
Multigrid preconditioning of the linear
elasticity equation

Magnus Jorstad

Master of Science in Physics and Mathematics

Supervisor: Knut Andreas Lie, MATH
Co-supervisor: Trond Kvamsdal, MATH

Department of Mathematical Sciences

Submission date: June 2016

Norwegian University of Science and Technology

i

Abstract

Multigrid methods are known to be very efficient linear solvers for 2nd order elliptic PDEs. In this

thesis we consider multigrid methods, and the use of such as preconditioners, when solving the linear

elasticity equation. An introduction to modeling elasticity is given and two discretization techniques;

the finite-element and the virtual-element method are presented. The conjugate gradient method is

described and a result relating the convergence rate to the condition number is established. Building

blocks of the multigrid method are presented. As a part of the study, an implmentation of the smoothed

aggregation algebraic multigrid method due to Vanek et al. has been done for elasticity. Numerical tests

on simple problems shows that the convergence rate of our implmentation has a moderate dependence on

the problem size when used as a standalone solver. When used as a preconditioner for conjugate gradient

the convergence rate is found to be practically independent of the problem size compared to standard

preconditioners.

i

ii

Sammendrag

Flergittermetoder er kjent for å være svært effektive lineære løsere for annenordens elliptiske PDEer. I

denne masteroppgaven betrakter vi flergittermetoder, og bruk av slike som prekondisjoneringer, for å løse

den lineære elastisitetsligningen. En introduksjon til modellering av elastisitet blir gitt og to forskjellige

diskretiseringsteknikker; endelig-element metoden og virituell-element metoden, blir presentert. Konju-

gate gradienters metode blir beskrevet og sammenhengen mellom konvergensraten og kondisjonsnum-

meret blir utledet. Byggesteiner for flergittermetoder blir presentert. Som en del av arbeidet har vi

implementert en algebraisk flergittermetode basert p̊a utjevna aggregater introdusert av Vanek et al.

Numeriske eksperimenter p̊a enkle test-problemer viser at konvergensraten for v̊ar implementasjon er

svakt avhengig av størrelsen p̊a problemet n̊ar metoden benyttes som en frittst̊aende iterativ løser. N̊ar

metoden benyttes for å prekondisjonere konjugate gradienters metode viser den seg å være s̊a godt som

uavhengig av problemstørrelsen sammenlignet med standard prekondisjoneringer.

ii

iii

Preface

This thesis marks the end of my Master of Science degree in Physics and Mathematics, with specializa-

tion in Industrial Mathematics, at the Norwegian University of Science and Technology. The work have

been done in connection with the Matlab Reservoir Simulation Toolbox (MRST) developed by SINTEF

Applied Mathematics. I would like to thank my advisor Professor Knut-Andreas Lie and co-advisor

Professor Trond Kvamsdal for always being available with quick answers and valuable feedback, and for

welcoming me at SINTEF Applied Mathematics’ office. I would also like to thank Halvor Møll Nilsen,

senior scientist at SINTEF Applied Mathematics for sharing MATLAB code used in this project and for

discussing topics related to this work. In addition I would like to thank Dr. Arne Morten Kvarving at

SINTEF ICT for answering some of the questions I had during my study.

Magnus Jorstad

Trondheim, June 2016

iii

Contents

Abstract . i

Sammendrag . ii

Preface . iii

1 Introduction 2

1.1 Structure of thesis . 2

1.2 Notation . 3

2 Reservoir mechanics 4

2.1 Modeling elasticity . 4

2.2 Elastic anisotropy . 5

2.3 Finite-element method . 7

2.3.1 Discretization . 9

2.3.2 Boundary conditions and rigid body modes . 11

2.4 Virtual-element method . 13

2.4.1 Kinematic decomposition of WK . 14

2.5 Matlab Reservior Simulation Toolbox . 15

3 Iterative linear solvers 16

3.1 Stationary iterative methods . 16

3.1.1 Convergence . 17

3.1.2 Jacobi and ω-Jacobi . 18

3.1.3 Gauss-Seidel . 19

3.1.4 Successive Over Relaxation . 19

3.2 Conjugate Gradient . 22

3.2.1 Convergence of conjugate gradient . 23

3.2.2 Preconditioned Conjugate Gradient . 25

3.3 Matrix based preconditioners . 26

3.3.1 Jacobi, SOR preconditioners . 27

3.3.2 Incomplete factorization . 28

4 Multigrid 31

4.1 Multigrid concepts . 31

4.1.1 Smoothing . 31

4.1.2 Coarse grid correction . 32

4.1.3 Intergrid operators . 34

4.1.4 Multigrid cycle . 36

4.2 Algebraic multigrid . 37

4.2.1 Algebraic smoothness . 37

4.2.2 Classical coarsening . 38

iv

CONTENTS 1

4.2.3 Coarsening by aggregation . 39

4.2.4 Coarsening by smoothed aggregation . 40

4.3 AMG for the elasticity equation . 42

4.3.1 Block approach for system equations . 42

4.3.2 Interpolation of rigid body modes . 43

4.4 AMG as preconditioner . 44

5 Implementation of AMG 46

5.1 Constructing neighborhoods . 46

5.2 Construction of aggregates . 47

5.3 Constructing the prolongator . 48

6 Numerical results 49

6.1 Test problems . 49

6.1.1 Problem A: Isotropic square certesian grid . 49

6.1.2 Problem B: Aspect ratio . 51

6.1.3 Problem C: Horizontal plate . 51

7 Conclusion and further work 55

7.1 Further work . 56

1

Chapter 1

Introduction

Reservoir simulations have been an active research area for decades. The search for better, more accurate

simulation methods has given rise to the construction of more involved mathematical models for describ-

ing physical situations, both in terms of structure and problem size. In particular, coupling of different

physical phenomena is an increasing trend and can improve quality of simulations drastically and give the

ability to simulate increasingly complex situations. Linear solvers are a cornerstone for most numerical

simulations. More complex mathematical models requires more of the linear solvers.

Hydraulic fracturing is a technique of enhancing flow of hydrocarbons or water in reservoirs, by inject-

ing high-pressurized fluids in wells. Simulating this, geomechanics plays an important role. Typical for

reservoir simulations is that they are performed on large models and the material properties are often

highly complex. This leads to difficulties when solving the linear systems.

In this thesis the object is to investigate iterative linear solvers applicable to systems arising in geome-

chanics. To do this we need to have knowledge about the origin of the linear system. For mechanics in

general, the finite-element method is the most widely used discretization method. When dealing with

reservoirs, the grids are often highly complex, which makes the finite-element unsuited. Other discretiza-

tion methods have been proposed, which are better suited for such grids. We mention the multi-point

stress approximation (MPSA) [38], which generalize to elasticity well established methods for reservoir

flow simulations. We consider here, instead, the recently developed virtual element method [5, 14, 19]

which has a closer resemblance to the finite-element framework. As for finite-element, this leads to a

symmetric positive definite system.

The conjugate gradient has proven to be a very efficient iterative framework for symmetric positive definite

problems. However, for complex problems, it relies on good preconditioners, or ”approximate solvers”,

in order to retain its efficiency. In the search for preconditioners that performs well for large systems,

multigrid methods are a natural choice, having a theoretical convergence rate independent of the problem

size. In order to design efficient multigrid methods for the elasticity equation we need to understand the

properties of the linear system. A goal of the work done in this thesis is to understand how these prop-

erties affect the process of solving the linear system iteratively, and in particular using multigrid methods.

1.1 Structure of thesis

In Chapter 2 we start by giving an introduction to the mathematical modeling of elasticity, where govern-

ing equations and methods of describing the elastic property of materials are presented. The finite-element

method, being the standard discretization method, will be presented, followed by the virtual-element

method, extending the properties of the finite-element method to more general grids. In Chapter 3 we

2

1.2. NOTATION 3

consider iterative linear solvers, describing the conjugate gradient method and stationary iterative meth-

ods, which will serve as important building blocks for multigrid methods, presented in Chapter 4. In

Chapter 5, a MATLAB implementation of a specific multigrid method is described. In Chapter 6 some

numerical case-studies illustrating the concepts presented in this thesis are done, before we conclude the

work in Chapter 7.

1.2 Notation

We try to follow relatively standard notation throughout the thesis. In Chapter 2, where we describe

continuous quantities in 3D space, such as position and force, we make use of a bold font for continuous

quantities with more than one cmoponents, e.g. u = (u1, u2, u3). Later, when describing discrete vectors

in higher dimensions we adapt to conventional notation, writing vectors and matrices without bold font.

Throughout the thesis d denotes the spatial dimension.

3

Chapter 2

Reservoir mechanics

2.1 Modeling elasticity

To model the deformation of a three dimensional body we introduce a displacement field u = u(x). This

is a vector field defining the displacement from the equilibrium state in each of the three directions as a

function of the position x = (x, y, z). Another fundamental quantity in modeling mechanics is the stress

field σ = σ(x). This tells us what the axial and shear stresses are at every point in the body. The stress

σ is a second order tensor, which can be represented with a total of nine elements where three correspond

to normal stresses and six to shear stresses,

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2.1)

An illustration of these nine quantities is shown in Figure 2.1

σyyσxy

σzy

σzz

σyz
σxz

σxx σyx

σzx

z

y

x

Figure 2.1: The nine quantities in the stress tensor σ on a representative volume.

Under the assumption that we have reached a static equilibrium we have that the net angular momentum

of some region in the body is zero. This implies that σij = σji, which means that σ is a symmetric tensor.

We thus write σ ∈ S = {A ∈ Md×d : A symmetric}. Another important field in deformation problems is

the strain ε. This is a dimensionless representation of the deformation at a given point. As for the stress

field the strain can be represented as a second order tensor ε ∈ S. For a given displacement u, define the

strain as the symmetric gradient of the displacement state, i.e.,

ε(u) =
1

2
(∇u+∇Tu). (2.2)

4

2.2. ELASTIC ANISOTROPY 5

In general the stress is related to the strain through a nonlinear function, but for sufficiently small

deformations, and assuming the material in question has an elastic behavior, the stress-strain relation

can be approximated well using a linear relationship. This relationship, called Hooke’s law, defines the

constitutive equation for linear elastic theory and is given by

σ(u) = Cε(u). (2.3)

Here, C is the stiffness tensor. This is the physical parameter describing the elastic behavior of the

material and is a symmetric positive definite fourth-order tensor. The structure and different values of

this tensor are discussed below. To model the mechanical behavior of a body, one needs, in addition to

the constitutive law (2.3), a set of balancing equations. This is simply found by applying Newtons law

to an arbitrary region in the body and yields

−Div(σ) = fB . (2.4)

The notation Div(σ) represents the divergence operator applied row-wise to the stress tensor. The right

hand side of (2.4) is the body force, which typically just represents gravity.

To have a well-posed model we need to specify some boundary conditions as well. These can either be a

given displacement on the boundary, which we call a pure displacement problem, some specified traction

on the boundary, which is called a pure traction problem, or a combination of those. In general any part

of the body can be given such conditions, but to have a well-posed problem certain requirements have to

be met. These are discussed further in Section 2.3.

2.2 Elastic anisotropy

The layered structure in reservoirs tends to give an anisotropic elastic behavior. This means that the

deformation under a given load depends on which direction the load is applied. This elastic behavior is

reflected in the stiffness tensor C. As C is a fourth-order tensor it is useful to introduce Voigt’s notation

which is a way of representing a symmetric tensor by reducing its order. Because of the symmetry

property of the stress and strain tensor, there are only six independent elements in each of them, three

corresponding to the axial deformation and three to shear deformation. Therefore each of these fields

can be represented as a vector with six elements. Using the conventional ordering of the six elements,

the stress and strain vectors are defined as(
σ1, σ2, σ3, σ4, σ5, σ6

)
:=
(
σxx, σyy, σzz, σyz, σxz, σxy

)
,(

ε1, ε2, ε3, ε4, ε5, ε6

)
:=
(
εxx, εyy, εzz, 2εyz, 2εxz, 2εxy

)
. (2.5)

Note that the new shear strains are defined as the sum of the two symmetric components, which appears

as a factor of two in (2.5). The reason for this is to preserve the scalar invariance, i.e., σ · ε in this new

notation should equal the product using the matrix notation (2.1). Likewise, the stiffness tensor C can

be represented as a 6× 6 symmetric matrix. We then rewrite Hooke’s law (2.3) as

σ1

σ2

σ3

σ4

σ5

σ6

=

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

ε1

ε2

ε3

ε4

ε5

ε6

. (2.6)

5

2.2. ELASTIC ANISOTROPY 6

For a 3D material there are different degrees of anisotropy. These are determined by the existence of

material symmetry planes and rotation axes. For a completely isotropic material where no symmetries

are present the stiffness tensor contain 21 independent values as in (2.6).

On the other end of the scale, for a completely isotropic material, the stiffness tensor can be represented

with only two independent quantities. For this case the stiffness tensor can be written

C =
E

(1 + ν)(1− 2ν)

1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0

(1− 2ν)/2 0 0

sym (1− 2ν)/2 0

(1− 2ν)/2

, (2.7)

where E is Young’s modulus and is defined as the ratio of the stress along an axis to the strain along

the same axis. Poisson’s ratio ν relates the stress along one axis to the strain along the two other axes.

For example under compression in one direction most materials tends to expand in the two other. This

effect is characterized by a positive ν. For a completely incompressible material Poisson’s ratio is 0.5

which is the larges it can be. Typical values of ν for reservoir rock are in the range 0.2-0.45, [22]. For

the isotropic material Hooke’s law (2.3) can be written in a compact form, using the tensor notation of

stress and strain, as

σ = 2µε+ λtr(ε)I, (2.8)

where tr(ε) denotes the trace of ε. The material parameters µ and λ are known as the Lamé constants

and represent resistance to shear deformation and compression, respectively. These constants relate to

Young’s modulus and Poisson’s ratio as

µ =
E

2(1 + ν)
(2.9)

and

λ =
Eν

(1 + ν)(1− 2ν)
. (2.10)

In many cases there are three orthogonal symmetry planes, which without loss of generality can be

assumed to be the coordinate planes. This essentially means that under shear strain no axial stresses

are induced, and that the three shear stresses are decoupled from each other. Such a material is called

orthotropic and will have a stiffness tensor of the following structure in Voigt’s notation.

Cort =

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66

(2.11)

For the sedimentary rocks that often are found in a reservoir another simpler model can be looked at

which describes a layered structure. Consider a volume built up of multiple thin layers, each consisting

of an isotropic material, for example a grid cell much larger then the layer thickness. To look at how

this volume behaves it is convenient to make a homogenized model where the material is considered

homogeneous inside the volume with constant material properties. Such a process is called upscaling

and is an important aspect of reservoir mechanics [11]. Under this homogenization the isotropy in each

layer will, when the layers are different, sum up to an anisotropic behavior for the whole volume. An

illustration of this is shown in Figure 2.2 where a cube consisting of two different isotropic materials in

layers, undergoes compression in two different directions due to a pressure of equal magnitude. When the

6

2.3. FINITE-ELEMENT METHOD 7

pressure is applied to the sides parallel with the layers (in the middle of Figure 2.2), most deformation

occurs in the weaker layers while the stiffer layers are not affected as much. When the pressure is applied

in the other direction (to the right in Figure 2.2), the weaker material is not free to deform as a single

isotropic material, but is restricted by the stiffer layers (assuming a no-sliding condition at the layer

interfaces). Looking at the cube as a whole one can see that the total strain as a response of the pressure

is larger when it is applied to the sides parallel with the layers. This indicates that the homogenized

cube should have the anisotropic property C33 � C11. Because of the isotropy in each layer the elastic

behavior is also invariant under rotation around the axis perpendicular to the layers which means that

C11 = C22, C13 = C23 and C44 = C55. Such a material is called transversely isotropic. This is a subgroup

of the orthotropic materials so the stiffness tensor inherits the structure in (2.11), and can now be written

as

Ctri =

C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

sym C44 0

C66

. (2.12)

Figure 2.2: A layered material where the layers are parallel and made of two different isotropic
materials, under applied stress in different directions. The color indicates different values of Young’s
modulus, where one is ten times the other. To the left no forces or displacement boundary conditions
are applied. In the middle a pressure p is applied at the top and bottom, while to the right p is applied
on the left and right side. Figure produced using MRST [17].

2.3 Finite-element method

The most conventional discretization technique for the elasticity equation is the finite-element method.

This is widely used and has a large, mature literature built around it. A basic concept of the finite-

element method is that the governing equation is looked at in a weak sense. This means that instead of

only looking for solutions that explicitly satisfy the given equations, we look for solutions that satisfy the

equation only with respect to some given test functions, assuming a proper pairing of two functions can

be defined. There are many types of weak formulations of the elasticity problem, for a survey see [18].

We consider here the primal formulation.

For the elasticity problem we are essentially looking at three different fields of unknowns; the displace-

ment u, the stress σ and the strain ε. The displacement is linked to the strain through the kinematic

equation (2.2) and strain to stress through the constitutive equation (2.3). The problem statement is

closed using the balancing equation (2.4) and applying displacement boundary conditions and traction

boundary conditions.

To be able to formulate the problem weakly it is necessary to define the appropriate functions and spaces.

Let us start by considering an linearly elastic body occupying the closed and bounded region Ω ∈ Rd,

7

2.3. FINITE-ELEMENT METHOD 8

whose boundary is denoted ∂Ω. Inside Ω, the body is subject to some body forces fB ∈ L2(Ω,Rd). Let

us for simplicity only consider a pure displacement problem with zero boundary condition, i.e., u = 0 on

∂Ω. For a weak formulation of this problem we consider functions in the first Sobolev space satisfying

the zero boundary condition, denoted by H1
0 (Ω,Rd)) = {u ∈ H1(Ω,Rd) : u = 0 on ∂Ω}.

For the primal formulation the constitutive equation (2.3) is considered as a strong relation, and inserted

into the balancing equation (2.4), eliminating σ as an unknown. The problem can then be compactly

written

−Div Cε(u) = fB in Ω,

u = 0 on ∂Ω. (2.13)

Using Riesz Representation Theorem [8] this can be uniquely written

−
ˆ

Ω

Div Cε(u) · vdx =

ˆ
Ω

fB · vdx, (2.14)

for any test-function v ∈ H1
0 (Ω,Rd). Applying Green’s first identity for the integral on the left hand side

we get ˆ
Ω

Cε(u) : ε(v)dx =

ˆ
Ω

fB · vdx+

ˆ
∂Ω

(Cε(u)n) · vdx (2.15)

where Cε : ε = Σni,j=1(Cε)ijεij and n is the outward normal of ∂Ω. As we assume a pure displacement

problem and consider only test functions in H1
0 (Ω,Rd) the boundary integral on the right hand side

disappears. To write the problem more compactly we introduce the notation of the symmetric bilinear

form

a(u,v) =

ˆ
Ω

Cε(u) : ε(u)dx, (2.16)

which is defined for any two elements in H1(Ω,Rd). We can then write the following primal formulation

of the linear elasticity equation: Find u ∈ H1
0 (Ω,Rd) such that

a(u,v) = 〈fB ,v〉, ∀ v ∈ H1
0 (Ω,Rd), (2.17)

where 〈·, ·〉 is the L2 - inner product. The existence and uniqueness of (2.17) is established in [3].

Another approach that is commonly used in mechanics is based on the principle of virtual work [51].

Here the solution is found as the minimizer of the total potential energy of the system. The strain energy

density function is given as

W (u) =
1

2
σ(u) : ε(u) =

1

2
Cε(u) : ε(u). (2.18)

The total potential energy is found by integrating W (u) over the whole domain Ω and subtract the work

done by the applied force. The solution of (2.13) is found as the minimizer of

min
u∈H1

0 (Ω,Rd)

1

2

ˆ
Ω

Cε(u) : ε(u)dx−
ˆ

Ω

fBudx. (2.19)

Under the assumption that C is symmetric positive definite the two formulations above are equivalent

because the necessary and sufficient condition for the minimizer of (2.19) is exactly that (2.17) must hold

for every test function v ∈ H1
0 (Ω,Rd).

8

2.3. FINITE-ELEMENT METHOD 9

2.3.1 Discretization

Let us now find a finite-element approximation of (2.17). To do this we need to find a finite dimensional

approximation of H1(Ω,Rd). Let us start by constructing a grid, or a mesh, by defining a partition

Th of the domain Ω into non-overlapping elements of size h, i.e., for any element K ∈ Th we have

maxx,y∈K ‖x−y‖2 ≤ h. Coners of elements will be referred to as nodes and we denote the total number

of nodes in Th by n. Let us here use a standard finite-element discretization and assume that all elements

are simplexes, as in Figure 2.3.

Figure 2.3: Typical finite-element mesh on the unit square. Generated using [40].

Now we can define a set of basis functions on each element that is supposed to approximate the restriction

of H1(Ω,Rd) to the element. The simplest and most widely used are the continuous linear nodal basis

functions, which on simplexes are uniquely defined by the kronecker delta property on each node nj of

the element,

φi(nj) = δij , i, j = 1, ..., (d+ 1). (2.20)

In 2D this gives the three basis functions in Figure 2.4. This basis constitutes a first order approximation

Figure 2.4: Linear nodal basis functions on a triangular element.

of H1(Ω,Rd), which means that the solution uh found in this space will have an error that is O(h).

A powerful feature of the finite-element method is that one can, in general, increase the approximation

order to an arbitrary degree by simply choosing basis elements as polynomials up to the desired degree.

One can notice that the function φi is written as a scalar function, and not a vector. The general-

ization to our case where we model a vectorfield is straight-forward, by simply using the same scalar

function in each space-variable. On simplexes, the scalar function φi is equivalent with the uniquely

defined barycentric coordinate of node i in an element. Such coordinates can be useful in constructing

different finite dimensional spaces and will be discussed more in the section on the virtual-element method.

9

2.3. FINITE-ELEMENT METHOD 10

By requiring continuity across all edges, or faces in 3D, we end up with one degree of freedom per node

in the global setting. That is, a global basis function is constructed as the piecewise linear composition

of each element basis function that has the value 1 on a given node. The global basis function φi has

support only in the elements that has node i on its boundary. As mentioned above, we are modeling a

d-dimensional vector field, which means that we get a total of N = nd basis functions, where n is the

number of nodes of Th. We can now approximate H1(Ω,Rd) by the finite dimensional vector space

V = span{ϕ1,ϕ2, ...,ϕN}. (2.21)

Having properly defined this space the discrete version of the continuous problem (2.17) can be stated

as: Find uh ∈ V such that

a(uh,v) = 〈fB ,v〉, ∀ v ∈ V, (2.22)

which is called the Galerkin approximation of (2.17). For this finite dimensional problem we can write

the solution uh as a linear combination of the basis elements,

uh =

N∑
i=1

χiϕi, (2.23)

where the coefficients χi will be referred to as the degrees of freedom. As the basis functions span the

whole space it is clear that we need only consider each basis element as test functions. Using the linearity

of the bilinear form a(·, ·) we can write (2.22) as

N∑
i=1

χia(ϕi,ϕj) = 〈fB ,ϕj〉, ∀ j = 1, ..., N. (2.24)

This notation clearly motivates a matrix-vector equation. We write the linear system resulting from the

primal finite-element discretization of the elasticity equation as

Ax = F, (2.25)

where the system matrix and right hand side are given by

Aij = a(ϕi,ϕj), Fj = 〈fB ,ϕj〉 (2.26)

and x ∈ RN is a vector containing the degrees of freedom χi, i = 1, ..., N .

To compute the matrix coefficients we can take advantage of the relatively small support of each basis

function. In practice it is common to iterate through all the elements and compute element contributions

to A and F by considering only i and j corresponding to nodes of the current element. The element

contributions are computed as

AKij =

ˆ
K

Cε(ϕi) : ε(ϕj)dx and FKj =

ˆ
K

fB ·ϕjdx, (2.27)

where i and j are local indexes of the nodes on element K. For each element K one can define a mapping

TK that assigns to each local degree of freedom a global number. While this mapping in practice can be

done by direct assignment, we can think of it as a highly sparse, binary matrix whose rows correspond

to local degrees of freedom and columns to global. One can then assemble the global matrix element by

element as

A ← A+ TTKA
KTK (2.28)

10

2.3. FINITE-ELEMENT METHOD 11

and the global force vector as

F ← F + TTKF
K . (2.29)

In elasticity it is common to use an interleaved ordering of the unknowns, meaning the degree of freedom

representing the x-displacement at node i is followed by the degrees of freedom representing the y- and

z-displacement at the same node. This results in a natural block structure in A where the size of each

block equals the spatial dimension. An example of the sparsity pattern of a global matrix in the case of

a 2D triangular grid is shown in Figure 2.5, where the 2-by-2 blocks are seen.

nz = 3216

Figure 2.5: Example of sparsity pattern of the system matrix in (2.25). The trianglular grid in
Figure 2.3 is used.

One can notice that when using linear basis functions the integrand is constant in the expression for AK

in (2.27). Hence AK can be computed exactly using only geometric information about the element K.

To compute the force vector FK a suitable quadrature rule must be used to numerically integrate, unless

the body force is constant.

2.3.2 Boundary conditions and rigid body modes

In order to find a unique solution to (2.25) we need F to be in the range of A, or better yet, A should be

nonsingular. If A is positive definite then this is satisfied for any F ∈ RN . To investigate this we consider

the bilinear form a(·, ·), which is defined in (2.16). The stiffness tensor C is symmetric positive definite.

This means that a(·, ·) is symmetric in its arguments and for any non-zero matrix τ the L2-inner product

〈Cτ , τ 〉 is positive. The symmetric gradient operator ε(·), however, has a non-empty kernel. From this

it follows that the bilinear form a(·, ·) is positive semidefinite, and not strictly positive definite. Let us

take a closer look at the kernel of a(·, ·), which here is defined as

ker(a) = {v ∈ H1(Ω,Rd) : a(v,v) = 0}. (2.30)

Because of the definiteness of C we can conclude that ker(a) = ker(ε). It is clear that constant functions,

whose derivative is zero, are in ker(a). In our case these constant kernel elements correspond to trans-

lation modes, which indeed have zero strain energy associated with them. The number of independent

translation modes equals the spatial dimension and can be represented by the canonical basis

t1(x) =

1

0

0

 , t2(x) =

0

1

0

 , t3(x) =

0

0

1

 . (2.31)

11

2.3. FINITE-ELEMENT METHOD 12

Because of the symmetric definition of ε, see (2.2), there are in addition to these constant functions some

linear functions that result in zero strain. These functions correspond to rotational modes. In 3D these

modes are given as

r1(x) =

 0

z

−y

 , r2(x) =

−z0
x

 , r3(x) =

 y

−x
0

 , (2.32)

corresponding to rotation around the x- y- and z-axis respectively. Figure 2.6 shows the three rigid

body modes in 2D. Notice that while the rotational modes above describe rotation around the coordinate

Figure 2.6: Three rigid body modes in 2D.

axes, one can describe rotation around any axis as a linear combination of t1, t2, t3 and r1, r2, r3. It is

straight-forward to show that the above set of 6 rigid body modes span the kernel of ε, and hence the

kernel of a(·, ·). We define the space of rigid body modes

R := ker(a) = span{t1, t2, t3, r1, r2, r3}. (2.33)

Having investigated the kernel of a(·, ·), let us return to the question of whether (2.25) has a unique

solution. From a physical point of view one can argue that some part of the body has to be locked

to prevent rigid body motions. In the derivation above a zero displacement at all boundary nodes is

assumed, which means we require the solution to be in H1
0 ⊂ H1. Considering only functions in H1

0 one

can see that all the kernel elements vanish, i.e.,

R ∩ H1
0 = ∅, (2.34)

and the body is no longer free to float. This means that in the continuous formulation (2.17) the solution

is unique. One can notice, however, that in the Galerkin approximation (2.22) we approximate H1

and not just H1
0 by including the degrees of freedom at the boundary. Although this larger space is

not necessary in our zero boundary displacement case, it is a more general way that allows for other

boundary conditions. This gives us a singular system where the eigenvectors with zero eigenvalue are

those corresponding to the six rigid body modes above.

The boundary conditions for this system are yet to be imposed. One way to do this is to define a logical

map or set of indexes that indicates which of the degrees of freedom that correspond to Dirichlet nodes.

Let for example D be the part of the identity matrix that is one only at those diagonal entries that

correspond to Dirichlet degrees of freedom. Let D̃ be the rest of the identity matrix so that we get the

partition I = D+ D̃. Using this partition we can separate our vector into an unknown and a known part,

x = Dx+ D̃x (2.35)

The known terms can then be moved to the right hand side as

ADx = F −AD̃x. (2.36)

12

2.4. VIRTUAL-ELEMENT METHOD 13

This system is generally over-determined as it contains more equations than unknowns. We remove all

the equations that correspond to the known values by left-multiplying the equation by D̃.

D̃AD̃x = D̃F − D̃ADx. (2.37)

nz = 3216

(a) Full system A including
Dirichlet degrees of freedom

nz = 2092

(b) Collapsed system con-
taining only equations be-
tween unknowns

nz = 2178

(c) Reduced system D̃AD̃ with
added diagonal.

Figure 2.7

We can now collapse the matrix, see Figure 2.7b, by discarding the zero rows and columns and obtain a

symmetric positive definite system that is invertible. It can, however, be useful to keep the uncollapsed

system when designing preconditioners, as will be discussed in section 4.2. We can then instead implicitly

set the dirichlet degrees of freedom by adding a diagonal element to the uncollapsed D̃AD̃ and thus recover

a nonsingular system as in 2.7c.

2.4 Virtual-element method

As mentioned above the finite-element method has the nice property of polynomial accuracy on simplexes.

This means that for a higher accuracy, one simply needs to choose a higher order of the polynomial shape

functions. In many practical applications, however, it is desirable to use a grid not consisting of simplexes,

but of general polyhedral elements. For such an element it is not possible to define linear basis functions

that are continuous and satisfy the Kronecker delta property on all vertices of the element, as we did

for the finite-element method above. The recently developed virtual-element method [5, 14, 19] can be

viewed as a modification of the finite-element method to extend this nice property to general polyhedra

by adding to the finite-element function space some additional functions that satisfy certain properties.

For simplexes the two methods coincide.

We use here the same continuous framework as we did for the finite-element method, i.e., we seek a

solution u ∈ H1
0 (Ω,Rd) such that

a(u,v) = 〈fB · v〉, ∀ v ∈ H1
0 (Ω,Rd). (2.38)

To introduce a discretization of (2.38), we start by defining a partition Th of Ω into general polyhedra.

On each element K ∈ Th we define a finite dimensional element function space WK . Let nK be the

number of vertices on K.

We now want to find a set of basis functions for WK that are continuous across element boundaries

and satisfy the Kronecker delta property on each vertex of K. As mentioned in the previous section

13

2.4. VIRTUAL-ELEMENT METHOD 14

the continuous linear nodal basis functions on simplexes are equivalent to the uniquely defined linear

barycentric coordinates. On polyhedra such linear coordinates does not exist. By allowing the coordinates

to be non-linear at the interior of K we can construct a set of coordinates φ1, ..., φnK
that satisfy the

Kronecker delta property and are linear on ∂K. This non-linearity opens for a variety of different choices

to construct such coordinates [31, 26, 6, 45]. To keep the presentation simple we consider only the 2D

case here. For an extension to 3D, see [19].

A simple method to construct φi in 2D is to use harmonic lifting. Then the barycentric coordinate φi for

node i is determined as the solution of the Laplace equation with the Dirichlet boundary condition that

it should equal to one at node i, decay linearly on edges incident to vertex i and vanish on the rest of the

element boundary ∂K. Using these coordinates as nodal basis functions for both x- and y-displacement

we get a set of basis functions that uniquely determines the deformation at the interior of K. Also, since

φi is linear at ∂K we have continuity across element boundaries in the global function space W which

makes it conforming. Another important observation is that if we are to represent a linear function by

these nodal basis functions, the values at each node would lie in the same plane, i.e., for some a, b ∈ Rd,

uh(vi) = a · vi + b, i = 1, ..., nK . (2.39)

Then the value at the interior of K would also lie in this plane,

uh(x) = a · x+ b, x ∈ K. (2.40)

This means that if the true solution of (2.38) describes a linear deformation state then it is contained in

W and we will get an exact approximation.

2.4.1 Kinematic decomposition of WK

As for the finite-element method, the bilinear form a(·, ·) is divided into element contributions aK(·, ·).
To define a discrete verison of aK(·, ·) that is exact for linear deformation states, the virtual-element

space WK is decomposed into three kinematically different spaces. As discussed above, the space of rigid

body motions R contains constant deformation functions representing translation and linear deformation

functions representing rotation. Hence, for a deformation state in this space the material has no strain

energy. The space of constant strain modes C consists of linear deformation functions representing

constant axial and shear strains, i.e., all deformations u ∈ WK that has a constant symmetric gradient

ε(u). Thus, for a non-trivial deformation state in C, the material stores potential strain energy. The

last space H contains the higher-order polynomials and non-polynomials. The three spaces are each

associated with a projection map

πR :WK → R πC :WK → C πH :WK → H. (2.41)

Given this kinematic decomposition of the function space, a discrete version of the bilinear form aK(·, ·)
can be defined by its action on the different subspaces.

aKh (u,v) = aK(πCu, πCv) + sK(πHu, πHv). (2.42)

The first term on the right-hand side in (2.42) accounts for the energy due to the constant strain modes.

This can be computed exactly using only geometric information of the element. From the definition of

a(·, ·) in (2.16) and the constitutive law we get

aK(πCu, πCv) =

ˆ
K

Cε (πCu) : ε (πCv) . (2.43)

14

2.5. MATLAB RESERVIOR SIMULATION TOOLBOX 15

By definition of the projection map πC , the integrand on the right hand side is constant. Thus, using

Voigt’s notation we can compute this as

aK(πCu, πCv) = |K|cTuCcv, (2.44)

where |K| is the volume of the element and cu and cv are the constant strains associated with the

projection of u and v, respectively, into the space C.
The difference from finite-element, when constructing the system matrix A is the second term in (2.42),

sK(·, ·). This is a prescribed symmetric positive definite bilinear form that contains the energy associated

with the higher order and non-polynomial part of u and v. As explained in [19] there is flexibility in

the particular choice of sK(·, ·) and a simple weighted nodal evaluation is sufficient in many cases. When

constructing a system matrix, the bilinear form sK(·, ·) will result in an addition of a symmetric positive

definite matrix, i.e., the elemental system matrix is formed

(
AK
)
ij

=aK(πCϕi, πCϕj) + sK(πHϕi, πHϕj) (2.45)

=
(
AKC
)
ij

+
(
SK
)
ij
, (2.46)

where AKC and SK are two symmetric positive definite matrices.

2.5 Matlab Reservior Simulation Toolbox

Matlab Reservoir Simulation Toolbox (MRST) [34, 17, 33] is an open source toolbox for reservoir mod-

eling and simulation, developed at SINTEF ICT, department of Applied Mathematics. It contains a

large set of routines for grid processing, numerical discretization and visualization. It is intended for easy

prototyping and

The grid structure in MRST has a general storage format, giving it the ability to handle irregular grids

consisting of polyhedral cells. Physical properties, such as the material stiffness tensor C, can be assigned

to each grid cell.

A virtual-element method code for numerical discretization of the elasticity equation have been imple-

mented by researchers at SINTEF ICT, as part of a geomechanics module, giving a method of modeling

geomechanics on the irregular grids that are often used for reservoir simulations. For most of the numer-

ical work presented here, this implementation of the virtual-element method and the MRST framework

in general, have been used.

15

Chapter 3

Iterative linear solvers

Here, we turn our attention to the problem of solving the linear system that resulted from the discretiza-

tions above. We want to solve the system

Ax = b, (3.1)

where A is a symmetric positive definite matrix with n rows. Let x∗ denote the exact solution.

There are generally two ways of attacking this problem. Either by a direct method, which results in

the exact solution, or by an iterative method which gives an approximate solution. For small problems,

say less than 104 unknowns, a direct method is undoubtedly the method of choice. For larger systems

such a method can quickly become useless. Direct methods are essentially ways of performing Gaussian

elimination, which are built on LU -factorization techniques. The work needed depends on how the ma-

trix is stored. If it is stored as a general dense matrix a complete LU -factorization would require O(n3)

operations. If the matrix is sparse enough it is better to represent it as a sparse matrix, i.e., storing only

nonzero values and the corresponding row and column indices. Taking advantage of this representation

other more efficient methods have been developed. For example, matrices from regular FEM meshes can

be solved with nested dissection [21] which is O(n3/2) in 2D and O(n2) in 3D. These complexities are

proven to be a lower bound for performing Gaussian elimination on such matrices [25].

With iterative methods we sacrifice some of the precision in order to come up with a solution faster.

There are a variety of different iterative methods, some for general problems while other are optimized

for specific problems. When the matrix is symmetric and positive definite, as we assume in the present

work, very good alternatives to Gaussian elimination exist.

The discussion below will start with classical iterative methods, also called stationary methods. These are

relatively simple methods that by themselves are not very efficient. They will however serve as important

building blocks for more efficient solvers. In particular the multigrid method is built from the stationary

methods. This can form a very efficient solver when combined with a Krylov subspace method, such as

conjugate gradient. All of these concepts will be discussed below.

3.1 Stationary iterative methods

Classical iterative methods [15, 43] are constructed by partitioning A into different parts

A = M −N, (3.2)

16

3.1. STATIONARY ITERATIVE METHODS 17

where the parts satisfy specific requirements. First of all M has to be nonsingular. Secondly M−1N has

to be a contraction mapping. Using this partition we can then set up the recursion scheme

Mxk+1 = Nxk + b, (3.3)

noting that the solution of the original problem will also be a solution of this equation. The matrix M is

called a preconditioner and is designed to approximate A and at the same time be inexpensive to invert.

Choosing a starting point x0, one can iterate towards the solution using

xk+1 = M−1(N)xk +M−1b (3.4)

until a satisfactory error threshold is reached. From this it is evident that M need not be explicitly

given. Instead only the inverse can be provided. Classical iterative methods are constructed by choosing

different partitions in (3.2). The most common method uses the partition

A = D − L− U, (3.5)

where D is the diagonal part of A, and L and U are the negative of the strictly lower and strictly upper

part of A, respectively.

3.1.1 Convergence

The equation (3.4) can be written in the form

xk+1 = Gxk + f, (3.6)

where G = M−1N is the iteration matrix and f = M−1b a constant vector. Let x∗ be the solution of

(3.1). Then x∗ will solve the equation

x∗ = Gx∗ + f. (3.7)

By subtracting (3.7) from (3.6) we get

xk+1 − x∗ = G(xk − x∗). (3.8)

Introducing the error at a given step ek = xk − x∗ we get an expression for the error propagation,

ek = Gke0. (3.9)

Convergence of an iterative method can be defined as

lim
k→∞

‖ek‖ = 0. (3.10)

Form some norm ‖·‖ on Rn. The Euclidean norm is used here for a simple relation to the eigen-spectrum,

but because of norm equivalence, any norm on Rn could be used. Using (3.9) and the sub-multiplicative

property of an induced matrix norm we get that

‖ek‖ = ‖Gke0‖ ≤ ‖Gk‖‖e0‖ ≤ ‖G‖k‖e0‖. (3.11)

As the matrix norm induced by the Euclidean norm equals the spectral radius ρ(G), we have

‖ek‖ ≤ ρ(G)k‖e0‖. (3.12)

17

3.1. STATIONARY ITERATIVE METHODS 18

This eigenvalue dependence motivates the classical convergence theorem [43] saying that (3.6) converges

for any f and any x0 if, and only if ρ(G) < 1. Once the iterative method is proved to converge, we want

to say something about how fast it converges. From (3.12) we can also conclude that the spectral radius

is an upper bound for the rate of convergence, i.e.,

‖ek+1‖
‖ek‖

≤ ρ(G). (3.13)

For each iteration the component of the error corresponding to the largest eigenvalue will become more

dominant. In the limit k → ∞, the error reduction will be exactly this eigenvalue. We therefore have

that the asymptotic convergence rate

s := lim
k→∞

‖ek+1‖
‖ek‖

= ρ(G). (3.14)

For estimating the convergence rate from a set iteratates we can use the average convergence rate using

s =

(
‖ek‖
‖e0‖

) 1
k

. (3.15)

3.1.2 Jacobi and ω-Jacobi

The simplest, Jacobi’s method, uses only the diagonal part D as preconditioner, which inverts trivially.

The recursion scheme for Jacobi’s method will be

xn+1 = D−1(L+ U)xn +D−1b. (3.16)

Hence the iteration matrix for Jacobi’s method is

GJ = D−1(L+ U) = I −D−1A. (3.17)

The convergence property of this method is generally slow as some eigenvalues tend to be close to either

1 or -1. A sufficient condition for the convergence for the Jacobi method is diagonal dominance of A

[30]. The discretizations for the elasticity equation presented above result in symmetric positive definite

matrices, not necessarily diagonally dominant. A modification, the weighted Jacobi method or simply

ω-Jacobi, changes the iteration matrix to

GωJ = I − ωD−1A, (3.18)

where 0 < ω < 1. Doing this modifies all eigenvalues to become closer to 1. For Poisson’s problem the

eigenmodes can be analytically found, and correspond to different frequencies [10]. The largest eigenvalues

of A turns out to be those of high frequencies. These are the ones that potentially gives unstable iterations

as they can result in eigenvalue of GωJ below -1. By choosing ω < 0 these eigenvalues can be forced into

the interval (−1, 1), resulting in convergence. This does not come without cost, however. The eigenvalues

at the other end of the spectrum, corresponding to low frequencies, will become even closer to one for

ω < 1, which means that these components of the error are reduced slower. In Figure 3.1 eigenvalues

for GωJ are plotted for an isotropic cartesian VEM discretization of the 2D elasticity equation. As seen,

the pure Jacobi method is not convergent for this particular discretization, as GJ has eigenvalues below

-1. Stability is achieved using ω < 1 to damp all eigenvalues so that ρ(ωD−1A) < 2. For this particular

problem we can see that using ω < 0.9 all eigenvalues of GωJ are in the interval (−1, 1). In Figure 3.2

the convergence histories for the same problem are shown. If ω gets too small the convergence rate will

suffer as λmax gets closer to 1, which can be seen in Figure 3.2. If ω-Jacobi is considered as a standalone

solver one would choose ω such that λmin = −λmax to get a spectral radius as small as possible.

18

3.1. STATIONARY ITERATIVE METHODS 19

Figure 3.1: Eigenvalue distribution for the iteration matrix in the ω-Jacobi method. The dashed
black lines marks the region of stability. The elasticity equation is discretized using the virtual-element
method on a 10 × 10 grid.

Figure 3.2: Convergence history for the ω-Jacobi method applied to the system from Figure 3.1.

3.1.3 Gauss-Seidel

The Gauss-Seidel iteration uses the lower and diagonal parts as preconditioner, giving the scheme

xn+1 = (D − L)−1Uxn + (D − L)−1b, (3.19)

which gives the iteration matrix

GGS = (D − L)−1U. (3.20)

Note that the preconditioner M = D−L is triangular and inverts easily. In Jacobi’s method all the vector

elements are updated simultaneously using only values at the previous step. The Gauss-Seidel iteration

updates one element at the time, starting with the first, taking into account the already updated elements

at the current step. Similarly one gets the backward Gauss-Seidel iteration by letting M = D − U . One

can also use a combination of the forward and backward iteration by sequentially taking a forward and

backward step. This combination is often called the symmetric Gauss-Seidel (SGS) method.

3.1.4 Successive Over Relaxation

The Gauss-Seidel method is guaranteed to converge for all symmetric positive definite matrices, in contrast

to Jacobi for which diagonal dominance is a sufficient condition. As we only consider symmetric positive

definite matrices, this means that in stead of using a stabilizing parameter ω < 1 as for the Jacobi

method, we can use an over-relaxation parameter ω > 1 to accelerate the convergence. We now form the

19

3.1. STATIONARY ITERATIVE METHODS 20

partition

ωA = (D − ωL)− (ωU + (1− ω)D). (3.21)

From this the Successive Over Relaxation (SOR) method is constructed as

xn+1 = (D − ωL)−1[ωU + (1− ω)D]xn + (D − ωL)−1ωb, (3.22)

which results in the iteration matrix

GSOR = I −
(
D

ω
− L

)−1

A. (3.23)

Note that when ω = 1 this reduces to the Gauss-Seidel iteration.

In Figure 3.3 the eigenvalue distribution of GSOR is shown for different values of ω on a 2D isotropic

linear elasticity problem. The pure Gauss-Seidel method, i.e., ω = 1, has a very uneven distribution of

eigenvalues, and a large spectral radius. By increasing ω towards 2 the eigenvalues become more uniform

in terms of moduli, which means that the different eigenmodes are reduced at a more even rate. As

Figure 3.3 shows ω = 1.8 gives a significant reduction in spectral radius compared to ω = 1. In Figure

Figure 3.3: Spectrum of the iteration matrix GSOR for different over-relaxation parameters ω. The
solid lines marks the spectral radii. A 20 × 20 grid us used.

3.4 the number of iterations needed to reduce the residual norm by a factor of 10−4, is shown for different

values of ω. A minimum appears to be around ω = 1.75.

Similarly as for SGS, the Symmetric Successive Over Relaxation (SSOR) method consist of sequentially

taking a forward and backward step of SOR. By taking half-steps one can obtain a single recurrence

scheme as in (3.4). The SSOR iteration matrix reads

GSSOR = I − 2− ω
ω

[(
D

ω
− U

)−1

D

(
D

ω
− L

)−1
]
A. (3.24)

Figure 3.5 shows the convergence of the stationary iterative methods described above applied to an

elasticity problem on a 60 × 60 grid. The value ω = 0.8 for the ω-Jacobi method has been used as

20

3.1. STATIONARY ITERATIVE METHODS 21

Figure 3.4: Number of iterations needed to reduce the residual norm by 10−4 for the SOR method
with different values of ω. A 20 × 20 grid us used.

Figure 3.5: Convergence histories for stationary iterative methods applied to an isotropic 2D elasticity
problem on a 60 × 60 grid. A value ω = 0.8 is used for ω-Jacobi while the value ω = 1.75 is used for
SOR and SSOR.

values closer to 1 were unstable and smaller values gave slower convergence. As can be seen the average

convergence rate, s = 0.999 for ω-Jacobi and s = 0.997 for Gauss-Seidel, is relatively slow. A significant

improvement is seen using over-relaxation, giving s = 0.979 for SOR and s = 0.966 for SSOR.

21

3.2. CONJUGATE GRADIENT 22

3.2 Conjugate Gradient

For symmetric positive definite linear systems the conjugate gradient method [37, 44, 16, 32] is one of the

most popular iterative solution algorithms. It is a so-called Krylov subspace method. A Krylov subspace

of k-th order generated by A and b is defined as

Kk(A, b) = span{b, Ab, ..., Ak−1b}. (3.25)

A solution method of this class searches for a solution in this vector space. From the Cayley-Hamilton

theorem [27] one can conclude that if A is an n×n invertible matrix then the n-th order Krylov subspace

Kn equals the whole Rn. This means that a solution found in Kn will be the exact solution of the original

problem, hence the method can be considered a direct solver. This is indeed what Hestenes and Steifel

[24] proposed when they first introduced the conjugate gradient method.

The linear equation (3.1) can be stated as the following minimization problem:

minφ(x) :=
1

2
xTAx− bTx, (3.26)

As A is symmetric positive definite, φ(x) is a convex function. This means that the unique minimum of

(3.26) is found where

∇φ(x) = Ax− b = 0, (3.27)

which shows that (3.26) and (3.1) are equivalent. For a given xk, define the residual

rk = Axk − b. (3.28)

The conjugate gradient method finds xk as the minimizer of φ(x) over the space {x0 +Kk(A, r0)}, where

x0 is the initial iterate. At each step, a search direction pk ∈ {x0 + Kk(A, r0)} is found which is A-

conjugate with all the previous search directions, meaning pTkApi = 0 for i = 1, ..., k − 1. By finding the

one-dimensional minimizer along this search direction, one gets, at each step the component of the final

solution along the vector pk.

The initial search direction is simply the negative of the initial residual, i.e., the negative of the

gradient.

Given an iterate xk and the search direction pk one can find the one-dimensional minimizer, i.e., the next

iterate as

xk+1 = xk + αkpk, (3.29)

where

αk =
rTk rk
pTkApk

. (3.30)

The problem is now to find the next search direction. An important observation is that the new residual

rk+1 must be linearly independent with all the previous search directions. This can then be used, together

with the previous search direction, to construct the next direction as

pk+1 = −rk+1 + βk+1pk, (3.31)

where

βk+1 =
rTk+1rk+1

rTk rk
. (3.32)

Derivation of the scalars αk and βk can be found in [37]. The resulting procedure is shown in Algorithm

1.

22

3.2. CONJUGATE GRADIENT 23

Algorithm 1 Conjugate gradient

Given x0

Set r0 = Ax0 − b, p0 = −r0, k = 0

1 while rk 6= 0 do

2 αk =
rTk rk
pTkApk

3 xk+1 = xk + αkpk

4 rk+1 = rk + αApk

5 βk+1 =
rTk+1rk+1

rTk rk

6 pk+1 = −rk+1 + βk+1pk

7 k = k + 1

8 end while

Even though the conjugate gradient method finds the exact solution in at most n iterations it is more

commonly regarded as an iterative method, i.e., one stops iterating when it has reached a desired error

threshold. For this we need some way of measuring the error at each iterate. Since we do not know the

exact solution we can not measure the exact error. Instead we can use the residual (3.28), which, at the

exact solution is zero. A conventional choice is therefore to stop iterating once the 2-norm ‖r‖ = (rT r)1/2

gets below the desired threshold.

For this approach it is interresting to examine the convergence properties in order to estimate its

efficiency as an approximation method.

3.2.1 Convergence of conjugate gradient

The goal of this section is to establish a relation between the initial error and the error at the k-th iterate,

and in particular relate this to the condition number κ := λmax/λmin of A.

At the iteration k we have minimized the components of the error along the directions p1, p2, ..., pk. This

means that

‖xk − x∗‖A = inf
v∈Sk

‖x∗ − (x0 − v)‖A, (3.33)

where

Sk = Kk(A, r0), (3.34)

is the k-th order Krylov subspace generated by A and r0. So iterating up to xk = x0 − v we have found

the optimal coefficients ai of the linear combination

v =

k∑
i=1

aiA
i−1r0 = pk−1(A)r0. (3.35)

The last term is just a change of notation introducing the matrix polynomial pk−1(A) of degree k − 1.

Using the residual equation Ae = r we can represent this in terms of the initial error as

v = Apk−1(A)e0 = Apk−1(A)(x0 − x∗). (3.36)

With this representation we can rewrite (3.33) as

‖xk − x∗‖A = inf
p∈Pk−1

‖(I −Ap(A))(x∗ − x0)‖A, (3.37)

23

3.2. CONJUGATE GRADIENT 24

where Pk−1 denotes the space of all polynomial of degree k− 1. Because A is symmetric positive definite

we can bound the norm on the right hand side using the 2-norm as

‖xk − x∗‖A ≤ inf
p∈Pk−1

‖(I −Ap(A))‖2‖(x∗ − x0)‖A. (3.38)

To ease notation let us define the constant

Ck = inf
p∈Pk−1

‖I −Ap(A)‖2, (3.39)

so that we can write

‖xk − x∗‖A ≤ Ck‖(x∗ − x0)‖A. (3.40)

As the 2-norm equals the spectral radius, this constant can be written using the eigenvalues of A. If λ is

an eigenvalue of A then p(λ) is an eigenvalue of p(A), where p(·) now denotes both a matrix polynomial

and the scalar polynomial with the same coefficients. Hence

Ck = inf
p∈Pk−1

max
1≤j≤n

|1− λjp(λj)|. (3.41)

The conjugate gradient method automatically finds the best polynomial for the eigenvalue that maximizes

|1 − λjp(λj)|. The problem when estimating the error reduction is that we generally do not know the

eigenvalue distribution. Instead of finding and evaluating the expression at each eigenvalue we can

consider the interval of which the eigenvalues are contained in, and thus convert it to a continuous

problem. Let λ1 be the smallest eigenvalue and λn be the largest. As the interval [λ1, λn] contains all

the eigenvalues we get the inequality

Ck ≤ inf
p∈Pk−1

max
λ1≤x≤λn

|1− xp(x)|. (3.42)

Let us simplify this expression by introducing a new, k-th order polynomial q(x) := 1 − xp(x). Notice

that q(0) = 1 no matter what the polynomial p is. With this we can write

Ck ≤ inf
q∈Pk

q(0)=1

max
λ1≤x≤λn

|q(x)|. (3.43)

This continuous expression can be calculated explicitly using Chebyshev polynomials. The k-th Cheby-

shev polynomial is defined as Tk(y) := cos(k arccos y). It can be shown, see [2], that the polynomial

Qk(x) =
Tk

(
λn+λ1−2x
λn−λ1

)
Tk

(
λn+λ1

λn−λ1

) (3.44)

is the minimizer of (3.43). As Tk(y) oscillates between -1 and 1 we can bound the numerator by 1 and

estimate |Qk(x)| using only the denominator. Hence

Ck ≤
[
Tk

(
κ+ 1

κ− 1

)]−1

, (3.45)

introducing the condition number κ = λn/λ1. By the definition of Tk this can be rewritten

Ck ≤
2(√

κ+1√
κ−1

)k
+
(√

κ−1√
κ+1

)k . (3.46)

24

3.2. CONJUGATE GRADIENT 25

As the condition number is always greater than 1, the second term in the denominator tends towards

zero as k →∞. We can thus suppress this term and arrive at the final estimation of the error reduction

for the conjugate gradient method,

‖xk − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖x0 − x∗‖A. (3.47)

This describes linear convergence with rate

r =

√
κ− 1√
κ+ 1

. (3.48)

An important observation here is that for large condition numbers the value of r increases towards 1,

which slows down the convergence. In such a case we say that the matrix is ill-conditioned.

Although this only describes the ”worst-case” performance of the conjugate gradient method, it often

gives a prediction of how the method actually performs.

3.2.2 Preconditioned Conjugate Gradient

To improve the convergence rate we can look at a preconditioned system. Assume that we have a

symmetric positive definite matrix M that is thought to approximate A well. A preconditioned version

of (3.1) would then be

M−1Ax = M−1b. (3.49)

A solution of this equation will also be a fixed point of the classical iteration scheme (3.3), which explains

why the term preconditioner is used in both settings. The matrix could for example be the diagonal of

A, in which case we would, by applying fixed point iterations, recover the Jacobi method.

Even though both M and A are symmetric the system matrix of (3.49) is generally not symmetric, which

is required for the conjugate gradient method. We can instead use another preconditioning approach that

preserves symmetry. When M is symmetric positive definite we can split it as M = M
1
2M

1
2 where M

1
2

(and M−
1
2) is spd as well.

Consider now instead the system

M−
1
2AM−

1
2 x̂ = b̂, (3.50)

where x̂ = M
1
2x and b̂ = M−

1
2 b. Now the system matrix is symmetric positive definite. The reason for

using the square root of M and not just M itself is to simplify the expressions resulting when we apply

the conjugate gradient method.

Let us express the iteration procedure for this system using the original vectors x and b, by inserting

into the expressions above. The direction vectors will scale in the same way as x, i.e., p̂ = M
1
2 p and the

residual will scale the same way as the right hand side, i.e., r̂ = M−
1
2 r.

For the iteration step (3.29) each term scales the same, which leaves it unchanged. As p and r scale

differently, the update of the search direction (3.31) will change to

pk+1 = −M−1rk+1 + βk+1pk. (3.51)

The expressions for the scalars α and β will now be

αk =
r̂Tk r̂k

p̂TkM
− 1

2AM−
1
2 p̂k

=
rTkM

−1rk
pTkApk

(3.52)

and

βk+1 =
r̂Tk+1r̂k+1

r̂Tk r̂k
=
rTk+1M

−1rk+1

rTkM
−1rk

. (3.53)

25

3.3. MATRIX BASED PRECONDITIONERS 26

One can notice that the only difference in this preconditioned version compared to the original is that r

has changed to M−1r at three places. So we introduce the preconditioned residual

z = M−1r. (3.54)

The resulting procedure is shown in Algorithm 2.

Observe that the matrix M is not used in the procedure, only its inverse, which means we do not need

to know M explicitly. In fact we do not need to know M−1 either, we just have to solve the equation

Mz = r, which means that we can provide the preconditioner as a black-box solver instead of an explicit

matrix.

Since we now solve the preconditioned system (3.50) we get a different value for the convergence rate

(3.48). It now depends on the condition number of the preconditioned system matrix M−
1
2AM−

1
2 .

Notice that the symmetric preconditioning (3.50) results in the same upper bound for the convergence

rate as the left preconditioning (3.49). If (λ, v) is an eigenpair of M−1A then (λ,M
1
2 v) is an eigenpair of

M−
1
2AM−

1
2 , which means that the two systems have identical eigenvalues, and the condition number wil

be the same in both cases. With a good preconditioner all the eigenvalues of the preconditioned system

should be close to 1, which would give a condition number κ = λn/λ1 not much greater than 1. With

this we can see from (3.47) that the convergence rate improves drastically.

Algorithm 2 Preconditioned Conjugate Gradient

Given x0 and preconditioner M

Set r0 = Ax0 − b

Solve Mz0 = r0 for z0

Set p0 = −z0, k = 0

1 while rk 6= 0 do

2 αk =
rTk zk
pTkApk

3 xk+1 = xk + αkpk

4 rk+1 = rk + αApk

5 Solve Mzk+1 = rk+1 for zk+1

6 βk+1 =
rTk+1zk+1

rTk zk

7 pk+1 = −zk+1 + βk+1pk

8 k = k + 1

9 end while

3.3 Matrix based preconditioners

As evident above the objective when applying a preconditioner to the conjugate gradient method is to

reduce the condition number κ. The ”perfect” preconditioner would be A itself, in which case the con-

dition number would be one, and the error would be reduced to zero in one iteration. The use of this

preconditioner is of course practically pointless because it involves the inversion A. Instead we find a ma-

trix M that approximates A, so that the matrix M−1A has a condition number as close to one as possible.

26

3.3. MATRIX BASED PRECONDITIONERS 27

3.3.1 Jacobi, SOR preconditioners

A simple way to make preconditioners are to use the same idea as for the stationary iterative methods

above. Let us assume A is symmetric positive definite so we can partition it into a diagonal and a lower

and upper triangular part,

A = D − L− LT . (3.55)

We will refer to preconditioners based on this matrix splitting as splitting preconditioners. It is worth

noticing that from Sylvester’s criterion [28] for symmetric positive definite matrices we can conclude that

the diagonal matrix D has only strictly positive values.

Let us first consider a Jacobi preconditioner,

M = D. (3.56)

The effect of this preconditioner is a scaling of each row by the inverse of its diagonal element so that

the diagonal of M−1A becomes the identity matrix. This will have a positive effect if the system is

irregular in terms of grid or PDE-coefficients. In that case some unknowns have a larger ”self-energy”,

i.e., a(ϕi,ϕi), than others. The diagonal scaling will diminish this difference and consequently produce a

more even distribution of eigenvalues. An illustrative example is the irregular grid shown in Figure 3.6a.

The sparsity pattern of the virtual element system matrix on this system is depicted in Figure 3.6b where

the color shows the magnitude of the entries. The diagonal entries are the self-energy associated with

each degree of freedom. The largest diagonal elements corresponds to nodes adjacent to the smaller grid

cells, because a unit value in these unknowns, results in a steeper gradient, i.e., larger strain. In Figure

3.6c the diagonal scaling D−1A have been performed, producing a unit diagonal.

(a) Irregular grid
with a large variation
in cell volumes

(b) Sparsity pattern and magni-
tudes for A

(c) Sparsity pattern and magni-
tudes for D−1A

Figure 3.6: Example of diagonal scaling on an irregular grid. Notice that all the diagonal elements
of D−1A are identical.

In Figure 3.7 the eigenvalue distributions for A and D−1A are shown. As can be seen the diagonal scaling

evens out the distribution and reduces the span. The condition number is reduced from 49 to 42.

The diagonal scaling is essentially equivalent to normalizing each basis function so that the self-energy

a(ϕi,ϕi) is equal for all i. This compensates for irregularities in terms of varying cell-volumes or PDE-

coefficients. The scaling does not however entirely eliminates the undesired effects of an irregular grid,

as off-diagonal elements will still have significant variations.

The diagonal scaling D−1 produces in general a non-symmetric matrix. As mentioned above one can

instead use the diagonal as a split preconditioner D−
1
2AD−

1
2 that has the equivalent effect on eigenvalues

but preserves the symmetry.

For completely regular problems the diagonal, at least away from boundaries is a multiple of the identity

matrix. The use of a Jacobi preconditioner will then have no effect as it scales all matrix elements, hence

27

3.3. MATRIX BASED PRECONDITIONERS 28

(a) (b)

Figure 3.7: Eigenvalues for (a) A and (b) D−1A, scaled by 1/λmin. The largest value gives the
condition number.

all eigenvalues equally, leaving the condition number unchanged.

The formulation of the preconditioned conjugate gradient above builds on the assumption that M is

symmetric positive definite. It is therefore not justified to use for example the Gauss-Seidel method

M = D − L as a preconditioner, which is triangular. Instead the symmetric version, SGS, can be

used, where a forward Gauss-Seidel sweep is followed by a backward sweep, which gives the resulting

preconditioner

M = (D − L)D−1(D − LT). (3.57)

This is clearly symmetric, and because D is strictly positive, M is also positive definite. Therefore it can

be used in the preconditioned conjugate gradient method.

Adding the over-relaxation technique introduced in Section 3.1.4, we can modify the symmetric Gauss-

Seidel preconditioner and get the SSOR preconditioner,

M =
ω

2− ω

(
D

ω
− L

)
D−1

(
D

ω
− LT

)
. (3.58)

We will in the following make use of the notation SSOR(ω) for this preconditioner.

3.3.2 Incomplete factorization

One can notice that the splitting preconditioners (3.57) and (3.58) consist of a lower and an upper

triangular factor, M = LMUM . In our symmetric case we can also readily extract the triangular factors

that are transpose of each other, i.e., the cholesky decomposition M = LML
T
M . For SGS this factor reads

LM = (D − L)D−
1
2 . (3.59)

We can then compute the error matrix for the preconditioner

A−M = A− LMLTM = −LD−1LT . (3.60)

This motivates the search for other factors than LM that try to minimize the error matrix, which gives

rise to a general family of preconditioners termed incomplete factorization. For general non-singular

matrices this would be based on the LU -decomposition of A, which leads to the class of ILU precondi-

tioners. For symmetric positive definite matrices, and the use of conjugate gradient, we instead consider

the symmetric Cholesky factorization of A.

The Cholesky factorization of a real symmetric positive definite matrix A consists of finding the unique

lower triangular matrix K such that

A = KKT (3.61)

28

3.3. MATRIX BASED PRECONDITIONERS 29

To understand how the factorization process work it is usful to visualize the process on the matrix graph.

The graph of a matrix is a collection of vertices and edges, where each vertex correspond to an unknown

in the matrix equation and the edges represent couplings between unknowns, see Figure 3.8.

A =

x x x x
x x x x

x x x x x
x x x x
x x x x

x x x

 4

3 2

15

6

Figure 3.8: Undirected matrix graph showing the nonzero elements of a symmetric matrix. The
edges corresponding to the diagonal entries are not drawn.

The process of finding K is a modified version of Gaussian elimination. In the factorization process each

unknown is sequentially removed from all equations by subtracting the outer product of its row and

column. The first step goes as

A =

(
a bT

b C

)
−→

(
1 0

0 C − bbT

a ,

)
(3.62)

Giving the first column of the factorization

K1 =

(√
a 0
b√
a

I

)
. (3.63)

Subsequent steps performs the same procedure on the Schur complement C − bbT

a . The subtraction of

the outer product bbT will create fill-in in the schur complement, giving a denser matrix at each step.

Figure 3.9 shows how the fill-in is added at each step following the process on the matrix graph. New

couplings are created between unknowns that are coupled to the removed unknown.

Figure 3.9: One step of a complete Cholesky factorization, removing the unknown in the middle of
the graph. The red, dashed edges are the ones corresponding to the outer product bbT .

The complete Cholesky factorization is the main ingredient in standard direct solvers for symmetric

positive definite matrices, such as MATLAB’s mldivide. For preconditioning purposes it is imperative to

drastically simplify this process in terms of computational cost and memory requirements. This is usually

done by restricting the fill-in created by the outer product, according to some predefined pattern. The

most common approach is to restrict K to have the same non-zero structure as A. The outer product

subtraction will then create no extra fill-in, only modify already existing couplings. The matrix graph will

29

3.3. MATRIX BASED PRECONDITIONERS 30

thus get no additional edges, as in Figure 3.10. The resulting preconditioner is termed IC(0). Subsequent

steps will therefore be much cheaper to perform as the matrix density does not increase.

Figure 3.10: One step of the incomplete Cholesky factorization leading to the IC(0) preconditioner.
Only already existing couplings are modified, all others are ignored.

Another approach to reduce the fill-in from the complete Cholesky factorization is to drop all entries

that are below some threshold. With this approach one can find a suitable trade-off between the approx-

imation quality M ≈ A and the cost of finding and applying the preconditioner. This threshold-based

incomplete Cholesky preconditioner is often termed ICT(δ), where δ denotes the dropping threshold.

The above incomplete factorizations are not guaranteed to exist for all symmetric positive definite matri-

ces. When subtracting the outer product bbT it is possible to produce a zero on the diagonal of the Schur

complement. If this zero is encountered as a pivot in a later step the resulting Schur complement becomes

infinite and the factorization breaks down. If such a problem arise one can instead perform factorization

on a diagonally shifted matrix Aα = A + αI. The value of α can be chosen so that Aα becomes a

diagonally dominant matrix, for which a factorization is guaranteed to exist. The resulting factorization

is generally a less accurate approximation of A, but can be a useful preconditioner nonetheless.

Another well-known family of incomplete factorization preconditioners are the modified incomplete Cholesky

(MIC) preconditioners. These methods try to compensate for the dropped fill-in at each step by modify-

ing the diagonal elements. A popular strategy is to subtract all the dropped elements from the diagonal.

This results in an incomplete factorization A ≈ KKT that has the same row sum as A. This means that

the factorization preserves the action on the constant vector, c = (1, 1, ..., 1)T , i.e.,

Ac = KKT c. (3.64)

For PDE-problems where the constant vector is assumed to be a significant component of the solution

this modification can be useful as applying the preconditioner will effectively remove constant errors.

30

Chapter 4

Multigrid

Multigrid methods have proven to be a very efficient technique for solving large linear systems. They are

based on the two concepts of smoothing and coarse grid correction, which are designed to compliment

each other. The interplay between these two processes is effective in a sense that errors in different

parts of the spectrum are eliminated in contrast to using only stationary iterative methods that are most

effective on small eigenvalue components. The resulting method is called optimal because it requires only

O(n) operations and its convergence rate can theoretically be independent of the problem size. The com-

putations can be effectively distributed across parallel computers, which means that multigrid methods

in theory are able to solve increasingly larger problems in essentially constant time.

Since the multigrid idea was introduced in the 60’s there have been developed many different versions and

improvements. The two main categories are geometric multigrid, which was how the multigrid theory

originated, and algebraic multigrid [41], introduced in the 80’s. In the geometric methods the different

grids are generated as coarser discretizations of the domain and solutions on different grids are combined

using appropriate transfer operators. This requires in general knowledge of the underlying PDE. The

algebraic methods on the other hand only use information available in the system matrix to construct a

suitable hierarchy of (virtual) grids and transfer operators.

A description of the underlying multigrid concepts will be given in the following, which will follow a

geometric approach. Algebraic methods will be discussed in detail later.

We consider the problem (3.1) which on the original, or finest, grid Ωh will be written

Ahuh = bh. (4.1)

The grids are often hierarchically organized as Ωh ⊃ Ω2h ⊃ ... ⊃ ΩH , and as you move down the hierarchy

smaller and smaller systems have to be solved, or smoothed.

4.1 Multigrid concepts

4.1.1 Smoothing

A multigrid method always starts with smoothing, or relaxation, of the equation. This usually means

performing a few iterations of a stationary iterative method, often Jacobi or Gauss-Seidel. Such methods

have the so-called smoothing property. The error can be represented as a linear combination of the

eigenvectors of the iteration matrix. The smoothing terminology refers to more efficient reduction of

oscillatory than smooth components of the error. The eigenvectors of stationary iteration matrices for

elliptic problems correspond to different spatial frequencies [12]. For Jacobi and Gauss-Seidel the largest

31

4.1. MULTIGRID CONCEPTS 32

eigenvalues of G, i.e., the ones closest to 1, are those corresponding to low frequencies. This means that

after some iterations the smooth error components become dominant. Stationary methods, by themselves,

therefore suffer from a stagnation after a few iterations. This smoothing effect is shown in Figure 4.1 for

Gauss-Seidel applied to Laplace’s equation. Even though SOR is more efficient than Gauss-Seidel as a

stand-alone solver it does not have the same smoothing property as Gauss-Seidel. This is related to the

redistribution of eigenvalues for ω > 1, which is seen in Figure 3.3.

Figure 4.1: Gauss-Seidel smoothing on a normally distributed initial error for Laplace’s equation.

4.1.2 Coarse grid correction

The essential ingredient of the multigrid idea is the coarse grid correction. As the name suggests this

technique looks at the problem on a coarser grid, and uses the solution there to correct for errors on the

original, or fine grid. The reasons for why this is a useful technique are twofold. First of all, by solving the

problem on a coarser grid, i.e., a smaller system, one can take a relatively large step towards the solution

on the original grid, at a low cost. Secondly, it can be designed to complement the smoothing property

of stationary iterative methods. In fact, a coarse grid correction will only correct lower frequencies. To

explain the latter one can consider the line segment Ω = [0, 1] discretized by nf points giving the discrete

space Ωh. Then any vector in Ωh can be represented by frequencies in the range 0 to (nf − 1)/2. If

we next make a coarser grid by discarding every other point, any vector on this grid can be represented

by frequencies in the range 0 to (nf − 1)/4, which means that we loose the upper half of the frequency

specter on this coarser grid. By solving the problem here we would eliminate all the lower half frequency

components of the error, which indeed are the ones that a stationary method would have most problems

reducing.

In Figure 4.2, a 1D Poisson problem on a line segment discretized with finite difference is considered. It

shows the evolution of the frequency distribution of the error at different stages of a solution process.

Figure 4.2a is the frequency distribution of a normally distributed random initial error. For this, the

frequency components are relatively uniformly distributed. As expected, a few iterations of Gauss-Seidel

32

4.1. MULTIGRID CONCEPTS 33

(a) (b) (c)

Figure 4.2: Frequency distribution of a) the initial error, b) the error after a few smoothing iterations
of Gauss-Seidel and c) after correcting the error from b) on a coarser grid.

would smooth this error, in effect reducing the high frequency components more than the lower, which

can be seen in Figure 4.2b. In Figure 4.2c a coarse grid correction is applied, where the problem is solved

exact on the coarser grid. This reduces the low frequencies, shifting the distribution towards the right.

Note that the y-scale has changed in Figure 4.2c. As can be seen, the low frequency componennts are not

entirely removed, even though an exact coarse grid solution is found. This has to do with transferring

information between the original and the coarse grid problem, and the fact that the coarse grid problem

is only an approximation of the fine grid problem. The transferring between the grids is an important

aspect of the multigrid method, and different techniques for this are essentially what separates different

variants of the multigrid method. This will be discussed below, but for now assume we have a restriction

operator R : Ωh → ΩH mapping from the basis of the fine grid to the basis of the coarse grid, and a

prolongation operator P : ΩH → Ωh mapping back to the fine grid. Both R and P are of full rank.

Assume we have performed a number of smoothing iterations on the fine grid, and obtained uh. Then

we have an expression for the residual

rh = Ahuh − bh (4.2)

and the error

eh = uh − ūh. (4.3)

As we in general do not have the exact solution ūh, the error is considered unknown. Combining (4.2)

and (4.3) we get the residual equation

Aheh = rh. (4.4)

The coarse grid correction should result in an approximation ẽh of the fine grid error, which can be used

to correct the current iterate as

uh ← uh − ẽh. (4.5)

This means that we want to find an approximate solution of (4.4). At this point we can turn to the

variational principle, similar to when we approximated functions en H1(Ω) by functions in the finite

space V for the finite-element method. Here we want to approximate a function on Ωh by a function in

ΩH . According to the variational principle we can state (4.4) as

min
eh∈Ωh

〈eh, Aheh〉 − 〈rh, eh〉, (4.6)

where 〈·, ·〉 is the Eucledian inner product. Restricting ourselves to ΩH means that we are looking for

the best approximation in range(P), i.e., we want to find the minimizer of

min
eH∈ΩH

〈PeH , AhPeH〉 − 〈rh, P eH〉. (4.7)

33

4.1. MULTIGRID CONCEPTS 34

Since P is of full rank and Ah is symmetric positive definite we can write this problem as

PTAhPeH = PT rh, (4.8)

which gives us the linear system to be solved on the coarse grid. In most cases the restriction and

prolongation operators are related as

R = cPT , (4.9)

where c ∈ R is often just equal 1. We can then write the more common formulation of the coarse grid

problem

RAhPeH = Rrh, (4.10)

which means we define the coarse grid operator

AH := RAhP, (4.11)

known as the Galerkin operator in the multigrid literature. It is straight-forward to show that the

smoother on the coarser grid can be represented in the same way, i.e.,

MH = RMhP. (4.12)

We can now form the two-level method by combining smoothing and coarse grid correction. The resulting

method is described in Algorithm 3.

Algorithm 3 Two-level method

Given:

A - fine grid matrix

b - right hand side

M - fine grid smoother

R - restriction operator

P - prolongation operator

Procedure:

1 Apply smoother M to obtain uh

2 Compute residual rh = Auh − b
3 Restrict residual rH = Rrh

4 Solve AHeH = rH with AH = RAP

5 Prolongate error ẽh = PeH

6 Correct approximation uh ← uh − ẽh

7 Apply smoother to obtain final uh

4.1.3 Intergrid operators

In order to perform a coarse grid correction we need to formally define the intergrid operators P and

R. This task is closely related to the construction of the coarse grid, as these operators are mappings

between bases of the two grids. The usual approach is therefore to start by constructing a coarse grid

that is a good approximation of the fine grid while having the desired ability to represent smooth vectors

well. There are different ways of attacking this coarsening issue, much depending on the type of fine grid

used as well as the properties of the system to be solved. This is essentially where the separation of the

34

4.1. MULTIGRID CONCEPTS 35

geometric and the algebraic multigrid method lies. The algebraic method will be discussed in detail later.

To introduce the concepts a simple geometric approach will be considered.

Let Ωh be a nodal discretization of a line segment by nh nodes, shown at the top of Figure 4.3. A

straight-forward construction of a coarse grid would be to discretize the same segment with twice the

stepsize, which we know from the discussion of Figure 4.2 would represent smooth components well. This

coarse grid is shown at the bottom of Figure 4.3. Let us first consider the prolongation. As seen in Figure

4.3 each coarse grid node overlap with a fine grid node. It is therefore natural to let values at coarse grid

nodes map unchanged to their respective fine grid node. For the fine grid nodes not in the coarse grid

one can use linear interpolation, as shown in Figure 4.3.

Ωh

ΩH

Figure 4.3: Prolongation by linear interpolation. Solid arrows indicates weights of 1 while dashed
arrows indicates weights of 1/2.

The resulting prolongator will be the matrix

P =

1
2

1
1
2

1
2

1
1
2

1
2

1
1
2

· · · 1
2

1
1
2

, (4.13)

which is of size nh × nH .

For defining the restriction operator operator R the most simple approach would be by injection, i.e., to

copy the values of the fine grid nodes to their overlapping coarse grid nodes and ignore the other fine grid

nodes. Another possibility is by full-weighting, where the non-coarse nodes also contribute to the value

at their surrounding coarse nodes. This results in a smoothing effect on the restriction which is desirable.

Using this we also get the nice relation between the restriction and the prolongation matrix,

R =
1

2
PT =

1
4

1
2

1
4
1
4

1
2

1
4
1
4

1
2

1
4
· · ·

1
4

1
2

1
4

 . (4.14)

The above examples of intergrid operators and coarse grid constructions assume the problem at hand to

be as simple as possible, i.e., an isotropic PDE with homogeneous coefficients, discretized with simple

finite differences or similar on equidistant grid. On relevant problems that are more complex the resulting

method might perform poorly. Efforts to modify operators to improve the performance on such cases

have been done but it requires insight to the continuous problem and the discretization method, which

often results in a very problem specific method. This largely motivates the algebraic multigrid method,

discussed below, which is better suited for a wide range of problems.

35

4.1. MULTIGRID CONCEPTS 36

4.1.4 Multigrid cycle

While there are different versions of the multigrid algorithm, the two base ingredients for all are smoothing

and coarse grid correction. The simplest and most widely used version is the V-cycle. This is simply the

recursive extension of the two-level method in Algorithm 3, i.e., instead of solving the coarse problem

exactly one performs a few smoothing steps and proceeds to an even coarser grid. The recursion stops

when reaching a level small enough to be efficiently solved by a direct method. The size of this coarsest

level depends on the cost of further coarsening compared to the use of direct solvers. In [39] the coarsening

stops once the matrix has less than 200 rows. After the exact solution is found on the coarse grid it is

prolongated up one level at the time, performing a given number of (post-) smoothing steps at each level.

An illustration of the V-cycle is shown in Figure 4.4a.

S

P

E

S

P

R

S

R

S

(a)

S

P

E

S

P

E

R

S

R

S

PR

S

(b)

E

R

S

E

R

R

S

P

S

P

E

S

P

R

S

R

S

R

S

(c)

Figure 4.4: Illustration of common types of multigrid cycles; (a) V-cycle, (b) W-cycle and (c) the
F-cycle. S denotes smoothing, R restriction of residual, E exact solution by a direct method and P
prolongation.

Another common multigrid version is the W-Cycle. For this two subsequent coarse grid corrections are

performed at every level, i.e., after prolongating the solution of a coarse grid correction it is smoothed

a few times and then another coarse grid correction is done. This is shown in Figure 4.4b. The V- and

W-cycle routines are described in Algorithm 4 where they are separated by an if statement.

Another cycle type called the F-cycle uses the coarse grid to produce an initial guess instead of correcting

a smoothed iterate. This is illustrated in Figure 4.4c.

36

4.2. ALGEBRAIC MULTIGRID 37

Algorithm 4 V-/W-cycle

Given: P prolongation operator on each level, α number of smoothing steps.

1 u = MGcycle(matrix A, r.h.s b, initial guess u0, smoother M)

2 if Coarsest level then

3 Solve direct u = A−1b

4 else

5 Pre-smooth α times using M to obtain u, starting from u0

6 Compute residual r = Au− b
7 Restrict residual rC = PT r

8 Recursive call ẽ = MGcycle(PTAP ,rC ,0,PTMP)

9 Prolongate and correct u← u− P ẽ
10 if W-cycle then

11 Repeat 5-9

12 end if

13 Post-smooth α times using M updating u

14 end if

15 Return u

An implementation of a complete multigrid algorithm would consist of a setup phase and the solve

phase. During the setup the intergrid operator P l, coefficient matrix Al and smoother M l for each level

l are constructed. The setup phase is often a major contributor to the time consumption of a multigrid

algorithm. For this reason the multigrid method is especially effective for problems where a relatively

large number of cycles are needed and the operators can be reused. For example in dynamic problems

with a time iteration the operators can be reused on each time step, or when multigrid is used as a

preconditioner for a Krylov subspace method the same transfer operators can be used on each Krylov

iteration.

4.2 Algebraic multigrid

In many practical cases such as for unstructured grids, irregular grids or problems where no grid is

explicitly determined, the selection of coarse grids can be problematic. Algebraic multigrid (AMG) is

a technique that steps away from the discretization and geometrical information and attempts to apply

the multigrid principals using only information available in the system matrix. This suggests AMG as

a black-box solver and opens for a wider range of problems. Although AMG need not have a direct

coupling to a physical discretization its construction still needs the same fundamental components as the

geometric case. There must be a sequence of (virtual) grids, intergrid operators, smoothing operators,

coarse grid versions of the matrix A and a solver, usually direct, for the coarsest grid.

4.2.1 Algebraic smoothness

Instead of giving the grids a physical meaning one can construct a new grid as the undirected adjacency

graph of the matrix A. While the resulting graph is similar to the discretization grid it is important to

keep in mind that they are not always the same. For example, using higher order discretizations or when

considering the elasticity equation the nodes in this graph represent unknowns in the algebraic equation,

not nodes in the original grid. The issues that arise for such cases are discussed in Section 4.3. In the

following, a point refers to an unknown in the adjacency graph, not necessarily a point in the grid.

From the adjacency graph the couplings between the points can easily be visualized. The weights on the

edges represent the strength of a coupling between points. This strength is determined by the coefficients

of the PDE as well as physical length between nodes. This means that a stretched grid and anisotropic

37

4.2. ALGEBRAIC MULTIGRID 38

coefficients of the PDE will have a similar effect on the algebraic grid.

The adjacency graph is considered as the finest grid, and coarser grids are built from this. Before

coarsening techniques can be described the concept of strong coupling has to be formally defined. In

order to define this we look at what properties the resulting grid should have. The fundamental property

of a coarse grid is that it should be able to represent smooth error components accurately. In geometric

multigrid smoothness is characterized by a low spatial frequency. However, it is not necessarily just these

low spatial frequency components we want to transfer to the coarser grid. For example, with anisotropies

present an error might be smooth in one direction but oscillatory in another. This error would then not

appear to be geometrically smooth even though the convergence might have slowed down. As the error

is not geometrically smooth a standard isotropic coarse grid would not be able to represent the error,

and the performance of the coarse grid correction would be poor. For AMG methods one instead directly

characterizes algebraically smooth errors as those vectors that are reduced slowly under relaxation, i.e.,

‖Ge‖A ≈ ‖e‖A, (4.15)

where G is the iteration matrix of the smoother. Brezina et al. argue in [9] that if (4.15) is true for e

then we also have

eTAe ≈ 0. (4.16)

This motivates the following definition.

Definition 1. Two unknowns i and j are strongly coupled if, for some θ ∈ (0, 1)

|aij | ≥ θ
√
aiiajj . (4.17)

In the coarsening algorithms the set of strongly coupled points have to be traversed, sometimes more

than once, for each i. As the size of θ will generally affect the cardinality of these sets it will also have an

impact on the complexity of the algorithm and can lead to a slow coarsening. Note, there are also other

characterizations of algebraic smoothness [41, 13], which lead to slightly different definitions of strong

coupling.

4.2.2 Classical coarsening

The classical coarsening approach was introduced by Ruge and Stüben [41], and is often called RS-

coarsening. The idea is to separate all points into two disjoint sets C and F . The C-points are those

fine grid points that also will serve as unknowns on the coarse grid, while the F -points are the fine grid

points that are discarded on the coarse grid.

The first question that arises is how the F/C-splitting should be done. As we want algebraically smooth

components to appear more oscillatory on the coarse grid, a rule should be that any two C-points are

not strongly coupled. This gives us the desired coarsening effect along those directions that the error is

algebraically smooth. Another rule, which ensures the quality of the interpolation, is that any F -point

should either be strongly coupled to a C-point or to another F -point that is strongly coupled to a C-

point. This means that for any F -point some C-point exists in its ”neighborhood” and it makes sense

to interpolate from these. In general it is not possible to fulfill both rules simultaneously and they are

therefore used as guidelines. Routines for this splitting are described in [41].

Assuming we have done a C/F -splitting, the prolongation operator has to be constructed. This defines

how an F -point will be interpolated from surrounding C-points, i.e.,

ei =
∑
k∈Pi

wikek where i ∈ F and Pi ⊂ C. (4.18)

38

4.2. ALGEBRAIC MULTIGRID 39

For AMG we generally do not have geometric information about the grid and can not define a linear

interpolation as in Figure 4.3. Instead the approximation by neighboring values (4.17) is used. There

are many ways to construct this interpolation in practice as discussed in [47], depending on how the

C/F -splitting is done, the connectivities defined by A and desired sparsity of the resulting Galerkin

operator.

4.2.3 Coarsening by aggregation

An alternative to the classical algebraic coarsening is the aggregation-based approach [49]. The idea

behind this approach is less sophisticated, compared to the classical, and in a direct comparison the

classical approach will often perform better. However, the aggregation method have gained attention

because of its simplicity.

In the aggregation coarsening process all points are partitioned into disjoint sets, or aggregates, where an

aggregate correspond to a single unknown in the coarse grid. This means that each fine grid point will

be restricted onto only one coarse grid point. In contrast, for the RS-coarsening a fine grid point that is

located between two coarse grid points will be restricted onto both of these.

The simple fine-coarse relationship gives only one nonzero per row in the prolongation operator, which

simplifies the intergrid transfers and the construction of the Galerkin operator, not to mention the

construction of P itself. Given a decomposition into aggregates C1, C2, ...CnC
this leads to the simple

formulations

rHj =
∑
i∈Cj

rhi (4.19)

and

ehi = eHj for each i ∈ Cj (4.20)

for restriction and prolongation respectively. This results in a prolongation operator of the form

P =

1

1···

1

1

1···

1

·······

1

1···

1

. (4.21)

The obvious question is which fine grid points should be grouped together and how the aggregates should

be formed. There exist different approaches to form these.

In [49] the aggregates are successively defined as the first encountered strongly coupled neighborhood.

The strongly coupled neighborhoods are defined as sets of points where each pair in the set are strongly

coupled. This results in a greedy algorithm that most likely does not aggregate all fine grid points. To

handle the remaining points two additional phases are performed. In the first of these, each unaggregated

point that is strongly coupled to one or more points in an existing aggregate is added to this. If this is

true for more than one existing aggregate, the one to which it is strongest coupled is chosen. In some

39

4.2. ALGEBRAIC MULTIGRID 40

points remain unaggregated a last phase is performed where additional aggregates are constructed from

the remaining points. The resulting algorithm is described in Algorithm 5. Typically the last phase will

not be performed as all points have already been aggregated. Typical 2D aggregates are shown in Figure

4.5.

Algorithm 5 Construction of aggregates

Given: Predefined neighborhoods Ni(θ) for each i = 1, ..., N .

Define R = {1, ..., N}. Set j = 0.

1 for i ∈ R do

2 if Ni(θ) ⊂ R then

3 j ← j + 1

4 Cj ← Ni(θ)

5 R← R \ Cj
6 end if

7 end for

8 Copy C̃k ← Ck for k = 1, ..., j

9 for i ∈ R do

10 for k ∈ {1, ..., j} do

11 if Ni(θ) ∩ C̃k 6= ∅ then

12 Ck ← Ck ∪ {i}
13 R← R \ i
14 end if

15 end for

16 end for

17 while R 6= ∅ do

18 Pick i ∈ R
19 j ← j + 1

20 Cj ← Ni(θ)

21 R← R \ Cj
22 end while

Using this aggregation approach one does not take into account the actual strength of a coupling once

a neighborhood is defined, i.e., all unknowns included in a neighborhood are considered to be coupled

with equal strength. This could potentially lead to two strongly coupled points ending up in different

aggregates. Ideally, one would compare each coupling so that the strongest ones could be given priority.

A different aggregation method that tries to incorporate this issue is the one used in the AGMG software

[39]. For this the unknowns are pairwise grouped according to their strongest coupling. As such a pairing

would only reduce the system by a factor of two the algorithm performs another pass, grouping together

two pairs, giving a coarse grid reduction factor of four.

4.2.4 Coarsening by smoothed aggregation

The unsmoothed aggregation coarsening essentially results in a piecewise constant interpolation of un-

knowns. As pointed out in [47], while this interpolation can represent a constant function exactly, it will

not be able to accurately approximate all smooth functions. As an example, consider a smooth function

f in one dimension. A first order finite-element space should be able to approximate this with an error

O(h). This is shown in Figure 4.6a where the finite-element approximation almost coincide with the func-

tion f . If we construct the coarse grid by pairwise aggregation of nodes the basis functions are formed

40

4.2. ALGEBRAIC MULTIGRID 41

(a) (b)

Figure 4.5: Typical result of the aggregation process described in Algorithm 5 for two different grids.

as sums of the basis functions corresponding to the two aggregated nodes. The resulting basis functions

are shown at the bottom of Figure 4.6b. As the function f has a nonzero derivative at the interior of

aggregates, these coarse basis functions are not able to represent f exactly. In fact, the approximation

order will become zero when using an approximation based on the energy norm, as in (4.7). In Figure

4.6b uH is the optimal approximation of f on the aggregated grid using the energy norm, which can be

seen as the best approximation of the derivative at every nonempty intersection of the support of any

two basis functions. For the simple equidistant example of pairwise aggregation in Figure 4.6b uh will,

with decreasing step size, look more and more like f/2. Braess [7] addresses this problem by multiplying

the coarse grid correction with an over-relaxation factor close to two. Although this may give fairly good

results in some cases, it is highly dependent on the problem at hand and generally not a robust solution.

uh ≈ f

x

y

(a)

x

y

f

PuH

(b)

Figure 4.6: Inconsistent coarse grid approximation property for aggregation coarsening. Basis func-
tions are shown under the plots.

The idea, as introduced in [50], to improve the simple aggregation approach above, is to use the piecewise

constant interpolation only as a tentative prolongation. Subsequently, this prolongation is smoothed by

applying a few iterations of a stationary iterative method. In [50] a simple ω-Jacobi relaxation step is

used,

P = P − ωD−1AP. (4.22)

This smoother is built on the matrix A which means that the basis functions will become locally more

consistent with the PDE as they are smoothed. At the same time it smoothens out each basis function

giving it a better ability to approximate smooth functions. Figure 4.7a shows an example of the tentative

41

4.3. AMG FOR THE ELASTICITY EQUATION 42

basis functions on selected aggregates while Figure 4.7b shows the same basis functions after one ω-Jacobi

smoothing.

(a) (b)

Figure 4.7: Selected basis functions for (a) unsmoothed aggregation and (b) smoothed aggregation,
using ω-Jacobi smoother with ω = 3/2 for a scalar problem.

As a consequence of the smoothing the support of each basis function increases. How much it increases

for each smoothing iteration depends on what kind of smoother is used and how many edges that are

incident on each vertex in the graph. In general for one Jacobi (or ω-Jacobi) smoothing iteration the

sparsity of the resulting prolongation operator will be given from the sparsity of the squared adjacency

graph of A. That is, each basis function will increase its support to include all elements that shares

a boundary with the previous support. For 3D problems this will quickly increase the density of the

prolongation operator, which means that the computation of the Galerkin operator will become much

more expensive.

4.3 AMG for the elasticity equation

Up to now little attention has been given to the specific properties of the elasticity equation, and how

to design multigrid methods for such a problem. While all the above concepts also apply in this case,

elasticity introduces additional challenges.

4.3.1 Block approach for system equations

For the discretization methods described in Chapter 2, the degrees of freedom will be the displacement in

each space dimension at every node. This means that the adjacency graph for the system matrix, which

AMG builds upon, will be fundamentally different than the discretization grid. An aggregation-based

coarsening may produce aggregates of physically incompatible degrees of freedom. This may result in

deterioration of convergence. A straight forward remedy to this problem is to use a block-aggregation

approach. The idea then is that if the x-displacement at two adjacent nodes are strongly coupled, then it

is likely that the y-displacement at the same nodes also are. This means we perform aggregation on the

discretization grid instead of the matrix graph. In order to do this we need to provide the AMG solver

with information on the problem dimension and in what order the unknowns are stored. As mentioned

above, for elasticity it is a convention to use an interleaved numbering of the unknowns. When building

the prolongator we now insert the identity and zero block instead of one and zero, to use the same

aggregation structure in all space variables. The prolongation operator would in this case typically look

like the one in Figure 4.8 where two and two adjacent columns have the same structure, only shifted one

row.

42

4.3. AMG FOR THE ELASTICITY EQUATION 43

nz = 988

Figure 4.8: Typical prolongation operator using the block aggregation approach in 2D.

A question that arise for this block approach is how to decide whether two nodes are strongly coupled.

For isotropic problems one could choose one of the space variables, discarding all the other rows and

columns in A and perform aggregation as it was a scalar equation. This approach will not be justified in

the case of anisotropies, where the coupling between unknowns may be different for the different space

variables. In [50] this problem is addressed by defining a suitable measure of the part of A that describe

the coupling between two nodes. Let df(i) be the index list of unknowns associated with node i. The

coupling between node i and j can now be expressed by

A(ij) = A(df(i), df(j)). (4.23)

Using this matrix selection we can generalize the concept of strong coupling.

Definition 2. Two nodes i and j are strongly coupled if, for some ε ∈ (0, 1)

ρ
(
A
−1/2
(ii) A(ij)A

−1/2
(jj)

)
> θ. (4.24)

This definition is the direct generalization of the scalar case (4.17). Although the size of Aij is only the

spatial dimension, the computation of the spectral norm ρ becomes quite costly since it has to be done

for each pair of nodes in the grid. As pointed out in [23] it usually suffices to have an upper bound for

the spectral norm, which means that other cheaper matrix norms can be used.

4.3.2 Interpolation of rigid body modes

As mentioned above it is important that the prolongation preserves the near-kernel elements. For a scalar

problem the unsmoothed aggregation process satisfy this trivially by constructing the coarse grid basis

functions as the restriction of the constant function c(x, y) = 1 onto each aggregate. Hence, with disjoint

aggregates the basis functions will be a partition of unity. For the smoothed aggregation method, where

the aggregates start to intersect, we are not guaranteed to be able to recover this partition of unity

without modifying the smoothed aggregation basis functions. But for a suitable choice of prolongation

smoother the smoothing should not alter this partition of unity.

For higher order problems and system PDE’s the kernel contains more than just constant functions. In

particular, for elasticity, the rigid body modes, consisting of the constant translation modes and linear

rotation modes, defines the kernel, as discussed in Section 4.3.2.

The translational modes are taken care of in the same way as for the scalar case. The preservation of the

linear rotational modes is not as simple. In Figure 4.9 the plane z(x, y) = x on the coarse grid, which is

in ker(AH), is prolongated onto the fine grid using an aggregation prolongator. Clearly this introduces

components on the fine grid that are not in the kernel of Ah. As explained in [50] this can be corrected

by introducing additional degrees of freedom on the coarse grid that are constructed to reproduce the

43

4.4. AMG AS PRECONDITIONER 44

Figure 4.9: A linear function on the coarse grid prolongated to the fine grid using a piecewise constant
prolongator.

linear modes. In general, we can construct a prolongator that preserves any number of kernel elements

by first producing aggregates of nodes and then build coarse grid basis functions as restrictions of the

kernel basis onto each aggregate. In order to use this approach the user needs to provide information

about the near-kernel elements. Building the prolongator this way, these user-provided elements are often

called seed -vectors as the prolongator is ”grown” on them. For elasticity these are the rotational modes

R, discussed in Chapter 2. The prolongator is built one aggregate at the time, using the restriction of R
onto the aggregate as columns. Given aggregates C1, ..., Cnc

the prolongator is formed

P =
(
R|C1

R|C2
· · · R|Cnc

)
(4.25)

The restriction onto an aggregate R|Cj
consists of a block column vector where each block correspond to

a member of the aggregate. For member i of aggregate Cj the block is (in 2D)

(R|C1)i =

(
1 0 −(yi − ȳj)
0 1 (xi − x̄j)

)
(4.26)

where (xi, yi) is the coordinate of node i and (x̄j , ȳj) is the center of aggregate Cj . The reason why

the center of the aggregate is subtracted from the rotation-column of (4.26) is to remove any translation

modes from the restriction of the rotation and hence make the columns of P orthogonal. In addition we

normalize each column so that we get

PTP = I. (4.27)

Doing this we make sure that the uniform equivalence of the discrete and continuous L2-norm is satisfied.

4.4 AMG as preconditioner

AMG was originally constructed as a standalone solver. Although it has a very good theoretical perfor-

mance it does have some weaknesses in practice. In many practical cases the selection of coarse grid and

prolongation will not be optimal. The result of this non-optimality is that some specific components of

the error are not captured well by the multigrid iterations. Improving the coarse grid and prolongation for

a general set of situations have shown to be very expensive. As an alternative, if AMG is combined with

a Krylov subspace method, these particular components are eliminated very efficiently in most cases [46].

This motivates the use of AMG as a preconditioner for the conjugate gradient method. As mentioned

in Section 3.2.2, we can provide the preconditioner to the conjugate gradient procedure as a black-box

44

4.4. AMG AS PRECONDITIONER 45

solver. The application of AMG as a preconditioner would then be to find the preconditioned residual as

zk = AMG(rk), (4.28)

with AMG(·) being the AMG procedure set up with A as system matrix.

An issue that arise when using AMG as preconditioner for conjugate gradient is the symmetry require-

ment. Recall from Section 3.2.2 that the preconditioner M had to be symmetric. To construct a sym-

metric version of the multigrid cycle we have two choices. One way is to use a symmetric smoother such

as Jacobi or SGS, for both pre- and post-smoothing. Another way is to use a non-symmetric smoother,

e.g. SOR, for pre-smoothing and use its transpose, i.e., backward SOR, as a post-smoother.

45

Chapter 5

Implementation of AMG

As part of the work done in this project the smoothed aggregation AMG method presented above have

been implemented in MATLAB. This have been done for experimental purposes and not with a goal of

creating an alternative to existing, more efficient implementations. Having the procedure implemented in

MATLAB provides an easy access to all components of the process, and an intuitive way of monitoring

its performance when the application program is already running in MATLAB.

The presentation of the implementation here is intended to make the results in Section 6 reproducible

for the reader.

The implementation consists of two main procedures, one setting up the AMG solver and the other

executing the recursive multigrid cycle.

The multigrid cycle is a straight forward implementation of Algorithm 4. Note that the pre- and post-

smoother should be the adjoint of each other when used as preconditioner.

The primary output from the setup phase is the prolongation operator mapping between the different

levels. In addition to this, the galerkin operator PTAP and smoothers are constructed for each level.

The frame of the setup phase is run as a while-loop continuing until the number of unknowns at that level

gets below a given value. For each level three separate procedures are run to construct the prolongation

operator. A high-level description of the setup phase is presented in Algorithm 6.

Algorithm 6 Setup AMG

1 while Size of A > predefined value do

2 Find neighborhoods Ni(θ) for each node

3 Construct aggregates according to neighborhoods

4 Use aggregates to form tentative prolongator and smooth to obtain P

5 Use P to construct A and M for the next level

6 end while

5.1 Constructing neighborhoods

Finding the neighborhoods would be a trivial task for a scalar problem. One would simply have to

symmetrically scale each element of A by forming As = D−
1
2AD−

1
2 and then remove all elements of As

below θ, according to Definition (4.17).

For the system case, which is described in Section 4.3.1, this requires some more attention. We first

46

5.2. CONSTRUCTION OF AGGREGATES 47

construct a scaled matrix similar to the scalar case as

As = D
− 1

2

B AD
− 1

2

B , (5.1)

where DB denotes the block diagonal of A. According to Definition 4.24 this scaled matrix should now

be condensed by finding the spectral norm of each block. Motivated by [23] we use instead the cheaper

Frobenius-norm

‖A‖F :=

 n∑
i=1

n∑
j=1

|aij |2
 1

2

. (5.2)

This condensation is implemented using the matrix

Q =

1 1

1 1
······

1 1

 , (5.3)

which forms pairwise sums of rows when left-multiplied with a matrix. The condensed matrix Ã is then

formed as

Ã =
(
QA◦2s Q

T
)◦ 1

2 , (5.4)

where A◦2 denotes entry-wise squaring.

A matrix representation of neighboring nodes is then found by dropping each value of Ã below θ. Note

that the value θ is norm-dependent and we could not expect to use the exact same threshold as for the

spectral norm.

In MATLAB this particular dropping step became a bottleneck of the setup phase when performed

simultaneously on all edges in the graph. Instead, the dropping were done in the aggregation phase,

utilizing the fact that the dropping need not be done for the nodes that are passively aggregated from

being in the neighborhood of another node. As most of the nodes are aggregated passively this reduces

the setup-time drastically.

5.2 Construction of aggregates

Having found the neighborhoods for each node the aggregation process can start. We have here used the

original aggregation process proposed by Vanek [49], described in Algorithm 5. We will here only make

a few remarks on the MATLAB implementation of the different stages of aggregation.

The first stage, where most of the aggregates are constructed, is done sequentially. This is because one,

at all times, have to keep track of which nodes have been aggregated. We note that there are other

alternative ways of performing the aggregation, not considered here, which are of more parallel nature

[48].

The second stage, where no new aggregates are constructed, can be performed in parallel. One must, for

each unaggregated node, find the existing aggregate to which it is strongest coupled to and add to that.

In MATLAB this can be done simultaneously using sparse matrix operations.

The third stage where left-over nodes are collected into new aggregates, again have to be done sequen-

tially. As most nodes are already aggregated by then, this stage is seldom time consuming.

47

5.3. CONSTRUCTING THE PROLONGATOR 48

5.3 Constructing the prolongator

Forming the tentative prolongator consists of restricting the rigid body modes onto the aggregates, as

discussed in Section 4.3.2. The prolongation on the finest level is a mapping from translation-basis

functions on fine grid nodes to translation- and rotation-basis functions on aggregates. This means

that the first prolongator contains 2-by-3 blocks (3-by-6 for 3D) as shown in (4.26). Prolongators on

coarser levels are mappings from translation- and rotation-basis functions to translation- and rotation-

basis functions which means that these contain square blocks of the form (in 2D)

P̃0|(ij) =

1 0 −(yi − ȳj)
0 1 (xi − x̄j)
0 0 1

 . (5.5)

Once each block has been constructed the columns are normalized as

P0 = P̃0

(
P̃T0 P̃0

)− 1
2

. (5.6)

Note that P̃T0 P̃0 is a diagonal matrix, so finding the inverse square root is trivial. Having construted

the tentative prolongator P0 the final prolongator is found by applying one ω-Jacobi smoothing step

according to equation (4.22).

48

Chapter 6

Numerical results

To investigate the different concepts described above we will in this chapter present results of some

numerical experiments. The objective is to get a clearer view of what challenges arise when solving the

linear elasticity equation numerically, and how the solution process can be accelerated using the concepts

presented above.

The ultimate question when measuring the performance of a linear solver is the time it takes to reach

a solution of desired accuracy. This, of course, depends on many different factors. For the numerical

tests in this project little attention is given to optimization of the actual run-time. This is considered

to be a large task involving many different disciplines in computer science and is best considered in a

separate work. Instead, the focus is here put on the mathematical efficiency of a solver. As a useful

measure, number of iteration is considered, which gives an indication of how much work that needs to

be done. That being said, the run-time should not be completely ignored as the number of iterations

could potentially be reduced to zero by putting increasingly more effort into each iteration, only to end

up with a procedure that takes more time than before.

We have made use of MATLAB’s implementation of the preconditioned conjugate gradient method, pcg.

Using this, the preconditioner can be provided as either a single symmetric matrix, a split preconditioner

or as a function handle that solves for the preconditioned residual.

Further we have used MATLAB’s function ichol to construct incomplete Cholesky preconditioners. This

can also be used to construct modified incomplete Cholesky preconditioners.

6.1 Test problems

6.1.1 Problem A: Isotropic square certesian grid

This test problem is included to investigate experimentally the performance of the smoothed aggregation

AMG method described above. A material with Young’s modulus E = 10 MPa and Poisson’s ratio

ν = 0.3, occupies the unit square. The entire boundary is constrained by homogeneous Dirichlet bound-

ary conditions, while a constant body force pointing in the negative y-direction is applied at the interior.

The governing equations are discretized with the virtual element method and a cartesian grid is used.

Number of smoothing steps

We start by testing how the number of smoothing iterations α affect the solve time when AMG is used as

a standalone solver. In Table 6.1 the total solve times reducing the residual norm by 10−8 are shown for

different numbers of smoothing iterations. The different values of ω are chosen according to the discussion

49

6.1. TEST PROBLEMS 50

in Section 3.1. As seen, the minimum solve time were found using one iteration of forward SOR with a

moderate over-relaxation parameter for both pre- and post-smoothing.

For significant values of ω more smoothing iterations are required. This is related to the loss of smooth-

ing property when over-relaxation is used. The forward-backward combination of SOR has the exact

same amount of work per iteration as the forward-forward SOR, but results generally in more cycles,

giving longer solve-times. It is included here because it provides the symmetry required when used as

a preconditioner for conjugate gradient. Under this symmetry constraint, two smoothing iterations of

forward-backward with a moderate over-relaxation gives the best solve-times. We can not, from this

experiment, conclude that the same is true when used in combination with conjugate gradient, but its

standalone performance gives an indication of what to expect when used as a preconditioner.

Table 6.1: Solve times for AMG as a standalone solver for varying number of smoothing iterations.
A 100 × 100 grid is used.

Pre-/post-smoother ω α = 1 α = 2 α = 3 α = 4
FSOR/FSOR 1 0.52 0.57 0.65 0.75
FSOR/BSOR 1 0.57 0.59 0.68 0.77
SSOR/SSOR 1 0.67 0.93 1.15 1.27

FSOR/FSOR 1.5 0.33 0.41 0.51 0.57
FSOR/BSOR 1.5 0.54 0.47 0.61 0.60
SSOR/SSOR 1.5 0.59 0.74 0.88 1.05

FSOR/FSOR 1.75 0.52 0.43 0.43 0.49
FSOR/BSOR 1.75 0.84 0.67 0.53 0.58
SSOR/SSOR 1.75 0.75 0.76 0.86 1.04

Different prolongators

In Figure 6.1 the convergence history for conjugate gradient preconditioned with AMG using four differ-

ent methods to construct the prolongator. The scalar aggregation approach ignores the block structure of

A and treats it as a scalar problem, using Definition (4.17) to construct neighborhoods of unknowns. The

block approach uses Definition (4.24) to construct neighborhoods of nodes. In the rotation aggregation

approach the prolongator preserves the rotation as described in Section 4.3.2. For smoothed aggregation

the prolongator is smoothed according to (4.22). This result clearly shows the importance of using a

block approach for the elasticity equation. We can also see from this experiment that the smoothing

of aggregates and preservation of rotation gives a considerable improvement in terms Krylov iterations.

Similar results were found for a 3D analog to this experiment, but with an even more significant im-

provement when the rotation is preserved, especially when only one side were given Dirichlet boundary

condition so that the solution contained a larger rotation-component.

Scalability

In Figure 6.2 the dependence of the convergence on the problem size is shown for our implementation of

AMG. We have considered it as both a standalone solver and used as preconditioner, and included the

IC(0) preconditioner for comparison. The AMG solver is set up with one smoothing iteration of SOR(1.3)

at each level (backward post-smoothing when used as preconditioner).

When AMG is used as a standalone solver we see a moderate increase in number of iterations for increasing

problem size. Applying Krylov iterations seems to both accelerate and make it more robust with respect

to problem size.

50

6.1. TEST PROBLEMS 51

Figure 6.1: Convergence history for conjugate gradient using AMG preconditioners based on different
aggregation approaches.

6.1.2 Problem B: Aspect ratio

In Problem B we consider a rectangular domain with a 100 × 100 grid. We let the rectangle be 1m is

the y-direction and obtain different aspect ratios by varying the physical length in the x-direction from

1m to 16m. The material is isotropic with Young’s modulus E = 400MPa and Poisson’s ratio ν = 0.3.

In Figure 6.3 we have compared the number of iterations needed to reduce the residual norm by 10−8

using plain aggregation and smoothed aggregation. The blue graph shows the results using our AMG

implementation. In problem A we saw that the smoothed aggregation was preferred in the isotropic case.

This experiments indicates that the difference between the smoothed and unsmoothed aggregation for

our implementation gets smaller as the aspect ratio increases. By investigating the aggregates we found

that no couplings were dropped when forming the neighborhoods. This is not the desired behavior for

large aspect ratios as nodes in the y-direction should be more strongly coupled than in the x-direction.

The drop-threshold θ = 0.08(1
2)l thus seemed to be too low. We found, however, from experimenting

that a suitable threshold, where some of the couplings are dropped and not all, was difficult to find. This

could indicate that the frobenius-norm used to condense the matrix did not work well, or that the imple-

mentation were not done correctly. The loss of performance for the smoothed aggregation method could

be a consequence of this. We therefore performed the same experiment using PETSc’s algebraic multigrid

preconditioner GAMG [4]. This uses a different aggregation method based on maximally independent

sets of the squared matrix graph. In Figure 6.3 we have compared the behavior of our implementation

to the GAMG preconditioner. As seen, using GAMG, the smoothed aggregation process does not loose

efficiency relative to the unsmoothed aggregation. This indicates that the observed deterioration in the

smoothed aggregation method relative to the unsmoothed is an artifact of our implementation.

6.1.3 Problem C: Horizontal plate

We now turn to a more challenging 3D problem. Consider a horizontal plate of thickness 0.5m, length 10m

and width 5m, mounted on a wall on the shortest side. Gravity pulls the plate of density ρ = 3000kgm−3

in the negative z-direction. The material is isotropic with Young’s modulus E = 9GPa and Poisson’s

ratio ν = 0.3. The grid used has 20 grid cells in all three directions. The problem is discretized using

a virtual-element discretization resulting in a linear system of 26460 unknowns. Figure 6.4 shows the

51

6.1. TEST PROBLEMS 52

Figure 6.2: Number of iterations reducing the residual norm by 10−8 for different problem sizes.

divergence of the displacement on the deformed plate, which gives an indication of the change of volume

in each cell. This problem is challenging because it has a thin-body feature and the grid cells have an

aspect ratio of 1
20 . The condition number of A is estimated to 6×108 using MATLAB’s function condest.

In Figure 6.5a we have considered incomplete Cholesky preconditioning, while Figure 6.5b shows the

result of matrix partition based preconditioners. In Table 6.2 the solve times are presented.

We can see that the unpreconditioned conjugate gradient gradient, included in both figures for reference,

uses about 3000 iterations before we see a reduction in the residual norm. This is connected to the ill-

conditioning of the problem. Note that the conjugate gradient method minimizes the A-norm of the error,

which monotonically decreases for each iteration. We have here plotted the 2-norm of the residual, which

equals the A2-norm of the error. This is not guaranteed to monotonically decrease. This is discussed

further in [1].

Table 6.2: Solve times for one-level preconditioners on Problem C.

Preconditioner Solve times [s]
No preconditioner 13
IC(0) shifted α 32
IC(0) shifted 0.1α 14.8
IC(0) shifted 0.01α 6
SSOR(1) 62
Jacobi 13

When constructing the IC(0) preconditioner ichol encountered a zero pivot, and broke down. We thus

performed a shifting of the diagonal according to the discussion in Section 3.3.2. The shifting parame-

ter α required to make A diagonally dominant was computed. As seen in Figure 6.5a, using the IC(0)

preconditioner constructed from A shifted by α gave no improvement to the unpreconditioned case. By

shifting only a fraction of α we saw better performances. Of course, using this partial shifting are not

guaranteed to successfully construct the incomplete factors. A simple try-catch statement to construct

the preconditioner were found useful as the iterations generally were much more time consuming than the

construction of the preconditioner. The modified incomplete Cholesky MIC(0) preconditioner was also

52

6.1. TEST PROBLEMS 53

Figure 6.3: Effect of aspect ratio on smoothed and unsmoothed aggregation using our implementation
(AMG) and the preconditioner GAMG in the PETSc Toolkit.

Figure 6.4: Deformed plate where the color represents the divergence of the deformation in each cell.
This gives a measure of the change of volume in each cell.

(a) (b)

Figure 6.5: One-level preconditioners on Problem C.

considered for this experiment, but behaved similarly to IC(0), only slightly worse, and were therefore

not included in the presentation here.

The SSOR preconditioner were provided to pcg as a split preconditioner, i.e., with M1 = MFSOR and

M2 = MBSOR. Experiments with different values of ω showed that no over-relaxation (ω = 1) gave the

most effective preconditioner. In fact, a value slightly less than 1 resulted in even further reduction in

53

6.1. TEST PROBLEMS 54

number of iterations. The cost of evaluating this preconditioner was extremely high, which resulted in a

total solve time more than twice the solve time for the unpreconditioned case, even though the number

of iterations was nearly halved.

The Jacobi preconditioner gave a small improvement in number of iterations, but with a slightly higher

cost per iteration, it ended up spending the same amount of time as the unpreconditioned iterations.

In Figure 6.6 we have presented the convergence history for the plain aggregation and the smoothed

aggregation versions of our implementation of AMG. Five levels were constructed (including the original),

and the setup time was 2.2s for the plain aggregation and 2.6s for the smoothed aggregation method,

while the solve times were 37s and 50s, respectively. We see here the unexpected result that the plain

aggregation performs significantly better than the smoothed version. We suspect that this is related to

the behavior seen in Problem B for the 2D aspect ratio test. However, in Problem B the performance of

the smoothed and unsmoothed method became more similar for increasing aspect ratios, while here, the

smoothed performs worse. Executing the same experiment using the GAMG preconditioner in PETSc

resulted in 187 and 461 iterations for the smoothed and unsmoothed method respectively. This further

indicates a fault in our implementation.

Figure 6.6: Preconditioned conjugate gradient method using the plain aggregation and the smoothed
aggregation version of our AMG implementation for Problem C.

54

Chapter 7

Conclusion and further work

The work done in this thesis have addressed the problem of solving the elasticity equation numerically

for large systems. The majority of the work concerns the use of iterative solvers for the linear system

arising from discretizations.

In addition to a standard finite-element discretization for tetrahedral grids, the more recent virtual-

element method have been presented, which allow the use of general polyhedral grids.

Stationary iterative methods were found to favor reduction of certain error components, resulting in a

stagnation after a few iterations.

The conjugate gradient method was presented together with a theoretical result relating the convergence

rate to the condition number of the system matrix.

Multigrid methods complement the stationary methods by eliminating remaining error components on

coarser grids. Algebraic multigrid methods create these coarse grids automatically from information in

the system matrix. When aggregation-based algebraic multigrid methods are applied to the elasticity

equation a block approach should be used, aggregating grid-nodes instead of degrees of freedom. Sec-

ondly, the construction of the coarse grid should be done in such a way that the rigid body modes can

be represented exactly on the coarse grid.

An implementation of the smoothed aggregation AMG method for elasticity was done in MATLAB. We

saw, from numerical testing, that our implementation had a convergence rate nearly independent of the

problem size when used as a preconditioner for conjugate gradient on a simple problem. Further we

saw that it did not behave as expected under large aspect ratios, where the unsmoothed aggregation

method performed better. This is assumed to be due to a fault in our implementation, as the GAMG

preconditioner in the PETSc Toolkit did not show the same behavior.

When stationary iterations are considered as standalone solver a large value of the over-relaxation pa-

rameter gives the best convergence rate. From experiments performed in Chapter 6 we saw that when

when used as smoother for a standalone AMG solver, a moderation of the over-relaxation were preferred.

Further we saw that when used as preconditioner, either as smoother in the AMG-preconditioner or by

itself, no over-relaxation gave the best convergence results.

The incomplete Cholesky preconditioner were found to be the most effective of the ones tested in Chapter

6. However, taking into account the scalability of our implementation seen in Section 6.1.1 and noting

that our implementation is intended merely for concept studies and not suited for high-performance

computing, we conclude that the smoothed aggregation AMG is indeed a competitor to IC(0).

55

7.1. FURTHER WORK 56

7.1 Further work

Aggressive coarsening

The aggregation process introduced in [49], and implemented in this work, aims for a coarsening rate of

3 in each space dimension. When this method is used as a preconditioner it might be more efficient to

coarsen more aggressively. For this it could be interesting to investigate the aggregation process on the

square graph of A. This would enlarge the neighborhoods to include neighbors neighbors. As this would

provide a larger selection of couplings it could also give more preferable aggregates in extreme anisotropic

cases.

Near-incompressible materials

Near-incompressible materials, where ν is close to 0.5, are a well-known difficulty for both discretization

methods and linear solvers. In further work it could therefore be interesting to consider a mixed finite-

element method, such as [29], which are known to perform better in such cases. This would result in a

2-by-2 block matrix known as a saddle point problem. Appropriate preconditioners would be built on

the same block structure. For this we point to the work of Rusten and Winther [42] and Mardal and

Winther [36].

Complex grids

Throughout this thesis we have only considered relatively regular grids. The cases where acceleration of

the linear solver is most needed are typically of more complex grids and geometric structures. In order

to make use of multigrid preconditioners in such cases we must investigate its robustness with respect

to the complexity of the problem. To this end we should make use of more developed implementations,

such as PETSc’s GAMG [4], Trilinos’ ML [20] or Hypre’s BoomerAMG [52], to avoid artifacts as those

encountered in Section 6.1.1.

Linear solvers for the virtual-element method

We have during this thesis left out the additional part SK of the system matrix when using the virtual-

element method compared to finite-element. It would be of interest to investigate whether this additional

term plays a role on the properties of the linear system. In Section 2.4 we mentioned that there was

flexibility in the choice of sK(·, ·) leading to the matrix SK . As suggested in [19] this flexibility could

potentially be taken advantage of to improve the performance of linear solvers. This is discussed further

in [35].

56

Bibliography

[1] Mark Adams. Evaluation of three unstructured multigrid methods on 3d finite element problems in

solid mechanics. International Journal for Numerical Methods in Engineering, 55(5):519–534, 2002.

[2] Owe Axelsson. A class of iterative methods for finite element equations. Computer Methods in

Applied Mechanics and Engineering, 9(2):123–137, 1976.

[3] Ivo Babuska and Abdul K Aziz. Lectures on mathematical foundations of the finite element method.

Technical report, MARYLAND UNIV., COLLEGE PARK. INST. FOR FLUID DYNAMICS AND

APPLIED MATHEMATICS., 1972.

[4] S Balay, S Abhyankar, M Adams, J Brown, P Brune, K Buschelman, V Eijkhout, W Gropp,

D Kaushik, M Knepley, et al. Petsc users manual revision 3.5. Technical report, Technical report,

Argonne National Laboratory (ANL), 2014.

[5] L Beirão da Veiga, F Brezzi, A Cangiani, G Manzini, LD Marini, and A Russo. Basic principles of

virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199–214,

2013.

[6] VV Belikov, VD Ivanov, VK Kontorovich, SA Korytnik, and A Yu Semenov. The non-sibsonian

interpolation: A new method of interpolation of the values of a function on an arbitrary set of points.

Computational mathematics and mathematical physics, 37(1):9–15, 1997.

[7] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second order. Computing,

55(4):379–393, 1995.

[8] Susanne Brenner and Ridgway Scott. The mathematical theory of finite element methods, volume 15.

Springer Science & Business Media, 2007.

[9] Marian Brezina, Andy J Cleary, Rob D Falgout, VE Henson, JE Jones, TA Manteuffel, SF Mc-

Cormick, and JW Ruge. Algebraic multigrid based on element interpolation (amge). SIAM Journal

on Scientific Computing, 22(5):1570–1592, 2001.

[10] William L Briggs, Steve F McCormick, et al. A multigrid tutorial. Siam, 2000.

[11] F Chalon, M Mainguy, P Longuemare, and P Lemonnier. Upscaling of elastic properties for large

scale geomechanical simulations. International journal for numerical and analytical methods in

geomechanics, 28(11):1105–1119, 2004.

[12] Tony F Chan and Howard C Elman. Fourier analysis of iterative methods for elliptic pr. SIAM

review, 31(1):20–49, 1989.

[13] Tim Chartier, RD Falgout, VE Henson, J Jones, T Manteuffel, S McCormick, J Ruge, and PS Vas-

silevski. Spectral amge (ρ amge). SIAM Journal on Scientific Computing, 25(1):1–26, 2003.

[14] L Beirão Da Veiga, Franco Brezzi, and L Donatella Marini. Virtual elements for linear elasticity

problems. SIAM Journal on Numerical Analysis, 51(2):794–812, 2013.

57

BIBLIOGRAPHY 58

[15] James W Demmel. Applied numerical linear algebra, pages 279–299. Siam, 1997.

[16] James W Demmel. Applied numerical linear algebra, pages 307–321. Siam, 1997.

[17] SINTEF ICT Dept. of Applied Math. MATLAB Reservoir Simulation Toolbox (MRST). http:

//www.sintef.no/mrst. (Visited 12/14/2015).

[18] Richard S Falk. Finite element methods for linear elasticity. In Mixed Finite Elements, Compatibility

Conditions, and Applications, pages 159–194. Springer, 2008.

[19] Arun L Gain, Cameron Talischi, and Glaucio H Paulino. On the virtual element method for three-

dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied

Mechanics and Engineering, 282:132–160, 2014.

[20] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala. ML 5.0 smoothed aggregation

user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories, 2006.

[21] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical

Analysis, 10(2):345–363, 1973.

[22] H Gercek. Poisson’s ratio values for rocks. International Journal of Rock Mechanics and Mining

Sciences, 44(1):1–13, 2007.

[23] Michael Griebel, Daniel Oeltz, and Marc Alexander Schweitzer. An algebraic multigrid method for

linear elasticity. SIAM Journal on Scientific Computing, 25(2):385–407, 2003.

[24] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear

systems. 1952.

[25] Alan J Hoffman, Michael S Martin, and Donald J Rose. Complexity bounds for regular finite

difference and finite element grids. SIAM Journal on Numerical Analysis, 10(2):364–369, 1973.

[26] Kai Hormann and Natarajan Sukumar. Maximum entropy coordinates for arbitrary polytopes. In

Computer Graphics Forum, volume 27, pages 1513–1520. Wiley Online Library, 2008.

[27] Roger A Horn and Charles R Johnson. Matrix analysis, pages 109–111. Cambridge university press,

2012.

[28] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[29] Jun Hu, Hongying Man, and Shangyou Zhang. The simplest mixed finite element method for linear

elasticity in the symmetric formulation on n-rectangular grids. arXiv preprint arXiv:1304.5428,

2013.

[30] Ken R James. Convergence of matrix iterations subject to diagonal dominance. SIAM Journal on

Numerical Analysis, 10(3):478–484, 1973.

[31] Tao Ju, Peter Liepa, and Joe Warren. A general geometric construction of coordinates in a convex

simplicial polytope. Computer Aided Geometric Design, 24(3):161–178, 2007.

[32] CT Kelley. Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995, volume

65002, chapter 2.

[33] Knut-Andreas Lie. An introduction to reservoir simulation using matlab: user guide for the matlab

reservoir simulation toolbox (mrst). SINTEF ICT, Norway, 2014.

58

http://www.sintef.no/mrst
http://www.sintef.no/mrst

BIBLIOGRAPHY 59

[34] Knut-Andreas Lie, Stein Krogstad, Ingeborg Skjelkv̊ale Ligaarden, Jostein Roald Natvig, Halvor Møll

Nilsen, and B̊ard Skaflestad. Open-source matlab implementation of consistent discretisations on

complex grids. Computational Geosciences, 16(2):297–322, 2012.

[35] Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. Mimetic finite difference method.

Journal of Computational Physics, 257:1163–1227, 2014.

[36] Kent-Andre Mardal and Ragnar Winther. Preconditioning discretizations of systems of partial dif-

ferential equations. Numerical Linear Algebra with Applications, 18(1):1–40, 2011.

[37] Jorge Nocedal and Stephen Wright. Numerical optimization, chapter 5. Springer Science & Business

Media, 2006.

[38] Jan Martin Nordbotten. Cell-centered finite volume discretizations for deformable porous media.

International Journal for Numerical Methods in Engineering, 100(6):399–418, 2014.

[39] Yvan Notay. An aggregation-based algebraic multigrid method. Electronic transactions on numerical

analysis, 37(6):123–146, 2010.

[40] Per-Olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM review, 46(2):329–

345, 2004.

[41] JW Ruge and Klaus Stüben. Algebraic multigrid. Multigrid methods, 3(13):73–130, 1987.

[42] Torgeir Rusten and Ragnar Winther. A preconditioned iterative method for saddlepoint problems.

SIAM Journal on Matrix Analysis and Applications, 13(3):887–904, 1992.

[43] Yousef Saad. Iterative methods for sparse linear systems, chapter 4. Siam, 2003.

[44] Yousef Saad. Iterative methods for sparse linear systems, chapter 6,7. Siam, 2003.

[45] Robin Sibson. A vector identity for the dirichlet tessellation. In Mathematical Proceedings of the

Cambridge Philosophical Society, volume 87, pages 151–155. Cambridge Univ Press, 1980.

[46] K Stuben. An introduction to algebraic multigrid. Multigrid, pages 413–532, 2001.

[47] Klaus Stüben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics,

128(1):281–309, 2001.

[48] Ray S Tuminaro. Parallel smoothed aggregation multigrid: Aggregation strategies on massively

parallel machines. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing, page 5.

IEEE Computer Society, 2000.

[49] Petr Vanek, Jan Mandel, and Marian Brezina. Algebraic multigrid on unstructured meshes, vol-

ume 34. Citeseer, 1994.

[50] Petr Vaněk, Jan Mandel, and Marian Brezina. Algebraic multigrid by smoothed aggregation for

second and fourth order elliptic problems. Computing, 56(3):179–196, 1996.

[51] Kyuichiro Washizu. Variational methods in elasticity and plasticity. Pergamon press, 1975.

[52] Ulrike Meier Yang et al. Boomeramg: a parallel algebraic multigrid solver and preconditioner.

Applied Numerical Mathematics, 41(1):155–177, 2002.

59

	Abstract
	Sammendrag
	Preface
	Introduction
	Structure of thesis
	Notation

	Reservoir mechanics
	Modeling elasticity
	Elastic anisotropy
	Finite-element method
	Discretization
	Boundary conditions and rigid body modes

	Virtual-element method
	Kinematic decomposition of WK

	Matlab Reservior Simulation Toolbox

	Iterative linear solvers
	Stationary iterative methods
	Convergence
	Jacobi and -Jacobi
	Gauss-Seidel
	Successive Over Relaxation

	Conjugate Gradient
	Convergence of conjugate gradient
	Preconditioned Conjugate Gradient

	Matrix based preconditioners
	Jacobi, SOR preconditioners
	Incomplete factorization

	Multigrid
	Multigrid concepts
	Smoothing
	Coarse grid correction
	Intergrid operators
	Multigrid cycle

	Algebraic multigrid
	Algebraic smoothness
	Classical coarsening
	Coarsening by aggregation
	Coarsening by smoothed aggregation

	AMG for the elasticity equation
	Block approach for system equations
	Interpolation of rigid body modes

	AMG as preconditioner

	Implementation of AMG
	Constructing neighborhoods
	Construction of aggregates
	Constructing the prolongator

	Numerical results
	Test problems
	Problem A: Isotropic square certesian grid
	Problem B: Aspect ratio
	Problem C: Horizontal plate

	Conclusion and further work
	Further work

