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Abstract

As of today, well placement optimisation in field development planning is most
commonly based on the trial-and-error approach that requires the evaluation of
numerous field development scenarios. This approach is not particularly efficient
because it requires a lot of repetitive work to be done by reservoir engineers.
Moreover, such approach can lead to overlooked opportunities and suboptimal
well placement, which, in turn, can have a negative economic impact on a project
in the long-term perspective.

This work describes an effort to better understand the role of reservoir en-
gineering expert knowledge in well placement optimisation at the stage of field
development planning and figure out whether an appropriate choice of optimiser
parameters can help reduce the dependence on experience-based knowledge. The
research question is thus formulated as:

What is the role of expert knowledge in the process of well
placement optimisation, and how to reduce the dependence

on such knowledge?

An experimental approach is taken. Numerical experiments are conducted
on a two-dimensional reservoir model to understand how the quality of initial
approximation and two main optimiser parameters affect the optimisation results.

A purpose-specific optimiser-simulator interface is developed to integrate the
HOPSPACK optimiser with the ECLIPSE reservoir simulator.

The interpretation of numerical experiments leads to the following two major
conclusions for this particular two-dimensional optimisation problem:

• Reservoir engineering expert knowledge plays an important role in the
process of well placement optimisation by providing a good quality initial
approximation;

• A proper choice of the optimiser parameters that allow for a wide ex-
ploration of the search space may significantly reduce the dependence on
such expert knowledge.

It is demonstrated that for the relatively simple reservoir model considered in
this study, optimisation techniques can enhance the well placement optimisation
workflow. Further research focused on more complex three-dimensional reservoir
models may contribute to dispelling the general scepticism towards the use of
optimisation techniques for real life situations.
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Sammendrag

N̊aværende praksis i optimalisering av brønnplassering i feltutviklingsplanleg-
ging er oftest basert p̊a en prøve-og-feile tilnærming, som krever en vurdering av
mange feltutviklingsscenarier. Denne tilnærmingen er ikke spesielt effektiv, fordi
den krever at reservoaringeniørene må gjøre mye repeterende arbeid. Dessuten kan
en slik tilnærming føre til oversette muligheter og suboptimale brønnplasseringer,
som kan ha negative konsekvenser for et prosjekt i et langsiktig perspektiv.

Dette arbeidet undersøker hvordan rollen av reservoarteknisk ekspertkunnskap
i optimalisering av brønnplassering i feltplanleggingsfasen er og om et passende
valg av optimalisator parametre kan bidra til å redusere avhengigheten av erfar-
ingsbasert kunnskap. Forskningsspørsmålet er derfor formulert som:

Hva er rollen til ekspertkunnskap i prosessen med å
optimalisere brønnplasseringer, og hvordan kan man

redusere avhengigheten av slik kunnskap?

En eksperimentell tilnærming er tatt. Numeriske eksperimenter ble utført
p̊a en todimensjonal reservoarmodell for å forst̊a hvordan kvaliteten p̊a første
antagelse og to hovedoptimalisator parametre p̊avirker optimaliseringsresultatene.

Et tilpasset optimalisator-simulator grensesnitt er utviklet for å integrere
HOPSPACK optimalisator sammen med ECLIPSE reservoarsimulator.

Tolkningen av de numeriske eksperimentene fører til følgende to hovedkon-
klusjoner:

• Reservoarteknisk ekspertkunnskap spiller en viktig rolle i prosessen med
å optimalisere brønnplasseringen, ved å tilby en første antagelse av god
kvalitet;

• Et riktig valg av optimalisator parametre legger til rette for en bred
utforskning av søkeomr̊adet, og kan betydelig redusere avhengighet av
slik ekspertkunnskap.

Det er vist at for den relativt enkle reservoarmodellen vurdert i denne studien,
kan optimaliseringsteknikker forbedre arbeidsflyten knyttet til optimalisering av
brønnplasseringer. Videre forskning med fokus p̊a mer komplekse tredimensjonale
reservoarmodeller kan bidra til å dempe den generelle skepsisen til bruk av opti-
maliseringsteknikker i virkelige situasjoner.
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Abbreviations

APPS – Asynchronous Parallel Pattern Search

APPSPACK – Asynchronous Parallel Search PACKage

CF – Contraction Factor

GPS – Generalised Pattern Search

HOPSPACK – Hybrid Optimisation Parallel Search PACKage

MPI – Message Passing Interface

PSO – Particle Swarm Optimisation

SP – Starting Point

SS – Step Size

vii





Table of Contents

Abstract i

Sammendrag iii

Acknowledgements v

Abbreviations vii

Table of Contents ix

List of Tables xi

List of Figures xi

1 Introduction 1

2 Literature Review 3
2.1 Classification of Optimisation Methods . . . . . . . . . . . . . . . . 3
2.2 Generalised Pattern Search . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Asynchronous Parallel Pattern Search . . . . . . . . . . . . . . . . . 5
2.4 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Algorithm Chosen for Numerical Experiments . . . . . . . . . . . . 8

3 Methodology and Tools 9
3.1 Reservoir Model Description . . . . . . . . . . . . . . . . . . . . . . 9
3.2 HOPSPACK Optimiser . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Optimiser-Simulator Interface . . . . . . . . . . . . . . . . . . . . . 11
3.4 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Data Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . 13

4 Experimental Results 15
4.1 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . 15
4.2 Significance of Initial Well Placement . . . . . . . . . . . . . . . . . 17
4.3 Significance of Optimiser Parameters . . . . . . . . . . . . . . . . . 19

4.3.1 Initial Step Size . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Contraction Factor . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Optimal Well Placement . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Discussion 25
5.1 Interpretation of Numerical Experiments . . . . . . . . . . . . . . . 25
5.2 Guiding Principles for Optimal Well Placement . . . . . . . . . . . 27
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 29

Bibliography 31

Appendices 32

ix





List of Tables

1 Summary of independent variables and their purpose . . . . . . . . 12
2 Best-case scenario well coordinates . . . . . . . . . . . . . . . . . . 22

List of Figures

1 Griewank function [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Convergence of GPS to a stationary point [6] . . . . . . . . . . . . . 5
3 Eight iterations of APPS [11] . . . . . . . . . . . . . . . . . . . . . 6
4 Illustration of particle’s velocity and position update [8] . . . . . . . 7
5 Reservoir grid properties . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Optimiser-simulator interface: single iteration procedure . . . . . . 11
7 Conceptual illustration of the different choices for three variables . . 13
8 Ultimate recovery improvement over progressing iterations . . . . . 15
9 Ultimate recovery and number of iterations for each simulation run 16
10 Step size (SP5) evolution with different contraction factors . . . . . 17
11 Influence of initial well placement on ultimate recovery . . . . . . . 17
12 Comparison of different well placement strategies . . . . . . . . . . 18
13 Occurrence count at particular threshold ultimate recovery . . . . . 18
14 Influence of the optimisation parameters on ultimate recovery . . . 19
15 Influence of initial step size on average ultimate recovery . . . . . . 20
16 Influence of contraction factor on average ultimate recovery . . . . . 21
17 Initial and optimal well locations . . . . . . . . . . . . . . . . . . . 23
18 Initial and optimal final oil saturations . . . . . . . . . . . . . . . . 24
19 HOPSPACK configuration file . . . . . . . . . . . . . . . . . . . . . 32
20 HOPSPACK configuration parameters for SP1 scenarios . . . . . . 33
21 HOPSPACK configuration parameters for SP2 scenarios . . . . . . 34
22 HOPSPACK configuration parameters for SP3 scenarios . . . . . . 35
23 HOPSPACK configuration parameters for SP4 scenarios . . . . . . 36
24 HOPSPACK configuration parameters for SP5 scenarios . . . . . . 37
25 HOPSPACK configuration parameters for SP6 scenarios . . . . . . 38
26 HOPSPACK configuration parameters for SP7 scenarios . . . . . . 39

xi





1 Introduction

For decades, petroleum engineers have played a major role in oil and gas field
development activities. Their expert knowledge is considered indispensable when
it comes to making the most important field development decisions, which prede-
termine ultimate oil and gas recovery and thereby have a considerable economic
impact. Planned well count and well placement1are examples of such decisions.

In the simplest cases, well placement patterns can be chosen quite intuitively.
However, optimisation of well placement turns into a non-trivial problem when it
comes to reservoirs with complex geometry and heterogeneous property distribu-
tion.

As of today, well placement optimisation is most commonly based on a math-
ematical modelling of the numerous field development scenarios using reservoir
simulators and the trial-and-error approach. This approach is not particularly ef-
ficient because it requires a lot of repetitive work to be done by reservoir engineers.
Besides, the current practice can easily lead to overlooked opportunities and sub-
optimal well placement which, in turn, can have a negative economic impact on a
project in the long-term perspective.

From a mathematical standpoint, well placement optimisation is considered to
be a challenging problem for at least three reasons.

Firstly, the reservoir system is not very well defined at the stage of field de-
velopment planning. Indeed, the true, complete and deterministic information
about the reservoir is never available in advance prior to massive development
drilling. Therefore, this optimisation problem is usually being solved using a
reservoir model constructed with the limited amount of information available to
date and based on one of many possible geostatistical realisations [1].

Secondly, reservoir heterogeneity along with the complexity of its geometry
dramatically increase the number of optimisation variables and inflate the search
space.

Thirdly, the objective function for such systems becomes non-smooth and mul-
timodal. Most known optimisation methods would struggle to find the global
optimum.

For these reasons, the best work efficiency can be achieved when mathematical
and reservoir engineering knowledge is combined together for solving the well
placement optimisation problem.

Engineers can offer their reservoir understanding and expertise to greatly as-
sist with the search of optimal well placement solution by providing a good initial
approximation (i.e. tentative well placement configuration to start with). Other-
wise, a path from the initial approximation to the optimal well placement solution
becomes tortuous, making calculations enormously time consuming and computer
intensive at best, or making the algorithm non-convergent at worst.

1The term “well placement” in this work refers to planning of irregular well patterns for
oil and gas fields. In the context of this work it has nothing to do with the well placement
optimisation problem being solved while drilling based on real-time logging data.
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In this context, reservoir engineering expert knowledge and understanding of
the bigger picture are considered invaluable. This may be the main reason why
computers have not yet replaced engineers.

No doubt, a mature engineer with many years of experience can make a great
difference in any well placement optimisation project. But what if such resource
is not available for the project? Can a less experienced team find an equally good
solution to the well placement problem if they use one of the advanced optimisation
software packages?

This thesis describes an effort to better understand the role of reservoir engi-
neering expert knowledge in well placement optimisation and figure out whether
an appropriate choice of optimiser parameters can help reduce the dependence on
such theoretical and experience-based knowledge. The research question is thus
formulated as:

What is the role of expert knowledge in the process of well
placement optimisation, and how to reduce the dependence

on such knowledge?

The well placement optimisation problem is being solved using an advanced
optimisation software package.

It is hypothesised that expert knowledge plays an important role in well place-
ment optimisation through a provision of a good initial approximation (i.e. near-
optimal initial well placement locations to start iterations with). It is also hypoth-
esised that an appropriately configured optimisation algorithm can significantly
reduce the need for prior expert knowledge when well placement problems are
being solved.

2



2 Literature Review

There is a growing interest in application of optimisation techniques to the
well placement problem in recent years [2]. These techniques are introduced into
well placement optimisation workflows in order to improve current engineering
solutions and aid reservoir engineers in the decision-making process.

There is a multitude of different optimisation algorithms. Each algorithm
has unique properties and limitations, which make it useful for solving particular
optimisation tasks. Most of these optimisation algorithms are classified as either
gradient-based or derivative-free.

2.1 Classification of Optimisation Methods

Gradient-based optimisation methods take advantage of gradient information
of an objective function in order to determine the optimal search direction (steep-
est descent). Such methods are particularly efficient at finding local minima for
high-dimensional convex problems [3]. However, most gradient optimisers have
problems dealing with noisy and discontinuous functions. Moreover, they are not
designed to handle multimodal or discrete problems, such as the case with the well
placement problem [3].

For example, a gradient-based method would struggle optimising the Griewank
function (shown in Figure 1). The Griewank function looks deceptively smooth
when plotted in a large domain. However, its irregularity and a vast number of
local optima become prominent in a smaller domain.

Figure 1: Griewank function [3]

Gradient-based methods are unlikely to find a global optimum of such a func-
tion, because they are not designed to handle multimodal problems. Unlike
derivative-free methods, gradient-based techniques have no way of escaping lo-
cal optima. Besides, gradients for complex objective functions may not always be
readily available and/or may be difficult to compute.

Gradients provide explicit information about the location of a local optimum,
which is why it is considered good practice to utilise such information whenever
possible. Such explicit knowledge is the reason why gradient-based methods can
outperform derivative-free methods in terms of computational efficiency.

Clearly, gradient-based methods are not well suited for solving the well place-
ment optimisation problem. Firstly, the objective function for such problems is
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highly non-smooth and multimodal [4]. Secondly, well placement optimisation is
a discrete problem, which makes it impossible to compute gradients. Finally, a
reservoir simulator is predominantly treated as a black box. Therefore, extraction
of gradients is a simulator invasive process.

Derivative-free methods do not suffer from the same problems, which is why
they are often preferred to gradient-based methods for solving the well placement
optimisation problem.

Derivative-free (non-invasive black box) optimisation has lately received con-
siderable attention within the optimisation community [5]. Unlike gradient-based
methods, derivative-free techniques rely solely on the values of the objective func-
tion to guide the search. Derivative-free algorithms employ either a deterministic
or a heuristic search strategy. In most cases, it means deploying a population of
agents that sample the objective function at different locations. The agents share
best-known objective function values amongst themselves through broadcasting.
This information is then used to guide the search and converge to a final solution.

Most derivative-free methods can be classified as either deterministic or stochas-
tic techniques. Deterministic techniques use a set of rules to explore the search
space and are usually associated with local search. Unlike deterministic techniques,
stochastic techniques are associated with a certain degree of randomness in the
search process. Most stochastic techniques are designed for a global exploration
of the search space.

For the aforementioned reasons, derivative-free methods are the preferred choice
for solving the well placement optimisation problem. They are better at dealing
with noisy, multimodal and discrete problems. A number of recent publications
(see [4, 6–8]) in recent years describe cases where derivative-free optimisation
methods were successfully applied for sovling the well placement optimisation
problem.

The following subsections will introduce three optimisation algorithms that
have been applied to the well placement optimisation problem, namely generalised
pattern search (GPS), asynchronous parallel pattern search (APPS) and particle
swarm optimisation (PSO).

2.2 Generalised Pattern Search

Generalised pattern search (GPS) refers to a family of numerical optimisation
methods that can solve optimisation problems without derivative information.
GPS is a local, deterministic search method that samples the objective function
over a predefined pattern of points, all of which lie on a rotational lattice [9].

The algorithm explores the search space by polling and evaluating data points
in a stencil-based fashion. Having evaluated the data points, the algorithm follows
a set of simple search and update instruction that describe how to translate and
scale the stencil in order to converge to a stationary point (solution). The process
of convergence to a stationary point (solution) is illustrated in Figure 2.

The dominant computational cost for pattern search methods lies in the eval-
uation of the objective function [9]. Consequently, the first main advantage of the
GPS algorithm is that it can be easily implemented in a distributed computing
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Figure 2: Convergence of GPS to a stationary point [6]

environment. This is achieved by distributing the workload (objective function
evaluations) across available computing nodes.

Another advantage is that pattern search methods are supported by a mathe-
matical convergence theory [10]. In fact, this is the reason behind recent popularity
of pattern search methods. There is, however, no guarantee that the algorithm
will find the true global optimal solution.

The main drawback of the GPS algorithm is that it appears to be quite sensi-
tive to the quality of initial approximation. This means that the algorithm may
potentially converge to different solutions under different initial conditions. This
may seem as a mild inconvenience when GPS deals with relatively small problems,
because the algorithm may be easily run multiple times with different initial ap-
proximations. However, this mild inconvenience turns into a large problem when
a single iteration is computationally expensive, such as in reservoir simulation.

2.3 Asynchronous Parallel Pattern Search

Traditionally, parallel implementations of pattern search methods are based
on the assumption that all objective function evaluations take approximately the
same amount of time. Although this assumption may be true for simple problems,
it does not always apply in practice [9]. Some optimisation problems are based
on complex physical simulations with varying runtimes. Implementations of the
pattern search algorithm that are based on the aforementioned assumption usually
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suffer from inefficient processor utilisation [9].
This motivated the development of the asynchronous parallel pattern search

(APPS) algorithm to make the use of computation cores more efficient. Figure 3
borrowed from [11] shows how APPS explores a larger portion of the search space
by decoupling individual function evaluations and finds a solution in 8 iterations
in this particular case. In a similar situation, the conventional parallel pattern
search algorithm would require more than eight iterations to find the optimum,
when the initial approximation is so far from it. For more information about the
APPS algorithm refer to [9], [11] and [12].

Figure 3: Eight iterations of APPS [11]

The APPS algorithm is programmed in a way that allows it to effectively
distribute workload across all available processors. This increases the efficiency
of processor utilisation by means of reducing their idle time [9]. The algorithm
launches several processes at once and proceeds with the search without waiting
for all processes to finish by skipping a synchronisation step. In an asynchronous
mode, each process makes decisions based on its best local objective function
value, which is then broadcast to other active processes.

Just like any other pattern search method, the APPS algorithm is supported by
a solid mathematical convergence theory [10, 12]. This means that the algorithm
will converge to a stationary point independent of the initial guess. However, this
stationary point is not guaranteed to be a global optimum.
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2.4 Particle Swarm Optimisation

Real-world problems usually involve a large number of optimisation variables.
This often leads to a high-dimensional search space and a multimodal objective
function. Local deterministic optimisation algorithms are not always able to find
the true global optimal solution to such problems [10]. Besides, there is no way of
recognising a global optimum, unless an exhaustive search is conducted.

The development of global stochastic optimisation algorithms was inspired by
the need to address these challenges. These algorithms are far better at exploring
a larger portion of the search space and are not as easily trapped in local optima.

Particle swarm optimisation (PSO) is an example of a stochastic global optimi-
sation algorithm. This population-based algorithm is an abstraction of a natural
process that mimics social behaviours exhibited by swarms of animals [8]. The
optimisation in PSO is brought about by a cooperative search strategy where par-
ticles interact with each other. Different interaction patterns are achieved using
different neighbourhood topologies, where a particle can interact with a certain
number of its neighbouring particles [8].

There are two extremes in PSO topologies. One that focuses on a purely local
search (few neighbouring connections) and the other that focuses on a global search
(all particles are connected). Most variants of topologies fall somewhere between
the two extremes. The number of neighbouring connections determines the balance
between local and global exploration. The performance of the algorithm may
highly depend on the choice of topology.

Figure 4: Illustration of particle’s velocity and position update [8]

The concept behind PSO algorithm is extremely simple. There is a swarm of
particles (solutions) that explore the search space and interact with each other in
order to find an optimum. The position and velocity of each particle are updated
iteratively according to the objective function value [8] as shown in Figure 4. The
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stochastic nature of this algorithm manifests itself as random coefficients that
affect particle velocity. The velocity of a particle is partially influenced by the
information from other particles. The importance of this information is affected
by neighbourhood topology and the aforementioned random coefficients.

The beauty of this algorithm is that it is extremely simple to implement,
requiring only the update of particle’s velocity and position. Furthermore, the al-
gorithm has few adjustment parameters. This makes PSO a very robust algorithm
compared to other stochastic optimisation algorithms that depend on the choice
of correct parameters, such as the genetic algorithm [13]. Finally, PSO does not
require pre-processing or encoding of input data, as is the case with some other
methods.

In spite of the fact that PSO is quite a robust method, its performance de-
pends on the values assigned to the optimiser parameters. The main drawback
of PSO is that it lacks a solid mathematical convergence theory. The two prob-
lems, however, can be addressed by an overlaying optimiser, a concept known as
meta-optimisation [14].

2.5 Algorithm Chosen for Numerical Experiments

Asynchronous parallel pattern search (APPS) algorithm is used in this study
for solving the well placement optimisation problem. This particular algorithm is
chosen for its novelty, advanced nature and computational efficiency. As mentioned
above, it belongs to a larger group of pattern search methods that are backed by
a mathematical convergence theory.

Such choice is also inspired by a successful application of HOPSPACK (an im-
plementation of the APPS algorithm) to the well placement optimisation problem
described in [4].
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3 Methodology and Tools

An experimental approach is taken. Multiple numerical experiments are con-
ducted to explore the importance of a good initial well placement approximation
based on engineering knowledge, on one hand, and an appropriate choice of the
two most important optimiser parameters, on the other hand.

Optimisation experiments are designed to figure out whether a better choice
of optimiser parameters can compensate for the shortage of reservoir engineering
expert knowledge, or not. The latter is materialised in a suboptimal well placement
configuration at the starting point. These “no prior expert knowledge” scenarios
are benchmarked against the “expert” scenarios with a near-optimal initial well
placement.

The significance of optimiser settings is investigated by altering two main
search parameters of the optimiser. The first parameter controls the algorithm’s
explorative property (i.e. width of search), whereas the second parameter controls
its speed of convergence. By testing a range of different optimiser settings, it
would be possible to conclude whether there is a preferred way to configure the
optimiser.

Numerical experiments for the purpose of this study are conducted on a two-
phase two-dimensional heterogeneous reservoir model described in Subsection 3.1
below.

The following software tools are used:

• ECLIPSE E100 Black Oil reservoir simulator owned by Schlumberger;

• HOPSPACK optimisation software package developed by Sandia Na-
tional Laboratories that is based on an asynchronous parallel pattern
search (APPS) algorithm.

3.1 Reservoir Model Description

The reservoir model used for numerical experiments is a two-phase (oil and
water) two-dimensional (2-D) model that has a simple geometry with no dipping
or faults. The model is defined on a regular Cartesian grid measuring 60×60×1
cells (total of 3600 cells). The dimensions of the model are 1440×1440×24 metres,
with a uniform size for each block being 24×24×24 metres. The top of the model
is located at a depth of 1700 metres. Initial pressure at this depth is 170 barsa.
The model is a cut-off of layer 21 of the SPE 10 model [15].

Property distribution in the reservoir model is heterogeneous. The porosity
and horizontal permeability distributions are shown in Figure 5. Permeability in
X- an Y directions is assumed to be the same.

Four producers and one water injector are included in the reservoir model. All
wells are controlled by a fixed bottomhole pressure at a reference depth of 1715
metres. The bottomhole pressure for the oil producers is set to 90 barsa and the
bottomhole pressure for the injector is set to 230 barsa. 12 years of oil production
with water injection are simulated with a maximum time step of 73 days.
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(a) Porosity (b) Horizontal permeability

Figure 5: Reservoir grid properties

Despite an apparent simplicity of the model, optimisation of well placement
in it is considered to be a mathematically complex problem due ten degrees of
freedom (namely five wells, each having X and Y coordinates as optimisation
parameters). In theory, reservoir heterogeneity and a high degree of freedom lead
to a highly non-smooth multimodal objective function [4] that is very difficult to
optimise.

3.2 HOPSPACK Optimiser

The optimisation software package used in the numerical experiments is HOPSPACK
(Hybrid Optimisation Parallel Search PACKage). HOPSPACK is a successor to
Sandia National Laboratory’s APPSPACK (Asynchronous Parallel Pattern Search
PACKage) product. It builds on the last version of APPSPACK and extends its
capabilities.

HOPSPACK is a derivative-free optimisation software for solving general op-
timisation problems, especially those with noisy and computationally expensive
functions. It is implemented in C++ programming language and supports parallel
operations using MPI (Message Passing Interface) or multithreading. HOPSPACK
allows variables to be continuous or integer-valued and has provisions for multi-
objective optimisation problems [16].
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Key features of HOPSPACK:

• Only function values are required for the optimisation (no derivatives)

• The user only needs to provide a program that can evaluate the objective
function at a given point

• HOPSPACK can be run in parallel

• An asynchronous implementation of the Generating Set Search (GSS)
algorithm is supplied, which is a type of pattern search solver.

In our case, HOPSPACK is configured to solve a single-objective optimisation
problem. The objective function is the cumulative oil production at the end of the
reservoir simulation. This objective function has to be maximised by HOPSPACK.

3.3 Optimiser-Simulator Interface

In order to use HOPSPACK with ECLIPSE reservoir simulator, a purpose-
specific optimiser-simulator interface is developed as a part of this project. Namely,
a function evaluator executable is written in C++ programming language. The
functionality of this executable is to receive input data from HOPSPACK, mod-
ify well data (WELSPECS and COMPDAT) in ECLIPSE data deck, launch
ECLIPSE, read the resulting cumulative oil production from a summary file, feed
it as an objective function value back to HOPSPACK and keep a record of the
iteration results. The procedure is summarised in Figure 6. HOPSPACK config-
uration file and optimiser-simulator interface code can be found in Appndices A
and C, respectively

Figure 6: Optimiser-simulator interface: single iteration procedure

3.4 Independent Variables

The optimisation experiments in this study are conducted with three inde-
pendent variables, namely initial well placement, initial step size and stencil con-
traction factor. Information about the independent variables is summarised in
Table 1.

The purpose of introducing seven different choices for the initial well locations is
to model situations with various degree of expert knowledge use. Initial placement
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Table 1: Summary of independent variables and their purpose

Independent
Variable

Number
of

Choices

Purpose

Initial well
placement

7
Demonstrate the importance of near-optimal
well placement (hence expert knowledge)

Initial step size 5
Demonstrate how controlling the width of
search affects optimisation results

Stencil contraction
factor

5
Demonstrate how controlling the convergence
speed affects optimisation results

of the wells in their near-optimal location corresponds to the case with the most
extensive use of the expert knowledge in this optimisation problem. Conversely,
initial placement of the wells in their most suboptimal location corresponds to the
case with no expert knowledge use.

Supposedly, placing wells in their near-optimal location would help the opti-
miser converge to a better solution faster as opposed to placing wells in a subop-
timal location.

Well’s location is a subject to a constraint. To minimise the boundary effects,
it is decided that there has to be a minimum of five cells between a well and each
edge of the grid.

In summary, the initial well placement variable is introduced to demonstrate
the importance of near-optimal initial well placement (and hence expert knowl-
edge) in solving the well placement optimisation problem.

Initial step size and stencil contraction factor are the two most important
HOPSPACK optimiser parameters.

Initial step size controls the width of search. In theory, a larger step size allows
for a more global exploration of the search space, while a smaller step size mimics
a local search.

Stencil contraction factor affects the speed of convergence by controlling how
fast the stencil reduces in size when it approaches a stationary point. Higher
contraction factor lets the stencil shrink at a lower rate, thereby reducing the risk
of premature convergence.

It is expected that proper adjustment of the two optimiser parameters can
compensate for suboptimal initial well placement.

Running multiple cases with different choices and combination of the optimiser
parameters would supposedly reveal whether it is possible to reduce the depen-
dence of the well placement optimisation on expert knowledge for provision of a
good initial well placement approximation.

With seven possible initial well placement configurations, five initial step sizes
(10, 20, 30, 40 and 50) and five contraction factor choices (0.5, 0.6, 0.7, 0.8 and
0.9) in this study, the total number of all their possible combinations is 175.
Accordingly, 175 optimisation scenarios are run in this experimental study in order
to understand how all the three chosen variables affect the optimisation results.
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Different choices of the three chosen variables are conceptually illustrated in
Figure 7. See also Appendices B1-B7. Production and injection wells are rep-
resented by red and blue dots, respectively. The dashed square represents the
constraint imposed on well locations (i.e. all the wells have to be located within
the dashed square).

(a) Suboptimal initial well configurations (SP1, SP2, SP3, SP4)

(b) Near-optimal initial well configurations (SP5, SP6, SP7)

(c) Initial step sizes to control width of exploration (SS1, SS2, SS3, SS4, SS5)

(d) Contraction factors to control speed of convergence (CF1, CF2, CF3, CF4, CF5)

Figure 7: Conceptual illustration of the different choices for three variables

3.5 Data Analysis Methodology

The results of all simulations are automatically collected in a spreadsheet that
shows the simulation progression, maximum observed value of the objective func-
tion, number of iterations for each run and its runtime. Having collected the
simulation results, the data is further analysed to reveal any patterns, i.e. how
different combinations of the chosen independent variables influence the optimi-
sation results.
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4 Experimental Results

The purpose of experimental data collection and analysis is twofold. Firstly,
to determine whether reservoir engineering expert knowledge plays a major role
in the well placement optimisation through a provision of a good quality initial
approximation. Secondly, to figure out whether adjusting optimiser parameters
can reduce the need for prior expert knowledge.

4.1 Summary of Experimental Results

Each HOPSPACK simulation produces a custom-made run summary file that
contains well locations and ultimate recovery for each evaluated set of optimisa-
tion variables. The data is processed to extract ultimate recovery value for each
iteration. These values are filtered to only show an increase in ultimate recovery
over progressing iterations. These ultimate recovery data series are then collected
in one chart (see Figure 8) in order to identify any obvious trends.

Figure 8: Ultimate recovery improvement over progressing iterations

The general trend observed for most simulations is that there is a rapid im-
provement at the beginning of each simulation, followed by a slow convergence to
the final solution. The two important pieces of information that can be extracted
from Figure 8 are the value of ultimate recovery and the number of iterations
required to find that value. The figure shows that some HOPSPACK simulation
scenarios are able to converge to a higher ultimate recovery than others. In addi-
tion, there is a large variation in the number of iterations HOPSPACK needed in
order to converge to a solution.
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Figure 8 makes it difficult to draw any conclusions due to the large amount of
data. For this reason, the most important simulation results, namely the ultimate
recovery and the number of iterations, are extracted and presented in Figure 9
and in Appendices B1-B7.

Figure 9: Ultimate recovery and number of iterations for each simulation run

Evidently, there is a large variation in ultimate recovery, ranging from 3.03
MSm3 to 3.58 MSm3. What is interesting is that scenarios with SP6 initial well
placement, which is considered the most near-optimal, consistently produce high,
but not the highest, ultimate recovery values as shown in Figure 9. This is unlike
other scenarios with different initial well placements, which generally produce a
wider range of ultimate recovery values.

There is also an obvious periodicity pattern in the number of iterations. This
is a direct consequence of increasing both, the initial step size and the contraction
factor, which ultimately affect the speed of convergence. Figure 10 demonstrates
how increasing the contraction factor affects the number of distinct step sizes used
by HOPSPACK in the search process. In this case, the largest initial step size
(SS5) is used to illustrate the point. However, the same applies to all initial step
sizes.

Evidently, there is a significant difference between the largest (CF5) and small-
est (CF1) contraction factors. In the case of the largest contraction factor, there
are 39 distinct step sizes, while there are only 7 of them in the case of the smallest
contraction factor. Obviously, a choice of different contraction factors affects the
speed of convergence. This explains why optimisation scenarios with CF5 take a
lot longer to converge to the final solution than those with CF1.
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Figure 10: Step size (SP5) evolution with different contraction factors

4.2 Significance of Initial Well Placement

It is hypothesised that the quality of initial approximation would have a large
impact on the result of optimisation. In order to understand whether the hypoth-
esis is correct, all optimisation scenarios with the same initial well placement are
averaged and presented in Figure 11.

Figure 11: Influence of initial well placement on ultimate recovery
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Figure 11 shows that scenarios with near-optimal initial well placement (SP5-
SP7) produce, on average, better results than those with suboptimal initial well
placement (SP1-SP4). The difference between the two groups is a direct conse-
quence of having a good quality initial approximation. Similar difference is also
evident in Figure 12, which shows the average ultimate recovery of each group of
scenarios, namely SP1-SP4 and SP5-SP7. The difference between the two groups
is roughly 3 %.

Figure 12: Comparison of different well placement strategies

Figure 13: Occurrence count at particular threshold ultimate recovery
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As mentioned earlier, scenarios with SP6 initial well placement configuration
consistently produce high recoveries compared to other scenarios. This is reflected
in Figure 11 by the fact that SP6 has the highest average ultimate recovery.

An alternative way to interpret the data is to count the average number of oc-
currences optimisation scenarios were able to surpass a certain minimum threshold
value. Figure 13 presents this information for the aforementioned groups (SP1-
SP4 and SP5-SP7). The figure shows that absolutely all scenarios converged to a
solution that is equal to or greater than 3 MSm3.

According to Figure 13, near-optimal initial well placement configurations out-
number the suboptimal ones for the majority of cases. Interestingly enough, the
highest observed ultimate recovery (which is also presumed to be the global max-
imum) is achieved in a scenario with suboptimal initial well placement, which
is likely an exception to the rule for more complex cases. The highest observed
ultimate recovery is 3.58 MSm3.

4.3 Significance of Optimiser Parameters

One of the objectives of this study is to understand whether altering optimiser
parameters can significantly reduce the dependence on expert knowledge for pro-
viding a good initial approximation when solving the well placement optimisation
problem. The results of numerical experiments suggest that improvements due to
better initial well placement and a proper choice of optimiser parameters are of
the same order of magnitude. On average, better ultimate recovery can be ob-
tained using a better initial well placement configuration. But, the shortcomings
of poor well placement can be compensated for by a correct choice of optimiser
parameters.

Figure 14: Influence of the optimisation parameters on ultimate recovery
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Figure 14 shows how the two chosen optimiser parameters (initial step size
and contraction factor) influence the average ultimate recovery. It follows from
this figure that it is important to use an appropriate set of optimiser parameters,
as they have an obvious impact on optimisation results. There is a general ten-
dency for average ultimate recovery to increase with increasing initial step size
and contraction factor values. The significance of each parameter is addressed in
the following subsections.

4.3.1 Initial Step Size

As mentioned earlier, initial step size influences the explorative property of this
particular optimisation algorithm. Provided that the grid size is 60×60 blocks,
the initial steps sizes are chosen accordingly to simulate different explorative be-
haviours. The initial step sizes are 10 (SS1), 20 (SS2), 30 (SS3), 40 (SS4) and 50
(SS5) blocks. Using a larger initial step size means that the optimiser explores the
objective function in a more global fashion.

Figure 15: Influence of initial step size on average ultimate recovery

Figure 15 illustrates the way initial step size influences average ultimate re-
covery. Evidently, SS3 and SS5 initial step sizes yield the best results, while SS1
initial step size corresponds the worst average ultimate recovery. According to the
HOPSPACK manual, it is good practice to use a large initial step size [16]. This
advice is supported by the experimental results.
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4.3.2 Contraction Factor

Contraction factor is a parameter that controls the rate of step size decrease. As
a consequence, increasing the contraction factor decreases the speed of convergence
due to the fact that it determines the number of distinct step sizes throughout
the simulation (see Figure 10). Contraction factors chosen for this study are: 0.5
(CF1), 0.6 (CF2), 0.7 (CF3), 0.8 (CF4) and 0.9 (CF5). When the optimiser deems
it appropriate, it multiplies the current stencil by the contraction factor to obtain
a new stencil and thus narrow the search. The contraction factor has to be less
than unity for HOPSPACK to be able to converge.

Figure 16: Influence of contraction factor on average ultimate recovery

As seen in Figure 16, there is a monotonous increase in the average ultimate
recovery with an increasing contraction factor. It is clear from this figure that
best optimisation results arise from using a large contraction factor (CF5 in this
case). It follows that HOPSPACK is able to find better objective function values
with more distinct step sizes, that are enabled by a large contraction factor.
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4.4 Optimal Well Placement

Four out of 175 scenarios are able to converge to what appears to be the global
maximum. The ultimate recovery for those scenarios is 3.58 MSm3. The best
well placement configuration found by HOPSPACK is presented in Figure 17 and
Table 2. Figure 17 shows how HOPSPACK moved the wells to achieve optimality.

Figure 18 shows final oil saturation for the base-case (SP7) and best-case sce-
narios. Evidently, the major part of mobile oil is displaced by water in both cases.
However, optimal well placement in the best-case scenario contributes to a better
and more uniform volumetric sweep (see Figure 18b).

Table 2: Best-case scenario well coordinates

Well Name
Well Coordinates

X Y

INJ1 30 28

PROD1 7 10

PROD2 6 50

PROD3 43 55

PROD4 55 9

Interestingly, well placement in the best-case scenario resembles an inverted
five-spot pattern with an injector in the middle and four producers around it.
However, in this case, well locations are adjusted to compensate for heterogeneous
porosity and permeability fields. What is surprising is that HOPSPACK is able
to derive this solution from a SP1 initial well placement, which is considered
suboptimal.
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Figure 17: Initial and optimal well locations
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(a) Final oil saturation of the base-case (SP7) scenario

(b) Final oil saturation of the best-case scenario

Figure 18: Initial and optimal final oil saturations
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5 Discussion

5.1 Interpretation of Numerical Experiments

According to the hypothesis, reservoir engineering expert knowledge plays an
important role in well placement optimisation through a provision of a good initial
approximation. The results of numerical experiments show that this hypothesis
holds true. There are two main reasons why the results of numerical experiments
verify this hypothesis.

Firstly, Figure 11 makes it clear that the optimisation results are significantly
improved as a result of using near-optimal initial well placement. HOPSPACK
proves to be able to find good solutions for scenarios with near-optimal well place-
ment. This result is good and somewhat expected, because HOPSPACK is known
to employ a local search method. Therefore, it is expected to more likely find a
local optimum in the vicinity of the initial approximation.

Secondly, scenarios with the most near-optimal initial well placement config-
uration (SP6) consistently produce high ultimate recovery values. Unexpectedly,
the absolute best solution (apparent global optimum) comes from the suboptimal
initial well placement, which is likely an exception to the rule for more com-
plex cases. In fact, HOPSPACK converged to this solution on several occasions.
HOPSPACK is somehow able to avoid the intentional trap (poor initial approxi-
mation) and rearrange the wells into a more favourable configuration.

For the aforementioned reasons, reservoir engineering expert knowledge that
materialises in a better initial approximation for well placement plays an important
role in well placement optimisation for this particular simplistic, two-dimensional
reservoir model with five wells.

Figure 11 and Figure 12 may help reinforce this statement. It was expected to
see that a better initial approximation would lead to a significantly better optimi-
sation result. Indeed, scenarios that take advantage of better initial approximation
outperform those with suboptimal initial well placement.

This obvious difference may be partly attributed to the stencil size when
HOPSPACK is in the vicinity of a near-optimal solution. A HOPSPACK sim-
ulation that starts with a good initial approximation has more time to explore
the objective function around a known near-optimal solution than a simulation
that starts with a poor initial approximation. Therefore, by the time a simulation
with unfavourable initial conditions reaches the near-optimal solution, its stencil
size is significantly smaller than that of a simulation that starts in the vicinity of
a near-optimal solution. This difference in temporal stencil size leads to different
degrees of exploration in the vicinity of a near-optimal solution, which causes the
difference in ultimate recovery.

The choice of a good quality initial approximation appears to have the same
impact on the results of optimisation as an adequate choice of optimiser parame-
ters. Results suggest that improvements due to each of the two factors are of the
same order of magnitude.

It is hypothesised that an appropriately configured optimisation algorithm may
significantly reduce the need for prior expert knowledge and near-optimal initial
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approximation when well placement problems are being solved. Results of the
numerical experiments with the two-dimensional model presented in Section 3
clearly confirm this hypothesis. Figure 15 and Figure 16 show a near-systematic
correlation between both optimiser parameters and better oil recovery results.

According to the results of numerical experiments, there is a clear correlation
between the contraction factor and average ultimate recovery. An increase in
ultimate recovery is a direct consequence of the use of a larger contraction factor.
A larger contraction factor prolongs the search by allowing the stencil to shrink at
a lower rate. This, in turn, enables HOPSPACK to explore a larger portion of the
search space. Of course, this comes at an expense of computation time. In fact,
the red peaks (longest computation time) that appear in Figure 9 correspond to
scenarios with the largest contraction factor (CF5).

The results also indicate that there is a correlation between the initial step size
and average ultimate recovery, yet not as pronounced as that of the contraction
factor. It is clear from Figure 15 that two particular choices of initial step size
stand out, namely SS3 (30 grid blocks) and SS5 (50 grid blocks). Evidently, the
latter choice of the initial step size leads to a higher average ultimate recovery than
the former one. There may potentially be several reasons why the two choices of
the initial step size stand out.

Presumably, SS3 stands out because it represents a balance between local and
global exploration of the search space. The stencil is exactly half the size of the
grid. Thereby, HOPSPACK does not make drastic jumps across the whole grid
as it may do in the case of SS5. It seems that using too large of a step size
may actually have a negative impact on the optimisation process because the
stencil becomes comparable to the size of the grid. This negative impact may be
particularly pronounced for the cases that start with a near-optimal initial well
placement. For these cases, a large step size may divert the optimiser away from
a nearby optimum.

Scenarios with SS5 produced the highest average ultimate recovery. SS5 is the
largest step size used in the numerical experiments and is supposed to imitate a
global search because the stencil is comparable to the size of the grid. A large step
size allows HOPSPACK to move the wells around with greater freedom. For this
reason, HOPSPACK is able to find good solutions to scenarios with poor initial
well placement. A large initial step size somewhat delays the convergence to a local
optimum, thus allowing HOPSPACK to conduct a more thorough exploration of
the search space. According to HOPSPACK user manual, it is generally better to
use a large initial step size [16]. This statement is directly confirmed and reinforced
by the results of numerical experiments.

All things considered, the role of reservoir engineering expert knowledge in
the process of well placement optimisation for this particular model appears to
be important. However, the shortage of such knowledge mimicked by poor ini-
tial approximation could be compensated for by a proper choice of the optimiser
parameters.

It is best to use a balanced initial step size to avoid diverting the optimiser away
from a nearby optimum. This will ensure to maintain a balance between local and
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global exploration. Otherwise, in the absence of a good initial approximation, it
is best to use the largest initial step size to ensure global exploration. Finally, it is
recommended to use the largest contraction factor to allow HOPSPACK find the
best solution to the well placement problem. When it comes to the choice of the
contraction factor, it is important to consider the trade-off between the ultimate
recovery and computation time.

5.2 Guiding Principles for Optimal Well Placement

Optimal well placement is concerned with maximising volumetric sweep effi-
ciency and minimising fluid energy loss along with minimising well interference
[17]. It may be helpful to consider two reservoirs, namely homogeneous and het-
erogeneous, in order to derive the guiding principles for optimal well placement.

First, let us consider the square two-dimensional model with four producers
and one injector (like the one used in this thesis), but assume a homogeneous
distribution of reservoir properties. Anyone with a basic understanding of reservoir
engineering would find it very intuitive to place the producers in each corner of
the grid, at an equal distance away from the injector, which would be located
exactly at the centre of the grid. There are two main reasons why the wells would
be arranged in a so-called inverted five-spot pattern.

Firstly, such well placement may be attributed to the movement of water front
through the reservoir. In a homogeneous reservoir, the front would spread sym-
metrically away from the injector towards each producer, considering that the
producers operate at same regime. Consequently, the producers are placed equidis-
tantly from the injector to equalise water front travel time. Such equidistant well
placement along with a unified well control strategy helps maintain the symmetric
shape of the water front and avoid earlier water breakthrough in one well. The
symmetry also helps minimise interference between wells.

Secondly, placing producers in each corner of the grid maximises water front
travel time from injector to each producer. This, in turn, maximises the volumetric
sweep efficiency.

Similar guiding principles may apply to the same reservoir model, but with a
heterogeneous distribution of reservoir properties. The wells need to be placed in
a way that would allow the water front to spread more uniformly in all directions.
This would also equalise water front travel time from injector to each production
well. Just like in the homogeneous case, the wells need to be located far enough
from the injector to maximise sweep efficiency and far apart from each other to
reduce their interference.

In general, lateral heterogeneity in reservoir properties leads to a loss of sym-
metry. The travel time of the water front from injector to each producer placed at
equal distances is no longer the same due to variations in horizontal permeability.
In order to compensate for this difference and equalise water front travel times,
the wells would have to be moved from their initial symmetric (and now subopti-
mal) locations to form an irregular (skewed) inverted five-spot pattern as shown
in Figure 17.
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The results of the numerical experiments make it possible to derive some guid-
ing principles behind optimal well placement in such a two-dimensional reservoir
with a fixed number of wells. These guiding principles may lay a foundation for
writing an application to reservoir optimisers that would mimic application of
expert knowledge through a provision of a good initial approximation.

5.3 Future Work

It is important to appreciate that numerical experiments in this thesis are
conducted on a two-dimensional reservoir model. Surely, the optimisation pro-
cess is somewhat simpler that in a three-dimensional case, because each well has
only one connection and vertical heterogeneity (if any) is not important in a two-
dimensional case. In the case of three-dimensional reservoir models, however, the
optimisation process will not be as straightforward. It will require more com-
plex rules (and constraints) to guide well placement. An additional optimisation
parameter will be the number of grid connections per well. From a mathemat-
ical standpoint, an additional degree of flexibility (due to an extra dimension)
and a significant increase in the number of optimisation parameters will make the
optimisation problem a lot more challenging.

There is no doubt that an expertise of a skilled reservoir engineer will be more
essential for a three-dimensional problem, just because of the fact that optimal
well shape no longer has to be vertical. More complex well geometry can be
considered, such as deviated (inclined), horizontal and multilateral wells. Thus,
the process of optimisation can most probably be simplified in case if a good initial
approximation for well locations and shapes is given at start.

The work done in this thesis may be extended to a three-dimensional case with
the same number and type of wells, but with vertical heterogeneity in addition.
The wells would have to be vertical, at least in the beginning, to keep the optimisa-
tion problem complexity under control. In addition to well locations, it is possible
to try to optimise the number of connections per well and their positions along
the reservoir section of the wells. This would reveal whether a chosen optimisa-
tion algorithm may be used for solving more complicated reservoir engineering
optimisation problems more typical for real life situations.
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6 Conclusion

There is generally a sceptical attitude in the petroleum industry towards the
use of optimisation techniques for solving field development problems. Neverthe-
less, an increasing availability of computing power and a strong motivation to
make optimal field development decisions have been inspiring researchers to apply
derivative-free optimisation methods to field development problems in the recent
years. This work builds on the recent research. It is conducted in an attempt to
help dispel some of that scepticism and to inspire additional research in this field.

This work describes an effort to better understand the role of reservoir en-
gineering expert knowledge in well placement optimisation at the stage of field
development planning and figure out whether an appropriate choice of optimiser
parameters can help reduce the dependence on experience-based knowledge.

For the purpose of conducting numerical experiments, it was decided to use the
HOPSPACK optimisation software package for its novelty, advanced nature and
computational efficiency. In order to integrate the ECLIPSE reservoir simulator
with HOPSPACK, a purpose-specific optimiser-simulator interface was developed
as a part of this project.

The interpretation of results of the numerical experiments has led to two major
conclusions for the particular reservoir model used:

• Reservoir engineering expert knowledge plays an important role in the
process of well placement optimisation by providing a good quality initial
approximation;

• A proper choice of the optimiser parameters that allows for a wide ex-
ploration of the search space may significantly reduce the dependence on
such expert knowledge.

One particular implication of this study is that engineers should have a thor-
ough understanding of the optimisation algorithm they use to solve a problem.
Having such understanding, they can significantly enhance the well placement
optimisation workflow.

The numerical optimisation experiments were conducted on a two-dimensional
reservoir model, which in many cases is an oversimplification of the typical real life
situations. As a direct consequence of such choice of model, the study encountered
two obvious limitations.

Firstly, the conclusions reached in this work may not necessarily apply to more
complex, three-dimensional reservoir models, which better represent typical real
life situations. Therefore, the study should be extended to more realistic three-
dimensional cases.

Secondly, numerical experiments only considered a vertical well shape. In more
realistic reservoir models, the optimal well shape no longer has to be vertical, which
is why subsequent research work may address more complex well geometry.
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This study compliments the previous research efforts by others and helps prove
that modern advanced optimisation techniques deliver promising results for solving
field development problems.

Undoubtedly, not a single important decision in the petroleum industry is being
made without consulting an expert. However, it is very likely that the experts will
be taking a greater advantage of optimisation techniques for the decision-making
process in a not so distant future.
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Appendix A - HOPSPACK Configuration File

Figure 19: HOPSPACK configuration file
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Appendix B1 - SP1 Configuration Parameters

Figure 20: HOPSPACK configuration parameters for SP1 scenarios
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Appendix B2 - SP2 Configuration Parameters

Figure 21: HOPSPACK configuration parameters for SP2 scenarios
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Appendix B3 - SP3 Configuration Parameters

Figure 22: HOPSPACK configuration parameters for SP3 scenarios
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Appendix B4 - SP4 Configuration Parameters

Figure 23: HOPSPACK configuration parameters for SP4 scenarios
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Appendix B5 - SP5 Configuration Parameters

Figure 24: HOPSPACK configuration parameters for SP5 scenarios
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Appendix B6 - SP6 Configuration Parameters

Figure 25: HOPSPACK configuration parameters for SP6 scenarios
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Appendix B7 - SP7 Configuration Parameters

Figure 26: HOPSPACK configuration parameters for SP7 scenarios
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Appendix C - Optimiser-Simulator Interface

1 #inc lude <iostream>
2 #inc lude <fstream>
3 #inc lude <vector>
4 #inc lude <s t r i ng>
5 #inc lude <sstream>
6 #inc lude <cmath>
7

8 us ing namespace std ;
9

10 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ∗ Platform/ bu i ld s p e c i f i c symbols
12 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 ∗/
14 #i f de f ined ( WIN32)
15 #i f ( ( MSC VER == 1400) | | ( MSC VER == 1500))
16 //−−−− WINDOWS MSVC COMPILER INSISTS THAT SECURE STRING FNS BE USED.
17 #de f i n e HAVE MSVC SECURE STRING FNS
18 #end i f
19 #end i f
20

21 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 ∗ Inc lude f i l e (WELLPOS. INC) ed i t o r
23 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 ∗/
25 s t a t i c bool wr i teNewInc ludeFi l e ( vector<double> wel lPos )
26 {
27 ofstream o u t f i l e ( ”WELLPOS. INC” ) ;
28

29 // WRITING WELSPECS DATA
30 o u t f i l e << ”WELSPECS” << endl ;
31 o u t f i l e << ”INJ1\tG1\ t ” << wel lPos [ 0 ] << ”\ t ” << wel lPos [ 1 ]
32 << ”\ t1715 \tWAT /” << endl ;
33 o u t f i l e << ”PROD1\tG2\ t ” << wel lPos [ 2 ] << ”\ t ” << wel lPos [ 3 ]
34 << ”\ t1715 \tOIL /” << endl ;
35 o u t f i l e << ”PROD2\tG2\ t ” << wel lPos [ 4 ] << ”\ t ” << wel lPos [ 5 ]
36 << ”\ t1715 \tOIL /” << endl ;
37 o u t f i l e << ”PROD3\tG2\ t ” << wel lPos [ 6 ] << ”\ t ” << wel lPos [ 7 ]
38 << ”\ t1715 \tOIL /” << endl ;
39 o u t f i l e << ”PROD4\tG2\ t ” << wel lPos [ 8 ] << ”\ t ” << wel lPos [ 9 ]
40 << ”\ t1715 \tOIL /” << endl ;
41 o u t f i l e << ”/” << endl ;
42

43 // WRITING WELSPECS DATA
44 o u t f i l e << ”COMPDAT” << endl ;
45 o u t f i l e << ”INJ1\ t ” << wel lPos [ 0 ] << ”\ t ” << wel lPos [ 1 ]
46 << ”\ t1 \ t1 \tOPEN\ t1 \ t1 ∗\ t0 .1905\ t4 ∗\ t1 ∗ /” << endl ;
47 o u t f i l e << ”PROD1\ t ” << wel lPos [ 2 ] << ”\ t ” << wel lPos [ 3 ]
48 << ”\ t1 \ t1 \tOPEN\ t1 \ t1 ∗\ t0 .1905\ t4 ∗\ t1 ∗ /” << endl ;
49 o u t f i l e << ”PROD2\ t ” << wel lPos [ 4 ] << ”\ t ” << wel lPos [ 5 ]
50 << ”\ t1 \ t1 \tOPEN\ t1 \ t1 ∗\ t0 .1905\ t4 ∗\ t1 ∗ /” << endl ;
51 o u t f i l e << ”PROD3\ t ” << wel lPos [ 6 ] << ”\ t ” << wel lPos [ 7 ]
52 << ”\ t1 \ t1 \tOPEN\ t1 \ t1 ∗\ t0 .1905\ t4 ∗\ t1 ∗ /” << endl ;
53 o u t f i l e << ”PROD4\ t ” << wel lPos [ 8 ] << ”\ t ” << wel lPos [ 9 ]
54 << ”\ t1 \ t1 \tOPEN\ t1 \ t1 ∗\ t0 .1905\ t4 ∗\ t1 ∗ /” << endl ;
55 o u t f i l e << ”/” << endl ;
56

57 o u t f i l e . c l o s e ( ) ;
58

59 r e turn ( 0 ) ;
60 }
61

62

63

64

65

66

67

68

69

70

71

72

40



73 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 ∗ ECLIPSE s imu la t i on launcher
75 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 ∗/
77 s t a t i c bool runEcl ipseSim ( )
78 {
79 remove ( ”SIMPLECASE.RSM” ) ;
80

81 system ( ” $ e c l i p s e SIMPLECASE” ) ;
82

83 r e turn ( 0 ) ;
84 }
85

86 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 ∗ RSM f i l e reader that e x t r a c t s l a s t FOPT value
88 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 ∗/
90 double readRSMFile ( const s t r i n g rsmFileName )
91 {
92 double foptLas t = −1;
93

94 i f s t r e am f i l e ( rsmFileName + ” .RSM” ) ;
95

96 i f ( f i l e )
97 {
98 s t r i n g l a s tL i n e ;
99 whi le ( f i l e >> ws && g e t l i n e ( f i l e , l a s tL i n e ) ){}

100 s t r i n g buf ;
101 s t r i ng s t r eam s s ( l a s tL i n e ) ;
102 vector<s t r i ng> tokens ;
103 whi le ( s s >> buf )
104 {
105 tokens . push back ( buf ) ;
106 }
107 i f ( ! tokens . empty ( ) )
108 {
109 f optLas t = stod ( tokens . end ( ) [ − 2 ] ) ; // Get second to l a s t element
110 }
111 }
112 e l s e
113 {
114 cout << ”Unable to open .RSM f i l e . ” << endl ;
115 }
116

117 r e turn ( foptLas t ) ;
118 }
119

120 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121 ∗ Keep track o f a s i n g l e run and record i t to a f i l e
122 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 ∗/
124 s t a t i c bool writeSummaryToFile ( vector<double> wellPos , double foptLas t )
125 {
126

127 ofstream sumf i l e ( ”RUNSUM.TXT” , std : : i o s : : app ) ;
128

129 sumf i l e << ”============ NEW ITERATION ============” << endl ;
130 sumf i l e << ”=== WELL COORDINATES ===” << endl ;
131 sumf i l e << ”Well\tX\tY” << endl ;
132 sumf i l e << ”INJ1\ t ” << wel lPos [ 0 ] << ”\ t ” << wel lPos [ 1 ] << endl ;
133 sumf i l e << ”PROD1\ t ” << wel lPos [ 2 ] << ”\ t ” << wel lPos [ 3 ] << endl ;
134 sumf i l e << ”PROD2\ t ” << wel lPos [ 4 ] << ”\ t ” << wel lPos [ 5 ] << endl ;
135 sumf i l e << ”PROD3\ t ” << wel lPos [ 6 ] << ”\ t ” << wel lPos [ 7 ] << endl ;
136 sumf i l e << ”PROD4\ t ” << wel lPos [ 8 ] << ”\ t ” << wel lPos [ 9 ] << endl ;
137 sumf i l e << ”=== FOPT ===” << endl ;
138 sumf i l e << ”FOPT = ” << f optLas t << endl ;
139 sumf i l e << ”============ END ITERATION ============” << endl ;
140 sumf i l e << ”” << endl ;
141

142 sumf i l e . c l o s e ( ) ;
143

144 r e turn ( 0 ) ;
145 }
146
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147 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
148 ∗ I n t e r n a l Function r e a d i n p u t f i l e
149 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 ∗/
151

152 s t a t i c bool r ead InputF i l e ( const s t r i n g &szExeName ,
153 const s t r i n g &szFileName ,
154 vector<double> &wel lPos )
155 {
156 const i n t varNum = 10 ; // Dec lare the number o f v a r i a b l e s
157 const i n t REQBUFLEN = 10 ;
158 char reqBuf [REQBUFLEN + 1 ] ;
159

160 i f s t r e am fp ;
161

162 //−−−− OPEN THE INPUT FILE .
163 fp . open ( szFileName . c s t r ( ) ) ;
164 i f ( ! fp )
165 {
166 c e r r << szExeName << ” − ERROR opening input f i l e ’ ”
167 << szFileName << ” ’ . ” << endl ;
168 r e turn ( −1 ) ;
169 }
170

171 //−−−− READ AND VERIFY THE INPUT REQUEST TYPE.
172 fp >> reqBuf ;
173 f o r ( i n t i = 0 ; i < REQBUFLEN + 1 ; i++)
174 {
175 i f ( ( reqBuf [ i ] == ’ \n ’ ) | | ( reqBuf [ i ] == ’ \ r ’ ) )
176 {
177 reqBuf [ i ] = 0 ;
178 break ;
179 }
180 }
181 i f ( ( reqBuf [ 0 ] != ’F ’ ) | | ( reqBuf [ 1 ] != 0) )
182 {
183 c e r r << szExeName << ” − ERROR read ing reque s t type from ’ ”
184 << szFileName << ” ’ . ” << endl ;
185 c e r r << ” Read ’ ” << reqBuf << ” ’ ” << endl ;
186 fp . c l o s e ( ) ;
187 r e turn ( −1 ) ;
188 }
189

190 //−−−− READ THE LENGTH OF x .
191 i n t n ;
192 fp >> n ;
193 i f (n != varNum)
194 {
195 c e r r << szExeName << ” − ERROR read ing n from ’ ”
196 << szFileName << ” ’ . ” << endl ;
197 c e r r << ” Read ” << n << ” , but problem s i z e should be ” << varNum << endl ;
198 fp . c l o s e ( ) ;
199 r e turn ( −1 ) ;
200 }
201

202 wel lPos . r e s i z e (n ) ;
203

204 //−−−− READ x .
205 f o r ( i n t i = 0 ; i < n ; i++)
206 {
207 fp >> wel lPos [ i ] ;
208 cout << round ( wel lPos [ i ] ) << ”\ t ” ;
209 }
210 cout << ”” << endl ;
211 fp . c l o s e ( ) ;
212

213 //−−−− RETURN SUCCESS.
214 r e turn ( 0 ) ;
215 }
216

217

218

219

220

221
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222 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
223 ∗ I n t e r n a l Function w r i t e o u t p u t f i l e
224 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
225 ∗/
226 s t a t i c bool wr i teOutputFi l e ( const s t r i n g & szExeName ,
227 const s t r i n g & szFileName ,
228 const double f )
229 {
230 ofstream fp ;
231

232 fp . open ( szFileName . c s t r ( ) , i o s : : trunc ) ;
233 i f ( ! fp )
234 {
235 c e r r << szExeName << ” − ERROR opening output f i l e ’ ”
236 << szFileName << ” ’ . ” << endl ;
237 r e turn ( −1 ) ;
238 }
239

240 //−−−− WRITE THE NUMBER OF OBJECTIVES AND THEIR VALUES TO THE OUTPUT.
241 fp << ”1” << endl ;
242 fp . p r e c i s i o n ( 1 5 ) ; //−− WRITE ALL DIGITS
243 fp << f << endl ;
244

245 fp . c l o s e ( ) ;
246

247 r e turn ( 0 ) ;
248 }
249

250

251
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253

254

255

256
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262

263
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269

270
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272

273

274

275

276
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286
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295
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301 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
302 ∗ Main rou t ine f o r eva lua t i on executab l e .
303 ∗
304 ∗ Each execut ion reads a vec to r from a f i l e , e va lua t e s the ob j e c t i v e
305 ∗ funct ion , and wr i t e s the func t i on value to an output f i l e . HOPSPACK
306 ∗ gene ra t e s the f i l e names and dec ide s when to invoke t h i s executab l e .
307 ∗ I f the r e i s an er ror , e i t h e r c r e a t e no output f i l e , or c r e a t e an
308 ∗ output f i l e with an e r r o r message .
309 ∗
310 ∗ @param argc Number o f command l i n e arguments .
311 ∗ @param argv Command l i n e arguments ( input and output f i l e names ) .
312 ∗ @return 0 i f s u c c e s s f u l .
313 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314 ∗/
315 i n t main ( const i n t argc , const char ∗ const argv [ ] )
316 {
317 vector<double> wel lPos ;
318 double foptLas t = −1;
319 i n t nRetStatus ;
320

321 /∗ CHECK THE COMMAND LINE ARGUMENTS.
322 ∗ IN THIS EXAMPLE ONLY THE INPUT AND OUTPUT FILE NAMES ARE USED.
323 ∗/
324 i f ( argc != 5)
325 {
326 f p r i n t f ( s tde r r , ” usage : %s <input f i l e > <output f i l e > <tag> <type>\n” ,
327 argv [ 0 ] ) ;
328 r e turn ( −100 ) ;
329 }
330

331 // Read an i n t e r n a l input f i l e
332 nRetStatus = readInputF i l e ( argv [ 0 ] , argv [ 1 ] , wel lPos ) ;
333 i f ( nRetStatus != 0)
334 r e turn ( nRetStatus ) ;
335

336 f o r ( unsigned i n t i = 0 ; i < wel lPos . s i z e ( ) ; i++)
337 {
338 wel lPos [ i ] = round ( wel lPos [ i ] ) ;
339 }
340

341 // Using wel lPos va lue s to wr i t e a new WELLPOS. INC f i l e
342 nRetStatus = wri teNewInc ludeFi l e ( wel lPos ) ;
343 i f ( nRetStatus != 0)
344 r e turn ( nRetStatus ) ;
345

346 do
347 {
348 // Run ECLIPSE s imu la t i on s
349 nRetStatus = runEcl ipseSim ( ) ;
350 i f ( nRetStatus != 0)
351 r e turn ( nRetStatus ) ;
352

353 // Reading RSM f i l e to ex t r a c t l a s t FOPT value
354 f optLas t = readRSMFile ( ”SIMPLECASE” ) ;
355 i f ( f optLas t != −1)
356 {
357 // Write summary o f a run to a f i l e
358 nRetStatus = writeSummaryToFile ( wellPos , f optLas t ) ;
359 i f ( nRetStatus != 0)
360 r e turn ( nRetStatus ) ;
361 }
362 } whi le ( foptLas t == −1 ) ;
363

364 // Write an i n t e r n a l output f i l e
365 nRetStatus = writeOutputFi le ( argv [ 0 ] , argv [ 2 ] , f optLas t ) ;
366

367 r e turn ( nRetStatus ) ;
368 }
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