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Abstract 
 

 

Inside of the Norne E-segment remains a considerable amount of residual oil even after 

applying the primary and secondary oil recovery methods (water injection). Recently, several 

methods have been studied based on simulations to decrease the residual oil trapped by 

capillary forces and consequently improve the oil recoverability. Additionally, Norne E-

segment is severely affected by stratigraphic barriers and faults of nature not sealing, semi 

sealing and completely sealing.     

Water Alternating Gas (WAG) and Simultaneously Water Alternating Gas (SWAG) injection 

techniques are presented as potential candidates to increase oil productivity in the Norne E-

Segment by decreasing the gas mobility and capillary forces guarantying effective   

microscopic displacement due to gas flooding and macroscopic sweep created by water 

injection. 

In the first part of this study, based on simulations (Eclipse 100, Black oil simulator), 

sensitivity analyses of WAG cycles and WAG ratio were investigated combining with low 

injection rate and high injection rate. However, three WAG cycle were suggested (3 months, 

6 months and 1years injection cycles) and different values of WAG ratio were studied based 

on low and high injection rates of water and gas. According to the results, WAG cycle 

doesn’t affect the fluids rates productions when low injection rate is used, but a slightly effect 

is noticed when high injection rate is applied, thus a slightly optimal WAG ratio was found to 

be 1:3 when high WAG ratio is used. 

As a sequence, examination of three different injection patters scenarios were simulated to 

optimize the oil recoverability using both techniques WAG and SWAG, namely: injection 

studies using the injection wells already existed; injection studies using the injection wells 

already existed by doing a new completion within Ile and Tofte formations; injection studies 

placing a new injection well plus new completion of the injection well.   

As a result, the last scenario using SWAG technique presented oil recovery around 73%, 

whose was approximately 5% higher than oil recoverability when WAG injection technique 

(68%), when high injection rate is applied.  
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CHAPTER I. Introduction 

   

1.1. Background 
 
 

With the technological advancement worldwide, petroleum has become the largest source of 

non-renewable energy generation to ensure the development of industrialized countries and in 

the developing world. Global demand for energy is growing exponentially which requires the 

creation of efficient methods for tertiary recovery of petroleum residual forms to ensure the 

maximum possible value of recovery of petroleum before it reaches the stage of abandonment 

of reservoir. 

There are numerous techniques tertiary oil recovery (figure.1), since the implementation each 

reservoir depends on the characteristics of the candidate, the surface environment, the 

infrastructure in place, the environmental issue and how much oil we can recover.Chemical 

methods have been applied widely in North Sea fields, with great success. However, this 

process is costly.  Appropriate techniques have been developed for improving oil recovery 

from North Sea reservoirs, where water injection method alone is not effective because of the 

lack of efficient gravity drainage. Considering this, several EOR process has been studied to 

evaluate its applicability to such type of reservoirs.  

This project comes from some form present a new method for recovering residual oil, which 

can be successfully applied in oil field located in the North Sea known as the "Norne Field." 

This oil field is divided into five segments (Segment B, C, D, E and G). In a more specific, 

the study had taken place only in the segment E. Assuming this thread can be analyzed in a 

unique way as it is isolated from the rest of the segments by barriers made of clay failures. 

The new techniques tertiary recovery techniques of oil, drawn in that master's thesis are 

known as water alternating gas (WAG) and water alternating gas Simultaneously (SWAG) 

injection techniques. The two tertiary recovery techniques of oil combines the advantages of 

the waterflooding and gas injection methods to control the gas mobility and optimize the 

residual oil production but SWAG technique presents higher values of efficiency when 

compared with the WAG technique. The main challenge shall apply both techniques of 

recovery to try to extract the residual oil in the E-segment Oilfield Norne field and make a 

comparison in terms of final yield. 
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Figure 1. Classification of EOR methods 
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More precisely, the following chapters will provide an understanding study related with 

WAG injection method. After this study, a brief description of the Norne E-segment field and 

the simulation model will be done to better understand the reservoir behavior.  Finally, WAG 

and SWAG process will be studied based on simulations using Eclipse simulator coupled 

with S3GRAF (reader of graphics). 

 

1.2.  Research Objectives 

 

The main scope of the present work is to make a simulation study into the Norne E-segment 

about two enhanced oil recovery processes, the water alternating gas (WAG) injection 

technique and simultaneously water alternating gas (SWAG) injection technique for future oil 

recovery prediction. To achieve the main objective, the following tasks must be fulfilled: 

 

1. Determining the optimum injection cycle time  and WAG ratios; 

2. Investigating the effect of high Injection rates and low injection rates on the 

ultimate oil recovery; 

3. Studying the effect of WAG and SWAG  injection methods on the sweep 

efficiency 

 

1.3. Methodology 
 

 

In order to accomplish the proposed objectives, Eclipse simulator is used to run the 

simulations coupled with S3 GRAF program to reading the results of simulations. Three 

different injection patterns were simulated, implementing water alternating gas and 

simultaneously water alternating gas injection techniques in separated, namely: original 

injection patterns, addition of a new well  into the original model and  new well and re-

completion of the existing water injectors. 

E-segment reservoir simulation model was used to optimize WAG cycle time, determine the 

optimum WAG ratio and evaluate different WAG injection patterns. 
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Chapter II. Literature Review 

2.1. Water-Alternating-Gas (WAG) Process 

 
The Water Alternating Gas (WAG) process is an enhanced oil recovery method defined as a 

cyclic method of injecting alternating cycles of gas followed by water and repeating this 

process several cycles desired by the operator (figure 2).  

A comprehensive classification of the WAG process was suggested by many authors, which 

includes: MWAG (miscible), IWAG (immiscible), HWAG (hybrid), and SWAG 

(simultaneous) and SSWAG (selective). (Christensen, 1998; Al- Mamari, 2007; Skauge, 

2007) 

During miscible WAG process (MWAG), the injected gas is miscible with the reservoir oil in 

the first contact or with time as displacement continues under the prevailing conditions (Arne, 

2007). Miscibility of gas provides an additional advantage of decreasing oil viscosity, thereby 

resulting in mobilization of trapped oil during later production stages.  Miscible WAG occurs 

when the reservoir is above the minimum miscibility pressure (MMP). However, immiscible 

WAG process (IWAG), the injected gas is not miscible with the reservoir oil and it displaces 

the oil while maintaining its gaseous phase, with a front between the two phases (Zahoor, 

2011; Fanchi, 2004). Immiscible WAG occurs when the reservoir is below the minimum 

miscibility pressure (MMP). According to Hustad (2002), Hybrid Wag consists in injecting 

previously a large slug of gas in to the reservoir followed by a number of small slugs of water 

and gas.  In SWAG injection technique (Quijada, 2005), at the same time, water and gas are 

injected in the reservoir through a single injection well. However, when the water and  gas 

are  mixed at the surface and then injected in to the reservoir, the process is referred as  

SWAG injection, but when  the gas and water are pumped separately using a dual completion 

injector without mix the two phases on the surface,  the process is referred as  selective 

simultaneously water alternating gas (SSWAG).  

One vital element to the technical success of WAG process is the optimum utilization of gas 

injecting. WAG Optimization is widely recognized as a viable technique in controlling the 

Miscible Process.  However, these process guaranties mobility control in the zones which gas 

tend to choose a preferential channel and consequently, extends the oil recovery.  
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Figure 2. Schematic of the WAG process  

 

Christensen et al. (2001) defined the SWAG method as simultaneous injection of both water 

and gas at the same time into a portion or the entire thickness of the formation. This process 

can be performed using two   different techniques: Conventional SWAG technique, Modified 

SWAG technique ( Algharib, 2007). In a Conventional SWAG technique, water and gas are 

mixed at the surface. However, in a modified SWAG technique (SSWAG), gas and water are 

injected together through a single well bore, no mixing takes place at the surface. The two 

phases are pumped separately using a dual completion injector and are selectively injected 

into the formation. Usually gas is injected at the bottom of the formation and water injected 

into the upper portion (Mazen, 2008).  

In terms of oil recoverability, each reservoir is individuality, but normally the primary 

production will be around 15-25% of the original oil in place (OOIP), while secondary IOR 

using conventional techniques will lie between 20-40% of the OOIP and tertiary recovery. 

Tertiary recovery allows another 5% to 15% of the reservoir's oil to be recovered. Moreover, 

recent advances in reservoir technology as shown values of tertiary oil recovery estimated 

between 45-50% of OOIP. Values above 60% are very rare, but some mature fields in the 

Norwegian Sea, were predicting recovery of 64% OOIP with a possible 75% using a miscible 

WAG process. 
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2.2- Effect of capillary number and mobility ratio on residual oil recovery 

 

The improvement on oil recovery during application of each EOR methods is due to effect of 

capillary number and mobility ratio. These properties dominate strongly the oil recovery.  

We shall discuss the principle of these physical properties that cause and effect when by 

chance the modular value is increasing or decreasing. 

 Accordingly to S, Thomas (2008), Capillary Number represents the relative effect of viscous 

forces versus surface tension acting across an interface between two immiscible liquids.  It is 

usually denoted Nc in the oil field. Mathematically, Capillary number is defined as: 

  

   
  

 
 

The following formula is also valid: 

   
   

  
 
 

 
 

Where: 

   Displacing fluid viscosity 

   Darcy’s velocity 

   Interfacial tension (IFT) between the displaced and the displacing fluids. 

   Effective permeability to the displaced fluid 

  

 
  Pressure gradient 

 

For a flowing liquid, if NC >>1, then viscous forces dominate over interfacial forces; however 

if NC <<1, then viscous forces are negligible compared with interfacial forces and the flow in 

porous media is dominated by capillary forces. However, Capillary numbers are usually large 

for high-speed flows and low for low-speed flows; thus, typically for flow through pores in 

the reservoir NC ~10-6, and for flow in production tubular NC ~1.   

Capillary number in a miscible displacement becomes infinite, and under such conditions, 

residual oil saturation in the swept zone can be reduced to zero if the mobility ratio is 

“favourable”.  
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Several authors studied the relation between capillary number and residual oil saturation that 

is presented in the figure 3. Thus, the significant increase in oil recovery was due lowering 

the interfacial tension (IFT) between the fluids and pressure gradient promoting a reduction 

in the capillary number.  

To get a notion of the magnitude of the diminution of the IFT to amount of residual oil has to 

be recovered under laboratory condition, Reed (1954) found a IFT in the order 10
-2

mN/m.  

Taber (1969) studied the implication of the pressure gradient on oil recovery. This author 

concluded that the critical value of the critical pressure gradient has to be exceeded to effect a 

reduction in the residual oil saturation by lowering the IFT by a factor of about 1000. Notice 

that, this value can be easily achieved in laboratorial conditions, but extremely difficult under 

field conditions.  

 

The other factor that affects the residual oil recovery is the Mobility ratio, defined by S. 

Thomas as mobility of the displacing phase divided by the mobility of the displaced phase. It 

is usually denoted M in the oil field. Mathematically, mobility ratio is defined as: 

  

M = λing / λed, 

 Where: 

     Mobility of the displacing fluid, ( 
    

    
   

    Mobility of the displaced fluid, ( 
   

   
   

 

Since mobility ratio is less than one (M<1), the displacement is stable, a fairly sharp “shock 

front” separates the mobile oil and water phases, and the permeability to water stabilizes 

fairly quickly. In other case, where the mobility ratio is slightly greater than one (M > 1) is 

considered unfavourable, because it indicates that the displacing fluid flows more readily 

than the displaced fluid (oil), and it can cause channelling of the displacing fluid, and as a 

result, bypassing of some of the residual oil. Under such conditions, and in the absence of 

viscous instabilities, more displacing fluid is needed to obtain a given residual oil saturation. 

However, if the value is close enough or equal to unity that the displacement is nearly piston-

like, and is denoted a favourable mobility ratio. Mobility ratio influences the microscopic 

(pore level) and macroscopic (areal and vertical sweep) displacement efficiencies.
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Figure 3- Residual oil saturation as a function of capillary number (S.M. Farouq Ali and S. Thomas, ) 
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The following graph (figure 4), represents a simple case of a waterflood were displaceable oil  

is variating as a funcion of mobility ratio, for  fixed volumes of the injected fluid. 

Displacement efficiency  increase as the mobility ratio decrease. 

       

Figure 4- Effect of mobility ratio on water flood oil recovery (S.M. Farouq Ali 

                           and S. Thomas, 1994 ) 

 

The mathematical relationship between microscopic and macroscopic recoveries efficiencies 

are represented using the oil recovery factor (Rf), and it can be given by the following 

formula:    

                                                                         

                                             Where:   

               

 The macroscopic sweep efficiency is defined by the horizontal and the vertical sweep 

efficiencies (          ). The horizontal sweep efficiency is related to the mobility ratio and 

the vertical sweep efficiency depends on viscous to gravity forces ratio.  
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2.3. Factors influencing WAG process design 
 

 The main design issues for WAG injection techniques are fluid properties, rock-fluid 

interaction, availability and composition of injection gas, WAG ratio, heterogeneous 

permeability, injection pattern, cycling time, WAG ratio, injection/production pressure and 

rate, three-phase relative permeability effects and flow dispersion and finally  time to initiate 

the WAG (Christensen et al., 2001; Heeremans et al., 2006; Zahoor, 2011; ). 

 

 

2.3.1. Fluid properties and rock fluid interaction 
 

The property of a fluid is directly related to the viscosity of crude oil within the reservoir. 

These properties are determined by standardized laboratory procedures. Unfortunately the 

test results do not represent a general characteristic of the reservoir, because the samples are 

taken from different sites within the reservoir. The prediction of the reservoir fluid properties 

becomes even more complex when the prevailing conditions within the reservoir change as a 

result of undergoing processes, leading to unexpected reaction during injection and 

production operations ( Zahoor, 2011).   

 

Variations in rock-fluid interaction with changing conditions in a reservoir result in 

wettability variations, which in turn affect flow parameters such as capillary pressure and 

relative permeability (Josephina et al., 2006; Zahoor, 2011).  

In terms of reservoir simulation, the rock fluid properties like adhesion, spreading and 

wettability are normally analysed as one parameter, "relative permeability". Thus, this 

parameter is very important when predictions are realised in the reservoir simulation (Rogers, 

2000). 

  

2.3.2. Reservoir Heterogeneity and Stratification 

The degree of interconnection between the pores of an oil reservoir, are usually not evenly 

distributed due to non-uniformity of pore size, which gives rise to disordered and complex 

reservoir fluid flow behaviour. Geologically speaking, this is known as phenomenon of 

heterogeneous permeability that can manifest different individual layers, forming different 

homogeneous layers within the oil reservoir with different permeability’s. 
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The effects of stratification and heterogeneity can be distinct in different reservoirs, affecting 

various parameters such as capillary pressure, relative permeability, and mobility ratios 

(Ahmadet al., 2009; Farshid et al., 2010). The presence of different permeability’s and 

heterogeneity in a reservoir, affects the displacement of the native fluids by the injected fluid. 

Channelling of the solvent through high permeability regions reduces the storage and 

displacement efficiency of the displacing solvent (X. WU, 2004). However, it strongly affects 

the efficiency in the WAG process design, since this phenomenon controls the injection and 

sweep patterns in the floodThis phenomenon can cause large variations in the vertical and 

horizontal permeability of the reservoir.Vertical permeability is influenced by cross flow, 

Viscous, capillary, gravity and dispersive forces (Madhav, 2003). However, high recoveries 

result from low vertical to horizontal permeability ratio because the gravity segregation do 

not dominate the fluid flow behaviour (Zahoor, 2011; John and Reid, 2000).   

 

 

2.3.3. Availability and composition of injection gas 
 

The availability of gas in WAG process design affects greatly the economic viable choice. 

Usually, the gas produced with oil from a reservoir is separated and re-injected during the 

WAG process, promoting less expense. 

Accordingly to Jensen (Jensen, 2000), hydrocarbon gas, was suggested to be more suitable 

for Ekofisk field, even though CO2 WAG yielded higher incremental production under 

laboratory conditions(14). 

 Mustafa (2001) made a numerical study to evaluate the application of an EOR method for oil 

production improvement at B.Kozluca Field in Turkey.  Initially, the oil gravity of the field 

was around 12.6 0API with a very high viscosity of 500 cp at reservoir conditions. In order to 

increase the oil recovery, a CO2 gas injection method was chosen among others no thermal 

methods, because of the fact that in about 10 km from the B.Kozluca field, there is a CO2 

reservoir available at Camurlu Field. Therefore, the availability of the gas injection is very 

important to choose the right WAG ratio.  

Gas composition, in particular, is crucial in the design WAG process, a decision parameter 

that determines whether the process will be miscible or immiscible under the prevailing 

conditions of pressure and temperature within the oil reservoir (Zahoor, 2011). anotherGas 

composition, in particular, is crucial in the design WAG process, a decision parameter that 
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determines whether the process will be miscible or immiscible under the prevailing 

conditions of pressure and temperature within the oil reservoir (Zahoor, 2011).  

  
  

2.3.4. WAG ratio 

 
In WAG process, gas and water slugs are alternately injected in a fixed ratio called the WAG 

ratio. According to WU (2004), WAG ratio can be also defined as the ratio of the volume of 

water injected within the reservoir compared to the volume of injected gas. 

WAG ratio represents, one important parameter to optimize during WAG process. According 

to Chen (2010), WAG ratio plays an important role in obtaining the optimum value of the 

recovery factor corresponding to an optimal value of the WAG ratio. This optimal WAG ratio 

is reservoir dependent because the performance of any WAG scheme depends strongly on the 

distribution of permeability as well as factors that determine the impact of gravity segregation 

(fluid densities, viscosities, and reservoir flow rates) (X. WU, 2004) .  Studies made by John 

and Reid (2000), showed that the WAG ratio strongly depends on reservoir’s wettability and 

availability of the gas to be injected.   

When the WAG ratio is high, may cause oil trapping by water blocking or at best may not 

allow sufficient solvent-oil contact, causing the production performance behave like a water 

flood. On the other hand, if the WAG ratio is very small, the gas may channel and the 

production performance would tend to behave as a gas flood, the pressure declines rapidly, 

which would lead to early gas breakthrough and high declination on production rate (X. WU, 

2004).  To find the optimal WAG ratio is necessary to perform sensitivity analysis, proposing 

different relations of WAG ratio to study the effect on oil recovery. 

Kudal (2010) performed a simulation sensitivity analyses study of a western Indian onshore 

field to evaluate the effect of different critical parameters on the recovery factor using 

immiscible WAG process. As results, better performance was achieved with 1:2 WAG ratio 

in six months injection period. Normally is preferable to inject higher gas volumes as 

compared to water in oil-wet reservoirs. The amount of volumes to be injected at the desired 

pressures strongly affects the cost of surface facilities, like compressors and pumps, which in 

turn strongly influences the WAG ratios due to economic constraints (Zahoor, 2011). 
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2.3.5. Injection pattern 

 
 
The choice of the Wells spacing, in WAG process design, is very important because of the 

fact that the sweep efficiency of the oil is strongly affected by distance between the injector 

and the producer well (Christensen et al., 1998, 2001; Mohammad et al., 2010).  

 

In many cases, a Five-spot injection pattern is very popular, as it can provide better control on 

frontal displacement (Zahoor, 2011).  However, the results of a recent study   made by 

Mohammad et al. (2010) in an Iranian fractured reservoir shows that a 4-spot pattern (4 

producers with 2 injectors) gives higher recovery than a 5-spot pattern (6 producers with 2 

injectors).  It means that the best injection patters have to be chosen after simulation studies 

analysis, because it varies from reservoir to reservoir.  

Chase and Tood (1984) reported about well’s orientation and theirs opinion is that the 

combination of vertical producers with horizontal injectors can give better recovery.  

 

The advances in computer technology and software development have made this possible, 

that the optimum location of wells and their orientation, together with parameters like WAG 

ratio, can be selected through simulation studies by preparing a different numbers of 

scenarios (different field development models of reservoir) and analysing the front 

propagation and recovery enhancement (Farzaneh et al. 2009). 

  

2.3.6. Injection / production pressure and rates 
 

Producer bottom hole pressure is one of the most important factors that affect the production 

performance. To study the effect of the producer bottom hole pressure on oil recovery, earlier 

simulation studies made by WU (2004)  on heterogeneous reservoir showed that the producer 

bottom hole pressure should be a little less than the bubble point pressure, and at this 

pressure, the oil recovery is maximum. For instance, if the producer bottom hole pressure is 

much lower than the bubble point pressure, the gas breakthrough occurs very early, which 

leads to oil production to decline. 

 Displacement pressure for solvent floods should be maintained above MMP to develop 

miscibility and displaces oil more efficiently. This determines the lower limit for the injection 
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and production pressures. However, the upper limit of displacement pressure is set by the 

formation fracture pressure.  The ideal design goal is to inject and produce at the maximum 

possible rates within these pressure limits. 

The injectivities of water and gas in low and high permeability layers can be controlled by the 

water-gas ratio and injection rates (Surguchev, 1992). 

 

2.3.7. WAG cycle time 

Other variable that can be considered in optimizing WAG scheme include the timing of 

switch from gas to water. Furthermore, the sequencing of gas, water and WAG injection 

across a large field can offer significant opportunities for increases gas storage (X. WU, 

2004). 

 Previous WAG cycle design procedures used steady state methodology and accepted 

industry rules of thumb. The use of a simulator permits a more rigorous analysis to optimize 

WAG cycle parameters such as cycle time (Pritchard, 1992). 

(X. WU, 2004) recommends to examine different cycle lengths by simulating WAG process, 

in this way we will get to know which cycle lengths is recommendable for our specific case 

and also get to know the effect of slug sizes of water and gas on oil recovery. 

 

2.3.8. Time to Initiate WAG process 

 

One important factor to consider in designing the WAG process is when to initiate the WAG 

process. According with WU (2004) 
studies made by using two approaches include starting 

WAG process at the very beginning of the reservoir development (Initial WAG), or after 

obvious miscible inject ant breakthrough (Post Breakthrough WAG). WU (2004) concluded 

that, the two cases have almost the same breakthrough time, with very low production rate 

period. After the solvent breaks through, the total productions from both cases increase 

significantly, but the “Initial WAG” case shows a slightly higher cumulative oil recovery than 

“Post Breakthrough’ case when the injection pore volume reach approximately 1.2.  

Therefore, based on simulation results, WU recommends initiating the WAG injection as 

early as possible in the reservoir development cycle, to maintain the average reservoir 

pressure and achieve high oil recovery. 
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2.4. Advantages and Disadvantages of the WAG techniques  

 

This new injection technique has been used in several fields north. Various fields in Canada, 

also has enjoyed the benefits of these methods. The efficiencies typically result in 

considerable amounts depending on the characteristics of the reservoir and how the technique 

is designed. The efficiency is due to the advantages offered by this technique, including: 

 Controls mobility  (reduces Gas processing) 

 Improves operation (less gas cycling) 

 Improve residual oil recovery 

 

However, as every process, WAG technique has also disadvantages. The first disadvantage 

considered in the present project is the difficult to Control gas breakthrough as flood matures. 

The second disadvantage is related with slug size; sometimes optimum slug size may be 50% 

HCPV inj. The last disadvantage referred here is loss of injectivity (water), it can be as high 

as 70%. 

When WAG process is well optimized, the following desired results can be achieved in a 

field wide scale:  improve overall recovery (sweep efficiency and oil recovery) and improve 

financial performance (net cash flow). 
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CHAPTER III. Norne field overview 
 

3.1. General information 
 

Norne is an oil field discovered in December 1991, started the oil production in November 

1997 and gas production in 2001. The norne field is located around 80km north of the 

Heidrun oil field in the Norwegian Sea, embraces blocks 6608/10 and 6608/11 as we can see 

in the figure 5. The reservoir is found at a depth of 2,500 metres below sea level. Total 

Hydrocarbon column (based on well 6608/10‐2) is 135 m which contains 110 m oil and 25 m 

gas. 

  
  

 

Figure 5- Norne Field Geographic Location 

 

Totally 50 wells have been drilled in the field which contains 33 producers (16 active wells, 

2010), 10 water injectors (8 active wells, 2010) and 7 observation wells. Table 1 illustrates 

the active development wells in this field. In our days, Norne field has 56 wells: 4 

exploration, 52 production and injection wells.   

The norne field consists of two separate oil compartments; Norne Main Structure (Norne C‐, 

D and E‐segment), which contains 97% of the oil in place, and the North‐East Segment 

(Norne G‐ segment).  Oil is mainly found in the Ile and Tofte formations (about 80%), and 

gas in the Garn formation (see figure 6). 
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Wellbore name Entry date Completion date Purpose Status Content 

6608/10-B-1 H 26.01.1999 05.04.1999 PRODUCTION PLUGGED OIL 

6608/10-B-1 AH 06.11.2005 03.12.2005 OBSERVATION PLUGGED NOT APPLICABLE 

6608/10-B-1 BH 04.12.2005 09.01.2006 PRODUCTION PRODUCING OIL 

6608/10-B-2 H 13.12.1996 09.12.1997 PRODUCTION PRODUCING OIL 

6608/10-B-3 H 21.05.1999 05.07.1999 PRODUCTION PRODUCING OIL 

6608/10-B-4 H 12.01.1998 06.02.1998 PRODUCTION PLUGGED NOT AVAILABLE 

6608/10-B-4 AH 13.06.2001 12.07.2001 OBSERVATION PLUGGED  NOT APPLICABLE 

6608/10-B-4 BH 13.07.2001 07.08.2001 PRODUCTION PLUGGED OIL 

6608/10-B-4 CH 03.06.2004 19.06.2004 OBSERVATION PLUGGED NOT APPLICABLE 

6608/10-B-4 DH 20.06.2004 10.07.2004 PRODUCTION PRODUCING OIL 

6608/10-C-1 H 12.02.1998 20.07.1998 INJECTION  INJECTING WATER 

6608/10-C-2 H 01.10.1998 27.11.1998 INJECTION  INJECTING WATER 

6608/10-C-3 H 06.04.1999 20.05.1999 INJECTION  INJECTING WATER 

6608/10-C-4 H 18.11.1996 18.08.1997 INJECTION  PLUGGED  GAS 

6608/10-C-4 AH 15.11.2003 13.01.2004 INJECTION INJECTING WATER 

6608/10-D-1 H 28.09.1996 18.11.1996 PRODUCTION PLUGGED NOT AVAILABLE 

6608/10-D-1 AH 28.05.2002 25.06.2002 OBSERVATION PLUGGED NOT APPLICABLE 

6608/10-D-1 BH 26.06.2002 05.09.2002 PRODUCTION PLUGGED NOT AVAILABLE 

6608/10-D-1 CH 30.09.2003 07.11.2003 PRODUCTION PRODUCING OIL 

6608/10-D-2 H 09.01.1997 05.01.1998 PRODUCTION PRODUCING OIL 

6608/10-D-3 H 05.07.2000 04.08.2000 PRODUCTION PLUGGED NOT AVAILABLE 

6608/10-D-3 AH 05.08.2000 30.08.2000 PRODUCTION PLUGGED OIL 

6608/10-D-3 BY2H 12.08.2005 25.09.2005 PRODUCTION PRODUCING OIL 

6608/10-D-3 BY1H 06.07.2005 7. 10.2005 PRODUCTION  PRODUCING  OIL 

6608/10-D-4 H 07.01.1998 18.06.1998 PRODUCTION PLUGGED NOT AVAILABLE 

6608/10-D-4 AH 11.01.2003 09.06.2003 PRODUCTION PRODUCING  OIL 

6608/10-E-1 H 28.05.1999 19.06.1999 PRODUCTION SUSP.AT TD  OIL 

6608/10-E-1 Y2H 26.10.2009 3.12.2009 PRODUCTION SUSP.AT TD OIL 

6608/10-E-2 H 16.10.1999 21.11.1999 PRODUCTION PLUGGED OIL 

6608/10-E-2 AH 28.07.2005 15.08.2005 PRODUCTION PLUGGED OIL 

6608/10-E-2 BH 23.11.2007 14.02.2008 OBSERVATIO N PLUGGE D 

6608/10-E-2 CH 15.02.2008 09.03.2008 PRODUCTION PRODUCING NG OIL 

6608/10-E-3 H 29.07.1998 23.09.1998 PRODUCTION PLUGGED OIL 

6608/10-E-3 AH 02.10.2000 12.12.2000 PRODUCTION PLUGGED OIL 

6608/10-E-3 BH 09.03.2005 03.04.2005 OBSERVATION  PLUGGED  NOT APPLICABLE 

6608/10-E-3 BH 09.03.2005 03.04.2005 OBSERVATION PLUGGED NOT APPLICABLE 

Table 2- Wells of the Norne E-segment field 
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Figure 6- Norne Field model
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The oil is produced with water injection as drive mechanism. Gas injection ceased in 2005 

and all gas was planned to be exported. In order to avoid rapid pressure depletion in the gas 

cap, gas will be injected for an extended period of time. 

Norne produced 13.9 million barrels of crude oil and 6.4 billion cubic feet of gas during 

2009. The cumulative production till 2009 is 520 million barrels of oil and 214 billion cubic 

feet of gas. Peak production from the field was 71 million barrels of oil in 2010. It was 

initially estimated to produce 220,000 barrels of oil per day (see figure 7.). 

 

 

Figure 7- Cumulative production of the Norne field 

 

The field life of Norne is expected to be around 20 to 24 years with complete abandonment 

during 2020. The field is expected to generate $4.4 billion in revenues (undiscounted) during 

its remaining life (starting from 01/01/2010) and is expected to yield an IRR of around 

14.19%. 
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3.2. Geological Description 

 

 

Norne field is a sandstone reservoir with different grains size changing from fine‐grained and 

well to very well stored sub‐arkosic arenites. The hydrocarbons in this reservoir are located in 

the Lower to Middle Jurassic sandstones. The reservoir stratigraphy is composed for the 

following formations:  Garn, Ile, Tofte and Tilje. Additionally, there is a cap rock which acts 

as a reservoir seal called Melke Formation. The Not Formation behaves as a sealing layer, 

preventing communication between the Garn and Ile Formations (figure 9). As we can see in 

the figure 8, porosity vary in the range of 15% to 29% and the permeability changes from 20 

mD to 2500 mD. 

As referred before, Melke Formation acts as a reservoir   seal. This formation is mainly 

composed by claystone with thin siltstone in the middle. Depending on the location of the 

exploration well, the thickness of the melke formation varies from 212 m to 160 m.   

The next formation, from the top to the base of the Norne field, is Garn Formation. This 

formation is subdivided in three reservoir zones (Garn 1, Garn 2, Garn 3)   with different 

properties. Garn 1 is thin coarse grained sandstone that acts as a stratigraphic barrier to 

vertical fluid flow into the reservoir. Garn 2 is fine grained sandstone with different type of 

layers, some layers are bioturbated and others are laminated, but the top of the Garn 2 is 

composed by calcareous cemented sandstone which can be a local barrier to vertical flow. 

Consecutively, Garn 3 is composed by fine grained sandstone with sandstone and mudstone 

sediments with floating clasts, at the top. The upper part of this zone is made up of low 

angled cross bedded and fine grained sandstone. 

The Not Formation is constituted by dark grey to black claystone with siltstone lamina. This 

formation is believed to act as stratigraphic barriers to vertical fluid flow within the reservoir. 

The thickness of the Not Formation across the field is between 7 and 10 m. 

After not formation, the Ile formation is found. It is formed by three different reservoir 

zones:    Ile 1, Ile 2 and Ile 3. Ile 1 and Ile 2 both consist of fine to very fine grained sand but 

they are separated by a cemented calcareous layer that are believed to be  the result of minor 

flooding events in a generally regressive period. Ile 3 is made up by fining sandstone of fine 

to very fine grains containing also glauconites, phosphorite nodules and clay clasts. 
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Figure 8- Stratigraphical sub‐division of the Norne reservoir (Statoil, 2001). 
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Figure 9- Structural cross sections through the Norne Field with fluid contacts (Statoil, 2001). 
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The Tofte Formation is divided into three reservoir zones. Tofte 1 consists of medium to 

coarse grained sandstones with steep dipping lamina. The lower parts are more bioturbated 

and have finer grains. The dip of the layers suggests that the source area for sediments was to 

the north or northeast of the field. Another important issue related to Tofte 1 is the limited 

distribution in the east‐west or northeast‐southwest direction. Tofte 2 is an extensively 

bioturbated, muddy and fine grained sandstone unit. Floating clasts can be found in the 

lowermost part of the section, which is coarsening upward. Tofte 3 consists of very fine to 

fine grained sandstone where almost none of the depositional structures are visible because of 

bioturbation. 

The Tilje Formation Sediments deposited are mostly sand with some clay and 

conglomerates. The Tilje Formation is divided into four reservoir zones based on 

biostratigraphic events and similarities in log pattern. Tilje 1 is not cored in either of the wells 

6608/10‐2 nor 6608/10‐3, but it is believed to consist of two sequences of sand that are 

coarsening upward and more massive sand at the top. Tilje 2 has a heteroclitic composition 

consisting of; sandstone layers of variable thicknesses, heavily bioturbatedshales, laminated 

shales and conglomeratic beds. A varying depositional environment is characteristic for Tilje 

2 deposits. Tilje 3 consists of fine grained sand which has a low degree of bioturbation. It is 

therefore possible to see muddrapes, crossbedding and wave ripples in the depositions. 

Implications of the presence of fresh water are also found. Tilje 4 is a fine grained, 

bioturbated and muddy sandstone in the lower parts, while upper parts have conglomeratic 

beds interbedded with thin sandstone and shale layers. 
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3.3. Reservoir communications 
 
 
 

When talking about communication in reservoirs of oil, we will rely on the communication of 

fluid between layers and segments. Normally, may be affected by faults or semi-sealing 

sealants, formation of nature sealing between layers with good permeability (stratigraphic 

barriers). During fluid flow drainage strategy these factors constitute important parameters to 

be analysed, it affects the performance of the drainage of petroleum. 

In the specific case of the Norne field, lateral and vertical flows are severely affected by 

faults and stratigraphic barriers.  The figure.10 (Eric master, 2010) shows the major faults 

existing in the Norne field.  

Beside gravitational, viscous and capillary forces effects, stratigraphic barriers act in the 

Norne field complicating the normal flow of fluids in the vertical direction. These barriers are 

mainly constituted of layers of sizes of some variables being cemented and other Carbonate 

formation of Claystone. The vertical barriers which restrict the vertical fluid flow within the 

Norne Field are listed below: 

 

 Garn 3/Garn 2 ‐ Carbonate cemented layer at top Garn 2 

 Not Formation ‐ Claystone formation 

 Ile 3/Ile 2 ‐ Carbonate cementations and increased clay content at base Ile 3 

 Ile 2/Ile 1 ‐ Carbonate cemented layers at base Ile 2 

 Ile 1/Tofte 4 ‐ Carbonate cemented layers at top Tofte 4 

 Tofte 2/Tofte 1 ‐ Significant grain size contrast 

 Tilje 3/Tilje 2 ‐ Claystone formation 

 

The main barriers so severe that affect the vertical flow of fluids between those presented 

above are including the Not Formation, the carbonate cemented layers which separate Ile 1 

and Tofte 4 Formations, and the claystone which separate Tilje 3 and Tilje 2 Formations. 

(Statoil, 2001). 
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Figure 10- Faults into the Norne fiel (Eric master, 2010)
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3.4. 9Wellbores 
 
 

After the phases of exploration, identification and evaluation of a potential reservoir of 

petroleum, an exploration well has to be drilled to confirm the presence or absence of 

hidrocarbons. During this phase, is recommended to drill several exploration wells in 

different locations to confirm the formation stratigraphy and formation properties and 

characteristics. As sequence, development wells are drilled to produce the hydrocarbons and 

inject fluids to keep the pressure constant.       

In real case of the Norne field, according to Statoil (2001), 50 wells have been drilled in the 

field until 2010. Entre eles, 43 well are development wells and 7 exploration wells. Within 

the 43 development wells, 33 are in production (16 active wells), 10 injectors. An updated 

file of the Norne field, shows more the 50 wells in total, which we can confirm in the table 1.  

Remember that the main objective of this master's thesis, and make a study of the efficiency 

of water injection and gas form the simultaneous and alternating within the E-segment of the 

Norne Field. Therefore, it is necessary to have a vast overview of the wells that are into the 

E-segment. Among the wells presented above, the following part of And-segment:Well 

6608/10‐B‐3 H, Well 6608/10‐E‐1 H, Well 6608/10‐E‐2 H, Well 6608/10‐E‐3 H,  Well 

6608/10‐E‐3 AH, Well 6608/10‐F‐1 H, Well 6608/10‐F‐2 H and Well 6608/10‐F‐3 H  

(figure. 11). 

 

Figure 11- well location into the Norne E-segment 

 

Well 6608/10‐B‐3 had been drilled as horizontal well with two horizontal sections, one in Ile 

and other in the Tofte formations. The well was initially completed in the Ile and Tofte 
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Formations.  In 1st of July 1999, started oil production covering from the western part of the 

D-segment and the southern part of the E-segment.  

Well 6608/10‐E‐1 H is a horizontal production well, completed in the Ile 2 and Ile 3 

Formations. This well was intentionally originated to drain oil in the southern part of the E-

segment.   

Well 6608/10‐E‐2 H was drilled as a horizontal well, designed to produce oil from the 

southern part of E-segment.  The completion was planned to be implemented in the Ile 3 and 

Ile 2 Formations, but during drilling operation, it was drilled deeper than planned   starting 

producing oil in November 1999 and in July 2005 stopped producing oil due to earlier water 

breakthrough, therefore a new completion was made in the   Ile 2.1 Formation and it restarted 

to produce oil in August 2005..  

Well 6608/10‐E‐3 H was initially designed to drain oil from the northern Part of E-segment.  

It is an horizontal well with an slight inclination in a way that the well perforates throughout 

Garn, Not, Ile and Tofte formations. The well completion was realised in the Ile and upper 

Tofte Formations. Well 6608/10‐E‐3 H started production December 2000 and was plugged 

May 2000. 

Well 6608/10‐E‐3 AH started the oil production in December 2000 and stopped producing in 

January 2005. However, it is a horizontal well, originally designed to drain oil from the Garn 

Formation in the northern part of E-Segment. The well was located in sands containing oil the 

whole section except for an interval in the water zone. 

Well 6608/10‐F‐1 H is a vertical well that was drilled through Garn, Ile, Tofte and Tilje 

Formations. The well was perforated approximately 23 m TVD below the oil‐water contact in 

the Ile and Tofte Formations.  In addition, this well is located into the north of the Norne E‐

Segment. Originally designed to inject water in the aquifer in northern part of the field. 

Injection from this well started September 1999.  

Well 6608/10‐F‐3 H was originally designed to drain oil in the south‐western part of the E‐

segment. The well was drilled with an angle of up to 50 in the top whole section and less than 

20 in the reservoir. Completion was performed in the Tofte and Tilje Formations. However, 

Injection started in September 2000. 
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3.5. Wellbores facilities 

 

A good strategy for production ensures high amounts of petroleum recovered. Therefore, they 

take it into account during the development phase of the reservoir. The wells of the Norne 

field were designed based on the following principles:  

 

 Location of the water  injectors at the  flanks of the reservoir 

 Location of the Gas injectors at the structural heights of the reservoir 

 Location of the oil producers between gas and water injectors for delaying gas and 

water breakthrough 

  

The water injection strategy was made in a way that the areal distributions of the water 

Injectors maintain a steady rise of the water level and hence good areal sweep. Moreover, the 

vertical communication in the Norne reservoir is restricted by cemented layers, it was 

necessary to convert the drainage strategy from vertical to flank sweep. This objective was 

obtained by locating the water injectors toward the flanks. Additionally, the water injector’s 

wells are completed in the Tilje 3 up to Ile 3 formation. 

Additionally, the locations are optimized according to gas and water breakthrough times by 

use of reservoir simulation studies.  
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3.6.  Drainage Strategy within the E-segment 

 

One of the most important factors in designing drainage strategy is the injection storage 

volume that needs to be provided to achieve flood control and minimise the water and gas 

breakthrough in the production wells. 

In this section,   an examination of the drainage strategy within Norne field   will be realised. 

The initial strategy to maintain reservoir pressure was to reinject produced gas into the gas 

cap and water into the water zone. But since the gas cap had high pressure and was sealed off 

by the Not formation, the gas injection was changed to the water zone and the lower part of 

the oil zone. This change in strategy was successful; however, the prediction of gas flow in 

the reservoir became more complicated and uncertain. A higher GOR than expected caused 

the production to be restricted by gas handling capacity. Gas export was started in order to 

obtain a balanced gas- and water injection strategy, and prevent further increase in GOR. 
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CHAPTER .IV.  Norne E-segment simulation model 

4.1. Case Study 

 

In this project, the E-segment model is considered as a single entity model   to precisely 

characterize and predict fluid behaviour in this segment. Therefore, from the original Norne 

field complete model, was separated the E- segment.  The E-segment reservoir simulation 

model was programed using ECLIPSE100, black oil model, with three phases (oil, gas and 

water).  The segment reservoir model is discretized by 46×112×22 grid blocks with 8733 

active cells.  In total, the E-segment has 8 wells. These comprise of one observation well, 2 

injector and 5 producers.  Below is showed the E-segment eclipse model: 

 

 

 

 

 

 

Figure 12- Norne E-segment simulation model 
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4.2. Characteristics and properties of the E-segment simulation model 

4.2.1. Initial reservoir conditions 

 

The reservoir model was initiated at a uniform pressure of 273.2 bar and constant temperature 

of 98.3 
0
C. Water compressibility used in the eclipse model was 4.67 X 10-5 1/bar at 277 bars 

while the water formation volume factor used was 1.0328 Rm3/Sm3. The rock 

compressibility of 4.84 X 10-5 1/bar was used in the entire reservoir while the water viscosity 

is 0.318cp.  Oil formation volume factor of 1.32 Rm
3
/Sm

3
, gas formation volume factor 

0.0047, oil density of 859.5 kg/m
3
 and API equal 32.7

0
, gas density of 0.8545 kg/m

3
. 

Connate water saturation related to E‐Segment varies from 0.05 to 0.38 among different 

relative permeability curves, reservoir wettability is believed to be mixed wet. The geologic 

model provided an estimate of OOIP 17.4 million barrels at initialization. 

 

 

 4.2.2. Reservoir properties 

 

To describe a petroleum reservoir, the key properties are porosity, pore saturation, and 

permeability. In general, Porosity refers to the maximum capacity of the reservoir to hold 

fluids. In the E- segment generation of total porosity is executed by use of the equation  

φ= a + b.ρb 

Where ρb is the bulk density, while a and b are constants.   

Cross plots of overburden corrected core porosity vs. density log are used to find these 

constants. The constants are found for the different zones, which are grouped together for 

improving correlations. Some uncertainties are related to the determination of the constants a 

and b from cross plots (Statoil, 1994).  Typical porosities in different Norne E-segment layers 

are represented in the figure. 15.  
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Permeability (see figures 13 and 14) is a factor that quantifies how hard or how easy it is for 

the fluid to flow through the reservoir to the oil producing well; the greater the permeability, 

the easier the fluid flows. In the norne field log estimated permeability was established by use 

of the relationship between overburden corrected core porosity and overburden corrected core 

permeability. Log permeabilities in the horizontal and vertical directions were found to be 

unrelated. Hence, vertical permeability was defined in the same way as the horizontal 

permeability. It is found that both horizontal and vertical permeability were overestimated in 

Tilje 3, Tilje 4 and Tofte 3 zones. Core permeability was less than 2000 mD in these zones, 

so the log derived permeability was cut on a maximum value of 2000 mD here. In the other 

zones, the maximum value was 10000 mD (Statoil, 1995). 

Table 2. Average values of porosity and permeability in modelling (Statoil, 1994) 

Formation Net/Gross 
( Fraction ) 

Dept 
M TVD/MSL 

Porosity 
Fraction 

Permeability 
mD 

Garn 3 0.94 2553 0.29 813.9 

Garn 2 0.86 2562 0.23 518.6 

Garn 1 0.78 2570 0.18 44.5 

Not  2581 0.12 0 

Ile 3.2 0.89 2591 0.23 137.6 

Ile 3.1 0.92 2601 0.23 87.6 

Ile 2.2.2 0.99 2614 0.26 723.9 

Ile 2.1 0.8 2622 0.22 508.1 

Ile 1 0.97 2630 0.27 793.5 

Tofte 4 0.93 2628 0.23 108.8 

Tofte 3. 4.2 1 2637 0.31 1348.2 

Tofte 3. 4.1 1 2641 0.30 1063.7 

Tofte 3. 3.2 1 2645 0.28 590.7 

Tofte 3. 3.1 1 2649 0.27 375.3 

Tofte 3.2 1 2653 0.26 255.9 

Tofte 3.1 1 2663 0.26 166.7 

Tofte 2 0.97 2666 0.22 58.5 

Tofte 1.2 0.9 2679 0.24 971.6 

Tofte 1.1 0.89 2686 0.23 819.6 

Tilje 4 0.83 2694 0.19 308.7 

Tilje 3 0.87 2709 0.24 555.4 

Tilje 2 0.72 2731 0.16 212.4 

Tilje 1 0.90 2771 0.25 1614 
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Figure 13- Horizontal permeability of the Norne E-segment reservoir model 
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Figure 14- Vertical permeability of the Norne E-segment reservoir model 
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Figure 15- porosity variation of the Norne E-segment reservoir model
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4.2.3. Fluid contacts 

                

Horizontal contacts of fluids are usually assumed, although tilted contacts occur in some 

reservoirs. The contact between fluids is usually gradual rather than sharp, forming a 

transition zone of mixed fluid. A mixed-fluid reservoir will stratify according to fluid density, 

with gas at the top, oil in the middle, and water below. The fluid contact is not static, during 

production of fluids often perturbs the fluid contacts in a reservoir. 

Fluid contacts there is a common oil‐water contact at 2688.5 m TVD/MSL for wells 6608/10‐

2 and 6608/10‐3, while well 6608/10‐4 had a oil‐water contact at 2574.5 m and did not 

contain any gas. There were two different gas‐oil contacts for wells 6608/10‐2 and 6608/10‐

3; 2580 m and 2575 m respectively. The gas systems seem to be common over the entire 

field. That is also the case for the oil systems, except the oil above the Not Formation in well 

6608/10‐3.  

 

Table 3. Fluid contacts in the E-segment simulation model (Clara, 2010) 

 

 

 

 

 

 

 

 

 WOC GOC Comment 

Datum Pressure Depth Depth Segment Formation 

m bar m m - - 

2582.0 268.56 2692.0 2582.0 C+D Garn 

2500.0 263.41 2585.5 2500.0 G Garn 

2582.0 269.46 2618.0 2582.0 E Garn 

2200.0 236.92 2400.0 2200.0 G Ile-Tilje 

2585.0 268.77 2693.3 2585.0 C+D+E Ile-Tilje 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=contact
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4.2.4. Faults 

 

The incorporation of faults into reservoir models has often been a fragmented process with 

different faults being treated in different ways. Despite the fact that faults can significantly 

impact fluid flow within the reservoir with the correct fault fluid flow characterization often 

critical to getting a good history match and despite faults playing an important part in the 

ultimate recovery and sweep efficiency within the reservoir, a single and integrated fault 

modelling workflow continues to remain illusive. 

Norne field faults, especially major faults, can be discovered by studying the seismic data. 

Each subarea of the fault planes has been assigned transmissibility multipliers. To describe 

the faults in the reservoir simulation model, the fault planes are divided into sections which 

follow the reservoir zonation. These are functions of fault rock permeability, fault zone 

width, the matrix permeability and the dimensions of grid blocks in the simulation model. 

 

 

 

Figure 16- Faults within the E-segment (Eirik, 2010) 
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4.3. History Matching 

 

 

History matching is one of the first steps before prediction, during the simulation of 

hydrocarbon reservoir performance and optimization stages using eclipse simulator. 

However, Reservoir engineers take advantage of this stage to evaluate the quality of the 

reservoir model to simulate future reservoir behaviour with a higher degree of confidence. 

The eclipse data set initially specifies real data’s measured during production period 

(production and injection rates), and some uncertain parameters such as permeability, 

layering structure, aquifer strength and individual well performance are specified as normal 

in the remainder of the data file. The main task is try to match the simulated results with 

measured production rates  which has been producing for a specific period of time because 

the  well rates calculated by ECLIPSE , will  not correspond to the measured rates specified 

by the user. Therefore, identify reservoir properties subject to the greatest uncertainty and 

adjusting them to bring the simulated and measured rates to an acceptable degree of 

correspondence, becomes a frustrating exercise for reservoir engineers (ECLIPSE 300 

Reference Manual, 2004).  

The term History Matching can be defined as the adjustment of reservoir parameters in the 

model until the simulated performance matches the measured information as closely as 

possible. It is the most time-consuming phase of a simulation study to obtain a match of 

dynamic data and sometimes it can be frustrating and complex because there is no precise 

approach for conducting history matching that is universally used, initially the reservoir 

engineers has to do an analytical sensibility study and then try to match the reservoir 

parameter through several iterations. Normally, the special techniques most commonly used 

consist in modifying the parameters of the initial model, proceeding by trial and error. To 

adjust the reservoir parameters in the model with the simulated performance becomes 

necessary to perform several iterations changing one or more parameters that show sensitivity 

to overlay data simulation. 

The effectiveness of the history match should be evaluated by the quality of the match in 

history reservoir parameters applied at the field level, at some areal subdivision ofhe field, 

and at individual wells. In a way that, average field properties may differ from average model 

properties by only a few pounds per square inch.  
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Automatic history matching has been apply, but the major part of reservoir engineers use 

manual rather than automatic methods of history matching because of the limitations and 

expense of currently available automatic methods.  

 

 4.3.1. Workflow 

 

According to Eirik (2010) , advises to perform history matching in two phases commonly 

called "gross phase" and a "detailed phase." 

In the gross phase, uncertain parameters are changed to match field data. In fact, in this stage 

average reservoir properties like average pressures and production rates of a reservoir are 

matched. In the second stage, changes are made to match individual well rates such as water 

cuts, GOR‟s and breakthrough times.  These changes may affect the quality of the match 

obtained during the first stage or the quality of the match in other areas of the field. 

 

4.3.2. History Matching at Norne E-segment 

 

There are several uncertain reservoir properties that can be modified during history matching, 

among them we have: aquifer transmissibility, aquifer storage, reservoir transmissibility, 

relative permeability and Capillary pressures functions.  

For Norne E-segment field, Eirik (2010) suggested the following actions that has to be 

applied to the 2004 simulation model (BC0407) in order to create the base case:  

 

  Previous history matching updates are removed.  

  Faults are set to partially sealing (MULTFLT = 0.1).  

 The fault E_01_F3H is enabled.  

 Field-wide stratigraphic barriers in the layers 1, 4, 8, 11, 12, 15, 20 are implemented 

using the parameter MULTZ. The parameter values are assigned according to the 

Norne Reservoir management plan from 2001 (see Table 4).  

 

In general, the data that are matched are pressure, water/oil ratio’s (WOR‟s), gas/oil ratios 

(GOR‟s), water/gas ratios (WGR‟s).  
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Table 4.  Recommended MULTZ values for the stratigraphic barriers in the Norne Field 
 

Layer Barrier MULTZ Description 

1 Garn 3/Garn 2 0.01 Carbonate cemented layer 
at top Garn2 

4 Not formation 0.00 Claystone formation 

 
 

8 

 
 

Ile 2.1.1/Ile 1.3 

 
 

0.05 

 
Carbonate cementations 

and increased clay 
content at base Ile 3 

 

11 Ile 1.2/Ile 1.1 0.01 Carbonate cemented layers 
at base Ile 2 

12 Ile 1.1/ Tofte 2.2 0.01 Carbonate cemented layers 
at top Tofte 4 

15 Tofte 2.1.1/Tofte 1.2.2 0.05 Significant grain size 
contrast 

20 Tilje 3/Tilje 2 0.00001 Claystone formation 

  

 

In figures 17-21, we can see the results for the updated case compared with the initial model. 

The updated model is responding positively to the reduction in vertical communication. The 

carbonate barrier in layer 11 and 12 is highly sensitive to controlling the water rise. Although 

the total water production in Figure 21 picks up on historical behaviour, a closer inspection of 

the individual wells suggest otherwise. Some wells are producing too little while some wells 

are producing way too much water. 
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Figure 17- Field Gas-Oil ratio history matching 
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Figure 18- E-3H well: Oil production rate history match.                                          Figure 19- E-3AH well: Oil production rate history match. 

 

Figure 20- E-2H well: Oil production rate history match. 
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Figure 21- Field Gas-Oil ratio history matching 
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 Figure 22- Field Water Cut history matching 
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CHAPTER.V. Oil recovery prediction on Norne E-Segment 
 

5.1. Sensitivity Injection Analyses within E-Segment 

Before analyse WAG or SWAG injection techniques in a fixed injection rate, it is mainly 

necessary to study the effect of different parameters on oil production rate. Thus, the 

reservoir engineer in this stage, analyse the best conditions to simulate the different scenarios 

created to predict oil recovery. More specifically, the main parameter affecting WAG and 

SWAG injection techniques are cycle time and slug injection. 

5.1.1. WAG cycle time  

WAG cycle time can be understood as the timing of switch from gas to water during water 

alternating gas injection in a large field simulation. Normally, this property has to be 

determined after several simulations, changing the alternating time of switch from gas to 

water injection. To determine the best WAG cycle time in the Norne E-segment, three cases 

were considered: Three months WAG cycle, Six months WAG cycle and One year WAG 

cycle. These three cases were studied using the original Eclipse model of the E-Segment, 

predicting 14 years of production injection response, using a constant low injection rates of 

2000 sm
3
/ day for water and 4500 sm

3
/ day for gas;  430414.393 sm

3
/ day of water and  

1291243.185 sm
3
/ day of gas. The intent was to ascertain which case would guarantee a 

better residual oil recovery. Figure 23 and 24 shows clearly the variation with time of the oil 

production total for three different WAG cycle cases presented above using low and high 

injection rates. Thus, oil production total variation is regardless of time during low injection 

rate. Para todos os efeitos, o ciclo de injeccao neste caso nao altera nem influencia o valor 

final de recuperacao residual de petroleo. However, for high WAG injection rate, the final 

value of recovered oil, for all WAG cycle injection cases, are the same, but a slightly 

difference between the plots is noticed between 2007 and 2014. When oil production is 

dependent of time, for high WAG injection rate, it seems that three months cycle injection 

case will present the best results of oil recoverability. When low WAG injection is 

considered, the field pressure decrease abruptly with time below the bubble point pressure, 

instead, for high WAG injection rate pressure profile increase significantly above the bubble 

point pressure (see figure 24 and 25), keeping the E-segment in the undersaturated conditions 

(bubble point is about 251 BARA) which is desirable during fluids miscibility phase. 
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Figure 23- Field Oil Production total behaviour using different cycle time and low injection rate 
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Figure 24. Field Oil Production total behaviour using different cycle time and high injection rate 
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Figure 25- Field Pressure behaviour using different cycle time and low injection rate
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Figure 26- Field Pressure behaviour using different cycle time and high injection rate 
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a condition (bubble point is about 251 BARA) which is desirable during fluids miscibility 

phase keeping the reservoir pressure above or fluctuating minimum miscible pressure 

(MMP). From this analysis, the following conclusion is taken: when low injection rate is 

considered, it can be seen that is rather wasteful to inject water and gas for 1 year cycle or 6 

years, because the incremental of residual oil is independent of time. 

5.1.2. WAG Injection rate 

WAG injection rate can be understood as the gas and the water slugs that are alternately 

injected in a fixed ratio into the reservoir. It is an important parameter to determine, as it is 

crucial to find the best conditions that guaranties high degree of recovery. The literature 

defend that at low WAG ratios, gas may channel and breakthrough very early, however, at 

high WAG ratios may cause oil trapping by water blocking or at best may not allow sufficient 

solvent-oil contact,  therefore choosing an optimal value of WAG ratio is very important. 

Normally, the optimal value of WAG ratio is finding by doing much iteration with different 

values of WAG ratio and observes the effects on residual oil recovery. In order to find the 

optimal value of WAG ratio in the Norne E-segment field, the following values were 

suggested initially: 

Table 5. WAG rate sensitivity analyses using low injection Rates 

 

Cases 

 

 

Water rate 

(Sm
3
/day) 

 

Gas rate 

(Sm
3
/day) 

 Well F-

1H 

Well F-

3H 

Well F-1H Well F-

3H 

Case A 1000 1000 2500 2500 

Case A1 1000 500 2500 1500 

Case B 500 500 1500 1500 

Case B1 500 250 1500 750 

Case C 2000 2000 4500 4500 

Case C1 2000 1000 4500 3000 

 

In the eclipse simulator, these iterations will be performed   injecting at 6 months cycle time 

interval. Some results are presented in the figures 27-30. 
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Figure 27- Field Oil Production rate for WAG low injection rate 
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Figure 28- Field Oil Production rate for SWAG low injection rate 
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Figure 29- Field Pressure for WAG low injection rate 
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Figure 30- Field Pressure for SWAG low injection rate
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In order to see the effect of the volume of water and gas injected for a period of time into the 

Norne E-segment using SWAG injection technique, different injection cases were modelled 

with same values used for WAG injection technique (see table 5). However, it doesn’t make 

sense to determine SWAG cycle time because of the fact that in this technique gas and water 

are injected into the reservoir at the same time continuously. As a result, it showed 

concordance with WAG injection results (figures 28 e 30). 

From the plots (figures 27-30), we can see that, the case C had better performance in terms of 

residual oil recovery for both SWAG for injection or WAG injection technique. The main 

difference in implementing the two techniques is related to the pressure profile of the 

reservoir. When SWAG injection is considered, the pressure profile for the case C lies 

between 250 and 290 BARA, instead WAG injection pressure profile decrease rapidly with 

time, achieving the minimum pressure value of 220 BARA approximately for case C and the 

minimum pressure values for cases different from case C are below 220 BARA.  

In fact, Norne E-segment didn’t respond positively for very low injection rates, since the 

pressure still decreasing rapidly. Therefore, high injection rates ( see table 6) values were 

suggested in order to improve the  pressure profile keeping it higher than minimum miscible 

pressure in order to decrease the residual oil production within the field. The simulation 

results can be verified in Figures 31-33. 

 

Table 6. WAG rate sensitivity analyses using high injection Rates  

 

Cases 

 

 

Water rate 

( sm
3
/day ) 

 

Gas rate 

( sm
3
/day ) 

Case (1:1) 430414.393 430414.393 

Case (1:2) 430414.393 860828.786 

Case (1:3) 430414.393 1291243.185 

Case (2:1) 860828.786 430414.393 

Case (3:1) 1291243.185 430414.393 
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After injecting high rate in 2004, there was significant increase in oil production rate 

compared with low injection rates were the production rates went down instantaneously. The 

maximum value of field oil production rate is above 1500 Sm
3
/ day. However, it is important 

to find out which is better – WAG injection at 1:1 slug, 1:2 slug or injection at 1:3 slug. 

Embora a pressão do reservatório aumente com o aumento do caudal de gás injetado a 

quantidade de petróleo residual produzida se mantem constante, o  que parece que o varrido 

de petróleo residual não depende do aumento do caudal de gás injetado no intervalo de tempo 

considerado.   

Figure 31 shows the oil production rate with an increased water injection for 2:1 and 3:1. 

Since we expect to get a better performance, from the graph, it can be seen that the oil 

production rate performance match with 1:1 injection slug size.  

The Next step is to compare all the new cases made in terms of residual oil recovery (figure 

33). However, considering the different cases proposed, residual oil recoverability reaches the 

same maximum final value, about 67%. Field oil efficiency doesn’t change with different 

injection slug size what make optional to choose.   

Considering the analysis made concerning WAG cycle and WAG ratio, the option for water 

alternating gas injection into the reservoir with high injection slug size, will be performed 

using 1:3 WAG ratio at intervals of 6 months. However for low injection rate, water 

alternating gas injection technique will be applied   using 1:2 slug size (2000 Sm
3
/day of gas 

and 4500 Sm
3
/day of water). 
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Figure 31- Field Oil Production Rate for different Wag slug injection 
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Figure 32- Field Pressure for different Wag slug injection 
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Figure 33- Field Oil Efficiency for different Wag slug injection 
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5.2. MODIFICATION OF THE WELLS INTO THE NORNE E-SEGMENT   

 

To efficiently increase the recovery of residual oil tank, after a certain time of production, it 

is necessary often make various modifications to the original modelling of the wells. Among 

the modifications made, the longer stand out usually applied in re-completion, addiction of 

new wells, shutting the well that is producing a lot of water at surface etc. 

More specifically, the well configuration that would guaranties the greatest oil recovery into 

the Norne E-Segment proposed by the present master thesis are re-completion and addiction 

of new injection well. Late on, the following scenarios will be studied and compared among 

them in terms of the best oil recovery applying WAG and SWAG techniques into the E-

segment: 

1. Injecting into the reservoirs and producing using the original wells. 

2. Additional well is introduced; the originals injectors and producers remain as they are 

but a new injection well is added in the Ile formation. 

3. Adding a new well and re-completion of the existing water injectors; the water 

injectors were modified in order to make a completion operation in the Ile and Tofte 

formations. 

 

One of the following options will guarantee the highest efficiency, in terms of oil 

recoverability. Economic analyses are not the scope of this project, therefore, it will not be 

considered as a decisive parameter to choose the best scenario.    

 

5.2.1. CONFIGURATION OF THE ORIGINAL WELLS INTO THE E-SEGMENT 

According to the Eclipse simulation model DATA file, Norne E-segment is originally 

composed by five wells, being two inject wells (F-3H and F-1H) and three production wells 

(E-3AH, E-2H and E-3H), as we can see in the figure 33. Wells F-3H was perforated in the 

Tofte and Tilje formations. It was originally designed to sweep oil in the south-western part 

of the Norne E-segment. The northern part of these segment, is swept by F-1H injector, 

completed in the Garn, Ile, Tofte and Tilje formations. 
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Figure 34. Original Wells in the Norne Field E-Segment
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5.2.2. CONFIGURATION OF THE NEW INJECTION WELL  

 

In this particular case, the original injection and production wells remain as the base model. 

Additionally, a new injection well is introduced, named N-3H, to drain a critical part of the 

Norne E-segment that is not being swept.  In order to increase the sweep area, a horizontal 

well has been drilled through Ile and Tofte formation with following location: 

Table 7. New Injection well new completions data 

N-3H 

I J K1 K2 

14 67 1 1 

14 67 2 2 

14 67 3 3 

14 67 4 4 

14 67 5 5 

14 67 6 6 

14 67 7 7 

14 67 8 8 

14 67 9 9 

14 68 10 10 

14 69 10 10 

14 70 10 10 

14 71 10 10 

15 71 10 10 

 

In the figure 35, the well N-3H is represented clearly in conformity with table presented 

above.  The new injection well is able to sweep oil from the northern part of the reservoir to 

the southern part of the E-segment.   

 

Figure 35. Shows Original Wells in Addition to a new well  
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5.2.3. CONFIGURATION OF THE RE-COMPLETED WELLS AND A NEW  

                                                   WELL   LOCATION 

 

With intention to avoid water to come out abundantly through the injection wells in a specific 

time period, and consequently decrease the oil production, a combination of  re-completion of 

the injection and production wells  and new well were implemented into the E-segment, as 

shown in figure 36; 

 

 

Figure 36- Well Re-completion of the injectors with an additional new  

                                            injection well included. 

 

According to the proposed scenario, oil sweep from different parts of the E-Segment is 

believed to be covered and is expected to achieve oil residual recovery higher than the base 

case. The main attention as to be cared out to the production wells (E-2H, E-3H…), maybe 

some production wells can produce significant amount of gas and water and very less amount 

of oil. In this case, optimization action has to be performed in a way to improve the 

production performance.  Is very important to be in mind that E-segment is invaded by two 

well from C-segment but it’s coursed and the Eclipse model doesn’t take that wells in 

account. 
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The new well, N-3H, was introduced in the scenario three with injection wells F-1H and F-

3H re-completed in the Ile and Tofte formations. The new Completion location details, for F-

1H and F-3H injection well, are presented in the table 8. 

   

Table 8. Original Injection wells new completions data  

F-1H F-3H 

I J K1 K2 I J K1 K2 

12 85 8 8 7 57 7 7 

13 85 8 8 7 57 7 7 

14 85 8 8 8 57 7 7 

15 85 8 8 9 57 7 7 

16 85 8 8     

16 84 8 8     

16 83 8 8     

16 82 8 8     

16 81 8 8     

16 80 8 8     

16 79 8 8     

16 78 8 8     

16 77 8 8     

16 76 8 8     

16 75 8 8     

 

 

Normally this optimization study of the production process in real life should be studied in 

detail, so it takes some time to be drawn, as are many factors that directly or indirectly 

interfere to reduce residual oil. The E-segment fluid flow in a vertical direction is affected by 

stratigraphy barriers composed by cemented layers, in other words, the permeability in a 

vertical direction is poor and partly is responsible for the precarious sweep efficiency, By this 

motive, injection of polymer and surfactants have been part of studies (Clara thesis, 2010) so 

as to increase the permeability of the vertical segment and in the Norne field. Faults in some 

way are considered semi-sealing according to Erik (2010) and in the E segment faults affects 

the vertical sweep efficiency. However, during WAG injection technique stratigraphy barriers 

cannot be changed, but viscous and capillary forces can be mitigated.  
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5.3. Comparison of WAG and SWAG Recovery Techniques applied into 

the Norne E-segment 

 

Taking into account the different injection patterns modelled and presented in the previous 

sections, WAG and SWAG injection techniques are applied into the Norne E-segment for 6 

months interval during 14 years for low injection rate and for high injection rate, 3 months 

injection interval. However, is recommended to use 2000 Sm
3
/day of water and 4500 

Sm
3
/day of gas for both WAG and SWAG for low injection rate and 430414.393 Sm

3
/day of 

water and 1291243.185 Sm
3
/day of gas for both WAG and SWAG for high injection rate.  

In figure 37 is presented the oil production rate for low injection rate using three different 

scenarios proposed to optimize the residual oil production. 

 

 

Figure 37.  Comparison of Field Oil production rate for low injection rate 

 

It can be seen that the scenario with new completion adapted to a new injection well led to 

increase in the production oil rate when WAG or SWAG injection techniques are applied into 

the E-segment. Considering SWAG injection scenarios, clearly from the figure 37, we can 

see that the base case has a rate approximately 10000 Sm
3
/day in year 2009, instead, scenario 

with new well and new completion, gave production rate of 10500 Sm
3
/day in the same date; 

comparatively it was 500 Sm
3
/day less than oil rate produced from the base case. Therefore 
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we can conclude that even though the production rate increases with increment in the changes 

on the reservoir development, the increment on oil recoverability might not really be very 

substantial and  it decreases gradually with time until achieve constant stage.  

For high injection rate, oil production rate detail can be found in the figure. 38 with different 

scenarios proposed at the top of this theme.  

 

 

 

Figure 38. Comparison of Field Oil production rate for high injection rate 

 

For high injection rate, the oil production rate increase significantly when compared with 

base case. The maximum peak of oil production rate (27,500 Sm
3
/day) exceeds the value of 

the maximum peak (21,000 Sm3/day) reached in 2004. When compared with injection 

scenarios from low injection rate, the increment on oil production rate is clearly seen until 

2018.  

At the beginning (2004), considering SWAG scenario, new well plus new completion 

scenario presents the same behaviour as scenario with only new completion (figure. 38) until 

2007, and then scenario with new completion results in higher oil production rate until year 

2010. Subsequently, new well plus new completion scenario increased the oil production rate, 

keeping it at higher oil production rate until 2018.  
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The cases with new wells plus new completion have more cumulative oil than the case with 

just the original wells. The case with recompleted wells has cumulative production of 

1.05*10
8
 Sm

3
 for low injection rate while scenario three has a cumulative of 1.2*10

8 
Sm

3
 for 

high production rate (figures 41, 42).   

Figure 43-44 (appendix) shows water production total, which is 3 times higher for scenarios 

using high injection rate when compared with low injection rate scenarios. This number 

represent cumulative of water production from the producers wells contidos dentro do E-

Segment. The increase could be attributed to the fact that more water has been injected to aid 

the effectiveness of the WAG injection to perform better.  

Field Gas-Oil ratio is presented in the figures 47 and 48 (appendix) for low injection rate and 

high injection rate. Scenario with new completion plus new injection well produced less 

amount of gas during productive time of the Norne E-segment.   For low injection rate, the 

minimum value was 750 Sm
3
/Sm

3
 (new well + new completion _SWAG), instead, for high 

injection rate; the minimum value was 900 Sm
3
/Sm

3
 (base case _SWAG). For WAG 

scenarios, a fluctuated variation is noticed for high injection rate with a maximum peak in 

2500 Sm
3
/Sm

3
 (new inj. Well+ new completion_WAG).   

The pressure profile (Figure 45 and 46), for low injection rate is stable for the range of time 

chosen, when SWAG scenarios are taken in account, in general, it vary above  the bubble 

point pressure until 2018. For high injection rate, the pressure profile reaches values of 

reservoir pressure very high (490 BARA). This increasing in pressure is due to the higher 

water injection rate. However, gas rate also contribute for the pressure stability in the 

reservoir. 

The Field Oil efficiency (FOE) is shown in the figure 39 and figure 40, for low and high 

injection rates respectively. The increment does not seem noticeable at the beginning, but in 

2009, a slightly difference among them starts to be notable. However, for low injection rate 

scenario the maximum value achieved for oil recovery was 63% (new well + new completion 

_SWAG). For high injection rate, the maximum value of residual oil recovered was 73%. 

Considering high injection rate but using SWAG injection technique, field oil efficiency has 

only 5% of difference when compared with WAG (68%) injection technique. 
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Figure 39. Comparison of the field oil efficiency for WAG and SWAG low injection rate 
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Figure 40. Comparison of the field oil efficiency for WAG and SWAG high injection rate
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CHAPTER VI 

CONCLUSIONS 

 

 

1. Recovery from a WAG process isn’t a function of cycle time when low injection rate 

is used, instead, when high injection rate is used 3 months cycle results in a slightly 

higher residual oil recovery. 

 

2. For low injection rate, injection of 2000 Sm
3
/day of water and 4500 Sm

3
/day of gas 

when WAG or SWAG injection technique is implemented constitute the best option. 

 

3.  For high injection rate, injection of 430414.393 Sm
3
/day of water and 1291243.185 

Sm
3
/day guarantee the best oil recoverability. 

 

4. Even though the production rate increases with increment in the changes on the 

reservoir development, the increment on oil recoverability might not really be very 

substantial and it decreases gradually with time until achieve constant stage.  

 

5. Modelling suggests that new completion plus new injection well improves the 

production oil rate in 5%, resulting the best scenario in terms of oil recoverability, 

considering high injection rate.  

 

6. Simulation results showed that Norne E-segment would have a maximum recovery    

of 73% at a 1:3 SWAG ratio when high gas injection rates are considered.  

 

7. The implementation of SWAG injection (73%) gave the best oil recovery when 

compared with WAG injection technique (63%) with approximately 5% of difference.  
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Nomenclature 

 

 

 

 

Parameter Designation Unit 

v Darcy velocity (m/s) 

 Μ displacing fluid viscosity (Pa.s)  

 σ interfacial tension (N/m) 

Nc Capillary number - 

 Ca Capillary number - 

λing mobility of the displacing fluid (e.g. Water) - 

λed Mobility of the displaced fluid (oil). - 

   oil recovery factor % 

   vertical sweep efficiency % 

   horizontal sweep efficiency % 

   microscopicefficiency % 

    Initial oil saturation - 

     Residual oil saturation - 

OIIP Initial oil in place (%) 

SSWAG Selective simultaneously water alternating gas - 

SWAG simultaneously water alternating gas - 

WAG water alternating gas - 

WF water flood - 
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Appendix 

 

 

 

Figure 41. Comparison of Field Oil production total for low injection rate 

 

 

 

 Figure 42. Comparison of Field Oil production total for high injection rate 
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Figure 43. Comparison of Field Water production total for low injection rate 

 

 

 

 

Figure 44. Comparison of Field Water production total for high injection rate 
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Figure 45. Comparison of Field Pressure for high injection rate 

 

 

 

 

Figure 46. Comparison of Field Pressure for high injection rate 
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Figure 47. Comparison of Field GOR for high injection rate 

 

 

 

 

Figure 48. Comparison of Field GOR for high injection rate 
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