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Abstract

The long-term ambition for the European power sector is to almost completely decarbonize
generation of electricity. There are potentially many ways of achieving this, however, assessing
an optimal transition to a low-carbon power system requires the use of advanced modeling tools.
This thesis presents a collection of papers addressing various topics related to capacity expan-

sion modeling of the European power system. The aim of the modeling is to evaluate cost-efficient
decarbonization strategies. The most significant contribution of this work is the development
of the European Model for Power system Investments (with high shares of) Renewable Energy,
EMPIRE. This is a multi-horizon stochastic programming model where investments are opti-
mized subject to operational uncertainty. The model simultaneously considers long-term and
short-term system dynamics, in addition to short-term operational uncertainty. Inclusion of all
these features is currently not used by any other capacity expansion model for the European
power sector.
The papers presented here focus on the formulation and applications of EMPIRE. Essentially

all the papers touch upon analysis of decarbonization pathways for the European power sector.
In addition, the role of carbon capture and storage (CCS) for decarbonizing the European power
sector is analyzed in one paper. In the same paper, an evaluation of support mechanisms for
enabling investments in demonstration CCS projects is presented. Another topic covered is
integration of global climate change mitigation strategies computed by an integrated assessment
model (IAM) in a study of the European power sector. This is handled through soft-linking of
the IAM called GCAM and EMPIRE. By linking top-down and bottom-up models in this way,
added detail can be provided to the IAM results. One paper presents a study where capacity
factors from EMPIRE are used in life cycle assessment of electricity generation technologies in
Europe. Improved estimations of utilization of different generation technologies can make the
LCA impact analysis more accurate.
In addition to the aforementioned topics, the thesis presents a contribution to the development

of convergence improvements for the Benders decomposition method applied to large-scale power
system investment planning problems. Also, a technique for improved handling of seasonal
storage in power system capacity expansion models is discussed.
The modeling studies show that large-scale deployment of wind power and carbon-capture

and storage is the most cost-efficient approach to decarbonize the European power sector. In-
termittent power generation should be built where the production potential is highest, and the
transmission system should be reinforced to be able to balance large fluctuations in renewable
production. If the transmission system is not developed, CCS becomes more important in the
decarbonization as less wind power can be deployed. In order to secure investments in demon-
stration CCS plants financial support policies are needed. Investments in solar PV are limited in
these studies, suggesting that additional cost reductions are needed for the technology to become
competitive without support policies.
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Prologue

This thesis disseminates my research on modeling development of European power sector, done
at the Department of Electric Power Engineering at the Norwegian University of Science and
Technology (NTNU). At the outset, this PhD work was part of a multi-disciplinary project called
Linking Global and Regional Energy Strategies (LinkS), in the research center FME CenSES,
Centre for Sustainable Energy Studies. A consortium of collaborators from SINTEF, University
of Maryland (UMD), Joint Global Change Research Institute (JGRCI), Tsinghua University and
NTNU, made up the team LinkS researcher. The focus of LinkS was energy and climate change
and the primary goals of the project were to:

1. Bring together scientific disciplines working on techno-economic energy system modeling
and public policy in direct collaboration.

2. Consolidate regional and global energy system modeling approaches used for climate change
mitigation analysis.

At the time I joined LinkS in August 2010 the project had already been ongoing for one year,
since its official commencement in June 2009. The consortium comprised research institutions
with extensive energy systems and integrated assessment modeling expertise, and a number of
pre-existing models were made available for the project (see Table 1 for an overview).
The work package my PhD research was organized under, was mainly responsible for con-

tributing to the second of the goals listed above. The main goal was to consider how global climate
mitigation strategies could provide guidelines for the development of the European power sector
at a national level. To address this issue, the decided approach was to link policy scenario anal-
ysis results from the Global Change Assessment Model (GCAM) to a capacity expansion model
of the European power system. The LinkS consortium already had a model of the European
power sector, the EMPS, however this model is a short to medium-term power market model
without endogenous investment capabilities. This feature has since been added to EMPS through
an implementation of a greedy algorithm (Jaehnert et al. 2013). Regardless of development of
the EMPS model, which was conducted in parallel to my research, it was decided that for the
purpose of the LinkS project, a power system investment model based on formal optimization
should be developed.
The modeling work ultimately led to the implementation of the European Model for Power

System Investment with (high shares of) Renewable Energy, or EMPIRE for short (Skar, Door-
man, and Tomasgard 2014b; Skar, Doorman, Pérez-Valdés, et al. 2016). Although the first
version of EMPIRE was officially presented at the 2011 INFORMS Annual Meeting,1 developing
it into a mature modeling framework took another year and a half. This was just in time to
finalize the contribution to the LinkS project, which ended in August 2013. Early in 2014 the

1. Skar, C., G. Doorman and A. Tomasgard. Long-term expansion of the European power system governed by
global emission mitigating strategies. In: 2011 INFORMS Annual Meeting, November 13–16, 2011.
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Table 1: The modeling portfolio in the LinkS project in 2010

Model Sector Scope Type Institute

GCAMa Energy system,
agriculture and
land-use

Global Integrated
assessment

JGCRI

WGMb Natural Gas Global/Regional Mixed-
complementarity

UMD

CHINA-
TIMESc

Energy system China Optimization Tsinghua

EMPSd Electricity Europe Optimization SINTEF
a Global Change Assessment Model (Kim et al. 2006)
b World Gas Model (Egging, Holz, and Gabriel 2010)
c The TIMES modeling system with a Chinese data set (Chen, Yin, and Zhang 2013)
d EFI’s Multi-Area Power Market Simulator (Wolfgang et al. 2009)

final report, with the EMPIRE modeling documented in Chapter 8, was published (Bakken et al.
2014).
During Spring 2013, EMPIRE received attention from the Market Economics (ME) group of

the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP). The group
was tasked to investigate the role of carbon capture and storage (CCS) in a future low carbon
European electricity system with high penetrations of intermittent renewables. In addition,
support measures to aid deployment of demonstration CCS were to be evaluated. The ME
group found that EMPIRE had the right features needed for the study, and decided to use it as
the modeling tool for the project. The work took place between April and October in 2013 and
resulted in a ZEP report published in November the same year (ZEP 2013).2
Whereas the work in the LinkS project resulted in the implementation of EMPIRE, with

extensive help and fruitful discussions with members of the consortium, the collaboration with
ZEP in many ways paved the way for the research results presented in this thesis. The numerous
discussions with ZEP members have provided me with a valuable insight regarding different per-
spectives on decarbonization among stakeholders in the European power industry. Furthermore,
through the work with ZEP I have gained a deeper appreciation for models as powerful tools for
decision support, helping me focus not just on model development, but also utilization.
The path this PhD research project took, diverged somewhat from what I originally foresaw

in the beginning. The main contribution turned out to be EMPIRE, and the modeling results
it produced, rather than the integration between GCAM and EMPIRE. The latter ended up
being a partial contribution. I’ve realized that one of the greatest advantages of doing a PhD
project is the freedom and flexibility it allows for re-defining the plan along the way, based on
the opportunities that arise.

2. The following link is an example of the coverage the ZEP ME report published in 2013 received http:
//www.modernpowersystems.com/features/featureccs-its-now-or-never-4186482/. [Accessed March 2016]
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Chapter 1

Introduction

The threat of climate change has actuated the need for ambitious efforts to reduce greenhouse gas
emissions to mitigate, or at least moderate, the damaging impact this will have. According to the
IPCC, 25 % of the total 49 Gt CO2-eq global anthropogenic direct emissions was attributed to
electricity and heat production in 2010 (IPCC 2014, p.9, Figure SPM.2). For Europe, the latest
European Environment Agency (EEA) greenhouse gas inventory report for the EU-28 countries
shows that public electricity and heat production accounted for 26 % of the domestic emissions
(Turano et al. 2015, p. 84). In other words, a significant portion of the climate change mitigation
efforts will have to focus on the electricity sector. Potentially, emissions from other sectors as
well, most notably transport (with a share of 14 % of the global emissions in 2010), could be
addressed in the electricity sector through fuel-shifting from petrol to electricity (Lechtenbömer
and Samadi 2015).1 In 2011 the European Commission published a study of decarbonization
scenarios for the energy sector in Europe, the “Energy Roadmap 2050” (EC 2011b). The long-
term goals set by the Commission is to reduce domestic emissions to 80–95 % of 1990’s levels,
by 2050 (EC 2011a). According to the Energy Roadmap 2050 report, this entails increasing the
share of electricity in the energy mix, while simultaneously decarbonizing the electricity supply
almost completely. Needless to say, the way we produce and use electricity will have to change
dramatically over the next decades. That will be the backdrop of this thesis.

1.1 Decarbonization of electric power
There are several advantages with electricity as an energy carrier. First and foremost, it is
extremely versatile, being used for everything from powering electronic appliances to running
electric motors. Secondly, it can be transported quickly, almost at the speed of light, with
relatively moderate loss. Thirdly, it can be generated using several different low-carbon, or
even no carbon, technologies (i.e. technologies with low or no direct emissions). On the other
hand, large-scale storage of electricity is a scarce resource in today’s power systems, which makes
system operation a complicated process.
Generally, three categories of power generation technologies are considered as possible options

for reducing the carbon intensity of electricity generation: nuclear power, carbon capture and

1. Zwaan, Keppo, and Johnsson (2013) use a full (optimization) energy system model to show that the cheapest
way to decarbonize the transport sector in the long-run is through the use of hydrogen fueled cars. However,
fuel-shifting to hydrogen requires infrastructure which is not in place today. This is less of a problem for electric
vehicles.

1



2 1. Introduction

storage (CCS) and renewable energy (Lechtenbömer and Samadi 2015). The challenge is that
there are significant trade-offs between the technologies related to cost, complexity to integrate
into the grid, safety, technology maturity and other metrics.
Nuclear power has many advantages seen from a low-carbon generation perspective. Upon

construction, nuclear power plants produce large amounts of electricity with virtually no direct
carbon emissions, at very low operating costs. Safety, in particular, has for a long time been a
concern with nuclear power as the environmental consequences of accidents can be catastrophic.
Other issues as well, such as high capital costs and complex challenges associated with fuel waste
management, play a role (Joskow and Parsons 2012). Following the Fukushima accident in 2011,
any hopes of a new nuclear renaissance have been effectively quelled in Europe.
Carbon capture and storage is viewed as a promising technology for transitioning the Eu-

ropean power system into a low-carbon future. Simplistically speaking, the idea behind the
technology is to generate electricity by burning fossil fuels (such as coal and natural gas), and
somewhere in the process capture the CO2 that would normally be emitted into the atmosphere.
The captured carbon is then transported and stored, indefinitely. The advantage of this technol-
ogy is that plants with CCS can be operated more or less as conventional plants, providing the
system with operational flexibility, while the emissions are just a fraction of unabated fossil fueled
generation. The European Commission has stated that CCS is a key technology for cost-effective
decarbonization, EC (2013), however, due to a lack of successful demonstration projects the role
of CCS as a carbon reduction solution is uncertain. The main obstacle faced by CCS is that
the technical feasibility, and commercial viability, of a complete carbon capture, transport and
storage chain for power generation must be proven. Currently the cost estimates for CCS are
high, but these are anticipated to decrease through technology learning following deployment of
demonstration projects (ZEP 2011). Exactly where the captured carbon should be stored is an
open question, but it is not unlikely that offshore storage sites have to be used, and a significant
transport infrastructure will then be required (Hirschhausen, Herold, and Oei 2012).
Regarding renewable generation technologies available today, wind power and solar photo-

voltaic (PV) are the most promising in terms of maturity, cost and availability for large-scale
deployment. In terms of environmental impacts during operation, wind and solar power are
perhaps the best performing technologies of all the low-carbon options. However, a compli-
cating factor is that their generation is fluctuating, uncertain and non-dispatchable. The non-
dispatchability and uncertainty poses a problem for the most fundamental objective of operating
an electricity system, preserving the balance between load and generation. Unless this condition
is met, failures throughout the system can occur, which in the worst case may lead to a full
system break down (black out), with serious societal and economic consequences. Introducing
large quantities of non-dispatchable renewables therefore requires careful planning to ensure a
reliable, secure and non-interrupted supply of electricity (a good overview of important planning
aspects is provided by Perez-Arriaga and Batlle (2012)). This means not just considering the
installed generation capacities of various technologies, both renewable and non-renewable, and
their ability to serve load, but also the transmission system’s ability to effectively transfer power
from where it is produced to where it is needed. The choice of technology mix, and particularly
the spatial deployment of renewables, strongly affects requirements for infrastructure.
None of the low-carbon technologies completely dominate the others on all relevant metrics

they can be evaluated. An optimal system design will therefore comprise a mix of technologies.
As all the technologies have different characteristics their composition in a system will have op-
erational impacts which are important to keep in mind. This calls for a holistic system analysis
for studying the role of various technologies in decarbonizing the power sector. Such an approach
should in addition assess the transmission infrastructure and possible emerging technologies on
the demand side, such as energy storage and demand side management. Furthermore, it is appro-
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priate for studies to adopt a market context, as supply and demand for electricity is organized
in electricity markets throughout Europe. In sum, all these considerations make the issue of
decarbonizing the European electric power sector complicating to address, and necessitates the
use of modeling tools.

1.2 Scope
The research presented in this thesis focuses on optimization based power market modeling of
carbon emission reduction strategies, at national levels, for the European power sector. The
term strategies is meant to encompass the choice of investments in generation, transmission and
storage capacities, and their utilization to cover demand for electricity, in response to a climate
policy. In particular, the modeling aims to address how to optimize investments under short-
term operational uncertainty. With ever increasing shares of intermittent renewable penetration
in the power generation mix, this becomes a highly important aspect to consider.
The main topics covered are design of investment models for large-scale power systems, es-

pecially stochastic models, and applications of such models in studies of global climate policies,
technology support schemes and life cycle assessment analysis. The thesis also touches upon
solution methods for large-scale stochastic programming models in energy. All the analyses pre-
sented focus only on Europe, however, the modeling methodology can in principal be applied to
any region with an organized power market.
There are several topics related to the research presented in this thesis, which should be

acknowledged, but are not treated. In terms of modeling, the work presented here exclusively
use an optimization model representing a prefect competition market setting. Equilibrium models
are not covered, although these types of models are suitable for representing a wider range of
market conditions (e.g. situations where actors have market power), see Gabriel et al. (2013).
The current debate on future design of the European energy market, see EC (2015) and IEA
(2016), is naturally of high importance for the future development of the European power sector,
but this is not discussed in this thesis. Throughout the modeling presented here a perfectly
integrated European power market is assumed. Furthermore, national policies for renewable
energy support and capacity mechanisms, are not included.

1.3 Organization of thesis
The structure of the thesis is as follows: Chapter 2 provides a general background, and then
a discussion of recent literature, for the different research topics where contributions have been
made. The papers included in this thesis are discussed in context of current and relevant research
literature. The chapter begins with an introduction of investment modeling for large-scale power
system, particularly focusing on models developed for decarbonization studies of the European
system. Then, stochastic optimization methodology applied to these types of modeling problems
is discussed. Various applications of power system capacity expansion models are highlighted.
This is followed by a discussion on top-down and bottom-up modeling for energy and climate
policy analysis. The focus, specifically, is on soft-linking of top-down integrated assessment
models and bottom-up electricity market/investment models with more refined detail.
In Chapter 3, a list of the papers and a summary of their specific individual contributions are

provided. The general conclusions based on the research are discussed in Chapter 4, along with
suggested further work in this field. Finally, a list of references for the first part of the thesis is
given. The papers presenting the actual research are included as appendixes.
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Chapter 2

Background

2.1 Modeling decarbonization pathways for the European power system
Following the liberalization of the electric power industry in Europe during the 1990s, generation
of electricity has been organized through unbundled generation companies operating in power
markets. As a consequence, investments in generation technologies are no longer the respon-
sibility of, or controlled by, vertically integrated utilities. This means that any initiative for
reducing emissions and promoting low-carbon technologies must come in the form of regulations
and policies affecting decisions being made in a liberalized market setting. From a modeling
perspective it is therefore important to represent power market dynamics and how these are
affected by policies.

2.1.1 Capacity expansion models for the European power sector
From the field of mathematical programming, the capacity expansion problem concerns the
optimal development of a supply chain serving some form of demand for a good (or a set of goods).
The set of decision variables typically comprises both decisions about capacity investments and
production decisions, which are co-optimized. Availability of various competing technologies can
easily be included, and through a suitable formulation of constraints, capacity expansion models
can include infrastructure requirements, resources availability, technology limitations and policies
affecting the supply chain. By covering an entire sector, and using a social welfare objective,1 the
model serves as a proxy for a model of the (long-term) development of a perfectly competitive
market for the good(s) in question.2 Due to these properties, capacity expansion models lend
themselves naturally as tool for electricity sector planning (Hobbs 1995). The term investment
model is used indistinguishably from capacity expansion model throughout this thesis.
Formulating a power system capacity expansion model is in principal not a difficult task.

Most of the aspects of mathematically describing the investment decision process and system
operation are fairly well understood. Formulating a model that is computationally tractable
for large-scale systems (i.e. solvable within reasonable time with numerical methods), on the

1. Under the assumption of inelastic demand a social welfare optimization problem coincides with a system
cost-minimization problem.

2. The connection between a competitive equilibrium of a single commodity market and social welfare max-
imization is discussed in Gabriel et al. (2013). See also Gürkan, Özdemir, and Smeers (2013) for a theoretical
discussion, and proofs, on equivalence between certain equilibrium models and optimization models for capacity
expansion in perfectly competitive markets.

5



6 2. Background

other hand, requires a great deal of simplifying assumptions, and approximations. Krishnan
et al. (2015) discuss various approaches used in planning models co-optimizing investments in
different types of power system assets, such as transmission and generation projects. There are
virtually unlimited ways to design a model by varying approximations and simplifications, and
it is therefore important that choices made reflect the purpose of the model. Some of the most
important aspects for which different capacity expansions models vary are listed below:

1. Spatial resolution and network flow modeling

2. Investment time steps and time horizon

3. Temporal granularity and horizon of operational modeling

4. Operational characteristics of generation technologies

5. Uncertainty modeling

All the elements in the above list are important to consider when designing a model for assessing
decarbonization strategies involving large shares of intermittent renewables. However, not all
these aspects can simultaneously be modeled in detail to the greatest extent possible as this
would lead to a prohibitively large optimization problem. In practice, models are either specially
designed to incorporate a selected few of the above items in significant detail, or they are design
to balance a selection of them.
The centerpiece of the research presented in this thesis is the European Model for Power

system Investments (with high shares of) Renewable Energy, or EMPIRE. The first introduc-
tion of EMPIRE appeared in Paper A (Skar, Doorman, and Tomasgard 2014b), although the
description was somewhat brief and rudimentary. A complete mathematical formulation and
modeling description of the current version of EMPIRE is given in Paper D (Skar, Doorman,
Pérez-Valdés, et al. 2016), which now serves as the primary reference to the model. The geo-
graphical coverage in EMPIRE is essentially the whole of Europe (with the exception of some
small countries), and the spatial detail is at national levels. Cross-border exchange of electricity
between countries is modeled using a transport model. Starting from a base year, EMPIRE
allows for investments in new capacity every fifth year, and the typical analysis horizon used
is 2050. Investments in generation capacity, interconnector capacity and storage capacity are
co-optimized with system operation using a minimum cost objective. The system operation is
modeled at an hourly time-scale, and the yearly operation is represented by typical days (Skar,
Doorman, Pérez-Valdés, et al. (2016) model four seasons using time segments of 48 hours). For
each country, generation capacity is aggregated by technology, which is modeled as generators
with linear production costs, maximum output constraints and ramp limits. Unit commitment
characteristics of generation, such as minimum stable levels, minimum up and down times, start
up times and start up costs, are not considered. One of the key features of EMPIRE is that
investments are made subject to uncertainty about operating conditions.
In the following a review is provided on how the aspects in the above list are treated in a

selection of recent optimization based capacity expansion models of the European system (with
the exception of uncertainty which is discussed separately in Sec. 2.1.2).
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8 2. Background

There is a rich selection of models developed for capacity expansion analysis for the European
power system. As most of these models are actively maintained and developed, a description of
each on the basis of the items in the above list might be misleading as the models are flexible and
can easily be changed to incorporate more detailed data sets, or generally improved modeling of
various system characteristics (such as network flow or operation of technologies). The purpose
of the following discussion is not to provide a final classification of different modeling systems
based on their intrinsic features, but rather to give a snapshot overview of the state-of-the-art in
optimization based capacity expansion models of the European power system to date, and the
commonly used assumptions for long-term development studies. Table 2.1 shows an overview of
a selection of ten capacity expansion models, in addition to EMPIRE, used for studies of the
European power sector for high shares of renewable energy, and their features. The author’s
view of a gold standard model, with all features modeled in significant detail is also provided.
In terms of spatial detail and network flow modeling it is clear that most of the models use

a national granularity and a transport model for the grid. This is used in EMPIRE and all the
other models, except COMPETES,3 ELMOD, DSIM and URBS-EU. The two latter use a sub-
national spatial detail level, which allows for national grids to be represented to some degree.
However, these models also use a transport formulation for the grid modeling. COMPETES
and ELMOD are the only models in this overview which endogenously approximates network
flows respecting Kirchhoff’s Voltage Law (KVL). ELMOD uses a DC load flow formulation, while
COMPETES uses a successive linear programming approach to solve the non-linear DC load flow
problem with losses. The increased accuracy in network flow modeling, however, does come at
the expense of added computational complexity, which is the reason why ELMOD use a myopic
investment procedure and only includes a few hours (18 in total) to represent the operation over
a year. A full AC-OPF capacity expansion model for co-optimizing transmission and generation
investments is detailed in Krishnan et al. (2015). Not only is this model non-linear, it is also
highly non-convex, which makes this an extremely challenging mathematical problem to solve.
At the present such a model is only of theoretical use.
When it comes to foresight and considerations of long-term dynamics in the investment

planning, three different approaches are taken in the different models, single step, multiple myopic
single steps and multiple steps within a single optimization. In the single step approach there are
typically two phases, one representing a period when investments are made, and a target year
of operation. The focus is on the “final” (target year) design of the system, not the transition
from today, as timing of investments and operation in intermediate years are not modeled. The
advantage of this approach is that the operational modeling is limited to a single year, which
in practice allows the models to incorporate more temporal and technological details. In the
literature review, the models COMPETES, DSIM and URBS-EU were found to be set up as
single step investment models.
The myopic approach is essentially a series of single step optimizations, with the aim to reflect

the transition of the system. This still allows for detailed operational modeling, and the time
spent on a complete model run is proportional to the number of steps taken. ELMOD, E2M2
and EMPS use this approach. The drawback of using a myopic investment planning is that
optimality of the investments is only ensured for the individual steps, not over their lifetimes. As
a result no guarantee of optimality can be given for the system design. The last approach, used
by DIMENSION, EMPIRE, LIMES and PowerACE-EU, is to incorporate investment steps and
operational years in a single operation. The advantage of such a setup is that, unlike the single

3. Two versions of COMPETES extended to handle investments are presented in the recent literature, one
with endogenous generation capacity investments, and one where both generation and transmission capacity
investments are endogenously co-optimized. In Table 2.1 the respective features of both of these versions are
presented.
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step models, optimal timing of investments can be determined, and, unlike the myopic models,
optimally of the investments are considered over a longer time horizon. The trade-off is that the
computational complexity of these models is highly sensitive to the detail level in operational
modeling, due to the incorporation of several years in the optimization. Therefore, as a result,
such models tend use representative days to model operation over a year. PowerACE-EU is an
exception in this respect as it covers several investment years and models a full annual hourly
operation for each.
Just a few of the investment models recently developed for the European power system

include much, or any, unit commitment (UC) consideration in the modeling of system operation.
However, a wide deployment of intermittent renewables does increase the need for flexibility in
the system, which is exactly what can be addressed by using a UC operational model (Brouwer
et al. 2014). Some studies therefore apply a capacity expansion model for determining generation
investments, and then utilize a more detailed unit commitment model for analyzing the system
operation (Brouwer et al. 2016).
The strong connection between investment planning and operational planning in capacity

expansion models is apparent from the development of many of these models. Many of them
actually started out as pure operational, or market, models, and have later been expanded
to include endogenous investments. COMPETES was originally designed as a market model for
analysis of strategic behavior in the European sector (Lise and Hobbs 2005).4 EMPS was designed
as a power market model used for management of large hydro reservoirs under uncertainty
(Wolfgang et al. 2009). ELMOD was one of the first large-scale markets model covering most of
Europe at a very detailed gird level (Leuthold, Weigt, and Hirschhausen 2012). Exceptions to
this practice are DIMENSION, DSIM, EMPIRE, LIMES and Power-Ace, which are all designed
from the ground up as capacity expansion models.

The challenge of seasonal storage in power system capacity expansion models

The mid-term dimension becomes a problem for models where short time segments (such as
typical days) are used to model the operation over a year. This type of setting can be useful for
representing seasonality of short-term dynamics, like load and renewable generation. However,
planning of seasonal energy storage is difficult to get right based on a single, or a few, day(s)
of a season. A common way to deal with this issue is to define energy limits for off-take from
energy storage during each short-term segment (see for instance Pudjianto et al. (2013) and Skar,
Doorman, Pérez-Valdés, et al. (2016)). As operational costs for the seasonal storage technologies
are typically low, e.g. reservoir hydro power has virtually zero variable costs, the energy limit tend
to be binding. If there is no link between typical days used to represent seasons, this approach
cannot capture the value of saving energy from one season to be used in another.5 As the energy
limits are usually based on historical data, this type of modeling will not be able to show how
the management strategy for seasonal storage should change according to the development of
the system.
Paper C (Brovold, Skar, and Fosso 2014) propose a way to include a medium term hydro

power scheduling perspective in the short-term operational modeling of capacity expansion plan-
ning, through the use of water values (WV). This approach circumvents the need to model long

4. The first version of COMPETES included several regions of the Benelux countries, and France and Germany
as satellite nodes (Hobbs, Rijkers, and Wals 2004). The model was then later expanded to cover large parts of
Europe, using a national detail level (Lise and Hobbs 2005).

5. On the other hand, including links between seasons for handling season storage would probably imply an
overly optimistic view on storage strategies, unless multi-stage stochastic modeling was used in the operational
periods to separate seasons.
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segments of short-term time steps for managing the hydro reservoir, by reflecting the value of
the hydro production from a given segment of a reservoir in a given season. The water values
were computed using the EMPS model (Wolfgang et al. 2009).

2.1.2 Power system capacity expansion planning under uncertainty

Uncertainty is fundamental to most decision processes, and commonly arise in planning problems
in the electric power industry (Hobbs 1995; Weber 2005; Conejo, Carrión, and Morales 2010).
Naturally, capacity expansion planning is no way an exception in that respect. From a modeling
perspective there are several ways to deal with the uncertainty and one such, widely applied,
method is sensitivity analysis.
When performing sensitivity analysis, a model’s response to changing input data (or assump-

tions) is examined, assuming perfect foresight. Such an approach provide insights about the
relative importance of different parameters, and the range of the model’s results as a function of
the input data. The major shortcoming of sensitivity analysis is that the optimal decisions from
a perfect foresight model, calculated for a given set of input data, can exhibit severe sub-optimal
performance if the input data change. As such, sensitivity analysis is an inadequate tool to
reflect the optimal decisions accounting for the uncertainty (King and Wallace 2012). For this
purpose, methods from the field of optimization under uncertainty is more appropriate. Opti-
mization under uncertainty is an umbrella term used for methodologies such as robust optimiza-
tion, chance-constrained programming and stochastic programming (Sahinidis 2004; Bertsimas,
Brown, and Caramanis 2011). This thesis will focus on the latter.
In traditional stochastic programming (SP), such as presented by Birge and Louveaux (2011),

a decision process is divided into stages based on timing of the decisions relative to the information
available. The setting is such that a set of decisions are made before the outcome of some relevant
uncertain parameters is observed. At the time the uncertainty is resolved, another set of decisions,
commonly referred to as recourse actions, are made. In some processes, information is gradually
revealed, limiting the decisions at each stage to be based only on the knowledge of past outcomes
and the probability distribution of future outcomes for the uncertain parameter data. These
are so-called multi-stage stochastic programs. Assuming a finite number of outcomes for the
uncertain parameters at each stage, the decision process can be represented by a tree where the
nodes reflect decisions and branches reflect parameter outcomes. A single path from the root node
to a leaf node in such a tree is called a scenario. The (perhaps) most central topic of stochastic
programming is non-anticipativity. Non-anticipativity formalizes the notion that decisions cannot
be based on future revelations of information, only the past and current information available.
In the context of a stochastic program with a tree structure, non-anticipativity enforces that for
two distinct scenarios, decisions with common ascendant nodes at a given stage will be equal,
regardless of the descendants following.
The advantage of stochastic programming is the ability to explicitly account for the effect

uncertainty has (or should have) on the decision process. In particular SP is a powerful framework
for assessing and valuing the flexibility to respond to information which is gradually revealed, and
the possibility to hedge against unfavorable outcomes (considering their respective probability).
The most common formulation of stochastic programming models optimize the expected value
of the objective (for instance costs) over the probability distribution of the uncertain parameters.
This reflects a risk neutral attitude to the uncertainty faced in the decision making process. Risk
attitudes can also be incorporated, however, this will not be discussed here. A draw-back with
stochastic programming models is that they tend to become quite large and computationally
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difficult to solve.6
For power system investment models there are various ways to utilize stochastic programming

to handle uncertainty. As the planning problem covers long-term and short-term decisions, it is
possible to consider long-term and short-term uncertainties as well. Long-term uncertainties are
usually linked to economic development, technology development and policies. This affects pa-
rameters such as demand for electricity, investment costs, fuel prices, carbon emission costs, etc.
Short-term uncertainties have more to do with the system operation, such as load fluctuations,
intermittent renewable generation, short-term fuel price variability, inflows to hydro reservoirs,
etc. Fürsch, Nagl, and Lindenberger (2013) present a version of the DIMENSION model where
investments in thermal generation capacities are made subject to uncertainty regarding deploy-
ment of renewables. This is an example of investment decisions being non-anticipative to the
outcome of long-term uncertain parameters. A second example of a stochastic programming ver-
sion of the DIMENSION model can be found in Nagl, Fürsch, and Lindenberger (2013), where
investment decisions are made subject to uncertainty in generation from renewable energy tech-
nologies. This is an example of short-term uncertainty affecting the long-term decisions. This
is similar to the approach used in EMPIRE as discussed in Paper D of this thesis. In EMPIRE
investments are made subject to uncertainty in operational decisions such as load, intermittent
renewable generation and generation from reservoir hydro power (Skar, Doorman, Pérez-Valdés,
et al. 2016). Formulated as a multi-horizon stochastic program, see Kaut et al. (2014), EMPIRE
in addition captures the long-term dynamics of the system.

Benders decomposition for stochastic programs and applications to large-scale power system capacity
expansion models

For ease of the exposition, the following discussion is limited to two-stage stochastic programming
models with complete recourse.7 A cost minimization objective is assumed. Generalizations are
possible, but beyond the scope of this thesis.
For linear SP models with a minimum expected cost objective, and with uncertainty described

by a finite probability distribution (i.e. scenarios), it is possible to state the problem as a single
linear program (LP). This is referred to as the deterministic equivalent extensive form of the SP.
In this formulation, all the first-stage and second-stage variables are co-optimized subject to the
complete set of first-stage and second-stage constraints. Even though highly efficient commercial
software exists for solving LPs, the size of the problems can quickly become unmanageable
since the number of second-stage variables and constraints is proportional to the number of
stochastic scenarios used in the model. This is particularly the true for capacity expansion
models as these are typically large-scale, even in a deterministic setting. However, by exploiting
the structure of stochastic programming models, specialized algorithms can reduce computation
times. Munoz and Watson (2015) apply a progressive hedging algorithm to a stochastic power
system investment model, where both investments in transmission and generation assets are
considered. Progressive hedging is an example of decomposition by scenario. Konstantelos and

6. The computational effort needed to solve a stochastic programming problem is essentially determined by
the way the uncertainty is modeled. Dyer and Stougie (2006) discuss the computational complexity of solving
two-stage SP problems with discretely distributed independent random variables, and find that these problems are
�P-hard (a complexity class of counting problems for which members of a set can be determined in polynomial time,
transferred to optimization problems). In practice, the size of the uncertainty set in SP is managed by utilizing
scenario reduction schemes (Heitsch and Römisch 2003), scenario generation schemes (Dupačová, Consigli, and
Wallace 2000), or a combination. A slightly different approach involves sampling based algorithms where an SP
is approximately solved without considering the complete set of scenarios (Higle and Sen 1999).

7. Complete recourse for two-stage stochastic programs means that for ever feasible first-stage variable the set
of feasible second-stage variables is non-empty.
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Strbac (2015) apply a multi-cut Benders decomposition algorithm for a transmission system
investment model. Another application of Benders decomposition for power system investment
planning is presented in Munoz, Hobbs, and Watson (2016). In their paper, a mix of bounding
techniques and an enhanced Benders decomposition algorithm is used for improving convergence
rates relative to using either approach independently.
Benders decomposition for two-stage stochastic linear programs can shortly be described as

an iterative procedure where supporting hyperplanes (or cutting planes) are used to develop an
outer linearization of the second-stage costs as a function of the first-stage variables. The method
is an example of decomposition by stage. Originally proposed by Benders (1962), the method was
first applied to stochastic programming problems by Van Slyke and Wets (1969). Convergence
can be shown to be finite for continuous problems, however, the convergence rate is known to
be slow unless modifications are applied. Several techniques for improving the convergence of
Benders have been proposed, see Zverovich et al. (2012) for a review and a computational study
of a selection of these techniques.
Paper B (Skar, Doorman, and Tomasgard 2014a) presents a special implementation of the

Benders decomposition method applied to EMPIRE. The algorithm presented in the paper ap-
plies a method for improving the convergence rate of Benders, using a two-phase strategy for
adding cuts to the master problem. It starts by adding aggregated cuts (one cut per iteration),
and then switches to generating several cuts per iteration once the estimated error hits a given
threshold. This can be seen as a reverse approach to that presented by Trukhanov, Ntaimo, and
Schaefer (2010), in which multiple cuts are added but then later aggregated.

2.2 Addressing specific issues using with capacity expansion models

2.2.1 Modeling carbon capture and storage in Europe
Capacity expansion models are excellent tools for investigating system development under for
various assumptions and story lines. However, the aggregate system results do not have to be
the main focus of a study as the models, by design, also provide detailed results, for example
for investments and utilization of individual technologies. These types of results can be useful
for analyzing the role and potential of different technologies for decarbonizing the power sector.
In particular renewable technologies have received much attention in recent modeling work, see
(Spiecker and Weber 2014; Haller, Ludig, and Bauer 2012; DNV GL 2014), but many studies
considered the role of carbon capture and storage (CCS) as a low-carbon solution for reducing
emissions in the power sector (Odenberger and Johnsson 2010; Capros et al. 2008). The perhaps
most extensive modeling study of CCS in Europe is presented by Lohwasser and Madlener (2012).
Their paper provides a literature review of costs and technological data published for CCS, and
then use an agent based power market model, Hector, to analyze the deployment of CCS for
a range assumptions. EMPIRE has been used for several studies by the European Technology
Platform Zero Emissions Platform (ZEP) for assessing the potential of CCS for decarbonizing
the European power sector (ZEP 2013, 2014, 2015). This is also one of the central themes of
Paper E (Skar, Doorman, Guidati, et al. 2016).

2.2.2 Modeling support schemes for low-carbon technologies
Quantitative studies of financial support mechanisms typically either have a single project per-
spective, or a system perspective. Boomsma, Meade, and Fleten (2012) present a real options
analysis of renewable support schemes, which is an example of the former. Böhringer, Hoffmann,
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and Rutherford (2006) and Nagl (2013) apply system wide models to assess the effectiveness of
quantity based and price based financial support policies for promoting renewable investments
in Europe. In both these papers, equilibrium models with endogenous investments, rather than
optimization models, are used in the analysis. Equilibrium models have a significant advantage
over optimization models when prices are explicitly used in the mathematical formulation. For
both types of models, prices appear as the dual variables of supply and demand equilibrium
constraints, however, for optimization models these variables are only available once the model
has been solved. For equilibrium models, on the other hand, the dual variables are used directly
in the formulation. In terms of support policies, optimization models can be used to represent
schemes, price and quota, for which the support is given independent of the market outcome.
For instance, a feed-in tariff, structured as a selling price floor for eligible producers, is difficult
to represent in an optimization model as this requires an explicit use of a dual variable in the
objective. A feed-in premium, designed as a support paid on top of the market price, can be
included in an optimization model simply by adjusting the short-run marginal costs.
Much of the discussion on support policies for CCS has been of a qualitative nature (Groe-

nenberg and Coninck 2008; Stechow, Watson, and Praetorius 2011). However, some quantitative
studies have been done, such as Lohwasser and Madlener (2013) who evaluate investment and
R&D subsidies for CCS in Europe. Their analysis apply a version of the Hector model where
learning effects were endogenous for CCS. Two types of learning were considered, learning by
researching and learning by doing. Building on the ZEP analysis provided in ZEP (2013) Paper E
presents an analysis of support schemes for CCS using the EMPIRE model. In this study, two
financial support schemes, investment subsidies and feed-in premiums, are evaluated on the basis
of effectiveness for promoting demonstration CCS investments. In addition, emission regulations
in the form of emission performance standards are tested.

2.2.3 Using capacity factors from a capacity expansion model for life cycle assessment
In life cycle assessment (LCA) of electricity generation technologies the aim is to evaluate various
impacts caused by using the technologies to produce electricity. Impacts of interest include for
instance climate change, metal depletion and freshwater ecotoxictiy.
The impacts of individual technologies are typically assessed on a per kWh functional unit,

which is essentially the ratio of lifetime impacts to lifetime electricity production. This is analo-
gous to how lifetime costs of a generation technology is sometimes expressed by its levelized cost
of electricity (LCoE) in power system economics. In the same way as the LCoE accounts for
capital costs in addition to operational costs, the per kWh functional unit accounts for impacts
related to construction (and other non-operational processes). In both LCA impact analysis, and
LCoE calculations, an estimation of electricity generation from a technology is needed, however,
if this estimation is not based on a holistic system analysis using a power market model, errors
quickly arise. As an example, considered a coal fired power plant. As a rule of thumb, coal fired
power generation has typically been considered as a baseload technology, generating at more or
less full capacity, excepts for when shut-down for maintenance, or experiencing failures. Under
such operating conditions capacity factors of 80–90 % can be expected for coal fired power gener-
ation. However, in systems with high shares of renewable power generation, coal fired plants may
experience a higher degree of cycling as the renewables are favored in the dispatch due to very low
operational costs. Also, if a sufficiently high price of carbon is implemented as a climate policy,
gas fired power generation may become cheaper than coal in the dispatch, which can reduce the
utilization of coal fired generation. Both LCA analysis, and LCoE calculations, will therefore be
more accurate if the capacity factors are calculated using a model which endogenously computes
utilization based on how the technologies are actually operated in a system.
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In Paper F (Bouman, Skar, and Hertwich 2016a), EMPIRE is used to compute capacity fac-
tors of generation technologies in Europe, which are then subsequently used in an LCA analysis.

2.3 Top-down versus bottom-up energy system modeling
When it comes to economic modeling of human designed systems (e.g. energy systems) for pol-
icy analysis, a distinction is usually made between top-down and bottom-up models. The two
approaches are not rigorously defined, but rather explained by typical characteristics such as
focus, scope and technology detail level of the modeling. Top-down models have broad economic
perspectives, seeking an economic equilibrium capturing interactions and feedback effects be-
tween sectors. The geographical detail level is often regional, covering the whole world, at least
for models addressing climate change mitigation. The technology detail level for supply and de-
mand in different sectors is typically limited. Bottom-up models consider detailed technological
parameters describing system units while a partial equilibrium covering a single sector, or sub-set
of sectors, is sought. Interactions with other sectors is commonly ignored, or at best, estimated.
Bottom-up models tend to confine the geographical scope to a single region, with either national
or sub-national detail level.
In the literature discussing the divide between the two modeling approaches, top-down models

are often taken to be computational equilibrium models (CGE), whereas bottom-up models
are engineering type optimization models (Böhringer 1998). Another class of models typically
referred to as top-down models are the integrated assessment models (IAM). IAMs have over
the recent decades become the primary tool for analyzing the cost and potential of climate
policies for addressing climate change. The contribution of Working Group III to the fifth
assessment report published International Panel on Climate Change (IPCC) included a collection
of 900 mitigation scenarios analyzed by IAMs (IPCC 2014). The major benefit of IAMs is that
the models compute cost-efficient mitigation efforts using an integrated modeling framework
covering the most significant sectors, such as the energy and agricultural systems, contributing
to anthropogenic greenhouse gas emissions. Due to the often detail-rich modeling of different
technologies in IAM these models are sometimes referred to as hybrid models in the literature
(Hourcade et al. 2006).
For the purpose of the discussion following in this chapter, the term top-down model is

used for integrated assessment models and partial equilibrium models covering the whole energy
system. Linking of top-down and bottom-up models is to be understood as geographical and
temporal disaggregation of a top-down model’s output results using a bottom-up model. The
process entails both disaggregation of data to be used as input in a bottom-up model, and the
disaggregation which follows naturally from the bottom-up models’ more detailed output results.
This type of linking is usually termed soft-linking as it is not a properly integrated framework
of the models. The top-down model is executed independently from the bottom-up model, and
information flows in one direction, from top to bottom.

2.3.1 Climate mitigation scenarios
Developing scenarios is an integral part of the modeling process for doing climate policy analysis.
These types of scenarios reflect different possible futures in terms of policies and technological
development. Although the difference may seem semantic, scenarios in this context is distinct
from sensitivity analysis. Whereas the latter is a type of “what-if” analysis used to explore
uncertainty in the exogenous data parameters, scenarios are more fundamental to the analysis
as they directly address policy implications. An extensive discussion on the topic can be found
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in the PhD thesis of Philip van Notten along with a meticulous definition of scenarios in the way
they are typically used in energy and climate policy analyses, (Notten 2005, p. 20):

Scenarios are coherent descriptions of alternative hypothetical futures that reflect
different perspectives on past, present, and future developments, which can serve as
a basis for action.

Climate change policy scenarios tend to have a climate stabilization limit as an overreaching
goal. The perhaps most well-known limit is the 450 ppm atmospheric concentration of greenhouse
gases by the end of the century. By staying within this limit climate models predict that the
global mean temperature rise will likely8 be less than 2 ◦C compared to pre-industrial levels
(IPCC 2014, p.13, Table SPM.1). A common approach used by IAMs to achieve this is using
an endogenously computed price on carbon emissions, either through an implementation of a
carbon tax or a tradable permit scheme (Clarke et al. 2009).
An important source of development and modeling based analysis of energy and climate

change policy scenarios is the Energy Modeling Forum (EMF) at Stanford University. Of spe-
cial interest are the scenarios developed during the EMF-22 project “Climate Change Control
Scenarios” (Clarke, Böhringer, and Rutherford 2009) , and the EMF-27 project “Global Model
Comparison Exercise” (Weyant et al. 2014). The scenarios developed during these projects in-
corporate non-idealized international implementations of climate policies, reflecting that climate
change policies will most likely be adopted gradually in different parts of the world. These types
of scenarios in general are less efficient and more costly, but represents a far more realistic view
on how climate change mitigation efforts will materialize (Victor et al. 2014).
Two of the EMF-22 scenarios are analyzed using EMPIRE in Paper A.

2.3.2 Disaggregation of top-down modeling results for the European power sector
Many of the recent bottom-up models used for decarbonization studies of the European power
system include some results from top-down models. In particular, fuel prices and electricity
demand are types of parameters exogenous to bottom-up power system models that can be
collected from previous modeling studies applying either integrated assessment models, or full
energy system models. This can be seen as soft-linking as introduced previously in this chapter.
However, we will in this section focus on studies where the linking is the focus in itself.
As a result of the EMF-28 project “The Effects of Technology Choices on EU Climate Policy”,

several electricity system models were used to analyze optimal infrastructure requirements for
different European climate policy scenarios (Holz and Von Hirschhausen 2013). All of the mod-
els used high level scenario inputs from the PRIMES model, (Capros 2013), which is a partial
equilibrium energy system model covering EU-27 with national granularity. The electricity trans-
mission system is crudely modeled in PRIMES and the more detailed electricity system models
with investment capabilities, EMPS (Jaehnert et al. 2013) and ELMOD (Egerer, Gerbaulet, and
Lorenz 2013), computed infrastructure development pathways with granularity levels beyond the
scope of PRIMES.
Another example of top-down/bottom-up model linking in recent literature is Deane et al.

(2012), who linked results from the TIMES energy model to a detailed power market model using
PLEXOS.9 Both models used data for the Irish energy system. The added detail level was hourly

8. The probability statement likely used by the IPCC refers to a confidence level of 66–100 %.
9. PLEXOS is a commercial software package for general purpose integrated energy system analysis. Both

long-term investment planning, and short-term operational planning, is supported. See http://energyexemplar.
com/software/plexos-desktop-edition/ for more information. [Last accessed March 2016].
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dispatch, unit-commitment and ancillary service provision results for the power sector provided
by PLEXOS, which was not available from the TIMES model.
Paper A in this thesis presents a study where a capacity expansion model of the European

power system, EMPIRE, is soft-linked to GCAM (Skar, Doorman, and Tomasgard 2014b). The
purpose of the study was to provide an extended analysis of the European power sector results
provided by GCAM for a selected number of climate scenarios. The linking procedure was
designed to harmonize scenario assumptions between GCAM and EMPIRE to the greatest extent
possible. This included using the same parameters describing generation technologies, the same
aggregate demand for electricity at a European level, the same fossil fuel prices, the same carbon
tax. In addition, constraints were imposed in EMPIRE ensuring that the power generation
technology mix at a European level corresponded to the results from GCAM. Three climate
policy scenarios were investigated: two stabilization scenarios, 450 ppm and 650 ppm, from the
EMF-22 project (Clarke et al. 2009), and one scenario combining several policy instruments called
Global202020. The latter scenario was inspired by the EU-202020 policy package and expanded
to cover the whole world over several implementation stages (Calvin et al. 2014). The linking
procedure shared many similarities to the approach used by Deane et al. (2012) to link PLEXOS
and TIMES, however, the full adaptation of a power system investment model of Europe to
global climate policy studies is unique to date.



Chapter 3

Contributions

This chapter will discuss the contributions of the PhD research presented in this thesis. The
work has been documented in papers, all published or submitted for review in peer-reviewed
channels. The papers are included, following this chapter, and a list of the papers is give in
Section 3.1. For each paper a summery and an overview of individual conclusions are provided,
along with my own contributions to each paper.
The areas of research addressed by the papers can be summed up in the following list:

• Power system expansion modeling using stochastic programming. Papers A–E.

• Improvements of stochastic programming solution algorithm. Paper B

• Integration of top-down modeling perspectives in bottom-up power system modeling. Pa-
per A.

• Study of decarbonization pathways for the European power sector. Papers A, D, E.

• Modeling based studies of support mechanisms to drive investments in demonstration CCS
technology. Paper E.

• Incorporation of power system modeling results in life cycle assessment. Paper F.

The general overarching conclusions of the collective work presented in the papers, are dis-
cussed in the next chapter.

3.1 List of papers
Paper A: Skar, C., G. L. Doorman, and A. Tomasgard. 2014b. “The future European power

system under a climate policy regime.” In EnergyCon 2014, IEEE International Energy
Conference, 337–344. doi:10.1109/ENERGYCON.2014.6850446.
Summary: A bottom-up capacity expansion model of the Europe power system is used to
analyze three climate scenarios from an integrated assessment model (IAM). A soft-linking
procedure, harmonizing assumptions across the models, with the aim to preserve the va-
lidity of the results relative to the IAM results is described.
Conclusions: The linking procedure demonstrated a way to provide more details to aggre-
gated IAM results using a more detailed sector model. In particular, it was shown that for
a given amount of renewable generation in Europe the optimal approach is to centralize

17
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investments where production conditions are good, and developing the transmission infras-
tructure to balance supply and demand. France, Great Britain, Italy Poland, and Norway
were found to be good locations for wind development. In terms of transmission expansion
it was shown that interconnectors going from Spain to Germany and Poland should be
reinforced.
Contributions: For this work I collaborated on designing the research idea and modeling. In
addition I implemented the capacity expansion model and designed the linking procedure,
collected and organized input data, performed the simulations. I analyzed and interpreted
the results, in collaboration with my co-authors. I was the main author of the manuscript.

Paper B: Skar, C., G. L. Doorman, and A. Tomasgard. 2014a. “Large-scale power system
planning using enhanced Benders decomposition.” In 18th Power Systems Computation
Conference (PSCC). doi:10.1109/PSCC.2014.7038297.
Summary: An application of the Benders decomposition is used to improve computation
times for solving a large-scale power system capacity expansion model. A technique for
improving the convergence rate of Benders based on cut aggregation is presented.
Conclusions: The cut aggregations scheme was shown to reduce computation times com-
pared to the text-book multi-cut Benders decomposition algorithm. An improvement of
32 % was found in a computational experiment.
Contributions: I designed the algorithm enhancement, implemented it and ran the simula-
tions. I analyzed and interpreted the results, in collaboration with my co-authors. I was
the main author of the manuscript.

Paper C: Brovold, S. H., C. Skar, and O. B. Fosso. 2014. “Implementing hydropower schedul-
ing in a European expansion planning model.” Renewable Energy Research Conference,
RERC 2014, Energy Procedia 58:117–122. doi:10.1016/j.egypro.2014.10.417.
Summary: The paper presents a methodology for improved handling of reservoir and run-
of-the-river hydro power within a long-term European power system expansion model.
Water values calculated by a power market model specialized for systems with large shares
of regulated hydro power are used as resource costs to guide water utilization.
Conclusions: The new methodology for handling of hydro power in EMPIRE was shown
to have a significant effect on the investment results. Less investments in run-of-the-river
hydro resulted from using more accurate production data. Also, the total regulated hydro
power production was reduced. The reduction of hydro power production was offset by
more installed solar power production.
Contributions: The paper is a result of a Master’s thesis I supervised. My contributions
were the idea of the research project, guidance on implementation of the suggested method
in EMPIRE, guidance on interpretation of results and commenting on the manuscript.

Paper D: Skar, C., G. L. Doorman, G. A. Pérez-Valdés, and A. Tomasgard. 2016. “A multi-
horizon stochastic programming model for the European power system.” Subimtted to an
international peer reviewed journal, In review.
Summary: A complete presentation of the stochastic programming capacity expansion
model for the European power system named EMPIRE. This paper covers the mathe-
matical formulation of the model and illustrates its use in a decarbonization study of the
European power sector.
Conclusions: The multi-horizon stochastic programming formulation of EMPIRE was dis-
cussed, and compared to similar models. The decarbonization study showed that the EU
ETS price from the European reference case 2013 can drive an emission reduction of more
than 80 % in 2050, compared to 2010. Unabated fossil fueled generation is displaced by
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onshore wind and fossil power plants with CCS. Increasing interconnector capacities was
shown to allow for higher investments in wind power capacities, however, this does not
make a large impact on total emission reduction compared to a case without grid invest-
ments.
Contributions: I designed and implemented EMPIRE, and collected, and organized, input
data. I designed the scenarios in the paper and performed the simulations. I collaborated
on analyzing and interpreting the results and designing the stochastic scenario generation
routine. I was the main author of the manuscript.

Paper E: Skar, C., G. L. Doorman, G. Guidati, C. Soothill, and A. Tomasgard. 2016. “Model-
ing transitional measures to drive CCS deployment in the European power sector.” Subimt-
ted to an international peer reviewed journal, In review.
Summary: A study using EMPIRE to examining the role of CCS for decarbonizing Euro-
pean power, and support mechanisms for driving investments in demonstration CCS.
Conclusions: The study shows that having a diverse mix of renewable energy and CCS is
the most cost-effective solution to reduce emissions from the power sector by more than
80 %, relative to 2010, by 2050. The effect of not having a CCS option available are higher
emissions, at a higher cost. Demonstration CCS plants are found to require some form
of transitional measures to achieve market penetration. Two different financial support
schemes, and a direct control mechanism in the form of an emission performance standard,
are evaluated. Demonstration projects with low fuel can be successfully supported by in-
vestment subsidies. Operational support, for instance, in the form of a feed-in premium is
needed for projects with high fuel costs, such as gas CCS. A strict emissions performance
standard is shown to be an effective policy instrument for driving investments in CCS,
however, it also causes high prices in a transitory period.
Contributions: I contributed to developing the methodology used in the paper. I imple-
mented the policies in EMPIRE, collected and organized input data and performed the
simulations. I collaborated on analyzing and interpreting the results and designing the
stochastic scenario generation routine. I was the main author of the manuscript.

Paper F: Bouman, E. A., C. Skar, and E. G. Hertwich. 2016a. “Informing LCA of electricity
technologies with a power market model.” Subimtted to an international peer reviewed
journal, In review.
Summary: Capacity factors used in life cycle assessment (LCA) of power generation tech-
nologies is computed using a capacity expansion model for the European power system.
Comparison to capacity factors previously used in LCA publications, and the effect on
estimated environmental impacts, are presented.
Conclusions: Capacity factors computed by the EMPIRE was shown to deviate significantly
from estimated capacity factors used in previously published LCA studies. For fossil fuel
technologies the effect of these results is limited to categories sensitive to construction,
however environmental impacts for such technologies are mostly caused by production pro-
cesses. For solar PV the capacity factors computed by EMPIRE was shown to be lower
than previously estimated capacity factors. These can be used for a more accurate determi-
nation of environmental impacts for solar PV, which can affect the ranking of technologies.
The use of economic models for estimating inputs to LCA studies is argued to increase the
coverage and validity of results.
Contributions: I partook in discussions on the design of the methodology used. I designed
the capacity expansion scenarios, performed the EMPIRE simulations and provided struc-
tured results to be used in the LCA analysis. I contributed to interpreting the results, and
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I wrote some parts of the manuscript.

Additional contributions

In addition to the papers presented in this thesis, I have made contributions to other reports
and papers worth briefly mentioning, during my time as a PhD student.

• Zero Emissions Platform. 2013. CO2 Capture and Storage (CCS) – Recommendations
for transitional measures to drive deployment in Europe. European Technology Platform
for Zero Emission Fossil Fuel Power Plants. http://www.zeroemissionsplatform.eu/
library/publication/240-me2.html.

• Zero Emissions Platform. 2014. CCS and the electricity market: Modelling the lowest-cost
route to decarbonising European power. European Technology Platform for Zero Emis-
sion Fossil Fuel Power Plants. http : / / www . zeroemissionsplatform . eu / library /
publication/253-zepccsinelectricity.html.

• Zero Emissions Platform. 2015. CCS for industry – Modelling the lowest-cost route
to decarbonising Europe. European Technology Platform for Zero Emission Fossil Fuel
Power Plants. http://www.zeroemissionsplatform.eu/library/publication/258-
ccsforindustry.html.

• Bakken, B. H., K. Dalen, I. Graabak, J. K. Knudsen, A. Ruud, L. Warland, et al. 2014.
Linking global and regional energy strategies (LinkS). technical report A7352. SINTEF
Energi.

• Skar, C., R. Egging, and A. Tomasgard. 2016. “The role of transmission and energy storage
for integrating large shares of renewables in Europe.” IAEE Energy Forum 1st Quarter .

• Bouman, E. A., C. Skar, and E. G. Hertwich. 2016b. “Specific renewable energy tech-
nology targets can reduce life cycle impacts of electricity generation.” Subimtted to an
international peer reviewed journal, In review.

Except for the last item on the list, these contributions are not peer-reviewed, and are therefore
not included in this thesis. Bouman, Skar, and Hertwich (2016b) is submitted to an international
journal for review, however, it did not fit the scope of this thesis as it does not apply capacity
expansion modeling for the European power sector.
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Conclusions

The central element, binding the different parts of this research together, is the European Model
for Power System Investments (with high shares) of Renewable Energy (EMPIRE). The overall
conclusions which can be drawn from the presented work in essence all relate to the modeling
done, and can be divided into two parts: methodology and application.

Capacity expansion modeling

The European power system capacity expansion model, EMPIRE, fills a gap not covered by sim-
ilar models. The most important strength of EMPIRE is that it is a computationally tractable
model covering both long-term and short-term system dynamics, while optimizing investments
under operational uncertainty. The latter feature is highly important as more and more inter-
mittent renewable capacity is installed throughout Europe. This mix of properties is enabled
through the use of multi-horizon stochastic programming. Other (European) multi-period in-
vestment models presented in the recent literature are either deterministic, or stochastic, but are
then designed to make myopic investments optimized in sequential steps. The main advantage of
EMPIRE relative to these models is that the resulting optimal investments will be robust over a
range of operating conditions, while at the same time accounting for future anticipated long-term
developments in the power sector. Not only is this important when planning for integration of
renewables, but also investments in other types of generation technologies, infrastructure and
energy storage, as well.
As with any stochastic programming model the computational effort involved in solving EM-

PIRE greatly depends on the number of stochastic scenarios used for the input data. Unlike the
rich set of highly sophisticated solvers for traditional linear (continuous and mixed-integer) opti-
mization problems,1 few commercial off-the-shelve implementations of algorithms for stochastic
programming problems exist. Development of specialized algorithms for solving stochastic mod-
els is therefore still needed, and some work on this issue has been presented here. Benders
decomposition, with performance enhancement through clever cut management, as shown, is a
viable approach for reducing computation times. Efficient solution of stochastic models allows
for more stochastic scenarios to be considered, which is important for the quality of the model-
ing. Another great advantage of decomposition methods is that parallel processing can be used
for further improvement, enabling models to harness the power of high performance computing
clusters.

1. Examples of commercial solvers for LPs and MIPs include XpressMP, Gurobi, CPLEX and Mosek.
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The value of developing a capacity expansion model such as EMPIRE has been illustrated in
several decarbonization studies of the European power sector. However, additional value of the
model is shown through linking the model to GCAM for studying the impact of global climate
change mitigation scenarios for Europe in more detail. Using models such as EMPIRE in this way
can shed light on where renewable generation capacity should be built, the need for transmission,
and the need for firm capacity to balance supply and demand during operation. Such aspects are
usually disregarded in global models such as GCAM. Another useful application of EMPIRE,
beyond typical power sector studies, is using the model to estimate inputs for life cycle assessment
studies. Independent estimation of utilization of different generation technologies neglects the
fact that the actual production is a result of an economic dispatch, which strongly depends on
the configuration of the system. Improving estimation of utilization of technologies is important
for accurate assessment of environmental impacts.

Modeling results

From the overall results presented in the different papers some general insights about the future
development of the European power sector can be drawn. Firstly, the most cost-efficient de-
ployment strategy for intermittent renewables is to centralize investments where the production
potential is high. Investments in wind and solar capacity should be accompanied by signifi-
cant reinforcement of the transmission system as this will enable efficient sharing of generation
resources. Even with significant deployment of wind generation, and transmission system ex-
pansion, carbon-capture and storage plays a pivotal role in decarbonizing European power. If
transmission system development for some reason should end up to be low, less wind generation
should be expected, and CCS becomes even more important. Without CCS, the carbon price
needed to achieve the ambitious goals for emission reduction in Europe, will have to be higher
than the price found in the European Commission’s reference scenario 2013 report. Essentially,
the cost of decarbonization will be higher. Without successful deployment of demonstration
CCS projects, the technology will not be available as a tool for emission reduction. Therefore
it is important to implement measures which can establish a secure investment environment for
demonstration CCS.
Although there has been a record development in installed capacity of solar photovoltaic

(PV) in Europe over the recent years,2 the technology is not found to be a significant low-carbon
option in most of the analyses done with EMPIRE.3 This can be explained by the fact that
renewable support policies are not represented in EMPIRE, and also, that the investment costs
assumed for solar PV in EMPIRE are too high for the technology to become competitive. This
suggests that investment cost reductions for solar PV is still needed for the technology to be
competitive without support policies in place.

4.1 Further research
There are a number of different directions possible for research building on the work presented
here. Naturally, new studies on various topics related to the European power sector, using the
current version of EMPIRE, can be produced. Even though studies and analyses using existing

2. EurObserv’ER, http://www.eurobserv-er.org/category/all-photovoltaic-barometers/, reports an in-
crease of 550 % for installed solar PV capacity in the European Union from the start of 2010 to the start of 2015.
[Accessed March 2016]

3. In Brovold, Skar, and Fosso (2014) solar PV investments in EMPIRE were seen to increase significantly
when using a water-value based handling of hydro power generation with reservoir. This is not consistent with
other studies done with EMPIRE, and the result is therefore a bit unclear.
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tools are certainly important, I would like to focus this section on a few modeling developments
for EMPIRE, which I believe would be the most useful in terms of new research contributions.
One of the key weaknesses of the current version of EMPIRE is the transmission system

representation. Transmission capacity investment costs are based on e/MW/km figures found
in Joode et al. (2011), and distances between geographical mass points defined by visual inspec-
tion. This is a crude approximation, essentially reflecting the cost of building new (over-lay)
grid corridors in straight lines across entire countries. In some scenarios, for instance with highly
centralized renewable generation capacity expansions, this may be a valid strategy for trans-
ferring bulk power between countries throughout Europe. However, solutions where the grid
reinforcements are done mostly for cross-border connections, relying on national grids to trans-
fer power from border to border, are not considered. As discussed in Section 2.1.1, there are
examples of more refined approaches to this issue in the literature. The current best practice
in terms of transmission investment analysis of the European grid is the full linearized dc opti-
mal power flow model with endogenous investments presented in Egerer, Gerbaulet, and Lorenz
(2013). The draw-back of using such a detailed model is that the temporal horizon of the op-
erational modeling must be significantly limited, and the investments evaluated using a myopic
approach, for the optimization problem to stay tractable. A second-best approach is shown in
Fürsch et al. (2013), where a capacity expansion model is run in conjunction with a detailed
grid power flow model. The capacity expansion model decides optimal cross-boarder NTC ex-
pansion, while the power flow model is used to determine which lines have to be reinforced and
cost estimates. The advantage of such a setup is far more accurate costs estimates than what is
available in EMPIRE, however, a disadvantage is that an additional model is required. Within
the current modeling framework of EMPIRE, a straightforward improvement would be to split
larger countries such as Germany, France and Spain into several nodes as has been done by
Schaber, Steinke, and Hamacher (2012). This would allow for some of the large national grids
to be part of the analysis, and most likely make it easier to assess costs for reinforcing specific
corridors as the distances between nodes would be reduced. As all of these modeling approaches
already are incorporated in other models, improving transmission system modeling in this way
may perhaps not qualify as further research. However, even if an already well-known approach
is adopted, improving the transmission system representation in EMPIRE will likely entail a
need for developing better algorithms for solving the model as it will become more challenging to
solve. The joint effort of improving the modeling features of EMPIRE, while keeping the model
computationally tractable, and improving algorithms for solving it, can certainly contribute to
new and useful research results.
Although a technique meant to improve the handling of hydro power generation with reservoir

is presented in Brovold, Skar, and Fosso (2014), it may still be useful to revisit this issue with
an alternative approach. The procedure presented by Brovold, Skar, and Fosso (2014) involved
using a specialized large-scale power market model to compute water-values. Linking of models
in this way requires a great deal of care in order to harmonize system assumptions between them.
Future development on this topic should focus on including seasonal storage handling directly
in EMPIRE, circumventing the need for additional models. One option is to incorporate an
auxiliary medium-term optimization problem in the operational modeling. In this problem, the
amount of energy to save between seasons can be approximated based on a rudimentary seasonal
dispatch model. Decision variables reflecting the stored energy can be linked to the short-term
hourly dispatch seasons, and everything solved in a single optimization (just as investments and
operational decisions are currently co-optimized).
As discussed in Section 2.1.2 EMPIRE assumes perfect foresight when it comes to strategic

parameter input data such as fuel prices, demand projections, future policies, etc. The investment
strategies computed by EMPIRE are therefore tailored for a specific set of input data, and may
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perform poorly in a future with a different outcome. A further application of the multi-horizon
tree methodology developed by Kaut et al. (2014), by incorporating strategic uncertainty as
well as operational uncertainty, would be a way to address this issue while keeping the resulting
optimization problem to a solvable size. The value added would first of all be more robust
investment strategies. Secondly, studies could address how strategic uncertainty affect timing
and sizing of investments. This can be important for emerging technologies like CCS, which rely
on capital intensive investments in demonstration projects prior to commercialization.
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Abstract 

A method for implementing an enhanced hydropower planning formulation in a long-term expansion planning model is 
proposed. The methodological framework involves assigning hydropower generation a marginal cost through water values, 
enabling comparability with the marginal costs of competitive technologies. Added robustness and details in the representation of 
hydropower and its inherent storage capabilities allows for a more precise evaluation of the technology’s impact on optimal 
investments for other power resources. The impact for intermittent renewable energy sources such as wind and solar power is 
especially interesting to analyze. Examination of effects from the richer formulation is carried out for an EU 20-20-20 like policy 
scenario. Optimization results for Europe in the period 2010 to 2060 show that the new framework leads to decreased utilization 
of hydropower due to its more precise valuation through water values, as well as lower inflow for run-of-the-river hydropower 
than previously. Therefore, additional investments are carried out for other energy sources that are deemed more economically 
beneficial. Notably, an earlier deployment of solar power is part of the revamped investment scheme. 
 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Scientific Committee of RERC 2014.  
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1. Introduction 

The goal of generating enough energy to sustain the rapidly increasing global population, while simultaneously 
minimizing environmental impacts associated with energy extraction and consumption is a global pursuit of 
supreme importance. Models have been developed to analyze how this goal can be met at lowest possible cost. One 
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of these is the EMPIRE† model, which is a European power investment model capable of incorporating various 
climate policy scenarios. Its framework is the starting point for the work presented in this paper, which consists of 
improving how hydropower is formulated in EMPIRE. One of the main objectives for doing so is to enable a more 
precise analysis of synergetic effects between installments of hydropower and intermittent renewables. The ongoing 
and future large-scale implementation of such variable generation introduces additional fluctuations in the power 
system and thereby new challenges in the continuous balancing of supply and demand [1]. Regulated hydropower 
can respond more or less immediately to fluctuations and can act as an ancillary service that regains balance in the 
power system [2]. This way, hydropower may support further investments in intermittent renewables. 

 
Nomenclature    
    
SYMBOL DESCRIPTION SYMBOL DESCRIPTION 
Sets and indices  Parameters cont.  
G g Generators init

nsF  Initial reservoir fraction of full reservoir 

H h Operational hours: Hs in a 
season, Hi in a year 

init
nsR  Initial reservoir level [MWh] 

I i Years max
nR ,

min
nR  Max. and min. reservoir level [MWh] 

L l Transmission lines temp
nsR  Temporary reservoir level [MWh] 

Mn m Reservoir segments ,Reg norm
nsU  Seasonal normalized inflow [MWh] 

N n Nodes (one per country) ,Reg init
nsU  Seasonal inflow in 2010 (initial) [MWh] 

S s Seasons ,RoR norm
nsU  Seasonal run-of-the-river inflow [MWh] 

  Stochastic scenarios max
mnS  Maximum reservoir segment size [MWh] 

Decision variables  max
mnsxd  Actual reservoir segment size [MWh] 

mnsixd  Segmental discharge [MWh] mnsiWV  Water value [$/MWh] 

nsir  End-of-season reservoir level 
[MWh] h  Operational hour scale factor 

nsis  Spillage [MWh] s  Seasonal scale factor 
gen
gip  Generation capacity [MW] i

 Discount factor 
gen
gix  Gen. capacity investment [MW] s  Number of hours in season 
tran
lix  Line capacity investment [MW] p  Scenario probability 
gen
ghiy  Generation  [MWh] gen

gic  Generator investment cost [$/MW] 
LL
nhiy  Load shedding [MWh] tran

lic  Transmission investment cost [$/MW] 

Parameters 
 gen

giq  Generator short-run marginal cost [$/MWh] 
segN  Number of segments in reservoir VoLL

niq  Cost of using load shedding [$/MWh] 

1.1. Related literature 

There exist a vast number of optimization models used for investment planning and policy studies in Europe. 
Recent notable examples of linear programming models, where new generation and transmission investments are 
co-optimized with a system dispatch, are presented in [3] and [4]. The former model has since been adapted to 
detailed studies of long-term grid extensions in Europe, see [5], and a study of decarbonization of the European 
power sector, see [6]. In [7] a dedicated hydropower scheduling model is used to compute water values for seasonal 

 

 
  † European Model for Power system Investment with (high shares of) Renewable Energy 
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hydropower reservoirs, which are consequently used in a detailed DC load flow model of Northern Europe. This is 
similar to what has been done in this paper, although in this setting we focus on long-term system expansion.  

1.2. Brief overview of the EMPIRE model 

The purpose of the EMPIRE model is to provide a long-term plan for timing, size and location of investments in 
generation capacity and inter-country transmission capacity in Europe. This is done through cost minimization in the 
period 2010 to 2060, subject to various policy scenarios. EMPIRE is formulated as a linear, two-stage stochastic 
optimization model and has been implemented in Mosel Xpress [8]. The spatial resolution of EMPIRE is based on 
country-wise aggregation where each country represents a node n in the system. Investments can take place in 5-
year leaps. Each year i is modeled as 10 non-consecutive seasons s, constituted by a number of operational hours h 
in which load balances are requested. Stochastic scenarios  account for uncertainty related to some parameters 
such as load and generation from intermittent energy sources. Generation capacities, annual build limits and a 
number of other restrictions are included. For more information about the EMPIRE model, see [9]. In the next 
chapter, the strategy for improving the hydropower framework will be described. 

2. Hydropower scheduling methodology 

Regulated and run-of-the-river hydropower are modeled independently. In the original EMPIRE model, regulated 
hydropower availability comes at no cost, aside from low operation and maintenance costs. Thus, the model will 
tend to empty the reservoirs towards the end of each season, since the water is virtually free. This is a major 
simplification of real-world conditions, where the use of water values as marginal cost for hydropower generation is 
a widespread means of assigning monetary values to the available water resources. The water value can be defined 
as the future expected value of the stored marginal kWh of water, i.e. its alternative cost [10]. Therefore, it will 
generally be optimal to generate power from a unit of water whenever the water value is lower than the expected 
power price, or save the unit in the opposite case. This introduces the significance of saving water to other periods of 
the year, which is not present in the original EMPIRE model. Since seasons are modeled individually, the original 
formulation has no incentive to conserve water for later periods. The use of water values is one method of enabling 
this water-saving feature, and is the key concept of the improvement strategy we propose.  

The methodology starts by dividing each reservoir into M segments of equal size, and each of these segments are 
given an associated water value. In the start of each season we set an initial reservoir level based on a fractional 
value of a full reservoir. Inflow to the reservoir is assumed to take place immediately in the beginning of a season, 
which can be justified by the short season durations in the model. As the reservoir level is reduced the water values 
increase, since the water becomes more valuable as the available amount decreases. When assuming that the lowest 
index number indicates the top-most reservoir segment, the inequality WV0 < WV1 < … < WVm-1 < WVm must 
therefore hold for all segments m  M. 

2.1. Mathematical formulation 

In this section we describe the mathematical framework for enhanced hydropower. The implementation of 
hydropower scheduling is done in two separate steps. The first step utilizes reservoir data to determine the available 
amount of energy in each reservoir segment, setting the bounds for segmental discharge. The second step includes 
restrictions for generation and reservoirs, and is given in the following. Reservoir discharge is connected with 
hydropower generation as 

,    , , , ,
s n

gen HydReg
ghi mnsi n

h H m M
y xd n N g G s S i I  (1) 

It is necessary to keep track of the reservoir level at the end of each season. The end-of-season reservoir level is 
equal to initial reservoir level plus inflow minus total segmental discharge and spillage. This is shown in Eq. (2), 
while minimum and maximum reservoir levels are shown in Eq. (3):  
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, ,    , , , ,
n

init Reg norm gen HydReg
nsi ns mnsi ns gi nsi n

m M
r R xd U p s n N g G s S i I  (2) 

,    , , ,min max
n nsi nR r R n N s S i I  (3) 

The multiplication of installed capacity in the inflow term of Eq. (2) is done because we assume that changes in 
capacity also influence the available amount of inflow. Segmental discharge bounds are represented as follows: 

,    , , , ,max
mnsi mns nxd xd m M n N s S i I  (4) 

For some nodes with small reservoirs and thereby a low degree of regulation, the water values of some segments 
may be identical. In these cases the discharge sequence has to be controlled through 

1, ,    1,  ... , 1 , , , ,seg
m nsi mnsixd xd m N n N s S i I  (5) 

This constraint states that discharge from segment m+1 cannot start unless discharge from segment m has been 
initiated. To keep reservoirs sustainable, it is assumed that yearly generation cannot exceed yearly inflow: 

, ,    , , ,
i

gen Reg norm gen HydReg
h ghi s ns gi n

h H s S
y U p n N g G i I  (6) 

Run-of-the-river (RoR) hydropower can be modeled in a simpler manner. Inflow is used to bound the hourly 
generation as a continuous, no-cost power availability. Eq. (7) describes an hourly generation limit based on the 
average hourly inflow value for all hours in season s: 

,

,    , , , , ,
RoR norm gen
ns gigen HydRoR

ghi n
s

U p
y n N g G h H s S i I  (7) 

The objective function seeks to minimize the net present value of investment costs and expected operational costs 
over all years i  I. With the hydropower scheduling modeled as above, it can now be formulated as 
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where the cost of utilizing regulated hydropower is represented by the last term: discharge from segment m 
multiplied by its water value for node n, season s, year i and stochastic scenario . The other terms include costs for 
generation and line transmission investments, power generation and lost load. Uncertainty for investment decisions 
is not considered because all parameters related to this stage are given deterministically in the EMPIRE model. 

2.2. Data sets 

Water values, maximum reservoir levels and regulated and run-of-the-river inflow has been collected from 
SINTEF Energy Research in Trondheim, Norway. In order to account for variations throughout the year, seasons 
have been divided into two categories, summer and winter. Values for initial reservoir levels are assumed higher in 
summer than winter. For the base scenario, 80 and 60 per cent are assumed to be initial levels for summer and 
winter seasons, respectively. The other scenarios use ranges from 70 to 90 per cent for summer and 50 to 70 per cent 
for winter. Initial reservoir levels for Norway and Sweden, the two countries with the largest reservoirs in the 
system, have been given more accurate data [11]. Minimum reservoir level is assumed to be 5 per cent of a full 
reservoir. 

Due to difficulties related to computation of water values, it is noted that presented results are affected by 
inconsistent quality of these parameters. The EMPS model, see [10], was used to produce water values; however, 
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the quality of the data set is modest for the years after 2010. As an approximation, we have therefore introduced 
generation restrictions for regulated hydropower, limiting generation from 2015 to 2060 to a 20 per cent deviation 
band from the generation in 2010 on a seasonal country-wise level. While large expansions of regulated hydropower 
in Europe is not expected in the coming decades [12], incorporating such limits is unquestionably a simplification. 
As such, results do not reflect our final investment recommendations, but can rather be seen as projection guidelines. 

Global Change Assessment Model, see [13], provides expected generation shares for various technologies 
throughout the planning period, given policy scenarios. We utilize these shares in the model, though with two 
relaxations: Hydro-, wind and solar power are entirely excepted from the GCAM matching constraints, and a 
deviation allowance of 40 per cent from the GCAM values are embraced for the remaining technologies. Adding 
these relaxations allows us to identify effects of the new hydropower formulation more clearly, while at the same 
time preserving some of the added stability by incorporating GCAM matching. 

3. Optimization results and analysis 

Optimization results are presented for the Global 20-20-20 policy scenario, which is an extension of the EU 20-
20-20 scenario to a global scope [14]. The results show optimal values for Europe needed to comply with global 
targets. All original parameters in EMPIRE unrelated to hydropower are kept intact. It is evident that within the 
Global 20-20-20 policy regime, the framework favors wind to an extensive degree. As seen in Figure 1 the policy 
scenario involves large-scale expansions of renewables which take place early in the planning period. Fossil 
technologies are present in the entirety of the temporal scope, although with significantly lower amounts towards the 
end of the period, as a result of the increased penetration of renewables. 

Differences between the original and the enhanced hydro version of EMPIRE, see Figure 2, show a significant 
increase in solar capacity for the final model, with a percentage-wise difference peaking in 2040 at 45 per cent. 
However, from 2050 both models find it optimal to reach maximum capacity of wind and solar power.  

            
Figure 1: Generation capacity in GW (left) and generation mix in TWh/year (right) aggregated for the European power system. 

               
Figure 2: Generation capacity differences in GW (left) and generation mix differences in TWh/year (right) between the final and original models. 
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The combination of these findings suggests that the use of water values forces EMPIRE to invest in more capacity at 
an earlier stage, thereby increasing total costs. This can be explained through two effects: Regulated hydropower 
generation decreases due to more precise cost information through water values, and run-of-the-river hydropower 
generation is reduced because of a lower amount of available inflow. Consequently, hydropower is found to be 
overvalued in the original model. 

While the combined hydropower generation is reduced, cheaper sources are selected as generation providers to 
take its place. In the first part of the planning period this is carried out by larger investments in solar power, mainly 
happening in Germany, Italy and Greece. The increased capacity availability is also reflected in the generation mix, 
with solar generation at a consistently higher level in the final model for the years 2020 to 2040. Indeed, in 2030 
solar generation is 54 per cent higher than in the original model. For the last years, after solar has reached its 
system-wide maximum installed capacity, a higher utilization of coal serves as substitution supplier. 

4. Conclusion 

By implementing an enhanced hydropower formulation we have increased the level of detail for this energy 
source in the EMPIRE expansion planning framework. Results show that the original hydropower availability is too 
unconstrained, thereby causing an overvaluation of this technology. The revamped cost representation by means of 
water values leads to a lower utilization of hydropower relative to the original model. An earlier deployment of solar 
power is carried out to replace the lower generation. Total costs in the system are therefore increased. For both 
models, extensive investments in intermittent renewables are taking place, amounting to 47 per cent of the total 
capacity in 2060. 

It is noted that the results presented are affected by inconsistent quality of the water values data set. The 
usefulness of the implementation is nonetheless valuable because of a more comprehensive and accurate 
representation of hydropower in this investment environment than previously. In further work, an in-depth study of 
water values parameters would be interesting to conduct. 
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Abstract

This paper presents the stochastic power system investment model EMPIRE. Formu-
lated as a multi-horizon stochastic program EMPIRE incorporates long-term and short-
term system dynamics, while optimizing investments under operational uncertainty. By
decoupling the optimization of system operation at each investment period from future
investment and operation periods, a computationally tractable optimization problem is
produced. The use of EMPIRE is illustrated in a decarbonization study of the European
power system for two cases, one with transmission infrastructure investments, and one
without. A combination of onshore wind and thermal generation with carbon capture
and storage (CCS) is shown to provide significant CO2 emission reductions from 2010 to
2050, 85 % in the transmission expansion case and 82 % in the no expansion case.

Keywords: Stochastic programming, Energy system planning, Investment analysis, OR
in energy

1. Introduction

As a response to the challenge to mitigate climate change the European Commission
(EC) has supported a long-term commitment to reduce domestic greenhouse gas emis-
sions in the European Union by 80–95 %, relative to 1990 levels (EC, 2009). In its 2011
“Energy Roadmap 2050” the EC shows that reaching this target will entail an almost
complete decarbonization of the power sector (EC, 2011). This necessitates a large-
scale deployment of renewable electricity production, in particular wind and solar power.
However, owing to the intermittent and non-controllable nature of wind and solar genera-
tion, an increased share of these technologies in the generation mix imposes challenges in
terms of balancing supply and demand. These aspects introduce short-term uncertainty
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which is important to consider when planning investments of generation technologies,
transmission system and energy storage equipment throughout the system.
In this paper we present a stochastic programming model, EMPIRE (European Model

for Power system Investment with Renewable Energy), developed to handle the challenges
related to intermittent energy production and stochastic energy demand in a long-term
investment model. To avoid the curse of dimensionality when modeling short-term un-
certainty in a long-term model, we use the multi-horizon approach presented by Kaut
et al. (2014). The main contribution of this model is that it simultaneously handles
short-term dynamics, short-term uncertainty as well as long-term dynamics. We are not
aware of other long-term spatial power sector models that do so, and we think these
properties are critical when modeling the need for storage and other technologies, as a
consequence of the short-term stochastic parameters related to renewable production and
electricity demand. The model is demonstrated through a full-scale long-term analysis
of cost-efficient decarbonization of the European power system.
First we review relevant power sector models that have been used for similar studies.

In particular, we focus on how they handle short-term uncertainty and short-term dy-
namics when modeling system operation, and long term-dynamics related to investment
decisions.
DIMENSION is an optimization based dynamic investment model for the European

power system, developed at the Institute of Energy Economics University of Cologne
(Richter, 2011). Jägemann et al. (2013) use the DIMENSION model for an extensive
analysis of the European electric power sector, establishing the cost of decarbonization in
36 cases with a wide variety of policy regulations and assumptions regarding technology
availability and economic conditions. Another optimization based investment model, the
LIMES-EU+, is used by Haller et al. (2012) to study decarbonization of the European
power sector without the use carbon capture and storage (CCS) and nuclear power. There
are similarities and differences between EMPIRE and these models. The DIMENSION
model and the LIMES-EU+ model are dynamic models, co-optimizing investment and
operation over a long time horizon. However, both these models are deterministic while
EMPIRE includes short-term uncertainty.
A dynamic, multi-stage stochastic version of the DIMENSION model is presented in

Fürsch et al. (2013), where investments in generation capacity are done under uncertainty
about renewable energy deployments. This is an example of incorporation of long-term
uncertainty, which is different from the operational uncertainty considered in EMPIRE.
Operational uncertainty is included in another version the DIMENSION model published
in Nagl et al. (2013). In this version investments are done facing uncertainty in solar
and wind production. Although this is similar to the approach used in EMPIRE when
it comes to modeling uncertainty, the model is static, using a single investment period,
and can therefore not be applied to address transitional development of the European
system. EMPIRE, on the other hand, includes long-term dynamics by incorporating
multiple investment periods.
There are also investment models for the European power system that consider how

the short-term uncertainty affects operational decisions. In the E2M2 model, see Swider
and Weber (2007), system operation is modeled as a multi-stage stochastic program,
with uncertainty in intermittent power production represented using a recombining tree
formulation. Investments are optimized in myopic single steps, and several periods are
considered sequentially. E2M2 is used by Spiecker and Weber (2014) to analyze five
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policy story lines for emission reduction in Europe, with a focus on cost and technology
mix development. Jaehnert et al. (2013) present a capacity expansion model based on
the power market simulator EMPS, which is extended to incorporate endogenous invest-
ment decisions. EMPS is a stochastic dynamic programming model originally designed
for power market analysis of hydro- dominated systems, and is used extensively for man-
agement of reservoirs for hydroelectric generation under uncertain inflow and market
conditions (Wolfgang et al., 2009). Similarly to the E2M2 model, investments in the
extended EMPS model are myopic for single steps. There are two important distinctions
between EMPIRE and these two models. The E2M2 and EMPS models have sophis-
ticated operational modeling, but investments are myopic. In EMPIRE all investment
periods are included in a single optimization, but the details in the operational modeling
is reduced for the model to remain tractable. Short-term uncertainty is considered, but
only when investments are made. Operational decisions are made under (short-term)
perfect foresight.
Seljom and Tomasgard (2015) discuss a methodology for including short-term un-

certainty in the energy system investment framework TIMES. Similarly to EMPIRE
short-term and long-term dynamics are considered. The resulting model is presented
as a two-stage stochastic program with investment decisions as first stage variables and
operational decisions as second stage variables. Essentially this approach is equivalent
to the multi-horizon tree formulation used in EMPIRE, as here-and-now short-term de-
cisions are decoupled from future decisions.
Our work extends the body of modeling work already done on the topic of decar-

bonization of European power. The methodological contribution in this paper is the
description of the capacity expansion model EMPIRE which includes

1. long-term dynamics: multiple investment periods
2. short-term dynamics: multiple sequential operational decision periods and market
clearing

3. short-term uncertainty: multiple scenarios for input data describing operating con-
ditions (wind, solar and load profiles, hydro power production limits, etc.)

While the full mathematical description of EMPIRE has not been published, previous
versions of the model have been used to assess implications of global climate mitigation
strategies for the European power system, see Skar et al. (2014), and for several studies
of CCS deployment in Europe organized by Zero Emissions Platform (ZEP, 2013, 2014,
2015).
The structure of the paper is as follows: Section 2 presents EMPIRE, its design, math-

ematical formulation and a stochastic scenario generation routine. Section 3 presents a
case study of European power decarbonization using the EU 2013 reference case data
EC (2014).1 Following the analysis, the final section presents the conclusions of the
study. Lastly, a list of symbols used in the mathematical description of EMPIRE, and
a discussion on input data sources and preprocessing are included in appendices at the
end.

1In order to avoid confusion over the use of the word scenario (in this paper used for stochastic
scenarios) we label the input data from EC (2014) as the EU reference case 2013 rather than the actual
name used by the European Commission, namely EU (energy, transport and GHG emissions trends to
2050) reference scenario 2013.
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Figure 1: Spatial detail of the EMPIRE model. The coverage include all the nationalities represented in
the ENTSO-E (as of 2010), except Cyprus, Iceland and Montenegro. This coincide with the EU-28 (less
Cyprus and Montenegro) plus Bosnia Herzegovina, Norway, Serbia and Switzerland. As the expansion
cost of high voltage (HV) cables are higher than for HV lines, these are identified using a red color in
this figure.

2. Approach

The European Model for Power System Investment with (high shares of) Renewable
Energy (EMPIRE) is a capacity expansion model designed to assess optimal capacity
investments and system operation over medium to long-term planning horizons, typi-
cally ranging 40–50 years. A total of 31 European countries are included in the model,
connected through 55 interconnectors, as depicted in Figure 1. Following the tradition
of recently developed models with similar scope, a central planner perspective is used,
minimizing a system costs objective while serving a price inelastic demand (see Jäge-
mann et al. (2013); Nagl et al. (2013); Spiecker and Weber (2014); Haller et al. (2012)).
This is equivalent to an economic social surplus maximization, a commonly used model
of perfectly competitive markets, with consumer decisions fixed ex ante. These types
of models are often referred to as power market models, and are frequently in use for
studying policy and regulation in the liberalized European power sector.

2.1. EMPIRE modeling structure
2.1.1. Multi-horizon tree formulation
The effect of short-term uncertainty about the system operating conditions on invest-

ment decision is captured by formulating EMPIRE as a stochastic programming model
(Birge and Louveaux, 2011). Although, owing to its dynamic formulation, EMPIRE
could have been cast as a standard multi-stage stochastic program, an alternative, ap-
proximate, formulation is applied. The methodology used is based on the principles
of multi-horizon stochastic programming, as presented by Kaut et al. (2014). This is
a framework for stochastic models exhibiting two time-scales for decisions and uncer-
tainty, referred to as respectively long-term (strategic) and short-term (operational). As
a precondition the strategic and operational uncertainty have to be represented by inde-
pendent stochastic processes. The operational decisions are associated with a particular
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Hour

Year

Time

(a) Multi-stage stochastic program with
strategic and operational uncertainty.

(b) Multi-horizon equivalent of (a).

(c) Multi-stage stochastic program without
strategic uncertainty.

(d) Multi-horizon equivalent of (c).

Figure 2: Examples of multi-scale multi-stage stochastic trees and their multi-horizon counterparts.
Typical long-term and short-term time scales are shown in (a).

strategic stage, and the strategic decisions are made subject to operational uncertainty.
However, it is assumed that current operational decisions, and the information learned
from observing realized operational uncertainty, do not affect future strategic or opera-
tional decisions. Following this logic, it is possible to isolate current operational decisions
from future decisions. Each strategic node will then have embedded operational nodes
(which may incorporate further uncertainty, making it a sub-tree), however, there are no
branches connecting operational nodes to future strategic nodes. This greatly reduces
the total size of the tree. Figure 2 shows examples of full multi-stage stochastic program-
ming problems and their reduced multi-horizon representation. Following the notation
in Kaut et al. (2014) we let circles represent investment (strategic) decision stages ( )
while squares represent operational decisions stages ( ). Termination of a branch, in the
sense that no future stages are directly linked to a given node is indicated by a line (⊥).
Stochastic energy system investment models naturally lend themselves to this classi-

fication, as both long-term investment decisions and short-term operational decisions are
co-optimized. For power system models, typical strategic uncertainty may include long-
term development in fuel prices and energy demand, policy and regulation, investment
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Figure 3: Temporal and stochastic scenario setup in EMPIRE. Circles indicate investment decision stages
and squares indicate operational stages. Periods are indexed by the set I and the stochastic scenarios
are collected in a finite sample space Ω.

costs and technology learning. Operational uncertainty, relates to the more short-term
system dynamics: demand fluctuations, renewable energy production, short-term fuel
price variability.
In the formulation of EMPIRE we have assumed perfect foresight in terms of the

strategic data. The operational uncertainty is reflected in the load profiles, wind and solar
generation profiles, and seasonal availability of water stored in reservoir for hydroelectric
production. To simplify the exposition the same sample space Ω = {1, . . . , O} is used
for operational scenarios in every investment period, however, it should be noted that
this is not a restriction of the multi-horizon tree formulation. The structure of the
decision making process is shown in Figure 3. The vectors xi are collection of strategic
(investment) decisions in period i ∈ I = {1, . . . , I}, and xi:j denotes the collection of
vectors xi, xi+1, . . . , xj , i, j ∈ I. In the operational stages, yiω is the collection of all
the operational decisions (such as generation, line flows, storage handling etc.) in period
i ∈ I and stochastic scenario ω ∈ Ω. For each period a strategic decision is made, subject
uncertainty about which operational scenario ω ∈ Ω will be realized.
The prefect foresight assumption used for long-term data leads to investment decisions

tailored to fit a particular future in terms of fuel prices, carbon prices, demand growth,
technological development, etc. However, the investments will account for the fact that
operational conditions are difficult to predict at the time of the investment. In particular,
the resulting investments will not be optimized for a single set of profiles for load and
intermittent renewable production, but they will be optimized across several possible
outcomes.

2.1.2. Temporal aggregation
In order to reduce the problem size, and computational effort of solving the optimiza-

tion problem, two types of temporal aggregation schemes have been applied. As the main
interest is the long-term expansion of the system, some dynamic granularity is sacrificed
by considering five year time blocks rather than annual steps for the investment periods
i ∈ I. Capacity investments are assumed to be available starting from the same time
period as the decision is made, and payments are done upfront.
A second step of the problem size reduction is used in the computation of annual
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Figure 4: Illustration of the annual operation setup in EMPIRE. In this example there are four regular
seasons, each with 48 consecutive hours, and three extreme load seasons, each with five consecutive
hours.

operational costs. Rather than computing the system dispatch over a full year of 8760
hours we work with a reduced set of operational hours H. The set H is subdivided into
seasons, indexed by a set S. EMPIRE applies a distinction between two types of seasons,
regular seasons and extreme load seasons, with different numbers of operational hours
modeled. The extreme load seasons are assumed to cover just a small fraction of the year,
but they are useful for determining the need to install back-up capacity. By including
these seasons in the operational modeling, the contribution of intermittent renewables
in the electricity supply during such periods can be evaluated for a number of different
scenarios. An approach similar to this, albeit in a deterministic setting, was used by
Haller et al. (2012), where the normal operation was modeled using four seasons, each
with three days divided into four time slices of six hours. For representing constrained
supply situations they included an additional time slice, assuming high load and low
renewable generation.
Figure 4 illustrates the temporal connection between operational decision vectors

{yiωh}h∈H in a given period i ∈ I and stochastic scenario ω ∈ Ω (the full collection
correponds to yiω in Figure 3). As a matter of convenience the elements in H are labeled
consecutively, H = {1, . . . , H}, although two consecutive hours in H are only consecutive
in the modeling if they belong to the same set Hs, for a season s ∈ S.
A routine for scenario generation used to structure the operational data, as shown in

Figure 4, has been created specifically for EMPIRE. This is documented in Section 2.3.

2.2. Mathematical formulation
In the following a complete description of the mathematical formulation of EMPIRE

is provided, focusing on how the equations describe the investment and operation de-
cision process. The actual implementation of EMPIRE is done using the Xpress-Mosel
environment of the FICO R© Xpress Optimization Suite (Heipcke, 2012; FICO R©, 2015).

7



2.2.1. Objective function
The objective in EMPIRE is to minimize the sum of investment and (expected)

operational costs for the system as whole, over all time periods in I, discounted at rate r.
Capacity investments are possible for generators g ∈ G, denoted by decision variable xgen

gi ,
and interconnectors l ∈ L, denoted by xtran

li . Storages, b ∈ B, are modeled by a power
(charge/discharge) capacity and an energy storage capacity, for which the investment
decision variables are denoted by xstorPW

bi and xstorEN
bi , respectively. The investment

costs are assumed linear as a function of the investment size for all assets, and the
cost coefficients are given by cgen

gi for generators, and by ctran
li for interconnectors. For

storages the power and energy investment costs are denoted by cstorPW
bi and cstorEN

bi . The
investment cost parameters include capital costs, and fixed operation and maintenance
costs, paid over the lifetime of an asset. For assets with life times expiring beyond the
analysis horizon given by I, the investment cost parameters are adjusted to account for
salvage value.
In the expression for system operational costs, the model assumes linear production

cost profiles for all generators. For a dispatch hour h ∈ H, in period i ∈ I and stochastic
scenario ω ∈ Ω, the decision variables describing generator production output are denoted
by ygen

ghiω, for g ∈ G. The production cost coefficients, qgen
gi , reflect all variable costs: fuel

costs, carbon emission costs, operation and maintenance costs, and carbon capture and
storage costs. These interpreted as short-run marginal costs (SRMC) due to the linear
formulation. At every node n ∈ N the model has the ability to reduce load if it cannot
be met by other means such as generation, import or storage discharge. The cost of load
shedding is given by the product of the load shedding amount, yll

nhiω, and the value of
lost load (voll), denoted by qll

ni.
The objective function is formulated as

min
x,{yω}ω∈Ω

z =
∑
i∈I
(1 + r)−5(i−1)×

{ ∑
g∈G

cgen
gi xgen

gi +
∑
l∈L

ctran
li xtran

li +
∑
b∈B

(
cstorPW
bi xstorPW

bi + cstorEN
bi xstorEN

bi

)

︸ ︷︷ ︸
Investment cost for generation, transmission and storage capacity, period i

+ ϑ
∑
ω∈Ω

πω

∑
s∈S

αs

∑
h∈Hs

∑
n∈N

[ ∑
g∈Gn

(
qgen
gi ygen

ghiω

)
+ qll

niy
ll
nhiω

]

︸ ︷︷ ︸
System operation cost (all nodes n),

generation + value of lost load,
period i, scenario ω, season s, hour h

}
. (1)

The collection {πω}ω∈Ω comprises discrete probabilities on the finite sample space Ω,
which makes the sum of operational costs over all ω ∈ Ω scaled with πω an expected
value.
In order to account for problem size reduction, as discussed in the previous section,

we use scaling factors to ensure that investment and operational costs have the same
temporal resolution. The factor ϑ is a five year inverse capital recovery factor,2 scaling

2ϑ =
∑4

j=0(1 + r)−j = (1+r)5−1
r(1+r)4
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annual values to a five year value, a necessity due to the use of five year block periods
i ∈ I. The scaling factors αs, for season s ∈ S, account the contribution parameters and
variables in different seasons have to an annual figure. As an example, suppose that we
define the total generation in season s ∈ S, period i ∈ I and stochastic scenario ω ∈ Ω as
Y gen

siω =
∑

h∈Hs

∑
g∈G ygen

ghiω. Then Y gen
iω =

∑
s∈S αsY

gen
siω is the total annual generation in

period i, scenario ω. The expected annual generation in period i is Y gen
i =

∑
ω∈Ω πωY gen

iω .

2.2.2. Dispatch model
The system operation is governed by a number of energy balance constraints, one for

every node and every dispatch hour considered, and a number of technical constraints
for the generators and interconnector links between nodes. The collection of all of the
following constrains for a period i ∈ I and stochastic scenario ω ∈ Ω define the annual
dispatch of the system.
For every hour, h ∈ H, the sum of net local generation and net import is required to

balance the load at every node, n ∈ N , denoted by the parameter ξload
nhiω. We let yflow

ahiω be
the unidirectional flow on an arc connecting node n to a neighboring node in the network
(see Figure 1). For each node the sets Ain

n and Aout
n contains the arcs going into, or

out from, node n, respectively. Transmission losses are accounted for at the importing
node, by down-scaling the flows for arcs a ∈ Ain

n by efficiency parameters ηtran
a , where

ηtran
a ∈ (0, 1). The decision variables ychrg

bhiω and ydischrg
bhiω denote storage charging and

discharging variables, and ηdischrg
b the discharge efficiency (ηdischrg

b ∈ (0, 1)). The sets Gn

and Bn contain the generators and energy storages, respectively, which are located at
node n. The single hour node load balance, or dispatch, constraint is formulated as

∑
g∈Gn

ygen
ghiω

︸ ︷︷ ︸
Generation

+
∑
b∈Bn

ηdischrg
b ydischrg

bhiω − ychrg
bhiω

︸ ︷︷ ︸
Storage handeling

+
∑

a∈Ain
n

ηtran
a yflow

ahiω −
∑

a∈Aout
n

yflow
ahiω

︸ ︷︷ ︸
Net import

= ξload
nhiω − yll

nhiω,

n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω.

The nodal load is by this design price insensitive, apart from in highly constrained supply
situations when load can be shed at the cost of value of lost load. The shadow prices of
the node load balance constraints are reported as power prices. Uncertainty in the load
profiles is introduced by using unique input data for every ω ∈ Ω.
Every generator, interconnector and storage (power and energy) have rated maximum

installed capacities, v∗∗
∗i , which for every period i ∈ I are given by the initial capacity

still in operation, x∗∗
∗i , and cumulative investments which have not expired their lifetime,

ilife
∗ .3 Asterisks ∗∗ are used to indicate type of capacity (generator, line, storage power
or storage energy) and ∗ indicate the element in the set of all objects of the given type
(e.g. g ∈ G for generators), allowing for a generic definition of capacity. This is given as

v∗∗
∗i = x∗∗

∗i +
i∑

j=i′
x∗∗

∗j , i′ = max{1, i − �ilife
∗ /5�}, i ∈ I.

3The investment life time parameters are given in years, while the periods i ∈ I represents five year
time blocks. When determining if an asset is active in period i the life time parameters must be divided
by 5. The �·� notation is used for the floor operator.
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Vintage and new capacities are aggregated as we consider each generator, interconnector
and storage to represent the installed capacity for a given period i ∈ I. For thermal
and hydro generators, g ∈ GThermal ∪ GHydro, vgen

gi is the total installed capacity of a
technology at a given node. As an example, nuclear power in France is considered one
generator. Pooling generation resources this way reduces the number of decision variables
in the dispatch problems, however, the trade-off is that the model cannot keep track of
the age distribution of a technology when computing the optimal dispatch. As a result,
if a technology is improved from one investment period to the next, the improvement is
applied to the entire power plant fleet of that technology. Wind and solar generators are
not aggregated by technology in the same way, but represents locations within a country
with different production resource potentials.
Production from each generator for a dispatch hour is limited by the available in-

stalled capacity. We use availability parameters, ξgen
ghiω, where ξgen

ghiω ∈ (0, 1), to derate
the installed capacity for generator g ∈ G in hour h ∈ H. The maximum production
constraint is then

ygen
ghiω ≤ ξgen

ghiωvgen
gi , g ∈ G, h ∈ H, i ∈ I, ω ∈ Ω,

For intermittent production, such as wind power and solar power, the availability pa-
rameters are stochastic and represented by scenario dependent normalized production
profiles. These profiles have an hourly scale, and the data used is generated by the
routine described in Section 2.3. As for the load parameters, the intermittent produc-
tion profiles are unique for each stochastic scenario ω ∈ Ω, reflecting the operational
uncertainty experienced at the time of investment. For thermal generators the availabil-
ity parameters are constant across all hours h ∈ H, and are based on average capacity
factors for the given technologies.
Ramp up of production for thermal generators, g ∈ GThermal, is assumed to be limited

to a certain share of the installed capacity, given by the parameter γgen
g , where γgen

g ∈
(0, 1). The ramping constraints are formulated as

ygen
ghiω − ygen

g(h−1)iω ≤ γgen
g vgen

gi , g ∈ GThermal, s ∈ S, h ∈ H−
s , i ∈ I, ω ∈ Ω.

The decision variables wstor
bhiω keep track of the energy level for storage b ∈ B. At

every hour (except the first in a season), the storage end-level is set as the difference
between the energy level in the previous hour minus the net discharge. The storage
energy-balance constraint is given as

wstor
b(h−1)iω + ηchrg

b ychrg
bhiω − ydischrg

bhiω = wstor
bhiω, b ∈ B, s ∈ S, h ∈ H−

s , i ∈ I, ω ∈ Ω.

Losses are attributed both to the charging and discharging of the energy storage, and
the round-trip efficiency is given as ηroundtrip

b = ηchrg
b ηdischrg

b . The stored energy and
charging/discharging are limited by the energy and power installed capacities, given by

wstor
bhiω ≤ vstorEN

bi , ychrg
bhiω ≤ vstorPW

bi , ydischrg
bhiω ≤ ρbv

storPW
bi ,

b ∈ B, h ∈ H, i ∈ I, ω ∈ Ω.

The (non-negative) parameter ρb determines a fixed discharge to charge power capacity
ratio and allows for specifications of storage technologies where the maximum charging
power can be different from the maximum discharge power.
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Hydroelectric power generation is modeled with low variable operational cost, but
constrains are imposed on the hydro operation to account for water availability in
reservoirs and hydroelectric resource potential. For regulated hydroelectric generators,
g ∈ GRegHydro, energy limits given by ξRegHydroLim

gsiω , constrain the total production over
each season. The constraint is given by

∑
h∈Hs

ygen
ghiω ≤ ξRegHydroLim

gsiω , g ∈ GRegHydro, s ∈ S, i ∈ I, ω ∈ Ω. (2)

For every node, the total hydroelectric generation, both regulated and unregulated, is
limited in terms of annual energy production

∑
s∈S

αs ×
∑

h∈Hs

∑
g∈GHydro

n

ygen
ghiω ≤ ξHydroLim

niω , n ∈ N , i ∈ I, ω ∈ Ω. (3)

The hydroelectric energy limits also depend on the stochastic scenarios, allowing EM-
PIRE to reflect uncertainty about water availability for power production.
EMPIRE has a simplified network description, only considering import/export links

between countries (resembling a net transfer capacity, NTC, representation). Exchange
is limited by the (symmetric) capacity for each interconnector, l ∈ L, given as

yflow
ahiω ≤ vtran

li , l ∈ L, a ∈ Al, h ∈ H, i ∈ I, ω ∈ Ω. (4)

The sets Al contains the pair of unidirectional arcs which together represents the flow
across interconnector l. According to this formulation the exchange between countries is
fully controllable within capacity limits, an assumption leading to an overestimation of
the network flexibility. In reality, flows in an electric network are determined by physical
laws, the network characteristics, and power injections and withdrawals. By neglect-
ing this fact, the dispatch found by the model may result in flows that would deviate
significantly from actual flows in an electric network (even violate security constraints),
commonly referred to as loop flows. However, this simplification reduces both the data
requirements for the gird specification and the computational burden of solving the op-
timization problem and is commonly used in similar studies (Jägemann et al., 2013;
Spiecker and Weber, 2014; Haller et al., 2012).

2.2.3. Capacity investment constraints
There are two types of constraints on generation capacity investments in EMPIRE:

limits on possible investments per period for a given technology in a given node, and
maximum installed capacity constraints. Their formulations are given in equations (5)
and (6), respectively.

∑
g∈Gtn

xgen
gi ≤ X

gen
ti , t ∈ T AggTech, n ∈ N , i ∈ I, (5)

∑
g∈Gtn

vgen
gi ≤ V

gen
tni , t ∈ T AggTech, n ∈ N , i ∈ I. (6)

The capacity constraints are given at an aggregate technology level per node, rather
than a generator level. The limits encompass a combination of technical, economic,
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environmental or regulatory constraints, some of which are clearly stated policies, like
the Germany nuclear power moratorium from 2022, while others are more intangible, such
as a limits on wind power expansion in a given country, or opposition against coal-fired
power generation.
Similar constraints to Eq. (5) and (6) are imposed for lines and storages (power

and energy) capacity investments and installed capacities (omitted here for brevity).
The power and energy capacity investments for storages are sized independently unless
additional constraints are imposed. For some storage technologies, such as batteries,4 we
fix one of the quantities as a function of the other by imposing the following constraint
for a subset of storages B†,

vstorPW
bi − βbv

storEN
bi = 0, b ∈ B†, i ∈ I.

The parameters βb is the fixed storage power to energy ratio.

2.3. Stochastic scenario generation routine
A scenario generation routine was developed to construct hourly data series to be

used in the EMPIRE operational modeling, as shown in Figure 4. For this purpose
multi-annual hourly profiles for load, (onshore/offshore) wind power production and solar
photovoltaics (PV) production were collected. Hourly profiles for regulated hydroelectric
power production were synthesized using a specialized routine.
In order to preserve auto-correlation and correlation between data series, it was de-

cided that the data used for the scenarios ω ∈ Ω would come from a sample of consecutive
hours from historical data, and that, within a scenario, the same hours would be used
for all the data series. The samples would be randomly chosen, so that

• each scenario would generally get different data, and

• on average, the mean and variance of the sampled data would match that of the
original series.

The following explains the implementation of the scenario generation routine.
The first step involves preparing the raw data series. Let {τ type

∗hk }h∈Hfull,k∈K be the
annual hourly data profile for a given parameter type (e.g. load, wind, solar PV and
hydro profiles) for a number of historic years indexed by a set K. The first index of
τ type

∗hk is an object identifier which relates to the type of the profile. For load series, this
index identifies the node, for wind production data it identifies a particular generator. A
wild-card sign is used when the data series type is not indicated. The set H full is simply
the range [1, 8760], i.e. all hours in a full year, meaning that leap year data is disregarded.
Before applying the scenario generation scheme a data pre-processing was conducted:

4The coupling between power and energy capacity vary significantly between different energy storage
technologies. For pumped-hydro the energy capacity is given by the size and design of the upstream
(and possibly downstream) reservoir(s), while the power capacity is for the most part determined by the
power generation equipment. Modern utility grade batteries, on the other hand, are delivered as units
with pre-specified power and energy capacities determined by the technology and electronics used in the
design.
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1. If there are missing observations in any of the data series, these are re-constructed
by either linear interpolation between the closest available hours, or replicating
those values in case the missing observations are at the beginning or the end of the
respective series.

2. Make an ordered partition of the set of indices H full into four season sets H full =
{H full

1 , H full
2 , H full

3 , H full
4 }. The number of elements of each season is equal, i.e.

|H full
s | = 2190, for s = 1, . . . , 4.

The scenario generation routine is used to construct base data series {ξtype
∗h0ω}h∈H,ω∈Ω

from the historical data {τ type
∗hk }h∈Hfull,k∈K. The algorithm goes as follows

For every scenario ω ∈ Ω
1. Select a random year k′ ∈ K.
2. For each regular season s = 1, . . . , 4

(a) Sample a random number θs between 1 and 2190 − (l + 1), where l is the
number of hours in the EMPIRE regular season

(b) Populate the regular hours of base data series ξtype
∗h0ω by setting

ξtype
∗h0ω = τ type

∗h′k′ , j = 1, . . . , l, h = j + l · (s − 1), h′ = θs + (j − 1).

3. Form the first extreme load season by summing up the historical load for all nodes
in a given hour h ∈ H full, for the selected year:

τ load
hk′ =

∑
n∈N

τ load
nhk′ ,

(a) Select the hour h with the highest load value, i.e. the index h ∈ H full corre-
sponding to the maximum element of {τ load

hk′ }h∈Hfull .
(b) The first extreme season of {ξtype

∗h0ω} comprise the data from hours in the in-
terval [h − 2, h+ 2] at the selected year k′ of {τ type

∗hk }.
4. Form the other extreme peak seasons by obtaining the maximum load per node

τpeakload
nk′ = max

h∈Hfull
{τ load

nhk′},

then selecting the |Speak| −1 nodes n1, . . . , n|Speak|−1, with the highest load (where
|Speak| is the number of extreme load seasons). Extreme load season j+1 is formed
by the hours [hj − 2, hj + 2], where hj is the hour with the highest hour load for
node j.

After the procedure had been applied the sampled data profiles {ξtype
∗h0ω} were checked to

see that they closely match the mean and variance of the respective underlying raw data
series. The load and hydro base data profiles were further processed as described in the
supplementary information to this article.
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Figure 5: Fuel prices, electricity demand and carbon prices form EU 2013 Reference case. EC (2014)
contains prices for hard coal, natural gas and oil. Lignite, uranium and biomass prices come from other
sources, (ZEP, 2011; VGB, 2011), and are extrapolated from 2010 data.

3. EU reference scenario case study using EMPIRE

The use of EMPIRE in a decarbonization study for the European power system is
illustrated on a data set based on the EU reference case 2013 recently published by the
European Commission (EC, 2014). This data set establishes the conditions for the long-
term dynamics of the system, such as fuel prices and electricity demand development.
A climate policy, in the form of a carbon price, is also collected from the EU reference
case. Some of the major assumptions are shown in Figure 5.
In this analysis we use four regular seasons, each with 48 consecutive hours, and

six extreme load seasons, each with five consecutive hours. Three stochastic scenarios
are used. All in all, this means that for each investment period a total of 666 dispatch
hours are considered. Across all the investment periods a total of 5994 dispatch hours
are used, establishing a diverse representation of different operating conditions. The
supplementary information provided with this paper contains further details regarding
the input data used for this analysis.
Two transmission investment cases were developed for the purpose of this study. In

the first case maximum capacities for HV line interconnectors were limited to two times
their initial capacity, plus an additional 1000 MW per interconnector. By basing the
maximum limit on installed capacity, a degree of inertia is introduced in the infrastructure
planning, while the 1000 MW addition allows for moderate development of transmission
corridors which are not of significant capacity today. For each HV cable interconnector
the total expansion was limited to 1400 MW. For every time period the expansion for
each HV line interconnector was limited to 10 % of the initial capacity plus 300 MW. For
HV cable interconnectors the limit was set to 700 MW per time period. In the second
case we did not allow for interconnector expansion.
The following sections presents the results from the two cases, and a discussion.

3.1. Aggregated results for Europe
The European generation capacity and energy mixes for the EU reference case 2013

are displayed in Figure 6 (with interconnector expansion) and Figure 7 (no transmis-
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Figure 6: Optimal generation capacity and generation mix in the constrained transmission expansion
case. The category Hydro/Geo/Ocean comprises aggregated results for the technologies: hydroelec-
tric power (reservoir and run-of-the-river), geothermal energy and ocean energy. Biomass Co-fir. is a
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Figure 7: Optimal generation capacity and generation mix in the constrained transmission expansion
case

sion expansion). At an European level the differences are not tremendous, but some
distinctions are worth pointing out. For onshore wind the installed capacity in 2050 is
close to 530 GW in the case with interconnector capacity expansion, about 100 GW
higher than in the no expansion case. For solar PV the installed capacity in 2050 is
127 GW in the interconnector expansion case, compared to 117 GW in the no expansion.
The additional renewable capacity seen in the interconnector expansion case reduces the
need for thermal generation investments. For the no expansion case, unabated and CCS
equipped fossil fuel generation capacities are, respectively, 43 GW and 21 GW higher
than for the grid expansion case. In the energy mix for the no expansion case, this re-
sults in 88 TWh additional generation from unabated fossil generation technologies and
134 TWh more generation from CCS plants. This is offset by 171 TWh onshore wind
and some additional generation from other renewables in the interconnector expansion
case.
Figure 8 shows the total emissions, average cost of electricity and deployment of CCS

and wind generation capacities in Europe. The two cases start to diverge from 2020.
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Figure 8: Emissions, average electricity cost and deployment of CCS and wind (onshore/offshore) ca-
pacities for the cases with and without interconnector expansion.

Even before the most significant differences in wind investment emerge, there is a gap
between the emission trajectories for the two cases. This can be attributed to better
utilization of the low-carbon generation capacities as more generation resources can be
shared throughout the system. The impact of the increased levels of wind investments is
seen to be larger for the average cost. An investigation of the different components of the
system costs reveal that the difference is caused by a lower fuel cost in the interconnector
expansion case. This is to be expected as wind generation has zero fuel costs. For the
CCS capacity the differences between the cases are not considerable, however, the first
CCS deployment is delayed by five years, until 2030, in the interconnector expansion
case.

3.2. Interconnector expansion
The initial transmission system design and the installed interconnector capacities in

the expansion case are shown in Figure 9. In the initial system the total capacity was
67 GW, while the additional interconnector expansion by 2050 ended up at 96 GW,
yielding a total of 163 GW capacity for all the interconnectors (we assume no decommis-
sioning of the existing capacities). The constraints imposed on the expansion turn out
to be binding for a majority of the connections. A total of 38 out of 55 interconnectors
reach the maximum install limit. In particular, all the HV cables links from Norway
and Sweden are expanded to the maximum level. The same applies for the HV cables
going from the UK to France, Belgium and the Netherlands. The connections along the
south-to-north axis going from Spain through France to Germany were also develop to
the maximum extent.
Most of the interconnectors with non-binding maximum expansion constraints are

found in Eastern Europe and the Balkans. In addition, the links between Germany and
Austria, Germany and Switzerland, and Germany and the Netherlands see non-binding
constraints.
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Figure 9: The initial (2010) interconnector capacities and the installed capacities in 2050.

3.3. Generation capacities and energy mix by country
Figures 10 and 11 show the 2050 generation and energy mixes, in the two cases, for the

ten countries with the highest electricity demand in Europe. The two cases are generally
quite similar. In Germany there is a diverse mix of onshore wind (roughly 50 % of the
generation capacity and 20 % of the generation mix) and fossil fueled generation, both
with and without CCS. In the generation mix CCS accounts for more than half the total
energy produced. In France, nuclear power and onshore wind make up more than 70 %
of both the capacity and energy mix. Also, Italy, Great Britain and Spain see significant
onshore wind deployment by 2050. In Germany, Italy and Great Britain the maximum
install constraints on onshore wind capacity are binding in 2050. In Great Britain and
Poland unabated coal and lignite generation are displaced by CCS generation. Significant
amounts of natural gas fired CCGTs are used in Germany, Italy, Great Britain, Spain
and Belgium.
When it comes to the differences between the two transmission expansion cases the

most notable countries are France, Poland and Norway. An additional 40 GW of onshore
wind is deployed in France, and 20 GW additional capacity is installed in both Poland
and Norway, in the interconnector expansion case. For solar PV the additional capacity
in the interconnector expansion case is installed in France (6 GW), Italy (6 GW) and
Spain (4 GW), while 5 GW is reduced elsewhere in Europe yielding a net increase of
a bit more than 10 GW. The reduces amount of thermal generation capacity in the no
expansion case over the alternative is distributed fairly evenly across all countries.

3.4. Discussion
Firstly, even with the current interconnector capacities installed in Europe there is

a significant potential for large-scale deployment of onshore wind. The results show a
25 % share in the generation mix for onshore wind without grid investments, and close to
30 % in for the case with. It should be noted that the optimal interconnector expansion
found, represents substantial infrastructure investments, an increase of almost 150 % on
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Figure 10: Transmission capacity expansion case: Country-wise Baseline scenario result generation
capacity and generation mix in 2050.
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Figure 11: No transmission capacity case: Country-wise Baseline scenario result generation capacity and
generation mix in 2050.
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top of today’s system. For solar PV, on the other hand, the effect of increased exchange
capacity was modest. This implies that capital cost reductions are more important for
solar deployment than grid investments.
Relative to 2010 levels, emissions are reduced by 85 % in the interconnector expansion

case and an 82 % reduction in the no expansion case. Without the ability to increase
interconnector capacities more CCS is deployed which essentially leads to more or less
the same emission reduction. In terms of costs, however, the differences turned out to be
larger. As more wind generation is deployed, accompanied by transmission expansion,
less costs are incurred on fuel and carbon. The capital costs are higher, but operational
cost savings are high enough to lead to a 5 % net reduction in average cost by 2050, over
the no expansion case.
The constraints imposed on maximum investments in generation and transmission

capacities turn out to significantly affect the resulting system design. In the case with-
out transmission expansion five of the ten countries with highest demand for electricity
experience that the maximum constraints on onshore wind expansion are binding. For
the grid infrastructure a majority of the constraints placed on interconnector expansion
turned out to be binding. This means that higher investments for both wind and inter-
connectors would likely have resulted from relaxing these constraints. It can be difficult to
determine the appropriate limits to use on investments, however carefully considerations
should be used as the results are clearly sensitive to these parameters.

4. Conclusions and further work

This paper provides a full methodological description of EMPIRE, a stochastic invest-
ment model for the European power system. The model features multiple investment
periods, hourly dispatch modeling for selected time segments of a year and multiple
stochastic scenarios representing operational uncertainty. This allows for simultaneous
consideration of long-term dynamics, short-term dynamics and short-term uncertainty
affecting investment decision and system operation. These are all features which are
particularly important when analyzing cases with high penetrations of intermittent re-
newables as such technologies introduce a great deal of variability and uncertainty in the
electricity supply. Computational tractability is achieved by utilizing a multi-horizon
tree formulation, in which here-and-now operational decisions are decoupled from future
investment and operational decisions.
The case study presented illustrates the use of EMPIRE for a European decarboniza-

tion study. Driven by the EU ETS price from the European reference case 2013 an
emission reduction of more than 80 % is achieved displacing unabated fossil fuel gen-
eration with onshore wind and CCS. By allowing interconnector expansion, more wind
power was deployed, which significantly reduces the system operational costs. However
only small differences are observed for the total emissions.
There are two natural extensions to the work presented here. Firstly, the current

version of EMPIRE does not fully make use of the possibilities of the multi-horizon
tree formulation. By incorporating strategic uncertainty, which could for instance affect
technology costs, fuel price developments or carbon price development, the effect of long-
term uncertainty on decarbonization pathways can be addressed. The second extension
of the work is to develop algorithms for efficient solution of multi-horizon models. In
particular decomposition methods, such as Benders Decomposition, mixed with parallel
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computing is a possible approach. By reducing computation times, and distributing
computation tasks, it would be possible to considerably increase the number of stochastic
operational scenarios used and get a better representation of the variability associated
with intermittent renewables. For the levels of wind deployment seen in the illustration
cases presented in this paper such considerations are extremely important for determining
the need for operational flexibility in the system.
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AppendixA. Nomenclature

Table A.1: Paramters and variables in the EMPIRE model

Sets and indices
Set Index Description
N n Nodes (country)
G g Generators
L l Interconnector links (unidirectional)
A a Arcs (for directional flow)
B b Storages
H h Operational hour (H− = H \ {1}), |H| = H

S s Season
I i Investment time period, |I| = I

Ω ω Stochastic scenario, |Ω| = O

T t Aggregated generator technologies
K k Years for historical data profiles
Decision variables
Symbol Description
xgen

gi Generation capacity investment
xtran

li Line capacity investment
xstorPW

bi Storage power capacity investment
xstorEN

bi Storage energy capacity investment
ygen
ghiω Generation

yflow
ahiω Line flow

ychrg
bhiω Storage charge

ydischrg
bhiω Storage discharge

yLL
nhiω Energy not supplied (load shed)

wstor
bhiω Storage energy content. Charge level = wstor

bhiω/vstorEN
bi

vgen
gi Installed generation capacity

vtran
li Installed transmission capacity

vstorPW
bi Installed storage power capacity

vstorEN
bi Installed storage energy capacity

Continued on next page21



Table A.1 – Continued from previous page
Parameters
Symbol Description
r Discount rate
ϑ Five year scale factor, ϑ =

∑4
j=0(1 + r)−j = (1+r)5−1

r(1+r)4

πω Scenario probability,
∑

ω∈Ω πω = 1, 0 ≤ πω ≤ 1.
αs Seasonal scale factor
cgen
gi Generator investment cost

ctran
li Transmission investment cost

cstorPW
bi Storage power capacity investment cost

cstorEN
bi Storage energy capacity investment cost

qgen
gi Generator short-run marginal cost

qvoll
ni Value of lost load at node

ξload
nhiω Load

ξgen
ghiω Generator capacity availability

ξRegHydroLim
gsiω Max energy production from regulated hydro

ξHydroLim
niω Max energy production from hydro at node

τ type
∗hk Historical data series (type and ∗ indicate data profile type)

xgen
gi Initial generation capacity

xtran
li Initial transmission capacity

xstorPW
bi Initial storage power capacity

xstorEN
bi Initial storage energy capacity

X
gen
ti , V

gen
ti Generation max build/install capacity (aggregate technology)

X
tran
li , V tran

li Transmission max build/install capacity
X

storPW
bi , V storPW

bi Storage power capacity max build/install capacity
X

storEN
bi , V storEN

bi Storage energy capacity max build/install capacity
ilife
∗ Life time for investment (∗ used as a wild-card for g, l, b)

ηtran
l Linear line efficiency. Loss = 1− ηtran

l

ηchrg
b Storage charge efficiency

ηdischrg
b Storage discharge efficiency

ηroundtrip
b Storage round-trip efficiency, ηroundtrip

b = ηchrg
b ηdischrg

b

γgen
g Generator ramp-up capability

ρb Storage discharge to charge power capacity ratio
βb Storage power to energy capacity ratio
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Abstract

The paper presents a modeling study focusing on carbon capture and storage (CCS) as
a decarbonization option for European power. In addition, the analysis assesses various
support schemes designed to incentivize deployment of demonstration CCS projects.
Public grants, feed-in premiums and emission portfolio standards are evaluated. For the
analysis, we use a multi-horizon stochastic investment model for the European power
system that combines long-term capacity expansion with operational modeling under
different load and generation scenarios. The first part of the analysis finds an optimal
deployment of 163 GW CCS generation capacity by 2050. The effects of not having a
CCS option available are higher emissions, at a higher cost. The analysis of transitional
measures shows that co-funding of capital costs is only effective in supporting deployment
of demonstration CCS with low fuel costs. Feed-in premiums are found to be the most
viable option as it promotes competitiveness of the demonstration plants in the short-
term dispatch. The cost of the support schemes had a net present value of 8.7–12.6 bne
for a 5 GW CCS deployment by 2020. A generator emission performance standard of
225 gCO2/kWh significantly increased CCS deployment, however, it also resulted in a
transitory period with high electricity prices.

Keywords: CO2 capture and storage (CCS), Demonstration projects, Technology
support policies, Energy system planning, Investment analysis, OR in energy

1. Introduction

Europe has set ambitious targets for carbon emission reduction in the coming decades.
According to the EU Commission’s Roadmap 2050, the total domestic emissions are
to be reduced by 80 % of the 1990’s level by 2050, which implies a more or less full
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decarbonization of the power sector (European Commission, 2011). Carbon capture and
storage (CCS) is considered by the EU Commission to be a crucial technology for enabling
a cost effective transition to a low carbon European energy system. This was emphasized
in the Roadmap 2050 report, and recently confirmed in a separate communication on CCS
(European Commission, 2013).
The anticipated potential of CCS in contributing to long-term emission reduction and

climate change mitigation globally is highlighted by IEA’s scenario analysis in its annual
World Energy Outlook publications. The WEO-2012 report finds that in a 450 ppm
stabilization scenario, carbon capture and storage contributes to 17 % emission reduction
in the energy sector by 2035, compared to the less ambitious New Policies Scenario (IEA,
2012). For comparison, renewables are found to contribute to a 23 % reduction of energy
sector emissions. In a special report released in 2013, IEA explored the consequences
of delaying large-scale CCS deployment by ten years, from 2020 to 2030, in a 450 ppm
scenario (IEA, 2013). Their conclusion was that the additional global cost of power sector
decarbonization would amount to more than $1 trillion.
Nevertheless, despite strong political support at an EU level, and recognition by the

IEA as an important technology with significant carbon emission reduction potential,
CCS for power generation appears to have a bleak future in Europe for the time being.
Several large-scale CCS demonstration projects have been on the drawing board (Global
CCS Institute, 2014), but to date, not a single one has been initiated and successfully
proven the viability of a complete carbon capture, transportation and storage process for
use in commercial power generation.1 Reasons for the disparity between the optimistic
expectation and the disappointing reality for CCS over the last decade is discussed in
von Hirschhausen et al. (2012). Three factors are highlighted: resistance against struc-
tural change in the industry, overly optimistic assumptions regarding CCS in modeling
studies and wrong focus in terms of technologies and sectors by policymakers. Although
these explanations have merit in retrospectively understanding why CCS has failed to
materialize as a possible low-carbon option, there are other issues which are even more
relevant for understanding the current challenge of establishing demonstration projects.
The only technology neutral driver for low-carbon investments in Europe today is the

EU Emission Trading System (ETS). Through this system a carbon price is generated,
which is intended to increase the competitiveness of low-carbon power generation tech-
nologies vis–á–vis fossil technologies. However, the price of EU allowances (EUAs) has
seen low levels, well below 20 e/tCO2 (down to 5 e/tCO2 mid-2013), since the down-
turn in the European economy began in 2008. Reduction in economic activity in the
EU, influx of offsets (emission reduction projects implemented outside of the EU that
can be used to reduce allowance requirements) and policies interacting with the EU ETS
such as financial support for renewable technologies are cited as reasons (de Perthuis and
Trotignon, 2014).2 Without a sufficiently high price for allowances, CCS simply will not

1There are currently two CCS facilities operating in Europe, the Sleipner and Snøhvit CO2 storage
projects. However, both projects are dedicated to natural gas processing, not power generation. In 2014
the Boundary Dam CCS Project in Saskatchewan, Canada, became the first commercial CCS (coal)
power plant to come in to operation. The plant can generate 115 MW and utilizes the captured CO2 for
enhanced oil recovery (EOR), creating additional revenue streams. Although the successful deployment
of the Boundary Dam project is an important milestone on the road towards commercial scale CCS there
is still a need to prove applicability of non-EOR CCS for power generation.

2Koch et al. (2014) present an empirical analysis of the strength of various explanatory variables used
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be competitive. The exact level needed, however, depends on several factors such as the
investment cost of CCS projects. As an indicative result, Lohwasser and Madlener (2012)
find, using the European power market model HECTOR, that a level above 30 e/tCO2
is necessary to support investments of coal CCS if the capital costs are 2500 e/kW or
higher (which is in line with the capital costs used in the industry report on CCS costs
published by ZEP (2011)). Oei et al. (2014) show, using a model where the CCS trans-
port and storage infrastructure expansion is explicitly optimized, that a carbon price of
50 e/tCO2 in 2050 only leads to industry using CCS. A carbon price level of 75 e/tCO2
is needed for CCS to play a role in the power sector.
There have been attempts to establish public co-funding of CCS demonstration

projects in Europe. At an EU level, two funding programs have been initiated, the
European Energy Programme for Recovery (EEPR) and NER300. Six projects have
received support from EEPR while no CCS projects were granted funding in the first
application round of the NER300. Lupion and Herzog (2013) provide a detailed account
of the political process in the EU to establish funding of CCS demonstration projects,
and shortcomings of the NER300 in that respect. By the end of 2014 all but two of
the EEPR projects, the Don Valley project in the UK and the ROAD project in the
Netherlands have been canceled (Global CCS Institute, 2014).
There are several support mechanisms which can be used for CCS as discussed by

Groenenberg and de Coninck (2008) and von Stechow et al. (2011). Investment support
programs or a guaranteed price for electricity produced, like the feed-in tariffs received
by renewables in Germany, are some possible options to help reduce risk for investors and
incentivize development. Other more direct control mechanisms can also be used such
as imposing strict emission standards, either for single plants or a portfolio of plants.
This has already been adopted in the UK Energy Act 2013 where the limit is set to 450
gCO2/kWh for new power plants operating as baseload, which excludes unabated coal
(Energy Act, 2013). In the US, the Environmental Protection Agency (EPA) established,
in its Clean Power Plan (CPP), emission performance rates for coal fired and natural gas
fired power plants (Environmental Protection Agency, 2015). The rates are set such that
unabated coal plants cannot meet the limit, while efficiently run natural gas combined
cycle plants can, even without CCS.3
In Europe, CCS stakeholders, comprising utilities, environmental NGOs, research in-

stitutions, have formed an association called the European Technology Platform for Zero
Emission Fossil Fuel Power Plants (ZEP). In 2012, ZEP published a report recommend-
ing a selection of different support schemes to be implemented for CCS in addition to the
EU ETS (ZEP, 2012). The message in the report is clear: demonstration projects are a
precondition for commercial deployment, and no demonstration projects will be realized
without a secure environment for the long-term investments.
In this paper we investigate the potential role of large-scale commercial CCS deploy-

ment in a cost efficient decarbonization of the European power sector using an investment

to understand the EU ETS price collapse. They find that traditional theories such as reduced economic
activity, RES support policies and the use of offsets are not sufficient to explain the variation in the EU
ETS price. As an alternative, lack of credibility is suggested as a possible cause of the price collapse.

3In the CPP the final emission performance rates set by the EPA are 1,305 lbsCO2/MWh (592
gCO2/kWh) for existing steam generation units (usually meaning coal fired power plants) and 771
lbsCO2/MWh (350 gCO2/kWh) for existing natural gas CCGT units. These limits apply at a state
level, and it is up to the state’s legislatures to adopt policies to meet them (by 2030).
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model optimizing capacity expansion in power systems. The model used is the European
Model for Power system Investments (with high shares of) Renewable Energy (EMPIRE),
which is a multi-horizon stochastic programming model (Skar et al., 2016). It considers
both long-term and short-term dynamics, by incorporating multiple investment periods
and sequential hourly market clearing for selected periods of the year. Investment de-
cisions are made subject to uncertainty about future operating conditions, such as load
levels and intermittent power generation. The multi-horizon formulation allows for these
features to be included simultaneously, without suffering from the curse of dimensional-
ity (Kaut et al., 2014). In order to avoid overly optimistic assumptions favoring CCS,
a frequently occurring weakness in previous studies as pointed out by von Hirschhausen
et al. (2012), conservative cost estimates developed by ZEP are used. In addition, this
study utilizes input data based on the European reference scenario 2013 published by
the European Commission (2014), which reflects the currently low levels of the allowance
price in the EU ETS. The modeling results show that, driven by carbon price in the
EU reference scenario, an emission reduction of more than 80 % is achieved by 2050
compared to 2010 levels, when CCS is available. The total CCS deployment is 163 GW,
or a 14 % share of the total installed capacity, in 2050. Without CCS, results show that
only a 63 % reduction in emissions are achieved from 2010 to 2050, for the same carbon
price.
Following the analysis of the role of commercial CCS in Europe, we present a study

of transitional measures to drive investment in demonstration CCS projects. Three
mechanisms are modeled in EMPIRE with the goal of deploying 5 GW of CCS capacity
before 2025: capital grants, feed-in premium and emissions performance standard. The
effectiveness of these measures to spur investments, their cost and potential reception by
industry and other stakeholders are evaluated and discussed. Through this analysis we
attempt to shed light on what it would take to achieve CCS deployment in Europe, as is
the ambition of the European Commission. This can be seen as a complement to the work
published in the ZEP report “CO2 capture and storage (CCS) – Recommendations for
transitional measures to drive deployment in Europe”, where EMPIRE was also used.
Investment subsidies for CCS have previously been analyzed in an European context
by Lohwasser and Madlener (2013). In their study, endogenous learning for CCS is
implemented in the power market simulator HECTOR, and the effectiveness of different
levels of investment subsidies and R&D support on CCS market diffusion are tested. Our
study extends the body of research on this field by comparing additional support policies
previously not considered in similar studies.
This paper has the following structure: Section 2 introduce the modeling framework

used in the analysis along with a description of how the different support mechanisms
for demonstration CCS are implemented. Section 3 presents a decarbonization study of
the European power sector, with a special focus on the role of CCS. The results from the
modeling of transitional measures for demonstration CCS is given in Section 4. Lastly,
the conclusions from the two analyses are presented in Section 5.

2. Methodology

The analysis presented in this paper is based on results from EMPIRE. A complete
mathematical description of EMPIRE is provided in Skar et al. (2016), while a short
description is presented in the following section. Previous use of the EMPIRE includes a
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study of the European electricity system for several global climate mitigation strategies
(Skar et al., 2014), and three studies of CCS potential in Europe by the ZEP market
economics group (ZEP, 2013, 2014, 2015).

2.1. EMPIRE – The European Model for Power System Investments with Renewable
Energy
EMPIRE is an investment model for the European power system formulated as a

multi-horizon stochastic program. A fundamental challenge of investment modeling for
large-scale power systems is that the economics of investments are determined by their
impact on the system’s operation (and cost). Power systems are recognized for hav-
ing significant heterogeneity in operating conditions, both in a spatial and temporal
dimension, which is important to represent in the modeling. As intermittent renewable
generation sources, such as wind and solar, continue to increase their share in the energy
mix, an increased variability in the short-term dynamics of the power systems is to be
expected. The ability to control generation to supply load throughout the system is then
reduced. This increases the need for transmission, energy storage and flexible generation
technologies. From an investment planning perspective it is difficult to predict how the
intermittent generation will correlate with load in the short-term, which introduce uncer-
tainty in the planing. In addition to short-term dynamics there are long-term dynamics
to consider as well. Changes in fuel prices and demand for electricity, in particular, are
drivers for investments. All these aspects are addressed in EMPIRE by including multi-
ple investment periods (long-term dynamics), multiple sequential market-clearing steps
(short-term dynamics) and multiple stochastic scenarios for data affecting the short-
term operation of the system (short-term uncertainty). By using a multi-horizon tree
formulation we avoid that the optimization problem explodes in size due to the curse
of dimensionality. See Kaut et al. (2014) for more detail on the methodology and Skar
et al. (2016) for its application to EMPIRE.
The basic structure of the investment and operation decision process in EMPIRE is

as follows: for a number of strategic (five year) time periods indexed by I = {1, . . . , I}
investments can be made in generation, interconnector and storage capacities. For i ∈ I
we let the size of the investment in capacity for generator g ∈ G, where G is the set
of all generators, be xgi and the total costs incurred be cgen

gi . For every strategic time
period, i ∈ I, EMPIRE includes an annual economic (spatial) dispatch of the system.
In order to reduce the size of the dispatch problem a selected number of dispatch hours
H are considered to represent a year. The set H is sub-divided into seasons, indexed by
s ∈ S, for which inter-temporal constraints such as ramping and energy storage cycling
are enforced in the dispatch. Two types of seasons are considered in EMPIRE, regular
seasons and peak load seasons, with different number of hours. The purpose of the regular
seasons is to provide a good representation of normal operation of the system, driving the
energy mix and accounting for most of the annual operating costs, whereas the extreme
load seasons drives the need for installed capacity in high load situations. In EMPIRE
investments are made subject to uncertainty about operating conditions in future periods.
This is incorporated by considering multiple annual economic dispatch problems with
different parameter data, indexed by a finite set Ω. Every stochastic scenario,4 ω ∈ Ω,

4The word scenario is used both for data representing long-term dynamics (such as the baseline
5



is associated with a probability, πω. The operational cost associated with the dispatch
comprise of annual generation cost, and the cost of energy not supplied (if the system is
incapable of satisfying demand at all times). We assume a linear production cost model
for generators. The short-run marginal cost (SRMC)5 of generator g ∈ G is denoted by
qgen
gi , and ygen

ghiω denotes its generation output in dispatch hour h ∈ H (period i ∈ I,
stochastic scenario ω ∈ Ω). In the EMPIRE objective function the expected annual
operational costs are optimized together with the investment costs (all discounted at
rate r).

min
xi∈I ,

yi∈I,ω∈Ω

z =
I∑

i=1

(1 + r)−5(i−1) ×
{ ∑

l∈L
CAPEX trans

li +
∑
b∈B

CAPEX stor
bi

∑
g∈G

cgen
gi xgen

gi + ϑ
∑
ω∈Ω

πω

∑
s∈S

αs

∑
h∈Hs

[ ∑
g∈G

(
qgen
gi ygen

ghiω

)
+

∑
n∈N

ENSnhiω

]}
(1)

We use CAPEXtrans
li and CAPEXstor

bi to denote costs associated with investment in
capacity for interconnector l ∈ L, and capacity for energy storage unit b ∈ B, respectively.
ENSnhiω is used to denote the cost of energy not supplied at node n ∈ N for dispatch
hour h ∈ H. Season weights, αs, s ∈ S, are used to scale hourly decision variables
or parameters (i.e. those indexed by h ∈ H) to compute their contribution to annual
total figure. The factor ϑ scales annual values to five year values, which done since the
elements of I represents five year time blocks.
The dispatch constraints included in EMPIRE comprise of hourly

1. Node load balance constraints (balancing generation, load, storage handling and
transmission exchange)

2. Capacity constraints (for generator output, interconnector loading, energy storage
charging/discharging)

3. Ramping constraints
4. Storage energy balance constraints

In addition both seasonal and annual energy production from regulated hydro generators
are constrained. Capacity investments are also subject to constraints, both in terms of
sizing of an investment per period i ∈ I and the total installed capacity. Further details,
along with the full mathematical formulation of EMPIRE, can be found in Skar et al.
(2016). EMPIRE is implemented in the FICO R© Xpress Optimization Suite (FICO R©,
2015).

2.2. Modeling transitional measures to support CCS in EMPIRE
The following sections describe how the different support policies for demonstration

CCS projects are implemented in EMPIRE.

scenario) and for stochastic data representing uncertainty in the short-term economic dispatch. To
distinguish the two types scenarios we refer to the latter case, i.e. data indexed by Ω, consistently as
stochastic scenarios.

5The SRMC includes marginal fuel cost, variable operation and maintenance cost, carbon emission
cost and carbon capture and storage cost (when applicable).
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2.2.1. Public grants
The public grant scheme was represented in EMPIRE by reducing the investment

cost parameter for demonstration plants. We let pggi denote the public grant support
and Gdemo the set of all CCS demonstration plants and adjust the investment costs as
follows

c̃gen
gi = cgen

gi − pggi, g ∈ Gdemo, i ∈ {2, 3}. (2)

The adjusted investment cost parameters replace the original cost parameter for demon-
stration plant investment variables in the objective function Eq. (1). The support is
limited to the second and third time blocks of the analysis, starting 2015 and 2020, re-
spectively. The 2015 net present value of the policy cost is the discounted sum of the
support paid to demonstration project g ∈ Gdemo, which is pggi times the investment
xgen

gi . The expression is given as

Public grant scheme cost =
3∑

i=2

(1 + r)−5(i−2)
∑

g∈Gdemo

pggix
gen
gi . (3)

2.2.2. Feed-in premium
Many European countries have successfully used feed-in schemes to promote renew-

able generation technologies (Jenner et al., 2013). There are several ways to design a
feed-in support system, however it is common to broadly distinguish between feed-in
tariffs (FIT), a minimum rate received for electricity produced by a supported generator,
and feed-in premiums (FIP), which is a premium paid on top of the electricity price.
In this analysis several versions of a FIP scheme have been evaluated: supporting

each demonstration technology with a certain percentage of their short-run marginal cost
(SRMC), supporting demonstration projects with a single flat rate and a differentiated
support where demonstration gas CCS receives the first type of FIP and lignite and coal
receive a flat rate. We also consider the effect choosing one of two different expiry dates
for the support scheme.
As with the public grant scheme the feed-in premium policies are implemented by

reducing cost coefficients in the objective function, however, these policies affect the
variable operational costs. The feed-in premium support is given by fipgi, which gives
the following adjusted operational cost

q̃gen
gi = qgen

gi − fipgi, g ∈ Gdemo, i ∈ {2, . . . , Ifip}. (4)

The feed-in premium support is set to last until investment period Ifip. The 2015 net
present value of FIP support cost is computed as

FIP scheme cost =
∑
ω∈Ω

πω

Ifip∑
i=2

(1 + r)5(i−2)ϑ
∑
s∈S

αs

∑
h∈Hs

∑
g∈Gdemo

fipgiy
gen
ghiω. (5)

In this expression the product fipgiy
gen
ghiω is the feed-in premium paid to the CCS demon-

stration project g ∈ Gdemo in dispatch hour h ∈ Hs, in season s ∈ S, and investment
period i. This is scaled by αs and ϑ to get the total support in investment period i,
which is discounted and summed to get the total net present value. Note that this is the
expected FIP cost over all stochastic operational scenarios used in EMPIRE.
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Figure 1: EU 2013 Reference scenario data used by EMPIRE. Fuel prices for hard coal, natural gas and
oil have been collected directly from European Commission (2014). The initial lignite price is based on
ZEP (2011) and prices of uranium and biomass have been derived from VGB (2011). The price levels are
assumed to increase by 1%, 2% and 10% every five years for lignite, uranium and biomass respectively.

2.2.3. Emission performance standard
An emission performance standard (EPS) is a control mechansim which limits the

specific emissions, i.e. ratio of emissions to electricity generation, either from indvidual
plants or a portfolio of plants. The EPS policies are implemented in EMPIRE using
constraints. For individual generators the EPS constraints are

(segi − eps) · ygen
ghiω ≤ 0, g ∈ G, h ∈ H, i ∈ I \ {1}, ω ∈ Ω, (6)

where eps is the limit and segi is the specific emissions for generator g ∈ G in year i ∈ I.
This constraint effectively shuts off production from generators for which the specific
emissions are higher than the EPS.
The portfolio EPS limit constrains the ratio of total emission to total generation,

which can be formulated as follows6
∑
s∈S

αs ×
∑

h∈Hs

∑
g∈G
(segi − eps) · ygen

ghiω ≤ 0, i ∈ I \ {1}, ω ∈ Ω. (7)

3. The least cost route to a decarbonized European power sector

The main scenario developed in this study, our Baseline scenario, is constructed based
on data from the EU 2013 Reference scenario (European Commission, 2014). Assump-
tions regarding fuel prices, carbon price and demand for electricity is shown in Figure 1.
This scenario has been selected as it provides an accurate description of current condi-
tions and represents a conservative view of the EU allowance (EUA) price development
and electricity demand growth over the coming decade. The low level of the EUA price
in the near-term reduces the competitiveness of CCS, which should be included in the

6∑N

i=1 aixi

/∑N

i=1 cixi ≤ b

∑
i

cixi>0
⇐⇒

∑N

i=1(ai − ci · b) · xi ≤ 0
8



Table 1: Cost parameters for post-demonstration CCS

2025 2030 2035 2040 2045 2050
Capital cost [e2010/kW]
Lignite CCS 2600 2530 2470 2400 2330 2250
Coal CCS 2500 2430 2370 2300 2230 2150
Gas CCS 1350 1330 1310 1290 1270 1250
Bio 10pcnt cofir. CCS 2600 2530 2470 2400 2330 2250
Efficiency [%]
Lignite CCS 37 39 40 41 42 43
Coal CCS 39 40 41 41 42 43
Gas CCS 52 54 56 57 58 60
Bio 10pcnt cofir. CCS 39 40 41 41 42 43
CCS T&S cost [e2010/tCO2] 19 18 17 15 14 13

analysis in order not to be overly optimistic. From 2030 to 2050, the EUA price is shown
to increase, reflecting progressive stringency in the EU ETS. Demand for electricity is
also shown to increase in the same period which is a result of economic development and
more reliance on electricity as an energy carrier in the scenario data.
In the Baseline scenario we assume that CCS demonstration plants have been suc-

cessfully deployed, leading to availability of post-demonstration plants from 2025. The
post-demonstration plants experience a gradual reduction in capital costs, heat rate im-
provements and decrease in CO2 transport and storage cost. The data used for the
post-demonstration plants were provided by participants of ZEP’s working group for
market economics II in the work leading to the report ZEP (2013). A list of the CCS
cost and generation efficiency data used in this analysis can be found in Table 1. Expan-
sion of CCS infrastructure is not considered directly as the capital costs of infrastructure
investments are embedded in transport and storage costs used in the operational ex-
penditures of CCS plants. See Oei et al. (2014) for a more thorough analysis of CCS
infrastructure in Europe. In this analysis we do not consider investments in new inter-
connector or energy storage capacities. This entails a very conservative view of future
infrastructure development, reflecting possible situations such as strong public opposi-
tion to new transmission lines. In Skar et al. (2016) the sensitivity of CCS deployment
to assumptions regarding grid expansion was evaluated.

3.1. Baseline results
The development of generation capacity and generation mix for the European power

sector under the Baseline scenario is shown in Figure 2. EMPIRE computes a significant
expansion of onshore wind capacity between 2010 and 2030, from a starting point of
122 GW to just above 300 GW. During the same time-period 360 GW of fossil fuel
(lignite, coal, gas and oil) capacity is retired. About 165 GW of new unabated fossil
generation capacity is built, in addition to 24 GW of lignite and coal CCS capacity. The
first investment in CCS occurs in 2025 when 6 GW of lignite CCS is deployed (4 GW in
Germany and 2 GW in Poland). By 2050 all the capacity initially operational in 2010 has
been retired, replaced by newer and alternative technologies. The total unabated fossil

9



20
10

20
20

20
30

20
40

20
50

0

500

1000

1500

Capacity [GW]

20
10

20
20

20
30

20
40

20
50

0

1000

2000

3000

4000

Generation [TWh]

Solar PV
Wind Offshore
Wind Onshore
Hydro/Geo/Ocean
Gas CCS
Biomass Co-firing CCS
Coal CCS
Lignite CCS
Unabated Fossil
Nuclear

Figure 2: Optimal generation capacity and generation mix in the Baseline scenario.

capacity is 180 GW, which generates 385 TWh of electricity. For CCS technologies the
installed capacities are 41 GW for lignite, 86 GW for coal and 36 GW for gas, generating
265 TWh, 517 TWh and 233 TWh, respectively. The total 163 GW of CCS capacity
makes up 14 % of the total installed capacity in Europe, while the share of the generation
mix is 25 %. Intermittent generation, i.e. wind and solar power, sees an increase of its
share in the generation mix, from 11 % in 2010 to 27 % in 2050. The total renewable
energy share (including hydro power) ends up at 41 % in 2050.
Results for installed capacity and generation mix for the ten countries with highest

electricity demand is shown in Figures 3 and 4, for 2010 and 2050, respectively. Three
countries, Great Britain, Germany and Poland, have 50 % of the installed CCS capacity in
Europe, with hard coal CCS being the most significant technology. These countries have
a total of 53 GW hard coal CCS capacity installed, which makes up a 67 % share of their
total CCS capacity. Gas CCS capacity is also fairly concentrated, with the Netherlands,
Germany and Belgium being the three countries with highest installed capacity, 63 % of
Europe’s total.
A useful metric for understanding the competitiveness of different technologies is

their capacity factors, the ratio of actual production to the nominal production over a
given time period. Investments with high capital costs, such as CCS, typically require a
significant utilization to achieve a sufficient return. The Baseline capacity factors for the
main fossil fuel technologies are shown in Figure 5. As expected, the utilization of existing
capacity decreases as newer and more efficient technologies enter the market. From 2015,
newly built unabated lignite and hard coal plants are used as baseload generation, with
capacity factors close to 80 %. CCGT plants are used as intermediate generation, with
a capacity factor starting at 60 % in 2015. However, as lignite and coal CCS is deployed
from 2020 and 2025, the capacity factor for CCGT drops to less than 40 %. Beyond
2035 the conventional coal capacity built after 2010 faces a steep decline in utilization,
to less than 20 %. By 2040 the assumed price for carbon has reached a level close to
80 e/tCO2, which makes the cost of dispatching unabated coal plants prohibitively high
during normal operation. This effectively shows a result which might be obvious, but still
worth mentioning, even new and advanced coal fired power plants built over the course
of the coming decade cannot be expected to be competitive as baseload for more than
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Figure 3: Country-wise Baseline scenario result generation capacity and generation mix in 2010.
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Figure 5: European capacity factors for fossil fuel plants in the Baseline scenario

20
10

20
20

20
30

20
40

20
50

0

500

1000

1500

Capacity [GW]

20
10

20
20

20
30

20
40

20
50

0

1000

2000

3000

4000

Generation [TWh]

Solar PV
Wind Offshore
Wind Onshore
Hydro/Geo/Ocean
Gas CCS
Biomass Co-firing CCS
Coal CCS
Lignite CCS
Unabated Fossil
Nuclear

Figure 6: Optimal generation capacity and generation mix in the Baseline-NoCCS scenario

20–25 years, much less than their technical lifetime. All of the CCS technologies that
are deployed, immediately enter operation as baseload generation, with capacity factors
between 70–80 %.

3.2. Consequences of an absence of CCS as low-carbon option
The Baseline results are, as a result of the principles behind the construction of

EMPIRE, the cost optimal development of the European power sector under the EU 2013
Reference scenario assumptions. In order to assess the effect of not having a CCS option
available, as an alternative scenario, EMPIRE was setup for an optimization with CCS
technologies disabled in a scenario labeled Baseline-NoCCS. The resulting capacity and
generation mixes are shown in Figure 6. In this scenario unabated fossil fuel technologies
continue to have a reasonably high share in the generation mix. Roughly 25 % of the
electricity generated in 2050 comes from unabated fossil plants (mostly natural gas fired
CCGTs and OCGTs which account for 70 % of the total fossil generation), 25% comes
from nuclear power and remaining generation comes from renewables. A comparsion
of pathways for carbon emissions, European average power price and the 2050 system
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Figure 7: Emission, annual European power price and 2050 annual electricity cost for the Baseline and
Baseline No-CCS scenarios.

costs, in the vanilla Basline and Baseline-NoCCS scenarios are shown in Figure 7. The
two scenarios diverge from 2025, once CCS is deployed in the Baseline scenario. The
Baseline-NoCCS scenario has a less steep emission reduction trajectory than the Baseline
scenario, and the total reduction in 2050 relative to 2010 is only 63 % when CCS is not
allowed, compared to 82 % when the CCS technologies are available. The power price,
found as the average marginal cost of electricity over all countries and hours, is similar
for the two scenarios up until 2035. Then the Baseline price starts leveling out and the
Baseline-NoCCS price continue to increase for another decade. In 2050 the Baseline-
NoCCS scenario has a 10 % higher price for electricity than the Baseline scenario. As
the deployment of renewables is higher in the Baseline-NoCCS scenario the fuel costs are
significantly lower. However, as the additional cost of covering carbon emissions, and the
cost of capacity, are much higher, the total difference in 2050 annual costs between the
scenarios is 17.6 bne. The effect of not having the CCS option is clear, the power sector
emissions will be much higher, too high to meet the European Commission’s ambitous
Roadmap 2050 goals, and at the same time the cost will be higher.

3.3. Related modeling studies focusing on CCS
Over the recent years there have been notable modeling studies done with the focus

on the role of CCS in the European sector. Odenberger and Johnsson (2010) applied a
capacity investment model, with a detailed electricity generation system description, to
assess the optimal development of the European power sector for three different scenarios.
Their focus was specifically on the potential of CCS to meet emission reduction targets.
In their base scenario, assuming a continued growth of electricity demand and a cap on
emissions (85 % in 2050 relative to 1990), the results showed an optimal deployment of
300 GW of coal CCS, capturing 1.8 GtCO2/an, by 2050.
Lohwasser and Madlener (2012) discuss the economics of CCS for coal plants and

emhpesises that investment costs are a significantly more important factor than efficiency
loss in energy conversion when it comes to economic viablity for coal CCS. The HECTOR
model, an electricity market simulation model with endogenous capacity investments,
was used to analyse coal CCS deployment in Europe. With assumptions on investment
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costs and conversion efficiency based on an averages from a wide selection of sources
found in an extensive litterature review, the study showed a deployment of 143 GW hard
coal generation capcity with CCS by 2030. The investments in CCS are driven by the
EU ETS, which in the base scenario is assumed to develop from 20 e/tCO2 in 2010 to
49 e/tCO2 in 2030.
Jägemann et al. (2013) use the DIMENSION model to investigate decarbonization

scenarios for the European power sector. Restrictions on availability of nuclear power and
CCS are explored as alternative assumptions. In their scenario for economic conditions
labeled baseline, the additional cumulative system cost over the period 2010 to 2050 of
a 80 % reduction target increased by 16 bne2010 when nuclear investments are allowed
but CCS is not available. The total installed CCS capacity by 2050 in this scenario is
modest, about 40 GW lignite CCS. However, the CCS share of the total generation mix
is reported to be 11 %, which is significant. The additional cost of not having CCS when
nuclear power is not available is found to be 82 bne2010.
There are several differences in terms of CCS deployment between the different stud-

ies. Compared to Odenberger and Johnsson (2010) the baseline results from EMPIRE
show a little bit more than half the total CCS deployment. Although the first CCS
investments computed by EMPIRE occur in 2025, the total capacity does not exceed
100 GW until 2040, which shows a shift of ten years in time for large-scale deployment
compared to Lohwasser and Madlener (2012). The more conservative CCS deployment
found by EMPIRE results can be explained by higher investment costs and a carbon
price which remains low until 2025. Compared to Jägemann et al. (2013) the total CCS
investments computed by EMPIRE are more than four times larger. This can be ex-
plained by the fact that nuclear power investments are significantly limited (although
available) in EMPIRE, while in the particular scenario where the reported CCS capacity
was 40 GW in Jägemann et al. (2013) nuclear power was not restricted.

4. Securing a deployment of 5 GW demonstration CCS by 2020

In the Baseline scenario it is assumed that commercial CCS availability will start at
2025, followed by rapid technology improvement. The realism of such an assumption is
of course questionable unless demonstration projects7 are successfully initiated prior to
commercial deployment. In the following we therefore take a closer look at mechanisms
for incentivizing CCS demonstration plants.
The amount of capacity eligible for support under the public grant and feed-in pre-

mium policies was set to a total of 5 GW. EMPIRE was left free to allocate capacity,
up to this limit, between lignite, coal and gas CCS, based on each technology’s compet-
itiveness under the given support scheme. In the emission regulation scenario EMPIRE
was free to deploy as much of the CCS demonstration projects as it found optimal, albeit
without any reduction of cost through support measures.
Three different CCS demonstration project types were included in the modeling, all

of which being available from 2015. The investment cost and efficiencies are shown in
Table 2. In the Baseline scenario neither of these projects were deployed using their
default data.

7The analysis in this paper only include CCS projects exclusively for power generation. Applications
of CCS in for instance enhanced oil recovery, are not considered.
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Table 2: Economic parameters used for CCS demonstration projects in EMPIRE

Project type Capital cost Efficiency
[e2010/kW] [%]

Lignite CCS 2600 31
Coal CCS 2500 33
Gas CCS 1350 48

4.1. Public grants
Public grants, in the form of an upfront payment used to decrease the investment

cost of the CCS demonstration plants, were evaluated at levels ranging from 50–200 %
of the additional CCS capital cost. For conventional, unabated, lignite technology the
capital cost is 1600 e/kW, while the cost for demonstration lignite CCS is 2600 e/kW.
The public grant schemes therefore would provide a subsidy of 500 e/kW in a 50 % case,
1000 e/kW in a 100 % case and 2000 e/kW in the 200 % case. The same applies for
coal CCS, which is modeled with a capital cost of 1000 e/kW above its conventional
counter-part. For gas CCS the additional cost (compared to CCGT) is 700 e/kW. In
the 200 % support case the support received by gas CCS is actually slightly higher than
the total capital cost.
As an illustration, under the 50 % public grant scheme a deployment of 5 GW, divided

equally between coal and gas CCS, would cost 850 e/kW, or e2.1 billion in total. To put
this number into perspective, the total NER300 budget in the first round was estimated
to e1.3–1.5 billion (Lupion and Herzog, 2013). However, as this amount was a result of
monetisation of 200 million EU allowances under the ETS, which had lower price than
expected (an average sales price of e8.05), the total budget was initially anticipated to
be higher. The public grant schemes considered are more expensive than the NER300
program, but still of comparable magnitude.
The results of the EMPIRE optimization of the three public grant schemes show that

all support levels lower than 200 % of the additional CCS capital costs are insufficient to
incentivize any of the demonstration project types. At a 200 % level, 4.1 GW of lignite
CCS capacity is deployed in 2020, at a net present value of 6.5 bne in 2015 (discounted
from 8.2 bn e in 2020). The capacity factor of the demonstration plants is close to 80 %
throughout the analysis, showing that the main obstacle for this particular technology is
the capital cost. At a support level of 200 % of additional CCS capital costs, gas CCS
would receive 1400 e/kW, 50 e/kW more than the total capital cost. Even this turns out
to be insufficient to promote gas CCS, which is a clear argument to consider operational
support to improve competitiveness.

4.2. Feed-in premium
Results from the feed-in premium analysis done with EMPIRE are shown in Table 3.

There is a clear pattern emerging from the different cases in how the reaction is to the
different FIP designs. For the SRMC based FIP, gas CCS becomes competitive before
lignite and coal. This is not surprising considering that the investment cost for gas
CCS is substantially lower than the other technologies, while the operational costs are
high. Limiting the support to only last until 2030 has an adverse effect as it increases the
support required to spur investments, making the net present value of the support scheme
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Table 3: Results from FIP scheme EMPIRE optimizations. An asterisk is used to label deployment
which partly or fully occurs in 2015, while unlabeled results occur in 2020.

Type
Flat SRMC End Gas Lignite Total 2015 NPV LCOS

[e/MWh] [%] [GW] [GW] [GW] [bne] [e/MWh]
45.0 2030 No deployment
50.0 2030 1.9∗ 1.9 6.6 40.0
55.0 2030 5.0∗ 5.0 20.9 43.7
30.0 2050 No deployment
35.0 2050 5.0 5.0 12.6 31.3

20.0 2030 No deployment
25.0 2030 4.1 4.1 6.2 15.8
10.0 2050 No deployment
15.0 2050 2.8 2.8 4.0 15.0
17.5 2050 4.1 4.1 6.6 17.5
20.0 2050 5.0 5.0 9.4 20.0

(L) 15.0 (G) 32.5 2050 1.2 2.8 4.1 6.9 18.8
(L) 17.5 (G) 32.5 2050 0.9 4.1 5.0 8.7 18.8

high as it result in expensive payouts closer in time. In order to achieve a deployment
5 GW gas CCS by 2020 we found that either 55 % of the SRMC had to be covered until
2030, or 35 % until 2050. Between 2020 and 2050 the SRMC for demonstration gas CCS
is in the range of 87–94 e/MWh, which means that a 35 % support would be in the
range of 30–33 e/MWh. The 2015 net present value of these schemes are 20.9 bne and
12.6 bne, respectively. The levelized costs of support (LCOS), the ratio of net present
value of support costs to the discounted sum of generation output, are 43.7 e/MWh and
31.3 e/MWh. If the support is less than 45 % (until 2030) or less than 30 % (until 2050),
no investment in demonstration projects take place.
For the flat FIP support rate lignite CCS turns out to have an edge over the other

technologies. For a support scheme limited to 2030 the level of the support needs to be
above 20 e/MWh. A rate of 25 e/MWh is enough to deploy 4.1 GW of demonstration
lignite CCS, at a total cost of 6.2 bne. This is slightly cheaper than the capital grants
scheme, with a cost of 6.5 bne, which achieved the same demonstration CCS deployment.
Similarly, a support of 17.5 e/MWh, lasting until 2050, is sufficient to incentivize 4.1 GW
of lignite CCS. At a FIP of 20 e/MWh, lasting until 2050, the total demonstration
capacity reach the 5 GW limit.
By combining the two types of FIP schemes a mix of lignite and gas CCS projects are

deployed. For illustration, two different levels of the flat FIP recieved by lignite CCS,
15 e/MWh and 17.5 e/MWh, was used in combination with a 32.5 % SRMC support
for gas CCS (which would be in the range of 28–30 e/MWh). For the lower FIP rate
2.8 GW lignite CCS is realized in Germany. When the FIP rate is set at a level of
17.5 e/MWh for lignite CCS, an additional 1.3 GW is built in Poland. The gas CCS
projects are consistently deployed in the Netherlands and Spain.
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4.3. Emission performance standard results
EMPIRE was set up to optimize investments for three types of EPS, all implemented

from 2015, listed below.

1. 450 gCO2/kWh for individual generators. Existing plants exempted.
2. 225 gCO2/kWh for individual generators. Existing plants exempted.
3. 225 gCO2/kWh for the European generation portfolio.

Of all the unabated fossil generation technologies included in the EMPIRE data set for
this analysis, only gas CCGT, with specific emissions of 336 gCO2/kWh, is premissable
in the 450 gCO2/kWh EPS scheme. Under the regualtion limiting specific emissions to
225 gCO2/kWh for individual generators only the CCS technologies are able to satisfy
the requirement, which essentially makes this a CCS obligation scenario.
Unlike the financial support policies, which just slightly perturbs the overall results

compared to the Baseline, the EPS constraints significantly alter the system optimization.
Therefore a wider discussion of the overall system results is provided.
Results for European power sector emissions, average power price and total CCS

deployment in the EPS scenarios and the Baseline scenario are shown in Figure 8. This
reveals that an EPS limit of 225 gCO2/kWh for individual generators, is sufficiently strict
to open the market for deployment of CCS demonstration plants. A total of 10.6 GW of
demonstration CCS capacity, of which 9.2 GW is lignite and 1.3 GW is gas, is installed
during the 2020 investment period. The 450 gCO2/kWh limit for individual generators,
and the 225 gCO2/kWh limit for the entire European fleet, on the other hand, only
see deployment of post-demonstration plants, starting from 2025. As with the Baseline
scenario we do not impose a precondition that demonstration plants need to be deployed
in order for the post-demonstration plants to be available, which can, as discussed, be a
problematic assumption.
In terms of emission reduction all of the EPS policy scenarios overachieve compared

to the Baseline scenario. By 2050, the total reductions of annual emissions relative to
2010 are in the range 86–88 % for the least stringent individual limit 450 gCO2/kWh EPS
for individual generators and the 225 gCO2/kWh portfolio limit. The 225 gCO2/kWh
EPS for individual generators achieve an emission reduction of 92 %. As existing fossil
plants are exempted from the generator EPS policies, the emissions are gradually de-
creased for these scenarios. The implementation of a portfolio policy, without exemption
for existing plants, effectively set an emission ceiling which causes a drastic short-term
reduction in emissions. Eventually, when CCS becomes available, the gap between emis-
sion trajectories for the portfolio EPS scenario and the Baseline scenario becomes more
narrow.
Although the EPS policies are shown to be effective as a supplement control mecha-

nism for reducing emissions from the power sector, the effect they have on the market at
the time of their implementation is dramatic. In the scenario with a 225 gCO2/kWh EPS
for individual generators the average European electricity price is 25 % higher than the
Baseline scenario in 2015, and close to 65 % higher in 2020, reaching 91 e/MWh. The
reason why the effect is strongest in the period after the policy is implemented is that
by 2020 more of the generators exempted from the policy is retired. For the other EPS
policies the prices are about 10–15 % higher than the Baseline prices in 2015 and 2020.
Eventually the EPS scenario prices comes closer to the Baseline price, and by 2050, the
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Figure 8: Emissions, power price and CCS deployment for the different EPS policy scenarios.

Baseline price is actually above the policy scenario prices as less EUAs are required to
cover emissions.

4.4. Discussion
The reason why public grants fail to incentivize investments for all but lignite CCS is

clear when investigating the marginal costs of technologies in EMPIRE. Significant heat
rate penalties due to the capture process, along with the additional operational costs
associated with carbon transport and storage, force the CCS demonstration plants far
behind in the market dispatch. The price of carbon emission is initially low in the Base-
line scenario, and therefore these plants loose in competition with conventional plants to
enter the dispatch under normal load conditions. When the price of emissions finally does
rise to a level such that the demonstration plants become the cheaper dispatch option,
compared to conventional technologies, they lose in competition with commercial CCS
plants which are then deployed. This highlights an important distinction between renew-
able technologies and CCS demonstration projects when it comes to financial support
and risk. Somewhat simplified one can say that renewables face the risk of receiving a too
low price of electricity for its production, making the revenues fall short of covering the
required return on capital. The production itself is largely unaffected by market uncer-
tainty, and the revenues earned still offer some return. CCS projects, on the other hand,
face the potential risk of becoming stranded assets, in the extreme case not receiving a
single cent in return on the investment. This risk is present both for low and high levels
of the price on carbon emissions. In particular for large-scale deployment of commercial
CCS at high carbon emission prices, there is significant risk of cannibalization of market
shares and low utilization of demonstration CCS plants. This effect is, as the modeling
results presented here indicate, less significant for technologies with low fuel costs, such
as lignite CCS. The reason is simply that lignite CCS is competitive with the commercial
coal CCS and gas CCS technologies, and therefore will not be offset by these technologies
in the dispatch. However, the most effective policy measure for promoting demonstration
CCS, for both lignite CCS and gas CCS, is shown to be operational support, such as a
feed-in premium.
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The transitional measures tested in the EMPIRE is likely to receive widely different
responses from stakeholders. CCS is seen by some environmental NGOs as counterpro-
ductive option for reducing emissions, with Greenpeace as the prime example. Slow
technological progress, high costs and the risk of leakage from storage sites are typically
cited as their primary concern (Greenpeace, 2008). Any form of public financial support
of CCS that could potentially divert funding away from renewables will see opposition
from groups such as Greenpeace. The power industry on the other hand will be more
receptible of a carrot, such as public grants or FIP, rather than a stick approach. More-
over, support can be expected from environmental NGOs advocating for CCS, such as
Bellona (Stangeland, 2007).
As discussed by Groenenberg and de Coninck (2008) a CCS obligation would likely

not face opposition from environmental NGOs as the policy does not divert public funds
from renewable energy projects, however, resistance would probably be large from EU
Member States with generation portfolios with high shares of fossil fuels and low potential
for carbon storage. In addition, resistance from the power industry due to stranded
assets are to be expected, unless some from of grandfathering, in other words exemption
of legacy generation assets, is granted as a part of the regulation.

5. Conclusion and Policy Implications

The study presented in this paper adds evidence to support the conclusion reached
by several preceding studies of decarbonization pathways for the European power sector,
CCS is an integral part of a solution for cost-effective reduction of power generation
GHG emissions. The cost and technical parameters used for modeling CCS technologies
in EMPIRE, along with assumptions on development of electricity consumption and
EUA price, in concert establish a conservative scenario in terms of competitiveness of
carbon capture and storage. Still, by 2050, the modeling shows an optimal deployment
of 163 GW of CCS generation capacity, and a 25 % CCS share of the total energy mix,
divided between different fuel types. Using the EU 2013 Reference Scenario data, the
analysis shows that annual emissions are reduced by 82 % from 2010 to 2050 when CCS
is part of the total solution. In contrast, the emission reduction achieved with the same
carbon price, without CCS available, is just 63 %, at a higher cost.
Realization of demonstration projects is a highly important as a step towards com-

mercialization of CCS, especially for gaining experience in operating CCS plants in the
European energy markets and developing the technology further. In the current situ-
ation, with a very low EUA price, transitional measures are needed to incentivize first
movers on CCS. The three policy mechanisms assessed in this paper, public grants,
feed-in premiums and emission performance standards, can all be devised to secure de-
ployment of CCS demonstration projects. For lignite CCS two support schemes, the one
based on co-funding of capital cost, and the one with a FIP of 25 e/MWh lasting til
2030, gave virtually the same deployment at more or less the same cost. The cost of
the cheapest feed-in premium policies sufficiently generous for a deployment of 5 GW
demonstration CCS capacity, is found to be in the range of 8.7–12.6 bne. Within this
range it is possible to achieve 5 GW of lignite CCS, 5 GW of gas CCS or a mix between
the two technologies. The analysis illustrates an interesting difference between support-
ing renewable energy technologies and CCS. Whereas renewable energy naturally enters
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the dispatch once built, but face the risk of receiving a too low price to cover their cap-
ital costs, CCS plants face the risk of not being dispatched at all. This is particularly
true for demonstration plants with high fuel costs, as they might be out-competed by
unabated fossil generation at low carbon prices and by more efficient CCS if successful
commercialization materialize. Operational support is therefore crucial for such projects.
When it comes to emission performance standards as a tool for promoting demonstra-

tion CCS it turns out that anything but a CCS mandate on new capacity is not likely to
work. Implementing an EPS, either at a generator level or for the European generation
portfolio, will push the energy mix in a less carbon-intensive direction, although as a
side-effect near-term electricity prices will be high. In particular a CCS mandate policy
could make prices sore, up to 64 % above a Baseline scenario in 2020. The difference
in price between the Baseline scenario and the CCS mandate scenario evens out eventu-
ally, but it is unlikely that a policy causing such a high rise in prices, even if just for a
transitory period, can receive the necessary political support to be implemented.
In conclusion, the European Commission’s reconfirmation of its support for CCS can,

based on this analysis, certainly be argued to be well-founded. Policy support measures
securing the economic viability of demonstration projects are urgently needed in order to
facilitate a place for CCS as a part of the solution for transitioning the European power
sector into a low-carbon future.
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