
Study of Pattern Search Optimization and
Implementation of Hooke-Jeeves Direct
Search for Production Optimization using
Perforations

Silje Møller

Master of Science in Engineering and ICT

Supervisor: Jon Kleppe, IPT
Co-supervisor: Mathias Bellout, IPT

Einar Bauman, IPT

Department of Petroleum Engineering and Applied Geophysics

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

This thesis concerns the topic of petroleum production optimization using per-
forations. A plug-in by PhD student Einar Baumann was extended to include a
second pattern search method: Hooke-Jeeves direct search. Originally only the
compass search method was implemented.

The thesis covers the topic of these two pattern search methods and how they are
applied to optimize well perforation placement for a given objective function value.
We present descriptions of how the existing plug-in was modified to make room
for a second algorithm, and how the Hooke-Jeeves direct search was implemented.
This thesis also presents the well perforation placement optimization problem. The
plug-in only optimize for perforation placement, but can in the future be extended
to optimize with other algorithms, or for other well completion types, e.g. ICDs.

Two experiments are completed to analyze the behaviour of the two algorithms.
The first experiment concerns the Hooke-Jeeves direct search, and how it reacts to
changes in the input parameters. In the second experiment we compare the two
pattern search algorithms when conducted with the same input parameters. The
experiments show that two parameters, initial step length and segment resolution,
are dependent on the simulation case. We also find that Hooke-Jeeves direct search
is a more efficient pattern search method than compass search when it comes to
total number of simulations.

ii

Sammendrag

Denne masteroppgaven ang̊ar optimering av perforeringsplassering ved petroleum-
sproduksjon. En eksisterende plug-in av PhD student Einar Baumann har blitt
utvidet med en ekstra pattern search algoritme: Hooke-Jeeves direct search. Orig-
inalt var bare compass search-algoritmen implementert.

Masteroppgaven presenterer teori om disse to algoritmene og forklarer hvor-
dan de blir brukt til å optimere plasseringen av brønnperforeringer for en gitt
objektiv funksjon. Vi presenterer beskrivelser av hvordan den originale plug-inen
ble modifisert for å kunne implementere den andre algoritmen, og om hvordan
Hooke-Jeeves direct search-algoritmen ble implementert. Oppgaven definerer ogs̊a
problemet som omhandler plassering av brønnperforeringer. Den n̊aværende plug-
inen optimerer kun for plassering av brønnperforeringer, man kan bli utvidet til
andre brønnkompletteringer i fremtiden, f.eks. ICDer.

To eksperimenter ble gjennomført for å analysere hvordan de to algoritmene
oppfører seg. Det første eksperimentet ser p̊a Hoooke-Jeeves direct search-algoritmen
og studerer hvordan den reagerer p̊a endring av de ulike parameterne. I det an-
dre eksperimentet ønsker vi å sammenligne de to algoritmene n̊ar de bruker de
samme parameter verdiene. Eksperimentene viser at initiell steglengde og seg-
mentoppløsning er avhenging av simulerings-casen vi bruker. Resultatene viser
ogs̊a at Hooke-Jeeves direct search-algoritmen er mer effektiv enn compass search-
algorithmen n̊ar det kommer til totalt antall simuleringer.

iv

Preface
This thesis is written as a part of the Master’s degree in Engineering and ICT
with specialization in Integrated Operations in the Petroleum Industry, at the
Department of Petroleum Engineering and Applied Geophysics at the Norwegian
University of Science and Technology, NTNU. It was written in the spring of 2016
under the supervision of Prof. Jon Kleppe, and co-supervised by Postdoc. Mathias
Bellout and PhD student Einar Baumann. This thesis is written in collaboration
with the Petroleum Cybernetics Group at NTNU.

We assume the reader is familiar with basic programming.

v

vi

Acknowledgements
I want to thank my supervisor Jon Kleppe for the opportunity to work with the
Petroleum Cybernetics Group at NTNU and for his feedback during this thesis.

Also, I would like to thank Mathias Bellout for our conversations regarding
optimization, and for showing me the benefits of applying it.

I highly appreciate the work done by Einar Baumann in the original Optimiza-
tion plug-in. The structure of his implementation was very helpful for me when
I was to extend the plug-in with a second algorithm. His expertise spans many
topics, and I would like to thank him for always trying to answer my big and small
questions.

At last, I would like to thank my family for their support through the course
of my Master’s degree.

vii

viii

Contents

1 Introduction 1

2 Pattern search optimization 3
2.1 General optimization theory . 3

2.1.1 Optimization theory concepts 3
2.1.2 Numerical optimization categories 4

2.2 Derivative-free optimization . 4
2.3 Pattern search methods . 5
2.4 Compass Search . 5

2.4.1 Compass search evaluation approaches 6
2.5 Hooke-Jeeves Direct Search . 6

3 Petroleum production optimization using perforations 11
3.1 Simulation-based optimization . 11
3.2 Problem formulation . 11

3.2.1 Objective of the optimization 11
3.2.2 Optimizing well completions 12
3.2.3 Perforation handling . 12

3.3 Pattern search methods in use . 13

4 Implementation 15
4.1 Software . 15
4.2 Object-oriented programming . 16
4.3 Existing plug-in . 16

4.3.1 Workstep . 16
4.3.2 Classes . 17
4.3.3 Handling of perforation configuration candidates 18
4.3.4 Compass Search . 19

4.4 New plug-in . 23
4.4.1 Inheritance . 23
4.4.2 Additional algorithm . 23

ix

4.4.3 Algorithm tracking . 25
4.4.4 New choices in workstep form 25

4.5 Optimize with two algorithms . 25

5 Optimization plug-in in use 31
5.1 Optimization set up . 31

5.1.1 Base case . 31
5.1.2 Objective function . 31
5.1.3 Control variables . 32
5.1.4 Constraints . 32
5.1.5 Input parameters . 32
5.1.6 Simulated evaluations ratio 33

5.2 Experiments . 33
5.2.1 Experiment 1 . 35
5.2.2 Experiment 2 . 35

5.3 Results . 36
5.3.1 Experiment 1 results . 36
5.3.2 Experiment 2 results . 39

5.4 Conclusion . 44

6 Summary and further work 47
6.1 Summary . 47
6.2 Recommendations for further work 48

References 49

A Experiment results 53

x

List of Figures

2.1 Flow chart of Compass Search. 6
2.2 Flow chart of Hooke-Jeeves Direct Search. 8

3.1 A vertical well with cemented and perforated casing. 13
3.2 The base case with four segments and complete perforation coverage. 14
3.3 Valid perforation configuration. 14
3.4 Invalid perforation configuration: Not physically feasible. 14
3.5 Invalid perforation configuration: Overlapping perforations. 14

4.1 Workstep in Petrel Workflow editor. 17
4.2 Form for optimization workstep. 18
4.3 TVD vs. MD. 19
4.4 Sequence diagram for Compass Search part 1. 21
4.5 Sequence diagram for Compass Search part 2. 22
4.6 Class diagram showing the inheritance relationship. 24
4.7 Sequence diagram for Hooke-Jeeves Direct Search part 1. 26
4.8 Sequence diagram for Hooke-Jeeves Direct Search part 2. 27
4.9 Sequence diagram for Hooke-Jeeves Direct Search part 3. 28
4.10 New form for optimization workstep. 29

5.1 3D view snapshot of base case well configuration. 32
5.2 Well section image of different base case segment resolutions with

full perforation coverage. 34
5.3 Best case perforation configuration case 6. 38
5.4 Best case perforation configuration case 7. 38
5.5 Best case perforation configuration case 13. 39
5.6 Best case perforation configuration case 14. 39
5.7 Best case perforation configuration case 15. 39
5.8 Best case perforation configuration case 8. 40
5.9 Best case perforation configuration case 19. 40
5.10 Plot of cases 5-8 with Hooke-Jeeves Direct Search. 41

xi

5.11 Plot of cases 16-19 with Compass Search. 42
5.12 Plot of cases 9-11 with Hooke-Jeeves Direct Search and cases 20-22

with Compass Search. 43

xii

List of Tables

5.1 Experiment 1 results - Overview of cases with Hooke-Jeeves Direct
Search. 37

5.2 Experiment 2 results - Overview of cases with Compass Search. . . . 40

A.1 Base case perforation configurations for segments 2, 4, 8 and 16 with
full coverage. 54

A.2 Best case perforation configurations for cases 1 - 11 using Hooke-
Jeeves Direct Search. 55

A.3 Best case perforation configurations for cases 12 - 15 using Hooke-
Jeeves Direct Search. 56

A.4 Best case perforation configurations for cases 16 - 22 using Compass
Search. 57

xiii

Chapter 1
Introduction

Reforming the petroleum workflows The recent years downfall of the oil
price [1] have forced the petroleum industry to cut costs and make processes more
efficient. The petroleum industry has been applying optimization for many years
already, but we will probably see even more interest for this topic in the upcom-
ing years. In the conference review [2] of the International Petroleum Technology
Conference (IPTC) in December 2014, we find arguments to why petroleum pro-
duction optimization is important during recession periods. Some of the people
attending the conference have experienced this before, and they argue that the
industry needs to adapt themselves for these cycles. Instead of reacting with panic
they should use the recession as an opportunity to improve their workflows and
make them more efficient. The petroleum industry does not want the cutting of
costs to sacrifice the quality of the work. A topic in the conference was to draw
lessons from projects in the US shale. Major increase in unconventional wells in the
US demonstrate that there are other ways to solve problems. Trying and failing
with the unconventional wells have resulted in good new solutions which are also
applicable for the conventional segment. In the conference, Bernard Montaron, the
technical director for Asia at Schlumberger elaborated on the US shales. He said
that,

“ Almost 50 % of the wells drilled between 2010 and 2013 are uneco-
nomic either because they were drilled in wrong place, or landed in
wrong zone or poorly completed, ... (Approximately) 40 % of perfora-
tions in the US shale don’t produce. ”

He argued that the industry must improve their work in all levels of the chain. The
lesson we can take from the US shale is to instead of just drilling anywhere in search
for good results, we can spend more time analyzing and preparing the tasks ahead
so that projects can be utilized to their fullest. Expanding the preliminary phases
to include more optimization studies will benefit projects in the future, especially in
times of tight economy. Recession may also lead businesses to apply optimization

1

Chapter 1. Introduction

to ongoing projects instead of pursuing new, possibly expensive projects. Bernard
Montaron’s last quote in the conference review sums it up:

“ True differentiation is in maximizing well productivity through opti-
mum use of technology, and that can have much greater and long-lasting
impact on economics. ”

Applying optimization workflows to the planning and execution of petroleum pro-
duction will benefit the industry not only now, but also in the next downturn in
the oil market.

Optimization problem In this thesis we study the use of pattern search meth-
ods for optimizing the placement of perforations along a well. Pattern search
methods are a type of derivative-free optimization. The two pattern search meth-
ods discussed in this thesis is compass search and Hooke-Jeeves direct search. These
two algorithms produce perforation configuration candidates, in search for the per-
foration configuration resulting in the best objective function value.

Software The software being used in this thesis is mainly products from Schlum-
berger. The Petrel E&P software is the platform for our work. We implement a
second optimization algorithm to an existing Petrel plug-in by using the Ocean Soft-
ware Framework. The Ocean framework is a class library using the object-oriented
programming language C#. With the Ocean framework we can run reservoir sim-
ulations using the ECLIPSE simulator on the Petrel platform.

Ocean plug-in The implementation work completed during this thesis is the
extension of an existing Ocean plug-in by PhD student Einar Baumann. He has
implemented the compass search method to solve the perforation placement prob-
lem. This thesis concerns the implementation of a second pattern search method:
Hooke-Jeeves direct search. As a consequence of implementing the second algo-
rithm, modifications to the existing plug-in was completed.

Organization of this thesis The next chapter describes the optimization theory
being applied in this thesis. Chapter 3 explains the problem concerning perforation
placement and why we use pattern search methods. The implementation of Hooke-
Jeeves direct search into the existing Ocean plug-in is described in Chapter 4. In
chapter 5, we conduct experiments where we apply the algorithms implemented
in the plug-in. The experiments study how Hooke-Jeeves direct search behaves
when changing the input parameters in the algorithm, and we compare the two
algorithms when solving identical cases. At the end we summarize the work that
iscompleted and elaborate on some possible further work.

2

Chapter 2
Pattern search optimization

This chapter defines the optimization theory being studied and applied in this
thesis. The chapter starts with an introduction of general optimization theory, be-
fore going into derivative-free optimization. Afterwards we describe pattern search
methods, which is a sub-category of derivative-free optimization. At last we go
into the details of two pattern search methods: compass search and Hooke-Jeeves
direct search.

2.1 General optimization theory
Numerical optimization is a wide topic and can be elaborated through many pages.
In this thesis we have reduced the scope to focus on pattern search methods. The
following in this chapter will try to give a structure for the optimization theory
that is relevant for this thesis. We want to give the reader an overview of where to
place pattern search methods within the optimization theory.

2.1.1 Optimization theory concepts
Before going into the details of the algorithms, some general optimization theory
concepts is explained. A general definition of the optimization procedure is given
below, followed by a description of an objective function, control variables, and
constraints.

“ Mathematically speaking, optimization is the minimization or maxi-
mization of a function subject to constraints on its variables. [3] ”

Objective function is the value that an optimization run want to either min-
imize or maximize. In petroleum production optimization it is common to use
cumulative oil production, net present value, etc.

3

Chapter 2. Pattern search optimization

Control variables are parameters that are altered in the process of finding the
maximum or minimum of the objective function. There is a wide range of possible
control variables for petroleum production, and it all depends on the target of the
optimization. Examples of a control variable for petroleum production optimization
can be the injection rate of water or the placement of a well completion.

Constraints are equations and inequalities that must be fulfilled by the control
variables before the objective function can be calculated. If all the constraints
are satisfied, the objective function will be calculated at a feasible point [3]. In
some cases, selecting the constraints will be very intuitive because of the nature
of the problem. Other cases will require more detailed constraints if the problem
is complex. If the control variable is injection rate of water, a maximum injection
rate can be set as the constraint. The beginning and end of a well segment can be
used as constraints for a valid placement of a well completion.

2.1.2 Numerical optimization categories
Within numerical optimization we have a category of algorithms called derivative-
free methods. A subcategory of derivative-free methods is pattern search methods.
In this thesis we are concerned with two pattern search algorithms: compass search
and Hooke-Jeeves direct search. In literature the terms derivative-free, pattern
search and direct search are sometimes used interchangeably, but this thesis will
use the structure and notation presented in this chapter. The following sections
will explain the different categories and describe the two algorithms that is being
applied in this thesis.

2.2 Derivative-free optimization
Derivative-free optimization is applicable when the derivative of our objective func-
tion is difficult to calculate, or when it is not available. This is often the case when
engineers try to solve practical problems using simulator software [3]. Derivative-
free optimization is considered relatively easy to implement and are therefore widely
used as the first approach.

When discussing derivative-free optimization, it is common to limit the opti-
mization problem to the unconstrained case

min
x→∞

f(x), (2.1)

where x is the variables of the objective function f , and the solution space have
n dimensions where each dimension represents one of the variables [3]. We use
the unconstrained case for derivative-free methods because constraint handling in
these methods is still being explored by researchers. It is therefore easier to use
the unconstrained problem when discussing derivative-free methods [3].

In this thesis the focus has been on pattern search methods, which is the next
topic. Other algorithms within derivative-free methods are the Nelder-Mead sim-
plex method, conjugate-direction methods and simulated annealing [3].

4

2.3. Pattern search methods

2.3 Pattern search methods
The name “pattern search” was first introduced by Hooke and Jeeves [4] in a paper
from 1961. Almost all literature on this topic refer to Hooke and Jeeves and the
theory they present in their paper. The term pattern search has since been used as a
collective name for all methods that search from a current point in a predetermined
direction for a better function value [3]. If the search finds a better point, this point
becomes the new base and the search restarts from this point. If a search is not
a success, the search direction is changed, or the search perimeter is cut down by
reducing the step length.

Different pattern search methods have been developed over the years and ad-
justed for the optimization problems that they attempt to solve. Pattern search
methods tends to have a very simple tactic and therefore easy to use as the first
optimization approach. In addition to their simplicity, the pattern search methods
are also flexible and reliable [5]. The following sections will present two pattern
search methods: compass search and Hooke-Jeeves direct search.

2.4 Compass Search
The compass search method is, as indicated by its name, inspired by the compass
directions. Compass search is also known as coordinate search, local variation,
alternating directions, axial relaxation, and alternating variables [6]. The algorithm
uses the compass directions as axes that define the domain of the search space. Each
axis in the search space represents a variable in the objective function. Compass
search moves in directions parallel to the axes in search for variable values that
result in a better objective function value. One iteration of compass search is the
evaluation of the compass directions plus choosing whether to step to another point
or reduce the step length.

The compass search algorithm is best explained when we have a two dimensional
search space, but can of course be applied to larger problems. In two dimensions
the compass search starts in a base point with two variables as coordinates. An
evaluation of this base point is completed to get a current best objective function
value. An initial step length is then used to alter each of the variables in positive and
negative direction. For the two dimensional case this result in four new points in the
search space. We can imagine using the compass directions east, west, north and
south as search pattern. These four new points are evaluated and their objective
function values are compared to the objective function value in the base point.
If the algorithm finds a better objective function value in one of the directions,
the algorithm moves to this new point and then starts a new iteration. If no
better objective function value is found by searching in the compass directions,
the step length is halved and a new iteration starts. The algorithm continues
with this compass search around the current best point until the step length is
reduced to a value less than a given tolerance. This is the termination condition
and the algorithm is finished. The algorithm result in an approximate solution of a
best objective function value. Other termination conditions are also possible: e.g.

5

Chapter 2. Pattern search optimization

a maximum number of simulations can be set to ensure the algorithm does not
continue indefinitely.

2.4.1 Compass search evaluation approaches
We say that compass search evaluates in directions parallel to the axes of the search
space, and if it finds a better objective value it moves to this new point. The bullet
points below show that there are different approaches to what is required before
the algorithm move to a better point [6]. The details here are important for the
implementation of the algorithm.

• Evaluate all the directions in order and move in the direction that gives a
better function value.

• Evaluate all directions in parallel, if the implementation allows it. When all
evaluations are finished, move in the direction that gives a better function
value.

• Evaluate the directions in order and move in the direction that first gives a
better function value.

Fig. 2.1 shows a flowchart of compass search for the first approach.

Figure 2.1: Flow chart of Compass Search.

2.5 Hooke-Jeeves Direct Search
In their paper [4], Hooke and Jeeves have the following definition of direct search:

6

2.5. Hooke-Jeeves Direct Search

Algorithm 1 Compass Search Algorithm for maximizing f. Taken from [7].
1: procedure CompassSearch(f, x0, ∆tol, ∆0, D)
2: fbest ← f(x0) . Set initial value for fbest.
3: x← x0 . Set initial value for x.
4: ∆← ∆0 . Set initial step length.
5: while ∆ > ∆tol do . Iterate while step length is greater than tolerance.
6: M← (x + ∆× dk) for all dk ∈ D . Create list M of moves xk.
7: xmax ← argmax f(xk) . Find best move in iteration.
8: if f(xmax) > fbest then . Found a better position.
9: x← xmax . Change the “best” position.

10: fbest = f(xmax) . Change the “best” objective value.
11: else . Did not find a better position.
12: ∆← 1/2×∆ . Reduce the step-length.
13: end if
14: end while
15: end procedure

“ We use the phrase ‘direct search’ to describe sequential examination
of trial solutions involving comparison of each trial solution with the
‘best’ obtained up to that time together with a strategy for determining
(as a function of earlier results) what the next trial solution will be. ”

This quote has been repeated many times in literature regarding pattern search/
direct search, and as previously mentioned, these names are swapped a lot. In
this section we will look into Hooke and Jeeves’ definition of direct search. The
explanation of the algorithm is mainly retrieved from their paper. Some other
sources will also be used as reference because they provide interpretations of the
algorithm which makes them easier to explain and implement.

Hooke-Jeeves direct search combines two type of operations. The operations
can be considered as strategies, and together the two strategies bring the algorithm
forward. By following the strategies, the Hooke-Jeeves direct search moves from
base point to base point. The two strategies are named exploratory moves and
pattern moves [4].

An initial base point, b1, is chosen. This is where the algorithm starts from. The
coordinates of the point are made up of the function’s variables. Like in compass
search, an evaluation of the base point is completed. The evaluation result in an
objective function value for this point. From this base point the algorithm conducts
exploratory moves to analyze the search space around the base point. This is done
in almost the same way as an iteration of the compass search. If a better objective
function value is found during the exploratory moves, the algorithm conducts a
pattern move in the successful direction. A flow chart of the Hooke-Jeeves direct
search can be found in Fig. 2.2.

Exploratory moves alters the variables of b1, one at the time, in search for a
better objective function value. The variables are altered by a given step length.

7

Chapter 2. Pattern search optimization

Figure 2.2: Flow chart of Hooke-Jeeves Direct Search.

For each variable, the algorithm evaluates the objective function when the variable
is altered with the step length in the positive direction. If this does not give a better
function value, the negative direction is evaluated. After the positive, and possibly
the negative direction is evaluated, the algorithm continues to the next variable.
This means that if a better function value is found in the positive direction, the
negative direction will not be considered.

The exploratory moves are conducted to investigate the search space of the
objective function within the perimeter defined by the step length. Hooke and
Jeeves define the exploratory moves as simple, because in each move only one of
the variables in the objective function change. The objective function value is
evaluated based on this simple move, and then the algorithm continues to the next
variable.

Pattern move is an operation done to investigate further in the direction that
was found promising during the exploratory moves. If the sequence of exploratory
moves are successful there will be a new point in the search space, b2, with a
better objective function value compared to the base point b1. The pattern move
uses the knowledge of a better objective function value in b2 and wants to explore
the search space in this assumed better direction. The distance and the direction
from the base point b1, to the new point b2, define what is used for conducting
the pattern move. A trial point is created two times the distance from the base
point, in the direction found through exploratory moves [8]: bt = 2b2 − b1. The
objective function value of bt is not evaluated. Instead, the algorithm starts doing
exploratory moves around bt. When the exploratory moves around the trial point is
completed, its objective function value is compared to the objective function value

8

2.5. Hooke-Jeeves Direct Search

in b2. If this objective function value is better than for b2 the pattern move was
successful and the point found through exploratory moves around bt is set to b3.
The algorithm continues with creating the trial point bt = 2b3 − b2 and conduct
exploratory moves for bt. If the first pattern move was not successful, b2 is set as
base point and we start a new round of exploratory moves.

Hooke and Jeeves write in their paper that they use “a strategy for determining
(as a function of earlier results) what the next trial solution will be” [4]. With
this they propose that they use the knowledge they acquire through exploratory
moves as basis for the next step in the search. The pattern move is based on the
assumption that because there was a better function value in this direction, we
want to investigate more in this direction of the search space.

Step length reduction is done when exploratory moves around a base point
(not a trial point) does not find a better objective function value. The step length
is halved and exploratory moves start again for the current base point.

Termination of the algorithm is the same as for compass search. The algorithm
terminates when the step length falls below a given tolerance or the algorithm
reaches a maximum number of evaluations. The current base point becomes the
best case result.

9

Chapter 2. Pattern search optimization

Algorithm 2 Hooke-Jeeves Direct Search Algorithm for maximizing f.
1: procedure Hooke-JeevesDirectSearch(f, x0, ∆tol, ∆0)
2: fbest ← f(x0) . Set the initial value for fbest.
3: fcurrent ← f(x0) . Set the initial value for fcurrent.
4: x← x0 . Set initial value for x.
5: ∆← ∆0 . Set initial step length.
6: while ∆ > ∆tol do . Iterate while step length is greater than tolerance.
7: fcurrent = exploratorymoves(fcurrent) . Do exploratory moves.
8: if fcurrent > fbest then . Found a better position.
9: fbest = patternmoves(fcurrent, fbest) . Do pattern move.

10: else . Did not find better position.
11: ∆ = 1/2×∆ . Reduce step length.
12: end if
13: end while
14: end procedure
15:
16: function exploratorymoves(finput)
17: foutput = finput . Set input position as temporary output position.
18: for all xi in x do . Go through all xi in x.
19: if finput(xi±∆) > foutput then . Found better value when altering xi.
20: foutput = finput(xi + ∆) . Change the output position.
21: end if
22: end for
23: return foutput . Return the new position.
24: end function
25:
26: function patternmoves(fcurrent, fbest)
27: while fcurrent >= fbest do . Continue doing pattern moves.
28: ftrial = 2× fcurrent − fbest . Create trial point.
29: fresult= exploratorymoves(ftrial) . Do exploratory moves.
30: if fresult > fcurrent then . If exploratory moves found better point.
31: fbest = fcurrent . Change base point.
32: fcurrent = fresult . Change current best point.
33: end if
34: end while
35: return fbest . Return the current best point.
36: end function

10

Chapter 3
Petroleum production optimization
using perforations

This chapter presents the optimization problem we are trying to solve in this thesis.
We want to optimize the placement of perforations in a well for a given objective
function value. In this chapter are explanations of how we want use optimization
methods for this problem. We also discuss why we have chosen pattern search
methods for this type of optimization.

3.1 Simulation-based optimization
A lot of engineering work has become simulation-based, and consequently there
are optimization problems that do not have information regarding the derivative
of the objective function. There are also cases where the derivative of objective
function cannot be calculated. For these cases, derivative-free methods are very
useful. When doing simulation-based optimization, a simulation must be run for
every time the algorithm require more data to do a next optimization operation.
[6]

Optimization of petroleum production is a case of simulation-based optimiza-
tion. Studying future petroleum production, the placement of wells, or the settings
of well completions all depend on the analysis of simulation results. A lot of reser-
voir engineering work is to create, run and analyze reservoir simulations.

3.2 Problem formulation

3.2.1 Objective of the optimization
When running reservoir simulations, we can require certain measurements in the
result data. These measurements are based on what part of a simulation case

11

Chapter 3. Petroleum production optimization using perforations

we want to study. In petroleum production optimization we use one or more
of the simulation results as the objective function. The most common objective
functions to optimize for is, as mentioned in chapter 2, net present value, cumulative
productions, or combinations of the different measures. In this thesis, pattern
search algorithms will suggest different candidate perforation configurations. Each
location will be evaluated by running a simulation with this given perforation
configuration. For each simulation we will get an objective function value that is
to be compared to other evaluations. Based on the evaluations of the candidate
configurations the algorithm search towards a best case objective function value
and perforation configuration.

3.2.2 Optimizing well completions
Well completions are hardware that are placed in the borehole after drilling [9].
There are many different types of well completion equipment. Stand-alone, or in
combination with others, well completions can contribute to a better exploitation
of the reservoir. The well completion type under investigation in this thesis is
perforations.

Perforations are openings in the cement and casing which result in a flow path
from the near reservoir and into the wellbore [10]. This flow path is created after the
well is completed with casing and cement. The perforations are created by using a
perforation gun. Perforation guns send out a high-pressure unidirectional jet which
include a cone of explosives [11]. The small explosion creates a cone shaped hole in
the casing (see Fig. 3.1). It is important that the flow path in the perforation itself
has a higher flow capacity than the flow from the formation [10]. The advantage
of using perforated completions is that the location of inflow from formation into
the well can be controlled. By analyzing log data, the perforations can be placed
in well sections that does not contain e.g. water, gas or weak intervals. Reservoir
properties can change along the well and perforating the whole well may not always
be beneficial. Another advantage is that perforations can be sealed off if they are
not producing correctly. Spending some time to optimize the locations and settings
of well completions can give huge benefits for the well production in the long run.

3.2.3 Perforation handling
In this thesis we assume that a section of the well is split into a number of segments.
Within each segment a perforation is to be placed to find a best objective function
value. Placing a perforation interval differently within a segment can give different
simulation results. The initial solution is that each perforation completely covers
its respective segment (see Fig. 3.2). A complete coverage may not give the best
objective function value. Therefore, the algorithm search for other perforation
configurations. A possible solution may be like the one in Fig. 3.3.

The only thing limiting the placement of a perforation is if: 1. a perforation
interval crosses the segment boundaries, or 2. the start and end of a perforation
interval change order. Each perforation is given a segment of the well, and for a

12

3.3. Pattern search methods in use

Figure 3.1: A vertical well with cemented and perforated casing.
Taken from [11].

perforation to overlap another perforation it must first cross the segment boundary.
The case of two perforations overlapping each other is handled in 1. Fig. 3.4 and
3.5 illustrate cases where the perforation configurations are not physically valid.

3.3 Pattern search methods in use
Well completion placement is a practical problem and therefore a good candidate for
pattern search methods. Placing perforation configurations is not complicated. We
simply need to find the correct position for the start and the end of the perforation-
interval. As mentioned in chapter 2, the pattern search methods are easy to adapt
to a wide range of problems. This is because they have a clear approach for iterating
towards an approximate solution. The two algorithms applied in this theses are
considered easy to implement because of the simple nature of their operations.
M. Avriel argues that even if Hooke-Jeeves direct search requires many function
evaluations, it is still straightforward to implement and a “reliable method” [12].

The pattern search methods find the best approximate solution. They are
therefore useful as a first approach, and for finding an area of the search space where
a global best objective function value exist [4]. Optimizing with these algorithms
require that we have an initial step length and a minimum step length. The result
of the optimization is dependent on the size we set for these two values. Let’s
consider an example where the minimum step length is relatively small compared
to the initial step. A possible consequence of this dependency is that the algorithm
will have to run many simulations before it terminates at a best objective function
value. It may also be problematic to use a step length that is large compared to
the segment lengths. A big step length can be the reason that the start and end
of the perforation change order.

13

Chapter 3. Petroleum production optimization using perforations

Figure 3.2: The base case with four segments and complete perforation coverage.

Figure 3.3: Valid perforation configuration.

Figure 3.4: Invalid perforation configuration: Not physically feasible.

Figure 3.5: Invalid perforation configuration: Overlapping perforations.
14

Chapter 4
Implementation

This chapter concerns the implementation of Hooke-Jeeves direct search to an
existing Ocean plug-in for Petrel. First is a presentation of the software and tools
being used, followed by an introduction to object-oriented programming, which is
the programming paradigm that is being utilized for Ocean plug-ins. The rest of
the chapter describes the existing plug-in and how it was changed to add a second
pattern search method.

4.1 Software

Petrel is an exploration and production software platform from Schlumberger
[13]. The Petrel platform is able to run the ECLIPSE reservoir simulator [14],
which is used to simulate the candidate perforation configurations generated by
the optimization algorithms.

Ocean is a software development framework used to create plug-ins for the Petrel
platform [15]. A software framework is “a reusable set of libraries or classes for a
software system” [16]. With the Ocean framework we can create custom extensions
to the Petrel platform, specialized for our solutions. We are given access to modify
the Petrel objects and create our own processes. Ocean enables the developers to
create new solutions and dedicated workflows for different exploration and produc-
tion problems. The Ocean framework is built on top of the .NET development
platform [15]. .NET is a software framework developed by Microsoft that enables
developers to build applications for the Windows operating system [17].

C# is the programming language used by the Ocean framework. C# is an object-
oriented language [18], the concepts of which is presented in the next section.

15

Chapter 4. Implementation

Microsoft Visual Studio is an integrated development environment (IDE) for
creating applications. Visual Studio supports the C# programming language and
is required for developing Ocean plug-ins. [19]

4.2 Object-oriented programming
“ Object-oriented design processes involve designing object classes and
the relationships between these classes. These classes define the objects
in the system and their interactions. When the design is realized as
an executing program, the objects are created dynamically from these
class definitions. ” [20]

Object-oriented programming is a programming approach were the code is
structured into classes [21]. A class can be seen as the “recipe” for defining the
properties and functionality of an object. The properties of an object are often
called attributes or fields in the class. In addition to its attributes, a class can
include methods. Methods can be seen as predefined rules for changing the object’s
attributes and thus handles the behavior of the object [21]. A required method in
a class is the constructor. The constructor has the same name as the class itself,
and we use the constructor to create an instance of the defined object [22].

The Ocean framework provides a library of predefined classes. The library gives
us access to and descriptions of the classes’ attributes and methods, enabling us to
manipulate Petrel data.

4.3 Existing plug-in
By using the software and techniques described above, we can create Ocean plug-
ins for the Petrel platform. As mentioned in section 4.1, an Ocean plug-in can be
seen as an extension of the tool collection in Petrel. We typically create plug-ins
to solve specific problems that Petrel is otherwise not able to solve. For this thesis
we want to use optimization algorithms that are currently not available in Petrel.
The problem formulation for this thesis was defined on the basis of an existing
Ocean plug-in created by PhD student Einar Baumann in the summer of 2015 at
the Department of Petroleum Engineering and Applied Geophysics, NTNU. The
existing Ocean plug-in optimizes the placement of perforations based on a given
objective function using the compass search algorithm. Through this thesis the
plug-in has been extended with a second pattern search algorithm: Hooke-Jeeves
direct search.

4.3.1 Workstep
The plug-in functions as a workstep for the Petrel Workflow editor. The Workflow
editor in Petrel is a tool where a collection of worksteps can be put in a sequence and
executed. We can compare the sequence to a set of code lines created by a software
developer. In the workflow editor, each code line is customized to do a predefined

16

4.3. Existing plug-in

operation. For instance, Petrel has a group of worksteps for well engineering tasks:
e.g. Well path design, Well completion design, Define well segmentation. Each
workstep performs an individual operation on a given input well. A workstep can
have several input and output parameters.

With the Ocean framework we can create custom worksteps. We can specify our
own input and output parameters, and create our own combination of operations.
The workstep can contain functionality to change Petrel objects and run Petrel
processes, or we can create custom objects and operations. The existing plug-in by
E. Baumann is implemented as a custom workstep that optimize the locations of
perforations in a well.

Input parameters For this optimization workstep, a set of input parameters
are required. A Petrel well item with perforation(s) is needed as target for the
optimization.

To run simulations of the candidate solutions suggested by the algorithm we
need a Petrel case item. Having access to the case object we are able to run
ECLIPSE simulations for each candidate configuration, and collect the results.
Through the case object, we also have access to the strategies for the specific case.
A strategy in Petrel is used to inform the simulator how the field changes over
time. It can include information regarding the rates or pressures of production and
injection wells, or other well changes that will impact a simulation run. [23]

We also need a resolution to set how many perforation segments the well is
to be split into. The compass search algorithm needs the following parameters to
begin and finish the optimization run: initial step length, tolerance, and maximum
number of simulations. This results in a total of six input parameters for the
workstep. Fig. 4.1 shows how the workstep looks like in the Workflow editor.

Figure 4.1: Workstep in Petrel Workflow editor.

In addition to these six input parameters, the workstep contains a form (see Fig.
4.2) used to specify the objective function expression for the optimization run. In
this form we set whether to maximize or minimize the chosen objective function.
The objective function can either be a simple value chosen from a collection of
common simulation results, or an expression on the form

f = resulta ± x× resultb

4.3.2 Classes
Optimizer We can consider the Optimizer class as the engine for this optimiza-
tion plug-in. The Optimizer holds all required information regarding the base case,
the current best case and input arguments from the workstep. Based on the input

17

Chapter 4. Implementation

Figure 4.2: Form for optimization workstep.

arguments, the Optimizer creates a new instance of either the CompassSearch or
the HJDirectSearch, and pass down the input arguments. The Optimizer also
launches when a new perforation configuration can be applied to the well and is
ready for simulation. It also handles the result after simulation. Because of the
structure in the Optimizer class, only some small modifications were necessary to
implement a second pattern search algorithm.

OptimizerCase The OptimizerCase encapsulates the Ocean class Case as an
attribute. This OptimizerCase extends the functionality of a case to also include
a Perturbation, a Well and a Strategy. When a perturbation is to be evaluated,
the Perturbation field in the OptimizerCase is changed. Then the Perturbation
is applied as perforations to the Well, and a simulation is run for the Case.

4.3.3 Handling of perforation configuration candidates
Through the Ocean framework we are able to access the perforationsfor a Petrel
well. We can delete existing perforations and we can create new perforations. To
create a new perforation Ocean needs three input parameters: a name, a startMD,
and an endMD. MD is an abbreviation for measured depth [24]. This depth is used
as a measure from the start to the end, along the length of the well. In contrast,
we have the measure true vertical depth, TVD, which is different from MD when
the well is not strictly vertical (see Fig. 4.3). MD is necessary when we need to
specify locations in inclined wells. We assume in the rest of this thesis that positive
direction is when the MD increases, while negative direction is when MD decreases.

The short list of required input parameters makes it relatively easy to modify
perforations for a well. The challenge lies in handling the many different candidate
perforation configurations that the algorithm wants to evaluate. A class named

18

4.3. Existing plug-in

Figure 4.3: TVD vs. MD.
(Taken from [24].)

Perturbation is used to represent a candidate perforation configuration. A per-
turbation object have a list of startMD and endMD values: Variables = {startMD1,
endMD1, startMD2, endMD2, ..., startMDn, endMDn}. In addition, the pertur-
bation object holds information about the objective function and its value. In the
code, a perturbation object named BestCasePerturbation holds the current best
perforation configuration and its objective function value. The optimization al-
gorithm generates perturbation objects with altered variable values, searching for
a configuration that yield a better objective function values. This is handled by
creating a copy of the BestCasePerturbation and then changing one of the variable
in the list of MDs. A candidate perturbation is then ready to be applied as “real”
perforations to the well.

4.3.4 Compass Search

Sequence diagrams of the Optimization plug-in when using compass search can
be found in Fig. 4.4 and 4.5. See also Fig. 4.6 for a class diagram. During
the initialization of the Optimizer, the well is split into segments based on the
given resolution. Additionally, an OptimizerCase instance named BaseCase and
an instance of CompassSearch are created. When the optimization starts, the
Optimizer object requests a new Perturbation from the CompassSearch object.
CompassSearch may have a perturbation object ready for evaluation in the New-
Perturbations queue. If not, CompassSearch checks if the last iteration of eval-
uations found a better perturbation and either step in this direction or reduce
the step length. New perturbations are then perturbed and put in the NewPer-
turbations queue. CompassSearch returns a perturbation from NewPerturbations
which is ready to be applied to the well. Then a simulation with this perforation
configuration starts.

When the simulation is completed (Fig. 4.5), the CaseMonitor object calls the
PostSimulationCS() method in the Optimizer. The results are collected and the
best case is updated if a better objective function value has been found. Then
the Optimizer calls the EvaluateNextCS() method again, and this result in a

19

Chapter 4. Implementation

loop. The loop stops when the steplength attribute has a lower value than the
tolerance attribute.

Creating perturbations In the original compass search, two perturbations are
made for each perforation. The first perturbation alters the startMD in the positive
direction, and the second perturbation alter the endMD in the negative direction.
This implementation narrows the search towards the center of the segment. The
startMD will for all candidate solutions have altered its value to a location closer
to the center of the segment, and the same applies for the endMD. This results in
two candidate solutions for every perforation interval. In the case of two segments
we will have four MD elements in the variable list, which results in a total of four
candidate perturbations. Hooke-Jeeves was implemented with a different approach
to the creation of perturbations. For the two algorithms to be comparable, the
compass search was modified.

Modification In the new version, compass search creates two perturbations for
every single MD value in the list of variables. One in positive and one in negative
direction. For the case with two segments the algorithm will now have a total of
eight candidate perturbations. This new implementation will not have the center
approach, but instead, as the algorithm progresses, each startMD and each endMD
will move back and forth along the well.

Validity With the center approach it was not necessary to check if the candidate
solutions were valid as perforations. We knew that the candidate perforation con-
figurations shrinked towards the center at all time and it was not possible to move
outside the segment. With the new approach we can get many candidate perfora-
tion configurations with MD values that are not physically feasible, as discussed in
section 3.2.3. We therefore need to check the validity of all perturbations before
they are applied as perforations to a well. If a perturbation is valid, it is queued
for evaluation. Invalid perturbations are given the trivial objective value of -1000.
With the validity check we are certain that only perforations that are feasible are
used in the simulation.

We do not know if the center approach is better than the other, or if they
give other results. The two different procedures just show how important it is to
carefully define the implementation of the algorithm. Different handling of the
variables may give different results.

Evaluation approach In chapter 2 we presented three different evaluation ap-
proaches for compass search. The implementation of compass search in this Ocean
plug-in evaluates all compass directions, before moving to the point which have the
best objective function value. Consequently, more simulations are required, but we
are certain that the direction we move in is the best choice.

20

4.3. Existing plug-in

:Optimizer :BaseCase :CompassSearch :CaseMonitor

Initialize()

ApplyResolution(Well,Resolution)

new OptimizerCase()

new CompassSearch()

StartOptimization()

EvaluateNextCS()

NextPerturbation

Iterate()

StepAndPerturb()

FoundBetterPerturbationLastIteration()=trueFoundBetterPerturbationLastIteration()=true

ShrinkAndPerturb()

FoundBetterPerturbationLastIteration()=falseFoundBetterPerturbationLastIteration()=false

NewPerturbations.Dequeue()

ApplyPerforationsToCase(BaseCase.Perturbation, BaseCase)

Simulate()

Figure 4.4: Sequence diagram for Compass Search part 1.

21

Chapter 4. Implementation

:Optimizer :BaseCase :CompassSearch :CaseMonitor

RunCompleted()

RunCompleteAsync()

PostSimulationCS()

UpdatePerturbationObjectiveValue()

PerturbationsEvaluatedThisIteration.Add(BaseCase.Perturbation)

EvaluateNextCS()

Figure 4.5: Sequence diagram for Compass Search part 2.

22

4.4. New plug-in

4.4 New plug-in
4.4.1 Inheritance
Inheritance is one of the main features of object-oriented programming. It is a
method for structuring implementation of new classes based on existing classes. If
used correctly, inheritance can contribute to clean and reusable code. [21]

When applying inheritance, we have a base class that includes attributes or
methods which makes it easier to implement the derived class [22]. Other terms
for the base class are parent class or superclass. The derived class is often referred
to as the subclass. Inheritance result in less implementation effort because the
defined attributes and methods in the superclass are available for the subclass. A
derived class have the same functionality as its parent class, but can additionally
have own attributes and methods.

We apply inheritance to this plug-in because we want to implement a second
algorithm. Compass search and Hooke-Jeeves direct search have many proper-
ties and methods that are identical. Instead of duplicating code lines, a general
OptimizationAlgorithm class was created. Both CompassSearch class and the
new HJDirectSearch class inherits from this parent class.

4.4.2 Additional algorithm
Implementation of a second algorithm required a new class: HJDirectSearch. This
class was implemented first, and copied the structure of the CompassSearch class.
Since the two classes had many of the same attributes and methods, we decided to
put their common attributes and methods into a parent class. A class diagram of
this inheritance relationship can be found in Fig. 4.6.

OptimizationAlgorithm class The OptimizationAlgorithm class includes mainly
the properties that are necessary for a pattern search algorithm. Both of the algo-
rithms require an initial step length and a tolerance for termination. A method,
isFinished() is used to check if the step length is below the tolerance.

HJDirectSearch class As mentioned in section 4.3.3, the compass search was
changed because of the implementation of HJDirectSearch. For the exploratory
moves, Hooke-Jeeves direct search will conduct a search for each MD value in-
dividually. It will first create a candidate perturbation in the positive direction,
and if this perturbation is valid it will be evaluated. If the positive direction gives
a better objective function value, the algorithm will go straight to the next MD
variable in the list and discard the negative direction. There will only be created
a perturbation for the negative direction if the perturbation in positive direction
fails to find a better objective function value.

An integer currentVariable, in HJDirectSearch, controls which of the MD
values in the Variables list that is to be altered and evaluated. This integer is
increased as the algorithm processes the result for the positive, and maybe neg-
ative, direction. As long as the currentVariable is less than the total number

23

Chapter 4. Implementation

OptimizationAlgorithm
tolerance : double
steplength : double
objectiveType : OptimizationWorkstep.Arguments.Modality
objectiveFunctionPlotter : ObjectiveFunctionPlotter
EvaluationsPerformed : int = 0
InvalidPerturbations : int = 0
PerforationPerturbationHandler : PerforationPerturbationHandler
BestCasePerturbation : Perturbation
NewPerturbations : Queue<Perturbation>

isFinished() : bool

CompassSearch
PerturbationsEvaluatedThisIteration : List<Perturbation>
EvaluatedPerturbations : List<Perturbation>

NextPerturbation : Perturbation
Iterate()
UpdateBestPerturbation()
FoundBetterPerturbationLastIteration() : bool
ShrinkAndPerturb()
StepAndPerturb()
Perturb()

HJDirectSearch
currentVariable : int = 1
positiveDirection : bool = true
invalidPatternMoves : int = 0
validPatternMoves : int = 0
BasePerturbation : Perturbation
CurrentPerturbation : Perturbation
TrialPerturbation : Perturbation
NextPertubation : Perturbation
WhatToDoNext()
ExploratoryMoves()
PatternMoves()
CreateTrialPerturbation() : Perturbation
ShrinkAndPerturb()
PerturbNext()
AnalyzeSimulation(baseCase : OptimizerCase)

Figure 4.6: Class diagram showing the inheritance relationship.

24

4.5. Optimize with two algorithms

of elements in the Variables list, ExploratoryMoves() are continued (see Al-
ternative 1 in Fig. 4.9). When the currentVariable reaches the total number
of elements in the list, the algorithm evaluates what to do next. The algorithm
either does a PatternMove() or ShrinkAndPerturb() based on the results from
ExploratoryMoves(). If it is decided to do a PatternMove(), a trial perturbation
is created and exploratory moves for the trial perturbation is conducted. Other-
wise, the steplength is halved and ExploratoryMoves() restarts with this new
step length.

4.4.3 Algorithm tracking
To analyze the performance and efficiency of the algorithms, some different counters
were implemented.

Candidate solutions Compass search was modified to alter the variables in
both directions, and we therefore had to insert validation of the perturbations.
Hooke-Jeeves direct search does not necessarily create a perturbation to check in
the negative direction. To analyze the algorithms correctly, we found it appropriate
to track the number of candidate perforation configurations suggested by the algo-
rithms. In the code, this number is incremented for every time a new perturbation
object is created.

Invalid perturbations After a perturbation is created we check the validity of
it to make sure that if we apply it as perforations to a well it is physically feasible.
We want to track the number of invalid perturbations to see if this can indicate
anything concerning the work efficiency of the algorithm.

Simulations We track the number of simulations for the same reasons we track
the number of invalid perturbations. In fact, the sum of invalid perturbations and
the number of simulations are equal to the number of candidate solutions. Either
a configuration is valid and will be simulated, or a configuration is invalid.

4.4.4 New choices in workstep form
As a consequence of the second algorithm, the user of the plug-in needs to be able
to choose which algorithm to use. The algorithm choice is implemented as a drop
down list in the workstep form. Fig. 4.10 shows the new look of the workstep form.

4.5 Optimize with two algorithms
The optimization plug-in can now run perforation optimization with two different
algorithms. When using the two algorithms, compass search and Hooke-Jeeves
direct search will start off in the same way. They will both explore the neighborhood
of the current base point. When this search is completed the compass search will
either move to a new point or reduce the step length. The Hooke-Jeeves direct

25

Chapter 4. Implementation

:Optimizer :BaseCase :HJDirectSearch :CaseMonitor

Initialize()

ApplyResolution(Well,Resolution)

new OptimizerCase()

new HJDirectSearch()

StartOptimization()

EvaluateNextHJ()

NextPerturbation

WhatToDoNext()

See Fig. 4.9See Fig. 4.9

NewPerturbations.Dequeue()

ApplyPerforationsToCase(BaseCase.Perturbation, BaseCase)

Simulate()

Figure 4.7: Sequence diagram for Hooke-Jeeves Direct Search part 1.

26

4.5. Optimize with two algorithms

:Optimizer :BaseCase :HJDirectSearch :CaseMonitor

RunCompleted()

RunCompleteAsync()

PostSimulationHJ()

UpdatePerturbationObjectiveValue()

AnalyzeSimulation(BaseCase)

EvaluateNextHJ()

Figure 4.8: Sequence diagram for Hooke-Jeeves Direct Search part 2.

27

Chapter 4. Implementation

:HJDirectSearch

WhatToDoNext()

ExploratoryMoves()

PerturbNext()

Alternative 1Alternative 1

ShrinkAndPerturb()

ExploratoryMoves()

PerturbNext()

Alternative 2Alternative 2

PatternMoves()

CreateTrialPerturbation()

ExploratoryMoves()

PerturbNext()

Alternative 3Alternative 3

Figure 4.9: Sequence diagram for Hooke-Jeeves Direct Search part 3.
28

4.5. Optimize with two algorithms

Figure 4.10: New form for optimization workstep.

search will do pattern moves if promising directions have been discovered, or it will
reduce the step length. Compass search will take many small steps on the path of
finding the best case, while Hooke-Jeeves have the opportunity to take long steps
in the search space if such an optimum is detected.

In the following chapter we conduct two experiments by using the Optimization
plug-in. We are curious to see the behavior of the algorithms when they are being
applied to a simulation case, and we want to see if we find similarities or differences
between the two algorithms when they are executed using the same parameters.

29

Chapter 5
Optimization plug-in in use

In this chapter we use the Optimization plug-in to do experiments with a simulation
case with one production well and one injection well. The first experiment is done
using only the Hooke-Jeeves direct search algorithm. In the second experiment we
rerun some cases from the first experiment, using the compass search algorithm.

5.1 Optimization set up

5.1.1 Base case

The base case for the experiments is relatively uncomplicated. It includes one hor-
izontal production well and one horizontal injection well. The production well is
placed right above the injection well (see Fig. 5.1). Included in the base case is a
strategy for determining the specifications for the wells. The injection well is con-
trolled by a bore hole pressure (BHP) target of 3700 psia, while the production well
is controlled by the liquid volume target rate of 3000 stb/day and has a BHP lower
limit of 1500 psia. Initially, the production well is cased and has one perforation
interval that spans from the heel of the well to the toe of the well. When applying
the Optimization plug-in to the production well, this only perforation interval will
be split into the number of segments that is given as resolution.

The base case used is a simple simulation case, but it is good enough for the test-
ing and analysis we want to do in this thesis. If we were to use a more complicated
case, the run time for each simulation would be longer.

5.1.2 Objective function

In the following experiments we want to maximize this objective function:

f = cumulative oil production - 0.1×cumulative water production

31

Chapter 5. Optimization plug-in in use

Figure 5.1: 3D view snapshot of base case well configuration.

5.1.3 Control variables

The control variables for this optimization is the list of MD values that represents
a set of perforation configurations. For each perforation there are two control
variables:

Variables = {startMD1, endMD1, startMD2, endMD2, ..., startMDn,
endMDn}

n = number of segments

5.1.4 Constraints

The constraints for the control variables in these experiments is the start and end
of the segments, and depends on the given resolution. For a detailed overview of
the constraint bounds, see Table A.1 in Appendix B. This table shows the base
case, with full perforation coverage, for different segment resolutions. A perforation
interval is required to be located within its given segment bounds to comply with
the constraints.

5.1.5 Input parameters

The required input parameters are the same for compass search and Hooke-Jeeves
direct search.

32

5.2. Experiments

Resolution/segments We use a different number of segments to study which
resolution will be ideal for the given base case. A greater number of segments
result in more control variables, hence more simulations, but may give a more
precise perforation configuration. We want to see which segment resolution that
results in the best objective function value, and to study how big is the effect of
increased control variables on the total number of simulations.

All the optimization runs in these two experiments start with one perforation
interval spanning from the heel to the toe of the production well. This single per-
foration is split into a given number of segments based on the input resolution. For
the cases in these experiments we have decided to use 2, 4, 8 and 16 segments. This
result in respectively 4, 8, 16 and 32 control variables. Fig. 5.2 shows well section
windows of the production well with the different resolutions and full perforation
coverage.

Tolerance The tolerance determines how detailed the last iteration of the search
is. This is related to the precision of the best case perforation configuration when
the optimization run is completed.

Initial step length The initial step length decides where to start the search in
the search space. We want to study this parameter to see how different initial step
lengths affect the objective function value and perforation configurations.

Maximum simulations This parameter is used as a termination condition of
the algorithm. The experiments completed through this thesis have used a value
for maximum simulations that was relatively high. This is because we wanted
the algorithms to reach the tolerance limit and not be stopped by the maximum
number of simulation.

5.1.6 Simulated evaluations ratio
Both algorithm implementations keep track of the number of candidate evaluations
suggested by the algorithm, and how many of them are actually simulated. For
each of the cases we will calculate the simulated evaluations ratio. We want to use
this ratio to compare the two algorithms to each other.

Ratio = simulations

candidates

5.2 Experiments
The first experiment uses the Hooke-Jeeves direct search to find input parameters
that gives the best objective function for the simulation case. In the second ex-
periment we run some of the cases from experiment again, but changing to the
compass search algorithm.

33

Chapter 5. Optimization plug-in in use

Figure 5.2: Well section image of different base case segment resolutions with full per-
foration coverage.

34

5.2. Experiments

The parameters chosen for these experiments were found after running some test
cases. We therefore know the actual segment lengths for the different resolutions.
Based on this we choose the different initial step lengths and tolerance values.

5.2.1 Experiment 1
In this first experiment we use the Hooke-Jeeves direct search algorithm to study
how change of the different input parameters affect the behavior of the algorithm.

Cases 1-4 In these cases, we want to study the effect of reducing the termination
term, tolerance. There are four cases with two segments, and all the cases start
with the same initial step length. We use four different tolerance values: {10, 5,
1, 0.5}. The assumption is that as the tolerance decreases, the more simulations
will be run. We are also interested to study if the different cases result in the same
best case perforation configuration and objective function value.

Cases 5-8 With cases 5-8 we want to study the effect of changing the initial step
length. All four cases split the perforation into four segments, and we keep the
tolerance fixed at 1. The different initial step lengths are: {45, 30, 25, 10}. For
these cases we want to see if different initial step lengths result in the same best
case, and discuss what can be the reason if they do not match.

Cases 9-11 In cases 9-11 we want to study the effect of increasing the number
of segments. The optimization is run for 2, 4 and 8 segments. We keep the other
parameters fixed for all three cases: the initial step length is 45, and the tolerance
is 1. With these cases we are curious to see which resolution reaches the best
objective function value and if any of them stands out. If so, how much better is
the objective function value with this resolution.

Cases 12-15 Here we do the same as for cases 9-11, but we want to increase the
number of segments even more. Because of the shorter segment length when we
have 16 segments, the initial step length needs to be reduced to 15 meters. We
keep the tolerance at 1, and the initial step length fixed for all four cases.

5.2.2 Experiment 2
We rerun seven of the cases in the first experiment with compass search instead
of Hooke-Jeeves direct search. The results from using compass search are to be
compared with the results from cases 5-8 and 9-11 with Hooke-Jeeves direct search.
These cases were chosen for a rerun because they gave some interesting results in
experiment 1, and we want see if the effect of parameter change is the same for
compass search.

With the cases in this experiment we want to compare the two pattern search
methods. We are curious to see if they result in the same perforation configurations
and objective function values. It is expected that the compass search will run more

35

Chapter 5. Optimization plug-in in use

simulations and have more configuration candidates, but we do not know how
big this difference is. Hooke-Jeeves only evaluate the control variable in negative
direction if the positive direction does not find a better objection function value.
Compass Search evaluates both directions regardless.

Cases 16-19 We run four optimization runs with four segments each and with
the tolerance fixed at 1. The initial step lengths are 45, 30, 25 and 10.

Cases 20-22 We run three optimization runs with 2, 4 and 8 segments. The
initial step length and tolerance are fixed at respectively 45 and 1.

5.3 Results
At first, we want to emphasize that with a different simulation case, optimization
runs with the same algorithms and input parameters will give different results.

Best case perforation configurations for all cases can be found in Table A.2 - A.4
in Appendix A. The most important observations are presented in the following
text.

For some of the cases we plot the objective function value against the number
of simulations. We use simulations instead of candidate evaluations because simu-
lations better show how much effort/time was used to reach the best case objective
function values. The data for these plots are collected from the output of the op-
timization run. For every time the algorithm finds a new better objective function
value, this objective function value and the current total simulation number is col-
lected. Simulation number 0 is the objective function value from the base case
evaluation. The last point in each measurement is the best case objective function
value with the total number of simulations completed.

5.3.1 Experiment 1 results
Results regarding simulations and candidate evaluations for experiment 1 is pre-
sented in Table 5.1.

Case 1-4 comments With these four cases we expected that as the tolerance
decreases, the more simulations are needed for the step length to reach the tol-
erance. The four optimization runs start with the same initial step length, 45,
and only the “finish line” is different between the four cases. Our expectations
are met and both the number of simulation and candidate evaluations increase as
the tolerance decreases. We take a closer look at case 1 and 4 to find what differs
between them. Case 1 needs 32 simulations to reach the best case objective value
of 85840.77 [m3], while case 4 reaches 85866.96 with 61 simulations. This is only a
difference of 26.19 [m3]. By reducing the tolerance to a smaller value we see that
there are possibilities for reaching a better objective function value, but in this case
it does not really give a big effect. Even so, case 4 has the best increased objective
function value of (85866.96 - 83908.11 =) 1958.85 [m3].

36

5.3. Results

Case No. of Initial Tolerance Simula- Candi- Ratio Best case
no. segments step length tions dates objective

[m] [m] [%] function
value

1 2 45 10 32 53 60 85840.77
2 2 45 5 37 61 61 85840.77
3 2 45 1 52 85 61 85865.46
4 2 45 0.5 61 100 61 85866.96

5 4 45 1 248 306 81 90823.04
6 4 30 1 276 334 83 90818.74
7 4 25 1 216 279 77 90817.97
8 4 10 1 373 462 81 90822.66

9 2 45 1 52 85 61 85865.46
10 4 45 1 248 306 81 90823.04
11 8 45 1 291 487 60 90808.96

12 2 15 1 34 62 55 83926.98
13 4 15 1 271 356 76 90819.70
14 8 15 1 365 478 76 90820.00
15 16 15 1 613 1029 60 90819.39

Table 5.1: Experiment 1 results - Overview of cases with Hooke-Jeeves Direct Search.

If we study the best case perforation configurations for the four cases we see
that case 1 and 2 reach the exact same solution. The reduction in tolerance from
10 to 5 does not actually impact the resulting best case configuration. The best
case perforation configuration differs with approximately 2 meters for the startMD
in the second segment when we compare case 1-2 to case 3-4. See table A.2 for
details.

Case 5-8 comments For cases 5-8 we wanted to study the effect of changing the
initial step length. One might think that with initial step length 45 it would require
more simulations to reach the tolerance than it would with initial step length 10.
This did not happen for these cases. It is actually the case with the lowest initial
step length, 10, that uses the most simulations.

Cases 6 and 7 reach almost the same objective function values, but a closer look
at the results show that they result in different best case perforation configurations
(see Fig. 5.3 and 5.4). The best case perforation configurations in segment 1, 2
and 4 can be considered in the same neighborhood, but the perforation interval in
segment 3 is very different between the two cases. These observations are the same
for cases 5 and 8.

The observations of cases 5-8 show that by having different initial step lengths,
the algorithm was unable to find the same optimum in the search space. One that
finds the best optimum among all the experiments is case 5 which reached the
highest objective value out of all the cases with 90823.04 [m3].

37

Chapter 5. Optimization plug-in in use

Figure 5.3: Best case perforation configuration case 6.

Figure 5.4: Best case perforation configuration case 7.

Cases 9-11 comments For cases 9 and 10 we reuse the results from case 3
and 5. Three cases are run with the same initial step length and tolerance, but
with a different number of segments. Case 10, with 4 segments, reaches the best
objective function value. The second best objective function value was found with
8 segments, which puts the case with 2 segments as the worst among these three
cases.

If we look at total number of simulations, case 11 has the most. This is natural
consequence of having more control variables with 291. Doubling the number of
segments also doubles the number of control variables. We therefore consider the
increased simulation numbers from case 9 to 11 as expected.

Cases 12-15 comments Initial step length 15 is not big enough for case 12
with 2 segment to find a good objective function value compared to the other three
cases. Cases 13-15 find objective function values that are approximately the same.

We see the same effect regarding total number of simulations as in cases 9-11.
More segment gives more control variables and consequently more simulations.

We want to compare the cases visually when it comes to best case perforation
configurations (see Fig. 5.5 - 5.7). It looks like there is a trend for having more
perforation coverage at the heel and at toe of the well.

Experiment 1 overall comments Based on the results from cases 1-15 it seems
like the best resolution for this base case is four segments. More cases with eight
segments and other input parameters may be conducted to investigate this resolu-
tion further.

None of the case runs with 2 segment reach an objective function value above
90000. Having 2 segments gives only four control variables, and maybe this resolu-
tion restricts the ability to specify enough in detail for the perforation configuration.

We have calculated the ratio of simulations divided by candidates for all cases
in experiment 1. The ratios range from 55 to 81 % for cases 1-15. Cases 1-4 have

38

5.3. Results

Figure 5.5: Best case perforation configuration case 13.

Figure 5.6: Best case perforation configuration case 14.

Figure 5.7: Best case perforation configuration case 15.

approximately the same ratio for all cases. The other groups of cases have varying
ratios.

We found that the results in cases 5-8 and 9-11 gave the most interesting results
and wanted to run the same cases with compass search.

5.3.2 Experiment 2 results
Results regarding simulations and candidate evaluations for experiment 2 is pre-
sented in Table 5.2.

Cases 16-19 comments When it comes to objective function, the two algo-
rithms reach roughly the same values. For most of the case comparisons, the
perforation configurations are very different, but one of the comparisons stand out.
Case 8 with Hooke-Jeeves direct search and case 19 with compass search reach
exactly the same objective function value, but have different perforation configura-
tion in the second segment (see Fig. 5.8 - 5.9). The difference is not very big, but
we see in the well section windows that they are not placed in the same location. A
reason for the exact same objective function value may be that the two perforation
configurations are placed within the same grid block. When the simulation is run,
this will result in the same objective function value.

We have plotted cases 5-8 with Hooke-Jeeves direct search in Fig. 5.10, and
cases 16-19 with compass search in Fig. 5.11. They were plotted in two separate

39

Chapter 5. Optimization plug-in in use

Case No. of Initial Tolerance Simula- Candi- Ratio Best case
no. segments step length tions dates objective

[m] [m] [%] function
value

16 4 45 1 267 384 70 90809.89
17 4 30 1 344 496 69 90820.34
18 4 25 1 358 512 70 90821.37
19 4 20 1 711 944 75 90822.66

20 2 45 1 54 88 61 85865.46
21 4 45 1 267 384 70 90809.89
22 8 45 1 579 1024 57 90808.66

Table 5.2: Experiment 2 results - Overview of cases with Compass Search.

Figure 5.8: Best case perforation configuration case 8.

Figure 5.9: Best case perforation configuration case 19.

40

5.3. Results

figures so that the curves do not overlap each other. The first we notice is that
the curves for Hooke-Jeeves direct search cases take “large vertical jumps” for the
objective function values before they even out in horizontal direction. This is in
contrast to the compass search curves which have more “even edges”. We know from
the implementation that the compass search method moves to a neighboring point if
this point have a better objective function value than the base point. Hooke-Jeeves
on the other hand can take “long” pattern moves in a specified direction if such
pattern moves continue to find better objective function values. This is probably
the reason for the jagged curves for cases with Hooke-Jeeves direct search.

0 100 200 300 400 500 600 7008.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2
·104

Simulations

O
bj

ec
tiv

e
fu

nc
tio

n
[m

3]

Optimization Cases 5-8

Case 5
Case 6
Case 7
Case 8

Figure 5.10: Plot of cases 5-8 with Hooke-Jeeves Direct Search.

Cases 20-22 comments The two algorithms reach the same objective function
values for 2 segments (case 9 and 20), and approximately the same value for 8
segments (case 11 and 22). For 4 segments (case 10 and 21), the two algorithms
have different best case objective function values.

When it comes to the perforation configuration Hooke-Jeeves direct search and
compass search reach the same solution with 2 segments. In the cases with 4 and

41

Chapter 5. Optimization plug-in in use

0 100 200 300 400 500 600 7008.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2
·104

Simulations

O
bj

ec
tiv

e
fu

nc
tio

n
[m

3]

Optimization Cases 16-19

Case 16
Case 17
Case 18
Case 19

Figure 5.11: Plot of cases 16-19 with Compass Search.

42

5.3. Results

8 segments, the two algorithms only have the same perforation configuration for
their respective first segment. For the other segments, the algorithms have different
perforation configurations.

The algorithms use approximately the same amount of simulations for 2 and
4 segments (52 vs. 54, and 248 vs. 267), but almost doubling the simulations for
the case with 8 segments (291 vs. 579). Compass search produces twice as many
candidate evaluations for the case with 8 segments.

Cases 9 to 11 and cases 20 to 22 are all plotted in Fig. 5.12. We see that the
curve for case 20 approximately covers the curve for case 9, which is consistent
with the identical best case objective function value and best case perforation
configuration for the two cases. For cases 10 and 11 we again see the “vertical
jumps” before evening out in horizontal direction for Hooke-Jeeves direct search.
Cases 21 and 22 with compass search shows more rounded edges in their curves.
The doubling of simulations when comparing case 11 and case 22 is very well
illustrated in this plot. We see that the curve for case 22 does not reach the same
approximate values for objective function until after case 11 is completed.

0 100 200 300 400 500 6008.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2
·104

Simulations

O
bj

ec
tiv

e
fu

nc
tio

n
[m

3]

Optimization Cases 9-11 and 20-22

Case 9
Case 10
Case 11
Case 20
Case 21
Case 22

Figure 5.12: Plot of cases 9-11 with Hooke-Jeeves Direct Search and cases 20-22 with
Compass Search.

43

Chapter 5. Optimization plug-in in use

Experiment 2 overall comments Comparing case 8 and 19 shows that it is
actually possible to reach the same objective function value while not having the
same perforation configuration. The most probable reason for this is that the
different perforation configurations are placed within the same grid block. The
simulator does not take the perforation placement into account, it only calculates
the transmissibility from one grid block to another.

The simulated evaluations ratio for cases 16-22 spans from 57 to 75 %. This is
in contrast to the respective cases run with Hooke-Jeeves direct search (cases 5-11)
with ratio ranging from 60 to 83 %. This can be seen as a clear effect of the way
these two algorithms creates new candidate configurations. The compass search
evaluates all valid candidates in both positive and negative directions, while Hooke-
Jeeves direct search only evaluate in the negative direction if the positive direction
does not find a better objective function value. The Hooke-Jeeves algorithm will
never suggest many of the candidate solutions that the compass search will take
into evaluation. Based on what we know from the implementation of the two
algorithms, the different ratio results for these two algorithms is expected.

5.4 Conclusion
Reduction of the tolerance resulted in more simulations, but not necessarily a better
objective function value. When tolerance becomes smaller, the step length towards
the end of the optimization run also gets smaller. The new candidate configurations
at this time will therefore not be much different than the current best case. This is
probably one of the reasons why we do not get much better results when reducing
the tolerance to such a low value as 0.5 meter. Another reason may be that the
grid blocks in the simulation case is large. If they are much larger than the step
length, new perforation configurations will not change the simulation results. The
simulator will not notice if a perforation change location within a grid block.

We find that the change in initial step length affects where in the search space
we start our search. This parameter is very important for how the optimization
run progresses and where in the search space it finishes. We cannot in advance
tell what is the best initial step length when using these algorithms, because this
parameter is highly dependent on the simulation case.

By testing different segment resolutions these experiments gave the highest
objective function value for case 5 with 4 segments. We cannot conclude that this
is the best resolution for this simulation case, because cases run with 8 and 16
segments reach objective function values that are almost the same. More tests may
be run to see if there is any of the segment resolutions that really stands out as the
best solution. This parameter may also be very case sensitive because we do not
know how different simulation cases will react to these resolutions. The increase
to 16 segments (32 control variables) indicated more perforation coverage at the
heel and toe of the well. The toe and heel of the well covers a larger part of the
formation. Inflow from the formation will be higher in the toe and heel compared
to other parts of the well.

By running optimizations with the same input parameters for Hooke-Jeeves

44

5.4. Conclusion

direct search and compass search we find that compass search requires more simu-
lations to reach the tolerance. As control variables increase this difference becomes
larger. This is a consequence of compass search evaluating all directions before
analyzing the resulting objective function values. Hooke-Jeeves direct search goes
with the first and better solution it finds. When applying this plug-in to more
complex simulation cases where each simulation requires more time, the number of
simulations will be an important factor. If we compare the best case perforation
configurations and objective function values the algorithm differences are so small
that they are not worth mentioning. We see that the two algorithms find approxi-
mately the same best cases, but Hooke-Jeeves direct search is able to find the best
case solution faster than the compass search.

The Hooke-Jeeves direct search can be considered more complex compared to
compass search method. While compass search continues to search in the perimeter
of the current base point, Hooke-Jeeves exploit the knowledge acquired through
exploratory moves and uses this to its advantage. Using the pattern search is a
more efficient way to find an optimum in the search space if such an area exists.

We have discussed that both resolution and initial step length may be case
dependent. When using this plug-in we should therefore pay most attention to these
two parameters. The initial step length provides the algorithms with a starting
point for the search, and this has great impact to where in the search space the
algorithm finishes. The resolution divides the well into smaller segments and gives
us the opportunity to find the best number of perforation intervals for the given
well. Having many segments result in many control variables for the optimization
run, but can give a more detailed configuration.

Based on the results from these experiments a proposed approach is to structure
the optimization runs when applying this plug-in. First, find one or a few reso-
lutions that produce good enough best case objective function values. For these
resolutions, investigate more by changing the initial step lengths. See if there is
a step length that may find an optimum in the search space. When good values
for these two parameters are found, the tolerance can be reduced to find a more
detailed configuration.

45

Chapter 6
Summary and further work

6.1 Summary
Implementation The original Optimization plug-in was extended with a sec-
ond pattern search method. Both compass search and Hooke-Jeeves can now be
used to optimize perforation configurations within a well segment for a given ob-
jective function value. Some modifications of the original compass search were
implemented for the two algorithms to be properly comparable.

Algorithm comparison It is clear from the total numbers of simulations that
Hooke-Jeeves direct search is more efficient than the compass search. The assump-
tion that there may be a better function value in a detected promising direction of
the search space saves a lot of simulation runs. Compass search moves very slowly
towards the optimum in comparison with Hooke-Jeeves direct search.

Grid block size Both when it comes to initial step length and segment resolution
we need to take the grid block size of the simulation case into consideration. If the
segment resolution is small with respect to grid block size, change of a perforation
within a segment will not be noticed by the reservoir simulator. The change in
perforation configuration will therefore not give changes in objective function value.
A perforation may also become trapped within a grid block. If the step length is
too short to create a new configuration that crosses a grid block interface, change
in the perforation configuration will not give any different simulation results.

Different approaches for new perturbations Since Hooke-Jeeves was imple-
mented with evaluating each of the MD variables in both positive and negative
direction, the compass search was changed to use this same approach. It would
be interesting to see if the two different implementations of compass search that
was discussed in chapter 4 find the same best case objective function values and
perforation configurations. The total number of simulations will probably also be

47

Chapter 6. Summary and further work

different. They will probably not find the same solutions because we have seen that
the perforation configurations in these experiments does not seem to be placed in
the center of the segments. We conclude that the details of how an algorithm is
implemented may have large impact on the result when using the algorithm.

6.2 Recommendations for further work
Perforations on/off In this thesis we have only been concerned with the place-
ment of a perforation within a given segment. What if we shut off one or more of
the perforation intervals, e.g. so that only three out of four perforations can pro-
duce. It would be interesting to see how this concealment will affect the objective
function value.

Optimization of other well completions For this Optimization plug-in to be
useful for optimizing the entire well completion process, the plug-in can be extended
even more. Other well completion types may be e.g. ICDs, sand control systems,
packers, and the different settings for these completions.

More algorithms Currently the plug-in is specialized for pattern search meth-
ods. We implemented an OptimizationAlgorithm parent class for CompassSearch
and HJDirectSearch. If algorithms which are not of pattern search type is to be im-
plemented, the name of the parent class can be changed to PatternSearchAlgorithm
to separate the categories.

Additional well It is possible to add another well as input parameter, and op-
timize perforation configurations for both wells at the same time. If this was
implemented, the Optimization plug-in would be able to handle more complicated
simulation cases.

Optimization results into file The output from a run with the Optimization
plug-in is now done in the Petrel Message Log. If this output was written and
automatically saved to a file, we can run several optimizations in sequence using
the Petrel workflow editor.

48

References

[1] Statoil, “2015 annual report on form 20-f,” 2015, accessed May 24th 2016. [On-
line]. Available: http://www.statoil.com/no/InvestorCentre/AnnualReport/
AnnualReport2015/Documents/DownloadCentreFiles/01 KeyDownloads/
Annual report on form 20-F.pdf.

[2] S. Rassenfoss and A. Henni, “Low oil prices make innovation a priority,” Con-
ference Review, Society of Petroleum Engineers, February 2015, SPE-0215-
0056, DOI: 10.2118/0215-0056-JPT.

[3] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006,
DOI: 10.1007/978-0-387-40065-5.

[4] R. Hooke and T. A. Jeeves, “”Direct Search” Solution of Numerical and
Statistical Problems,” J. ACM, vol. 8, no. 2, pp. 212–229, Apr. 1961. [Online].
Available: http://doi.acm.org/10.1145/321062.321069

[5] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods:
then and now,” Journal of Computational and Applied Mathematics,
vol. 124, no. 1–2, pp. 191 – 207, 2000, numerical Analysis 2000.
Vol. IV: Optimization and Nonlinear Equations. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042700004234

[6] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,”
SIAM Review, vol. 45, no. 3, pp. 385–482, 2003. [Online]. Available:
http://dx.doi.org/10.1137/S003614450242889

[7] E. J. M. Baumann, “Fieldopt: Enhanced software framework for petroleum
field optimization,” Master’s thesis, Norwergian University of Science and
Technology, June 2015.

[8] M. J. Box, D. Davies, and W. H. Swann, Non-linear optimization techniques.
Published for Imperial Chemical Industries Ltd by Oliver Boyd, 1969.

49

http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2015/Documents/DownloadCentreFiles/01_KeyDownloads/Annual_report_on_form_20-F.pdf
http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2015/Documents/DownloadCentreFiles/01_KeyDownloads/Annual_report_on_form_20-F.pdf
http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2015/Documents/DownloadCentreFiles/01_KeyDownloads/Annual_report_on_form_20-F.pdf
http://doi.acm.org/10.1145/321062.321069
http://www.sciencedirect.com/science/article/pii/S0377042700004234
http://dx.doi.org/10.1137/S003614450242889

References

[9] T. Ellis, A. Erkal, G. Goh, T. Jokela, S. Kvernstuen, E. Leung, T. Moen,
F. Porturas, T. Skillingstad, P. B. Vorkinn, and A. G. Raffn, “Inflow control
devices - raising profiles,” Schlumberger Oilfield Review, vol. 21, no. 4, pp. 30–
37, 2010, [Online]. Available: http://69.18.148.100/∼/media/Files/resources/
oilfield review/ors09/win09/03 inflow control devices.pdf.

[10] S. of Petroleum Engineers, accessed May 13th 2016. [Online]. Available: http:
//petrowiki.org/PEH%3APerforating.

[11] F. Jahn, M. Cook, and M. Graham, Hydrocarbon Exploration & Production,
2nd ed. Elsevier Science, March 2008, iSBN0-444-53236.

[12] M. Avriel, Nonlinear programming: analysis and methods. Prentice-Hall,
1976.

[13] Petrel E&P Software Platform by Schlumberger, version 2015.4. Accessed
May 23rd 2016. [Online]. Available: https://www.software.slb.com/products/
petrel.

[14] ECLIPSE 100 Industry-Reference Reservoir Simulator by Schlumberger. Ac-
cessed May 28th 2016. [Online]. Available: https://www.software.slb.com/
products/eclipse.

[15] Ocean Software Development Framework by Schlumberger, version 2015. Ac-
cessed May 23rd 2016. [Online]. Available: https://www.ocean.slb.com/en.

[16] L. Bass, P. Clements, and R. Kazman, Software Arcitecture in Practice, 3rd ed.
Addison-Wesley, 2013.

[17] Microsoft., “.NET,” accessed May 28th 2016. [Online]. Available: https:
//www.microsoft.com/net.

[18] Microsoft, “Introduction to the C# Language and the .NET Framework,”
accessed April 28th 2016. [Online]. Available: https://msdn.microsoft.com/
en-us/library/z1zx9t92.aspx.

[19] Microsoft Visual Studio, “Introducing visual studio,” accessed May
24th 2016. [Online]. Available: https://www.visualstudio.com/products/
vs-2015-product-editions.

[20] I. Sommerville, Software Engineering, 9th ed. Pearson, 2011.

[21] H. Trætteberg, “Objectorientert programmering,” last edited Oct 10 2013.
Accessed: May 27th 2016. [Online]. Available: https://www.ntnu.no/wiki/
display/tdt4100/Objektorientert+programmering.

[22] B. Stroustrup, The C++ programming language, 4th ed. Addison-Wesley,
2013.

[23] Petrel Help Center, Schlumberger, manual for Petrel E&P Software Platform,
version 2015.2.

50

http://69.18.148.100/~/media/Files/resources/oilfield_review/ors09/win09/03_inflow_control_devices.pdf
http://69.18.148.100/~/media/Files/resources/oilfield_review/ors09/win09/03_inflow_control_devices.pdf
http://petrowiki.org/PEH%3APerforating
http://petrowiki.org/PEH%3APerforating
https://www.software.slb.com/products/petrel
https://www.software.slb.com/products/petrel
https://www.software.slb.com/products/eclipse
https://www.software.slb.com/products/eclipse
https://www.ocean.slb.com/en
https://www.microsoft.com/net
https://www.microsoft.com/net
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.ntnu.no/wiki/display/tdt4100/Objektorientert+programmering
https://www.ntnu.no/wiki/display/tdt4100/Objektorientert+programmering

References

[24] Schlumberger, “Schlumberger oilfield glossary - MD,” accessed May 30th 2016.
[Online]. Available: http://www.glossary.oilfield.slb.com/Terms/m/md.aspx.

51

http://www.glossary.oilfield.slb.com/Terms/m/md.aspx

Appendix A
Experiment results

53

Appendix A. Experiment results

Segments StartMD EndMD Base case objective function value
2 1095.31 1393.47 83908.11

1393.47 1691.64
4 1095.31 1244.39 83908.11

1244.39 1393.47
1393.47 1542.56
1542.56 1691.64

8 1095.31 1169.85 83908.11
1169.85 1244.39
1244.39 1318.93
1318.93 1393.47
1393.47 1468.02
1468.02 1542.56
1542.56 1617.10
1617.10 1691.64

16 1095.31 1132.58 83908.11
1132.58 1169.85
1169.85 1207.12
1207.12 1244.39
1244.39 1281.66
1281.66 1318.93
1318.93 1356.20
1356.20 1393.47
1393.47 1430.74
1430.74 1468.02
1468.02 1505.29
1505.29 1542.56
1542.56 1579.83
1579.83 1617.10
1617.10 1654.37
1654.37 1691.64

Table A.1: Base case perforation configurations for segments 2, 4, 8 and 16 with full
coverage.

54

Case no. StartMD EndMD Best case
objective function value

Case 1 1095.31 1393.47 85840.77
1505.97 1691.64

Case 2 1095.31 1393.47 85840.77
1505.97 1691.64

Case 3 1095.31 1393.47 85865.46
1503.16 1691.64

Case 4 1095.31 1393.47 85866.96
1503.86 1691.64

Case 5 1096.71 1143.14 90823.04
1316.11 1337.22
1494.72 1497.56
1590.37 1633.98

Case 6 1095.31 1146.89 90818.74
1315.64 1337.22
1505.97 1514.43
1595.06 1635.39

Case 7 1095.31 1144.39 90817.97
1308.45 1318.47
1405.97 1417.56
1589.43 1635.39

Case 8 1095.31 1144.39 90822.66
1303.14 1313.47
1400.97 1412.56
1590.06 1636.64

Case 9 1095.31 1393.47 85865.46
1503.16 1691.64

Case 10 1096.71 1143.14 90823.04
1316.11 1337.22
1494.72 1497.56
1590.37 1633.98

Case 11 1095.31 1147.35 90808.96
1242.97 1244.39
1309.08 1318.93
1358.31 1370.97
1466.60 1468.02
1541.14 1542.56
1590.37 1600.22
1638.19 1674.76

Table A.2: Best case perforation configurations for cases 1 - 11 using Hooke-Jeeves
Direct Search. 55

Appendix A. Experiment results

Case no. StartMD EndMD Best case
objective function value

Case 12 1095.31 1391.60 83926.98
1393.47 1691.64

Case 13 1095.31 1146.89 90819.70
1308.14 1318.47
1395.35 1407.56
1589.43 1635.39

Case 14 1095.31 1143.60 90820.00
1211.10 1214.39
1289.39 1300.18
1369.56 1374.72
1408.47 1415.52
1509.27 1512.56
1591.31 1598.35
1635.85 1672.89

Case 15 1095.31 1132.58 90819.39
1132.58 1143.60
1190.47 1192.12
1227.75 1229.39
1265.02 1266.66
1306.04 1315.18
1339.56 1341.20
1376.83 1378.47
1406.60 1415.74
1451.37 1453.02
1488.64 1490.29
1525.91 1527.56
1578.18 1579.83
1592.95 1605.85
1628.35 1643.12
1665.62 1682.27

Table A.3: Best case perforation configurations for cases 12 - 15 using Hooke-Jeeves
Direct Search.

56

Case no. StartMD EndMD Best case
objective function value

Case 16 1095.31 1143.14 90809.89
1314.70 1338.63
1531.29 1542.56
1655.06 1691.64

Case 17 1095.31 1146.89 90820.34
1315.64 1337.22
1532.22 1542.56
1655.06 1691.64

Case 18 1096.87 1144.39 90821.37
1316.27 1337.22
1532.54 1542.56
1658.18 1691.64

Case 19 1095.31 1144.39 90822.66
1313.14 1323.47
1400.97 1412.56
1590.06 1636.64

Case 20 1095.31 1393.47 85865.46
1503.16 1691.64

Case 21 1095.31 1143.14 90809.89
1314.70 1338.63
1531.29 1542.56
1655.06 1691.64

Case 22 1095.31 1147.35 90808.66
1240.16 1244.39
1311.89 1318.93
1387.84 1393.47
1393.47 1400.52
1538.33 1542.56
1587.56 1594.60
1655.07 1691.64

Table A.4: Best case perforation configurations for cases 16 - 22 using Compass Search.

57

	Introduction
	Pattern search optimization
	General optimization theory
	Optimization theory concepts
	Numerical optimization categories

	Derivative-free optimization
	Pattern search methods
	Compass Search
	Compass search evaluation approaches

	Hooke-Jeeves Direct Search

	Petroleum production optimization using perforations
	Simulation-based optimization
	Problem formulation
	Objective of the optimization
	Optimizing well completions
	Perforation handling

	Pattern search methods in use

	Implementation
	Software
	Object-oriented programming
	Existing plug-in
	Workstep
	Classes
	Handling of perforation configuration candidates
	Compass Search

	New plug-in
	Inheritance
	Additional algorithm
	Algorithm tracking
	New choices in workstep form

	Optimize with two algorithms

	Optimization plug-in in use
	Optimization set up
	Base case
	Objective function
	Control variables
	Constraints
	Input parameters
	Simulated evaluations ratio

	Experiments
	Experiment 1
	Experiment 2

	Results
	Experiment 1 results
	Experiment 2 results

	Conclusion

	Summary and further work
	Summary
	Recommendations for further work

	References
	Experiment results

