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iii Preface

Abstract

In this thesis, we use a mean squared error energy approximation for edge
deletion in order to make performing inference in Markov random fields using
the junction tree algorithm tractable, and by that develop an approximate
marginal inference algorithm for binary Markov random fields. We apply the
algorithm to a wide range of example models, including pairwise Ising models
and Boltzmann machines, as well as two types of higher-order grid models.
Three different approaches to selecting edges for deletion are developed and
compared, and the quality of approximation of our algorithm is compared
to that of the loopy belief propagation algorithm as well as to Gibbs sam-
pling based inference, two traditional approaches to performing approximate
marginal inference.

The results of the numerical experiments we have performed indicate that
traditional approaches to approximate inference usually give superior results
to those from our algorithm when working with pairwise models. However, the
algorithm developed in this thesis shows promise when applied to higher-order
models, and in cases where loopy belief propagation does not converge and
stochastic methods are undesirable. We also find that choosing edges to delete
using the Kullback-Leibler divergence as a criterion is particularly effective,
but that other edge selection methods may be as effective for certain types of
models.

Sammendrag

I denne oppgaven bruker vi en approksimasjon av energifunksjonen basert
på middelkvadratfeil for å slette kanter i binære Markov-nettverk slik at det
lar seg gjøre å utføre marginalinferens ved hjelp av junction tree-algoritmen. Vi
anvender algoritmen på et variert utvalg eksempler, deriblant parvise Ising-
modeller og Boltzmann-maskiner, samt to typer høyere ordens gridmodeller.
Vi ser på og sammenligner tre ulike metoder for å velge kanter for sletting,
og kvaliteten på approksimasjonene fra algoritmen vår sammenlignes med
kvaliteten på approksimasjonene regnet ut ved hjelp av loopy belief propagation
og approksimativ inferens basert på Gibbs-sampling, to klassiske metoder for å
utføre approksimativ inferens.

Resultatene fra de numeriske eksperimentene vi har utført indikerer at de
tradisjonelle metodene for å utføre approksimativ inferens vanligvis fører til
resultater av høyere kvalitet enn vår algoritme når anvendt på parvise mod-
eller. Imidlertid viser vår algoritme potensiale når den blir anvendt på høyere
ordens modeller, samt i tilfeller der loopy belief propagation ikke konvergerer og
stokastiske metoder ikke er ønskelige å bruke. Vi finner også at det er effektivt
å velge kanter å slette basert på Kullback-Leibler-divergens, men at de andre
foreslåtte metodene for valg av kanter å slette kan være like effektive for visse
typer modeller.
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1 Introduction

1 Introduction
The purpose of this text is to introduce an approximate algorithm for marginal infer-
ence in binary Markov random fields (MRFs) based on the junction tree algorithm,
by deleting edges using the mean squared error approximation that was developed
by Austad and Tjelmeland (20152015). Binary Markov random fields are a general
and widely used class of graphical models, and being able to perform inference in
such models is very useful. While there exist several exact inference algorithms
for general Markov random fields, the usefulness of applying such algorithms to
Markov random fields of some size is hampered by the fact that each algorithm in
some way has exponential time complexity. With this in mind, a great number of
approximate inference algorithms for Markov random fields have been developed.
Two common approximate inference methods for general Markov random fields are
loopy belief propagation (LBP) and sample-based inference using Markov chain Monte
Carlo (MCMC) sampling methods, while even more efficient algorithms exist for
specialized Markov random fields.

One common exact inference algorithm for Markov random fields is the junction
tree algorithm. The junction tree algorithm can perform inference in arbitrary
Markov random fields. However, the junction tree algorithm has exponential time
complexity in the graph’s tree width and is therefore not practical to use when
working with large Markov random fields.

In this text, we will perform approximate inference by deleting edges from
Markov random fields using the mean squared error energy approximation before
running the junction tree algorithm on the reduced model. As mentioned, the
performance of the junction tree algorithm is heavily dependent on the width of the
junction tree of the model in question, and by removing edges, we may reduce the
junction tree width and by that decrease the runtime of the junction tree algorithm.
The challenge is then to choose the right set of edges to delete such that the junction
tree width is reduced enough while maintaining a high quality of approximation.

There has been some previous work published on the topic of deleting edges in
Markov random fields in order to simplify inference. Riedel, Smith, and McCallum

(20102010) studies the use of the Kullback-Leibler divergence as a criterion for choosing
interactions to ignore, but does not study edge deletion in the context of a specific
exact inference algorithm such as the junction tree algorithm. Most of the previous
work has been done with a focus on Bayesian networks. Jensen and Anderson

(19901990) simplifies Bayesian networks by deleting weak interactions in each clique
of the network’s junction tree. Kjærulff (19941994) continues this work by using the
Kullback-Leibler divergence as a criterion for selecting interactions to delete.

Thornton (20032003) builds on the work of both authors, and compares several
strategies for simplifying the graph structure of Bayesian networks. The author
proposes several methods based on edge deletion, including one that uses the junc-
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tion tree algorithm to perform inference. Just as in Riedel, Smith, and McCallum

(20102010), a score based on the Kullback-Leibler divergence is used as a criterion for
choosing edges, instead of exploiting the particular properties of the Junction tree
algorithm. The main difference between the work of these authors and the topic of
this thesis is our particular focus on binary Markov random fields and the use of
the mean squared error energy approximation that was developed by Austad and
Tjelmeland (20152015).

The content of this thesis is divided into three main parts. In the first part
(chapters 22 and 33), we will introduce the requisite knowledge needed for an under-
standing of Markov random fields, inference algorithms and the theory behind our
own inference algorithm. In the second part (chapters 44 and 55), we will present our
own inference algorithm based on the principle of edge deletion using the mean
squared error energy approximation. We will discuss the algorithm’s edge deletion
strategy, and will propose three methods for selecting which edges to delete. The
results of applying our approximation algorithm to a series of example models will
be presented in the third part (chapters 66 and 77) of this text, and the results from
our algorithm will be compared to those of other standard approximate algorithms,
with a particular focus on quality of the approximate marginal probabilities output
by the algorithms.



3 Background

2 Background
The aim of this chapter is to present the concepts required to understand Markov
random fields, inference algorithms for Markov random fields as well as our pro-
posed approximate inference algorithm. Only the necessary topics will be covered
– a complete introduction to Markov random fields can be found in such works as
Koller and Friedman (20092009).

2.1 Graph theory
In order to understand Markov random fields, it is necessary to have some back-
ground in graph theory. A graph is a set of arbitrary objects called vertices, which are
connected by edges. These edges may be directed, in which case they point from one
vertex to another, or they may be undirected, in which case they link two vertices
without any directionality. In this text, we will mainly discuss undirected graphs,
which are graphs that contain only undirected edges.

Definition 1. An undirected graph is an ordered pair G = (V ,E) of a set of vertices V
and a set of edges E ⊆ {{u,v} : u,v ∈ V }.

1 2

3

Figure 2.1: An undirected
graph with 3 vertices and 3
edges.

Figure 2.12.1 shows an example of an undirected
graph of 3 vertices labelled 1,2 and 3 and three edges
connecting those vertices. In the graph in this figure,
all edges connect two distinct vertices, but this need
not be the case. We call an edge that connects a
vertex to itself a loop. We often study only graphs
that do not contain loops, and these are called simple
graphs.

Definition 2. A simple undirected graph is an undi-
rected graph G = (V ,E) where E ⊆ {{u,v} : u,v ∈
V ,u , v}.

Because we will not use any graphs containing
loops, we will refer to simple undirected graphs sim-
ply as graphs throughout this text to avoid verbosity.

A given vertex may be connected to multiple other vertices. There are several
terms in graph theory that are used to describe the relationship between a given
vertex and the vertices it is connected to.

Definition 3. LetG = (V ,E) be a graph, and let v,u ∈ V be two vertices in that graph.
If there exists an edge e ∈ E such that e = {u,v}, we say that u and v are adjacent or
neighbours. The neighbourhood Nv of a vertex v is the set Nv = {u ∈ V : {u,v} ∈ E} of
vertices that are adjacent to v.
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In other words, two vertices that are connected by an edge are adjacent to each
other. Another important concept is that of a clique, which describes a mutually
adjacent subset of the vertices in a graph.

Definition 4. Let G = (V ,E) be a graph, and let λ ⊆ V such that {u,v} ∈ E} ∀u,v ∈ λ.
We then say that λ is a clique.

1 2

3

(a)

1 2

3

(b)

1 2

3

(c)

1 2

3

(d)

Figure 2.2: A visualization of
all the cliques in the graph in
Figure 2.12.1 that involve vertex
3. Only clique (d) is a maxi-
mal clique, and it is the sole
maximal clique in the graph.

The set of just one vertex is a clique, as is the
set of two vertices connected by an edge. As we can
imagine, any graph of some size will contain a great
number of cliques, not all of which are as important,
and for this reason there exist several terms that
describe special classes of cliques. We will look at
two, the confusingly named maximal and maximum
cliques.

Definition 5. Let Λ be the set of all cliques in a
graphG = (V ,E), and let λ ∈Λ be an arbitrary clique.
If there does not exist another clique λ∗ ∈Λ such that
λ ⊆ λ∗, then we say that λ is a maximal clique.

An equivalent definition to the one stated above
is that a maximal clique is a clique that cannot be
expanded by including an adjacent vertex, because
none of the adjacent vertices are connected to every
vertex already in the clique.

Definition 6. Let Λ be the set of all cliques in a
graphG = (V ,E), and let λ ∈Λ be an arbitrary clique.
If there does not exist a clique λ∗ ∈Λ such that |λ∗| >
|λ|, then we say that λ is a maximum clique.

In other words, a maximum clique is a clique that
is at least as big as any other clique in the graph. The
problem of finding a maximum clique in a general
graph is difficult, and there are no known algorithms
that can do this in polynomial time in the worst case
(Pattabiraman et al., 20132013).

Figure 2.22.2 shows the cliques involving vertex 3 in the graph in Figure 2.12.1. This
graph contains only one maximal clique, shown in Figure 2.2d2.2d. If we added a vertex
4 to the graph as well as an edge between edges 3 and 4, the graph would contain two
maximal cliques – one containing vertices 1, 2 and 3, and one containing vertices 3
and 4.
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2.1.1 Representing graphs
When doing computations using graphs, we need to represent the graph in terms of
data structures that a computer can read and manipulate. A common representation
of a graph in terms of a two-dimensional array is called an adjacency matrix. In an
adjacency matrix, the cells with indices (i, j) and (j, i) are equal to 1 if the graph
contains an edge between two vertices labelled i and j.

Definition 7. Let G = (V ,E) be a graph with a set of vertices V indexed by the
integers 1, . . . , |V | and a set of edges E. We say that a square matrix A of size |V | × |V |
is an adjacency matrix for G if A(i, j) = A(j, i) = 1 for all i, j ∈ {1, . . . , |V |}, i , j such that
{i, j} ∈ E, and the matrix A is zero otherwise.

Values of 1 on the diagonal of the adjacency matrix is often used to represent
loops in the graph, but this is not relevant for simple undirected graphs. The
adjacency matrix for the graph in Figure 2.12.1 is

A =


0 1 1

1 0 1

1 1 0

 .
2.1.2 Special graphs
A graph where every vertex is connected to every other vertex by an edge is called a
complete graph.

Definition 8. Let G = (V ,E) be a graph with a set of vertices V and a set of edges E.
G is called a complete graph if

E = {{u,v} : u,v ∈ V , u , v}.

The complete graph containing n vertices is denoted by Kn.

We note that the graph in Figure 2.12.1 is the complete graph with 3 vertices, which
we denote by K3 according to the above definition. In light of having defined the
notion of a complete graph, we can see that a clique is equivalently a complete
subgraph: the graph that contains only the vertices in the clique and the edges
connecting those vertices is complete.

There does not need to exist a route between any two vertices along the edges of
a graph. When that is the case, we call the graph A connected. An acyclic graph is a
graph in which there is exactly one path without repeated edges between any two
vertices. Trees combine these two concepts.

Definition 9. A tree is a connected, acyclic graph. Alternatively, a tree is any
connected graph G = (V ,E) with |V | = n and |E| = n− 1.
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1

2

4
5

3

(a) Non-chordal graph

1

2

4
5

3

(b) One triangulation of the
graph

1
2

3

4
5

(c) Another possible tri-
angulation

Figure 2.3: A non-chordal graph and two chordal graphs generated by adding edges
to original graph in a). It is clear that the first triangulation is considerably less
“complex” in the sense that it has three fewer edges than the second triangulation,
which is a complete graph.

One notion that will become important in the next chapter is that of a chordal
graph. A graph is chordal if every cycle of length greater than 3 has a chord, that
is, an edge between two of the vertices in the cycle which is not part of the cycle in
question. We may also use the following equivalent definition:

Definition 10. Let G = (V ,E) be a graph. G is chordal if for every cycle C ⊂ V , there
exist at least 2|C| − 3 edges {u,v} ∈ E such that u,v ∈ C.

Constructing a chordal graph from some given graph by adding edges is called
triangulating the graph. For every non-chordal graph, there are multiple ways to
triangulate the graph, resulting in graphs of different complexity. Indeed, every
chordal graph containing the original graph as a subgraph is a valid triangulation
of that graph.

Definition 11. Let G = (V ,E) be a graph, and let G∗ = (V ∗,E∗) be a chordal graph. If
V ∗ = V and E ⊆ E∗, then G∗ is a triangulation of G.

Figure 2.32.3 shows two example triangulations of a non-chordal graph, generated
from the original graph by two different triangulation methods. The additional
edges added when triangulating a graph are known as fill-in edges. In this example,
the first triangulation has just one fill-in edge while the second has four, which
makes the first triangulation better for most purposes in which graph triangulations
are used. As triangulation is an important part of the junction tree algorithm, this
topic will be explored further in Section 3.1.23.1.2.

2.1.3 Junction trees
To describe the junction tree inference algorithm, we will later need the concept of a
junction or clique tree. A junction tree groups the vertices of a graph into supervertices,
that is, vertices representing several vertices in the original graph. Let G = (V ,E) be
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some arbitrary graph. A junction tree of G is a tree graph J = (C,W ), where each
vertex λ ∈ C represents a subset λ ⊆ V of the vertices in the original graph such that⋃

λ∈C
λ = V .

In addition, a junction tree must fullfill several criteria:

i For every two vertices u,v ∈ V that are connected by an edge {u,v} ∈ E, there
exists a supervertex λ ∈ C such that {u,v} ⊆ λ. In other words, if two vertices are
connected in G there exists a vertex in J that contains both vertices.

ii For every vertex u ∈ V , there exists at least one supervertex λ ∈ C such that
u ∈ λ. In other words, every vertex in G is contained in at least one supervertex
in J .

iii Let λ1,λ2 ∈ C be two supervertices in the junction tree, let Pathλ2
λ1

= Pathλ1
λ2
⊆ C

be the set of supervertices in J along the path between λ1 and λ2, and let u ∈ V be
a vertex in the original graph. If u ∈ λ1 and u ∈ λ2, then u ∈ λ for all λ ∈ Pathλ2

λ1
.

In other words, if two supervertices in J contain the same vertex from G, then
all vertices along the path between them contain that vertex as well.

Definition 12. Let G = (V ,E) be a graph with a set of vertices V and a set of edges
E. Then the tree J = (C,W ) with a set of supervertices

C = {λ ⊆ V },

V =
⋃
λ∈C

λ

and a set of edges {λ1,λ2}, λ1,λ2 ∈ C is a junction tree for G if and only if it satisfies
criteria i, ii and iii above.

A junction tree is not unique – for any given graph, there are likely to exist a great
number of junction trees. Usually, we want to find a junction tree with a low width,
as the asymptotic time complexity of algorithms that use a graph’s junction tree
tends to grow exponentially with that quantity. Given some junction tree J = (C,W ),
the width of that junction tree is defined as

Width(T ) = max
λ∈C
|λ| .

For example, the width of a junction tree consisting of one vertex containing 3
vertices of some graph G and another vertex containing 5 vertices of G, is 5. Figure
2.42.4 displays two examples of junction trees for the graph in Figure 2.3a2.3a. The first
junction tree consists of two supervertices each containing four vertices, and the tree
therefore has a width of 4. The second consists of only one supervertex containing
all five vertices in the original graph, and therefore has a tree width of 5. In general,
we would prefer working with the first junction tree due to its lower width.
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1,4,
5

4,2,
5,3

(a)

1,2,3,
4,5

(b)

Figure 2.4: Two valid junc-
tion trees for the graph in
Figure 2.3a2.3a. The numbers
inside each supervertex in-
dicate which vertices in the
original graph that superver-
tex contains.

The notion of the width of a given junction tree is
distinct from that of a graph’s tree width, which is the
minimum width of all the graph’s possible junction
trees.

Definition 13 (Tree width). Let G = (V ,E) be a
graph, and let

τ = {J = (C,W ) : J is a junction tree for G}

be the set of all possible junction trees for G. The
tree width of G is then defined as

TreeWidth(G) = min
J∈τ

Width(T ). (2.1)

Determining whether the tree width of G is at
most some value t, the decision problem equiva-
lent of calculating the tree width of the graph G,
is an NP-complete problem (Arnborg, Corneil, and
Proskurowski, 19871987). Indeed, it trivially follows
from this that the problem of finding an optimal junction tree with minimal width
for a given graph G is non-tractable in general, as one otherwise would be able
to simply calculate the tree width of G by calculating the width of this optimal
junction tree. While the size of the largest clique in the original graph may be used
as a minimum bound on the tree width, the tree width is often much larger.

We have not yet treated the question of how to actually generate a junction tree
for an arbitrary graph. This question will be discussed further in Section 3.1.23.1.2, but
for the time being we will mention that junction trees are typically generated by
triangulating the graph into a chordal graph and then finding the maximal cliques
in that graph. For this reason, the vertices in the junction tree, which we have
thus far called supervertices, are usually called the cliques of the junction tree in the
literature.

2.2 Undirected graphical models
The key idea in the field of graphical probabilistic models is to use a graph to define the
structure of a probabilistic model, by associating each variable in the probabilistic
model with a vertex in the graph, and using the edges to build up the dependence
and independence relationships of the model.

Consider a graph G = (V ,E), and let Λ denote the set of all cliques in the graph.
We now regard the set of vertices V as a set of random variables x. Our goal is to
construct a joint probability distribution for the variables x based on the structure
of the graph. One way to do this is to associate a function φλ(λ), traditionally called
a clique factor, with each clique in the graph. If we also require that this function be



9

non-negative, we can construct a joint probability distribution by taking the product
of the clique factors. This gives us a distribution on the form

P (x) =
1
Z

∏
λ∈Λ

φλ(xλ),

where 1
Z is a normalisation constant which ensures that the distribution sums to 1.

This structure is called a Gibbs random field, which we will now formally define.

Definition 14 (Gibbs random field). LetG = (V ,E) be a graph with a set of vertices V
and a set of edges E, let Λ be the set of all cliques in the graph, and let x = {xv : v ∈ V }
be a set of random variables, each variable xv ∈ x defined on some sample space
Ω. We say that x is a Gibbs random field on the graph G if the joint probability
distribution P (x) can be written on the form

P (x) =
1
Z

∏
λ∈Λ

φλ(xλ),

Z =
∑
ω∈Ω|V |

∏
λ∈Λ

φλ(xλ),
(2.2)

in which case P (x) is a Gibbs distribution.

2.2.1 Markov random fields
Markov chains have a Markov property

P (Xn | X1 = x1, . . . ,Xn−1 = xn−1) = P (Xn | Xn−1 = xn−1),

which specifies that the present state of the chain depend only on its previous state.
This property only makes sense for a directed, one-dimensional model, such as a
Markov chain. However, as this is a useful property which imposes a considerable
amount of structure onto the model, it could be useful to develop a generalisation
of the Markov property for undirected graphical models.

The key idea of this Markov property is that the state of a random variable,
represented as a vertex in a directed graph, depends only on the state of its one
parent. In a model on an arbitrary undirected graph, a given variable may have
several parents, or neighbours, and this must be taken into account in our Markov
property for undirected models.

Let x be a set of random variables, where each random variable xv ∈ x corre-
sponds to a vertex v ∈ V in some graph G = (V ,E). Each vertex in the graph is
labelled with an integer in 1, . . . , |V |. For the sake of convenience, we will let a vertex
v equal the integer it is labelled with in our calculations.

Just as in Markov chains, we want each variable xv ∈ x to depend only on
the value of its neighbours in the graph. If we let x−j denote the set of variables
{x1, . . . ,xj−1,xj+1, . . . ,x|V |}, this property can be expressed as

P (xj | x−j ) = P (xj | {xv : v ∈Nj}). (2.3)
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This is known as the local Markov property. An undirected graphical probabilistic
model with this property is known as a Markov random field (MRF).

Definition 15 (Markov random field). LetG = (V ,E) be a graph with a set of vertices
V and a set of edges E, and let x = {xv : v ∈ V } be a set of random variables. We
say that x is a Markov random field on the graph G if it satisfies the local Markov
property given by (2.32.3).

We have now defined two different types of probabilistic models on undirected
graphs, Gibbs random fields and Markov random fields. It would be useful if these
two types of models were in fact equal, such that every Gibbs random field were also
a Markov random field. Fortunately, given the additional condition on the model
that P (ω) > 0 for all ω in the sample space of x, this can be shown to be true. This
result is known as the Hammersley-Clifford theorem, developed by the eponymous
authors in an unpublished 1971 paper (Hammersley and Clifford, 19711971).

Theorem 1 (Hammersley-Clifford theorem). Let G = (V ,E) be a graph with a set of
vertices V and a set of edges E, and let x = {xv : v ∈ V } be a set of random variables,
each defined on some sample space Ω, with a joint probability distribution P (x). If the
positivity condition P (ω) > 0 is fulfilled for all ω ∈Ω|x|, then x is a Markov random field
if and only if it is a Gibbs random field.

In other words, given that the positivity condition is fulfilled, if a probabilistic
model on an undirected graph satisfies (2.32.3), it can be written on the form given by
(2.22.2) and vice-versa. Henceforth, a model of this kind will simply be referred to as a
Markov random field.

To ensure that the joint probability distribution is positive, it is commonplace to
write the clique factors on the form φλ(λ) = e−Vλ(λ). If this is done, the probability
distribution of a Markov random field x may be written

P (x) =
1
Z

e−U (x),

U (x) =
∑
λ∈Λ

Vλ(xλ),

Z =
∑
ω∈Ω|V |

e−U (ω).

(2.4)

The function U (x) is often called the energy function of the Markov random field.
This notation and terminology requires some explanation. The theory of Markov
random fields has its roots in statistical mechanics, where the Ising model is used to
study the behaviour of ferromagnetism.

In the Ising model, each random variable xi ∈ x models the spin state of an
individual particle, and the function U (x) is interpreted as the total energy of a
configuration of spin states. The normalisation constant Z is conventionally called
the partition function, a name which also has its origin in statistical mechanics. The
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individual terms Vλ(xλ) of the energy function are called clique potentials, potential
functions or interactions.

Markov random fields may be factorised in multiple ways. For example, an
MRF on a complete graph may be regarded as a product of many pairwise potential
functions, or as one potential function on the clique that consists of the entire
graph. Often, a particular factorisation is more easily interpretable than the others.
However, the graph of a Markov random field contains no information about which
factorisation is intended for the model.

Factor graphs are a way of amending this, by making the intended factorisation
explicit in the graph structure. A factor graph is an undirected graph with two types
of vertices: variables and factors. An edge exists between a factor and one or more
variables if the joint probability distribution contains a factor, or potential function,
for those variables.

Definition 16. Let x be a Markov random field defined on the graph G∗ = (V ∗,E∗),
and let Φ denote the set of factor functions of x such that

P (x) =
1
Z

∏
φ∈Φ

φ(x).

Let V = V ∗ be a set of variable vertices, let U be a set of factor vertices such that
there is an ui ∈U for every φi ∈ Φ , and let E = {{v,u} : v ∈ V ,u ∈U } be a set of edges.
Then the graph G = (V ,U,E) is a factor graph for the Markov random field x with
factors Φ .

It must be noted that factor graphs are not unique. Because the factors Φ may
be arbitrary functions, any given Markov random field will have several possible
factor graphs that encode its joint probability distribution.

2.2.2 Example of aMarkov random field
Let us now look at an example of a simple discrete, binary Markov random field.
The Markov random field in question consists of a set of random variables

x = {x1,x2,x3}

that has the probability distribution

P (x) =
1
Z

eαx1x2+αx2x3+αx3x1+βx1x2x3 , (2.5)

where Z is the partition function defined as in (2.42.4). Each variable xi ∈ x may take
either 0 or 1 as its value, so the sample space of the probability distribution is {0,1}3.
The energy function contains four interactions: three pairwise interactions between
each pairs of the three variables, and one interaction between all three variables.

This Markov random field may be represented by the graph in Figure 2.12.1, where
each vertex labelled by i ∈ {1,2,3} corresponds to a variable xi . However, note that
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there is in no way a one-to-one relationship between the probability distribution
and the graph. Even if we deleted the interaction between x1, x2 and x3, or even all
the pairwise interactions, the Markov random field could still be represented by the
same graph.

1 2 3

{1,2} {2,3} {3,1}

{1,2,3}

Figure 2.5: A factor graph for the Markov random field with the probability distri-
bution given in (2.52.5).

A factor graph for our example Markov random field is presented in Figure 2.52.5.
The circle vertices represent the nodes in the graph and the corresponding variables,
while the rectangular vertices represent the interactions or factors. Inbound arrows
from a set of variable vertices to a factor vertex means that the factor or interaction
in question is a function of the variables in question.

The independence relationships of this Markov random field are very simple
– as there exists an edge between each of the vertices, none of the variables are
independent given the remaining vertex. If we simplify the model by removing any
one of the edges, for instance the edge between the vertices 1 and 3, variables x1
and x3 will be independent given variable x2. If we remove two edges, one of the
variables will be fully independent of the other two variables in the model. If we
remove all three edges, all the variables will be fully independent of each other.

2.3 Divergences and information theory
In real analysis, metrics are used to rigorously define the intuitive concept of
distances. It would be useful to have an analogous notion of distance between prob-
ability distributions. The concept of divergence is one attempt at bringing this notion
into probability theory. A divergence is a function D(p ||q) from two probability
distributions p and q to a positive real number R+. There is little common theory
for divergence, as divergences, unlike metrics, need not be symmetric or satisfy the
triangle inequality, and therefore have little structure in common. However, there
exist several categories of divergences with common properties, and both these
categories and the individual divergences are a topic of study. We will discuss a
category of divergences known as f-divergences and two examples of f-divergences.
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An f-divergence is any function of two probability distributions p,q—here we
only consider the case where p and q are discrete—that can be expressed on the
form

D(p ||q) =
∑
ω∈Ω

f

(
p(ω)
q(ω)

)
q(ω), (2.6)

where Ω is some sample space and f is an arbitrary convex function with the
property that f (1) = 0. The last property is necessary for D(p ||p) = 0 to hold. The
most famous example of an f-divergence is the Kullback-Leibler divergence, often
called just KL divergence. To understand the origin of the KL divergence, we need
to introduce some tools from information theory.

The field of information theory, which studies information as a concrete quantity,
was heavily inspired by physics and in particular the concept of thermodynamic
entropy. In 1948, mathematician Claude Shannon introduced a concept of entropy
of information as a way of measuring the amount of information contained in a
random variable (Shannon, 19481948).

Definition 17. Let x be a discrete random variable with some sample space Ω. The
entropy of x is then

H(x) = −
∑
ω∈Ω

P (ω) logP (ω). (2.7)

A full derivation of the entropy requires too much background to include here.
However, it is worth noting the similarity between this expression and that for
thermodynamic entropy. In a system with a set of microstates W , where each
microstate w ∈W has a probability P (w), the thermodynamic entropy of the system
can be expressed as

S = −kB
∑
w∈W

P (w) logP (w).

Up to the constant kB, the two expressions are essentially identical. Indeed, if re-
garded through the lens of statistical physics, thermodynamic entropy is essentially
an application of information theoretic entropy to physics, although we will not go
further down that path.

It would be useful to be able to compare the entropy of two random variables.
The concept of relative entropy is a way of doing this. Relative entropy is the
difference between the entropy and the quantity

J(x) = −
∑
ω∈Ω

P (ω) logQ(ω),

which is the uncertainty about the outcome of some discrete random variable given
that its probability distribution was falsely assumed to be Q. In the context of
probability theory, relative entropy is known as Kullback-Leibler divergence.
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Definition 18 (Kullback-Leibler divergence). Let P and Q be two discrete probabil-
ity distributions on some sample space Ω. The Kullback-Leibler divergence from P to
Q is then

D(P ||Q) =
∑
ω∈Ω

P (ω) log
P (ω)
Q(ω)

. (2.8)

Comparing this expression with the general form of an f-divergence, we see that
the Kullback-Leibler divergence is indeed in that category. The KL divergence is not
symmetric, which is why we use the phrasing “from P to Q” when refering to the
divergence of two probability distributions. It is sometimes symmetrized by instead
using the expression D(P ||Q) +D(Q ||P ), but we will not do that in this text.

2.4 Pseudo-boolean functions
If we restrict ourselves to binary Markov random fields, we may analyse them in
the context of the theory of pseudo-Boolean functions. A pseudo-Boolean function is
a function from any set of two elements to the real numbers. In this text, we will
specifically use the following definition.

Definition 19. A pseudo-Boolean function is a function f : {0,1}n→ R.

It is easy to see that the energy function of a binary Markov random field is
a pseudo-Boolean function. Its arguments are the values of the variables in the
Markov random field, and it returns a real number, the “energy”.

We will use the theory of pseudo-Boolean functions on the energy function in
order to develop the mean squared error energy approximation that we will use in
our approximate inference algorithm. For this reason, we will use the notation U (x)
for a pseudo-Boolean function throughout this section. Furthermore, our notation
will stay close to that used by Austad and Tjelmeland (20152015), in which the theory
of the mean squared error energy approximation was developed.

Boros and Hammer (20022002) shows that pseudo-Boolean functions may be written
on the form

U (x) =
∑
Λ⊆V

βΛ
∏
i∈Λ

xi , (2.9)

where V is a set V = {1,2,3, . . . ,n} and each βΛ is a real-valued constant. While any
energy function for a binary Markov random field may be represented on this form,
many or even most constants βΛ may be zero for any given energy function. We
would like to have a more compact representation of the energy function that does
not require us to specify the constant βΛ for every single subset of the variables.
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1
2

3

4

Figure 2.6: The graph of
our example Markov ran-
dom field from (2.122.12).

We now define a set of “relevant” subsets of V

S = {λ ⊆ V : ∃λ∗ ⊇ λ,βλ∗ , 0} .

In other words, S is the set of subsets of V which has
at least one superset λ∗ ⊆ V for which βλ∗ is nonzero.
Using S, we can write any pseudo-Boolean function on
the form

U (x) =
∑
Λ∈S

βΛ
∏
i∈Λ

xi . (2.10)

Let us look at the example of a Markov random field
represented by the probability distribution

P (x) =
1
Z

e−U (x), (2.11)

U (x) = β1x1x2x3 + β2x1x2x4. (2.12)

The graph of this Markov random field is displayed in
Figure 2.62.6. In this example, we have two subsets Λ ∈ V for which βΛ is nonzero,
namely {1,2,3} and {1,2,4}. To represent the energy function on the same form as in
(2.102.10), we define

S = {{1,2,3} , {1,2,4} , {1,2} , {1,3} , {1,4} , {2,3} , {2,4} , {1} , {2} , {3} , {4} ,∅} .

Note that we may represent the relationships between the subsets Λ ∈ S graphically,
as in Figure 2.72.7.

In the context of Markov random fields, we call the subsets Λ ∈ S interactions.
Note that the relationships in Figure 2.72.7 dictate the structure of the Markov random
field’s graph. For an interaction to exist in the model, say {1,2,3}, all of its child
interactions must be able to exist in the graph. To be able to have the interaction
{1,2,3}, the graph must therefore have the edges {1,2}, {1,3} and {2,3}, whether or
not β{1,2}, β{1,3} and β{2,3} are nonzero.
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{1,2,3} {1,2,4}

{1,2} {1,3} {1,4} {2,3} {2,4}

{1} {2} {3} {4}

∅

Figure 2.7: The relationships between the subsets Λ ∈ S. An arrow from a vertex to
another vertex means that the latter is a subset of the former.
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3 Marginal inference
The usual inference task in a Markov random field x is to compute the marginal
probability of a subsetset of variables x′ ⊂ x. In this text, we will mainly look at the
particular case of computing the marginal probability distributions Pxi (xi) for single
variables xi ∈ x.

3.1 Exact inference
Let x be a discrete Markov random field where each variable xi ∈ x takes a value
s in the sample space Ω = {0, . . . , k} for some n, such that the sample space of x is
Ω|x| = {0, . . . , k}|x|. The marginal probability distribution for a variable xi may then
be written

Pxi (xi) =
n∑
s=0

ρxis I(xi = s),

where I(P ) is an indicator function which is equal to 1 whenever the predicate P is
true, and equal to 0 whenever it is false. What we actually want to compute is the
set of marginal outcome probabilities

Φ(xi) =
{
ρxis : s ∈Ω

}
.

Based on this, we define the notion of an marginal inference algorithm, or just infer-
ence algorithm in short, to be an algorithm which takes a discrete Markov random
field x as input and computes the set of marginal outcome probabilities Φ(xi) for
some variable xi ∈ x.

The simplest way to actually calculate Φ(xi) and by that Pxi (xi) is to explicitly
sum over all possible values of the other variables xc = x \ xi in the joint probability
distribution P (x). Let us write the probability distribution of our Markov random
field x as in Equation (2.42.4), and let P (a,B) denote the evaluation of the joint proba-
bility distribution at xi = a and xc = B. Then the marginal probability distribution
Pxi (xi) may be written as

Pxi (xi) =
∑

ω∈Ω|x|−1

P (xi ,ω),

where Ω|x|−1 denotes the set of all possible values of the variables xj ∈ xc. Us-
ing our alternative notation, the marginal outcome probability for a value s may
consequently be written as

ρxis =
∑

ω∈Ω|x|−1

P (s,ω).
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Let us again look at the example from Section 2.2.22.2.2. We wish to calculate the
marginal outcome probabilities of the variable x1. Each variable xi ∈ x has a sample
space {0,1}. We start by calculating the value ρx1

0 , which written out becomes

ρx1
0 = P (0,0,0) + P (0,0,1) + P (0,1,0) + P (0,1,1)

=
1
Z

(
e0 + e0 + e0 + eα

)
=

1
Z

(3 + eα)

This calculation was simplified considerably due to the fact that the exponentiated
terms in Equation (2.52.5) are simple products of x1, x2 and x3, and so are usually zero.
The calculation of ρx1

1

ρ0(x1) = P (1,0,0) + P (1,0,1) + P (1,1,0) + P (1,1,1)

=
1
Z

(
e0 + eα + eα + e3α+β

)
=

1
Z

(
1 + 2eα + e3α+β

)
is somewhat more complicated, but still doable. To get rid of the factors 1

Z , we keep
in mind that the sum of ρ0 and ρ1 must necessarily equal 1, and find that

Z = 4 + 3eα + e3α+β .

Inserting the example values α = 0.5 and β = 2, we get the marginal outcome
probabilities

ρx1
0 = 0.111,

ρx1
1 = 0.889.

The simplicity of these calculations may be deceiving. Performing marginal infer-
ence for even a single variable rapidly becomes intractable as the size of the Markov
random field grows and as the number of possible values increases. In a Markov
random field of k variables and n possible values for each variable, calculating the
marginal probability distribution of one variable requires summation over every
possible value of the remaining k−1 variables, in total nk−1 summations. In realistic
models, where we may have thousands of variables and hundreds of possible values,
performing marginal inference by this method is infeasible for even the strongest
supercomputers.

For this reason, several other exact inference algorithms have been developed
that are usually considerably more efficient. We will discuss two, the belief propaga-
tion algorithm, an inference algorithm for Markov random fields defined on trees,
and the junction tree algorithm, which is related to belief propagation but is able to
perform exact inference in any Markov random field.
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3.1.1 Belief propagation
Belief propagation is an inference algorithm for Markov random fields that are
defined on trees. In its essence, belief propagation is a scheme to perform exact
inference of marginal probabilities more efficiently by exploiting the structure of
trees to avoid performing the same computations multiple times.

Seen from an algorithmic point of view, the belief propagation algorithm takes
place in the context of the factor graph of a Markov random field on a tree. In belief
propagation, messages are sent between the vertices of the factor graph, according
to a set of rules known as the message passing protocol. In the belief propagation
algorithm, the marginal probability is also known as the belief. The belief at a node
is the normalised product of the messages received from its neighbouring nodes – a
variable’s belief about its own value is the aggregate of what it is being told by its
neighbouring nodes, that is, the messages.

Let x be some Markov random field, and let F = (V ,U,E) be the factor graph for
the Markov random field with a set of variable vertices V and a set of interaction
vertices U . We will denote the interaction vertices by i, j,k, . . . and the variable
vertices by u,v,w, . . .. For the potential function corresponding to an interaction
vertex i ∈U we will use the the notation φi . Furthermore, by xi for any i ∈U we will
mean a vector of the variables involved in the potential function φi , which number
at most two in a Markov random field defined on a tree graph. Let us write the joint
distribution of our Markov random field x on the form

P (x) =
1
Z

∏
φ∈Φ

φ(x) (3.1)

where Φ is the set of factors of x. Mathematically, belief propagation is essentially a
way of iteratively transforming this joint probability distribution into a different
form which makes it easy to calculate the marginal probabilities of the individual
variables in x. Letting u ∼ i denote a pair of adjacent vertices in the factor graph, we
may write this same distribution using messages as

P (x) =

∏
i∈U Pxi (xi)∏

u∼imu→i(xi)mi→u(xu)
, (3.2)

where mu→i denotes a message from a variable node u to a interaction node i, and
mi→u denotes a message from an interaction node i to a variable node u. (Koller

and Friedman, 20092009, pp. 361-362). With the joint probability function written
on this form, a marginal probability Pxa(xa), a ∈ V ∪U , can be calculated as the
expression

Pxa(xa) =
1
Z
φa(xa)

∏
b∈N (a)

mb→a(xa), (3.3)

where N (a) denotes the set of neighbours of the vertex a in the graph. As usual, 1
Z is

a normalisation constant, while φa is the potential function corresponding to xa. As
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we treat the potentials φu(xu) involving only one variable independently from the
variables themselves, we assign the potential 1 to every variable vertex, while each
interaction xi has the potential φi . This gives us the separate expressions

Pxu (xu) =
1
Z

∏
i∈N (u)

mi→u(xu),

Pxi (xi) =
1
Z
φi(xi)

∏
u∈N (i)

mu→i(xi)
(3.4)

for the marginal probabilities of variable and interaction vertices, respectively. Next,
we note that if we know the marginal probability P (xi) of some interaction, we can
calculate the marginal probability of any variable u taking part involved in the
interaction using the expression

Pxu (xu) =
∑

ω∈Ωxi \xu

P (ω;xu), (3.5)

where Ωxi\xu denotes the sample space of xi without xu . In other words, we sum
over the possible values of the variables involved in the interaction, but fix the value
of the variable we are interested in calculating the marginal probability of. This
is similar to what we did when naively calculating the marginal probabilities in
Section 3.13.1.

From (3.43.4) and (3.53.5), we may derive expressions for the messages mi→u , from
an interaction vertex to a variable vertex, and mu→, from a variable vertex to an
interaction vertex. We will not show the full derivation here, but the interested
reader may see e.g. Khosla (20092009). The result is the update formulas

mu→i(xi) =
∏

j∈N−i (u)

mj→u(xu),

mi→u(xu) =
∑

xN∈N−u(i)

φi(xN )
∏

v∈N−u(i)

mv→i(xi),
(3.6)

where N−u(i) denotes the set of neighbours of vertex i, except for a vertex u. In
the second expression, we sum over the possible values of the variables in the
neighbourhood.

The order in which the messages are computed is known as the schedule. When
the belief propagation algorithm is used on a Markov random field defined on a tree
graph, we may use a simple version of the algorithm in which messages are simply
computed whenever they are “ready” to be computed. In this context, we say that a
message ma→b is ready to be computed when vertex a has received messages from all
its neighbours except for a vertex b. Once every message has been computed, we
calculate the marginal probabilities for a variable using (3.43.4).

This simple version of the belief propagation algorithm is presented in Figure
3.13.1. While we do not explicitely specify a schedule, the message computation will
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Algorithm: Belief propagation
Data: factor graph of Markov random field x with potentials φi
Result: marginal probabilities Pxi (ω) ∀xi ∈ x,ω ∈Ωxi
while a message ma→b is ready to be computed do

compute ma→b according to (3.63.6);
end
for each variable xi ∈ x do

for ω ∈Ωxi do
compute Pxi [ω] ∀xi ∈ x according to (3.43.4);

end
end

Figure 3.1: Pseudocode for the belief propagation algorithm on a tree Markov
random field.

1 2

(a) Graph of the example Markov random
field

1 2{1,2}

(b) Factor graph of the example Markov
random field

Figure 3.2: The graph and factor graph of the example Markov random field used to
demonstrate belief propagation.

in our simple version of the algorithm always begin at the leaf vertices – the vertices
that have only one neighbour – as these do not need to receive any messages in order
to be able to send a message.

Consider for instance the example Markov random field in Figure 3.23.2, with
two variable vertices and one interaction vertex representing a pairwise interaction.
Here we may for example start with calculating the message from the variable
vertex labelled 1 to the interaction vertex, but we might as well have started with
calculating the message from variable vertex 2 to the interaction vertex. Once the
messagesm1→{1,2}, m2→{1,2}, m{1,2}→1 andm{1,2}→2 have been computed, the message
passing is completed and we may calculate the marginal probabilities using (3.43.4).

Figure 3.33.3 shows a more example of the order of message passing, with the
arrows and numbers indicate the direction and order of each message. The schedule
shown in this figure is only one of several possible schedules for this graph – for
instance, any one of the leaf vertices could have been chosen as the first vertex to
send a message.

While the belief propagation algorithm is only exact when applied to Markov
random fields defined on trees, it can often successfully be used with arbitrary
Markov random fields. When this is done, the result is often high-quality approxi-
mations to the exact marginals, but the guarantee that the messages converge is lost.
Belief propagation is often known as loopy belief propagation in this context, and
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Figure 3.3: A run of the belief propagation algorithm on an example factor graph.
As usual, the squares are interaction vertices while the circles are variable vertices.
The arrows indicate messages, and the number next to each arrow indicates when
that message is sent, with the message labelled 1 being sent first.

will be studied later.

3.1.2 Junction tree algorithm
As mentioned in the previous section, the belief propagation algorithm is only
guaranteed to be exact for Markov random fields defined on trees. On general
graphs, it is not even guaranteed to converge. However, there exists another exact
inference algorithm that, by modifying the graph before running belief propagation,
is able to perform inference on general graphs. This algorithm is called the junction
tree algorithm.

The junction tree algorithm as applied to a Markov random field consists of
three main steps:

• Triangulate the graph

• Build a junction tree from the triangulated graph by finding the maximal
cliques

• Pass messages throughout the junction tree

We will now look at each of these steps in detail.
In the previous chapter, we discussed chordal graphs and mentioned that the

process of transforming a graph into a chordal graph is known as triangulation.
Triangulation is done by adding edges to the cycles preventing the graph from being
chordal. The triangulation of a given graph is not unique. For most graphs, there
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Algorithm: Graph triangulation

Data: adjacency matrix adj of a graph G = (V ,E)
Result: adjacency matrix adjnew of the triangulated graph G′ = (V ′ ,E′)
adjtemp← adj;
adjnew← adj;
for each vertex u in the graph do

N ← set of neighbours of u in adjtemp;
for each v ∈N do

for each w ∈N do
if v , w then

adjnew(v,w)← 1;
adjnew(w,v)← 1;

end
end

end
adjtemp(u, :)← 0;
adjtemp(:,u)← 0;

end

Figure 3.4: Description of the standard triangulation algorithm used in this text
using an adjacency matrix to represent the graph. This algorithm is also known as
the vertex elimination algorithm.

is a large number of possible triangulations, which result from different choices
of edges to add in the triangulation process. Notably, different triangulations may
result in cliques with different tree widths.

As we will see, the junction tree algorithm has exponential time complexity
in the tree width of the triangulated graph, which means that the performance of
the junction tree algorithm may vary widely depending on which triangulation is
chosen. However, calculating the optimal triangulation is an NP-hard problem. We
will not concern ourselves with this issue, and will use a standard algorithm for the
triangulation process similar to the one given by Cano and Moral (19951995). Figure
3.43.4 displays pseudocode for the this standard triangulation algorithm.

The triangulation algorithm goes through each vertex in the original graph in
some arbitrary order. The algorithm starts by creating the output graph, which at
the beginning is equal to the input graph. For each vertex, the algorithm then adds
an edge between every neighbour of the chosen vertex in this new graph. The vertex
is then removed from the original graph. This process is continued until every
vertex has been removed from the original graph. The new graph that was created
by adding edges is then a chordal graph with the original graph as its subgraph.

The choice in this algorithm which impacts the number of fill-in edges created
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Algorithm: Junction tree construction algorithm

Data: chordal graph G = (V ,E)
Result: junction tree J = (C,W )
C←MaximalCliques(G);
γij ← intersection between cliques i, j ∈ C;
wij ←

∣∣∣γij∣∣∣;
J ←MaximumSpanningTree(C,γ,w);

Figure 3.5: Constructing a junction tree from a chordal graph

and the tree width of the resulting chordal graph is the order in which vertices are
deleted from the original graph – the elimination ordering. Choosing the order which
results in the lowest fill-in and the lowest tree-width are known as the minimum fill-
in and minimum tree width problems, respectively. These problems are not solvable
in polynomial time. As previously mentioned, we will not bother ourselves with
the issue of choosing a triangulation method, and will take the elimination order in
the above algorithm as arbitrary. For the interested, however, there exist numerous
methods of choosing an elimination ordering that usually give better results than
choosing the order by random (Heggernes, 20062006).

Once we have a chordal graph, we may build our junction tree. While we have
already defined the notion of a junction tree, we have not looked at how to actually
construct a junction tree from an arbitrary graph. It turns out that the first step is
to triangulate the graph, as we have already done. Once the graph is chordal, we
obtain the junction tree by finding the maximum spanning tree of another graph that
is made up of the chordal graph’s maximal cliques (Koller and Friedman, 20092009,
pp. 374–376). The pseudocode for building a junction tree from a chordal graph is
displayed in Figure 3.53.5.

The general idea of this algorithm is to find a list of maximal cliques in the graph,
and building a new graph consisting of the maximal cliques and edges between the
cliques that have an intersection. We then find the maximum spanning tree of this
new graph using the number of variables in each intersection as the edge weights.
The resulting tree is the junction tree of the original graph (Koller and Friedman,
20092009, pp. 374–375).

There are two loose ends in this pseudocode that we will need to elaborate on.
First, how do we find the maximal cliques in the chordal graph? It turns out that
the problem of listing all the maximal cliques in a chordal graph can be done in
polynomial time using a method known as maximum cardinality search (Koller

and Friedman, 20092009, pp. 374). Maximum cardinality search generates an ranking of
the vertices in the graph such that each vertex is ranked according to how many of
its neighbours are before it in the ranking. After generating such a ranking, known
as a perfect elimination ordering, we can find all the maximal cliques by, for each
vertex v ∈ V , creating a clique consisting of v as well as every vertex u ∈ V that
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succeeds v in the perfect elimination ordering. If we then eliminate every clique
that is a subset of any other clique, we are left with the maximal cliques.

Second, how do we find the maximum spanning tree? To do this, we can use any
standard algorithm for finding the minimum spanning tree, such as Prim’s (Prim,
19571957) or Kruskal’s (Kruskal, 19561956) algorithms, and simply use negative weights on
the edges. Both algorithms complete in polynomial time. In our case, we run either
of the two mentioned algorithms on a graph in which the maximum cliques found
in the previous step are the vertices and there is an edge between any two cliques
that have at least one vertex from the original graph in common. The weight of an
edge is the number of vertices from the original graph that the two maximal cliques it
connects have in common. Neither pseudo-code for the minimum spanning tree
algorithms nor for maximum cardinality search will be given here – the interested
may refer to Koller and Friedman (20092009, pp. 312, 1147).

Having constructed a junction tree, we may pass messages throughout the tree
in order to perform inference, in a similar way to that described when we discussed
belief propagation in the previous section. In fact, there are several ways to do this,
and the choice of method often depends on the inference task in question. The
method we will use in this exposition, is often known as the Shafer-Shenoy algorithm
(T. S. Levitt and Shachter, 20142014). As this is similar to the method used when we
discussed belief propagation, we refer readers to that section for additional detail.

As usual, the inference task is to compute the marginal probability of every
individual variable in a Markov random field. The first step is to calculate an
initial potential for every clique in the junction tree, which is the product of all
the potentials in the original Markov random field x that belong to that clique. Let
Φ denote the set of potential functions in x, let N (φ) denote the set of variables
associated with a particular potential function φ ∈ Φ , and let Φλ denote the set of
potential functions that are associated with the clique λ ∈ C such that

Φλ =
{
φ(xφ) ∈ Φ : xi ∈Λ ∀xi ∈N (φ)

}
. (3.7)

For every clique λ ∈ C, we then define an initial potential

Φλ =
∏
φ∈φλ

φ(xφ). (3.8)

We can now start passing messages between the cliques in the junction tree. The
message passing procedure is similar to that of the belief propagation algorithm
described in the previous chapter, but with some changes as we are no longer
working with a factor graph of variable and interaction vertices.

Let λi ∈ C be a clique in the junction tree, with a set of adjacent cliques Nλi ⊆ C.
In order for this clique to send a message to one of its adjacent cliques λj ∈ Nλ, it
has to already have received messages from every of its other neighbours. Once this
condition has been fulfilled, it calculates the product of its own potential and all the
messages it has received. Finally, all variables except for those in the intersection
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Algorithm: Junction tree algorithm

Data: potentials φi , graph G = (V ,E)
Result: marginal probabilities Pxi (ω) ∀xi ∈ x,ω ∈Ωxi
G′ = (V ′ ,E′)← Triangulate(G);
J = (C,W )← ConstructJunctionTree(G′);
for each clique λ ∈ C do

Φλ← (3.83.8);
end
while there exists at least one clique λi that may send a message to a clique λj do

mλi→λj ← (3.93.9);
end
for each variable xi ∈ x do

for ω ∈Ωxi do
compute Pxi (ω) according to (3.103.10);

end
end

Figure 3.6: Computation of marginal probabilities for every variable in a Markov
random field using the junction tree algorithm.

wij ∈ W are summed out. If Vλ ⊆ V is the set of variables in some clique λ, the
message to be sent to λj will be

mλi→λj (λj ) =
∑
λi\wij

Φλi (xλi ) ∏
λ∈N (λi )\λj

mλ→λi (λi)

 . (3.9)

The junction tree algorithm is executed by continuously looking for possible mes-
sages that can be sent in the graph, and sending every message that can be sent until
there are none remaining, similarly to how we performed the belief propagation
algorithm. When this is done, we can compute the marginal probability of a variable
xi in a clique λi by the expression

Pxi (xi) =
∑
λi\xi

Φλi (xλi ) ∏
λ∈N (λi )

mλ→λi (λi)

 , (3.10)

where we multiply the potential of the variable’s clique with all the incoming
messages to that clique, and sum out the other variables. Figure 3.63.6 displays a
summary of the junction tree algorithm in pseudocode.

While more efficient than the naive variable elimination procedure, the junction
tree algorithm has exponential time complexity in the tree width (Sinoquet and
Mourad, 20142014) due to the summations over the variables in each clique that need
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to be done when calculating messages. While this allows us to perform inference
on graphs of arbitrary size as long as they are loosely connected, such that the tree
width remains low, inference in models defined on general graphs where the tree
width may be arbitrarily large remains intractable.

An important example of a class of model where the tree width increases without
bound as a function of the total number of variables in the graph is models defined
on a grid, but there are other examples of pathological models where the junction
tree algorithm is highly ineffecient even for a low total number of variables. For
instance, any complete graph with k nodes has a tree width of k.

3.2 Approximate inference
Several exact inference algorithms exist, but all have superpolynomial time com-
plexity, making them unwieldy for all but the smallest Markov random fields. In
the following chapter, we will introduce our own approximate inference algorithm
based on the junction tree algorithm. However, in our numerical experiments, we
will need to compare the performance of our algorithm to that of other approximate
inference algorithms. Two of the most widely used are Markov chain Monte Carlo
and loopy belief propagation, which will be described in this section.

3.2.1 Loopy belief propagation
As it happens, although it only is guaranteed to produce exact results when applied
to trees, the belief propagation algorithm can be run on any Markov random field,
and will often converge to some set of probabilities. While these probabilities may
not necessarily be correct, this procedure nevertheless often produces useful results.
Belief propagation as applied to Markov random fields defined on general graphs is
typically called loopy belief propagation.11

Let P (x) be an arbitrary Markov random field on some graph G = (V ,E) that is
not a tree, and let φ be the set of factors of the Markov random field. Again, we
regard a factor graph with the variables and interactions as vertices. The belief
propagation algorithm as we have defined it requires that a interaction vertex, before
sending a message to some variable vertex, must first receive messages from all
adjacent variable vertices. In a graph containing cycles, this will not always be
possible to do, as there will be sets of vertices where each vertex requires that the
other vertices have sent their messages before they can send their own.

In order to solve this, we alter the algorithm in Figure 3.13.1 by, instead of calcu-
lating each message once it is ready to be calculated, repeatedly recalculating all
the messages in some order until convergence is reached and the messages stop

1This is somewhat of a misnomer—a loop is typically defined as an edge between a vertex and
itself, while the main idea of loopy belief propagation is that it applies belief propagation to Markov
random fields on graphs containing cycles. However, the name has stuck.
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Algorithm: Loopy belief propagation
Data: factor graph of Markov random field x with potentials φi
Result: marginal probabilities Pxi (ω) ∀xi ∈ x,ω ∈Ωxi
while any the messages ma→b for some a,b ∈ x have not converged do

while a message ma→b is ready to be computed do
compute ma→b according to (3.63.6);

end
end
for each variable xi ∈ x do

for ω ∈Ωxi do
compute Pxi [ω] ∀xi ∈ x according to (3.43.4);

end
end

Figure 3.7: Pseudocode for the loopy belief propagation algorithm on an arbitrary
Markov random field.

changing. The order in which the messages are calculated is called the schedule.
Figure 3.73.7 shows pseudo-code for the loopy belief propagation algorithm.

Two important points regarding the loopy belief propagation algorithm have
not yet been discussed. First, how do we choose a schedule? The choice of schedule
impacts the number of iterations required before the messages converge. A good
schedule is one where few message computations require the use of default values.
Choosing an optimal schedule is not tractable, but several efficient schedules have
been developed in the literature. Discussing the choice of schedule at a deeper level
falls outside the scope of this thesis, but the interested reader may refer to Elidan,
McGraw, and Koller (20062006) and Sutton and McCallum (20072007).

The second question is that of conditions for convergence. As previously men-
tioned, the loopy belief propagation does not always converge. Is it possible to
specify a set of necessary conditions for loopy belief propagation to converge on
some graph? This is for the most part unknown and is an active topic of research.
Empirical research, however, shows that loopy belief propagation often converges,
and to good approximations to the exact marginal probabilities (Murphy, Weiss,
and Jordan, 19991999). However, it is known to work less well on many types of Ising
models, which are some of the most commonly used models (Stoop, Ott, and Stoop,
20062006).

Another downside of loopy belief propagation is that it has exponential time
complexity in the size of highest-order interaction in the original graph. This is due
to the fact that each time an interaction vertex passes a message, it needs to sum
over the value of each of its neighbours apart from the vertex the message will be
sent to. This is not quite as limiting as the junction tree algorithm’s exponential
time complexity in the tree width, as a high tree width is much more common in
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practice, but can still be a problem.

3.2.2 Sampling-based inferencemethods
Imagine that we have a set of independent samples from the joint probability distri-
bution P (x) of our Markov random field x. Can we use these samples to calculate
approximate marginal probabilities for each variable x ∈ x? In this section, we will
first look at how to calculate the marginal probabilities from a set of independent
samples. Having done that, we will present the Gibbs sampling algorithm for
generating such samples from an arbitrary Markov random field.

Assume that we have generated a set of independent samples
{
x1,x2, . . . ,xN

}
from

a Markov random field and want to calculate the marginal probability ρx1
0 for the

variable x1 ∈ x with value 0. From the set of samples, we can extract the realisations
of the specific variable x1, {

x1
1,x

2
1, . . . ,x

N
1

}
.

A certain proportion of these samples will take the value 0. By calculating this
proportion, we get an approximation ρ̃x1

0 to the marginal probability ρx1
0 :

ρ̃x1
0 =

1
N

N∑
i=1

I(xi1 = 0).

As long as the samples are independent, ρ̃x1
0 will get arbitrarily close to the true value

ρx1
0 as N →∞ (Koller and Friedman, 20092009, pp. 523–524). The question remains,

however, of how to generate the samples required to perform this procedure. While
there are a number of possible methods, in this text we will use Gibbs sampling, a
Markov chain Monte Carlo method.

Markov chainMonte Carlo
Markov chain Monte Carlo (MCMC) describes a wide family of algorithms from
computational statistics used for sampling from probability distributions. In this
section, we will describe such methods as applied to Markov random fields and
used to perform approximate inference.

In this discussion, we will assume that the reader has at least elementary knowl-
edge about Markov chains, but we here present the definition of a Markov chain as
a refresher.

Definition 20. A sequence x1,x2, . . . ,xn, . . . of random variables, where each variable
xn can take a state from some set Ω, is called a Markov chain if each xn satisfies the
condition

P (xn | x1, . . . ,xn−1) = P (xn | xn−1).



Approximate inference 30

Algorithm: Gibbs sampling
Data: Markov random field x, desired number of samples N , burn-in value M
Result: samples xM ,xM+1, . . . ,xM+N

Set x0 to an initial value, e.g. a vector of ones;
for n ∈ {1, . . . ,M +N } do

xn← xn−1;
for xi ∈ x do

xni ← sample from P (xi | x−xi );
end

end

Figure 3.8: Pseudocode for the Gibbs sampling algorithm used on a Markov random
field.

The possible values that each variable xi can take are known as the states of the
Markov chain. A Markov chain is defined by the probabilities pnij = P (xn+1 | xn) of

transitioning from a state xj to another state xi . If this probability is independent of
n, that is if pnij = pij ∀n, we say that the Markov chain is homogeneous.

Let us now look at the marginal probability distribution P (xn+1). By using
the definition of a Markov chain and summing over all the possible states of the
preceding step xn, we find that the distribution function can be written on the form

P (xn+1) =
∑
xn
P (xn)P (xn+1 | xn).

As n→∞, it would be useful if Pn+1(xn+1) converged to some stationary distribution.
In fact, we can show that if there is a number ∆n such that there is a positive
probability of going from each state x1 to another state x2 in ∆n steps, then such a
stationary distribution exists (Koller and Friedman, 20092009, pp. 510–511).

Let us go back to Markov random fields and see how all this applies. Define a
Markov chain x1,x2, . . . as above where the set of states the Markov chain can take at
some point xn is equal to the sample space of the Markov random field x. Imagine
that we define the Markov chain such that the stationary distribution is equal to the
joint probability distribution of the Markov random field. If we could do that, it
would be possible to sample from the Markov random field by sampling from that
Markov chain.

The particular Markov chain Monte Carlo algorithm we will discuss and use
in this thesis is known as Gibbs sampling. In Gibbs sampling, we consider each
variable xi ∈ x in turn. Gibbs sampling is an iterative algorithm where, for each
generated sample, we consider each variable in the Markov random field in turn,
updating the sample based on a sample from the conditional distribution P (xi | x−xi )
conditioned on the previously generated samples for each of the other variables in x.
Pseudo-code for the Gibbs sampling algorithm is displayed in Figure 3.83.8.
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The Markov chain defined by this algorithm can be shown to converge to a
stationary distribution given by the joint probability distribution, as long as the
potential functions are positive (Koller and Friedman, 20092009, p. 515). However,
it can often take a significant number of iterations before the algorithm starts
to output samples from the stationary distribution. In particular, it is obvious
that the initial sample x0 is not a sample from the stationary distribution, but
it can often take hundreds or even thousands of iterations before the algorithm
outputs useful samples. We usually let the Gibbs sampling algorithm generate a
considerable number of samples before we start using the samples it generates, and
these discarded samples are known as burn-in samples.





33 Approximating the junction tree algorithm

4 Approximating the junction tree algorithm
The intractability of the junction tree algorithm on general graphs motivates the
search for approximate inference algorithms that can perform inference on big and
complex graphs while maintaining a high quality of approximation. Approximate
inference algorithms for Markov random fields is a well-studied field, and there
exist several commonly used algorithms including the already described loopy
belief propagation algorithm. In this chapter, we will introduce a novel approximate
marginal inference algorithm that by deleting edges in the graph of a binary Markov
random field reduces the width of its junction tree to a managable level, and by that
rendering marginal inference using the junction tree algorithm tractable.

4.1 Outline of the approximation algorithm
Let us recall from the previous chapter that the junction tree algorithm has exponen-
tial time complexity in the tree width of the triangulated graph. Applying the exact
junction tree algorithm to a given Markov random field rapidly becomes intractable
for large, dense graphs with big cliques, such as the highly important Ising model.
In this chapter, we will assume that we have chosen a method for generating a
junction tree for our model’s graph, and discuss the width of this junction tree
rather than the computationally intractable tree width of the graph.

Let the parameter τ > 0 be the greatest junction tree width at which the junction
tree algorithm is tractable for a given Markov random field x represented by a
graph G = (V ,E). The greatest tractable junction tree width may vary somewhat
from computer to computer, and depending on how much time we are willing to
spend on our calculations, but owing to the nature of exponential time complexity,
the junction tree algorithm quickly becomes intractable even for the strongest
supercomputers.

As the asymptotic time complexity of the junction tree algorithm is a function
only of the width of the chosen junction tree, reducing the width of the junction
tree to τ is a guaranteed way to make the computation tractable. We can do this by
deleting edges in the original graph, until the junction tree generated from it has
a tree width of no more than τ . Reducing the junction tree width to some τ > 0 is
guaranteed to be possible, since the tree width is 1 in the extreme case where we
have deleted every edge in E.

With some desired tree width τ as an input variable to an edge-deleting ap-
proximation algorithm, the goal is then to select a set of edges Edel to be deleted
such that the final graph does indeed have a tree width of τ while simultaneously
optimizing for quality of approximation. Once we have selected the edges to be
deleted, we delete them using some approximation which attempts to compensate
for their deletion. In this chapter, we will propose an approximation algorithm
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which combines the described edge deletion procedure with a mean squared error
enegy approximation which partly compensates for deleting the edges. We will first
look at the details of the mean squared error approximation, and then discuss our
strategy for choosing edges to delete. Finally, we will present a formalisation of
our approximation algorithm along with pseudocode, and discuss some issues of
performance.

4.2 Mean squared error energy approximation
In Chapter 22, we introduced the concept of a pseudo-Boolean function and discussed
the fact that the energy function of any binary Markov random field is a pseudo-
Boolean function. Suppose we have a Markov random field whose energy function
can be written on the form

U (x) =
∑
Λ∈S

βΛ
∏
i∈Λ

xi (4.1)

where S is the set of interactions in the Markov random field for which the cor-
responding βΛ is nonzero as well as the subsets of those interactions. In order to
approximate the model, we wish to delete an edge from the model. This corresponds
to deleting a pairwise interaction from S. If the model contains interactions of higher
order than pairwise interactions, this will require the deletion of all interactions
containing that pairwise interaction as a subset.

Let S∗ denote the set of interactions remaining after deleting the pairwise inter-
actions Edel and all interactions containing any of the edges in Edel as a subset. We
can now write our approximate model as

U ∗(x | β∗) =
∑
Λ∈S∗

β∗Λ

∏
i∈Λ

xi . (4.2)

The open question is what the set of interaction parameters β∗ should be in the
approximate model. Austad and Tjelmeland (20152015) select interaction parameters
in the approximate model by minimizing the error sum of squares.

β∗ = argmin
β∗

∑
ω∈Ω

(U (ω)−U ∗(ω | β∗))2 , (4.3)

where Ω = {0,1}n is the sample space of a binary Markov random field with n
variables. We now present two theorems regarding this type of approximation of
pseudo-Boolean energy functions. We refer to Austad and Tjelmeland (20152015) for
proofs of both theorems.
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Theorem 2. Let U ∗(x) and U ∗∗(x) be two approximations of a pseudo-Boolean energy
function U (x), and let S∗∗ ⊆ S∗. Then

β∗∗ = argmin
β∗

∑
ω∈Ω

(U (ω)−U ∗∗(ω | β∗))2

= argmin
β∗

∑
ω∈Ω

(U ∗(ω)−U ∗∗(ω | β∗))2 .

This theorem implies that we may approximate the energy function U (x) in
steps, as going U (x)→U ∗(x)→U ∗∗(x) yields the same set of interaction parameters
β∗∗ as going directly U (x)→U ∗∗(x).

Theorem 3. Let U (x) be a pseudo-Boolean energy function with a set of interactions S
and let U ∗(x) be an approximation of that energy function with a set of interactions S∗,
such that |S \ S∗| = 1, where we will denote S \ S∗ by k. We can then write

∑
ω∈Ω

(U (ω)−U ∗(ω | β))2 = βk

 ∑
ω∈{0,1}|k|

[U (ω)−U ∗(ω | β)]

 .
This theorem gives an alternative expression for the error sum of squares in

the case where we only approximate a single interaction. We can now construct
our approximation. Let Edel denote the set of edges we wish to delete from the
graph G = (V ,E). Deleting these edges requires the removal of each of the pairwise
interactions corresponding to the edges e ∈ Edel, as well as all interactions that are
supersets of any of those interactions.

First, let us look at the case of deleting only a single edge e ∈ Edel. The set of
interactions to be deleted consists of the pairwise interaction that corresponds to
the edge e, as well as all of its supersets.

S \ S∗ = {s ∈ S : e ⊆ s} .

To delete e, we go through the interactions in S \ S∗ and approximate the energy
function for each interaction in order of interaction size, until we have approximated
every interaction Λ ∈ S \ S∗. At this point, the edge e has been deleted from the
model. If we wish to remove additional edges, we may repeat the procedure.

The final question is how to minimize the error sum of squares in Equation (4.34.3)
in practice. Austad and Tjelmeland (20152015) present an expression for the interaction
parameters in the approximate energy function that follows from deleting an edge.

Theorem 4. Let e ∈ E be an edge in a binary Markov random field with an energy function
U (x) and a set of interactions S. The minimum error sum of squares approximation
resulting from deleting the edge e can then be written on the form in Equation (4.24.2) with
a set of remaining interactions

S∗ =
{
Λ ∈ S : e *Λ

}
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and a set of interaction parameters β∗ =
{
β∗
Λ
∀Λ ∈ S∗

}
with

β∗Λ =


βΛ − 1

4β
Λ∪e Λ∪ e ∈ S,

βΛ + 1
2β

Λ∪{e0} Λ∪ {e0} ∈ S, Λ∪ {e1} < S,
βΛ + 1

2β
Λ∪{e1} Λ∪ {e1} ∈ S, Λ∪ {e0} < S,

βΛ otherwise.

(4.4)

This approximation is what we call the mean squared error energy approximation,
and has its origin in Austad and Tjelmeland (20152015, pp. 4–7).

4.3 Edge selection
We now have a way of deleting individual edges in a binary Markov random field
and calculating the interaction parameters in the resulting approximate model.
However, the question remains how the edge deletion should be done in practice.

Let x be a binary Markov random field defined on a graph G = (V ,E). Our
goal is to delete a set of edges Edel ⊆ E in x using the mean squared error energy
approximation such that performing inference suing the junction tree algorithm
is tractable while minimizing some error function. Let x∗ be the binary Markov
random field created as an approximation to x by deleting the set of edges Edel using
the mean squared error energy approximation, and let G∗ = (V ,E \Edel) be the graph
of this reduced Markov random field. We then want to choose Edel such that we
minimize some error function ε(x∗), that is

Edel = argmin
Edel

ε(x∗), (4.5)

while simultaneously ensuring that G∗ has a junction tree width of at most τ , such
that inference is tractable using the junction tree algorithm. The error function
ε(Edel) may be any suitable function, for example the mean relative error of the
marginals calculated in the approximate model compared to the marginals calcu-
lated in the exact model. The choice of error function will be discussed further in
Chapter 66.

Solving the above optimization problem exactly is intractable, as it requires us
to try every combination of edges to find whatever combination minimizes the error.
Instead, we will attempt to construct a method of deleting a set of edges Edel such
that the error is not necessarily minimized, but merely is “as low as possible” for the
types of models in which we are interested in performing inference. We call the way
that we select edges to delete the edge deletion strategy.

Several different edge deletion strategies are possible. One strategy could be to
delete random edges in the graph until the width of the junction tree happens to
reach our goal τ . As the tree width of a graph without any edges is 1, the junction
tree width is guaranteed to reach τ even when deleting random edges in the graph.
If we do this, however, we run the risk of deleting many unnecessary edges before



37

reaching the desired value of τ , or deleting the wrong edges such that the quality of
approximation is lowered.

Another possible way could be to look at each of the cliques of maximum size
in the junction tree, repeatedly deleting edges in the largest cliques until we have
managed to reduce the tree width by 1, and then repeating the procedure until the
junction tree has the desired width. This “divide and conquer” algorithm sounds
attractive, as it allows us to focus on only some cliques in the graph. In practice,
however, the triangulation process often recreates the deleted edges in the form of
fill-in edges, which means that if we only ever delete edges from the biggest cliques
we lose the guarantee that the algorithm eventually reaches the target tree width τ .

Instead, we choose a third approach in which we regard every clique in the
junction tree in order, starting with the widest cliques, and delete an edge in
each clique until the number of cliques of maximum width has been reduced. By
repeating this procedure, the idea is that we will eventually reduce the size of all
the cliques of maximum width, and through that reduce the junction tree width to
our target τ . This approach allows us to focus on the biggest cliques in the junction
tree, but because the strategy is able to delete every edge in the graph in the “worst
case”, we are guaranteed that the target tree width τ is always eventually reached.

Within each clique, we will need to make a choice of which edge to delete at
each step of the algorithm. This will be done by ranking every edge in the clique
according to some criteria, and choosing the highest-ranking edge for deletion. We
will call a method used to rank the edges in a clique an edge ranking method. In
the next chapter, we will discuss three different edge ranking methods, based on
the Kullback-Leibler divergence, the sum of potentials involving the edge, and the
number of fill-in edges created during the triangulation process. For the remainders
of this chapter, we will simply assume that some edge ranking method has been
chosen.

4.4 Formalisation of the algorithm
Assume we have a binary Markov random field represented on the form in (4.14.1)
with a set of interactions S and a set of interaction parameters Λ, defined on some
graph G = (V ,E). Our algorithm also takes as input a target junction tree width τ at
which using the junction tree algorithm to calculate the marginal probabilities is
feasible. At the start of the algorithm, we generate a junction tree J = (C,W ) for the
graph G and calculate its width

τ0 = Width(J) = max
λ∈C
|λ| .

In the case that τ0 ≤ τ , we apply the junction tree algorithm as described in Figure
3.63.6 to the Markov random field without performing any approximations.

If τ0 > τ , we enumerate all the cliques in the junction tree, and go through them
starting with the widest cliques, that is, the cliques containing the most variables.
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Algorithm: Edge deletion (DeleteEdge)

Data: Markov random field x defined on a graph G = (V ,E), with a set of
interactions S = {Λ ⊆ V } and a set of parameters β = {βΛ : Λ ∈ S}, edge
to be deleted e = {i, j}

Result: Markov random field x∗ defined on a graph G∗ = (V ,Edel), with a set of
interactions S∗ = {Λ ⊆ V } and a set of parameters β∗ = {βΛ : Λ ∈ S}

S∗←∅;
β∗←∅;
for Λ ∈ S do

if e *Λ then
S∗← S∗ ∪ {Λ};

end
end
for Λ∗ ∈ S∗ do

Update β∗
Λ∗ according to (4.44.4);

end

Figure 4.1: Algorithm for deleting a single edge in the graph of a Markov random
field and adjust the interaction parameters according to the mean squared error
energy approximation.

Working our way down the list of cliques, from the widest to the narrowest cliques,
we delete one edge in each clique using the theory developed in Section 4.24.2 until
either

1. the number of cliques of maximum size has been reduced from the original
number,

2. the tree width has been reduced, or

3. we have gone through every clique.

This procedure is repeated until the goal junction tree width τ has been reached.
At this point, we calculate the marginal probabilities by applying the junction tree
algorithm to the approximate model that we have created.

Pseudocode for the subprocedure that deletes a single edge from the model
is presented in Figure 4.14.1, and pseudocode for the full algorithm is presented in
Figure 4.24.2. The main remaining issue is how to choose which edge to delete next, or
equivalently, rank the edges according to some criterion. As previously mentioned,
this will be discussed in the next chapter.
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Algorithm: Approximate inference

Data: Markov random field x defined on a graph G = (V ,E), with a set of
interactions S = {Λ ⊆ V } and a set of parameters β = {βΛ : Λ ∈ S}, goal
tree width τ ≥ 1

Result: Set of marginal probabilities
{
Pxi ∀xi ∈ x

}
Build junction tree according to G;
Let τ0 be the width of the initial junction tree;
if τ ≥ τ0 then

Calculate set of marginal probabilities for every variable xi ∈ x using the
junction tree algorithm;
return;

end
Eordered← RankEdges(E,S,β);
while Width(J) > τ do

Let |Cmax| be the number of cliques of maximum size;
|Cmax−start| ← |Cmax|;
Rank each edge in G according to some criterion;
for λ ∈ C do

if Width(J) <= τ or Cmax < Cmax−start then
break out of For loop;

end
Delete the highest ranking edge in λ that has not yet been deleted;
Update junction tree according to the altered graph G;

end
end
Calculate set of marginal probabilities for every variable xi ∈ x using the
junction tree algorithm;

Figure 4.2: Our approximate inference algorithm combining the mean squared error
energy approximation with the junction tree algorithm, using the main approach
described in Section 4.34.3.



Time complexity 40

4.5 Time complexity
As the goal of our approximation algorithm is to work around the exponential time
complexity of the junction tree algorithm by bounding the junction tree width to
some value τ , it is important that we do not reintroduce exponential time complexity
at any point in the algorithm. In addition, even if we know that the time complexity
of the algorithm is polynomial, we would like for it to be as low as possible.

Because the focus of this thesis is not primarily on speed, and because the time
complexity depends greatly on the details of the edge ranking methods and to
some degree on the implementational details with regards to representation of the
Markov random field, we will not conduct a full look into the time complexity of
the algorithm here. Instead, we will discuss some issues of time complexity of the
individual parts of the algorithm. As we have already discussed, a graph may be
triangulated to a non-optimal chordal graph and a junction tree may be generated
from that chordal graph in polynomial time.

The complexity of deleting an edge using the mean squared error energy requires
deleting all interactions containing the variables in that edge. The time complexity
of this operation, done on an efficient representation of the Markov random field, is
a polynomial function of the size of the largest interaction in the graph. Finally, with
a fixed upper junction tree width bound τ , the tree width is no longer a variable in
the time complexity of the junction tree algorithm. The belief propagation stage of
the junction tree algorithm is polynomial in the number of variables in the Markov
random field (Ajroud et al., 20122012), so we also escape exponential time complexity
here.
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5 Edge rankingmethods
Let x be a Markov random field with probability distribution P (x), defined on some
graph G = (V ,E). As outlined in the previous chapter, our goal is to rank the edges
in a clique λ = (Vλ,Eλ) according to some criterion, allowing us to select the “best”
edge to delete. In practice, we will do this by assigning a score Z(e) to each edge
e ∈ Eλ, and ranking the edges according to their score. The approximation algorithm
can then delete the edges with the highest scores in turn for as long as necessary
until the number of cliques of maximum size has been reduced.

In this chapter, we will discuss three different methods for assigning scores
Z(e) to edges: Kullback-Leibler scoring, lowest potential scoring, and minimum
fill-in scoring. All three methods will be used in the numerical experiments and
compared.

5.1 Kullback-Leibler scoring
Let P−e(x) denote the probability distribution of x resulting from deleting the edge
e ∈ E using the mean squared error energy approximation. The Kullback-Leibler
divergence D(P ||P−e) from P to P−e quantifies the amount of information lost in the
approximation. Intuitively, one would then expect that using a score

ZKL(e) =
1

D(P ||P−e)

to rank the edges would lead to good results. Attempting to calculate this score,
however, poses a problem. The Kullback-Leibler divergence from P to P−e may be
written as

D(P ||P−e) =
∑
ω∈Ω

P (ω) log
P (ω)
P−e(ω)

,

D(P ||P−e) =
1
Z

∑
ω∈Ω

e−UP (ω)
(
Up−e (ω)−Up(ω)

)
.

The factor 1
Z is difficult to compute, but is of no bother as we do not need the

absolute divergences to be able to rank edges. A greater issue is the fact that in order
to calculate this expression, we need to sum over every value ω ∈Ω, which takes
exponential time.

In order to avoid the exponential time complexity, we need to use an approxima-
tion of the KL divergence. As the divergence is only used as a method for creating
an approximate ranking of edges, an excellent approximation is not necessary. Be-
cause of this, we can approximate the KL divergence using Gibbs sampling with
a low burn-in. By generating samples x1, . . . ,xN from the exact joint probability
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distribution using Gibbs sampling, we may calculate an approximation D̃(P ||P−e)
to the Kullback-Leibler divergence from P to P−e using the parametric estimator
(Budka, Gabrys, and Musial, 20112011)

D̃(P ||P−e) =
N∑
i=1

log
P (xi)
P−e(xi)

.

We refer to Section 3.2.23.2.2 for an introduction to Gibbs sampling. Note that in
this calculation, we assume that the normalisation constants of the original and
approximate models are equal, up to a factor given by the mean square error
approximation. This is not strictly true, but is a necessary simplification for the
computations to be tractable.

In order for Kullback-Leibler scoring using Gibbs sampling to be tractable,
we must avoid using too many samples and too many burn-in iterations. In our
implementation, we have used 10 burn-in iterations and 20 samples. The exact
number of iterations needed is unclear, and it is likely that this number is too small
for large models. When Gibbs sampling is typically used one uses far more burn-in
iterations than this, but for tractability reasons that was not possible here.

Note that in our above calculations, we assume that the normalisation constants
of the exact and approximate models are equal, allowing us to avoid computing their
ratio. This is not exactly true. However, as the mean squared error approximation
attempts to compensate for the edge deletion by adding a constant to the energy
function, and attempting to deal with two different normalisation constants would
add a great deal of complexity to our calculations, we assume that the ratio of the
exact and approximate normalisation constants is roughly equal to one.

5.2 Lowest potential
Another potential way of judging the “impact” of an edge in a pairwise model is to
look at the potential of the corresponding pairwise interaction. Consider a pairwise
model written on the exponential form with an energy function

U (x) =
∑
xi∼xj

βixixj ,

where xi ∼ xj denotes adjacency. If the interaction parameter β is close to 0, the
interaction is in a sense “almost not there”. In other words, that interaction has
a lower impact on the model as a whole than do interactions with parameters
differing strongly from 0. Intuitively, removing an edge corresponding to a pairwise
interaction with a parameter close to 0 then has less of a negative impact on the
accuracy of the final marginals than removing some other edge does.

Consider now instead a model with interactions of arbitrary order. Particularly
if the model does not have any pairwise interactions, it no longer makes sense to
use the pairwise interaction strength as a proxy for the importance of an edge. We
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can generalise the above idea into a general ranking method, in which the product
of the potential functions the edge ends are involved in is used as a criterion for
judging edge importance.

Consider in particular a binary Markov random field with an energy function
that can be written on the form (2.102.10). A generalised score Ze for ranking an edge e
could then be written

Ze = e
∑
λ∈Ce βλ , (5.1)

Ce = {λ ∈ C : e ⊆ λ} . (5.2)

However, every interaction does not “matter” to the same degree. Let us consider a
second-order interaction of variables x1,x2 and x3. Using the above scoring method
for an edge {x1,x2}, a second-order interaction with parameter 1

2 will have the same
impact on the score as a pairwise interaction with that parameter. Because of the
fact that there is a third variable involved in the interaction, it will only be “on” half
the time. We can take this into account in the ranking score by instead using the
modified score

Ze = e
∑
λ∈Ce

1
2|λ|−2 βλ , (5.3)

Ce = {λ ∈ C : e ⊆ λ} . (5.4)

where each additional variable in an interaction halves the impact of the interaction
parameter on the edge’s score. This is the score we will use in our numerical
experiments.

5.3 Minimising fill-in
The process of triangulating a graph will create a certain amount of fill-in, which is
the term for the edges that are added to make the graph chordal. Generally, a greater
number of fill-in edges leads to bigger cliques in the graph’s junction tree, which
is something we want to avoid. If we could lessen the number of fill-in edges, we
could reduce the size of the cliques in the junction tree and thus its width, rendering
inference easier.

Consider the graph of some Markov random field, with two edges e0 and e1. Let
us say that triangulating this graph results in n fill-in edges. If we delete e0 and
again triangulate the graph, we again get n fill-in edges. However, if we delete e1, we
only get m < n fill-in edges when triangulating the graph. By consistently choosing
to delete the edges that result in triangulations with the lowest number of fill-in
edges, we may more quickly reduce the “complexity” and width of the triangulated
graphs, and by that reach our goal junction tree width τ more quickly than if we
chose to delete edges that resulted in triangulations with a high number of fill-in
edges.

This strategy is different from the previous two strategies in that instead of
attempting to choose edges to delete such that the impact of each edge deletion is
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as small as possible, we instead attempt to minimise the number of edges we need
to delete in order to reach the goal. In other words, we posit that deleting a small
number of edges where each may or may not cause a significant error may still lead
to a better end result than deleting a large number of low-impact edges.

Let G = (V ,E) be the original graph, let G−e = (V−e,E−e) denote the resulting
graph after deleting an edge e using the mean squared error approximation, and
denote the triangulation of a graph G by Gtri = (V tri,Etri). This ranking method may
then be defined through the score

Ze =
1∣∣∣Etri
−e

∣∣∣ . (5.5)
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6 Experimental setup
The goal of this chapter is to apply our approximation algorithm to a number of
example Markov random fields in order to quantify the quality of approximation
and to compare our algorithm to other standard methods. We will use our algorithm
to calculate the marginal probabilities of every variable in each of our example
models.

6.1 Error function
To allow the comparison of our approximation algorithm with other methods, we
need an error function that can quantify the quality of approximation. The output
of each algorithm is the marginal probability of each state for every variable in the
Markov random field, and the error function must distill this data into one number
that represents the overall quality of the approximate inference algorithm as applied
to that model.

We will use three error functions that take into account different aspects of the
approximation quality. Both compare the output of our approximate inference
algorithm to some reference data. The reference data is ideally the output of an exact
inference algorithm, such as the junction tree algorithm. However, in many cases
calculating the exact marginals is intractable. In those cases, we we will instead
compare our results to a those of a long-running Gibbs sampler used for inference
as described in Section 3.2.23.2.2.

The first error function is the mean relative approximation error (MRAE). Let
x be some Markov random field with probability distribution P (x) and sample
space Ω = {0,1} for each variable xi ∈ x. Furthermore, let ρxis denote the reference
marginal state probabilities for a variable xi in state s, and let ∗ρxis denote the
marginal state probabilities calculated by our approximate inference algorithm. If
we let ∆ρxi = ρxi0 − ρ

xi
1 denote the difference between the marginal probabilities for

the outcomes 0 and 1, then the mean relative approximation error can be written as

εrel =
1
|x|

∑
xi∈x

∣∣∣∣∣∆ρxi −∆∗ρxi∆ρxi

∣∣∣∣∣ . (6.1)

Our second error function measures the maximum difference between a reference
marginal state probability ρxis and an approximate marginal state probability ∗ρxis .
This is a useful measure to get an impression of the worst case performance of an
approximate inference algorithm. We define this error function as

εmax = max
xi∈x,ω∈Ω

∣∣∣ρxis − ∗ρxis ∣∣∣ . (6.2)
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The final error function is a “misclassification” rate, given by the expression

εclass =
1
|x|

∑
xi∈x

[
I(ρxi0 < 0.5, ∗ρxi0 > 0.5) + I(ρxi0 > 0.5, ∗ρxi0 < 0.5)

]
, (6.3)

where I is the indicator function as defined in Section 3.13.1. This error function
indicates the frequency that the approximate marginal probability distributions
Pxi (xi) satisfy P ∗xi (0) > P ∗xi (1) when Pxi (0) < Pxi (1), or that P ∗xi (1) > P ∗xi (0) when Pxi (1) <
Pxi (0).

6.2 Examplemodels
In the numerical experiments, we will apply our approximate inference algorithm
to a number of example Markov random fields to study its performance compared
to other approximate inference algorithms. We will now describe the classes of
models that we will use in the experiments.

6.2.1 204 and 500 edge Boltzmannmachines

Figure 6.1: The graph of an
Ising model of size 4× 4.

Murray and Ghahramani (20042004) presents two ran-
domly generated Boltzmann machines, each with
100 nodes and 204 or 500 edges. A Boltzmann ma-
chine is a binary Markov random field with unary
and pairwise interactions where the interaction pa-
rameters may be independent of each other, that
is, a binary Markov random field with the energy
function

U (x) =
∑
xi∈x

αixi +
∑
xi ,xj∈x

βijxixj . (6.4)

Any interaction constant αi or βij may be zero, and
if a constant βij is non-zero then the corresponding
graph of the Markov random field will contain an
edge between the nodes corresponding to variables
xi and xj . The sum

∑
xi∈xαixi is also known as the bias term.

Using the standard method in Figure 3.43.4 for triangulation, the 204 edge and 500
edge models have tree widths of 46 and 66, respectively. These are dense models
that will likely require the deletion of a high number of edges in order to allow for
tractable inference.

6.2.2 Isingmodel
An Ising model is a Boltzmann machine defined on a regular grid. Figure 6.16.1
displays an example of the graph of an Ising model. We briefly discussed Ising
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models in Chapter 22, and mentioned that they have their origin in physics. However,
Ising models are also regularly used in the field of computer vision and in image
reconstruction. Using our standard triangulation method, an Ising model with n2

variables defined on a square grid will have a junction tree width of n+ 1, and will
have n2 − 2n+ 2 cliques of maximum size. This means that performing inference on
large Ising models rapidly becomes intractable.

In our experiments, we will look at Ising models both with and without bias
terms. With identical interaction parameters, the energy functions for these models
can be expressed on the form

U (x) = β
∑
xi ,xj∈x

xixj , (6.5)

U (x) = α
∑
xi∈x

xi + β
∑
xi ,xj∈x

xixj . (6.6)

In order to distinguish models with and without bias terms, we will refer to them as
the non-biased and biased Ising models respectively. In addition to the above models
with identical interaction parameters, we will also look at Ising models with energy
functions on the form (6.46.4) where each parameter αi and βij is selected from the
uniform distribution on the interval (0.0,1.0). Finally, we will look at models where
α and β are very large or very small in order to gauge if this has an impact on the
performance of our algorithm.

6.2.3 Higher-orderMarkov random fields

Figure 6.2: The graph of a
third-order Ising model ana-
logue on a 4× 4 grid.

Thus far, we have looked at Markov random fields
with pairwise or second-order interactions, which
means that the energy function of the Markov ran-
dom field contains potentials that are functions of
cliques of at most two variables. A Markov random
field with higher-order interactions, conventionally
called a higher-order MRF, has potentials that are
functions of cliques of more than two variables. A
Markov random field x of at most order N has an
energy function that can be written on the form

U (x) =
N∑
n=1

∑
λ∈Λ:|λ|=n

fλ(xλ), (6.7)

where the inner sum is over all cliques of size n.
While pairwise Markov random fields are the

most widely used, higher-order MRFs have been suc-
cessfully applied to problems in image processing (Tjelmeland and Besag, 19981998).
Of particular interest are the higher-order analogues of the Ising model. Figure 6.26.2
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of the graph of a higher-order Ising analogue on a grid where each interior vertex is
adjacent to eight other vertices. The maximal cliques in this example contain four
vertices, allowing for fourth-order interactions.

We will look at a third-order Ising model analog defined on a grid similar to that
in Figure 6.26.2, but where the energy function only involves cliques of two and three
variables as opposed to the maximum of four. Our third-order Ising model analog
can be written as

U (x) =
∑
xi∈x

αixi +
∑
xi ,xj∈x

βijxixj +
∑

xi ,xj ,xm∈x
γijmxixjxm. (6.8)

with each xi ∈ x taking binary values. As before, the interaction parameters αi , βij
and γijm will be drawn from a uniform distribution on the interval (0.0,1.0).

In addition to the third-order grid model, we will look at a model based on
a dataset of mortality rates for liver and gallbladder cancer in the United States
by Riggan et al. (19871987), inspired by the work done using such a model in Austad

and Tjelmeland (20152015). The model is defined on a grid that represents the eastern
United States, where each vertex in the grid corresponds to a geographical region.
The sample space for each region is

Ω = {high cancer mortality rate, low cancer mortality rate} ,

and we use a model with fourth-order interactions. With rotational symmetry,
each interaction or clique has six different possible configurations, with interaction
parameters θi . The energy function of our model may be written on the form

U (x | θ) =
∑
Λ∈C

4∑
i=0

θiI (xΛ = ci) ,

where the configurations ci correspond to those displayed in Figure 6.36.3. When every
variable in the clique is “off”, the potential is set to zero. Compared to Austad and
Tjelmeland (20152015), which uses the full model with 66548 interactions, we will use
a submodel with only 572 interactions. This is due to the limits put on our computa-
tional performance due to the choice of a lower performing programming language
for our implementation and less effort devoted to optimizing the implementation
for speed. The parameters chosen for this model are

θ0 = −0.50, θ1 = −0.62, θ2 = −0.60, θ3 = −0.77, θ4 = −0.32,

which roughly correspond to the simulated posterior values for these parameters
given in Austad and Tjelmeland (20152015). The exact values of these parameters is not
important for our use.
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(a) c0 (b) c1 (c) c2 (d) c3 (e) c4

Figure 6.3: The distinct configurations ci which determine the energy function for
the US cancer model, where red indicates that a given variable is “on”, taking the
value 1, while white indicates that it is “off”, taking the value 0. Each ci has an
associated parameter θi . The configurations are symmetric with regards to rotation
and mirroring.

Our approximate inference algorithm our

KL scoring (Section 5.15.1) our-kl

Lowest potential (Section 5.25.2) our-potential

Minimising fill-in (Section 5.35.3) our-fillin

Junction tree algorithm junction

Loopy belief propagation loopy

Gibbs sampling gibbs

Figure 6.4: Abbreviated names for the inference algorithms used in the following
chapter.

6.3 Alternative inference algorithms
We wish to compare the performance of our inference algorithm to that of existing,
standard approximate inference algorithms, which will be done by calculating the
marginal probabilities of our example models using the algorithms in question. The
algorithms that will be used in the comparison are loopy belief propagation and
Gibbs sampling based inference, both of which have been described in Chapter 33.

As for the junction tree algorithm, we will use the implementations of the three
alternative inference algorithms from the Matlab UGM library (Schmidt, 20072007) to
perform the computations. These implementations support only pairwise models.
For the higher-order examples, we will restrict ourselves to comparing our results
with those of the loopy belief propagation algorithm, using an implementation
modified from that in the UGM library in order to support higher-order models.

Wherever there is not sufficient space to write the full name of an inference
algorithm, we will use the abbreviations given in Figure 6.46.4. Whenever gibbs is
followed by a number, that number indicates the number of samples used to perform
inference. It does not indicate the number of burn-in samples, which will always be
1000. our followed by either kl, potential or fillin indicates which of the edge
ranking methods are used.
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6.4 Implementation
The software implementing the algorithms and procedures described in this thesis
and used to perform the numerical experiments was written in the Matlab program-
ming language, in order to allow for a greater amount of experimentation and more
rapid changes in the code base. The implementations of the loopy belief propagation
algorithm, Gibbs sampling-based inference and the junction tree algorithm were
based on the code of the UGM toolbox for Matlab (Schmidt, 20072007). However, as the
UGM toolbox supports only Markov random fields with pairwise interactions, the
implementations were rewritten to support higher-order Markov random fields.

The UGM toolbox used a representation of Markov random fields that was
particularly tailored for Markov random fields with pairwise interactions, and also
supported Markov random fields of variables that can take more than two values.
However, as we were only interested in binary Markov random fields, and required
support for higher-order interactions, we instead used a representation based on the
representation of pseudo-Boolean functions (2.102.10). In this representation, a Markov
random field x defined on a graph G = (V ,E) is represented as a set of pairs

{(λ1,β1), (λ2,β2), . . . , (λN ,βN )},

where each λi ⊆ x is a set of variables and βi is an interaction parameter correspond-
ing to that set of variables. The joint probability distribution of the Markov random
field can then be written on the form

P (x) =
1
Z

N∏
i=1

e
βi

∏
xj∈λi xj .

In Matlab, this was implemented using nested cell arrays. This representation, and
the use of cell arrays in the implementation, allows for a high degree of flexibility.
The downsides of this approach is that the representation must be converted to an
adjacency matrix each time we want to do operations on the graph or junction tree
of the Markov random field, and that the use of cell arrays can lead to lower perfor-
mance due to less memory colocality. To ameliorate the latter issue, intermediate
representations were sometimes used that offered superior performance in certain
tasks.

For the mean squared error energy approximation, we used the implementation
of Austad and Tjelmeland (20152015), who first developed that approximation. Their
implementation was written in C++, and glue libraries were written to connect our
Matlab implementations with the C++ approximation code. The Markov random
field representation used by Austad and Tjelmeland (20152015), described in their
paper, is similar to ours although more optimized, and converting between the two
representations did not pose any problems.
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7 Results
We will now present the results of applying our approximate inference algorithm
to the example models introduced in the previous chapter. The results will be
presented visually in the form of error plots, and quantitatively in the form of
tables of errors and other measurements. When appropriate, the performance of
our algorithm, both in terms of quality and in terms of speed, will be compared to
that of the other approximate inference algorithms that have been discussed in this
thesis. Less important plots and tables of data will be presented in Appendix AA.

The results from performing approximate inference on the Ising model will be
presented first. We will initially look at the non-biased 5× 5 Ising model in order
to demonstrate an example of the edge deletion procedure, and following that an
16×16 biased Ising model with parameters drawn from the uniform distribution on
(0.0,1.0). Finally, we will see the results of inference in unbiased Ising models with
all parameters set to the low value of β = 0.05 and the high value of β = 2.

After the Ising model, we will apply our inference algorithm to the 204 and
500 edge Boltzmann machines from Murray and Ghahramani (20042004). While these
are still pairwise models, their graph structures are very chaotic compared to the
regular structures of Ising models. Last, we will look at two higher-order models:
a submodel of the U.S. cancer model from Austad and Tjelmeland (20152015), and a
14×14 higher-order grid model. The graph structure of this grid model is displayed
in Figure A.1A.1 in the appendix.

For models with a low tree width, the marginals output by the exact junction
tree algorithm will be used as the reference when calculating errors, but for bigger
models in which exact inference is not tractable, we will use Gibbs sampling based
inference based on 1000 burn-in iterations and 30000 samples. These numbers of
burn-in iterations and samples were chosen by looking at the rate of convergence
for each of the example models, and was found to work well for all of them.

7.1 Isingmodels
The first model we will approximate is the simple non-biased Ising model with
5×5 variables and a randomly chosen interaction strength β in the interval (0.0,1.0)
on each of the pairwise interactions. This model has a total of 40 interactions and
a junction tree width of 6, making it trivially tractable using the exact junction
tree algorithm. The reason for including this model is to more easily be able to
demonstrate the action of our inference algorithm, and we will not include the full
set of data and plots for this model.

Figure 7.17.1 displays the original graph of this model as well as the graphs of the
approximate models generated by applying our algorithm with τ ∈ {5,4,3,2,1}. As
expected, lower values of τ require the algorithm to delete increasing numbers of
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(a) Original graph
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(b) τ = 5
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(c) τ = 4
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(d) τ = 3
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(e) τ = 2
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(f) τ = 1

Figure 7.1: The original graph of the 5×5 non-biased Ising model, and the graphs of
the approximate models generated by applying our approximation algorithm with
with τ ∈ {5,4,3,2,1}.

edges in order to reach the goal junction tree width. In this example, we selected
edges according to the lowest potential criterion described in Section 5.25.2.

The table in Figure 7.27.2 displays the number of edges deleted as well as mean
relative and maximum errors for the different values of τ . When τ = 6, the algorithm
does not delete any edges. At τ = 1, on the other hand, every edge in the graph
has been deleted. We see that the lowest potential edge ranking method in no way
minimises the number of edges that are deleted: in d), the junction tree width could
be reduced to 2 by deleting one edge in each of the two cycles, e.g. the edges {16,17}
and {15,20}. As we see in e), however, the algorithm instead deletes 11 edges before
reaching a junction tree width of 2. While in general there is no guarantee that
deleting two edges would necessarily be a better choice than deleting 11, as the two
edges could be much more “impactful” than the 11.

Let us now look at a more interesting example, namely a biased 16× 16 Ising
model with pairwise interactions. All biases and pairwise interactions have parame-
ters sampled from the uniform distribution on the interval (0.0,1.0). Calculating
the exact marginal probabilities of this model is somewhat tractable, but very slow:
on the author’s computer, the exact computations took roughly one hour to finish.
In other words, this is a prime target for an approximate inference algorithm such
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τ |Edel | εrel εmax

1 40 0.0961 0.1067
2 31 0.0659 0.1067
3 20 0.0271 0.1067
4 14 0.0114 0.0749
5 11 0.0096 0.0749
6 0 0 0

Figure 7.2: Results of our applying our approximate inference algorithm to the 5×5
non-biased Ising model, using the lowest potential edge ranking criterion. Number
of deleted edges |Edel | as well as mean relative and maximum errors as a function of
the parameter τ . At τ = 6, the algorithm does not apply any approximations.

as ours.
The results of running our algorithm on the biased 16×16 Ising model, using

the lowest potential edge ranking method, are displayed in Figure 7.37.3. In addition
to the number of edges deleted and the errors, we have also included the time taken
to completion of the calculations. For models such as this one which are on the
boundary of being tractable, even reducing the junction tree width by 1 allowed us
to perform inference considerably faster. In this case, calculating the exact marginal
probabilities took 3204 seconds, or just over 53 minutes, while calculating the
approximate marginals with τ = 16 took 318 seconds, more than 10 times quicker.

It is worth noting that the time taken to perform inference does not decrease
monotonically with τ . Instead, it reaches a low point at τ = 12 and τ = 13, and is
somewhat higher below that. This is due to the fact that at low junction tree widths,
the junction tree algorithm’s exponential growth in runtime has not yet overtaken
the the cost of performing the approximations. In other words, the approximation
algorithm has a higher constant factor, which leads to the approximate inference
algorithm taking longer to complete than the exact algorithm when working with
low junction tree widths. However, the effect is also partly due to inefficiencies in
the implementation of the algorithm: the implementation of the approximation
algorithm was written with an emphasis on code simplicity and readability, with
performance concerns playing second fiddle, while the implementation of the exact
junction tree algorithm originates in a proven software library and has been tuned
for performance. For this reason, it is important not to read too much into the
runtime of the approximation algorithm at low values of τ .

A useful tool in understanding the quality of the approximate marginals is the
correlation plot between the exact and approximate marginals. Figure 7.47.4 displays
correlation plots for the approximate marginal probabilities generated by our infer-
ence algorithm at τ ∈ {16,12,9}. The marginals displayed in the plots are ρxi0 for all
variables xi in the model. The closer a point representing a marginal probability is
to the diagonal, the lower is its difference from the true vaue. According to the error
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τ |Edel | εrel εmax εclass time (s)

9 307 0.1510 0.1256 0 152.8
10 301 0.1492 0.1210 0 150.3
11 267 0.1352 0.1202 0 140.9
12 228 0.1158 0.1202 0 130.2
13 204 0.1051 0.1143 0 130.2
14 174 0.0884 0.1143 0 135.2
15 160 0.0828 0.1085 0 153.4
16 88 0.0461 0.0951 0 318.0
17 0 0 0 0 3204

Figure 7.3: Results of our applying our approximate inference algorithm to the bi-
ased 16×16 Ising model, using the lowest potential edge ranking criterion. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ .
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(a) τ = 16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Exact marginals

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
p
p
ro

x
im

a
te

 m
a
rg

in
a
ls

(b) τ = 12
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(c) τ = 9

Figure 7.4: Correlation plots between the exact marginal probabilities ρxi0 for the
biased 16×16 Ising model and the approximate marginal probabilities generated
by our approximate inference algorithm at τ ∈ {16,12,9}.

data, most marginals should be close to diagonal in the plot for τ = 16, while they
should be considerably further away in the plots for τ = 12 and τ = 9. This appears
to be true.

So far, we have only used the lowest potential method to select edges for deletion.
We will now apply our algorithm to the 16× 16 Ising model again, but this time we
will use the Kullback-Leibler divergence and least fill-in methods in addition to the
lowest potential method. Figure 7.57.5 displays a plot of the average relative error of the
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Figure 7.5: Mean relative error of the marginal probabilities for the biased 16×16
Ising model, as output by our approximate inference algorithm at different choices
of τ and with different edge ranking methods. Also displayed are the mean relative
errors of the marginal probabilities output by the loopy belief propagation algorithm
(loopy) and sample-based inference based on 1000 (gibbs1000) and 500 (gibbs500)
samples from a Gibbs sampler with 200 burn-in samples.

approximate marginals at different choices of τ for all three methods, in addition to
lines representing the average relative errors of the approximate marginals generated
by loopy belief propagation and Gibbs sampling-based inference. Tables of results
for the Kullback-Leibler and least fill-in edge ranking methods can be found in
Figures A.3A.3 and A.4A.4 in the appendix.

From the plot and result tables, we see that our algorithm appears to result
in approximate marginals of lower quality than those output by both loopy belief
propagation and the Gibbs sampling based method. This is true when using any of
the edge ranking methods, although using the Kullback-Leibler and lowest potential
edge ranking methods do result in better approximations than using the least fill-
in edge ranking method. The plot of maximum error found in Figure A.2A.2 in the
appendix presents a similar picture. We do not include a plot of the misclassification
rate as this was zero for every τ and edge ranking method.

In Figure 7.67.6, we see the time taken to completion of the calculations as a
function of τ for the biased 16× 16 Ising model. It is clear from the plot that the
lowest potential method is much faster than the other two methods on this model,
but whether this ultimately comes down to inherent slowness in the methods or an
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Figure 7.6: Time taken to completion of the algorithm as a function of τ for the
biased 16×16 Ising model and each of the three edge ranking methods, plotted with
a logarithmic scale on the vertical axis.

inefficient implementation is difficult to say. It is worth noting that before τ = 15,
the edge ranking and deletion procedures dominate the total time taken, and only
at τ = 16 does the exponential growth in time taken to perform the junction tree
algorithm overtake the time spent selecting and deleting edges.

Finally, in Figure 7.77.7 we see a plot of the number of edges deleted as a function of
τ using each edge ranking method. We see that in this model the least fill-in method
deletes many more edges than the lowest potential method, which again deletes
more edges than the Kullback-Leibler based selection method. In fact, the number
of edges deleted using each method appears to correspond well to the quality of
approximation for the methods, suggesting that the number of edges deleted has a
close connection to the quality of the resulting approximate marginals.

7.2 Unbiased Isingmodels with low or high interaction
parameters

In the previous section, we looked at biased Ising models with all parameters
drawn from a uniform distribution between 0.0 and 1.0. We will now look at
unbiashed 16× 16 Ising models with the parameter β set to either a value close to
zero, β = 0.05, or a high value, β = 2.0, and see whether our inference algorithm
performs differently here.
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Figure 7.7: Number of edges deleted as a function of τ , for the biased 16× 16 Ising
model while using each of the three edge ranking methods.

Figures 7.87.8 and 7.97.9 contain plots of the mean relative error as a function of τ .
It is clear that the performance of our algorithm relative to the other algorithms is
very different between the two models. In the low-potential model, our algorithm
performs very well, with low mean relative errors comparable to those of by loopy
belief propagation regardless of the chosen edge ranking method. Meanwhile, Gibbs
sampling based inference works poorly. In the high-potential model, on the other
hand, our algorithm performs similarly well, but is now soundly beaten by both
Gibbs sampling and loopy belief propagation.

Looking at the maximum errors in Figures A.5A.5 and A.6A.6, we see similar tendencies
as in the relative error plots. The classification errors were zero regardless of choice
of τ and edge ranking method, and for both models. The time plots in Figures A.7A.7
and A.8A.8 show similar results to earlier, namely that the Kullback-Leibler based edge
ranking method is far slower than the other two methods. The plots of edges deleted
as a function of τ in Figures A.9A.9 and A.10A.10 are also similar, except that the lowest
potential edge ranking method now deletes as many edges as the least fill-in method
at most τ . The tables of results for the low-potential model may be found in Figures
A.11A.11, A.12A.12 and A.13A.13, while the results for the high-potential model may be found
in Figures A.14A.14, A.15A.15 and A.16A.16.



204 and 500 edge Boltzmannmachines 58

5 6 7 8 9 10 11 12 13 14 15

τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε
r
e
l

our-potential
our-fillin
our-kl
loopy
gibbs1000
gibbs500

Figure 7.8: Mean relative error of the marginal probabilities for the unbiased 16×16
Ising model with β = 0.05, as output by our approximate inference algorithm at
different choices of τ and with different edge ranking methods. Also displayed
are the mean relative errors of the marginal probabilities output by the loopy
belief propagation algorithm (loopy) and sample-based inference based on 1000
(gibbs1000) and 500 (gibbs500) samples from a Gibbs sampler with 200 burn-in
samples.

7.3 204 and 500 edge Boltzmannmachines
We now turn our attention to two other pairwise models, namely the 204 and 500
edge Boltzmann machines from Murray and Ghahramani (20042004). While Ising
models are a widely used type of model, their regular structure means they are not
necessarily a good representative for Markov random fields in general. The 204 and
500 edge Boltzmann machines are Markov random fields without any particular
structure and may better represent the general performance of our algorithm.

Figure 7.107.10 displays the mean relative error for the 204 edge Boltzmann machine.
As opposed to when we looked at the Ising models, none of the edge ranking
methods here appear to perform consistently better than the others. As before, the
other inference algorithms perform considerably better than does our algorithm,
regardless of choice of edge ranking method. The results for the 500 edge Boltzmann
machine are shown in Figure 7.117.11. For this model, loopy belief propagation did
not converge, and the result shown for this algorithm is calculated based on the
messages after 50 iterations. Our algorithm performs similarly to the “cut-off” loopy
belief propagation algorithm, but again considerably worse than the results based
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Figure 7.9: Mean relative error of the marginal probabilities for the unbiased 16×16
Ising model with β = 2.0, as output by our approximate inference algorithm at
different choices of τ and with different edge ranking methods. Also displayed
are the mean relative errors of the marginal probabilities output by the loopy
belief propagation algorithm (loopy) and sample-based inference based on 1000
(gibbs1000) and 500 (gibbs500) samples from a Gibbs sampler with 200 burn-in
samples.

on Gibbs sampling.
The two other error measures, the maximum error and the misclassification rate,

lead to the same conclusions as the relative error, as seen in Figures A.17A.17 and A.18A.18
for the 204 edge model and Figures A.25A.25 and A.26A.26 for the 500 edge model.

Figure 7.127.12 shows the time taken to completion of the calculations as a functio
of τ for the 204 edge Boltzmann machine. We see a similar behaviour as with the
Ising models, except that the Kullback-Leibler based method now performs worse
than the least fill-in method. A similar plot for the 500 edge model can be seen in
Figure A.27A.27.

As for the plot of number of edges deleted as a function of τ , this can be seen
in Figure 7.137.13. The situation here is now reversed from what was the case for the
Ising models, as the least fill-in edge ranking method now deletes the fewest edges.
However, this does not necessarily rock the idea that quality of approximation
is closely connected with the number of deleted edges, because the quality of
approximation is much more similar between the three methods here than was the
case for the Ising models. The same plot for the 500 edge model can be seen in
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Figure 7.10: Mean relative approximation error of the marginal probabilities output
by our approximate inference algorithm at different choices of τ , for the 204 edge
Boltzmann machine, compared to the usual alternative approximate inference
algorithms.

Figure A.28A.28, and displays similar patterns.
Figures A.19A.19, A.20A.20 and A.21A.21 in the appendix contain tables of the results for

the 204 edge Boltzmann machine, while Figures A.22A.22, A.23A.23 and A.24A.24 show the
equivalent tables for the 500 edge model.

7.4 Higher-order models
While our inference algorithm did not perform particularly well on the previous
models, we have thus far only looked at pairwise models. One of the barriers from
putting higher-order models to greater use in fields such as computer vision and
image restoration is their greater intractability, and it would be interesting to see if
our algorithm could perform better on such models than traditional approximate
inference algorithms.

We will first look at the U.S. cancer model. This model has a junction tree
width of 24, rendering exact inference intractable on the author’s hardware. Figure
7.147.14 displays the mean relative error, maximum error and misclassification rate
for the approximate marginal probabilities at different values of τ . Loopy belief
propagation did not converge for this model, and is not included for comparison. As
the benchmark, Gibbs sampling based inference based on 25000 samples was used.
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Figure 7.11: Mean relative approximation error of the marginal probabilities output
by our approximate inference algorithm at different choices of τ , for the 500 edge
Boltzmann machine, compared to the usual alternative approximate inference
algorithms.

Compared to the pairwise models, our algorithm performs very well on the
cancer model, largely outperforming the marginal probabilities generated by the
Gibbs sampling based inference method. While each of the edge ranking methods
performs well, the method based on least fill-in consistently gives among the lowest
errors compared to the results from the other edge ranking methods and the Gibbs
results.

Figures 7.157.15, 7.167.16 and 7.177.17 display tables of results for the U.S. cancer model
using the lowest potential, Kullback-Leibler and least fill-in based edge ranking
methods, respectively. The numbers confirm our intuition from looking at the
graphs, namely that the least fill-in edge ranking methods is the best performing.
This is particularly true when looking at the mean relative error. The downside,
according to our results, is that the least fill-in method is more time-consuming
than the lowest potential method. However, it is not clear whether this is due to an
inefficient implementation or whether the method is inherently slower.

Figure 7.187.18 shows a plot of the time taken to completion as a function of τ for
the U.S. cancer model and for each of the three edge ranking methods. Again, we see
that there are wide differences in the efficiency of the edge ranking methods at low τ ,
but that this difference becomes less significant at high values of τ when time taken
to perform the junction tree algorithm on the reduced model starts to dominate.
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Figure 7.12: Time taken to completion of the algorithm as a function of τ for the
204 edge Boltzmann machine and using each of the three edge ranking methods,
plotted with a logarithmic scale on the vertical axis.
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Figure 7.13: Number of edges deleted as a function of τ , for the 204 edge Boltzmann
machine while using each of the three edge ranking methods.
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(a) Mean relative error
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(b) Maximum error
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(c) Misclassification rate

Figure 7.14: Mean relative error, maximum error and misclassification rate for the
U.S. cancer model, as a function of τ for our approximate inference algorithm and
compared to Gibbs sampling based inference with 500 and 1000 samples. Loopy
belief propagation did not converge, and is not included.
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τ |Edel | εrel εmax εclass time (s)

9 238 3.4805 0.0359 0.0341 15.9
10 237 3.4805 0.0359 0.0341 15.2
11 235 3.4801 0.0359 0.0341 15.0
12 234 3.4801 0.0359 0.0341 14.9
13 232 3.4797 0.0359 0.0341 15.2
14 231 3.4797 0.0359 0.0341 15.3
15 229 3.4792 0.0359 0.0341 15.9
16 200 3.4665 0.0359 0.0341 18.5
17 165 3.4531 0.0359 0.0341 92.4
18 165 3.4531 0.0359 0.0341 92.6
19 128 3.4341 0.0359 0.0341 479.3
24 0 0 0 0 —

Figure 7.15: Results of our applying our approximate inference algorithm to the U.S.
cancer model, using the lowest potential edge ranking method. Number of deleted
edges, mean relative errors, maximum errors, misclassification rate and time taken
to completion of calculations as a function of the parameter τ .

τ |Edel | εrel εmax εclass time (s)

9 257 3.4322 0.0409 0.0455 316.2
10 263 3.4314 0.0406 0.0455 399.0
11 237 3.4935 0.0409 0.0455 303.9
12 199 3.2693 0.0346 0.0568 391.5
13 211 2.4642 0.0393 0.0795 238.1
14 141 2.5171 0.0365 0.0568 340.5
15 137 2.0560 0.0359 0.0682 398.0
16 97 2.2725 0.0308 0.0455 395.4
17 78 2.0418 0.0281 0.0341 390.3
18 53 0.6156 0.0265 0.0455 463.8
19 54 2.0123 0.0321 0.0568 376.0
24 0 0 0 0 —

Figure 7.16: Results of our applying our approximate inference algorithm to the U.S.
cancer model, using the Kullback-Leibler edge ranking method. Number of deleted
edges, mean relative errors, maximum errors, misclassification rate and time taken
to completion of calculations as a function of the parameter τ .
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τ |Edel | εrel εmax εclass time (s)

9 264 2.7340 0.0387 0.0341 74.6
10 252 1.0694 0.0387 0.0341 73.6
11 248 1.1825 0.0387 0.0227 73.2
12 244 1.1594 0.0387 0.0227 72.2
13 240 1.1606 0.0387 0.0227 72.5
14 236 1.1568 0.0387 0.0227 72.5
15 232 1.1531 0.0387 0.0227 74.7
16 229 1.1528 0.0387 0.0227 73.9
17 227 1.1528 0.0387 0.0227 81.9
18 222 1.1436 0.0387 0.0227 88.8
19 188 1.0458 0.0387 0.0114 455.5
24 0 0 0 0 —

Figure 7.17: Results of our applying our approximate inference algorithm to the
U.S. cancer model, using the least fill-in edge ranking method. Number of deleted
edges, mean relative errors, maximum errors, misclassification rate and time taken
to completion of calculations as a function of the parameter τ .

Figure 7.197.19 displays the number of edges deleted as a function of τ . We see that the
fill-in method deletes the most edges at almost every value of τ , despite performing
well in terms of the error functions. This demonstrates that a low number of edges
deleted does not necessarily correlate with small errors.

Our other higher-order model is a higher-order analog of the Ising model with
interactions defined on all cliques of one, two and three variables, and each interac-
tion parameter chosen from the uniform distribution on (0.0,1.0). In Figure 7.207.20,
we see the mean relative and maximum errors for this model. While both Gibbs
sampling based inference and loopy belief propagation perform better than our
algorithm, the mean relative error and maximum error are still quite low at every
tested value of τ . In situations where stochastic methods such as Gibbs sampling
are to be avoided and loopy belief propagation does not converge, our method may
be useful.

Figure A.29A.29 shows the number of edges deleted as a function of τ , which displays
the same pattern we have seen previously in which the least fill-in method deletes
more edges than the other methods. Figure 7.217.21 displays the time to completion as
a function of τ . For every one of the three edge ranking methods, the time curve is
roughly flat because the time taken to perform the junction tree algorithm has not
overtaken the time needed to perform the edge ranking and deletion even at τ = 12.
We again see that the Kullback-Leibler edge ranking method is very slow – in this
case, slower than the lowest potential method by a factor of 36. Figures A.30A.30, A.31A.31
and A.32A.32 in the appendix show full tables of data for each of the three edge ranking
methods.
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Figure 7.18: Time taken to completion of the algorithm as a function of τ with the
vertical axis on a logarithmic scale, for the U.S. cancer model and each of the three
edge ranking methods.
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Figure 7.19: Number of edges deleted as a function of τ , for the U.S. cancer model
and each of the three edge ranking methods.
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(a) Mean relative error
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(b) Maximum error

Figure 7.20: Mean relative error and maximum error for the 14×14 third-order grid-
model, as a function of τ for our approximate inference algorithm and compared
to Gibbs sampling based inference with 500 and 1000 samples as well as loopy
belief propagation. The misclassification rate was zero at all values of τ and for all
algorithms and methods. The lines for our-potential and our-kl overlap in the
second plot.
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Figure 7.21: Time taken to completion of the algorithm as a function of τ with the
vertical axis on a logarithmic scale, for the 14× 14 third-order grid model and each
of the three edge ranking methods.

7.5 Discussion
We have now seen the results of applying our approximate inference algorithm
to four different Ising models, two Boltzmann machines of different complexity,
and two higher-order grid models. It is clear that for most of the models, our
algorithm does not outperform loopy belief propagation and Gibbs sampling-based
inference. For the biased 16× 16 Ising model with parameters drawn from (0.0,1.0),
our algorithm resulted in considerably higher mean relative and maximum errors
than loopy belief propagation and Gibbs sampling-basde inference, and the same is
true for the 204 and 500 edge Boltzmann machines.

For the unbiased 16×16 Ising models with low or high parameters, our algorithm
performs well. On the model with β = 0.05, it performs similarly to loopy belief
propagation and outperforms Gibbs sampling-based inference with 500 and 1000
samples. While it performs worse than the comparison methods on the β = 2.0
model, the mean relative error is consistently below 0.05 at each τ between 5 and
15, and regardless of the edge ranking method used.

On the higher-order models, our algorithm generally performs well, performing
similarly to the comparison methods for the U.S. cancer model and with mean
relative errors below 0.08 in the 14 × 14 third-order grid model. Higher order
models are also a category of models where loopy belief propagation can be slow
due to that algorithm’s exponential time complexity in the highest interaction order,
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and loopy belief propagation did not converge on the U.S. cancer model.
Of the three edge ranking methods, the performance of each varied considerably

between each of the example models. The Kullback-Leibler edge selection method
generally resulted in the lowest mean relative errors in the pairwise models, with
the lowest potential and least fill-in methods tying for second best. In the US cancer
model, the least fill-in method performed best in terms of mean relative error and
misclassification rate, while also performing well in terms of maximum error. In the
14× 14 third-order model, least fill-in gives the best result in terms of maximum
error, while the Kullback-Leibler based method performs best in terms of mean
relative error.

While the Kullback-Leibler method often performed well, we note that due to
its stochasticity and the fact that we were forced to use a low number of samples
to calculate it in order to ensure tractability, its performance was highly unstable.
Indeed, in many of the plots, we see that we get a higher quality of approximation
at a lower τ . While this is possible even with the lowest potential and least fill-in
ranking methods, for the Kullback-Leibler method it is likely due to different edge
choices in different runs depending on the samples generated using Gibbs sampling.

There appears to be a connection between the size of the error and the total
number of edges deleted throughout most of the results. For the biased 16 × 16
model, the performance of each edge ranking method in terms of mean relative
error closely follows the number of edges deleted. The by-far worst-performing
method in this model, the least fill-in method, also deleted by-far the most edges.
This connection, although weaker, is also present in the 14× 14 third-order model.
In the US cancer model, however, we see that the best performing method, least
fill-in, also deletes the most edges, showing that there is not a simple connection
between number of deleted edges and quality of approximation.

In terms of speed, the three edge ranking methods perform very differently. The
lowest-potential edge selection method is consistently faster than the other two
methods, with the least fill-in and Kullback-Leibler based methods being slower
by a high factor when applied to most of the example models. In particular, the
speed of the Kullback-Leibler based method is extremely slow in the 14× 14 third-
order model. The cause of this is unclear, but the reason may be inefficiencies in
the implementation of Gibbs sampling which causes the runtime to blow up for
certain kinds of models. Notably, the 14 × 14 model contains 1574 interactions,
a considerably larger number than the other example models. Plotting the total
runtime using the Kullback-Leibler edge ranking method as a function of the total
number of interactions, as in Figure 7.227.22, does not present us with any obvious type
of connection between runtime and number of interactions, however.

While our algorithm generally performs worse than the comparison methods, the
results are generally decent to good for most of the example models we have looked
at. This is particularly true with regards to the misclassification rate, which is zero
much of the time. In the instances where loopy belief propagation may be unusable,
either due to its exponential runtime as a function of the model order or due to the
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Figure 7.22: Scatterplot of the total runtime of our approximation algorithm as a
function of the total number of interactions in the model, using the Kullback-Leibler
edge ranking method and τ = 12.

fact that it does not always converge, and Gibbs sampling-based inference is not
an option due to its stochasticity, our algorithm may present a useful alternative.
However, there exist several other approximate inference algorithms, including the
entire field of variational methods, and the choice of inference algorithms should be
made based on the properties of the specific model one is interested in.
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8 Closing remarks
In this thesis, we have developed an approximate marginal inference algorithm
for binary Markov random fields, based on deleting edges using a mean squared
error energy approximation and running the junction tree algorithm on the reduced
model. To select which edges to delete, we have used a strategy where we regard
each clique in the junction tree in order of width and delete one edge from each
clique until either the junction tree width or the number of cliques of maximum size
has been reduced. We have proposed three different methods for choosing which
edge to delete within each clique, based on lowest potential, the Kullback-Leibler
divergence and least fill-in.

We have applied our approximate inference algorithm to a wide range of example
models. For each model, we have calculated the mean relative error, the maximum
error and a “misclassification” rate of the results generated by our algorithm paired
with each of the three edge ranking methods. We have also performed approximate
inference using the loopy belief propagation algorithm as well as sample-based
inference, and compared the results from these methods with the results from our
algorithm.

For the pairwise models included in our numerical experiments, the quality of
approximation when using our inference algorithm is typically lower than when
using loopy belief propagation or sample-based inference. When the loopy belief
propagation algorithm converges, there appears to be little reason to prefer our
algorithm. Even when loopy belief propagation does not converge, sample-based
inference with a moderate number of samples performs better than our algorithm
on most tested pairwise models, with the exception of models with interaction
parameters particularly close to zero. However, our algorithm may be useful in
cases where a deterministic inference algorithm is required and the loopy belief
propagation algorithm does not converge.

In higher-order models, our algorithm shows greater promise, performing on par
with or better than the traditional approximate inference methods in many cases. In
particular, combining our algorithm with the least fill-in or Kullback-Leibler based
edge ranking methods results in approximations of high quality in such models.
However, both our example higher-order models are regular grid models, so it is
not necessarily the case that our model performs as well on less rigidly structured
higher-order Markov random fields.

In terms of speed, our algorithm tends to be considerably slower than loopy
belief propagation or sample-based inference with a moderate number of samples
when applied to pairwise models. A major cause of this is the method by which we
choose edges to deletion, and the algorithm is particularly slow when the Kullback-
Leibler or least fill-in based edge ranking methods are used. However, it is unclear
whether these methods are inherently slow or whether their poor performance in
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our numerical experiments is due to insufficiently optimized implementations.

8.1 Future work
We have used an edge deletion strategy which visits each junction tree clique in
turn, deleting only one edge in each clique before proceeding to the next clique.
This is not necessarily an optimal strategy, and experimenting with alternative edge
deletion strategies could lead to better approximations. This also applies to the edge
ranking methods used to choose which edge to delete within a clique. There is no
guarantee that any of the edge ranking methods we have used are close to optimal.
With regards to the Kullback-Leibler edge ranking method, more work could be
done on alternative ways of calculating the divergence, as the Gibbs sampling based
method used here has performed poorly.

The range of models tested in this text is limited, and mainly includes grid-
structured Markov random fields with interactions of order one to four. It is not
necessarily true that our algorithm performs poorly for all pairwise models beyond
those which we have tested, or that it performs well for all higher-order models
beyond those which we have tested. A natural extension of our work could be to
apply our algorithm to new classes of models.

While we have only looked at marginal inference in this text, it would be simple
to extend our method to the maximal a posteriori (MAP) problem, as this requires
only an alteration of the junction tree algorithm. The “misclassification” rate cal-
culated for the approximate marginal probabilities in this text could be used as
a indication of which classes of model MAP inference using our algorithm could
perform well on.

Finally, we have only concerned ourselves with binary Markov random fields,
as Austad and Tjelmeland (20152015) only developed the theory of the mean squared
error energy approximation in the case of binary models. If possible, it would be
interesting to extend the approximation to general Markov random fields, and see
how our algorithm performs on non-binary models.
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A Additional plots and data
In this appendix, we present plots and tables of data that were not essential to the
exposition of the results in Chapter 77.
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Figure A.1: The graph of the third-order Ising model analogue on an 14×14 grid
used in the numerical experiments.
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Figure A.2: Maximum error of the marginal probabilities for the biased 16×16 Ising
model, as output by our approximate inference algorithm at different choices of
τ and with different edge ranking methods. Also displayed are the mean relative
errors of the marginal probabilities output by the loopy belief propagation algorithm
(loopy) and sample-based inference based on 1000 (gibbs1000) and 500 (gibbs500)
samples from a Gibbs samplingr with 200 burn-in samples. Note that the lines for
all our edge selection methods overlap.

τ |Edel | εrel εmax εclass time (s)

9 231 0.094945 0.10654 0 584.3
10 265 0.1071 0.11789 0 721.55
11 225 0.093148 0.10847 0 712.36
12 235 0.096416 0.11591 0 601.52
13 164 0.075308 0.10729 0 640.11
14 153 0.05962 0.10551 0 513.24
15 158 0.058426 0.10364 0 511.11
16 128 0.04918 0.10364 0 517.01
17 0 0 0 0 —

Figure A.3: Results of applying our approximate inference algorithm to the biased
16× 16 Ising model, using the Kullback-Leibler edge ranking method. Number of
deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ .
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τ |Edel | εrel εmax εclass time (s)

9 449 0.20599 0.12558 0 1152.5
10 447 0.20564 0.12558 0 1151.5
11 445 0.20407 0.12558 0 1150.9
12 443 0.20274 0.12558 0 1148.7
13 441 0.2014 0.12558 0 1148
14 439 0.20053 0.12558 0 1145.4
15 437 0.2 0.12558 0 1146.1
16 434 0.19832 0.12558 0 1149.5
17 0 0 0 0 —

Figure A.4: Results of applying our approximate inference algorithm to the biased
16× 16 Ising model, using the least fill-in edge ranking method. Number of deleted
edges, mean relative errors, maximum errors, misclassification rate and time taken
to completion of calculations as a function of the parameter τ .
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Figure A.5: Maximum error of the marginal probabilities for the unbiased 16× 16
Ising model with β = 0.05, as output by our approximate inference algorithm at
different choices of τ and with different edge ranking methods. Also displayed
are the mean relative errors of the marginal probabilities output by the loopy
belief propagation algorithm (loopy) and sample-based inference based on 1000
(gibbs1000) and 500 (gibbs500) samples from a Gibbs samplingr with 200 burn-in
samples.
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Figure A.6: Maximum error of the marginal probabilities for the unbiased 16× 16
Ising model with β = 2.0, as output by our approximate inference algorithm at
different choices of τ and with different edge ranking methods. Also displayed
are the mean relative errors of the marginal probabilities output by the loopy
belief propagation algorithm (loopy) and sample-based inference based on 1000
(gibbs1000) and 500 (gibbs500) samples from a Gibbs samplingr with 200 burn-in
samples.
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Figure A.7: Time taken to completion of the algorithm as a function of τ for the
unbiased 16×16 Ising model with β = 0.05 and using each of the three edge ranking
methods, plotted with a logarithmic scale on the vertical axis.
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Figure A.8: Time taken to completion of the algorithm as a function of τ for the
unbiased 16× 16 Ising model with β = 2.0 and using each of the three edge ranking
methods, plotted with a logarithmic scale on the vertical axis.
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Figure A.9: Number of edges deleted as a function of τ , for the unbiased 16× 16
Ising model with β = 0.05 and using each of the three edge ranking methods.
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Figure A.10: Number of edges deleted as a function of τ , for the unbiased 16× 16
Ising model with β = 2.0 and using each of the three edge ranking methods.
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τ |Edel | εrel εmax εclass time (s)

5 459 0.11631 0.0098708 0 513.42
6 457 0.11633 0.0098708 0 499.97
7 455 0.11635 0.0098708 0 497.54
8 453 0.11638 0.0098708 0 491.41
9 451 0.11639 0.0098708 0 493.9

10 449 0.11641 0.0098708 0 493.75
11 447 0.11643 0.0098708 0 481.93
12 445 0.11635 0.0098708 0 465.75
13 443 0.11628 0.0098708 0 464.11
14 441 0.1164 0.0098708 0 475.11
15 102 0.11204 0.010923 0 761.29
17 0 0 0 0 —

Figure A.11: Results of applying our approximate inference algorithm to the un-
biased 16× 16 Ising model with β = 0.05, using the lowest potential edge ranking
method. Number of deleted edges, mean relative errors, maximum errors, misclas-
sification rate and time taken to completion of calculations as a function of the
parameter τ .

τ |Edel | εrel εmax εclass time (s)

5 376 0.1158 0.0098708 0 1581.7
6 316 0.11467 0.010903 0 1494.1
7 324 0.11549 0.0098708 0 1303
8 306 0.11614 0.010591 0 1126.8
9 242 0.1148 0.010268 0 1531.5

10 262 0.1148 0.0096708 0 1210.4
11 185 0.11405 0.010272 0 1515.3
12 198 0.11299 0.010264 0 1224.6
13 142 0.11376 0.010264 0 1465.4
14 143 0.11437 0.01026 0 1194.8
15 111 0.11422 0.010587 0 1297.1
17 0 0 0 0 —

Figure A.12: Results of applying our approximate inference algorithm to the unbi-
ased 16× 16 Ising model with β = 0.05, using the Kullback-Leibler based ranking
method. Number of deleted edges, mean relative errors, maximum errors, misclas-
sification rate and time taken to completion of calculations as a function of the
parameter τ .
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τ |Edel | εrel εmax εclass time (s)

5 457 0.11718 0.0098708 0 1493.4
6 455 0.11715 0.0098708 0 1482.5
7 453 0.11709 0.0098708 0 1485.3
8 451 0.11705 0.0098708 0 1629.9
9 449 0.11687 0.0098708 0 1665.1

10 447 0.11669 0.0098708 0 1599.6
11 445 0.11664 0.0098708 0 1620
12 443 0.11657 0.0098708 0 1571
13 441 0.11657 0.0098708 0 1601.1
14 439 0.11655 0.0098708 0 1535.3
15 437 0.11647 0.0098708 0 1674.6
17 0 0 0 0 —

Figure A.13: Results of applying our approximate inference algorithm to the un-
biased 16× 16 Ising model with β = 0.05, using the fill-in based ranking method.
Number of deleted edges, mean relative errors, maximum errors, misclassification
rate and time taken to completion of calculations as a function of the parameter τ .

τ |Edel | εrel εmax εclass time (s)

5 459 0.047736 0.1011 0 535.88
6 457 0.04759 0.1011 0 494.43
7 455 0.047444 0.1011 0 490.83
8 453 0.047298 0.1011 0 508.9
9 451 0.047152 0.1011 0 525.99

10 449 0.047006 0.1011 0 505.76
11 447 0.04686 0.1011 0 510.72
12 445 0.046714 0.1011 0 473.33
13 443 0.046567 0.1011 0 497.04
14 441 0.046401 0.1011 0 503.18
15 102 0.020079 0.1011 0 770.01
17 0 0 0 0 —

Figure A.14: Results of applying our approximate inference algorithm to the un-
biased 16 × 16 Ising model with β = 2.0, using the lowest potential edge ranking
method. Number of deleted edges, mean relative errors, maximum errors, misclas-
sification rate and time taken to completion of calculations as a function of the
parameter τ .
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τ |Edel | εrel εmax εclass time (s)

5 451 0.046324 0.1011 0 1671.1
6 463 0.047842 0.1011 0 1401.5
7 454 0.046981 0.1011 0 1151.4
8 437 0.043518 0.1011 0 1185.5
9 425 0.044345 0.1011 0 1254

10 406 0.039976 0.1011 0 1231.7
11 372 0.036814 0.1011 0 1234.4
12 237 0.021072 0.1011 0 1191.5
13 345 0.032916 0.1011 0 1240.4
14 215 0.021191 0.1011 0 1176.1
15 232 0.020962 0.1011 0 1316.3
17 0 0 0 0 —

Figure A.15: Results of applying our approximate inference algorithm to the un-
biased 16× 16 Ising model with β = 2.0, using the Kullback-Leibler based ranking
method. Number of deleted edges, mean relative errors, maximum errors, misclas-
sification rate and time taken to completion of calculations as a function of the
parameter τ .
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τ |Edel | εrel εmax εclass time (s)

5 457 0.043359 0.10095 0 1764.3
6 455 0.04319 0.10095 0 1705.8
7 453 0.04302 0.10095 0 1683.1
8 451 0.042851 0.10095 0 1592.7
9 449 0.042682 0.10095 0 1702.2

10 447 0.042512 0.10095 0 1688.9
11 445 0.042341 0.10095 0 1678
12 443 0.042171 0.10095 0 1707.3
13 441 0.042002 0.10095 0 1642.9
14 439 0.041841 0.10095 0 1657.8
15 437 0.041673 0.10095 0 1658
17 0 0 0 0 —

Figure A.16: Results of applying our approximate inference algorithm to the un-
biased 16 × 16 Ising model with β = 2.0, using the fill-in based ranking method.
Number of deleted edges, mean relative errors, maximum errors, misclassification
rate and time taken to completion of calculations as a function of the parameter τ .
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Figure A.17: Maximum error of the marginal probabilities output by our approx-
imate inference algorithm at different choices of τ , for the 204 edge Boltzmann
machine, compared to the usual alternative approximate inference algorithms.
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Figure A.18: Misclassification error of the marginal probabilities output by our ap-
proximate inference algorithm at different choices of τ , for the 204 edge Boltzmann
machine, compared to the usual alternative approximate inference algorithms.

τ |Edel | εrel εmax εclass time (s)

9 162 0.81025 0.3549 0.11 13.417
10 162 0.81025 0.3549 0.11 12.745
11 162 0.81025 0.3549 0.11 12.685
12 157 0.88036 0.3549 0.11 12.787
13 157 0.88036 0.3549 0.11 12.592
14 156 0.89087 0.3549 0.11 13.1
15 146 0.7387 0.3549 0.11 13.838
16 142 0.73337 0.34807 0.11 15.599
17 139 0.73361 0.34807 0.1 15.355
18 129 0.68585 0.34807 0.09 75.679
19 129 0.68585 0.34807 0.09 73.717
47 0 0 0 0 —

Figure A.19: Results of applying our approximate inference algorithm to the 204
edge Boltzmann machine, using the lowest potential edge ranking method. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ .
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τ |Edel | εrel εmax εclass time (s)

9 163 0.79379 0.31575 0.1 114.35
10 160 1.0712 0.2874 0.1 110.36
11 161 0.75633 0.2874 0.1 103.36
12 154 0.74423 0.21873 0.09 103.56
13 144 1.0551 0.25102 0.09 104.89
14 155 0.97202 0.31575 0.1 101.26
15 148 0.68778 0.19356 0.1 103.71
16 145 1.0399 0.24916 0.1 121.13
17 143 0.78643 0.25102 0.11 121.26
18 116 1.0078 0.20395 0.04 190.51
19 140 0.94849 0.31575 0.09 148.89
47 0 0 0 0 —

Figure A.20: Results of applying our approximate inference algorithm to the 204
edge Boltzmann machine, using the Kullback-Leibler based edge ranking method.
Number of deleted edges, mean relative errors, maximum errors, misclassification
rate and time taken to completion of calculations as a function of the parameter τ .
Gibbs sampling-based inference based on 30000 iterations was used as the reference.

τ |Edel | εrel εmax εclass time (s)

9 158 0.90442 0.31575 0.11 41.819
10 156 0.89457 0.31575 0.11 41.061
11 154 0.89539 0.31575 0.11 40.281
12 149 0.77366 0.31575 0.09 40.791
13 149 0.77366 0.31575 0.09 40.202
14 145 0.77927 0.31575 0.09 40.032
15 136 0.79765 0.31575 0.08 39.223
16 130 0.77892 0.31575 0.08 44.84
17 122 0.78429 0.31575 0.08 50.188
18 122 0.78429 0.31575 0.08 49.912
19 116 0.77108 0.31575 0.08 80.634
47 0 0 0 0 —

Figure A.21: Results of applying our approximate inference algorithm to the 204
edge Boltzmann machine, using the least fill-in based edge ranking method. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ . Gibbs
sampling-based inference based on 30000 iterations was used as the reference.
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τ |Edel | εrel εmax εclass time (s)

9 479 0.70186 0.50828 0.15 42.864
10 468 0.69664 0.50828 0.15 42.138
11 463 0.68669 0.50828 0.15 41.752
12 462 0.68606 0.50828 0.15 42.026
13 460 0.68469 0.50828 0.15 41.902
14 456 0.64892 0.50828 0.15 43.838
15 455 0.64821 0.50828 0.15 46.18
16 447 0.63485 0.50828 0.14 51.968
17 445 0.63547 0.50828 0.14 64.432
18 425 0.62576 0.50828 0.14 114.89
19 425 0.62576 0.50828 0.14 113.72
67 0 0 0 0 —

Figure A.22: Results of applying our approximate inference algorithm to the 500
edge Boltzmann machine, using the lowest potential edge ranking method. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ . Gibbs
sampling-based inference based on 30000 iterations was used as the reference.

τ |Edel | εrel εmax εclass time (s)

9 464 0.62865 0.50828 0.12 950.03
10 455 0.62701 0.50828 0.13 865.45
11 458 0.61128 0.50828 0.12 846.66
12 450 0.60156 0.50828 0.11 845.86
13 454 0.6245 0.48188 0.13 808.9
14 452 0.61291 0.50828 0.11 704.5
15 451 0.62086 0.49502 0.12 810.73
16 441 0.61336 0.48993 0.12 741.58
17 450 0.5996 0.50828 0.11 717.54
18 448 0.58092 0.48013 0.12 825.93
19 440 0.59564 0.48992 0.11 782.66
67 0 0 0 0 —

Figure A.23: Results of applying our approximate inference algorithm to the 500
edge Boltzmann machine, using the Kullback-Leibler based edge ranking method.
Number of deleted edges, mean relative errors, maximum errors, misclassification
rate and time taken to completion of calculations as a function of the parameter τ .
Gibbs sampling-based inference based on 30000 iterations was used as the reference.
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τ |Edel | εrel εmax εclass time (s)

9 451 0.66246 0.50828 0.12 191.88
10 451 0.66246 0.50828 0.12 190.91
11 448 0.65499 0.50828 0.12 191.84
12 437 0.64446 0.50828 0.12 191.19
13 436 0.65107 0.50828 0.13 191.42
14 432 0.65271 0.50828 0.13 193.23
15 429 0.65163 0.50828 0.12 190.94
16 429 0.65163 0.50828 0.12 191.04
17 428 0.65125 0.50828 0.12 239.9
18 426 0.64788 0.50828 0.12 272.46
19 426 0.64788 0.50828 0.12 270.72
67 0 0 0 0 —

Figure A.24: Results of applying our approximate inference algorithm to the 500
edge Boltzmann machine, using the least fill-in based edge ranking method. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ . Gibbs
sampling-based inference based on 30000 iterations was used as the reference.

9 10 11 12 13 14 15 16 17 18 19

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε
m
a
x

our-potential
our-fillin
our-kl
loopy
gibbs1000
gibbs500

Figure A.25: Maximum error of the marginal probabilities output by our approx-
imate inference algorithm at different choices of τ , for the 500 edge Boltzmann
machine, compared to the usual alternative approximate inference algorithms.
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Figure A.26: Misclassification error of the marginal probabilities output by our ap-
proximate inference algorithm at different choices of τ , for the 500 edge Boltzmann
machine, compared to the usual alternative approximate inference algorithms.
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Figure A.27: Time taken to completion of the algorithm as a function of τ for the
500 edge Boltzmann machine and using each of the three edge ranking methods,
plotted with a logarithmic scale on the vertical axis.
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Figure A.28: Number of edges deleted as a function of τ , for the 500 edge Boltzmann
machine while using each of the three edge ranking methods.
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Figure A.29: Number of edges deleted as a function of τ , for the 14× 14 third order
grid model and each of the three edge ranking methods.
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τ |Edel | εrel εmax εclass time (s)

5 650 0.07118 0.21822 0 364.47
6 612 0.068858 0.21822 0 353.98
7 567 0.066193 0.21822 0 315.96
8 548 0.065069 0.21822 0 310.9
9 526 0.063879 0.21822 0 331.79

10 526 0.063879 0.21822 0 310.92
11 526 0.063879 0.21822 0 316.87
12 526 0.063879 0.21822 0 327.21
13 478 0.060576 0.21822 0 298.5
14 426 0.057028 0.21822 0 287.51
15 367 0.05337 0.21822 0 360.22
16 0 0 0 0 —

Figure A.30: Results of applying our approximate inference algorithm to the 14×14
third-order grid model, using the lowest potential edge ranking method. Number
of deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ . Gibbs
sampling-based inference based on 30000 iterations was used as the reference.

τ |Edel | εrel εmax εclass time (s)

5 657 0.06839 0.21822 0 13365
6 646 0.066031 0.21822 0 13087
7 548 0.054169 0.21822 0 13049
8 557 0.054934 0.21822 0 12615
9 520 0.051091 0.21822 0 13011

10 530 0.052854 0.21822 0 13361
11 515 0.048937 0.21822 0 13033
12 480 0.047947 0.21822 0 12873
13 469 0.046923 0.21822 0 13131
14 451 0.045355 0.21822 0 12402
16 0 0 0 0 —

Figure A.31: Results of applying our approximate inference algorithm to the 14×14
third-order grid model, using the Kullback-Leibler based edge ranking method.
Number of deleted edges, mean relative errors, maximum errors, misclassification
rate and time taken to completion of calculations as a function of the parameter τ .
Gibbs sampling-based inference based on 30000 iterations was used as the reference.
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τ |Edel | εrel εmax εclass time (s)

5 682 0.065998 0.18648 0 763.33
6 680 0.065592 0.18648 0 769.86
7 678 0.065259 0.18648 0 788.49
8 676 0.065027 0.18648 0 773.48
9 674 0.064902 0.18648 0 782.08

10 672 0.064721 0.18648 0 810.07
11 670 0.064376 0.18648 0 766.08
12 668 0.064139 0.18648 0 789.82
13 666 0.063826 0.18648 0 749.7
14 664 0.063585 0.18648 0 761.55
16 0 0 0 0 —

Figure A.32: Results of applying our approximate inference algorithm to the 14×14
third-order grid model, using the least fill-in edge ranking method. Number of
deleted edges, mean relative errors, maximum errors, misclassification rate and
time taken to completion of calculations as a function of the parameter τ . Gibbs
sampling-based inference based on 30000 iterations was used as the reference.
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