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Abstract 

 

A composition stream from reservoir to the market has been obtained as a result of upstream, 

midstream and downstream retrograde gas-condensate models integration. Applications are 

composition, Peng-Robinson EOS has been chosen as a fluid package.  

Different production scenarios were observed to define development strategy for rich gas 

condensate production. VGD and C/V gas drive mechanisms have been applied by dry gas 

cycling to enhance condensate production. Condensate production is constrained by TFGR. 

There are 6 producers and 4 injectors presently active in the field. Production is centered on the 

main process LNG plant. 

IAM has been designed for accurate gas-condensate assets prediction, long term forecasting, 

filed development planning and modeling - optimization studies. IAM provides flexibility in 

global problem solving.      

This master thesis will evaluate the optimal development strategy for the gas-condensate 

production problem. IAM provides the long term composition production forecast for gas, 

condensate, NGL and LNG products.  
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Introduction 

 

This master thesis provides wide description of the integrated applications, modeling and 

optimization of the gas-condensate field development.   

Simulation and optimization of the gas-condensate production assets are important and 

fundamental aspects of the petroleum engineers duties requires fast problem shooting and 

decision making in Upstream, Midstream and Downstream applications. Obviously, modeling 

consists of the many independent, standalone models such as reservoir, well, pipeline, separator 

etc. The challenge is to obtain the whole integrated chain of the gas-condensate production. 

The complexity of the “production” decision making process occurs in several cycles and 

requires the time is needed a whole field production observation. Integrated Assets Model is 

reasonable and an important aspect in order to predict an accurate field assets production, to 

determine the project NPV. 

There are many SPE publications covered the topic were researched and studied. Douglas E. et al 

(1987) “SPE-12278”presented an artificial, composition modeling of gas cycling in a rich 

retrograde gas condensate reservoir. Zick A. (1986) “SPE-15493” presented the experimental 

observation of the combined condensing/vaporizing gas drive mechanism.  Høier L and Whitson 

C.( 2001) presented the MMP and MME conditions in compositionally garding reservoirs.  

Eikeland M. and Hansen H. (2009) discussed the production aspects of dry gas reinjection in a 

strong water drive “Sleipner Ost Ty” gas-condensate reservoir.  

 Solomon F. et al,( 2008) is discussed the liquid loading phenomena occurs in gas well. Arne 

Fredheim, Even Solbaa (2012) – presented Natural Gas Technology. 

Juell.A et al,( 2009) presented an Integration and Optimization Model – Gas Cycling Benchmark 

contains two gas condensate reservoirs producing from a common process facility. Rahmawati S. 

et all.,( 2010) is presented the Multi-Field  Integrated Optimization Benchmark. The paper is an 

extension of “SPE-121252”. Two gas condensate and one oil field were observed. The I-OPT 

model conteins the upstream, midstream (THP-table), downstream and NPV evaluation 

applications integrated using PIPE-IT platform. Gonzalez.F et all,( 2010) presented a 

Composition Integrated Asset Model for the grading, giant, near critical gas condensate field. 

The integrated model has upstream (Eclipse300), midstream (PIPESIM) and downstream 

(HYSYS) applications. The integration was done using the mass rate composition stream. 
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Problem Formulation 

 

Object of this master thesis is a development of the rich gas-condensate field in 15 years with 

high efficiency. Efficiency of the field production strongly depended on the interaction of the 

upstream, midstream and downstream development strategies.  

Traditionally, the field development strategy required a wide engineering to model the upstream, 

midstream and downstream applications. Obviously, those applications are modeled and 

optimized independently. 

Integrated Assets Model (IAM) has been developed in order to define development strategy of 

the rich gas-condensate field. The model consists of the upstream (SENSOR), midstream 

(PIPESIM) and downstream (HYSYS) integrated in a PIPE-IT platform.     

 

Motivation 

 

Today, the word energy demand is extremely high. Currently, it is covered by conventional oil 

and gas reservoir. The future word energy demand will be increased, at the same time the 

percentage of the conventional resources will declined. The only one way to cover the “energy 

gap” is to produce technology for the unconventional (shale gas, shale oil, tight gas, HTHP 

reservoirs, deepwater reservoir etc) resources production. 

The literature listed above pointed on the improving assets production from the rich gas-

condensate, unconventional, reservoirs.  

There is a good opportunity to demonstrate the fundamental understanding of the whole 

production chain of the rich gas condensate field development. Different types of problems were 

solved by integrating, modeling and optimizing the upstream, midstream and downstream 

applications.           
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Software Overview 

 

SENSOR (System for Efficient Numerical Simulation of Oil Recovery) is a dynamic reservoir 

simulator, developed by Coats Engineering, Inc. The simulator is suitable for the composition 

and black oil fluids. (Coats Engineering)  

 

PIPESIM is a steady-state, multiphase flow simulator used for the design and diagnostic analysis 

of oil and gas production system. PIPESIM 2011.1 was developed by Schlumberger - leading of 

the Production Engineer software company.  (Schlumberger, 2011) 

 

HYSYS is a thermodynamic, steady-state and dynamic, multiphase simulator used for design and 

diagnostic analysis of the oil and gas surface process system. HYSYS 7.3 was developed by 

Aspen Technology, Inc, considered to be one of the leading software packages of downstream 

process. (Aspen Technology)    

 

Petrostreamz PIPE-IT this is software specially designed for integrated asset optimization, 

modeling and exploitation in the petroleum industry.  PIPE-IT was developed by the Norwegian 

company Petrostreamz AS owned by Curtis H.Whitson.  The PIPE-IT GUI enables the user to 

pipe his project in different layers vertically and horizontally. (Petrostreamz)  
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Upstream, Midstream and Downstream Models  

 

Upstream  

Introduction 

 

Reservoir simulation is an important method in the Petroleum Industry, particularly for the field 

development and asset-management evaluation. Development strategy, forecasting, history 

matching and asset evaluation are an important application in reservoir simulation techniques. 

The object of reservoir modeling is to evaluate the optimal production strategy for the gas-

condensate reservoir. Define and apply the mechanisms to enhance the condensate production is 

primary target in field development strategy. Picture below shows upstream engineering 

applications. 
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Model 

 

The three major parts to a composition modeling of the rich gas-condensate reservoir study are 

PVT data, Reservoir Grid and Gas Cycling. The PVT data was scaled up from Douglas E. 

Kenyon et al SPE-3 “Gas Cycling of Retrograde Condensate Reservoir”. 

The reservoir model contains 27x27x4 each grid block has a dimensions dx=293.3 ft and 

dy=293.3 ft. The model is shown on Figure 1. The layers are homogenous with a constant 

porosity and permeability. The thicknesses are varying among the layers from the 30 to 50 ft. 

The specification of the rich gas-condensate reservoir is presented in Table 1.   

The grid size represents the most reasonable grid for offshore fields and sets the value of 

numerical dispersion in IMPES model. (Kenyon, 1987)  

 
Figure 1 Reservoir Model “Rich Gas-Condensate Reservoir” 

There are six identical producers and four identical injectors are in the reservoir. The locations of 

the producers are in the middle of the reservoir. The injectors are around in the reservoir. The 

wells locations and specifications are presented in Table 1.  
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Table 1 Specification of the Gas-condensate Field 

The initial conditions for the location of the GWC and the capillary pressure generate the gas 

zone.  The aquifer plays insignificant role due to small water compressibility. Therefore the 

trapping of injected dry-gas is insignificant. (Kenyon, 1987) 

 Production is controlled by three stage separators conditions (P, T) and the produced gas rate.  

The area around the producers undergoes pressure depletion due to production of the gas thus, in 

this area, retrograde condensation occurs. 
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PVT Data 

 

Composition was scaled up from SPE3 “Gas Cycling of Retrograde Condensate Reservoirs”. 

The composition for the gas-condensate reservoir consists of 9 components. The initial fluid 

composition of the gas-condensate reservoir is shown in Table 2 and Table 3. 

 

NO. NAME 
PC TC MW 

PCHOR AC SHIFT 
psia R  

1 CO2 1070.7 547.58 44.01 0 0.225 -0.00089 

2 N2 491.68 227.29 28.02 0 0.04 -0.16453 

3 C1 670.1 335.9 16.04 0 0.013 -0.17817 

4 C2 707.79 549.59 30.07 0 0.098 -0.06456 

5 C3 616.41 665.73 44.1 0 0.152 -0.06439 

6 C4-6 498.2 713.2 67.28 0 0.234 -0.18129 

7 C7P1 376.2 1030.5 110.9 0 0.332 0.1208 

8 C7P2 245.4 1134.4 170.9 0 0.495 0.23442 

9 C7P3 124.9 1552.7 282.1 0 0.833 0.54479 
Table 2 “Equation of Sate (EOS) properties” 

 

 CO2 N2 C1 C2 C3 C4-6 C7P1 C7P2 C7P3 

CO2 0 -0.02 0.1 0.13 0.135 0.1277 0.1 0.1 0.1 

N2 -0.02 0 0.036 0.05 0.08 0.1002 0.1 0.1 0.1 

C1 0.1 0.036 0 0 0 0.09281 0 0 0.1392 

C2 0.13 0.05 0 0 0 0 0.00385 0.0063 0.006 

C3 0.135 0.08 0 0 0 0 0.00385 0.0063 0.006 

C4-6 0.1277 0.1002 0.09281 0 0 0 0 0 0 

C7P1 0.1 0.1 0 0.00385 0.00385 0 0 0 0 

C7P2 0.1 0.1 0 0.0063 0.0063 0 0 0 0 

C7P3 0.1 0.1 0.1392 0.006 0.006 0 0 0 0 
Table 3 “Binary Iteration Parameters (BIP)” 
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Result 

Composition model has been run using Eclipse 300 and SENSOR reservoir simulators. Different 

development cases were studied such as Depletion, Gas Cycling and Mixing Case in order to 

define the development strategy presented in Table 1.  

Depletion Case:    

  

During the depletion scenario, gas-condensate reservoir is depleted very fast. The retrograde 

condensate occurs in lower layers around the producers due to reservoir depletion. Condensate is 

immobile phase therefore production is sharply goes down. Increasing gas production rate, the 

field is depleted much faster due to mass balance. Results are presented on Figure 2, Figure 4 

and Figure 4.  

Figure 2 shows how fast reservoir is depleted using different gas production rate. Gas/Oil ratio 

presented on Figure 4 is continually raised in production time. Production assets presented on 

Figure 4 shows gas recovery factor is riched 84% during depletion case. The condensate 

recovery factor is riches 32%. Such insignificant condensate recovery is the consequence of the 

drainage strategy applied for the production.  

Increasing gas production, the ultimate recovery factors for the gas and condensate are same in 

both cases. The difference is only production time.  

Summary for the Depletion case presented on Figure 2 and Figure 4:  

1. Reservoir pressure dramatically decreases 

2. Production rate has an impact for production time 

3. Recovery Factors are same in both cases. RF = 32% condensate and 84% for gas. 

4. Significant amount of intermediate components (condensate) are not recoverable. 

5. GOR is constantly raised. 
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Figure 2 Pore Volume Average Pressure “Depletion” case  
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Figure 3 Gas/Oil Ration “Depletion” 
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Deplition Q=5000Mscf/day 05 May 2013
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Figure 4 Recovery Factor and fluids Production “Depletion” case 
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Gas cycling case: 

 

During the gas cycling case, produced gas is injected back in order to maintain the reservoir 

pressure and enhance the condensate production and ultimate condensate recovery. Produced and 

separated “lean” gas is mainly consist of light components C1-C3 is vaporized the intermediate 

components C3-C7++ from the retrograde immobile condensate therefore the ultimate 

condensate recovery increased. 

 The mechanisms to enhance condensate reservoir are called Vaporizing Gas Drive (VGD) and 

Condensing/Vaporizing Gas Drive (C/V). 

Gas cycling can be first-contact and multi-contact miscible. Minimum miscibility pressure 

(MMP) and minimum miscibility enrichment (MME) determines the miscibility conditions for 

the gas –gas displacement. First contact MMP for the gas-condensate fluid is equals to the 

dewpoint pressure. For the multi contacts case the MMP less than dewpoint pressure. There are 

several methods to determine the MMP: “Slim tube test” (RF>90%)” and “Multi Contact 

Miscibility Test”. 

There are several “gas cycling” cases were studied using two and four injection wells with 

various gas injection rate. Gas injection is maintained the reservoir pressure at a level would 

sustain the production rate. Thus, the reservoir pressure is slightly decreased in compare with 

depletion case. For the different injection rate, the drainage strategy has a different efficiency. 

The reservoir pressure decreased slightly for the high injection rate. Result is shown on Figure 5. 

Oil (condensate) production is sharply decreased due to reservoir depletion in first 600 days. The 

oil production, presented on Figure 7, decreased slightly at the period when drainage strategy 

“gas cycling” has been applied to maintain reservoir pressure and enhance the ultimate 

condensate production. Condensate production goes up slightly before the blowdown that 

happens because of “retrograde phase behavior” and then significantly drops down due to 

depletion.  

 Condensate recovery factor, presented on Figure 7, for those scenarios is lying in range 42%-

58%. Recovery for the “gas cyclic “drainage strategy is significantly increased in compare with 

“depletion” case. The condensate recovery enhanced from 10% to 26%.That is happing because 

of the most retrograde area is swept by injection “lean” gas and C/V mechanism is taking place.  

Gas production, presented on Figure 7, riched the planned filed rate 90000 Mscf/day in short 

time, 105 days. The length of the plateau is significantly sensitive on the drainage strategy 

applied to enhance condensate production. Plateau is extending with increasing the injection rate. 

Gas recovery factor for the “gas cycling” and “depletion” scenarios is 84%. Thus, the drainage 

strategy does not enhance the gas ultimate recovery. 
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Figure 5 Reservoir Pressure “Gas Cycling” case   
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Figure 6 Gas/Oil Ratio "Gas Cycling" 
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Figure 7 Oil&Gas Production "Gas Cycling" 
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Reservoir composition model has been run with four injection wells. Same as in previous cases, 

nature depletion take place during the first 600 days. Gas cycling takes place in period of 600 - 

4250 days. In period of “gas cycling” the reservoir pressure maintained by injection “lean” gas. 

From the Figure 8, the reservoir is sharply depleted in first 600 days then reservoir pressure 

maintained by gas injection therefore the reservoir depletion occurs slightly.  

 In case of massive (4wellx3000Mscf/day) gas injection, reservoir pressure increased in period of 

600 days to 2700 days and then holds constant equal to dewpoint pressure. That is happening 

because of vaporizing gas drive mechanism is taking place. The lean gas is “first contact” 

miscible with reservoir fluid. Thus, fluid displacement by the “first contact” lean gas injection is 

much efficient in compare with “multi contact” C/V (condensing/vaporizing gas drive) due to 

IFT=0 (interfacial tension).  

Total condensate production, presented on Figure 10 “massive gas injection”, is increased due to 

VGD mechanism (IFT=O) then slightly decline at the period of 600 to 5480 days. For the same 

period, condensate production for another case is constantly decline up to 4250 days then 

production significantly falls due to reservoir blowdown.  Condensate ultimate recovery factor 

for the “massive gas injection” is sharply increased in compare with other gas cyclic strategies 

and riched 90% due to IFT=0 VGD gas displacement.  

From the Figure 10 gas cycling strategy is constrained by the filed gas production capacity. The 

consequence of that is drainage strategy does not influence for ultimate gas recovery factor.  

Field GOR is constantly raised is presented on Figure 9. Comparing with depletion case GOR is 

raised slowly.  

  

Summary for the Gas Cycling case:  

1. Reservoir pressure maintained by injection “lean” gas 

2. Condensate production enhanced due to VGD and C/V drive mechanisms. 

3. VGD (IFT=0), the Ultimate Condensate recovery riches 90%  

4. Condensate composition determine the MMP and MME. 

5. Gas Cycling does not enhanced the gas production. 

6. Gas cycling is constrained by the field gas production performance. 

7. GOR raised slowly then in Depletion case 
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Figure 8 Pore Volume Average Pressure “Gas Cycling” case   
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Figure 9 Gas/Oil Ratio "Gas Cycling" 
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Figure 10 Condensate and Gas production “Gas Cycling” case   
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Development Strategy Scenario: 

 

Development strategy for gas-condensate production has been chosen the “mixed” one based on 

“Depletion” and “Gas Cycling” summaries. Development drainage strategy is based on the 

depletion during the first 600 days, gas cycling (2 injectors - 30000Mscf/d) – from 600-2750 

days, massive gas cycling (4 injectors – 20000Mscf/d) – from 2750-4250 days and the blow 

down – from 4250-5480 days.     

Figure 11 is representing reservoir pressure for the observed scenarios. During whole production 

time reservoir pressure for the chosen development strategy is slightly decreased. For the 

blowdown period (4250 – 5480 days), reservoir pressure significantly falls down.    

Figure 13 is representing the efficiency of the chosen drainage strategy. High ultimate recovery 

for the condensate 60% is riches because of the most retrograde area is swept by the injection 

“lean” gas. The condensate production mechanism is condensing/vaporizing (C/V). 

Figure 14 is showing gas production performance. Gas production is riches the planned field rate 

(FGPR=90000Mscf/d) in first 100 days. The plateau takes the most of the production time. The 

ultimate gas recovery is 84%.  

Field GOR is constantly raised is presented on Figure 12 Error! Reference source not found. 

Comparing with depletion case GOR is raised slowly. Cumulative asset productions are 

presented in Upstream Appendix on Figure 40, Figure 41and Figure 42. 

Summary for development strategy scenario:  

1. Reservoir pressure maintained by injection “lean” gas, depletion occurs slightly. 

2. Condensate production enhanced by C/V drive mechanisms. 

3. Ultimate Condensate recovery riches 60%  

4. Condensate composition determine the MMP and MME. 

5. Gas Cycling does not enhanced the gas production. 

6. Gas cycling is constrained by the field gas production performance. 

7. GOR constantly and slowly increased.  
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Figure 11 Reservoir Pressure “Development Strategy” 
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Figure 12 Gas/Oil Ratio 
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Figure 13Condensate Production “Development Strategy” 
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Figure 14Gas production “Development Strategy” 
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Midstream 

 

Introduction 

 

Midstream simulation is one an important application in the Petroleum Industry, particularly for 

the field development and asset-management evaluation. Production strategy, forecasting, wells 

performance analyzing, multiphase flow assurance and assets evaluation are valuable application 

in production simulation techniques. Picture below shows the midstream applications. 

The object for midstream modeling is to evaluate the optimal production strategy for the gas-

condensate reservoir. Well and pipelines designing used to take into consideration the common 

problems occurring in gas production. Define and apply the production strategy to deliver the gas 

production assets from the reservoir to the surface process facility.  
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Model 

 

Figure 15 is presenting the steady state midstream model. The model has been developed for the 

gas-condensate natural production. Model is composition and consists of six identical production 

and four injection wells. All the wells are vertical. The model specification for the initial steady 

state case is presented in Table 4. 

Producers interacts with the upstream “gas condensate reservoir” using the PI inflow production 

performance. Production wells are choke equipped. The wellheads connected with manifold 

through the flowlines, further to sink. “Olga S-2000 V6 2.7-3-phase” flow correlation has been 

chosen for the vertical and horizontal flow.  (Schlumberger, 2011)   

Midstream model has been designed symmetrically in order to increase flexibility of simulation 

and optimization process.   

   

PVT 

 

Fluid composition and PVT characteristics were taken from the upstream (reservoir) study. The 

initial composition is presented in Table 2 and Table 3. Peng-Robinson equation of state has 

been chosen as fluid package in the midstream model. (Schlumberger, 2011)  
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Figure 15” Midstream Model” 

 

 

Wells IPR 
Pres Tres Tubing ID Casing Choke 

Flow line 
ID Tamb Length 

psia F inch inch inch inch F ft 

Prod.Well1 PI 3550 200 7.125 9.282 0.6 Flowline1 4 50 984.25 

Prod.Well2 PI 3550 200 7.125 9.282 0.6 Flowline2 4 50 984.25 

Prod.Well3 PI 3550 200 7.125 9.282 0.6 Flowline3 4 50 1640.4 

Prod.Well4 PI 3550 200 7.125 9.282 0.6 Flowline4 4 50 1968.5 

Prod.Well5 PI 3550 200 7.125 9.282 0.6 Flowline5 4 50 1968.5 

Prod.Well6 PI 3550 200 7.125 9.282 0.6 Flowline6 4 50 1640.4 
Table 4 Wells and Flow lines Specification      
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Liquid Loading “Critical Gas Rate” 

 

Liquid loading is a common problem during the gas production. The water and condensate 

(heavy components) develops from gas-condensate in reservoir, well and pipelines due to 

pressure – temperature reduction. The liquid could not be produced to the surface falls back and 

accumulates at the well’s bottom due to gravity. Thus, the consequence of the liquid loading 

could restrict the gas production and in some cases even kill it. (Schlumberger, 2011) 

 Liquid loading phenomena creates a significant back pressure therefore rich gas-condensate 

production rate restricted. One of the ways to predict liquid loading onset is determining the 

“Critical Gas Rate”. This criterion is a valuable production parameter to avoid the liquid loading 

onset during the gas-condensate production strategy. (Schlumberger, 2011) 

“Critical Gas Rate” has been determined using the convectional approach (Nodal analyze) to 

combine the steady state or pseudo steady state reservoir performance (IPR) with the steady state 

or pseudo steady state well performance (TPR).  “Critical Gas Rate” is defined as a minimum or 

critical gas rate that would sustain the liquid production. (Schlumberger, 2011)   

During the production time reduction of wellbore conditions (P, T) and various fluid 

compositions were taken into account to determine the “Critical Gas Rate”. Figure 16 presenting 

the critical gas rate for the whole production period.  Gas production rate = 11.4 MMscf/d is a 

critical rate that could sustain the liquid unloading.  

 
Figure 16 “ Critical Gas Rate” 
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Optimization (Choke) 

 

The field model has been designed to develop the gas-condensate reservoir in 15 years as a 

midstream application. Development strategy, defined in upstream part, has been used as a feed 

to define the production strategy.   

Production wells are choke equipped. Optimization has been done to define the gas-condensate 

production strategy, determine wellhead, bottom whole pressure and composition.  

Optimization variable parameter is Choke ID.  Boundary conditions for the model are reservoir 

pressure and sink pressure. Local and global constraints are presented in Table 5 Model 

Optimization Constraints. Optimization process has been done manually due to model 

requirements.   

Node 
Local/Global Constraint 

Pressure, psia Gas Rate, Mscf/d Choke, inch 

Wells Reservoir Pressure Production Rate Choke ID 

Flow lines Estimate Pressure Estimate Rate  

Manifold Estimate Pressure Estimate Rate  

Sink Pressure Total Rate  
Table 5 Model Optimization Constraints 
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Result 

 

Figure 18 presenting the production strategy for the midstream. Result of optimization is a series 

of steady state solutions for the whole period of gas-condensate production. 

Well head pressure and choke positions have been defined for the production wells. Result of 

optimized THP pressure and choke positions are depicted on Figure 17. 

Total field gas production (FGPR) presented on Figure 18, riches the planned production rate of 

90 MMscf/d in first 100 days. The plateau production is more and less the same for both 

simulators (SENSOR and PIPESIM) in period of 0 – 3750 days. Then FGPR starts rapidly 

decline in compare with SENSOR’s result. That is happening because of the reservoir pressure 

will not able to sustain the planned field gas production rate. Thus, the reasons are “liquid 

loading” and the pipeline’s specification (P, T). The pipeline network specification and 

configuration plays an important role in production strategy.  Development model defined in 

upstream controlled by the separator (P, T) conditions in order to define cycling gas composition. 

Upstream model does not observe the midstream therefore booster station has been introduced to 

sustain planned assets production. Difference in reservoir and wellhead pressure sustain 

multiphase deliverability are shown on Figure 18 and Figure 19. Production stream is shown in 

Table 6, represent production strategy from reservoir to process facility.   

Typical PIPESIM output file is presented in Table 10. (Schlumberger, 2011) 

   

Component mol % 

Time, days 120 480 840 1200 1800 2640 3840 4680 4920 5480 

CO2 1.21 1.23 1.11 1.13 1.20 1.26 1.20 1.31 1.31 1.20 

N2 1.95 2.07 2.17 2.21 2.08 1.96 1.66 1.95 1.95 1.77 

C1 66.06 68.93 67.69 69.04 68.64 67.89 60.67 68.42 68.42 62.46 

C2 8.67 8.63 7.19 7.26 8.08 8.98 9.04 9.80 9.80 9.06 

C3 5.88 5.65 4.45 4.36 4.99 5.85 6.46 6.85 6.85 6.42 

C4-6 9.60 8.93 8.38 8.06 8.45 9.22 10.96 10.31 10.31 9.79 

C7+1 4.63 3.45 7.02 6.26 5.25 3.76 7.45 0.91 0.91 0.88 

C7+2 1.49 0.94 1.63 1.32 0.97 0.72 1.59 0.11 0.11 0.10 

C7+3 0.30 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

H20 0.23 0.12 0.33 0.34 0.35 0.35 0.98 0.34 0.34 8.33 

Table 6 " PIPESIM COMPOSITION" 
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Figure 17 “Optimization Pwh, Choke ID” 

 
Figure 18 “Production Strategy.” 

 
Figure 19 “Well Head Pressure Depletion” 
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Downstream 

Introduction 

 

Downstream model is a pre-market treatment stage.  Process simulation is one an important and 

fundamental application in the Petroleum Industry for asset-management evaluation. Separation, 

dehydration, CO2 absorption, NGL and Cascade LNG extraction are sensible and valuable 

application in process simulation techniques. Picture below characterized the complexity of the 

process simulation applications. 

The object of downstream modeling is fluid assets evaluation. Complexity of the treatment 

processes and facility required separate process observation and specification. (Aspen 

Technology)       
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Model 

 

Downstream thermodynamic, steady state model has been developed for the gas-condensate 

production. Downstream application is an extension of the gas-condensate field development. 

Model is composition consists of 11 components, Peng-Robinson equation of state (EOS) has 

been chosen as a fluid package. Upstream and midstream composition stream fed in downstream 

model. Figure 20 presenting processed valuable production assets.   

Thermodynamic, steady state model consists of Separation Unit, Dehydration Unit, CO2 

Extraction Unit and simplified NGL&LNG Unit. Process units are presented on Figure 21 and 

explained below.  

 
Figure 20 HYSYS Model  
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Figure 21 “HYSYS UNITS” 
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Separation Unit 

 

Separation unit is shown in black quad shown on Figure 21 “HYSYS UNITS”. The unit consists 

of the rotating and static-mechanic equipment. Rotating equipments are pumps and compressors. 

Separators, scrubbers, mixers and coolers are static-mechanic equipment. (Aspen Technology) 

Obviously, separation process is a first stage of the gas treatment process and plays an important 

role in gas-condensate assets production. Gas treatment unit consists of three stage separation 

process. The type and specification of the static equipment is shown in Table 7. 

Separator P, psia T, F 

3-phaze, horizontal-1 805 80 

3-phaze, horizontal-2 60 34.23 

3-phaze, horizontal-3 14.7 17.4164 

Table 7 "Separator specification" 

Upstream gas-condensate stream is fed to the first stage of separation process. Gas, condensate 

and water are separated at the first stage. Separated gas assigned to dehydration unit. Separated 

water directed to water disposal station. Condensate is fed to the second stage and so on. 

Condensation process normally starts in the well and flowlines due to pressure and temperature 

reduction. Bulk water separated on each stage of separation process. Separated water is directed 

to the water disposal station.   

Condensate, separated at first stage, is fed to the second stage of separation process and further to 

the third one. At each separation stage the light components (C1-C4) are separated from the 

condensate, due to pressure and temperature reduction. Phase envelope for the steady state 

condensate separation process is shown on Figure 22 “Phase Envelop Condensate Separation 

Process”.  

Separated gas, from the last stage of separation process, is cooled and fed to the Scrubber where 

liquid phase 3-5% separated to protect compressor station. Liquid phase directed to the third 

separator where the liquid phase mixed with condensate stream to enhance condensate recovery. 

Only one way to get the dewpoint specification for mixing separated gases is compressing and 

cooling. Gas from the scrubber is compressed and cooled in order to obtain same dewpoint 

condition as gas separated from the second separator. Those gases are mixed and direct to the 

scrubber to avoid the liquid phase. Liquid phase occurred when gas was cooled, is separated and 

directed to the second separator. Further gas is compressed and cooled to get the same dewpoint 

condition as gas separated from the first separator. Processed gas is mixed with gas from the first 

separator and directed to dehydration unit.  Dewpoint specification for the steady state gas 

separation process is shown on Figure 23 "Phase Envelope Gas treatment process". 
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The liquid (heavy hydrocarbons + H20) separated from the Scrubbers are fed back to the 

separators in order to enhance condensate extraction.  

Dehydration Unit (TEG) 

 

Dehydration Unit is shown in red quad on Figure 21 “HYSYS UNITS”As it mentioned above 

the water removal process starts in the wells, flowlines and further in separation unit. Separated 

natural gas contains the water. To avoid hydrate and corrosion problems that would occur in 

further process, the water fraction should be removed from the feed. The process called 

“Dehydration”.  (Aspen Technology) 

Strict dewpoint specification for gas used as a feed to LNG and NGL extraction unit required to 

remove bulk water.   

In principle there are three main processes are used to remove bulk water from natural gas: 

• Expansion and Separation 

• Absorption (MEG, DEG and TEG) 

• Adsorption (solid material) 

  

The “Expansion and Separation” and “Absorption” were used in the model. The typical Peng-

Robinson (PR) equation of state was used for it.  

Note!!! Normally PR will give a bad result especially at high pressure due to water is a polar 

substance and creates hydrogen bounding.  ( Arne Fredheim, Even Solbaa, 2012)  

In order to obtain dry gas dewpoint specification, separated “wet” gas is fed into the bottom of 

absorber. Lean TEG (“three ethylene glycol”) is feed at the top of the absorber contractor. 

Specification of the absorber is shown in Table 8. Wet natural gas is flowing upwards in 

absorber column at the same time as lean TEG run down. The mass transfer process is taking 

place due to affinity glycol to water properties. Water content is reduced from the top of the 

absorber. Dryness efficiency of the gas is depended on TEG concentration on the upper tray. ( 

Arne Fredheim, Even Solbaa, 2012) 

As the TEG flows down in the absorber, the water fraction is increased. The rich TEG is sent to 

the distillation column where the rich TEG is re-boiled at low pressure and high temperature. 

High temperature used in order to increase the process efficiency. Hot, re-boiled TEG pumped 

back to absorber through heat exchanger, where hot TEG is cooled down by cold rich TEG feed 

in order to obtain operation condition. TEG circulation rate is depended on operational 

parameters, water content in the feed gas and the dryness specification. Distillation column 

specifications are shown in Table 8. Dewpoint specification for dehydration process is presented 

on Figure 24"Phase Envelop Dehydration Process".  
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CO2 Extraction Unit 

 

CO2 Extraction Unit is shown in green quad on Figure 21 “HYSYS UNITS” The quality of the 

natural gas stream is very strict especially for the CO2 fraction 50ppmv. The CO2 extraction 

process is similar to the one described above. The process is absorption by circulated MEA 

(monoethanolamine) or MDEA (methyl-diethanoamine).  (Aspen Technology) 

The CO2 Extraction unit has been designed using the “SPLITTER” to avoid the model 

complexity. Dewpoint specification for CO2 extraction is shown on Figure 24"Phase Envelop 

Dehydration Process".   

 

NGL&LNG Production Unit 

 

NGL and LNG production unit is shown in blue quad on Figure 21 “HYSYS UNITS” Simple 

model of “Cascade liquefaction Process” has been designed. The process required pre-cooling 

“Propane Cooler”, liquefaction and the sub-cooling stages.  ( Arne Fredheim, Even Solbaa, 

2012) 

Natural gas represents a mix of the pure fluids. Liquefaction temperature of these pure fluids is 

lie on the range from 10 C to -160 C.  ( Arne Fredheim, Even Solbaa, 2012)   

It is very important to note that small pressure drop was detected during the LNG&NGL process. 

Obviously, propane C3 is used as a refrigerant for the pre-cooling stage, due to normal boiling 

point (NBP) is -42 C. Propane can cover the temperature gap from the ambient temperature to -

42 C as a refrigerant. Compression train section has been designed in order to modeling 

liquefaction stage. This section contains from compressors, coolers and scrubbers. Small 

pressure drop along the train is applied in order to minimize work for liquefaction. Last cooler 

has been designed to represent sub-cooling stage.  ( Arne Fredheim, Even Solbaa, 2012) 

Pre-cooled natural gas is fed to the scrubber to avoid two phase on the stream. Further gas is fed 

to the compression train in order to obtain the dewpoint specification of the final product. Liquid 

(NGL) are separated from the gas feed before and during compression. Further liquids (NGL) are 

pumped and mixed. To get the stable condition the liquid is cooled. Last cooler represents sub-

cooling stage. Feed is cooled up to -160 C. Traditionally Methane, Ethylene and Propane are 

used to cooled the feed up to -160 C due to NBP of ethylene is -103C, NBP of methane is -161C 

and NBP of propane is -42C. Thus feed gas can be cooled and liquefied in range from the 

ambient temperature to the -161C. The final product is LNG and NGL. Dewpoint control for 

NGL and LNG production is shown on Figure 25 "Phase Envelope LNG&NGL Process". 
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Figure 22 “Phase Envelop Condensate Separation Process” 

 

Figure 23 "Phase Envelope Gas treatment process" 

 
Figure 24"Phase Envelop Dehydration Process" 



40 

 

Contractors № trays Pressure kPa Temperature C 

Absorber 14 
5519 21.94 

5519 21.78 

Distillation column 10 
101.4 101.7 

103.4 204.4 

Table 8 "Contractors Specifications" 

 

Figure 25 "Phase Envelope LNG&NGL Process" 
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Optimization 

 

Model has been designed with automatically adjusted “dewpoint control temperature (Tdpc)” 

presented on Figure 20 HYSYS Model. Adjustable parameter during optimization process is 

Cooler capacity. In order to enhance LNG and NGL recovery, cooler capacity “Tdpc” has been 

optimized using the HYSYS optimizer. Variable parameters have been chosen the “Tee fraction” 

and “Tdpc”.  The objective function has been chosen maximization of “Actual Liquid Flow” of 

LNG stream.  Result of optimization is shown in Table 9. 

Result 

 

 Model has been designed in order to deliver the valuable gas-condensate streams on the market. 

Those streams are “Condensate”, “NGL” and “LNG”. Steady state compositions of main process 

streams are presented on Figure 26 "Process SS Result". 

Dynamic composition flow of those streams will be explained and presented in Integrated Asset 

Model “IAM” part. 

 

Figure 26 "Process SS Result" 

Optimization (LNG flow - maximization ) 

Variables Low Bound Current High Bound 

Tdpc -54.73283 -27.4301902 -13.683208 

Tee_frac 0 1.00E-06 1 

Table 9 "Optimization Result" 
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Integrated Asset Model “IAM” 

Introduction 

 

Integrated simulation and optimization is an important application in petroleum industry 

especially for the field development strategy evaluation and assets management controlling. 

Traditionally model consists of upstream, midstream and downstream applications. The effort of 

such model is whole production chain observation and opportunity for optimization in order to 

obtain the global maximum or minimum.      

Model 

 

Integrated Asset Model “IAM” for the gas-condensate production has been designed on PIPE-IT 

commercial software. The IAM consists of the Upstream, Midstream and Downstream 

applications and presented on Figure 27”PIPE-IT Project.”  

 
Figure 27”PIPE-IT Project.” 

IAM is run by integrating the upstream, midstream and downstream models described above. 

Integration of those models was done using the VBA, VBS and Ruby programming scripts. The 

VBA and VBS for midstream model integration have been developed by Stein Orjan Solrud.  

The Ruby script, for downstream model integration, has been developed by Silvya Dewi 

Rahmawati.  
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Upstream 

 

Upstream, reservoir development model has been studied in “Upstream” part. The gas-

condensate reservoir has been integrated using the PIPE-IT platform. Figure 28 is presenting 

upstream integration process. Integration was done using a “Resource”, which has blue color, 

and “Process”, green color. Resource is initial SENSOR data file and the process – scrip to run 

SENSOR reservoir simulator.  

Running the upstream model, output files create field production-stream file using the “Sen2Str” 

process. Further the streams file will be sorted by wells and averaged. Composition of producers 

and injectors are fed to midstream application in order to define production strategy and generate 

wellheads pressure.  

Average field mole production stream is fed to the downstream application. Stream contains of 

average production time and average mole production of the 9 components fluid.   

 
Figure 28 “Upstream integration” 
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Midstream 

 

Midstream model has been studied in the Midstream part. Integration has been done using the 

VBA and VBS script. VBA script was used for the model initialization. The VBS script was used 

as process to run the model. Figure 29 “Midstream integration” is presenting midstream model 

integration process. 

Initializing the model, VBA and VBS scripts are created the “variable” data file. Data file 

contains of default composition, tubing specification and boundary conditions. Composition, 

choke ID and boundary pressures has been linking to PIPE-IT optimizer as variable parameters 

for optimization purpose. Further VBS script was used as a process to read the “output.pns” file. 

In order to get feed for downstream application, output stream has been sorted by wells, pipeline 

and nodes.    

NOTE!!! The Midstream link is not transferred the field /well composition. The production 

strategy has been defined manually!!!      

 
Figure 29 “Midstream integration” 
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Downstream 

 

Downstream model has been studied in the “Downstream” part. Integration was done using the 

Ruby script as a process driver to run the model insight from PIPE-IT. Figure 30 “Downstream 

integration” is presenting the HYSYS integration process.  

Average filed mole production stream, obtained from the “upstream”, was used as a feed to run 

the model. The output products are composition molar flow of “Condensate”, “Dry Gas”, 

“Cycling Gas”, ”NGL” and “LNG”.  Specification of the downstream model is explained above 

in downstream “Model” part. 

IAM characterized by one main composition stream from the reservoir to market. Figure 31 is 

presented the IAM composition stream. Wells molar compositions are fed to midstream model, 

which has been designed using PIPESIM. Midstream has been integrated in downstream model 

using UPSTREAM link. Thus, midstream and downstream was integrated in one model and 

mounted on PIPE-IT integration platform. PIPE-IT has used the PIPESIM’s ENGINE and 

HYSYS’s ENGINE to handle production and thyrmodynamical – process performances via 

Ruby script.    

NOTE!!! Actually, “Cycling Gas” stream is not matched with stream that is used as injection 

fluid. That is because of the downstream model has been designed for gas-condensate 

production. The “Cycling Gas” stream represents the “virtual” volume of gas assigned for the 

cyclic gas injection.  Also, the HYSYS model has been simplified, by using splitter to represent 

dehydration process. 
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Figure 30 “Downstream integration” 

 
Figure 31 Midstream and Downstream integration 
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Optimization 

 

In order to produce the gas-condensate field in 15 years with high efficiency the IAM has been 

developed. The result of upstream is a development strategy of the gas-condensate production.  

Midstream and downstream models gives a steady state solution. In order to obtain midstream 

production strategy and generate wellheads pressure, optimization has been done manually. 

Results are listed on Figure 18 “Production Strategy.”  

Downstream model has been linked with upstream to improve gas-condensate development 

strategy. Result is a series of steady state solutions presented bellow. Downstream optimization 

has been described in downstream Optimization section.  
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Result 

 

One of the important criteria of field development is assets composition flow. So, Figure 32-

Figure 38 shows gas-condensate assets production, actually composition molar flow of the 

“Condensate”, “Dry Gas”, “Cycling Gas”, ”NGL” and “LNG”. Summarizing the outcome, 

different strategies has been applied for the gas-condensate production. The figures bellow 

shows integrated process efficiency and sweep efficiency of VGD and C/V gas drive 

mechanisms applied to enhance condensate production.   

Planned FGPR =90 MMscf/d has been riched in 105 days. Plateau is taking place up to 

4000days.Condensate mole production is depicted on Figure 32. Dehydration efficiency of the 

produced gas is shown on Figure 33 “Dry Gas Prodcution”. Composition of the dry gas is 76% 

of methane. Mole production and composition for NGL is presented on Figure 36” NGL 

Production”. LNG mole production and composition is listed on Figure 37 “LNG Production”.  

The assets standard actual volumetric flow is shown on Figure 38 “Std Actual Flow”.    

During the depletion, production time from 0 -600 days, condensate production is rapidly decline 

for the all range of intermediate components. That is happening because of the most retrograde 

area are not swept in reservoir. Composition of produced gas is became leaner therefore the 

processed assets production decline.  

During the cycling gas strategy, production time from 600 days – 2750 days, condensate 

production has been improved by the lean injection gas. Field condensate production slightly and 

continually decline. Vaporizing gas drive mechanism (VGD) is taking place. Condensate 

production of the intermediate components rapidly increased especially for C4-6. The mole 

production of the processed dry gas therefore NGL and LNG are increased. That is happening 

because of the well stream became richer due to VGD gas drive mechanism.  

During cyclic gas strategy, production time from the 2750-4250 days, cyclic injection volume of 

lean gas has been increased up to 89% of total field produced. At this period four injectors are 

involved in gas injection process and cycling lean gas was reallocated. Decline condensate 

production was record due to drive mechanism has been changed from VGD on C/V therefore 

the sweep efficiency for condensate production was decline. Assets production rapidly decline 

due to 89% of the FGPR is injected back to enhance the condensate production.  

 Blowdown period, from the 4250 - 5480 days, reservoir is almost depleted, the C/V sweep 

efficiency is not reasonable therefore all produced gas is fed to the process. Field condensate 

production is rapidly decline. The FGPR is significantly raised during the blowdown. The assets 

mole production significantly increased and then rapidly falls. Increased mole production is 

happening because of significantly raised processing FGPR. When the sustainable volume of gas 

for C/V mechanism has been produced the mole production rapidly falls. 



49 

 

 
Figure 32 “Condensate Molar Production”    

 
Figure 33 “Dry Gas Prodcution” 

 
Figure 34 “Feed to NGL and LNG” 
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Figure 35 "Cycling Gas" 

 
Figure 36” NGL Production” 

 
Figure 37 “LNG Production” 
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Result 

 

Result of the IAM is main stream from the reservoir to the market of the gas-condensate assets. 

IAM has been developed using PIPE-IT platform. Integration of the upstream, midstream and 

downstream applications is a challenge to use the reservoir, production and process engineering 

skills. Upstream, midstream and downstream applications have been designed as simple models 

represented real case. In order to enhance gas-condensate production, different cases have been 

studied. Development strategy for the gas-condensate field has been defined based on real case 

“Sleipner Os Ty gas-condensate filed”. To define “midstream” production strategy and to 

simulate the production problems such as liquid loading and flow insurance wells and pipelines 

performance have been simulated. Thermodynamic aspects such as three stage separation, 

dehydration (absorption -TEG), simplified CO2 extraction and simplified NGL and LNG 

Extraction processes were included in downstream steady state model. 

The result of IAM is presented on Figure 38 “Std Actual Flow”.  The ultimate recovery has been 

riched 60% for the condensate and 84% for the produced gas.     

 
Figure 38 “Std Actual Flow” 
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Conclusions and Discussion 

 

The fundamental understanding of the whole production chain of gas-condensate field has been 

demonstrated. Complexity of composition applications has been modeled and described for gas-

condensate field development.  VGD and C/V gas drive mechanism have been studied and 

applied in development strategy. The common problem such as liquid loading phenomena occurs 

during the gas production has been studied and modeled. Thermodynamic, steady state model 

has been designed in order to study separation, dehydration, CO2 extraction, NGL and LNG 

production processes. Long term production forecast has been obtained for gas-condensate field 

development. Assets prediction has been obtained based on the integration of the basic 

composition applications such as Upstream, Midstream and Downstream on IAM.  

The main conclusions are: 

1. The IAM has shown the valuable engineering aspects for the field development process.  

2. The IAM shows whole production strategy chain, thus identifying the global constraints 

and optimizing it. IAM gives much accurate field assets prediction and long term 

forecasting.   

3. The IAM gives a modeling flexibility to solve the global problems and save the valuable 

time for the decision making process.    

4. The IAM gives an advantage in project NPV determination.   

5. The standalone Upstream, downstream and Midstream simulators gives a modeling 

flexibility to solve local problems. 
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Recommendation 

 

IAM has been designed and optimized based on integration of the Upstream, Midstream and 

Downstream standalone applications. The main aspects and specifications of those applications 

have been described in this thesis in correspondent chapters.  

There are some recommendations to improve the IAM are: 

1. Designing and integrating the “Gas Cycling” model improved by MMP and MME tests. 

2. Designing and integrating the composition gas injection model 

3. Programming the” VBA and VBS” scripts for the whole midstream integration.  

4. Improving the process model, adding the absorption process of CO2 extraction and 

“Cascade” LNG production.    

5. NPV evaluation. 
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Appendix A “Upstream” 

 

 
 

Figure 39 “Gas-condensate field” 
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Figure 40 “ Total gas production” 
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Figure 41 ”Total condensate production” 
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Figure 42 “Water Production” 
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Appendix B “Midstream” 

 

 
Table 10 Pipesim Output file 
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Appendix C “Downstream” 

 

Table 11 "SS Stream Composition" 

 
Table 12 “Condensate stream” 
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Table 13 “Dry Gas stream” 
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Table 14 “Gas To Process” 
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Table 15 “Cycling Gas stream” 
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Table 16 ”NGL stream” 
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Table 17 “LNG stream” 
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Table 18 “Std Volume Rate” 
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