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(a) (b) (c)

Figure 4.2: Frequency distribution of a) the initial error, b) the error after a few smoothing iterations
of Gauss-Seidel and c) after correcting the error from b) on a coarser grid.

would smooth this error, in effect reducing the high frequency components more than the lower, which

can be seen in Figure 4.2b. In Figure 4.2c a coarse grid correction is applied, where the problem is solved

exact on the coarser grid. This reduces the low frequencies, shifting the distribution towards the right.

Note that the y-scale has changed in Figure 4.2c. As can be seen, the low frequency componennts are not

entirely removed, even though an exact coarse grid solution is found. This has to do with transferring

information between the original and the coarse grid problem, and the fact that the coarse grid problem

is only an approximation of the fine grid problem. The transferring between the grids is an important

aspect of the multigrid method, and different techniques for this are essentially what separates different

variants of the multigrid method. This will be discussed below, but for now assume we have a restriction

operator R : Ωh → ΩH mapping from the basis of the fine grid to the basis of the coarse grid, and a

prolongation operator P : ΩH → Ωh mapping back to the fine grid. Both R and P are of full rank.

Assume we have performed a number of smoothing iterations on the fine grid, and obtained uh. Then

we have an expression for the residual

rh = Ahuh − bh (4.2)

and the error

eh = uh − ūh. (4.3)

As we in general do not have the exact solution ūh, the error is considered unknown. Combining (4.2)

and (4.3) we get the residual equation

Aheh = rh. (4.4)

The coarse grid correction should result in an approximation ẽh of the fine grid error, which can be used

to correct the current iterate as

uh ← uh − ẽh. (4.5)

This means that we want to find an approximate solution of (4.4). At this point we can turn to the

variational principle, similar to when we approximated functions en H1(Ω) by functions in the finite

space V for the finite-element method. Here we want to approximate a function on Ωh by a function in

ΩH . According to the variational principle we can state (4.4) as

min
eh∈Ωh

〈eh, Aheh〉 − 〈rh, eh〉, (4.6)

where 〈·, ·〉 is the Eucledian inner product. Restricting ourselves to ΩH means that we are looking for

the best approximation in range(P ), i.e., we want to find the minimizer of

min
eH∈ΩH

〈PeH , AhPeH〉 − 〈rh, P eH〉. (4.7)
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Since P is of full rank and Ah is symmetric positive definite we can write this problem as

PTAhPeH = PT rh, (4.8)

which gives us the linear system to be solved on the coarse grid. In most cases the restriction and

prolongation operators are related as

R = cPT , (4.9)

where c ∈ R is often just equal 1. We can then write the more common formulation of the coarse grid

problem

RAhPeH = Rrh, (4.10)

which means we define the coarse grid operator

AH := RAhP, (4.11)

known as the Galerkin operator in the multigrid literature. It is straight-forward to show that the

smoother on the coarser grid can be represented in the same way, i.e.,

MH = RMhP. (4.12)

We can now form the two-level method by combining smoothing and coarse grid correction. The resulting

method is described in Algorithm 3.

Algorithm 3 Two-level method

Given:

A - fine grid matrix

b - right hand side

M - fine grid smoother

R - restriction operator

P - prolongation operator

Procedure:

1 Apply smoother M to obtain uh

2 Compute residual rh = Auh − b
3 Restrict residual rH = Rrh

4 Solve AHeH = rH with AH = RAP

5 Prolongate error ẽh = PeH

6 Correct approximation uh ← uh − ẽh

7 Apply smoother to obtain final uh

4.1.3 Intergrid operators

In order to perform a coarse grid correction we need to formally define the intergrid operators P and

R. This task is closely related to the construction of the coarse grid, as these operators are mappings

between bases of the two grids. The usual approach is therefore to start by constructing a coarse grid

that is a good approximation of the fine grid while having the desired ability to represent smooth vectors

well. There are different ways of attacking this coarsening issue, much depending on the type of fine grid

used as well as the properties of the system to be solved. This is essentially where the separation of the
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geometric and the algebraic multigrid method lies. The algebraic method will be discussed in detail later.

To introduce the concepts a simple geometric approach will be considered.

Let Ωh be a nodal discretization of a line segment by nh nodes, shown at the top of Figure 4.3. A

straight-forward construction of a coarse grid would be to discretize the same segment with twice the

stepsize, which we know from the discussion of Figure 4.2 would represent smooth components well. This

coarse grid is shown at the bottom of Figure 4.3. Let us first consider the prolongation. As seen in Figure

4.3 each coarse grid node overlap with a fine grid node. It is therefore natural to let values at coarse grid

nodes map unchanged to their respective fine grid node. For the fine grid nodes not in the coarse grid

one can use linear interpolation, as shown in Figure 4.3.

Ωh

ΩH

Figure 4.3: Prolongation by linear interpolation. Solid arrows indicates weights of 1 while dashed
arrows indicates weights of 1/2.

The resulting prolongator will be the matrix

P =


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
, (4.13)

which is of size nh × nH .

For defining the restriction operator operator R the most simple approach would be by injection, i.e., to

copy the values of the fine grid nodes to their overlapping coarse grid nodes and ignore the other fine grid

nodes. Another possibility is by full-weighting, where the non-coarse nodes also contribute to the value

at their surrounding coarse nodes. This results in a smoothing effect on the restriction which is desirable.

Using this we also get the nice relation between the restriction and the prolongation matrix,

R =
1

2
PT =



1
4

1
2

1
4
1
4

1
2

1
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4

1
2

1
4
· · ·

1
4

1
2

1
4

 . (4.14)

The above examples of intergrid operators and coarse grid constructions assume the problem at hand to

be as simple as possible, i.e., an isotropic PDE with homogeneous coefficients, discretized with simple

finite differences or similar on equidistant grid. On relevant problems that are more complex the resulting

method might perform poorly. Efforts to modify operators to improve the performance on such cases

have been done but it requires insight to the continuous problem and the discretization method, which

often results in a very problem specific method. This largely motivates the algebraic multigrid method,

discussed below, which is better suited for a wide range of problems.
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4.1.4 Multigrid cycle

While there are different versions of the multigrid algorithm, the two base ingredients for all are smoothing

and coarse grid correction. The simplest and most widely used version is the V-cycle. This is simply the

recursive extension of the two-level method in Algorithm 3, i.e., instead of solving the coarse problem

exactly one performs a few smoothing steps and proceeds to an even coarser grid. The recursion stops

when reaching a level small enough to be efficiently solved by a direct method. The size of this coarsest

level depends on the cost of further coarsening compared to the use of direct solvers. In [39] the coarsening

stops once the matrix has less than 200 rows. After the exact solution is found on the coarse grid it is

prolongated up one level at the time, performing a given number of (post-) smoothing steps at each level.

An illustration of the V-cycle is shown in Figure 4.4a.
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Figure 4.4: Illustration of common types of multigrid cycles; (a) V-cycle, (b) W-cycle and (c) the
F-cycle. S denotes smoothing, R restriction of residual, E exact solution by a direct method and P
prolongation.

Another common multigrid version is the W-Cycle. For this two subsequent coarse grid corrections are

performed at every level, i.e., after prolongating the solution of a coarse grid correction it is smoothed

a few times and then another coarse grid correction is done. This is shown in Figure 4.4b. The V- and

W-cycle routines are described in Algorithm 4 where they are separated by an if statement.

Another cycle type called the F-cycle uses the coarse grid to produce an initial guess instead of correcting

a smoothed iterate. This is illustrated in Figure 4.4c.
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Algorithm 4 V-/W-cycle

Given: P prolongation operator on each level, α number of smoothing steps.

1 u = MGcycle(matrix A, r.h.s b, initial guess u0, smoother M)

2 if Coarsest level then

3 Solve direct u = A−1b

4 else

5 Pre-smooth α times using M to obtain u, starting from u0

6 Compute residual r = Au− b
7 Restrict residual rC = PT r

8 Recursive call ẽ = MGcycle(PTAP ,rC ,0,PTMP )

9 Prolongate and correct u← u− P ẽ
10 if W-cycle then

11 Repeat 5-9

12 end if

13 Post-smooth α times using M updating u

14 end if

15 Return u

An implementation of a complete multigrid algorithm would consist of a setup phase and the solve

phase. During the setup the intergrid operator P l, coefficient matrix Al and smoother M l for each level

l are constructed. The setup phase is often a major contributor to the time consumption of a multigrid

algorithm. For this reason the multigrid method is especially effective for problems where a relatively

large number of cycles are needed and the operators can be reused. For example in dynamic problems

with a time iteration the operators can be reused on each time step, or when multigrid is used as a

preconditioner for a Krylov subspace method the same transfer operators can be used on each Krylov

iteration.

4.2 Algebraic multigrid

In many practical cases such as for unstructured grids, irregular grids or problems where no grid is

explicitly determined, the selection of coarse grids can be problematic. Algebraic multigrid (AMG) is

a technique that steps away from the discretization and geometrical information and attempts to apply

the multigrid principals using only information available in the system matrix. This suggests AMG as

a black-box solver and opens for a wider range of problems. Although AMG need not have a direct

coupling to a physical discretization its construction still needs the same fundamental components as the

geometric case. There must be a sequence of (virtual) grids, intergrid operators, smoothing operators,

coarse grid versions of the matrix A and a solver, usually direct, for the coarsest grid.

4.2.1 Algebraic smoothness

Instead of giving the grids a physical meaning one can construct a new grid as the undirected adjacency

graph of the matrix A. While the resulting graph is similar to the discretization grid it is important to

keep in mind that they are not always the same. For example, using higher order discretizations or when

considering the elasticity equation the nodes in this graph represent unknowns in the algebraic equation,

not nodes in the original grid. The issues that arise for such cases are discussed in Section 4.3. In the

following, a point refers to an unknown in the adjacency graph, not necessarily a point in the grid.

From the adjacency graph the couplings between the points can easily be visualized. The weights on the

edges represent the strength of a coupling between points. This strength is determined by the coefficients

of the PDE as well as physical length between nodes. This means that a stretched grid and anisotropic
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coefficients of the PDE will have a similar effect on the algebraic grid.

The adjacency graph is considered as the finest grid, and coarser grids are built from this. Before

coarsening techniques can be described the concept of strong coupling has to be formally defined. In

order to define this we look at what properties the resulting grid should have. The fundamental property

of a coarse grid is that it should be able to represent smooth error components accurately. In geometric

multigrid smoothness is characterized by a low spatial frequency. However, it is not necessarily just these

low spatial frequency components we want to transfer to the coarser grid. For example, with anisotropies

present an error might be smooth in one direction but oscillatory in another. This error would then not

appear to be geometrically smooth even though the convergence might have slowed down. As the error

is not geometrically smooth a standard isotropic coarse grid would not be able to represent the error,

and the performance of the coarse grid correction would be poor. For AMG methods one instead directly

characterizes algebraically smooth errors as those vectors that are reduced slowly under relaxation, i.e.,

‖Ge‖A ≈ ‖e‖A, (4.15)

where G is the iteration matrix of the smoother. Brezina et al. argue in [9] that if (4.15) is true for e

then we also have

eTAe ≈ 0. (4.16)

This motivates the following definition.

Definition 1. Two unknowns i and j are strongly coupled if, for some θ ∈ (0, 1)

|aij | ≥ θ
√
aiiajj . (4.17)

In the coarsening algorithms the set of strongly coupled points have to be traversed, sometimes more

than once, for each i. As the size of θ will generally affect the cardinality of these sets it will also have an

impact on the complexity of the algorithm and can lead to a slow coarsening. Note, there are also other

characterizations of algebraic smoothness [41, 13], which lead to slightly different definitions of strong

coupling.

4.2.2 Classical coarsening

The classical coarsening approach was introduced by Ruge and Stüben [41], and is often called RS-

coarsening. The idea is to separate all points into two disjoint sets C and F . The C-points are those

fine grid points that also will serve as unknowns on the coarse grid, while the F -points are the fine grid

points that are discarded on the coarse grid.

The first question that arises is how the F/C-splitting should be done. As we want algebraically smooth

components to appear more oscillatory on the coarse grid, a rule should be that any two C-points are

not strongly coupled. This gives us the desired coarsening effect along those directions that the error is

algebraically smooth. Another rule, which ensures the quality of the interpolation, is that any F -point

should either be strongly coupled to a C-point or to another F -point that is strongly coupled to a C-

point. This means that for any F -point some C-point exists in its ”neighborhood” and it makes sense

to interpolate from these. In general it is not possible to fulfill both rules simultaneously and they are

therefore used as guidelines. Routines for this splitting are described in [41].

Assuming we have done a C/F -splitting, the prolongation operator has to be constructed. This defines

how an F -point will be interpolated from surrounding C-points, i.e.,

ei =
∑
k∈Pi

wikek where i ∈ F and Pi ⊂ C. (4.18)
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For AMG we generally do not have geometric information about the grid and can not define a linear

interpolation as in Figure 4.3. Instead the approximation by neighboring values (4.17) is used. There

are many ways to construct this interpolation in practice as discussed in [47], depending on how the

C/F -splitting is done, the connectivities defined by A and desired sparsity of the resulting Galerkin

operator.

4.2.3 Coarsening by aggregation

An alternative to the classical algebraic coarsening is the aggregation-based approach [49]. The idea

behind this approach is less sophisticated, compared to the classical, and in a direct comparison the

classical approach will often perform better. However, the aggregation method have gained attention

because of its simplicity.

In the aggregation coarsening process all points are partitioned into disjoint sets, or aggregates, where an

aggregate correspond to a single unknown in the coarse grid. This means that each fine grid point will

be restricted onto only one coarse grid point. In contrast, for the RS-coarsening a fine grid point that is

located between two coarse grid points will be restricted onto both of these.

The simple fine-coarse relationship gives only one nonzero per row in the prolongation operator, which

simplifies the intergrid transfers and the construction of the Galerkin operator, not to mention the

construction of P itself. Given a decomposition into aggregates C1, C2, ...CnC
this leads to the simple

formulations

rHj =
∑
i∈Cj

rhi (4.19)

and

ehi = eHj for each i ∈ Cj (4.20)

for restriction and prolongation respectively. This results in a prolongation operator of the form

P =



1

1···

1

1

1···

1

·······

1

1···

1



. (4.21)

The obvious question is which fine grid points should be grouped together and how the aggregates should

be formed. There exist different approaches to form these.

In [49] the aggregates are successively defined as the first encountered strongly coupled neighborhood.

The strongly coupled neighborhoods are defined as sets of points where each pair in the set are strongly

coupled. This results in a greedy algorithm that most likely does not aggregate all fine grid points. To

handle the remaining points two additional phases are performed. In the first of these, each unaggregated

point that is strongly coupled to one or more points in an existing aggregate is added to this. If this is

true for more than one existing aggregate, the one to which it is strongest coupled is chosen. In some
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points remain unaggregated a last phase is performed where additional aggregates are constructed from

the remaining points. The resulting algorithm is described in Algorithm 5. Typically the last phase will

not be performed as all points have already been aggregated. Typical 2D aggregates are shown in Figure

4.5.

Algorithm 5 Construction of aggregates

Given: Predefined neighborhoods Ni(θ) for each i = 1, ..., N .

Define R = {1, ..., N}. Set j = 0.

1 for i ∈ R do

2 if Ni(θ) ⊂ R then

3 j ← j + 1

4 Cj ← Ni(θ)

5 R← R \ Cj
6 end if

7 end for

8 Copy C̃k ← Ck for k = 1, ..., j

9 for i ∈ R do

10 for k ∈ {1, ..., j} do

11 if Ni(θ) ∩ C̃k 6= ∅ then

12 Ck ← Ck ∪ {i}
13 R← R \ i
14 end if

15 end for

16 end for

17 while R 6= ∅ do

18 Pick i ∈ R
19 j ← j + 1

20 Cj ← Ni(θ)

21 R← R \ Cj
22 end while

Using this aggregation approach one does not take into account the actual strength of a coupling once

a neighborhood is defined, i.e., all unknowns included in a neighborhood are considered to be coupled

with equal strength. This could potentially lead to two strongly coupled points ending up in different

aggregates. Ideally, one would compare each coupling so that the strongest ones could be given priority.

A different aggregation method that tries to incorporate this issue is the one used in the AGMG software

[39]. For this the unknowns are pairwise grouped according to their strongest coupling. As such a pairing

would only reduce the system by a factor of two the algorithm performs another pass, grouping together

two pairs, giving a coarse grid reduction factor of four.

4.2.4 Coarsening by smoothed aggregation

The unsmoothed aggregation coarsening essentially results in a piecewise constant interpolation of un-

knowns. As pointed out in [47], while this interpolation can represent a constant function exactly, it will

not be able to accurately approximate all smooth functions. As an example, consider a smooth function

f in one dimension. A first order finite-element space should be able to approximate this with an error

O(h). This is shown in Figure 4.6a where the finite-element approximation almost coincide with the func-

tion f . If we construct the coarse grid by pairwise aggregation of nodes the basis functions are formed
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(a) (b)

Figure 4.5: Typical result of the aggregation process described in Algorithm 5 for two different grids.

as sums of the basis functions corresponding to the two aggregated nodes. The resulting basis functions

are shown at the bottom of Figure 4.6b. As the function f has a nonzero derivative at the interior of

aggregates, these coarse basis functions are not able to represent f exactly. In fact, the approximation

order will become zero when using an approximation based on the energy norm, as in (4.7). In Figure

4.6b uH is the optimal approximation of f on the aggregated grid using the energy norm, which can be

seen as the best approximation of the derivative at every nonempty intersection of the support of any

two basis functions. For the simple equidistant example of pairwise aggregation in Figure 4.6b uh will,

with decreasing step size, look more and more like f/2. Braess [7] addresses this problem by multiplying

the coarse grid correction with an over-relaxation factor close to two. Although this may give fairly good

results in some cases, it is highly dependent on the problem at hand and generally not a robust solution.

uh ≈ f

x

y

(a)

x

y

f

PuH

(b)

Figure 4.6: Inconsistent coarse grid approximation property for aggregation coarsening. Basis func-
tions are shown under the plots.

The idea, as introduced in [50], to improve the simple aggregation approach above, is to use the piecewise

constant interpolation only as a tentative prolongation. Subsequently, this prolongation is smoothed by

applying a few iterations of a stationary iterative method. In [50] a simple ω-Jacobi relaxation step is

used,

P = P − ωD−1AP. (4.22)

This smoother is built on the matrix A which means that the basis functions will become locally more

consistent with the PDE as they are smoothed. At the same time it smoothens out each basis function

giving it a better ability to approximate smooth functions. Figure 4.7a shows an example of the tentative
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basis functions on selected aggregates while Figure 4.7b shows the same basis functions after one ω-Jacobi

smoothing.

(a) (b)

Figure 4.7: Selected basis functions for (a) unsmoothed aggregation and (b) smoothed aggregation,
using ω-Jacobi smoother with ω = 3/2 for a scalar problem.

As a consequence of the smoothing the support of each basis function increases. How much it increases

for each smoothing iteration depends on what kind of smoother is used and how many edges that are

incident on each vertex in the graph. In general for one Jacobi (or ω-Jacobi) smoothing iteration the

sparsity of the resulting prolongation operator will be given from the sparsity of the squared adjacency

graph of A. That is, each basis function will increase its support to include all elements that shares

a boundary with the previous support. For 3D problems this will quickly increase the density of the

prolongation operator, which means that the computation of the Galerkin operator will become much

more expensive.

4.3 AMG for the elasticity equation

Up to now little attention has been given to the specific properties of the elasticity equation, and how

to design multigrid methods for such a problem. While all the above concepts also apply in this case,

elasticity introduces additional challenges.

4.3.1 Block approach for system equations

For the discretization methods described in Chapter 2, the degrees of freedom will be the displacement in

each space dimension at every node. This means that the adjacency graph for the system matrix, which

AMG builds upon, will be fundamentally different than the discretization grid. An aggregation-based

coarsening may produce aggregates of physically incompatible degrees of freedom. This may result in

deterioration of convergence. A straight forward remedy to this problem is to use a block-aggregation

approach. The idea then is that if the x-displacement at two adjacent nodes are strongly coupled, then it

is likely that the y-displacement at the same nodes also are. This means we perform aggregation on the

discretization grid instead of the matrix graph. In order to do this we need to provide the AMG solver

with information on the problem dimension and in what order the unknowns are stored. As mentioned

above, for elasticity it is a convention to use an interleaved numbering of the unknowns. When building

the prolongator we now insert the identity and zero block instead of one and zero, to use the same

aggregation structure in all space variables. The prolongation operator would in this case typically look

like the one in Figure 4.8 where two and two adjacent columns have the same structure, only shifted one

row.
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nz = 988

Figure 4.8: Typical prolongation operator using the block aggregation approach in 2D.

A question that arise for this block approach is how to decide whether two nodes are strongly coupled.

For isotropic problems one could choose one of the space variables, discarding all the other rows and

columns in A and perform aggregation as it was a scalar equation. This approach will not be justified in

the case of anisotropies, where the coupling between unknowns may be different for the different space

variables. In [50] this problem is addressed by defining a suitable measure of the part of A that describe

the coupling between two nodes. Let df(i) be the index list of unknowns associated with node i. The

coupling between node i and j can now be expressed by

A(ij) = A(df(i), df(j)). (4.23)

Using this matrix selection we can generalize the concept of strong coupling.

Definition 2. Two nodes i and j are strongly coupled if, for some ε ∈ (0, 1)

ρ
(
A
−1/2
(ii) A(ij)A

−1/2
(jj)

)
> θ. (4.24)

This definition is the direct generalization of the scalar case (4.17). Although the size of Aij is only the

spatial dimension, the computation of the spectral norm ρ becomes quite costly since it has to be done

for each pair of nodes in the grid. As pointed out in [23] it usually suffices to have an upper bound for

the spectral norm, which means that other cheaper matrix norms can be used.

4.3.2 Interpolation of rigid body modes

As mentioned above it is important that the prolongation preserves the near-kernel elements. For a scalar

problem the unsmoothed aggregation process satisfy this trivially by constructing the coarse grid basis

functions as the restriction of the constant function c(x, y) = 1 onto each aggregate. Hence, with disjoint

aggregates the basis functions will be a partition of unity. For the smoothed aggregation method, where

the aggregates start to intersect, we are not guaranteed to be able to recover this partition of unity

without modifying the smoothed aggregation basis functions. But for a suitable choice of prolongation

smoother the smoothing should not alter this partition of unity.

For higher order problems and system PDE’s the kernel contains more than just constant functions. In

particular, for elasticity, the rigid body modes, consisting of the constant translation modes and linear

rotation modes, defines the kernel, as discussed in Section 4.3.2.

The translational modes are taken care of in the same way as for the scalar case. The preservation of the

linear rotational modes is not as simple. In Figure 4.9 the plane z(x, y) = x on the coarse grid, which is

in ker(AH), is prolongated onto the fine grid using an aggregation prolongator. Clearly this introduces

components on the fine grid that are not in the kernel of Ah. As explained in [50] this can be corrected

by introducing additional degrees of freedom on the coarse grid that are constructed to reproduce the
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Figure 4.9: A linear function on the coarse grid prolongated to the fine grid using a piecewise constant
prolongator.

linear modes. In general, we can construct a prolongator that preserves any number of kernel elements

by first producing aggregates of nodes and then build coarse grid basis functions as restrictions of the

kernel basis onto each aggregate. In order to use this approach the user needs to provide information

about the near-kernel elements. Building the prolongator this way, these user-provided elements are often

called seed -vectors as the prolongator is ”grown” on them. For elasticity these are the rotational modes

R, discussed in Chapter 2. The prolongator is built one aggregate at the time, using the restriction of R
onto the aggregate as columns. Given aggregates C1, ..., Cnc

the prolongator is formed

P =
(
R|C1

R|C2
· · · R|Cnc

)
(4.25)

The restriction onto an aggregate R|Cj
consists of a block column vector where each block correspond to

a member of the aggregate. For member i of aggregate Cj the block is (in 2D)

(R|C1)i =

(
1 0 −(yi − ȳj)
0 1 (xi − x̄j)

)
(4.26)

where (xi, yi) is the coordinate of node i and (x̄j , ȳj) is the center of aggregate Cj . The reason why

the center of the aggregate is subtracted from the rotation-column of (4.26) is to remove any translation

modes from the restriction of the rotation and hence make the columns of P orthogonal. In addition we

normalize each column so that we get

PTP = I. (4.27)

Doing this we make sure that the uniform equivalence of the discrete and continuous L2-norm is satisfied.

4.4 AMG as preconditioner

AMG was originally constructed as a standalone solver. Although it has a very good theoretical perfor-

mance it does have some weaknesses in practice. In many practical cases the selection of coarse grid and

prolongation will not be optimal. The result of this non-optimality is that some specific components of

the error are not captured well by the multigrid iterations. Improving the coarse grid and prolongation for

a general set of situations have shown to be very expensive. As an alternative, if AMG is combined with

a Krylov subspace method, these particular components are eliminated very efficiently in most cases [46].

This motivates the use of AMG as a preconditioner for the conjugate gradient method. As mentioned

in Section 3.2.2, we can provide the preconditioner to the conjugate gradient procedure as a black-box
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solver. The application of AMG as a preconditioner would then be to find the preconditioned residual as

zk = AMG(rk), (4.28)

with AMG(·) being the AMG procedure set up with A as system matrix.

An issue that arise when using AMG as preconditioner for conjugate gradient is the symmetry require-

ment. Recall from Section 3.2.2 that the preconditioner M had to be symmetric. To construct a sym-

metric version of the multigrid cycle we have two choices. One way is to use a symmetric smoother such

as Jacobi or SGS, for both pre- and post-smoothing. Another way is to use a non-symmetric smoother,

e.g. SOR, for pre-smoothing and use its transpose, i.e., backward SOR, as a post-smoother.
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Chapter 5

Implementation of AMG

As part of the work done in this project the smoothed aggregation AMG method presented above have

been implemented in MATLAB. This have been done for experimental purposes and not with a goal of

creating an alternative to existing, more efficient implementations. Having the procedure implemented in

MATLAB provides an easy access to all components of the process, and an intuitive way of monitoring

its performance when the application program is already running in MATLAB.

The presentation of the implementation here is intended to make the results in Section 6 reproducible

for the reader.

The implementation consists of two main procedures, one setting up the AMG solver and the other

executing the recursive multigrid cycle.

The multigrid cycle is a straight forward implementation of Algorithm 4. Note that the pre- and post-

smoother should be the adjoint of each other when used as preconditioner.

The primary output from the setup phase is the prolongation operator mapping between the different

levels. In addition to this, the galerkin operator PTAP and smoothers are constructed for each level.

The frame of the setup phase is run as a while-loop continuing until the number of unknowns at that level

gets below a given value. For each level three separate procedures are run to construct the prolongation

operator. A high-level description of the setup phase is presented in Algorithm 6.

Algorithm 6 Setup AMG

1 while Size of A > predefined value do

2 Find neighborhoods Ni(θ) for each node

3 Construct aggregates according to neighborhoods

4 Use aggregates to form tentative prolongator and smooth to obtain P

5 Use P to construct A and M for the next level

6 end while

5.1 Constructing neighborhoods

Finding the neighborhoods would be a trivial task for a scalar problem. One would simply have to

symmetrically scale each element of A by forming As = D−
1
2AD−

1
2 and then remove all elements of As

below θ, according to Definition (4.17).

For the system case, which is described in Section 4.3.1, this requires some more attention. We first
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construct a scaled matrix similar to the scalar case as

As = D
− 1

2

B AD
− 1

2

B , (5.1)

where DB denotes the block diagonal of A. According to Definition 4.24 this scaled matrix should now

be condensed by finding the spectral norm of each block. Motivated by [23] we use instead the cheaper

Frobenius-norm

‖A‖F :=

 n∑
i=1

n∑
j=1

|aij |2
 1

2

. (5.2)

This condensation is implemented using the matrix

Q =


1 1

1 1
······

1 1

 , (5.3)

which forms pairwise sums of rows when left-multiplied with a matrix. The condensed matrix Ã is then

formed as

Ã =
(
QA◦2s Q

T
)◦ 1

2 , (5.4)

where A◦2 denotes entry-wise squaring.

A matrix representation of neighboring nodes is then found by dropping each value of Ã below θ. Note

that the value θ is norm-dependent and we could not expect to use the exact same threshold as for the

spectral norm.

In MATLAB this particular dropping step became a bottleneck of the setup phase when performed

simultaneously on all edges in the graph. Instead, the dropping were done in the aggregation phase,

utilizing the fact that the dropping need not be done for the nodes that are passively aggregated from

being in the neighborhood of another node. As most of the nodes are aggregated passively this reduces

the setup-time drastically.

5.2 Construction of aggregates

Having found the neighborhoods for each node the aggregation process can start. We have here used the

original aggregation process proposed by Vanek [49], described in Algorithm 5. We will here only make

a few remarks on the MATLAB implementation of the different stages of aggregation.

The first stage, where most of the aggregates are constructed, is done sequentially. This is because one,

at all times, have to keep track of which nodes have been aggregated. We note that there are other

alternative ways of performing the aggregation, not considered here, which are of more parallel nature

[48].

The second stage, where no new aggregates are constructed, can be performed in parallel. One must, for

each unaggregated node, find the existing aggregate to which it is strongest coupled to and add to that.

In MATLAB this can be done simultaneously using sparse matrix operations.

The third stage where left-over nodes are collected into new aggregates, again have to be done sequen-

tially. As most nodes are already aggregated by then, this stage is seldom time consuming.

47



5.3. CONSTRUCTING THE PROLONGATOR 48

5.3 Constructing the prolongator

Forming the tentative prolongator consists of restricting the rigid body modes onto the aggregates, as

discussed in Section 4.3.2. The prolongation on the finest level is a mapping from translation-basis

functions on fine grid nodes to translation- and rotation-basis functions on aggregates. This means

that the first prolongator contains 2-by-3 blocks (3-by-6 for 3D) as shown in (4.26). Prolongators on

coarser levels are mappings from translation- and rotation-basis functions to translation- and rotation-

basis functions which means that these contain square blocks of the form (in 2D)

P̃0|(ij) =

1 0 −(yi − ȳj)
0 1 (xi − x̄j)
0 0 1

 . (5.5)

Once each block has been constructed the columns are normalized as

P0 = P̃0

(
P̃T0 P̃0

)− 1
2

. (5.6)

Note that P̃T0 P̃0 is a diagonal matrix, so finding the inverse square root is trivial. Having construted

the tentative prolongator P0 the final prolongator is found by applying one ω-Jacobi smoothing step

according to equation (4.22).
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Chapter 6

Numerical results

To investigate the different concepts described above we will in this chapter present results of some

numerical experiments. The objective is to get a clearer view of what challenges arise when solving the

linear elasticity equation numerically, and how the solution process can be accelerated using the concepts

presented above.

The ultimate question when measuring the performance of a linear solver is the time it takes to reach

a solution of desired accuracy. This, of course, depends on many different factors. For the numerical

tests in this project little attention is given to optimization of the actual run-time. This is considered

to be a large task involving many different disciplines in computer science and is best considered in a

separate work. Instead, the focus is here put on the mathematical efficiency of a solver. As a useful

measure, number of iteration is considered, which gives an indication of how much work that needs to

be done. That being said, the run-time should not be completely ignored as the number of iterations

could potentially be reduced to zero by putting increasingly more effort into each iteration, only to end

up with a procedure that takes more time than before.

We have made use of MATLAB’s implementation of the preconditioned conjugate gradient method, pcg.

Using this, the preconditioner can be provided as either a single symmetric matrix, a split preconditioner

or as a function handle that solves for the preconditioned residual.

Further we have used MATLAB’s function ichol to construct incomplete Cholesky preconditioners. This

can also be used to construct modified incomplete Cholesky preconditioners.

6.1 Test problems

6.1.1 Problem A: Isotropic square certesian grid

This test problem is included to investigate experimentally the performance of the smoothed aggregation

AMG method described above. A material with Young’s modulus E = 10 MPa and Poisson’s ratio

ν = 0.3, occupies the unit square. The entire boundary is constrained by homogeneous Dirichlet bound-

ary conditions, while a constant body force pointing in the negative y-direction is applied at the interior.

The governing equations are discretized with the virtual element method and a cartesian grid is used.

Number of smoothing steps

We start by testing how the number of smoothing iterations α affect the solve time when AMG is used as

a standalone solver. In Table 6.1 the total solve times reducing the residual norm by 10−8 are shown for

different numbers of smoothing iterations. The different values of ω are chosen according to the discussion
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in Section 3.1. As seen, the minimum solve time were found using one iteration of forward SOR with a

moderate over-relaxation parameter for both pre- and post-smoothing.

For significant values of ω more smoothing iterations are required. This is related to the loss of smooth-

ing property when over-relaxation is used. The forward-backward combination of SOR has the exact

same amount of work per iteration as the forward-forward SOR, but results generally in more cycles,

giving longer solve-times. It is included here because it provides the symmetry required when used as

a preconditioner for conjugate gradient. Under this symmetry constraint, two smoothing iterations of

forward-backward with a moderate over-relaxation gives the best solve-times. We can not, from this

experiment, conclude that the same is true when used in combination with conjugate gradient, but its

standalone performance gives an indication of what to expect when used as a preconditioner.

Table 6.1: Solve times for AMG as a standalone solver for varying number of smoothing iterations.
A 100 × 100 grid is used.

Pre-/post-smoother ω α = 1 α = 2 α = 3 α = 4
FSOR/FSOR 1 0.52 0.57 0.65 0.75
FSOR/BSOR 1 0.57 0.59 0.68 0.77
SSOR/SSOR 1 0.67 0.93 1.15 1.27

FSOR/FSOR 1.5 0.33 0.41 0.51 0.57
FSOR/BSOR 1.5 0.54 0.47 0.61 0.60
SSOR/SSOR 1.5 0.59 0.74 0.88 1.05

FSOR/FSOR 1.75 0.52 0.43 0.43 0.49
FSOR/BSOR 1.75 0.84 0.67 0.53 0.58
SSOR/SSOR 1.75 0.75 0.76 0.86 1.04

Different prolongators

In Figure 6.1 the convergence history for conjugate gradient preconditioned with AMG using four differ-

ent methods to construct the prolongator. The scalar aggregation approach ignores the block structure of

A and treats it as a scalar problem, using Definition (4.17) to construct neighborhoods of unknowns. The

block approach uses Definition (4.24) to construct neighborhoods of nodes. In the rotation aggregation

approach the prolongator preserves the rotation as described in Section 4.3.2. For smoothed aggregation

the prolongator is smoothed according to (4.22). This result clearly shows the importance of using a

block approach for the elasticity equation. We can also see from this experiment that the smoothing

of aggregates and preservation of rotation gives a considerable improvement in terms Krylov iterations.

Similar results were found for a 3D analog to this experiment, but with an even more significant im-

provement when the rotation is preserved, especially when only one side were given Dirichlet boundary

condition so that the solution contained a larger rotation-component.

Scalability

In Figure 6.2 the dependence of the convergence on the problem size is shown for our implementation of

AMG. We have considered it as both a standalone solver and used as preconditioner, and included the

IC(0) preconditioner for comparison. The AMG solver is set up with one smoothing iteration of SOR(1.3)

at each level (backward post-smoothing when used as preconditioner).

When AMG is used as a standalone solver we see a moderate increase in number of iterations for increasing

problem size. Applying Krylov iterations seems to both accelerate and make it more robust with respect

to problem size.
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Figure 6.1: Convergence history for conjugate gradient using AMG preconditioners based on different
aggregation approaches.

6.1.2 Problem B: Aspect ratio

In Problem B we consider a rectangular domain with a 100 × 100 grid. We let the rectangle be 1m is

the y-direction and obtain different aspect ratios by varying the physical length in the x-direction from

1m to 16m. The material is isotropic with Young’s modulus E = 400MPa and Poisson’s ratio ν = 0.3.

In Figure 6.3 we have compared the number of iterations needed to reduce the residual norm by 10−8

using plain aggregation and smoothed aggregation. The blue graph shows the results using our AMG

implementation. In problem A we saw that the smoothed aggregation was preferred in the isotropic case.

This experiments indicates that the difference between the smoothed and unsmoothed aggregation for

our implementation gets smaller as the aspect ratio increases. By investigating the aggregates we found

that no couplings were dropped when forming the neighborhoods. This is not the desired behavior for

large aspect ratios as nodes in the y-direction should be more strongly coupled than in the x-direction.

The drop-threshold θ = 0.08( 1
2 )l thus seemed to be too low. We found, however, from experimenting

that a suitable threshold, where some of the couplings are dropped and not all, was difficult to find. This

could indicate that the frobenius-norm used to condense the matrix did not work well, or that the imple-

mentation were not done correctly. The loss of performance for the smoothed aggregation method could

be a consequence of this. We therefore performed the same experiment using PETSc’s algebraic multigrid

preconditioner GAMG [4]. This uses a different aggregation method based on maximally independent

sets of the squared matrix graph. In Figure 6.3 we have compared the behavior of our implementation

to the GAMG preconditioner. As seen, using GAMG, the smoothed aggregation process does not loose

efficiency relative to the unsmoothed aggregation. This indicates that the observed deterioration in the

smoothed aggregation method relative to the unsmoothed is an artifact of our implementation.

6.1.3 Problem C: Horizontal plate

We now turn to a more challenging 3D problem. Consider a horizontal plate of thickness 0.5m, length 10m

and width 5m, mounted on a wall on the shortest side. Gravity pulls the plate of density ρ = 3000kgm−3

in the negative z-direction. The material is isotropic with Young’s modulus E = 9GPa and Poisson’s

ratio ν = 0.3. The grid used has 20 grid cells in all three directions. The problem is discretized using

a virtual-element discretization resulting in a linear system of 26460 unknowns. Figure 6.4 shows the
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Figure 6.2: Number of iterations reducing the residual norm by 10−8 for different problem sizes.

divergence of the displacement on the deformed plate, which gives an indication of the change of volume

in each cell. This problem is challenging because it has a thin-body feature and the grid cells have an

aspect ratio of 1
20 . The condition number of A is estimated to 6×108 using MATLAB’s function condest.

In Figure 6.5a we have considered incomplete Cholesky preconditioning, while Figure 6.5b shows the

result of matrix partition based preconditioners. In Table 6.2 the solve times are presented.

We can see that the unpreconditioned conjugate gradient gradient, included in both figures for reference,

uses about 3000 iterations before we see a reduction in the residual norm. This is connected to the ill-

conditioning of the problem. Note that the conjugate gradient method minimizes the A-norm of the error,

which monotonically decreases for each iteration. We have here plotted the 2-norm of the residual, which

equals the A2-norm of the error. This is not guaranteed to monotonically decrease. This is discussed

further in [1].

Table 6.2: Solve times for one-level preconditioners on Problem C.

Preconditioner Solve times [s]
No preconditioner 13
IC(0) shifted α 32
IC(0) shifted 0.1α 14.8
IC(0) shifted 0.01α 6
SSOR(1) 62
Jacobi 13

When constructing the IC(0) preconditioner ichol encountered a zero pivot, and broke down. We thus

performed a shifting of the diagonal according to the discussion in Section 3.3.2. The shifting parame-

ter α required to make A diagonally dominant was computed. As seen in Figure 6.5a, using the IC(0)

preconditioner constructed from A shifted by α gave no improvement to the unpreconditioned case. By

shifting only a fraction of α we saw better performances. Of course, using this partial shifting are not

guaranteed to successfully construct the incomplete factors. A simple try-catch statement to construct

the preconditioner were found useful as the iterations generally were much more time consuming than the

construction of the preconditioner. The modified incomplete Cholesky MIC(0) preconditioner was also
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Figure 6.3: Effect of aspect ratio on smoothed and unsmoothed aggregation using our implementation
(AMG) and the preconditioner GAMG in the PETSc Toolkit.

Figure 6.4: Deformed plate where the color represents the divergence of the deformation in each cell.
This gives a measure of the change of volume in each cell.

(a) (b)

Figure 6.5: One-level preconditioners on Problem C.

considered for this experiment, but behaved similarly to IC(0), only slightly worse, and were therefore

not included in the presentation here.

The SSOR preconditioner were provided to pcg as a split preconditioner, i.e., with M1 = MFSOR and

M2 = MBSOR. Experiments with different values of ω showed that no over-relaxation (ω = 1) gave the

most effective preconditioner. In fact, a value slightly less than 1 resulted in even further reduction in
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number of iterations. The cost of evaluating this preconditioner was extremely high, which resulted in a

total solve time more than twice the solve time for the unpreconditioned case, even though the number

of iterations was nearly halved.

The Jacobi preconditioner gave a small improvement in number of iterations, but with a slightly higher

cost per iteration, it ended up spending the same amount of time as the unpreconditioned iterations.

In Figure 6.6 we have presented the convergence history for the plain aggregation and the smoothed

aggregation versions of our implementation of AMG. Five levels were constructed (including the original),

and the setup time was 2.2s for the plain aggregation and 2.6s for the smoothed aggregation method,

while the solve times were 37s and 50s, respectively. We see here the unexpected result that the plain

aggregation performs significantly better than the smoothed version. We suspect that this is related to

the behavior seen in Problem B for the 2D aspect ratio test. However, in Problem B the performance of

the smoothed and unsmoothed method became more similar for increasing aspect ratios, while here, the

smoothed performs worse. Executing the same experiment using the GAMG preconditioner in PETSc

resulted in 187 and 461 iterations for the smoothed and unsmoothed method respectively. This further

indicates a fault in our implementation.

Figure 6.6: Preconditioned conjugate gradient method using the plain aggregation and the smoothed
aggregation version of our AMG implementation for Problem C.
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Chapter 7

Conclusion and further work

The work done in this thesis have addressed the problem of solving the elasticity equation numerically

for large systems. The majority of the work concerns the use of iterative solvers for the linear system

arising from discretizations.

In addition to a standard finite-element discretization for tetrahedral grids, the more recent virtual-

element method have been presented, which allow the use of general polyhedral grids.

Stationary iterative methods were found to favor reduction of certain error components, resulting in a

stagnation after a few iterations.

The conjugate gradient method was presented together with a theoretical result relating the convergence

rate to the condition number of the system matrix.

Multigrid methods complement the stationary methods by eliminating remaining error components on

coarser grids. Algebraic multigrid methods create these coarse grids automatically from information in

the system matrix. When aggregation-based algebraic multigrid methods are applied to the elasticity

equation a block approach should be used, aggregating grid-nodes instead of degrees of freedom. Sec-

ondly, the construction of the coarse grid should be done in such a way that the rigid body modes can

be represented exactly on the coarse grid.

An implementation of the smoothed aggregation AMG method for elasticity was done in MATLAB. We

saw, from numerical testing, that our implementation had a convergence rate nearly independent of the

problem size when used as a preconditioner for conjugate gradient on a simple problem. Further we

saw that it did not behave as expected under large aspect ratios, where the unsmoothed aggregation

method performed better. This is assumed to be due to a fault in our implementation, as the GAMG

preconditioner in the PETSc Toolkit did not show the same behavior.

When stationary iterations are considered as standalone solver a large value of the over-relaxation pa-

rameter gives the best convergence rate. From experiments performed in Chapter 6 we saw that when

when used as smoother for a standalone AMG solver, a moderation of the over-relaxation were preferred.

Further we saw that when used as preconditioner, either as smoother in the AMG-preconditioner or by

itself, no over-relaxation gave the best convergence results.

The incomplete Cholesky preconditioner were found to be the most effective of the ones tested in Chapter

6. However, taking into account the scalability of our implementation seen in Section 6.1.1 and noting

that our implementation is intended merely for concept studies and not suited for high-performance

computing, we conclude that the smoothed aggregation AMG is indeed a competitor to IC(0).
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7.1 Further work

Aggressive coarsening

The aggregation process introduced in [49], and implemented in this work, aims for a coarsening rate of

3 in each space dimension. When this method is used as a preconditioner it might be more efficient to

coarsen more aggressively. For this it could be interesting to investigate the aggregation process on the

square graph of A. This would enlarge the neighborhoods to include neighbors neighbors. As this would

provide a larger selection of couplings it could also give more preferable aggregates in extreme anisotropic

cases.

Near-incompressible materials

Near-incompressible materials, where ν is close to 0.5, are a well-known difficulty for both discretization

methods and linear solvers. In further work it could therefore be interesting to consider a mixed finite-

element method, such as [29], which are known to perform better in such cases. This would result in a

2-by-2 block matrix known as a saddle point problem. Appropriate preconditioners would be built on

the same block structure. For this we point to the work of Rusten and Winther [42] and Mardal and

Winther [36].

Complex grids

Throughout this thesis we have only considered relatively regular grids. The cases where acceleration of

the linear solver is most needed are typically of more complex grids and geometric structures. In order

to make use of multigrid preconditioners in such cases we must investigate its robustness with respect

to the complexity of the problem. To this end we should make use of more developed implementations,

such as PETSc’s GAMG [4], Trilinos’ ML [20] or Hypre’s BoomerAMG [52], to avoid artifacts as those

encountered in Section 6.1.1.

Linear solvers for the virtual-element method

We have during this thesis left out the additional part SK of the system matrix when using the virtual-

element method compared to finite-element. It would be of interest to investigate whether this additional

term plays a role on the properties of the linear system. In Section 2.4 we mentioned that there was

flexibility in the choice of sK(·, ·) leading to the matrix SK . As suggested in [19] this flexibility could

potentially be taken advantage of to improve the performance of linear solvers. This is discussed further

in [35].
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