved in the representation of thick events like lithology.  

 The Fast Fourier transform was used to calculate the Fourier coefficients  of every 

trace using the following equation: 

  (2)  

 

Where n is the number of data points, ,	 ,…,	 are the data and j=1,…,n-1. 

 The coefficients are then usually plotted as a function of spatial frequency to see how 
the spectrum of the signal looks like. It is then possible to design a filter that will only keep 
the frequencies of interest. 

 To get back to the space domain one applies an inverse Fast Fourier transform: 

  (3)  



 

Figure 14 Spectrum of the 24 traces for the complete image. The spectrum shows very high coefficients in the low spatial 
frequency part meaning that the dominant part of the signal is coming from constants or from signals with a big spatial 
period. 

  Figure 14 shows the spectrum of the complete image. It shows that the traces are 
mostly dominated by low spatial frequency signals. If one keeps only the spatial frequencies 
between 0.8 and 8 cm-1 and make an inverse Fourier transform one gets Figure  15. It is 
possible to see from this figure that fractures are better defined after filtering because the 
background has been made more homogeneous. Also the impact of the miscalibrated 
electrodes has been removed. The band pass filter used here keeps spatial frequencies 
between 0.8 and 8 cm-1 or equivalently spatial periods between 1.25 cm and 0.125 cm. 

 

Figure 15 Reference image (left) and the same image when it has been filtered with a band pass filter (0.8‐8 cm‐1) (right). 

 



  Now that the image has been filtered so that the signal from fractures has been 
enhanced, a simple edge method has been applied. This edge mapping is based on finding all 
the local maxima in the filtered images that are bigger than a pre-defined threshold. One 
advantage of this edge mapping method is that it will plot an edge in the middle of fractures 
(Figure  16) compared to the gradient based edge mapping that are plotting the contours of 
fractures.  

 

Figure 16 Reference image (left) and its edge map when using a Fourier based edge mapping method (right). 

 Even though this Fourier transform based edge mapping is powerful it cannot make 
the difference between fractures and layers with a thickness close to the aperture of fractures 
so one should keep in mind that all the detected events are not necessarily fractures. 

 Once this edge mapping has been applied to detect fractures with lower resistivity than 
their surroundings it needs to be applied again to detect cemented fractures with higher 
resistivity than their surroundings. 

 

III) Sinusoid	recognition	
 

 Now that an edge map has been created the sinusoid recognition may begin. Three 
different ways to reconstruct sinusoids have been implemented: 

 Correlation calculation [4] 

 Hough transform [3] 

 Radon transform [1] 
 



For each method a synthetic case will be presented to show how they work in theory. 
 

1) Correlation	calculation	
 

  The first method used to extract sinusoids is involving the calculation of correlations 
and is of the “edge-following” type. In this method one tries to regroup points belonging to 
the same sinusoid, once this is done one fits a sinusoids through the group of points to get the 
arguments of the sinusoid. This method does not need to be applied on an edge map and it 
could actually use directly the pre-processed images.  

 To calculate the correlation R between two vectors X and Y having the same size n, 
one computes: 

 
∑

∑ ² ∑ ²
 (4)  

 

  Let’s assume one found a fracture in a trace and one wants to regroup all the points 
belonging to this fracture. Once the aperture of the fracture has been determined, one can look 
at the next trace to see where the fracture is going by calculating the correlations in a window 
with a pre-defined size and by choosing the position that maximizes the correlation (Figure 
17). 

 

 

Figure 17 Schematic representation of how the algorithm calculates the correlation. If the maximum correlation is higher 
than a pre‐defined threshold, the points are regrouped. In this example the correlation is maximum in the first case. 

 

     Trace :       n       n+1 



  The synthetic case used for this method is presented in Figure 18: it has one single 
fracture and two intersecting fractures with different apertures. 

 

Figure 18 Synthetic case used to test the sinusoid reconstruction using correlations 

 

Figure 19 Image showing how the points have been regrouped using correlations. Every color corresponds to 
one group of points. 

  Figure 19 shows the results of the regrouping using correlations. When there is a single 
fracture, the algorithm is capable of regrouping all the points belonging to this fracture but 
there are some issues when two fractures are crossing: points are regrouped as long as one 
fracture is far enough from the other. To regroup points further one can either fit a sinusoid 
through every group of points and regroup the points if the arguments of the sinusoids are 
close enough or extrapolate every group of points using the derivative. This latter is actually 
leading to better results when applied on real data. Figure 20 presents how the derivative helps 
to regroup points together. 



 In the end this method proves to be quite effective on synthetic data (Table  1) and 
actually the final version of the interpretation program has been derived from it (see IV). The 
reason why it is effective is that it can find fractures with not perfect sinusoidal shapes thanks 
to the way the regrouping is done. Yet, there are also some drawbacks. If one applied directly 
this correlation method to real data one would find that the computation time is very 
important, there may also be some issues with the fitting and finally this method is not 
especially resistant to noise. The pre-processing steps are actually critical for this method 
because one is looking for consistent continuous events in the image. 

Precision Amplitude Precision Phase Precision Depth Computing time 
<1% <1% <1% 8.87 s 

Table 1 Performances of the correlation method on a perfect synthetic case 

 

Figure 20 Zoom on the intersection of two fractures showing how a regrouping can be made by extrapolating along the 
tangent at the end of groups  

 

2) Hough	Transform	
 

  The Hough transform is a feature extraction technique that is very effective in noisy 
environments. The concept behind it is to create a parameter space in which a voting 
procedure is applied. 

 In the case of fracture interpretation, sinusoids have to be extracted from the edge 
maps. A general equation of a sinusoid is: 

 ∗  (5)  
 



Where A is the amplitude, Phi is the phase, D is the depth, ( , ) are the coordinates of a 
point in the edge map belonging to the sinusoid. 

  Rewriting equation 5 leads to: 

 (6)  

 

 The depth can actually be determined by applying a Hough transform on successive 
sliding windows as it will be shown later. Getting rid of the depth D leads to: 

 (7)  

 

 Equation 7 is actually the basis of the Hough transform because one can plot in the 
parameter space (Phi, A) all the possible 2π periodical sinusoids going through the edge 
points of interest ( , ). At the point where all the curves cross in the parameter space one 
can read the amplitude and phase of the sinusoid of interest. 

 Let’s assume that a perfect sinusoid (with or without gaps) is in the middle of an edge 
map. Then if one applies equation 7 to every point in the edge map, i.e. if one considers all the 
2π periodic sinusoids going through all these points, one would get Figure  21. From the 
intersection point we read the amplitude and the phase of the sinusoid. 

 

Figure 21 The parameter space when a single sinusoid is centered in an edge map without any other points. 

 To determine at what depth the sinusoid is located, we use the fact that if the sinusoid 
is not centered in the image the curves will not always cross at the same point (Figure 22) and 
even if they do the accumulation will be less than when the sinusoid is centered. 



 

Figure 22 The parameter space when a single sinusoid is not centered in an image. Multiple local maxima appear with 
lower values than the one when the sinusoid is centered in the image. 

In the end, to apply the Hough transform on the edge maps of image logs one should: 

1. Determine the vertical size and sampling interval of the sliding window used to 
cover the whole image.  

2. Apply the Hough transform on every window 
3. Look for local maxima in the 3D parameter space 
4. From the position of these local maxima one gets directly the amplitude, phase 

and depth of the fractures 

The synthetic case used for this method is presented in Figure  23: it has one single 
fracture, two intersecting fractures and some random noise has also been added. 

 

Figure 23 Synthetic case used to test the sinusoid reconstruction using the Hough transform 



 

Figure 24 Results of the Hough sinusoid extraction algorithm. The method is very noise resistant. 

  The results of the Hough transform extraction algorithm look very good (Figure  24) 
because even though there is a lot of noise the algorithm still manages to extract the correct 
sinusoids thanks to the voting procedure. The main drawback associated with this method is 
the computation time when some random noise has been added (Table 2). The results obtained 
thanks to this method are highly dependent on the time one is ready to wait for. 

 Precision 
Amplitude 

Precision Phase Precision Depth Computing time 

No noise <1% <1% <1% 14.7 s 
With noise <1% <1% <1% 45.8 s 

Table 2 Performances of the Hough transform method on a perfect synthetic case without and with random noise 

 When one tests this method on real data, one can be disappointed because the results 
are not so good due to fractures having not perfect sinusoidal shapes.  I have tried to create a 
coarser parameter space to deal with this issue but even then the results are not as good as one 
would expect them to be. There are actually two other ways to increase the detection of 
fractures on real data using the Hough transform. The first one is to correct the image log for 
washouts and breakouts in order to be in the case where the wellbore is a perfect cylinder.  
The second way is to make the interpretation process semi-automatic in order to better 
constraint the solutions.  

 

3) Radon	transform	
 

  The idea behind the radon transform is to investigate several directions around an edge 
point in order to detect in what direction a feature is extending (Figure 25).  

 



   
 1 
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Figure 25 Schematic representation of the Radon transform when applied on an edge map. One 
calculates the sum along different direction to find the direction of the feature. 

In theory this also works for intersecting features as shown in Figure 26 where both 
events at 0° and 45° are detected if the sampling angle is small enough. 

       

Figure 26 Zoom of an edge map on the position where two fractures cross 

 

In the end the Radon transform of an edge map leads to a 3D map where for every edge 
point the angles of detected lines are plotted. There are several methods to find back the 
arguments of the sinusoids: 

1. Regroup points by following the derivative calculated with Radon 
2. Identify the points with a horizontal derivative and try to regroup them together 
3. Identify the points with the maximum Radon value and try to regroup them together 

The first method has already been mentioned before and was actually used in one of the 
previous version of the interpretation program. The advantage of this method is that it can 
regroup points even if the fracture is not perfectly sinusoidal. On the other hand the method 
can be very time consuming depending on the number of directions investigated to do the 
Radon transform and depending on the number of fits it has to perform to calculate the 
arguments of the regrouped points. 

The second method is simplistic because it looks for points where the derivative is zero 
i.e. it looks for maximums and minimums of sinusoids. After this, one maximum has to be 
linked to a minimum in order to get the arguments of the sinusoid. This is normally done by 
calculating the horizontal distance between the maximum and the minimum. If it is equal to 



half a period of the well and if the vertical distance is not too big then there are good chances 
that the two points belong to the same sinusoids. As “good chances” is difficult to translate in 
Matlab, what the code does is that it first links the points which go together with 100% 
confidence and then it takes care of the others recursively. The results of this method are 
actually highly dependent on the size of the window used to perform the Radon transform and 
they are very disappointing on real data. In real data there are often gaps in the images due to 
break outs and wash outs that condemn this method to work only on synthetic data. 

This second method was actually tested on synthetic data. The synthetic image is 
presented in Figure 27, the Radon transform leads to keep only the points where the tangent is 
horizontal. The sinusoidal reconstruction is trivial as soon as maximums and minimums have 
been linked but unfortunately the results are not very convincing (Figure 28 and Table 3). 

 

Figure 27 Synthetic case used to test the sinusoid reconstruction using the Radon transform 

 

Precision Amplitude Precision Phase Precision Depth Computing time 
1.5% 18% <1% 4.38 s 

Table 3 Performances of the Radon transform on a perfect synthetic case when using the simplistic approach 



 

Figure 28 Results of the sinusoids extraction after applying a Radon transform and using the sipmlistic reconstruction 
method  

 

Once the radon transform has been performed, the third method is using the points 
where the Radon transform is maximum to reconstruct the sinusoids. As before one has to 
find a way to regroup the points two by two. In the present case we know the position of two 
points and the derivatives in these points. Thanks to this it is actually possible to calculate the 
period of the sinusoid that would go through them: 

 
2

cos
′
′

 
(8)  

 

Where T is the period,  and  are the angles defining the position of the two points and 
′  and ′  are the derivatives in those points. 

 Once the points have been regrouped two by two, the arguments of the sinusoids can 
be found from the position of the points and from their derivatives. Unfortunately there is a 
bigger issue that has to be accounted for before linking points two by two: one first needs to 
find those points. 

 The points used for the sinusoid reconstruction are usually chosen to be local maxima 
from the Radon transform. To make the Radon transform one calculates the sum along 
different direction and the sum is maximum in the places where the sinusoid is the most linear 
(Figure 29). The problem comes when one wants to find points of high amplitude sinusoids 
because as seen from the Figure 29 their Radon transform is much lower than the one of low 
amplitude sinusoids. Hence, it is not sure that the local maxima search will lead to pick the 
points of interest. 



 

Figure 29 Results of the Radon transform on the synthetic case. The value plotted in each point corresponds to the 
maximum sum found when summing along different directions. 

  

IV) Final	interpretation	program	
 

After understanding and testing different methods to automatically make the 
interpretation of fractures, a program was made to answer the problem. It was designed with 
the purpose of being fast and able to interpret sinusoid like fractures. The program has been 
inspired from the correlation method with the purpose of being resistant to the fracture 
shapes; it is part of the edge-following extraction algorithms [5] [6]. 

1) Program	workflow	
 

  The workflow of the program is the following: 

1. Interpolation 
2. Horizontal filtering 
3. Band pass filter trace by trace 
4. K-means algorithm 
5. Regroup group of points together 
6. Fit sinusoids through every group 

Points we are looking for to 

make the reconstruction 

Much lower value than for the two 

other sinusoids because of the 

higher amplitude of the sinusoid 



This workflow seems very similar to the one previously presented to the exception of 
the K-means [8]. The use of this algorithm is what makes this fracture interpretation code 
original.  

The K-means algorithm is replacing the last step of the original edge mapping process 
where a threshold had to be chosen. Thanks to this algorithm the values of the image are 
partitioned into groups without needing a threshold. The idea is to make belong every 
value in the image to the partition with the closest mean. In the following, the values have 
been partitioned in three. If one keeps only the upper values (the lithology effect has been 
removed so fractures should have dominant values) one gets Figure 30. One can clearly see 
how the partitioning has been done on this figure. 

 

 

Figure 30 Top : Resistivity image after having been band passed filtered. Bottom: The same image after having made 
the partitioning using the K‐means. The image is divided in zones. 



This method identifies many groups of points in the image. One could decide to proceed 
like before and create directly an edge map but this would lead to the loss of a lot of 
information. As seen from Figure 30 many points have already been regrouped together so the 
program actually finds the edge points in every zone and keeps them regrouped by zone. After 
that, the program tries to regroup furthermore by using the derivative as shown in Figure 20. 
Finally it performs a fit on every group of points. 

There is of course an issue when some fractures are intersecting. In that case the zone 
found with the K-means looks like a star with a varying amount of branches. The program is 
again using the derivatives to determine what branch of the star goes with which one. 
Afterwards, the processing is similar as before. 

 

2) Performances	
 

This interpretation program has been first tested on resistivity images and then on UBI 
images.  

Figure  32 and Figure  33 show examples of the program’s results when applied on the 
resistivity data from Geostress. On Figure 32 the interpretation has been done quite well since 
only two fractures have been missed, one at 39.644m and the other one at 44.284m.  

Figure 33 shows some of the issues remaining and that should be improved. The first one 
deals with large aperture fracture. One can see that there is one at 15.8242m and it is not 
properly interpreted. The reason why this kind of fractures is not detected is because of the 
chosen band-pass filter. When the aperture of the fracture is big it is not sure whether it is a 
fracture or a thin-bed and this version of the program doesn’t take the risk of interpreting 
large aperture fractures. The second issue relative to this program is the interpretation of high 
dip fractures. There is one at 23.6842m that is not properly interpreted. This is caused again 
by the chosen band-pass filter which is not taking account thick enough events. The problem 
is that even if a fracture has a low aperture, if its dip is important it will look as it has a big 
one (Figure 31). The fore last issue of this program is that it can sometimes interpret a fracture 
where there is none (at 17.25m). This is due to a bad combination of events which put 
together look like a sinusoid. Finally, the program has troubles identifying low contrast 
fractures. That could actually be improved by increasing the number of partitions in the K-
means and by taking more zones. For example, if one makes a K-means with 4 partitions and 
one keeps the 2 higher partitions, more low contrast fractures would be interpreted. This could 
also mean that other features are detected which are not fractures. 



 

Figure 31 Representation of the aperture a of a fracture and its apparent aperture aa when looking at 
it trace by trace 

  In the end, for the complete data set from Geostress that is covering around 88m: 52 
fractures were automatically detected out of 68, out of these 52 detected 9 were wrong. Most 
of the fractures that were not detected had low contrast and most of the 9 mistakes were due 
to large fracture aperture or high dip. The interpretation and display were carried out in 27 
seconds. 

 The program was also tested on some UBI amplitude data and an example of the 
results is given in Figure 34. The program is processing 20m/40s and all the sinusoidal events 
were properly interpreted in Figure  34. The issue of knowing whether those events are 
fractures are not is another problem that could be solved by comparing with other logs. This 
set of data also showed the limits of the program when trying to process some areas with 
break-outs or wash-outs. In these cases the image should first be corrected for these effects 
prior to being processed. 

 

 

Fracture 



 

 

         

 

Figure 32 Top: same as Figure 8_original image. Bottom: Fractures found by the program 

 

 

 



 

 

 

 

Figure 33 Top : resistivity image from Geostress. Bottom: Program’s results. Some misinterpretation can be seen for 
fractures with large apertures (15.82m) and for fractures with high dips (23.68m) 

 

 

 



 

 

 

 

 

Figure 34 Top : UBI image from Statoil. Bottom: Program’s results. All the sinusoidal events are well detected 

   



Conclusion	
 

  The goal of this project was to create a tool using Matlab that could automatically 
extract the fracture information from an image log. An image processing usually has two 
steps: edge mapping and feature extraction; and the tool presented in this work has been built 
following the same architecture. First, different edge mapping methods have been tested on 
real data and a method involving a band pass filter has finally been implemented. Secondly, 
three different ways of extracting sinusoids from images have been tested on synthetic data: a 
method using correlations, another using the Hough transform and a last one using the Radon 
transform. These methods have been further tested on real data. Thanks to the results of these 
tests a new method was implemented that takes advantage of a partitioning algorithm to make 
the sinusoid extraction more effective. The advantages of the implemented method are that 
fractures with imperfect sinusoidal shape as well as crossing fractures can be interpreted and 
that it is quite fast.  In the end, the designed program has been successfully tested on 
resistivity and sonic images with satisfactory results (two of three fractures were properly 
detected in the resistivity image).  

 Thanks to the tests on real data, several points that could be improved have been 
highlighted like the computing time and the detection of high dip or low contrast fractures. 
Unfortunately those improvements have not been implemented before the end of the thesis but 
they should however be taken care of in future versions of the program. 
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Appendix	
 In the following, the Matlab code of the three synthetic cases on which were tried the 
extraction methods are shown.  

Synthetic	cases	
If copy/pasted directly in Matlab the synthetic cases are ready to work. 

Correlation	Method	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
close all; 
tic 
  
%parameters of the code 
ncol=100; 
nline=1000; 
nmod=100; 
x=linspace(0,2*pi,ncol); 
Amax=2; 
  
%paramters of the synthetic data 
% A_synth=[1.8]; 
A_synth=[0.8 0.8 1.4]; 
% phi_synth=[pi/6]; 
phi_synth=[3*pi/4 -pi/4 pi/6]; 
% thick_synth=[5]; 
thick_synth=[5 5 9]; 
% depth_synth=[0]; 
depth_synth=[3 0 0]; 
  
%displays the values defining the synthetic data 
n_synth=length(depth_synth); 
str=[ 'A0 =' , num2str(A_synth(1,:)) ]; 
disp(str); 
str=[ 'phi0 =' , num2str(phi_synth(1,:)) ]; 
disp(str); 
str=[ 'depth0 =' , num2str(depth_synth(1,:)) ]; 
disp(str); 
  
%creates a matrix with the synthetic data in it 
mat=zeros(nline,ncol); 
for k=1:n_synth 
    f=A_synth(1,k)*cos(x-phi_synth(1,k))+depth_synth(1,k); 
    for i=1:ncol 
        line=nline/2+1+round(nmod*f(1,i)); 
        mat(nline/2+1+round(nmod*f(1,i))-
thick_synth(k):nline/2+1+round(nmod*f(1,i))+thick_synth(k),i)=thick_synth(k
); 
    end 
end 
  
% %designs an FMI type image with gaps 
% j=1; 
% mat_void=zeros(nline,ncol); 
% for i=1:ncol 
%     if j>0 
%         mat_void(:,i)=1; 
%     end 



%     if j==15 
%         j=-10; 
%     end 
%     j=j+1; 
% end 
% mat=mat.*mat_void; 
  
  
%plots the sinusoids  
figure 
pcolor(mat), shading interp 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
  
%% Finds events with a certain thickness in every trace 
min_thick=3; 
max_thick=30; 
delta_res_thresh=3; 
mat_edge=zeros(nline,ncol); 
  
for j=1:ncol 
    i=1; 
    while i<=nline-max_thick-1 
        if abs(mat(i,j)-mat(i+1,j))>=delta_res_thresh 
            ii=1; 
            while ii<max_thick 
                if abs(mat(i+ii,j)-mat(i+ii+1,j))>=delta_res_thresh 
                    break 
                else 
                    ii=ii+1; 
                end 
            end 
            if ii>=min_thick && ii<max_thick 
                mat_edge(i+floor(ii/2),j)=ii; 
            end 
            i=i+ii+1; 
        else 
            i=i+1; 
        end 
    end 
end 
  
mat_edge=round(mat_edge); 
pcolor(mat_edge), shading interp; 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
  
%% Correlation edges Regroups the points together in groups thanks to the 
correlations 
n_free=21; %odd number freedom of search 
n_free_2=(n_free-1)/2; 
mat_corre=zeros(nline,ncol,4); 
corre_thresh=0.7; 
  



%initialisation j=1 
mat_edge(1:max_thick,:)=0; 
mat_edge(nline-max_thick+1:nline,:)=0; 
i_edge=find(mat_edge(:,1)>0); 
n=length(i_edge); 
k=0; 
for i=1:n 
    if mod(mat_edge(i_edge(i),1),2)==0 
        vec=mat(i_edge(i)-
mat_edge(i_edge(i),1)/2:i_edge(i)+mat_edge(i_edge(i),1)/2-1,1); 
        vec_mat=mat(i_edge(i)-mat_edge(i_edge(i),1)/2-
n_free_2:i_edge(i)+mat_edge(i_edge(i),1)/2-1+n_free_2,2); 
    else 
        vec=mat(i_edge(i)-(mat_edge(i_edge(i),1)-
1)/2:i_edge(i)+(mat_edge(i_edge(i),1)-1)/2,1); 
        vec_mat=mat(i_edge(i)-(mat_edge(i_edge(i),1)-1)/2-
n_free_2:i_edge(i)+(mat_edge(i_edge(i),1)-1)/2+n_free_2,2); 
    end 
    [corre,i_corre]=max_corre(vec,vec_mat,n_free); 
    i_corre=i_corre-n_free_2-1; 
     
    if corre>=corre_thresh 
        mat_corre(i_edge(i),1,1)=corre; 
        mat_corre(i_edge(i)+i_corre,2,1)=corre; 
        mat_corre(i_edge(i),1,2)=mat_edge(i_edge(i),1); 
        mat_corre(i_edge(i)+i_corre,2,2)=mat_edge(i_edge(i),1); 
        k=k+1; 
        mat_corre(i_edge(i),1,3)=k; 
        mat_corre(i_edge(i)+i_corre,2,3)=k; 
        mat_corre(i_edge(i)+i_corre,2,4)=i_corre; 
    end 
end 
  
i_corre_thresh=3; 
%for all the other j 
for j=2:ncol-1 
    mat_edge(1:max_thick,:)=0; 
    mat_edge(nline-max_thick+1:nline,:)=0; 
    i_edge=find(mat_edge(:,j)); 
    n=length(i_edge); 
     
    %Makes the regrouping if necessary 
    for i=1:n 
        if mod(mat_edge(i_edge(i),j),2)==0 
            vec=mat_corre(i_edge(i)-
mat_edge(i_edge(i),j)/2:i_edge(i)+mat_edge(i_edge(i),j)/2-1,j,1); 
        else 
            vec=mat_corre(i_edge(i)-(mat_edge(i_edge(i),j)-
1)/2:i_edge(i)+(mat_edge(i_edge(i),j)-1)/2,j,1); 
        end 
        i_edge_find=find(vec); 
        if isempty(i_edge_find)~=1 
            m=length(i_edge_find); 
            if m==1 
                temp_i=i_edge(i); 
                if mod(mat_edge(i_edge(i),j),2)==0 
                    i_edge(i)=i_edge(i)-
mat_edge(i_edge(i),j)/2+i_edge_find-1; 
                else 
                    i_edge(i)=i_edge(i)-(mat_edge(i_edge(i),j)-
1)/2+i_edge_find-1; 



                end 
                mat_edge(temp_i,j)=0; 
                mat_edge(i_edge(i),j)=mat_corre(i_edge(i),j,2); 
            end 
        end 
    end 
     
    %Goes on with the points in a column 
    for i=1:n 
        if mod(mat_edge(i_edge(i),j),2)==0 
            vec=mat(i_edge(i)-
mat_edge(i_edge(i),j)/2:i_edge(i)+mat_edge(i_edge(i),j)/2-1,j); 
            vec_mat=mat(i_edge(i)-mat_edge(i_edge(i),j)/2-
n_free_2:i_edge(i)+mat_edge(i_edge(i),j)/2-1+n_free_2,j+1); 
        else 
            vec=mat(i_edge(i)-(mat_edge(i_edge(i),j)-
1)/2:i_edge(i)+(mat_edge(i_edge(i),j)-1)/2,j); 
            vec_mat=mat(i_edge(i)-(mat_edge(i_edge(i),j)-1)/2-
n_free_2:i_edge(i)+(mat_edge(i_edge(i),j)-1)/2+n_free_2,j+1); 
        end 
        [corre,i_corre]=max_corre(vec,vec_mat,n_free); 
        i_corre=i_corre-n_free_2-1; 
  
        if corre>=corre_thresh 
            if abs(i_corre-mat_corre(i_edge(i),j,4))<i_corre_thresh 
                if mat_corre(i_edge(i),j,3)==0 
                    k=k+1; 
                    mat_corre(i_edge(i),j,3)=k; 
                    mat_corre(i_edge(i)+i_corre,j+1,3)=k; 
                else 
                    
mat_corre(i_edge(i)+i_corre,j+1,3)=mat_corre(i_edge(i),j,3); 
                end 
            end 
            if mat_corre(i_edge(i),j,4)==0 || 
mat_corre(i_edge(i),j,4)~=0&&abs(i_corre-
mat_corre(i_edge(i),j,4))<i_corre_thresh 
                mat_corre(i_edge(i),j,1)=corre; 
                mat_corre(i_edge(i)+i_corre,j+1,1)=corre; 
                mat_corre(i_edge(i),j,2)=mat_edge(i_edge(i),j); 
                mat_corre(i_edge(i)+i_corre,j+1,2)=mat_edge(i_edge(i),j); 
                mat_corre(i_edge(i)+i_corre,j+1,4)=i_corre; 
            end 
        end 
    end 
end 
  
%% Plots the regrouped points 
figure 
pcolor(mat_corre(:,:,3)), shading interp 
colormap(jet) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
%% Processing of the regrouped points 
%finds the arguments of the best fitting sinusoid 
n_points_sin=5; 
mat_fit=zeros(ncol,6,k); 
mysin=@(Amplitude, Phase, Depth ,x) Amplitude * cos( x-Phase ) + Depth; 



  
kk=0; 
for i=1:k 
    [ifind,jfind] = find(mat_corre(:,:,3)==i); 
    if length( ifind ) >= n_points_sin 
        m=mean(ifind); 
        sinfit=fit( x(jfind)' , ifind , mysin , 'StartPoint', [100,0,m]); 
        kk=kk+1; 
        mat_fit(1,1,kk)=length( ifind ); 
        mat_fit(1:length(ifind) ,2,kk)=ifind; 
        mat_fit(1:length(ifind) ,3,kk)=jfind; 
        mat_fit(1,4,kk)=sinfit.Amplitude; 
        mat_fit(1,5,kk)=sinfit.Phase; 
        mat_fit(1,6,kk)=sinfit.Depth; 
    end 
end 
mat_fit(:,:,kk+1:end)=[]; 
  
%regroups the points belonging to the same sinusoid together and 
%recalculates the arguments of the sinusoid 
prec=0.1; 
for i=1:kk 
    j=i+1; 
    while j<kk+1 
        if abs((mat_fit(1,4,j)-mat_fit(1,4,i))/mat_fit(1,4,i))<prec... 
                && abs((mat_fit(1,5,j)-
mat_fit(1,5,i))/mat_fit(1,5,i))<prec... 
                && abs((mat_fit(1,6,j)-mat_fit(1,6,i))/mat_fit(1,6,i))<prec 
            
ifind=vertcat(mat_fit(1:mat_fit(1,1,i),2,i),mat_fit(1:mat_fit(1,1,j),2,j)); 
            
jfind=vertcat(mat_fit(1:mat_fit(1,1,i),3,i),mat_fit(1:mat_fit(1,1,j),3,j)); 
            mat_fit(1,1,i)=mat_fit(1,1,i)+mat_fit(1,1,j); 
  
            sinfit=fit( x(jfind)' , ifind , mysin , 'StartPoint', 
[mat_fit(1,4,i),mat_fit(1,5,i),mat_fit(1,6,i)]); 
            mat_fit(1:length(ifind) ,2,i)=ifind; 
            mat_fit(1:length(ifind) ,3,i)=jfind; 
            mat_fit(1,4,i)=sinfit.Amplitude; 
            mat_fit(1,5,i)=sinfit.Phase; 
            mat_fit(1,6,i)=sinfit.Depth; 
  
            mat_fit(:,:,j)=[]; 
            j=j-1; 
            kk=kk-1; 
        end 
        j=j+1; 
    end 
end 
  
%removes all the groups containing less than n_points_sin_tot points 
n_points_sin_tot=8; 
i=1; 
while i<kk+1 
    if mat_fit(1,1,i)<n_points_sin_tot 
        mat_fit(:,:,i)=[]; 
        i=i-1; 
        kk=kk-1; 
    end 
    i=i+1; 



end 
  
mat_fit(1,4,:)=mat_fit(1,4,:)/100; 
mat_fit(1,6,:)=(mat_fit(1,6,:)-500)/100; 
mat_fit(1,:,:) 
  
mat_final=zeros(nline,ncol); 
for i=1:kk 
    for j=1:mat_fit(1,1,i) 
        mat_final(mat_fit(j,2,i),mat_fit(j,3,i))=i; 
    end 
end 
  
figure 
pcolor(mat_final), shading interp 
colormap(jet) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
toc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [ corre , i_corre ] = max_corre( vec , vec_mat , n_free ) 
%calculate the max correlation 
n_vec=length(vec); 
temp_corre=zeros(n_free,1); 
  
if std(vec)~=0 
    for i=1:n_free 
        R=corrcoef([vec vec_mat(i:i+n_vec-1)]); 
        temp_corre(i,1)=R(1,2); 
    end 
    [corre,i_corre]=nanmax(temp_corre); 
else 
    corre=0; 
    i_corre=0; 
end 
  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Hough	Transform	
 
%main: 
clear all; 
close all; 
  
tic 
  
%parameters of the code 
n_max=5; 
ncol=100; 
nline=1000; 
nmod=1000; 
Amax=0.2; 
size_win=2*Amax*nmod; 
x=linspace(0,2*pi,ncol); 
y=linspace(-Amax,Amax,2*Amax*nmod+1); 
ncos=100; 



ndef=100; 
delta_h=0.01; 
delta_step=10;%on suppose une mesure tous les mms 
n_win=floor(((nline/nmod)-2*Amax)/delta_h)+1; 
depth=zeros(n_win,1); 
depth(1,1)=-0.3; 
for i=2:n_win 
    depth(i,1)=depth(i-1,1)+delta_h; 
end 
  
%paramters of the synthetic data 
% A_synth=[0.8]; 
A_synth=[0.08 0.08 0.14]; 
% phi_synth=[pi/6]; 
phi_synth=[3*pi/4 -pi/4 pi/6]; 
% depth_synth=[0]; 
depth_synth=[0.3 0 0]; 
  
%displays the values defining the synthetic data 
n_synth=length(depth_synth); 
str=[ 'A0 =' , num2str(A_synth(1,:)) ]; 
disp(str); 
str=[ 'phi0 =' , num2str(phi_synth(1,:)) ]; 
disp(str); 
str=[ 'Depth0 =' , num2str(depth_synth(1,:)) ]; 
disp(str); 
  
%creates a matrix with the synthetic data in it 
mat=zeros(nline,ncol); 
for k=1:n_synth 
    f=A_synth(1,k)*cos(x-phi_synth(1,k))+depth_synth(1,k); 
    for i=1:ncol 
        mat(nline/2+1+round(nmod*f(1,i)),i)=1; 
    end 
end 
  
  
rand_th=0.98; 
rand_mat=rand(nline,ncol); 
mat(rand_mat>rand_th)=1; 
  
%designs an FMI type image with gaps 
j=1; 
mat_void=zeros(nline,ncol); 
for i=1:ncol 
    if j>0 
        mat_void(:,i)=1; 
    end 
    if j==15 
        j=-10; 
    end 
    j=j+1; 
end 
mat=mat.*mat_void; 
  
%plots the sinusoids  
figure 
pcolor(mat), shading interp 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 



xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
tic 
%% Draw the lines in the parameter space 
l=1; 
mat_para=zeros(ndef+1,ndef+1,n_win); 
for ii=1:n_win 
    mat_win=mat(l:l+size_win-1,:); 
    l=l+delta_step; 
    mat_para(:,:,ii)=sin_hough(mat_win,x,y,ndef,ncos,Amax); 
end 
toc 
%% Plots the results in the parameter space 
Apas=Amax/ndef; 
A=0:Apas:Amax; 
phipas=2*pi/ndef; 
phi=-pi:phipas:pi; 
  
figure 
pcolor(phi,A(1:end-5),mat_para(1:end-5,:,61)), shading interp 
xlabel('Phase') 
ylabel('Amplitude') 
colorbar 
  
%% Find local maxima corresponding to the parameters of the sinusoids 
[Maxima,MaxPos,Minima,MinPos]=MinimaMaxima3D(mat_para(1:end-
5,:,:),1,1,n_max,0); 
  
%% Reorders the results and keeps only the clearest sinusoids 
m_min=10; 
n_sinus=0; 
for i=1:n_max 
    if mat_para(MaxPos(i,1),MaxPos(i,2),MaxPos(i,3))>=m_min 
        n_sinus=n_sinus+1; 
    end 
end 
win_sinus=zeros(n_sinus,3); 
j=1; 
for i=1:n_max 
    if mat_para(MaxPos(i,1),MaxPos(i,2),MaxPos(i,3))>=m_min 
        win_sinus(j,1)=A(MaxPos(i,1)); 
        win_sinus(j,2)=phi(MaxPos(i,2)); 
        win_sinus(j,3)=depth(MaxPos(i,3)); 
        j=j+1; 
    end 
end 
  
%% Test the sinusoids found previously 
%the sinusoids have to be close enough to a certain amount of points and 
%the standard deviation has also to be small enough 
delta_h=4; 
n_tresh=30; 
std_thresh=1000; 
mat_std=mat; 
  
for i=1:n_sinus 
    f=win_sinus(i,1)*cos(x-win_sinus(i,2))+win_sinus(i,3); 
    k=0; 
    sum_k=0; 
    for j=1:ncol 



        l=nline/2+1+round(nmod*f(1,j)); 
        [temp_mat,~]=find(mat(l-delta_h:l+delta_h,j)==1); 
        temp_mat=temp_mat-l; 
        [mm,m]=size(temp_mat); 
         
        if mm>0&&m>0 
            k=k+m; 
            for jj=1:m 
                sum_k=sum_k+temp_mat(1,jj)^2; 
            end 
        end 
    end 
    if k>1 
        std=sqrt(sum_k/(k-1)); 
    end 
  
    if k>=n_tresh&&std<=std_thresh 
        str=[ 'True A =' , num2str(win_sinus(i,1)) ]; 
        disp(str); 
        str=[ 'True phi =' , num2str(win_sinus(i,2)) ]; 
        disp(str); 
        str=[ 'True depth =' , num2str(win_sinus(i,3)) ]; 
        disp(str); 
         
         
        f=win_sinus(i,1)*cos(x-win_sinus(i,2))+win_sinus(i,3); 
        for ii=1:ncol 
            
mat_std(nline/2+1+round(nmod*f(1,ii)),ii)=mat_std(nline/2+1+round(nmod*f(1,
ii)),ii)+1; 
        end 
    end 
end 
  
  
%% Display 
  
figure 
pcolor(mat_std), shading interp 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
toc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 

function [ temp_para ] = sin_hough( mat_win , x , y , ndef , ncos, Amax) 
%Makes a sinusoidal hough transform on mat_win 
  
phi0=-pi:2*pi/ncos:pi; 
Apas=Amax/ndef; 
phipas=2*pi/ndef; 
  
[Y0,X0]=find(mat_win==1); 
x0=x(X0); 



y0=y(Y0); 
[t,m]=size(x0); 
  
if m~=0||t~=0 
    temp_para=zeros(ndef+1,ndef+1,'uint8'); 
    for i=1:m 
        phik=-pi; 
        iphik=1; 
  
        % j=1, find the position of the first point 
        if (x0(1,i)-phi0(1,1))~=0 
            A0=y0(1,i)/(cos(x0(1,i)-phi0(1,1))); 
            if A0>=0 
                if A0>Amax 
                    A0=Amax; 
                end 
                 
                while 1 
                    if phik>phi0(1,1)||abs(phik-phi0(1,1))<0.000001 
                        j0=iphik; 
                        break 
                    end 
                    iphik=iphik+1; 
                    phik=phik+phipas; 
                end 
  
                iAk=1; 
                Ak=0; 
                if A0==0 
                        i0=1; 
                else 
                    while 1 
                        if A0<Ak+Apas||abs(A0-Ak-Apas)<0.000001 
                            i0=iAk; 
                            break 
                        end 
                        iAk=iAk+1; 
                        Ak=Ak+Apas; 
                    end 
                end 
                temp_para(i0,j0)=temp_para(i0,j0)+1; 
            else 
                iAk=1; 
                Ak=0; 
            end 
        else 
            iAk=1; 
            Ak=0; 
        end 
         
        %loop on the other values 
        for j=2:ncos+1 
            if (x0(1,i)-phi0(1,j))~=0 
                 
                A0=y0(1,i)/(cos(x0(1,i)-phi0(1,j))); 
                if A0>=0 
                    if A0>Amax 
                        A0=Amax; 
                    end 
                     



                    while 1 
                        if phik>phi0(1,j)||abs(phik-phi0(1,j))<0.000001 
                            j0=iphik; 
                            break 
                        end 
                        iphik=iphik+1; 
                        phik=phik+phipas; 
                    end 
                     
                     
                    if Ak<A0&&A0<Ak+Apas||abs(A0-Ak-Apas)<0.000001 
                        i0=iAk; 
                    else 
                        if A0<Ak||abs(A0-Ak)<0.000001 
                            while 1 
                                if Ak-Apas<A0||abs(A0-Ak)<0.000001 
                                    i0=iAk; 
                                    break 
                                end 
                                iAk=iAk-1; 
                                Ak=Ak-Apas; 
                            end 
                        else 
                            iAk=iAk+1; 
                            Ak=Ak+Apas; 
                            while 1 
                                if A0<Ak+Apas||abs(A0-Ak-Apas)<0.000001 
                                    i0=iAk; 
                                    break 
                                end 
                                iAk=iAk+1; 
                                Ak=Ak+Apas; 
                            end 
                        end 
                    end 
                    temp_para(i0,j0)=temp_para(i0,j0)+1; 
                end 
            end 
        end 
    end 
end 
end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function 
[Maxima,MaxPos,Minima,MinPos]=MinimaMaxima3D(Input,Robust,LookInBoundaries,
numbermax,numbermin) 
% V 1.0 Dec 13, 07 
% Author Sam Pichardo. 
% This  function finds the local minima and maxima in a 3D Cartesian data.  
% It's assumed that the data is uniformly distributed. 
% The minima and maxima are calculated using a multi-directional 
derivation.  
% 
% Use: 
%   
%  
[Maxima,MaxPos,Minima,MinPos]=MinimaMaxima3D(Input,[Robust],[LookInBoundari
es],[numbermax],[numbermin]) 
%   



% where Input is the 3D data and Robust (optional and with a default value 
% of 1) indicates if the multi-directional derivation should include the 
% diagonal derivations.  
% 
% Input has to have a size larger or equal than [3 x 3 x 3] 
%   
% If Robust=1, the total number of derivations taken into account are 26: 6 
% for all surrounding elements colliding each of the faces of the unit 
cube;  
% 10 for all the surrounding elements in diagonal. 
%   
% If Robust =0, then only the 6 elements of the colliding faces are 
considered 
%   
% The function returns in Maxima and MaxPos, respectively,  
% the values (numbermax) and subindexes (numbermax x 3) of local maxima 
% and position in Input. Maxima (and the subindexes) are sorted in 
% descending order. 
% Similar situation for Minima and MinimaPos witn a numbermin elements but  
% with the execption of being sorted in ascending order. 
%   
% IMPORTANT: if numbermin or numbermax are not specified, ALL the minima 
% or maxima will be returned. This can be a useless for highly 
% oscillating data 
%   
% LookInBoundaries (default value of 0) specifies if a search of the 
minima/maxima should be 
% done in the boundaries of the matrix. This situation depends on the 
% the desire application. When it is not activated, the algorithm WILL NOT 
% FIND ANY MINIMA/MAXIMA on the 6 layers of the boundaries. 
% When it is activated, the finding minima and maxima on the boundaries is 
done by 
% replicating the extra layer as the layer 2 (or layer N-1, depending of 
the boundary) 
% By example (and using a 2D matrix for simplicity reasons): 
% For the matrix  
% [ 4 1 3 7 
%   5 7 8 8 
%   9 9 9 9 
%   5 6 7 9] 
%   
% the calculation of the partial derivate following the -x direction will 
be done by substrascting 
% [ 5 7 8 8 
%   4 1 3 7 
%   5 7 8 8 
%   9 9 9 9] 
% to the input. And so on for the other dimensions. 
% Like this, the value "1" at the coordinate (1,2) will be detected as a 
% minima. Same situation for the value "5" at the coordinate (4,1) 
  
  
if nargin <1 
    test=load('temp.mat'); 
    pf=test.uresTot(test.EvalLims(2,1):test.EvalLims(2,2)); 
    
pf=reshape(pf,length(test.EvalCoord{2}.Ry),length(test.EvalCoord{2}.Rx),len
gth(test.EvalCoord{2}.Rz)); 
    Input = abs(pf)*1.5e6; 
    clear test; 
    clear pf; 



    Robust =1; 
end 
  
Asize=size(Input); 
  
if length(Asize)<3 
    error('MinimaMaxima3D can only works with 3D matrices '); 
end 
    
  
if (Asize(1)<3 || Asize(2)<3 || Asize(3)<3) 
    error('MinimaMaxima3D can only works with matrices with dimensions 
equal or larger to [3x3x3]'); 
end 
  
if ~isreal(Input) 
    warning('ATTENTION, complex values detected!!, using abs(Input)'); 
    Input=abs(Input); 
end 
  
if ~exist('Robust','var') 
    Robust=1; 
end 
  
if ~exist('LookInBoundaries','var') 
    LookInBoundaries=0; 
end 
  
if ~exist('numbermax','var') 
    numbermax=0; 
end 
  
if ~exist('numbermin','var') 
    numbermin=0; 
end 
  
[xx_base,yy_base,zz_base]=ndgrid(1:Asize(1),1:Asize(2),1:Asize(3)); 
  
  
IndBase=sub2ind(Asize,xx_base(:),yy_base(:),zz_base(:)); 
  
if Robust ~= 0 
    Numbder_dd=26; 
else 
    Numbder_dd=6; 
end 
  
if LookInBoundaries==0 
    lx=1:Asize(1); 
    lx_p1=[2:Asize(1),Asize(1)]; 
    lx_m1=[1,1:Asize(1)-1]; 
    ly=1:Asize(2); 
    ly_p1=[2:Asize(2),Asize(2)]; 
    ly_m1=[1,1:Asize(2)-1]; 
    lz=1:Asize(3); 
    lz_p1=[2:Asize(3),Asize(3)]; 
    lz_m1=[1,1:Asize(3)-1]; 
else 
    lx=1:Asize(1); 



    lx_p1=[2:Asize(1),Asize(1)-1]; %We replicate the layer N-1 as the layer 
N+1 
    lx_m1=[2,1:Asize(1)-1]; %We replicate the layer 2 as the layer -1 
    ly=1:Asize(2); 
    ly_p1=[2:Asize(2),Asize(2)-1]; %We replicate the layer N-1 as the layer 
N+1 
    ly_m1=[2,1:Asize(2)-1]; %We replicate the layer 2 as the layer -1 
    lz=1:Asize(3); 
    lz_p1=[2:Asize(3),Asize(3)-1]; %We replicate the layer N-1 as the layer 
N+1 
    lz_m1=[2,1:Asize(3)-1];%We replicate the layer 2 as the layer -1 
end 
  
for n_dd=1:Numbder_dd 
    switch n_dd 
        case 1 
            %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly,lz); 
  
        case 2 
            %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly,lz); 
  
        case 3 
            %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(y)-
elem(y+1) 
            [xx,yy,zz]=ndgrid(lx,ly_p1,lz); 
  
        case 4 
            %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(y)-
elem(y-1) 
            [xx,yy,zz]=ndgrid(lx,ly_m1,lz); 
  
        case 5 
            %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(z)-
elem(z+1) 
            [xx,yy,zz]=ndgrid(lx,ly,lz_p1); 
  
         case 6 
            %%%%%%%%%%%%%%%%%%% %% This index is used to calculated 
elem(z)-elem(z-1) 
            [xx,yy,zz]=ndgrid(lx,ly,lz_m1); 
        case 7 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y+1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz); 
        case 8 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y-1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz); 
        case 9 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y-1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz); 
        case 10 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y+1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz); 



        case 11 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,z+1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly,lz_p1); 
        case 12 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,z-1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly,lz_m1); 
        case 13 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,z-1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly,lz_m1); 
        case 14 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,z+1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly,lz_p1); 
        case 15 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(y+1,z+1) 
            [xx,yy,zz]=ndgrid(lx,ly_p1,lz_p1); 
        case 16 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(y+1,z-1) 
            [xx,yy,zz]=ndgrid(lx,ly_p1,lz_m1); 
        case 17 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(y-1,z-1) 
            [xx,yy,zz]=ndgrid(lx,ly_m1,lz_m1); 
        case 18 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(y-1,z+1) 
            [xx,yy,zz]=ndgrid(lx,ly_m1,lz_p1); 
         case 19 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y+1,z+1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz_p1); 
         case 20 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y+1,z-1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz_m1); 
         case 21 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y-1,z+1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz_p1); 
         case 22 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x+1,y-1,z-1) 
            [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz_m1); 
         case 23 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y+1,z+1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz_p1); 
         case 24 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y+1,z-1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz_m1); 
         case 25 
           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y-1,z+1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz_p1); 
         case 26 



           %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-
elem(x-1,y-1,z-1) 
            [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz_m1);    
  
    end 
  
    Ind_dd=sub2ind(Asize,xx(:),yy(:),zz(:));  
     
    part_deriv = Input(IndBase)-Input(Ind_dd); 
     
    if n_dd >1 
        MatMinMax= (sign_Prev_deriv==sign(part_deriv)).*MatMinMax; 
    else 
        MatMinMax=sign(part_deriv); 
    end 
  
    sign_Prev_deriv=sign(part_deriv); 
end 
  
%Well , now the easy part, all values MatMinMax ==1 are local maximum and 
%the values MatMinMax ==-1 are minimun 
  
AllMaxima=find(MatMinMax==1); 
AllMinima=find(MatMinMax==-1); 
  
if numbermax ==0 
    nmax=length(AllMaxima); 
else 
    nmax=numbermax; 
end 
nmax=min([nmax,length(AllMaxima)]); 
smax=1:nmax; 
  
if numbermin ==0 
    nmin=length(AllMinima); 
else 
    nmin=numbermin; 
end 
  
nmin=min([nmin,length(AllMinima)]); 
  
smin=1:nmin; 
  
[Maxima,IndMax]=sort(Input(AllMaxima),'descend'); 
Maxima=Maxima(smax); 
IndMax=AllMaxima(IndMax(smax)); 
  
MaxPos=zeros(nmax,3); 
[MaxPos(:,1),MaxPos(:,2),MaxPos(:,3)]=ind2sub(Asize,IndMax); 
  
[Minima,IndMin]=sort(Input(AllMinima)); 
Minima=Minima(smin); 
IndMin=AllMinima(IndMin(smin)); 
  
MinPos=zeros(nmin,3); 
[MinPos(:,1),MinPos(:,2),MinPos(:,3)]=ind2sub(Asize,IndMin); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 

Radon	Transform	
 

General radon transform with no sinusoids reconstruction but with a 3D picture of the 
orientation space: 

clear all; 
close all; 
  
%parameters of the code 
ncol=100; 
nline=1000; 
nmod=100; 
x=linspace(0,2*pi,ncol); 
  
%paramters of the synthetic data 
% A_synth=[0.8]; 
A_synth=[0.8 0.8 1.4]; 
% phi_synth=[pi/6]; 
phi_synth=[3*pi/4 -pi/4 pi/6]; 
% depth_synth=[0]; 
depth_synth=[3 0 0]; 
  
%displays the values defining the synthetic data 
n_synth=length(depth_synth); 
str=[ 'phi0 =' , num2str(phi_synth(1,:)) ]; 
disp(str); 
str=[ 'A0 =' , num2str(A_synth(1,:)) ]; 
disp(str); 
  
%creates a matrix with the synthetic data in it 
mat=zeros(nline,ncol); 
for k=1:n_synth 
    f=A_synth(1,k)*cos(x-phi_synth(1,k))+depth_synth(1,k); 
    for i=1:ncol 
        mat(nline/2+1+round(nmod*f(1,i)),i)=1; 
    end 
end 
  
  
% %designs an FMI type image with gaps 
% j=1; 
% mat_void=zeros(nline,ncol+1); 
% for i=1:ncol+1 
%     if j>0 
%         mat_void(:,i)=1; 
%     end 
%     if j==15 
%         j=-10; 
%     end 
%     j=j+1; 
% end 
% mat=mat.*mat_void; 
  
  
%plots the sinusoids  



figure 
pcolor(mat), shading interp 
  
  
%% Creates the orientation space 
n_max=1; 
thr_rad=0; 
[Y0,X0]=find(mat==1); 
n_edge=length(X0); 
mat_or=zeros(nline,ncol); 
cst_mat_or=0; 
mat_or(:,:,2)=cst_mat_or*ones(nline,ncol); 
n_phi_rad=181; %181 or 361 or a multiple of 180  +1 or at least odd number 
phi_min_thresh=0*pi/180; 
phi_rad=linspace(phi_min_thresh,pi-phi_min_thresh,n_phi_rad); 
n_phi_rad=n_phi_rad-1; 
n_x_line=1000; 
n_factor=5;%odd number. Used to refine the matrix. 
n_factor_2=(n_factor-1)/2; 
size_win=40; 
n_thresh=10; 
  
  
% Finds the path in the matrix along which the sum is performed 
[cell_path_rad]=find_path( phi_rad , size_win , n_x_line , n_factor ); 
n_cell_path_rad=length(cell_path_rad); 
  
% Creates a bigger matrix to remove the effect of edges 
mat_enlarged=zeros(nline+2*size_win,ncol+2*size_win); 
mat_enlarged(size_win+1:nline+size_win,1:size_win)=mat(:,ncol-
size_win+1:ncol); 
mat_enlarged(size_win+1:nline+size_win,size_win+1:ncol+size_win)=mat; 
mat_enlarged(size_win+1:nline+size_win,ncol+size_win+1:end)=mat(:,1:size_wi
n); 
  
% Creates a larger matrix large_mat with a size of 
n_factor*length(mat_enlarged) to 
% increase the resolution 
if n_factor==1 
    XXL_mat=mat; 
else 
    XXL_mat=zeros((nline+2*size_win)*n_factor,(ncol+2*size_win)*n_factor); 
    for i=1:nline+2*size_win 
        for j=1:ncol+2*size_win 
            if mat_enlarged(i,j)~=0 
                for ii=1:n_factor 
                    for jj=1:n_factor 
                        XXL_mat((i-1)*n_factor+ii,(j-
1)*n_factor+jj)=mat_enlarged(i,j); 
                    end 
                end 
            end 
        end 
    end 
end 
  
% Computes the sum of lines with different angles in a matrix centred on an 
edge point 
% Core of the radon transform 
figure 



for i=1:n_edge 
    mat_local=XXL_mat((Y0(i)-1)*n_factor+1:(Y0(i)+2*size_win)*n_factor,... 
        (X0(i)-1)*n_factor+1:(X0(i)+2*size_win)*n_factor); 
     
    sum_cell_path_rad=zeros(n_cell_path_rad+2,1); 
    for j=1:n_cell_path_rad 
        sum_cell_path_rad(j+1,1)=sum(mat_local(cell_path_rad{1,j})); 
    end 
    sum_cell_path_rad(1,1)=sum_cell_path_rad(n_cell_path_rad+1,1); 
    sum_cell_path_rad(n_cell_path_rad+2,1)=sum_cell_path_rad(2,1); 
     
    [pks,locs] = findpeaks(sum_cell_path_rad , 'NPEAKS', n_max, 
'SORTSTR','descend'); 
    if pks(1)>=n_thresh 
        mat_or(Y0(i),X0(i),1)=pks(1); 
        plot3(Y0(i),X0(i),mat_or(Y0(i),X0(i),1),'b+'), hold on 
        mat_or(Y0(i),X0(i),2)=cell_path_rad{2,locs(1)}(3,1); 
    end 
end 
hold off 
mat_or(:,:,2)=abs(mat_or(:,:,2)); 
  
  
%%  
figure 
pcolor(mat_or(:,:,1)), shading interp 
colormap(jet) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
In the next case a sinusoidal reconstruction has been added using the simplistic method 
exposed in the chapter Radon transform. 
 
clear all; 
close all; 
tic 
%parameters of the code 
ncol=100; 
nline=1000; 
nmod=100; 
x=linspace(0,2*pi,ncol); 
  
%paramters of the synthetic data 
% A_synth=[0.8]; 
A_synth=[0.8 0.8 1.4]; 
% phi_synth=[pi/6]; 
phi_synth=[3*pi/4 -pi/4 pi/6]; 
% depth_synth=[0]; 
depth_synth=[3 0 0]; 
  
%displays the values defining the synthetic data 
n_synth=length(depth_synth); 
str=[ 'phi0 =' , num2str(phi_synth(1,:)) ]; 
disp(str); 
str=[ 'A0 =' , num2str(A_synth(1,:)) ]; 
disp(str); 



str=[ 'Depth0 =' , num2str(depth_synth(1,:)) ]; 
disp(str); 
  
%creates a matrix with the synthetic data in it 
mat=zeros(nline,ncol); 
for k=1:n_synth 
    f=A_synth(1,k)*cos(x-phi_synth(1,k))+depth_synth(1,k); 
    for i=1:ncol 
        mat(nline/2+1+round(nmod*f(1,i)),i)=1; 
    end 
end 
  
  
% %designs an FMI type image with gaps 
% j=1; 
% mat_void=zeros(nline,ncol+1); 
% for i=1:ncol+1 
%     if j>0 
%         mat_void(:,i)=1; 
%     end 
%     if j==15 
%         j=-10; 
%     end 
%     j=j+1; 
% end 
% mat=mat.*mat_void; 
  
  
%plots the sinusoids  
figure 
pcolor(mat), shading interp 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
%% Creates the orientation space 
n_max=1; 
thr_rad=0; 
[Y0,X0]=find(mat==1); 
n_edge=length(X0); 
mat_or=zeros(nline,ncol); 
cst_mat_or=5; 
mat_or(:,:,2)=cst_mat_or*ones(nline,ncol); 
n_x_line=1000; 
n_factor=3;%odd number. Used to refine the matrix. 
n_factor_2=(n_factor-1)/2; 
size_win=10; 
n_thresh=10; 
  
phi_min_thresh=20*pi/180; 
n_phi_rad=41; %odd number 
phi_rad_1=linspace(0,phi_min_thresh,n_phi_rad); 
phi_rad_2=linspace(pi-phi_min_thresh,pi,n_phi_rad); 
phi_rad=horzcat(phi_rad_1,phi_rad_2); 
n_phi_rad=2*n_phi_rad-1; 
  
% Finds the path in the matrix along which the sum is performed 
[cell_path_rad]=find_path( phi_rad , size_win , n_x_line , n_factor ); 
n_cell_path_rad=length(cell_path_rad); 



  
% Creates a bigger matrix to remove the effect of edges 
mat_enlarged=zeros(nline+2*size_win,ncol+2*size_win); 
mat_enlarged(size_win+1:nline+size_win,1:size_win)=mat(:,ncol-
size_win+1:ncol); 
mat_enlarged(size_win+1:nline+size_win,size_win+1:ncol+size_win)=mat; 
mat_enlarged(size_win+1:nline+size_win,ncol+size_win+1:end)=mat(:,1:size_wi
n); 
  
% Creates a larger matrix large_mat with a size of 
n_factor*length(mat_enlarged) to 
% increase the resolution 
if n_factor==1 
    XXL_mat=mat; 
else 
    XXL_mat=zeros((nline+2*size_win)*n_factor,(ncol+2*size_win)*n_factor); 
    for i=1:nline+2*size_win 
        for j=1:ncol+2*size_win 
            if mat_enlarged(i,j)~=0 
                for ii=1:n_factor 
                    for jj=1:n_factor 
                        XXL_mat((i-1)*n_factor+ii,(j-
1)*n_factor+jj)=mat_enlarged(i,j); 
                    end 
                end 
            end 
        end 
    end 
end 
  
% Computes the sum of lines with different angles in a matrix centred on an 
edge point 
% Core of the radon transform 
figure 
for i=1:n_edge 
    mat_local=XXL_mat((Y0(i)-1)*n_factor+1:(Y0(i)+2*size_win)*n_factor,... 
        (X0(i)-1)*n_factor+1:(X0(i)+2*size_win)*n_factor); 
     
    sum_cell_path_rad=zeros(n_cell_path_rad+2,1); 
    for j=1:n_cell_path_rad 
        sum_cell_path_rad(j+1,1)=sum(mat_local(cell_path_rad{1,j})); 
    end 
    sum_cell_path_rad(1,1)=sum_cell_path_rad(n_cell_path_rad+1,1); 
    sum_cell_path_rad(n_cell_path_rad+2,1)=sum_cell_path_rad(2,1); 
     
    [pks,locs] = findpeaks(sum_cell_path_rad , 'NPEAKS', n_max, 
'SORTSTR','descend'); 
    if isempty(pks)~=1 
        if pks(1)>=n_thresh 
            mat_or(Y0(i),X0(i),1)=pks(1); 
            plot3(Y0(i),X0(i),mat_or(Y0(i),X0(i),1),'b+'), hold on 
            mat_or(Y0(i),X0(i),2)=cell_path_rad{2,locs(1)}(3,1); 
        end 
    end 
end 
hold off 
  
figure 
pcolor(mat_or(:,:,2)), shading interp 
colormap(hot) 



set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
  
%% Reconstruct the sinusoid thanks to the radon method  
%In this method NO blank column is required 
%Looks for the points where the derivative is zero and tries to regroup all 
%these points two by two. From the position of these max and min of the sin 
%function it is easy to get the arguments of the sin function 
phi=0; 
n_i_del=10; 
phi_del=pi/6; 
n_j_del=round(ncol*phi_del/(2*pi)); 
ind_points_2=zeros(1000,2); 
  
mat_or_2=cst_mat_or*ones(nline+2*n_i_del,ncol+2*n_j_del); 
mat_or_2(n_i_del+1:nline+n_i_del,n_j_del+1:ncol+n_j_del)=mat_or(:,:,2); 
n_ind_thresh=5; 
  
i=0; 
while phi<=phi_min_thresh 
    phi=min(min(mat_or_2)); 
    if phi<cst_mat_or 
        [i_phi,j_phi]=find(mat_or_2==phi); 
        if sum(sum((mat_or_2(i_phi(1)-n_i_del:i_phi(1)+n_i_del,j_phi(1)-
n_j_del:j_phi(1)+n_j_del)-cst_mat_or)~=0))>=n_ind_thresh 
            i=i+1; 
            ind_points_2(i,1:2)=[i_phi(1)-n_i_del,j_phi(1)-n_j_del]; 
        end 
        mat_or_2(i_phi(1)-n_i_del:i_phi(1)+n_i_del,j_phi(1)-
n_j_del:j_phi(1)+n_j_del)=cst_mat_or*ones(2*n_i_del+1,2*n_j_del+1); 
        if j_phi(1)<n_j_del+1 
            mat_or_2(i_phi(1)-
n_i_del:i_phi(1)+n_i_del,ncol+n_j_del+(j_phi(1)-
n_j_del):ncol+n_j_del)=cst_mat_or*ones(2*n_i_del+1,abs(j_phi(1)-n_j_del-
1)); 
        end 
        if j_phi(1)>ncol-n_j_del 
            mat_or_2(i_phi(1)-
n_i_del:i_phi(1)+n_i_del,n_j_del+1:n_j_del+(n_j_del-(ncol-
j_phi(1))))=cst_mat_or*ones(2*n_i_del+1,n_j_del-(ncol-j_phi(1))); 
        end 
    end 
end 
n_ind_points_2=i; 
  
figure 
pcolor(mat_or(:,:,2)), shading interp 
  
%identifies if the sinusoid is oritend towards the top or the 
%bottom at that point 
  
%regroups the points two by two by checking the period, the amplitude and 
%by testing the solution on the edge map 
mat_edge=mat; 
delta_h=15; 
n_tresh=40; 
ind_points=zeros(n_ind_points_2,4); 
temp_ind=zeros(n_ind_points_2-1,2); 
n_col_T=ncol/2; 



Amax=2; 
prec_T=10; 
n_line_A=2*Amax*nmod+1; 
n_loop=2; 
p=0; 
for k=1:n_loop 
    i=1; 
    while i<n_ind_points_2+1 
        l=0; 
        for j=i+1:n_ind_points_2 
            if abs(ind_points_2(i,1)-ind_points_2(j,1))<=n_line_A && 
abs(abs(ind_points_2(i,2)-ind_points_2(j,2))-ncol/2)<=prec_T 
                [Amplitude , Phase , Depth] = 
find_arg(ind_points_2(i,:),ind_points_2(j,:),ncol); 
                if test_sinusoid(mat_edge , Amplitude , Phase , Depth , 
delta_h , x )>=n_tresh 
                    l=l+1; 
                    temp_ind(l,:)=ind_points_2(j,:); 
                    temp=j; 
                end 
            end 
        end 
        if l==1 
            p=p+1; 
            ind_points(p,1:2)=ind_points_2(i,:); 
            ind_points(p,3:4)=temp_ind(1,:); 
            ind_points_2(temp,:)=[]; 
            n_ind_points_2=n_ind_points_2-1; 
        end 
        i=i+1; 
    end 
end 
ind_points(p+1:end,:)=[]; 
  
arg_sinus=zeros(p,3); 
for i=1:p 
    
[arg_sinus(i,1),arg_sinus(i,2),arg_sinus(i,3)]=find_arg(ind_points(i,1:2),i
nd_points(i,3:4),ncol); 
end 
arg_sinus 
%% 
for i=1:p 
    f=arg_sinus(i,1)*cos(x-arg_sinus(i,2))+arg_sinus(i,3); 
    for ii=1:ncol 
        mat(round(f(1,ii)),ii)=mat(round(f(1,ii)),ii)+1; 
    end 
end 
  
figure 
pcolor(mat), shading interp 
colormap(hot) 
set(gca,'XTickLabel',2*pi/10:2*pi/10:2*pi) 
xlabel('Phi (rad)') 
ylabel('Depth (mm)') 
toc 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [Amplitude , Phase , Depth] = find_arg(ind_1 ,ind_2 , ncol) 
%finds the arguments of the cos function going through the two points of 



%coordinates ind_1 and ind_2 
  
Amplitude=abs(ind_2(1,1)-ind_1(1,1))/2; 
Depth=(ind_2(1,1)+ind_1(1,1))/2; 
  
if ind_2(1,1)>ind_1(1,1) 
    ind_1=ind_2; 
end 
  
Phase=ind_1(1,2)*2*pi/ncol; 
  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [ n_points ] = test_sinusoid( mat_edge , Amplitude , Phase , Depth 
, delta_h , x ) 
%Test the sinusoids found previously 
%the sinusoids have to be close enough to a certain amount of points  
[nline,ncol]=size(mat_edge); 
mat=zeros(nline+2*delta_h,ncol); 
mat(delta_h+1:delta_h+nline,:)=mat_edge; 
  
f=round(Amplitude*cos(x-Phase)+Depth); 
n_points=0; 
for j=1:ncol 
    n_points=n_points+sum(mat(f(1,j):f(1,j)+2*delta_h,j)==1); 
end 
  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [ cell_path_rad ] = find_path( phi_rad , size_win ,n_x_line, 
n_factor ) 
%find a path along two points which are symmetrical compared to the center 
of the matrix 
%for different angles 
  
n_phi_rad=length(phi_rad); 
n_factor_2=(n_factor-1)/2; 
  
%%find the position of the circle's boundary 
win_rad=zeros((2*size_win+1)*n_factor,(2*size_win+1)*n_factor,3); 
phi_min=0; 
phi_max=0; 
x_win_mem=size_win*n_factor+n_factor_2; 
y_win_mem=0; 
for i=1:n_phi_rad 
    x_win_rad=(size_win*n_factor+n_factor_2+0.5)*cos(phi_rad(i)); 
    y_win_rad=(size_win*n_factor+n_factor_2+0.5)*sin(phi_rad(i)); 
     
    if x_win_rad>=0 
        x_win=size_win*n_factor+n_factor_2; 
        while 1 
            if x_win_rad>x_win && x_win_rad<x_win+1 || abs(x_win_rad-
x_win)<0.000001 
                break 
            else 
                x_win=x_win-1; 
            end 



        end 
    else 
        x_win=size_win*n_factor+n_factor_2; 
        while 1 
            if x_win_rad>x_win && x_win_rad<x_win+1 || abs(x_win_rad-
x_win)<0.000001 
                break 
            else 
                x_win=x_win-1; 
            end 
        end 
        x_win=x_win+1; 
    end 
    y_win=-1; 
    while 1 
        if y_win_rad<y_win+1 && y_win_rad>y_win ||abs(y_win_rad-y_win-
1)<0.000001 
            break 
        else 
            y_win=y_win+1; 
        end 
    end 
    if y_win==-1 
        y_win=0; 
    end 
    if win_rad(size_win*n_factor+n_factor_2+1-
y_win,size_win*n_factor+n_factor_2+1+x_win,1)==1 
        if phi_rad(i)<phi_min 
            phi_min=phi_rad(i); 
        end 
        if phi_rad(i)>phi_max 
            phi_max=phi_rad(i); 
        end 
    else 
        win_rad(size_win*n_factor+n_factor_2+1-
y_win_mem,size_win*n_factor+n_factor_2+1+x_win_mem,2)=phi_min; 
        win_rad(size_win*n_factor+n_factor_2+1-
y_win_mem,size_win*n_factor+n_factor_2+1+x_win_mem,3)=phi_max; 
        phi_min=phi_rad(i); 
        phi_max=phi_rad(i); 
        x_win_mem=x_win; 
        y_win_mem=y_win; 
    end 
    if phi_rad(i)==pi 
        win_rad(size_win*n_factor+n_factor_2+1-
y_win_mem,size_win*n_factor+n_factor_2+1+x_win_mem,2)=phi_min; 
        win_rad(size_win*n_factor+n_factor_2+1-
y_win_mem,size_win*n_factor+n_factor_2+1+x_win_mem,3)=phi_max; 
    end 
    win_rad(size_win*n_factor+n_factor_2+1-
y_win,size_win*n_factor+n_factor_2+1+x_win,1)=1; 
end 
  
temp_coor_rad=find(win_rad(:,:,1)==1); 
n_coor_rad=length(temp_coor_rad); 
coor_rad=zeros(n_coor_rad,2); 
[coor_rad(:,2),coor_rad(:,1)]=find(win_rad(:,:,1)==1); 
  
  
%%find the symmetric of the points defined in the upper part of win_rad 
%and find all the matrix cell crossed by a line joining the two cells 



cell_path_rad=cell(2,n_coor_rad-1); 
for i=1:n_coor_rad 
    x1=coor_rad(i,1)-0.5; 
    y1=coor_rad(i,2)-0.5; 
    x2=((2*size_win+1)*n_factor+1-coor_rad(i,1))-0.5; 
    y2=((2*size_win+1)*n_factor+1-coor_rad(i,2))-0.5; 
     
    if x1~=(2*size_win+1)*n_factor-0.5 || 
y1~=size_win*n_factor+n_factor_2+0.5 
        if x1~=x2 
            m_coeff=(y2-y1)/(x2-x1); 
            y0=y1-m_coeff*x1; 
  
            x_line=linspace(x1,x2,n_x_line); 
            y_line=m_coeff*x_line+y0; 
  
            ii=coor_rad(i,2)-1; 
            jj=coor_rad(i,1)-1; 
            n_path=1; 
            temp_cell_path_rad=zeros(3*size_win*n_factor+1,2); 
            temp_cell_path_rad(n_path,1)=ii; 
            temp_cell_path_rad(n_path,2)=jj; 
            if x2>x1 
                for j=1:n_x_line 
                    while 1 
                        if x_line(j)<=jj+1 
                            break 
                        else 
                            jj=jj+1; 
                        end 
                    end 
                    while 1 
                        if y_line(j)<=ii+1 
                            break 
                        else 
                            ii=ii+1; 
                        end 
                    end 
  
                    if ii~=temp_cell_path_rad(n_path,1) || 
jj~=temp_cell_path_rad(n_path,2) 
                        n_path=n_path+1; 
                        temp_cell_path_rad(n_path,1)=ii; 
                        temp_cell_path_rad(n_path,2)=jj; 
                    end 
                end 
            else 
                for j=1:n_x_line 
                    while 1 
                        if x_line(j)>=jj 
                            break 
                        else 
                            jj=jj-1; 
                        end 
                    end 
                    while 1 
                        if y_line(j)<=ii+1 
                            break 
                        else 
                            ii=ii+1; 
                        end 



                    end 
  
                    if ii~=temp_cell_path_rad(n_path,1) || 
jj~=temp_cell_path_rad(n_path,2) 
                        n_path=n_path+1; 
                        temp_cell_path_rad(n_path,1)=ii; 
                        temp_cell_path_rad(n_path,2)=jj; 
                    end 
                end 
            end 
            temp_cell_path_rad=temp_cell_path_rad+1; 
            temp_cell_path_rad(n_path+1:end,:)=[]; 
        else 
            temp_cell_path_rad=zeros(3*size_win*n_factor+1,2); 
            for j=1:(2*size_win+1)*n_factor 
                temp_cell_path_rad(j,1)=j; 
                temp_cell_path_rad(j,2)=coor_rad(i,1); 
            end 
            temp_cell_path_rad((2*size_win+1)*n_factor+1:end,:)=[]; 
        end 
        
cell_path_rad{1,i}=sub2ind(size(win_rad(:,:,1)),temp_cell_path_rad(:,1),tem
p_cell_path_rad(:,2)); 
        cell_path_rad{2,i}(1,1)=win_rad(coor_rad(i,2),coor_rad(i,1),2); 
        cell_path_rad{2,i}(2,1)=win_rad(coor_rad(i,2),coor_rad(i,1),3); 
        
cell_path_rad{2,i}(3,1)=(cell_path_rad{2,i}(2,1)+cell_path_rad{2,i}(1,1))/2
; 
        if cell_path_rad{2,i}(3,1)>pi/2 
            cell_path_rad{2,i}(3,1)=cell_path_rad{2,i}(3,1)-pi; 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Final	program	to	process	Statoil	data	
 

The program is available at NTNU but if one wants to test this code, one also needs the initial 
data on which it was tested. Since it is a Statoil property one first need their agreement before 
considering testing it. 

To get the latest version of the code: jscornet@hotmail.fr 

 


