
Fluid Dynamics Research 28 (2001) 295–310

Pressure drop correlations for  ow through regular
helical coil tubes

Shaukat Ali
Department of Chemical Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University,

Aligarh 202 002 India

Received 27 September 1999; received in revised form 17 April 2000; accepted 11 October 2000

Abstract

An attempt has been made to arrive at a better characterizing dimensionless group for steady isothermal  ow of
Newtonian  uids in helically coiled circular tubes. Pressure drop versus  ow rate data has been experimentally obtained
for helical coils made from thick-walled polyethylene tubing. Generalized pressure drop correlations have been developed
in terms of Euler number, Eu, Reynolds number, Re, and the obtained geometrical group, Grhc = (d0:85D0:15

eq =Lc), where d
is the inside diameter of the tube, Deq is the equivalent diameter which accounts for the torsion e5ect, and Lc is the length
of the coil. The Fanning friction factor for helical coil tube is found to depend on Reynolds number and a geometrical
number, d=Deq, separately both, and not by a dimensionless number obtained by any combination of Reynolds number
and some geometrical number as is the case of Dean number, De=Re

√
(d=D), where D is the diameter of the coil. There

exist four regimes of  ow for the  ow through helical-coiled circular tubes. The obtained pressure drop correlations are
simple to use. c© 2001 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.

1. Introduction

Due to the advantages of accommodating large heat transfer area within a small space, high heat
transfer coe;cient and small residence time distribution, tube coils are extensively used in industries
as heat exchangers and reactors.
Increased pressure drop for  ow in curved channels, as compared to the pressure drop for the

same rate of  ow in the corresponding straight channel of the same length, was =rst reported by
Grindley and Gibson (1908). Their experiments concerned with the measurement of pressure drop
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Nomenclature

A curvature ratio (=d=D)
ai constant power of d appearing in Eq. (2)
bi constant power of D appearing in Eq. (2)
C coiling e5ect factor (=CPc=CPs)
ci constant power of p appearing in Eq. (2)
d inside diameter of tube, cm
di constant power of Lc appearing in Eq. (2)
D diameter of coil, cm
De Dean number (=Re

√
(d=D))

Deq equivalent diameter of coil {=√
(p2 + (�D)2)=�}; cm

Eu Euler number (=CP=(2�V 2))
fs Fanning friction factor for straight tube (= {CPs=(2�V 2)}{d=L})
fc Fanning friction factor for coil (= {CPc=(2�V 2)}{d=Lc})
G geometrical number
Grhc geometrical number for regular-helical coil
He Helical number (=Re[(d=D)={1 + (p=�D)2}1=2]
K dynamical similarity parameter as de=ned by Dean {=2Re2(d=D)}
Ki constant coe;cient appearing in Eq. (2)
L length of tube, cm
Lc length of the coiled portion of coil, cm
n number of turns in a coil
p pitch of coil, cm
CPc pressure drop in coil, N=m2

CPs pressure drop in straight tube, N=m2

Re Reynolds number (=dV�=�)
Recrit critical Reynolds number
Recritll critical Reynolds number for transition from low laminar to laminar  ow
Recritl critical Reynolds number for transition from laminar to mixed  ow
Recritm critical Reynolds number for transition from mixed to turbulent  ow
V average velocity, cm/s
Qc  ow rate in coil, cm3=s
Qs  ow rate in straight tube, cm3=s
Tn torsion number (= 2�Re)

Greek letters
� constant coe;cient
� constant power
� viscosity of experimental  uid, cp
� density of experimental  uid, g=cm3

� ratio of torsion � to curvature �
� curvature of the centerline of pipe {=R=(R2 + p2)}
� torsion {=p=(R2 + p2)}
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for the  ow of air through helically coiled pipe for the determination of viscosity. Eustice (1910)
was next to report this increased pressure drop for  ow of water through  exible coiled tubing of
various radii of curvature. Dean (1927), through his theoretical analysis for the  ow of incompressible
Newtonian  uids in torus, con=rmed the observation of Eustice. Non-dimensionalizing his simpli=ed
Navier–Stokes equations for torii of small curvature ratio, A = d=D, he arrived at a dynamical
similarity parameter, K = 2Re2(d=D), which, he claimed, characterizes the  ow in torus at small
 ow rates. Square root of half of K was later given the name Dean number, De. In his subsequent
work, Dean (1928) succeeded in showing reduction in rate of  ow with curvature and its functional
dependence on K . Since these works, various experimental as well as theoretical attempts have been
made to obtain correlations for pressure drop in one turn circular tubes and in regular helical-coiled
tubes. Table 1 summarizes most of the available correlations. Following can be noted:

1. Most of the available correlations for laminar  ow in these types of curved tubes are for the
ratio of the Fanning friction factor for the curved tube to the Fanning friction factor for the
 ow of the same  uid in a straight length of the same diameter tube, fc=fs. For turbulent  ow,
the available correlations are for the Fanning friction factor, fc, or for some product of fc to the
curvature ratio, d=D. Reason for seeking correlations in di5erent characterizing groups for the two
regimes of  ow is, however, not obvious.

2. The friction factor ratio, fc=fs, is the ratio of the pressure gradient in the coiled tube to that in
the corresponding straight tube at the same  ow rate, (CPc=Lc)=(CPs=Ls). Hence, it is called as
coiling e5ect factor, C. It is also equal to the ratio of the square of  ow rate in the corresponding
straight tube to that in the coiled tube under the same pressure gradient, Q2

s =Q
2
c . White’s (1932)

plot, logC versus logDe, came out to be a single curve before deviating to separate curves at
Reynolds numbers di5erent for di5erent curvature ratio coils; the point of break was inferred to
correspond to laminar to turbulent  ow transition point. Various investigators since then have
tried to obtain correlations in C for the laminar  ow in such curved tubes. However, the use of
the value of fs in the ratio fc=fs is confusing. For laminar  ow, the value of fs is 16=Re, and
for turbulent  ow, it may be taken to be 0:0791=Re1=4. If fc=fs is visualized as a comparison of
the pressure drop in coil to that in the corresponding straight tube, the former value should be
used only up to the value of Reynolds number equal to the critical Reynolds number of  ow in
straight tubes, i.e. 2100. Beyond this value, the  ow in the straight tube ceases to be laminar,
whereas in coiled tubes it persists to be laminar up to much higher Reynolds number. However,
the use of the former value of fs up to Re = 2100 and then the latter value up to the critical
Reynolds number for the coil  ow will result in an additional break in the logC versus log Re
curve at Re = 2100. This makes the nature of the C versus Re curves more complex than fc

versus Re curve, which is continuous. Thus, it may be concluded that a correlation in fc=fs can
be developed, at the most, up to Re = 2100, whereas a correlation in fc can be developed for
the entire range of coil  ow.

3. The available correlations are in terms of either the characterizing group Dean number or in terms
of a separate or joint combination of Reynolds number and the curvature ratio. It needs to be noted
that the dimensionless group Dean number obtained from the simpli=ed Navier–Stokes equations
for developed  ow in torus is approximation only for slight curvature. In fact, both the Dean
number and the curvature ratio appear separately in the full equations of motion. Ali’s (1974)
attempt to solve the complete Navier–Stokes equations for the  ow by a method of weighted
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Table 1
Available pressure drop correlations

Author Correlation Conditions Characterizing
groups

Dean (1928) fc=fs = 1:03058(De2=288)2 Torus, analytical, laminar, fc=fs;De2

+0:01195(De2=288)4 small d=D, De¡ 20
White (1929) fs=fc=1−[1−(11:6=De)0:45]1=0:45 Circular tube, empirical, laminar, fc=fs; De

=1 for De¡ 11:6 D=d= 15:15; 50; 2050;
11:6¡De¡ 2000

White (1932) fc = 0:08Re−1=4 + 0:012
√
(d=D) Helical, empirical, turbulent, fc;Re;

√
(d=D)

15000¡Re¡ 100; 000
Adler (1934) fc=fs = 0:1064

√
De Experimental + theoretical, fc=fs;

√
De

laminar, large De
Prandtl (1949) fc=fs = 0:37 (0:5De)0:36 Empirical, laminar, 40¡De¡ 2000 fc=fs; De
Hasson (1955) fc=fs = 0:556 + 0:0969

√
De Helical, empirical, laminar fc=fs;

√
De

Ito (1959) fc=fs = 21:5De=[1:56 + log10 De]
5:73 Empirical, laminar, 13:5¡De¡ 2000 fc=fs; De

Ito (1959) fc
√
(D=d) = 0:0791[Re(d=D)2]−0:2 Circular tube, empirical, turbulent, fc

√
(D=d),

Re(d=D)2 ¿ 6 Re(d=D)2

Ito (1959) 4fc
√
(D=d) = 0:029 Theoretical, turbulent, fc

√
(D=d),

+0:304× {Re(d=D)2}−1=4 0:034¡Re(d=D)2 ¡ 300 Re(d=D)2

Ito (1959) fc
√
(D=d) = 0:0081 Theoretical, turbulent, fc

√
(D=d),

+0:4× (Y 2√(d=D))−1:27, Y 2√(d=D)¡ 12 Re
√
(D=d),

where Y 3eY = Re
√
(D=d)

√
(d=D)

Ito (1959) fc = 0:2965=Y 2 Theoretical, turbulent, fc;Re
√
(D=d),

Y 2√(d=D)¿ 5:3
√
(d=D)

Kubair and Varrier fc = 0:7716 exp(3:553d=D)Re−0:5 Helical, empirical, non-isothermal, fc; d=D, Re
(1961/1962) 2000¡Re¡ 9000

0:037¡d=D¡ 0:097
fc = 0:003538Re0:09exp(1:887d=D) Helical, empirical, turbulent, fc; Re; d=D

10¡D=d¡ 27; 9000¡Re¡ 25; 000
Barua (1963) fc=fs = 0:509 + 0:0918

√
De Torus, theoretical, laminar, large De fc=fs;

√
De

Mori and Nakayama fc=fs = 0:1080
√
De=[1− 3:253=

√
De] Circular tube, theoretical, fc=fs;

√
De

(1965) experimentally veri=ed,
laminar, 13:5¡De¡ 2000

Mori and Nakayama fc
√
(D=d) = 0:075[Re(d=D)2] Circular tube, theoretical + fc

√
(D=d),

(1967) −0:2{1 + 0:112[Re(d=D)2}−0:2] experimental, turbulent Re(d=D)2

Schmidt (1967) fc=fs = 1 + 0:14Rex, where Empirical fc;Re; D=d
x = 1− 0:0644=(D=d)0:312]=(D=d)0:97

Srinivasan et al. fc = 32=Re Helical, empirical fc;Re,
(1968) 0:0097¡d=D¡ 0:135, Re

√
(d=D)

Re
√
(d=D)¡ 30

fc = 5:22 (Re
√
(D=d))−0:6 30¡Re

√
(d=D)¡ 300 fc;Re

√
(D=d),

Re
√
(d=D)

fc = 1:8 (Re
√
(D=d))−0:5 300¡Re

√
(d=D)¡Recrit

√
(d=D) fc;Re

√
(D=d),

Re
√
(d=D)

fc = 1:084 (Re
√
(D=d))−0:2 Re¿Recrit fc;Re

√
(D=d)

Ito (1969) fc=fs = 0:1033
√
De[(1 + 1:729=De)0:5 Theoretical fc=fs;De

−(1:729=De)0:5]−3

Tarbell and Samuels fc=fs = 1 + [0:0008279 Torus, numerical, fc=fs, Re,
(1973) +0:007964d=D]Re 20¡De¡ 500; 3¡D=d¡ 30 d=D

−2:096× 10−7 Re2
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Table 1. (Continued.)

Author Correlation Conditions Characterizing
groups

Ramana Rao and fc = 1:55 exp(14:12d=D)Re−1 Helical, empirical, fc; Re; d=D
Sadasivudu (1974) 0:0159¡d=D¡ 0:0556; Re¡ 1200,

fc = 1:55 exp(14:12d=D)Re−0:64 ,, , 1200¡Re¡Recrit ,,
fc = 0:0382 exp(11:17d=D)Re−0:2 ,, , Recrit ¡Re¡ 27; 000 ,,
fc = 0:01065(d0:94=D0:1) Re−0:2 ,, , turbulent Dimensional

Collins and Dennis fc=fs = 0:38 + 0:1028
√
De Torus, numerical, laminar, fc=fs;

√
De

(1975) large De
Van Dyke (1978) fc=fs = 0:47136 De1=4 Torus, theoretical, laminar, fc=fs; De

large De¿ 30
Mishra and Gupta fc=fs = 1 + 0:033[log10 He]

4 Helical, empirical, laminar, fc=fs;He
(1979) 1¡He¡ 3000

fc = 0:0791Re−1=4 Helical, empirical, turbulent, fc; Re;
√
d=D

+0:0075
√
(d=D) 4500¡Re¡ 105; 6:7¡D=d¡ 346,

where, He = Re[(d=D)= 0¡p=D¡ 25:4
{1 + (p=�D)2}]1=2

Dennis (1980) fc=fs = 0:388 + 0:1015
√
De Torus, numerical, laminar, large De fc=fs;

√
De

Manlapaz and fc=fs = [(1− 0:18={1 + (35=He)2}0:5)m Helical, numerical fc=fs; He,
Churchill (1980) +(1 + d={3D})2(He=88:33)]0:5, d=D

where m= 2 for De¡ 20;
=1 for 20¡De¡ 40,
=0 for De¿ 40

Yanase et al. (1989) fc=fs = 0:557 + 0:0938
√
De Toroidal tube, theoretical, laminar fc=fs;

√
De

Liu and Masliyah fc Re = [16 + (0:378De �1=4 Helical, numerical, developing laminar
(1993) +12:1)De1=2�1=2"2]×

[1 + {(0:0908 + 0:0233�1=2)De1=2

−0:132�1=2 + 0:37� − 0:2}=
(1 + 49=De)];

where � = (D=2)=[(D=2)2 + (p=2�)2],
"= #=(�De)1=2,
#= (p=2�)=[(D=2)2 + (p=2�)2]

residuals resulted in a converging series solution for  ow rates corresponding to Reynolds number
less than 50. Even at these small  ow rates, his result shows separate dependence of the friction
factor on the Reynolds number and the curvature ratio. Germano (1989) showed that the Dean
equations when extended to a helical tube  ow contain not only the Dean number but also the
parameter �=Re, where � is the ratio of torsion � to curvature � of the centerline of the coiled
tube. Thus, it may be concluded that an a priori assumption that De alone characterizes the helical
 ow is not advisable.

4. Most of the available correlations do not contain the geometrical parameter pitch p or torsion � to
account for the fact that helical coils do not bend in a plane. Srinivasan et al. (1968) noticed no
signi=cant e5ect of pitch on friction factor. Manlapaz and Churchill (1980) have concluded that
the pitch e5ect is insigni=cant only for coils for which the increase in elevation per revolution
of coils is less than the radius of the coil. Chen and Fan (1986) and Kao (1987) have concluded
that the torsion e5ect on the  ow rate can be ignored. However, Germano (1989) has shown
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that the  ow in a helical-circular pipe depends not only on the Dean number but also on the
parameter �=Re. Chen and Jan (1992) have shown that the  ow in a helical pipe is controlled by
three parameters: Reynolds number, Dean number and torsion number Tn = 2�Re. Mishra and
Gupta (1979), Manlapaz and Churchill (1980), and Liu and Masliyah (1993) have accounted for
p by obtaining their correlations in terms of a parameter He, named as helical number. For the
laminar  ow in a helical circular tube with fairly large pitches, Yamamoto et al. (1994,1999)
have shown, by numerical computations, large e5ect of torsion on the friction factor. This has
been further con=rmed by the experimental study of Yamamoto et al. (1995).

5. Most of the investigators who have given correlations both for laminar as well as turbulent  ow
have mostly used di5erent characterizing groups for the two regimes of  ow. However, these
groups, if they characterize the coil  ow, are likely to be same.

6. It is generally believed that correlations for the one-turn circular tubes also hold good for the
closely packed regular helical tubes. This seems not to be true as a large portion of such tubes
contains undeveloped  ow, whereas regular helical coil with more number of turns contains
mostly fully developed  ow. Also, to measure pressure drop, some of the investigators have
placed pressure taps within the coiled length itself. The presence of secondary  ow is likely to
e5ect the measurement. Correlations developed from such data are likely to have unknown errors
and can hardly correspond to fully developed  ow in helical coils.

7. Lastly, because any correlation is only an approximation of the actual relationship valid only for
a limited range of parameters, it needs to be simple. Some of the correlations listed above are
quite complicated. This might have arisen from the failure of arriving at accurate characterizing
groups.
This paper is a report of the attempt to arrive at better characterizing parameters and to obtain

suitable correlations in terms of these parameters.

2. Experimental

Required pressure drop versus  ow rate data, used here, for  ow through helical tube coils was
collected long back in 1977 by Ali and Zaidi who had failed to develop satisfactory correlation
at that time. Regular-helical tube coils, used for testing, were made by winding thick-walled poly-
ethylene tubings on wooden cylinders of di5erent required diameters. All the coils thus formed
were tangentially extended at their two ends. These straight tube extensions in su;cient length are
required to subside  uid disturbances at the entry to the coil and to subside the secondary  ow exiting
from the coil. Pressure taps were attached to the two disturbance-free part of the straight lengths.
Pressure-drop data for an equal straight length of the same tubing was obtained and subtracted from
the pressure drop data of the coil-straight length combination so as to give the pressure drop data for
the coiled portion only. A carbon tetrachloride manometer was used for smaller pressure drops and
a mercury manometer was used for larger pressure drops. Water at ambient temperature was used as
the test  uid. The inside diameter of the tubing was accurately measured by means of a travelling
microscope by cutting the tubing at di5erent lengths and measuring at two mutually perpendicular
diameters. These observed values of diameters were further checked by noting the weight of water
=lled in a known length of the tubing. Visual inspection revealed no deformation of the tubing
during winding and experimentation.
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Table 2
Dimensions of coils and symbols used for data plotting

Coil no. Symbol d (cm) D (cm) p (cm) Lc (cm) n

1 O 0.603 11.6225 5 223.8 6
2 × 0.603 11.6225 1 223.8 6
3 C 0.603 11.6225 5 112.3 3
4 + 0.603 11.6225 1 111.5 3
5 ∇ 0.464 11.6225 5 226.3 6
6 ⊕ 0.464 11.6225 5 113.2 3
7 ∗ 0.603 22.448 1 426 6
8 0.603 22.448 1 213 3

The  ow rate versus pressure drop data was obtained for a set of eight coils. These coils varied
in geometry from each other in such a way that each of the geometrical parameters: d, the inside
diameter of the tube, D, the coil diameter, Lc, the length of the coil, and p, the pitch of the
coil, changed once with respect to a particular coil. These four geometrical parameters, d; D; Lc

and p, are su;cient to uniquely specify the geometry of a regular-helical coil. Table 2 gives the
dimensions of the coils used for experimentation and symbols used for them for the data plotting
in the subsequent =gures. The dimensions are such that d=D varies from 0.027 to 0.052, and p=D
varies from 0.0445 to 0.43. All the correlations mentioned above are valid in these ranges.

3. Analysis of the experimental data

For  ow in regular-helical tube coils, pressure drop, CP, as a dependent variable, depends on the
independent variables of the  uid properties (� and �), the  ow rate variable (V ), and the parameters
of the coil geometry (d;D; p and L). Thus,

CP =CP(�; �; V; d; D; p; L): (1)

Performing dimensional analysis on these variables, we get

CP=(2�V 2) =
∑

i

KidaiDbipciLdi
c (�V=�)

ai+bi+ci+di: (2)

The coe;cient Ki and powers ai; bi; ci and di are to be obtained by =tting the experimental
data. For the sake of simple expression, only one term on the right-hand side will be retained for
obtaining pressure drop correlations.
Log–log plots of Euler number, Eu = CP=(2�V 2), versus Reynolds number, Re = dV�=�, are

obtained from the pressure drop- ow rate data. Fig. 1 gives this plot for tube diameter changing
coils. It appears that data points for coils 1 and 5 will fall on a single curve if we give an appropriate
d-dependent shift to the Y coordinate. Similarly, data points for coils 3 and 6 will fall on a single
curve by giving an appropriate Y -shift.
Fig. 2 is plot for coil diameter, D, changing coils 2 and 8. It appears that there is requirement for

an appropriate D-dependent Y -shift for merging. Fig. 3 is a plot for coil length, Lc, changing coils.
Data points for coils 1 and 3 and those for coils 5 and 6 need appropriate Lc-dependent Y -shift for
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Fig. 1. Experimental data for tube diameter-changing coils.

Fig. 2. Experimental data for coil diameter-changing coils.

merging. Similarly, Fig. 4 is a plot for pitch-changing coils 1–4. It appears that only a very small
Y -shift is required.
Plots 1–4 indicate a very important conclusion that merging of data points for all the coils tested

on a single curve does not require any X -shift, rather only Y -shifts are required. This shows that
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Fig. 3. Experimental data for coil length-changing coils.

Fig. 4. Experimental data for pitch-changing coils.
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Table 3
Requirement of shifts in coordinates

Coil Symbol Changing parameter Laminar Turbulent

X -shift Y -shift X -shift Y -shift

1. d changing coils:
5 ∇ d= 0:464 cm 0.0 +0:1 0.0 0.08
1 0 d= 0:603 cm

6 ⊕ d= 0:603 cm 0.0 +0:15 0.0 0.10
3 C d= 0:603 cm

2. D changing coils:
2 × D = 11:6225 cm 0.0 +0:011 0.0 0.7
8 D = 22:448 cm

3. Lc changing coils:
3 C Lc = 112:3 cm 0.0 −0:3 0.0 −0:3
1 0 Lc = 223:8 cm

6 ⊕ Lc = 113:2 cm 0.0 −0:3 0.0 −0:3
4 + Lc = 226:3 cm

4. p changing coils:
2 × p= 1 cm 0.0 +0:03 0.0 +0:03
1 0 p= 5 cm

4 + p= 1 cm 0.0 0.0 0.0 0.0
2 × p= 5 cm

Reynolds number and not a product of Reynolds number and some power of curvature ratio is
required to characterize the regular helical coil  ow.
Further, since the pitch, p, does not have any distinctive e5ect, it can be combined with D, the

diameter of the coil, in an equivalent diameter, Deq, as

Deq =
√
[p2 + (%D)2]=�= Lc=n�: (3)

Thus, a universal correlation for the helical  ow is expected to be in the form

Eu(daDb
eqL

c
c) = �Re−�: (4)

A rough estimate of values of a; b and c can be obtained by =nding the requirement of Y -shift
for data points for d;D and Lc varying coils in Figs. 1–4. Table 3 gives these requirements.
Various attempts were made to obtain the best values of a; b and c to give a single Eu (daDb

eqL
c
c)

versus Re curve. Eu (d0:85D0:15
eq =Lc) versus Re curve, Fig. 5, resulted in the best merging indicating

that

Grhc = (d0:85D0:15
eq =Lc) (5)
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Fig. 5. log EuGrhc versus log Re plot.

is the geometrical group which characterizes the regular-helical coil  ow. Thus, the required universal
correlation can be of the form

Eu (d0:85D0:15
eq =Lc) = �Re−� (6)

which is equivalent to:

Eu d=Lc = �(d=Deq)0:15 Re
−�: (7)

A close look at Fig. 5 indicates that with the arrived new group Grhc, data points fall on straight
lines having three break points, indicating that helical  ow changes nature at three critical values of
Reynolds number. Hence, the  ow may be thought to have four regimes of  ow. The =rst regime
is up to the =rst critical Reynolds number, say Recritll, and may be termed as low laminar  ow
regime. The second regime lies between the =rst critical Reynolds number and the second critical
Reynolds number, say Recritl, and may be termed as laminar  ow regime. The third regime lies
between the second critical Reynolds number and the third critical Reynolds number, say Recritm,
and may be termed as mixed  ow regime. The last regime is that of turbulent  ow and lies beyond
the third critical Reynolds number. Straight-line =ts are obtained in the low laminar, laminar, mixed,
and turbulent  ow regimes as

EuGrhc = 38Re−1; Re¡Recritll; (8)

EuGrhc = 5:25Re−2=3; Recritll;¡Re¡Recritl; (9)

EuGrhc = 0:31Re−1=3; Recritl¡Re¡Recritm; (10)

EuGrhc = 0:045Re−1=8; Re¿Recritm; (11)
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where Recritll, Recritl, and Recritm are obtained as

Recritll = 500; (12)

Recritl = 6300; (13)

Recritm = 10; 000: (14)

Average deviations of the experimental data points from the above correlations are within −16:8
to + 6:66% in the low laminar  ow regime, −11:6 to + 5:4% in the laminar  ow regime, −6:7 to
+ 7:2% in the mixed  ow regime, and −7:15 to + 7:16% in the turbulent  ow regime.
It needs to be emphasized that the almost complete merging of data points in Fig. 5 indicates

success of obtaining a characterizing geometrical number, Grhc. A slightly di5erent set of correlations
with di5erent powers of Re, can also be =tted as

EuGrhc = 21:88Re−0:9; Re¡ 500 (15)

with average deviation from −13:9% to +8%,

EuGrhc = 5:25Re−2=3; 500¡Re¡ 6300 (16)

with average deviation from −11:6% to +5:4%,

EuGrhc = 0:56Re−2=5; 6300¡Re¡ 10; 000 (17)

with average deviation from −7:8% to +6:1%, and

EuGrhc = 0:09Re−1=5; Re¿ 10; 000 (18)

with average deviation from −8:96 to + 6:14%.
The exact powers of Re, however, can only be deduced from the mathematical analysis of the

 ow, or can be predicted with very accurate experimental data.

4. Discussion of results

4.1. The form of the correlations

The obtained correlations (8)–(11) and (15)–(18) are of the form EuG = �Re−�, which is the
same form as that of Hagen–Poiseuille law Eu(d=L) = 16=Re, and Blasius resistance law Eu(d=L) =
0:0791Re−0:25 for straight tube  ow. G is some geometrical dimensionless group, which depends on
the geometry of the tube. The correlations obtained by Ali and Seshadri (1971) for Archimedean
spiral tube coils and those by Ali and Zaidi (1979) for ascending equiangular spiral tube coils are
also in the same form. It is interesting to note that the correlations given by Adler (1934), Prandtl
(1949), Kubair and Varrier (1961/1962), Srinivasan et al. (1968), Ramana Rao and Sadasivudu
(1974) and Van Dyke (1978) for helical coil  ow are also of the same form. A suitable adjustment
in the coe;cients in these correlations may result in better correlations even with the characterizing
groups used by them.
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Fig. 6. Coiling e5ect factor versus Reynolds number plot.

4.2. Critical Reynolds numbers

From Fig. 5, the three critical Reynolds numbers have been guessed roughly as given by (12)–
(14). The method of White (1929), originally suggested for curved pipes for the location of critical
Reynolds numbers, was also tried. The method consists of observing breaks on the log–log plot of
the ratio CPc=CPs versus Re. Fig. 6 is this plot. Locations of the three critical Reynolds numbers
are not distinct in this plot. A closer look at the trend of data points shows that variation of logC
with log Re is rather more gradual than linear, implying that the transitions from low laminar to
laminar, laminar to mixed, and mixed to turbulent  ow are gradual. However, the existence of the
four regimes of  ow, namely low laminar, laminar, mixed and turbulent  ow is rather clear.

4.3. Comparison with available correlations

Since di5erent workers have used di5erent characterizing groups and their correlations di5er in
form, a comparison of the available correlations with the developed correlations (8)–(11) and (15)
–(18) is somewhat di;cult. However, for the ease of comparison, these correlations have been
converted to the common form (7) and plotted in Fig. 7 for the coil 1. Following observations are
made:

1. Most of the available correlations, including the present one, have good agreement with each
other, and can be used to approximately predict pressure drop for regular-helical coil  ow.

2. Since fc and Re do not characterize the coil  ow completely, we will get di5erent curves for
di5erent coils which may di5er from that shown in Fig. 7.

3. Since all the correlations result in almost straight lines in Fig. 7, it appears that they may be
transformed into a common form.

4. Almost all the correlations show a break at the critical Reynolds number Recritl.
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Fig. 7. Comparison with available correlations.

5. Conclusions and recommendation

The analysis of the experimental data in this work reveals a much better characterizing geometrical
group, and the correlations developed are much simpler than most of the available correlations. It
appears that there exist four regimes of  ow. The low laminar  ow regime extends approximately
up to the =rst critical Reynolds number of 500. The secondary  ow e5ect on pressure drop seems
to be comparatively less in this regime and a comparison of correlation (8) with that of straight
tube shows that pressure drop in regular helical coil in this regime is 2:375 (d=Deq)0:15 times that of
straight tube pressure drop. Although, there is continuous increase in the intensity of secondary  ow
with Reynolds number, in this regime of laminar  ow, the e5ect of main axial  ow on the  ow
resistance seems to dominate over the e5ect of secondary  ow. The second regime of laminar  ow
extends up to the second critical Reynolds number of approximately 6300. In this regime, up to the
Reynolds number of 2100, there exists laminar  ow in both straight and coiled tubes; the secondary
 ow seems to increase further and the continuous increase of secondary  ow in coiled tubes causes
continuous increase in the coiling e5ect factor. Thereafter,  ow in straight tube becomes turbulent
while that in coil continues to be laminar. The e5ect of turbulence on the pressure drop tends to
dominate over the secondary  ow e5ect, and the coiling e5ect factor continuously decreases till it
reaches a minimum. Hereafter, in the third regime of mixed  ow, turbulence also sets in the coiled
tube. The coiling e5ect factor tends to increase but slightly up to the third critical Reynolds number
of approximately 10,000, till the intensity of turbulence in coil  ow becomes equal to that in the
straight tube. Thereafter, the presence of secondary  ow over and above turbulence in the coiled
tube tends to increase the coiling e5ect factor once again.
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Apart from obtaining more accurate pressure drop correlations, importance of the present work
lies in arriving at the better characterizing geometrical group Grhc in (5). Incidentally, this group
happens to have the same form as that in Adler’s correlation and in Prandtl’s correlation.
For more accurate prediction of power of Re in (6) and for the determination of more accurate

values of the three critical Reynolds numbers, experimental data are required to be more precise.
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