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i. INTRODUCTION 

In the planning of long-term hydroelectric power production, a kind 

of stochastic optimization where some particular assumptions on the 

boundary conditions are implicitely present, are widely used in 

Norway ("The water value method", based on the incremental cost 

principle). 

Usually the calculation is also based on the assumption of no time- 

correlation in the stochastic part of the run-off, i.e. the white 

noise assumption. To get an idea of the effect of such a simplifica- 

tion, it is of great interest to investigate the importance of 

coloured noise in the run-off, i.e. the effect of dynamical states in 

the system which governs the run-off to the primary controlled hydro- 

electric water reservoirs to be controlled. 

The first stage in such a project is the hydrological model-building. 

Such a model may have several purposes, as: 

a. An aid in the simulation and better understanding of the dynamics 

of hydrological systems. 

The main part of this work was done while the authors were with the 
Division of Automatic Control at The Norwegian Institute of 
Technology. 
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b. River flow prediction. 

c. Simulations for sub-optimal hydroelectric power systems planning 

and production. 

d. In the computation of stochastic optimal control laws of power 

production. 

In the case a it is obviously preferable to have a model which is 

physically based, while this is not necessary for instance in the 

case d. In the latter case, a simple abstract model which posesses 

the main dynamics is appropriate, partly because of unavoidable un- 

certainty in the long range all the same, and partly because of the 

difficulties encountered when applying too complex models in optimi- 

zation. 

2. HYDROLOGICAL MODELLING 

2.1. Process characteristics and the multilevel approac h . 

Three kinds of models of an IHD-representative basin are presented, 

where different degrees of complexity are suggested. All of them 

has a multilevel structure. The first level consists of lumped, 

interconnected nonlinear reservoirs, where the water contents are the 

dynamical state variables. The second level changes some parameters 

in the model when the states exceed certain definite values, and in 

dependence of some parameters governed on the third level. FinallD the 

third level governs some of the parameters according to the tempera- 

ture history. This is necessary in Norway because of the alternating 

climatic conditions. 

Consider a hydrological basin, as shown in figure 1. The hydraulic 

inputs/outputs are precipitation (v2, not shown), channel flow (qs) , 

groundwater flow (qg) and evapotranspiration (qe' not shown). The 

non-hydraulic inputs or disturbances as temperature, wind and sun 

radiation are also influencing the hydrological system to a greater 

or smaller extent. 

It is difficult to make a reasonably simple and general model of such 

a distributed-parameter system like a hydrological basin. 

A widely used approach in flow systems, for instance in chemical 

engineering, is to apply physical lumping of the system. Hence, we 

subdivide the basin into partial basins where the water storage parts 
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of the model are considered as stirred tanks. In this way, the sub- 

basins can more easily be adapted to general, physically based, 

mathematical models. It is assumed that the lumping is done such that 

an acceptable accuracy in the description is obtained for the applica- 

tion in question. 

A typical partial basin is shown in figure 2. The components vi, 

which together with qs and qg are considered to be the main inputs/ 

outputs (inflows/outflows) of the system, are measured, qe(out) is 

the total evapotranspiration Em3/day3. The vector Z is the 

measurement vector ([ = Z(~)), while ~(out) is the outputs (outflows) 

from the model. 

Observe that the flows qs(in) and qg(in)in general may consist of 

several contributions. Firstly, we assume that the partial basin is 

sufficiently homogeneous such that mean values characterizing the 

disturbances, the surface and the soil (precipitation, evapotranspira- 

tion, temperature etc.) @re good approximations. Secondly, we assume 

that the basin is an uncontrolled, natural basin with soil, i.e. urban 

basins, glaciers and areas with naked mountains only are not considered. 

This forms the basis of the physical lumping in the model-building. 

The idea is of course not new in hydrological model building; physical 

approximation and representation of underground reservoirs by tank 

have been used with success E2~. models 

The crust of frozen earth and the snow during the winter season compli- 

cate a Nordic model, since the temperature and its history (the 

temperature is in fact a state variable in a possibly enlarged model 

of nature in this respect) is of importance for the discharge from the 

basin. Another problem is how the infiltration progresses, because 

infiltration is not measured systematically by the hydrologists. 

Considering the time aspect, we are interested in a model encompassing 

the most important long-term properties, since its potential use is 

for economical dispatch of hydroelectric power at long sight. 

However, it ought to have a certain degree of accuracy with respect 

to estimated run-off, such that prediction errors important to the 

economical dispatch are reasonably well minimized. Expressions like 

this, and'Hegree of accuracy" will be given special attention else- 

where [5~. 

It is seen that the nature may be considered to function like a 

multilevel system. The complete structure is illustrated in figure 3. 
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In this paper the ist level will be represented by a dynamical water 

balance system, which is assumed to be nonlinear and lumped. 

Its simplified mathematical representation in continuous form is the 

vector differential equation 

= ~(~, v2(k),v-~, ~(in)' ~1(k)' £2,~) (i) 

and 

~(out) = ~(~' ~(in)' 21 (k) , B2' ~) (2) 

X = ~(~, ~(in)' ~1(k)' ~2, ~) (3) 

Here v3 is the mean evaporation during the spring and the summer, v2 

is precipitation, ~(in) is the inflow vector and p1(k), P2 are 

parameter vectors steered from the higher levels of the model. ~i 

is piecewise constant in time, and is changed discretely in time with 

fixed intervals. ~ is the unknown parameter vector (to be determined), 

and finally, ~ is the state vector, comprising the volumes of water 

in the tanks of the model. ~(out) is the outflow vector, being a 

direct function of the parameters, inflow and states, and [ is the 

measurement vector. 

The second level consists of a system governing state-dependent 

parameters P2, 

P2 = P2 (X, Pl (k)) (4) 

On the third level, the "seasons" are used as "states", and these are 

governed by the temperature (vl) history, the latter being an input 

to the model. On this level, certain temperature-dependent parameters 

~i are directly given by the season vector ~0, 

p~ (k) = Pl (P0 (k)) (5) 

whereas the transitions of [0 are given by a Huffman table, which 

formally may be written as 

P0 (k+l) = h(vl(k) , P0 (k)) (6 

The components of £i and ~2 are of "on-off" type (zero and one). 

A diagram illustrating the possible transitions of "seasons" is glven 

in figure 4. The Huffman table approximates the dynamics and hysteresis 

of the seasonal transitions. The components of £0 are the "season", 
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a counting parameter to registrate the TMEAN-days period and the 

integrated temperature (in order to calculate its mean vlMEAN over 

TMEAN days). 

2.2. Parameter observability. 

All parameters of a practical hydrological model cannot be determined 

from simple observations and selective measurements of specific 

physical parameters. It is also clear that since a hydrological 

model is a simplified one of a distributed process, even exact 

knowledge of physical parameters is less valuable, since such para- 

meters in greater or smaller extent will loose their physical 

interpretation in the approximate model. Hence, many parameters of 

the model have to be adjusted on the basis of measured input/output 

time series for the basin. The output measurements will normally be 

relatively few in number compared to the number of unknown parameters, 

and the question of state and parameter observability [_]D] of nonlinear 

models comes heavily into the problem of sensible model building. 

This question has been neglected in hydrological model building. 

Of course a yes/no answer to the observability question is valuable. 

However, for practical design of a model, information about how 

observable the model is, is equally important. Information about this 

may for instance be obtained from the covariance of the parameter 

estimation error of an estimation algorithm E~, E~" This problem 

will not be treated in this paper. 

2.3. Model A. 

For the first level, this version is shown in figure 5. (Level IA.) 

State variables and parameters can as a rule be given a hydrological 

explanation, but this will not be done in detail here. However, in 

brief we have as states: 

xl: Land-surface water storage (water, ice, snow), 

x3: Reservoir storage (lakes), referred to the discharge 

threshold level 

x4: Accessible soil moisture 

x5/x6: The part of the groundwater volume which does not/does 

interact with the reservoir storage. 

The parameters K i (i = 1,2,...) multiplied by the volumes x i contribute 

to the rate of change of the volumes. Hence, a K i is in principle the 
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inverse of a time-constant. These parameters depend on a number of 

physical parameters like area, crust in the soil, the specific yield 

of the soil, the specific hydraulic conductivity, hydraulic inclinatio~ 

depth to bedrock and the roughness and vegetation of the surface. 

The dimensionless parameters G i (i = 1,2,...,7) are difficult to deter- 

mine a priori, but they are mainly dependent on area. The parameters 

A i can be determined directly from a topographical map, since they 

depend on area only. The Qi-parameters are dimensionless distribution 

parameters. 

As is clear from figure 2, the measurements in this system are the 

groundwater level, water stage in the reservoir and the downstream 

flow rate from the reservoir. However, the latter is partly related 

to the water stage. The model on level IA is thus given by 5 non- 

linear differential equations, 3 output flows given as functions pf 

5 states and 3 inputs, and finally 3 measurements. 

On the second level (Level 2A) the value of the parameter vector 
T ~2 = (BI,B3,B4,B6) is dependent of the state vector x and the parameter 

T 
vector ~I = (FI,F2,F3). The components of ~2 change their values 

when the components of x exceed certain treshold values, the "D"- 

parameters. 

On the third level (Level 3A), possible transition of the "season" is 

done every TMEAN days. We found that the representation of eq. (6) 

by a Huffman table was more convenient for the problem at hand than a 

cumbersome formulation with discrete-time equations containing logical 

expressions. The motivation for this level of the model, is the inertia 

in the temperature-dependent "parameters" Rapid temperature variations 

affect the hydrological system very little: The specific heat, 

melting and evaporation heat of water are large, and snow is a good 

insulator, too. This also means that the value and the duration of a 

positive temperature gradient must be larger to get the system switch 

from "winter" to "spring", than those required for a switch from 

"autumn" to winter". These phenomena are represented by hysteresis 

functions. The evapotranspiration is larger in the "spring" than in 

the "autumn", because of the increasing temperature and since larger 

areas are covered by water in the spring. 

In this way, level 3A represents approximately the complex dynamics of 

freezing and melting in the nature. A first order differential 

equation describes approximately the melting (decay of xl). 
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Parameter observability of model A. 

If the Schoenwandt criterion for local observability ~ is used, 

observability can easily be tested for the model, since the model is 

piecewise analytic in the states. A test can be made for each of the 

situations occurring with respect to reservoir levels versus the 

threshold values. It is then not surprising that the model A is not 

observable. There are 14 completely unknown parameters and 5 state 

variables to be estimated. In addition, it is to be noted that we 

have assumed that all the parameters on the 3rd level can be fairly 

well rated, and that the unknown "reference value" HI (which is that 

part of the groundwater reservoir assumed not to influence the dis- 

charge from it, see figure 5) can be rated a priori. 

The conclusion is that the model has to be simplified in order to get 

a model of a complexity which matches the amount of information got in 

this basin. 

It may also be observed that model IA is simpler than the now well- 

known Stanford Watershed Model [2]. 

2.4. Model B. 

For this version, the levels 2B and 3B are the same as 2A and 3A 

respectively. 

The ist level, level IB, is shown in figure 6, and is a simplified 

version of level IA. The parameters and states of this model can 

however to a less extent than for model A be given a physical inter- 

pretation, apart from the fact that x still contains the "available" 

water resource in the basin. In particular, it is to be noted that 

the infiltration is not described by a differential equation in model 

B. G5 (= 1 - G6) encomprises in one constant the specific hydraulic 

conductivity, surface roughness and hydraulic inclination. Assume 

new that xl can be estimated from measurements of v2, or by a measure- 

ment y4 using snow pillows. Assume also that as many of the parameters 

as possible are rated a priori with good accuracy, this includes all 

parameters on level 2-3. It then turns out that the following states 

and parameters must be estimated: 

x2, x3, K4 (or K5), G3 (= 1 - G4), G5 (= 1 - G6) and GS. 

If v2 ~ 0 or xl ~ 0 one can prove by applying the Schoenwandt 

observability criterion that model B is locally observable in any state, 
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provided the winter season is not present. This also applies if 

AL2 = 0 such that IT = (Yl, Y2)- During the winter, it turns out 

that G5 is not observable. 

Such peculiarities of a hydrological model must be taken into account 

if a sequential state/parameter estimator is constructed, since non- 

observable parameters within certain time intervals should not be 

adjusted. This will not cause any trouble to us, since batch 

estimation is used, such that the best constant-valued set of para- 

meters is found. 

2.5. Model C. 

In order to compare model B with a simpler version with respect to the 

3rd level, model C contains Level IB and Level 2A. On the third level, 

the Huffman table is not included, and "seasons" are made directly 

dependent on vlMEAN. 

Under the same conditions as put on model B, this model is observable. 

2.6. Ada~tion of the parameters. 

In order to get some feeling of the problems encountered in this first 

investigation, a simple batch estimation of the parameters and states 

was tried. Although it is obvious that some of the parameters depend 

on the climatic conditions in a much more subtle way than in the models 

here, it is of interest to get an idea of how well such lumped models 

could be fitted to the measurement data. Since model A is not obser- 

vable, the unknown parameters and states of the models B and C were 

adapted to measurements from a part of the IHD-representative basin 

"Sagelva". This part of the basin, which is illustrated in figure 7, 

is a small basin, but unfortunately not very homogeneous. 

The well-known principle of many parameter estimation schemes is shown 

in figure 8, where ~ represents the four unknown parameters (of model 

B) to be estimated. As adjustment strategy a simple hill-climbing 

method has been applied ("one-at-a-time") over a data interval of 2 

years with very changing climatic conditions. (In a later work ~], 

a SIMPLEX search method included in a batch estimation program for the 

UNIVAC 1108 ~ was used, being considerably more efficient.) The 

loss functional to be minimized for optimal parameter values was taken 

as 
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~2(lYlm(t) Yl(t) i + 8 lY2m(t) - Y2(t) l)dt 
tl 

(7) 

Results from a "ballistic" simulation forcing the model B with the 

input data over 1 year, are shown in figure 9. T is the mean tempera- 

ture during 15 days, and vl is precipitation per day. xi, i = 1,2,3, 

are simulated water storages in the basin, respectively land-surface 

water storage, groundwater storage and reservoir storage, yl is 

simulated groundwater level, while y2 is simulated reservoir water 

storage level, ym i, i = 1,2, are the corresponding measured levels. 

With the parameters obtained from the estimation, so-called recession 

("dry weather"-) curves were simulated. These are shown in figure i0. 

Here qs is surface discharge from the groundwater storage. They are 

both simulated according to the temperature history shown. In addition 

parts of recession curves being characteristic of each season are 

plotted: qss denotes pure summer surface discharge, qsa pure autumn 

surface discharge, and qsw correspondingly for the winter season. 

Similarly, estimation and simulations were performed for model C, but 

the results were less reliable than for model B under unnormal winter 

conditions. 

The conclusion is that for a Nordic hydrological model it seems 

necessary with some kind of sequential control of temperature-dependent 

parameters, which also in an approximate way takes care of the 

dynamics of melting and freezing under different conditions. It seems 

worth while to make further investigations on the basis of a model 

having a structure like model B. 

3. STOCHASTIC OPTIMIZATION OF HYDROELECTRIC POWER DISPATCH 

3.1. System description. 

In the long term planning for the economical dispatch of hydroelectric 

power, the optimization interval over which the given performance 

functional is to be minimized (or maximized), usually is in the range 

of a few months to about one year. Because of uncertainty in the 

future run-off into the reservoirs, a reasonable goal is to minimize 

the expected value of the functional. Hence, we will have to consider 

a system model where the environmental model representing the run-off 

contains stochastic state variables. See figure Ii, where we have 
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a. a mathematical process model for the production system, with control 

vector ~ and states (volumes) ~i, 

b. a lumped state variable model for the environment (state vector x2), 

yielding the run-off ~(~z) to the reservoirs. The input to this 

model is an expected mean function v o plus a white noise sequence 

Av with a given distribution (the precipitation v = v O + Av). 

In addition, there are given data for the power demand, which possibly 

also may be decomposed like the precipitation, in a mean value function 

plus a stochastic term. 

In Norway it is usual to divide the optimization interval into sub- 

intervals of one week, and use the so-called "water value method" based 

on the incremental cost principle. (A description of the basic prin- 

ciple may be found in [9].) An analysis of this approach will show that 

the run-off is considered as pure stochastic (white noise) around a 

deterministic function of time. Considering for instance figure 10, it 

is observed - especially during the winter season - that such an 

approximation is less accurate relative to the fineness of the time 

discretization the smaller this discretization interval is. There is 

considerable dynamics in the run-off, which may be expressed by the 

autocorrelation function (in the linear case), or more generally, by a 

set of ist order differential equations. 

The dynamics will show up in the evolution of the probability distri- 

bution, as sketched in figure 12, which shows the "stationary" 

probability distribution of Ar as a function of time. In the linear, 

Gaussian case, the evolution of the probability density is uniquely 

given by the differential equation for the covariance E{ArZ(t)}. 

To be more specific, the complete system may be formulated as 

!I (t) = fl (Xl (t), r(_x 2 (t)) , u(t) , t) 

_~2(t) = f2(x2(t), v(t), t) 

(8) 

(9) 

x(t) ¢ X (xiCt) e Xi) , uCt) ¢ U. 

3.2. Discussion of the run-off model. 

For long-term optimization problems of the kind discussed here it is 

obvious that uncertainty is very pronounced, as observed from figure 12. 

There seems to be no practical reason - at least for reasonably 

homogeneous or small basins - to work with higher order run-off models. 
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An abstract, Ist order linear model with a time-variable para- 

meter ("time-constant") established, say, on the basis of initial 

condition responses ("recession curves") of a more complex model like 

the responses of figure i0, has the form 

xz(t) = -a(t)x2(t) + v(t) (I0) 

where 

v(t) = v0(t) + Av(t) 

We may then assume a linear relationship between the environmental state 

x 2 of eq. (i0) and the run-off r, 

r(t) = k-xz(t) = r0 (t) + Ar(t) (ii) 

Substituting into eq. (i0), we have 

r(t) = -a(t)r(t) + k(v0(t) + &v(t)) (12) 

The recession function is given by the unforced solution of eq. (12), 
t 

- fa(8)dO 

r(t) = r(O)-e o (13) 

By letting a(t) be a function of time, it is possible to take into 

account the expected main seasonal changes in the climatic conditions. 

A sensible approximation is to apply three different values for a, 

these values respectively referring to the winter season, the snow- 

melting period and the period without snow, snow-melting and frost. 

1 is dependent on the basin, and is typically between The time constant 

I0 and 90 days, having its largest value during the winter. 

During the snowmelting period, the water from the melted snow will 

usually be a dominating part of the run-off. A main part of this flow 

will be discharged into the reservoirs from the surface. 

In this work, no attempt is done to make use of an optimal adaption of 

a(t) to the behaviour of the basin in question. 

It is quite obvious that inertia in the run-off dynamics is of greater 

and greater importance the smaller the ratio between reservoir volume 

and integrated run-off to the reservoir through one year is. For 

instance, if a reservoir can accumulate on an average the run-off 

through 2-3 years (without discharge from the reservoir), it is obvious 

that a dynamical run-off model, characterized by a time-constant of 

about a month, will have almost no effect on the economical dispatch 
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of such a system. 

3.3. The optimization problem. 

A dynamical description of the stochastic part of the run-off implies 

two essential distinctions for the economical dispatch problem, com- 

pared to a run-off which is not correlated in time. 

a. Instead of using the "stationary" distribution of the run-off and 

possibly consider it as white noise, the dynamical evolution of the 

run-off and its probability density from a given initial condition, is 

taken care of (possibly with a given uncertainty in the initial 

condition). 

~. Since we work with the expected evolution of the environmental 

states, these functions and their associated density functions are per 

definition given for the whole optimization interval. As is well known, 

this will in a control problem result in a realizable "feedforward" 

coupling from the environmental states to the control vector. Further, 

there will be a coupling from the reservoir volumes to the control 

vector, which is the "feedback part" of the control law. (Of course, 

in a nonlinear problem, these parts cannot be separated, but the 

principle is still there.) See figure 13. 

To apply solution by Stochastic Dynamic Programming (S.D.P.), the 

system equations are used in their time-discrete form. With a dis- 

cretization interval T, we have for a single reservoir, 

x I ((k+l)T) = x I (kT) - u(kT) + kx2 (kT) (14) 

and for the environmental model 

(k+l) T -a ((k+l) T-T] 
X2((k+l)T) = e -aT xz(kT) + [ e (Vo(T)+~V(T)) (15) 

kT 

If v(t) is considered constant within the interval (kT, (k+l)T], and 

Av is taken as a discrete-time white noise sequence, the latter 

equation simplifies to 

i,. -aT, 
x 2 ((k+l)T) = e-aTx2 (kT) + ~t±-e ) (v 0 (kT) + Av(kT)) (16) 

To simplify the notation, we will in the sequel use xi(k) for xi(kT) etc. 

The objective function for the optimal control of the system is as 

follows. In Norway it is commonly assumed that the marginal incomes/ 

expenditures dependent on the dispatch are a given function 
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PF(Up(k) - u(k)), where PF is price per energy unit (ore/kWh). up(k) 

is power as ordered by contract from customers within the optimiza- 

tion interval, and u(k) is the actual power production. (GWh/month.) 

This function is often given as a staircase function like the one in 

figure 14. There is however uncertainty in the future power prices, so 

it might have been sensible to take this uncertainty into consideration. 

In S.D.P. this can be done without any difficulties, but with an 

increase in computation time. In the example here, however, the smooth 

curve as shown on figure 14 has been used without undertainty on it. 

The expenditure within an interval Ek, k+l~ is 

Up (k) -u (k) 

W k = f PF (~) d~ (17) 
o 

The optimal criterion is to minimize the expected expenditures during 

the optimization interval (0,N) , 

N-I 
E{J} = E{ ~ Wk(Up(k) - u(k))} (18) 

k=0 

As data, the functions Up(.) and Vo(.) and the probability density 

distribution p(~v) of ~v are given. 

Since the main purpose here is to obtain a feeling of the importance of 

dynamical modelling of the environment of a hydroeiectric power system 

for the economical dispatch, straightforward S.D.P. [13 is applied 

without any subtleties. The basis of the method can be studied in the 

textbook of Aoki [i~. An advantage in such applications as this 

using D.P., is that the state space is constrained because of maximum 

and minimum reservoir volumes. Also, maximum/minimum values for the 

run-off states may be rated fairly well. Complicated optimization 

criteria imply no difficulties. The most serious draw-backs are the 

well-known dimensionality problem and long computation time. The 

storage requirements for reasonably low-order systems (max. 4-5) may be 

solved by applying a mixture of different kinds of extensions of 

ordinary D.P. techniques E7~, E8~. 

3.4. Example. 

Computation of optimal controls for the first month in an optimization 

interval of five months in a certain year has been done using data for 

a small power station in the middle of Norway, named "Julskaret". The 
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data of the production system are: 

Power station. 

Maximum storage capacity: 60 mill. m 3 

Mean height difference between power station and the reservoir: 

Mean energy conversion: 4.17 mill. m 3 ÷ 1 GWh 

Machine installation: 8 MW. 

i00 m 

This gives the constraints 

0 ~ xl (k) ~ 14.4 (GWh) 

0 ~ u1(k) ( 5.6 (GWh/month) 

Up(k) is given in the following table (dim Up = GWh/month): 

Month: 1 2 3 4 5 

Up: 2.7 1.9 4.6 4.4 3.9 

The run-off system. 

The total precipitation basin for the station is A = 149.5 Km 2 = 

149.5 x 106 m 2. The time-constant for the run-off is estimated to 
1 

TI= ~ = 1.2 months on the basis of a recession curve. For simplicity, 

a -I is assumed constant. We assume r = k'x2= x2. The run-off 

equation with dimEx ~ = m 3, dim Ev] = m/month, is 
T T 

AT1 TI 
x2(k+l) = e T1x2(k) + 4.i7;~06(i - e ) (Vo(k) + Av(k)) 

or 

x2(k+l) = 0.434 x2(k) + 24.8(Vo(k) + Av(k)) 

which is assumed valid throughout the optimization interval. Realistic 

values of x2(k) are assumed to be within 0 ~ x2(k) ~ i0. The density 

function p(Av) is estimated on the basis of precipitation through 40 

years. The data are not given here, but to get an impression of the 

spread,the variance 02 Av is given in the following table, where also 

Vo(k) is tabulated: 

Month k i 

103. Vo(k) 43 

OAr(k) 2 90 

2 

39 

94 

3 4 5 

41 34 37 

87 57 61 
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Performance criterion: ............ 

For the objective function the smooth curve PF(Up(k) - u(k)) in figure 

14 is used. 

The results would be rather uninteresting in practice if the terminal 

state xl (N) is not considered in the optimization problem, since this 

would imply a policy which aims at emptying the reservoir towards the 

end of the optimization interval. Many kinds of criteria taking the 

expected final state into account could be thought of. For instance, 

an analysis of the principle of the procedure used in [9], shows that 

within the assumption of linearity in the process equations, the policy 

is to aim at reproducing the reservoir volume after one year [~ . A 

reasonable policy might be to let the expected final state x1(N) have 

a sensible value based on experience for that month of the season. 

A more direct, and in fact an equivalent approach, is to include a 

weighting on the final state in J, with such a weighting that the 

expected final state has a reasonable value. Hence, we use as an 

optimal criterion 

E{J'} = E{J + dxl (N)} (19) 

where J is given by eq. (17) - (18). 

Results. 

It is interesting to find the variation in the optimal power production 

Uopt(0) of the first month as a function of the initial condition 

x2(0) in the run-off model. The results are shown in figure 15 for 

three different initial storages xl (0) in the power station reservoir 

and d = 3. As expected, the initial state xz(0) has a considerable 

effect on the optimal policy. The expected final state E{xI(N)} 

(applying the expected run-off and picking the control from the com- 

puted tables of optimum stochastic controls) is 7.4 GWh at d = 3, and 

8.2 GWh at d = 6. The two different values of d gave no difference in 

the optimum control for the first stage. However, at d = 0, 

Uopt(0 ) = 3.2 at xl(0) = 100% (14.4 GWh). The control policy for the 

first stage is rather insensitive to the weighting factor on xl (N), as 

long as the expected final state has a reasonable value for the month 

in question. This is mainly an effect of the uncertainty of the futur~ 

and also indicates that it should not be necessary to use larger opti- 

mization intervals than, say, half a year, in order to compute the 

optimal control for the first month. 
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An interesting comparison is to compute the optimum control if Ar is 

pure stochastic (white) with approximately the same probability 

density as that one which can be estimated from the run-off observation~ 

It is not surprising that the computed value in this case, Uop t = 

4 GWh/month, at x1(0) = 100% corresponds to a value (see figure 15) 

which is close to the mean in the run-off for that month. 

Of course, the numerical values obtained here should not be used in a 

general discussion of the goodness of approximation by using a non- 

dynamic run-off description in the computation of the economical 

dispatch for any hydroelectric power system. However, the example 

clearly shows that the problem should be given attention. 

4. CONCLUSIONS 

Results on simple batch parameter estimation of a hydrological system 

have been presented in the first part. The number and kind of measure- 

ments justify the synthesis of a rather crude model only. This 

conclusion has been drawn on the basis of observability analysis. 

Hence, it is not surprising that the goodness of fit will vary some- 

what dependent on the season, and that the simple model has deficien- 

cies like inaccurate reservoir level during the winter and the spring, 

and too low groundwater level during the late autumn. However, it 

should be kept in mind that the~errors in the fitting will distribute 

on each variable according to the weighting factors in the loss 

functional [5~. 

In the last section, with respect to the application of a hydrological 

model in the stochastic optimization of a hydrological power system, 

it has been demonstrated that the use of a dynamical run-off model may 

be necessary in the computation of the optimal control. Although it 

is open for discussion how complex such a model should be, it is likely 

that significant improvements in the control policy can be attained by 

representing the most important dynamics of the environmental system 

in a simple first-order, stochastic model with time-varying parameters. 
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PB(1) I PB(2) 1 PB(3) ~ PB(4) 
PB(5) 

qg(1) qs(1) qg(2) qs(2) qg(3) qs(3) "- 
qg(4) ~s(~)qg(5 ) qs (5) 

PB(6) I PB(7) 

qg(6) qs(6) qg(7) \ 
~ ~  P B(8) q s ( 7 ~  

qg(out) (8) qs (out) (8) 

i , : Boundary of basin,along surface and sub-surface divide. 

I Q  m : Boundary of basin,along (surface) divide. 

Boundary of partial basin,along surface and sub-surface 
divide. 

- Boundary of partial basin,along (surface) divide. 

Fig. i. A large (hydrological) basin. 
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T J 3  

qg(ouz) ,~..,.,.~*" (PB). 

qs(out) 

lllllllli" 
AS 

ALl  

AL2 

I 

I 

-U- 

: External boundary of basin,along divide. 

= Internal boundary of baeinlalong divide. 

= Channel flow. 

= VePtlcel section through soil moisture- and groundwater-zone.Only drawn where the 

divide is not also a sub-surface divide. 

= Area of reservoir. 

= Area of landifrom where overland flow runs into reservoir° 

= Area of landifrom where overland flow rune into channel downstream reservoir. 

= Meteorological station,with temperature recorder (vl). 

= Recording precipitation gauge (v2). 

= Evaporation pan ] are measuring evaporation (v3AS) and average evapo- 

? 
evapotranspiration] 

EvapotmanspirometerJ transpiration coefficient (EL : [ evaporation ~ )" 

= Recording groundwater level (yl). 

= Recording water stage gaugelin reservoir (y2) op downstream reservoir (y3). 

= Outlet or measuring weim,whePe The function q(y2) Or q(y3) is known. 

Fig. 2 .  A typical partial basin. 



S
u
b
s
y
s
t
e
m
 
g
o
v
e
r
n
i
n
g
 
t
h
e
r
m
a
l
 
states 

("seasons") 
a
c
c
o
r
d
i
n
g
 
t
o
 
h
i
s
t
o
r
y
 

o
f
 
vl. I

n
f
o
r
m
a
t
i
o
~
 
a
b
o
u
t
 
"season"~ 

t
i
m
e
 
and 

~ 
is 

c
o
n
t
a
i
n
e
d
 
in 

~0" 

T
e
m
p
e
r
a
t
u
D
e
-
d
e
p
e
n
d
e
n
t
 

p
a
r
a
m
e
t
e
r
s
 

(~l) 
are 

d
e
m
i
v
e
d
 
f
r
o
m
 
"season". 

S
u
b
s
y
s
t
e
m
 
g
o
v
e
r
n
i
n
g
 
state- 

d
e
p
e
n
d
e
n
t
 
p
a
r
a
m
e
t
e
r
s
 

(~2) 

a
c
c
o
r
d
l
n
 E 

t
o
 
~ 

, ~0 
and 

£i" 

H
y
d
r
a
u
l
i
c
 
s
u
b
s
y
s
t
e
m
 

g
o
v
e
r
n
i
n
g
 
the 

d
y
n
a
m
i
c
a
l
 

states 
(~) 

a
c
c
o
r
d
i
n
g
 
t
o
 

, v2 
, v3 

, K
(
i
n
)
 
a
n
d
 
~ 

. 

vl 

v2 

v
3

 

q(in) 

L
E
V
E
L
 

3 

L
E
V
E
L
 
2 

L
E
V
E
L
 
i 

.............. p 
a( out ) 

S 
.

.
.

.
.

 

Synchronism,!,,, 

T
M
E
A
N
 

d
a
y
s
 

b
e
t
w
e
e
n
 

e
a
c
h
 

c
h
a
n
g
e
 

o
f
 

"
s
e
a
s
o
n
"
.
 

,,,~/ 

F
i
g
.
 

3
.
 

T
h
e
 

b
a
s
i
n
 

s
k
e
t
c
h
e
d
 

a
s
 

a 
h
i
e
r
a
r
c
h
i
c
a
l
 

s
y
s
t
e
m
~
 

F
i
g
.
 
4
.
 

"
S
e
a
s
o
n
"
 

d
i
a
g
r
a
m
 

. 



qe
(o

ut
) 

v2
 

( 
x2

 
= 

x5
 

+ 
x6

 
) 

( 
yl

 
: 

G
B

.x
5 

+ 
H

i 
) 

( 
y2

 
= 

X
3/

A
2 

) 

~.
,~

.~
.,

 
. 

[,
.T

F-
-q

 
F-

--
 

(K
4"

F2
) 

~
q

g
(

i
n

)
 

~ 
q

s(
in

) +,
 

] 
.

.
.

.
.

 

; 
~ 

~ 
I
D
3
 

['
--

~
.A

2 
• F

3 

I(K
6)

 
--
 

....
 

-I
 

.....
 

+ 

qg
(o

ut
) 

~ 
qs

(o
ut

) 
( 

= 
q(

y3
) 

) 

qe
(o

uz
) 

v'
~.
AI
.E
L.
F3
 

+ 

v2
, 

l,.
D

at
a 

pr
ep

ar
at

io
n 

(K
4-

F2
) 

qg
(o

ut
) 

( 
yl

 
= 

GB
.x

2 
+ 

HI
 
) 

( 
y2

 
• 

x3
/A

2 
) 

( 
y4

 
= 

Gg
.x

l 
,b

u~
 

on
ly

 
in

 
th

e 
wi

n-
 

te
r.

) 

(i
n)

 

..
..
..
 ~y
2~

 B
3~

 

~s
(o

ut
) 

( 
= 

q(
y3

) 
) 

Fi
g,

 
6.

 
LE

VE
L 

IB
 
, 

Fi
g.

 
5.
 

LE
VE

L 
IA

 
. 



200 

> 

m 

,-,F 

('D 

> o # 

g .~.,.....,,~ ~ ,,,.IIIIIIH|N IIIk \ 

o ,3 
° ~ 

o 

>z 

(v3) Noise 

Input 

( vl , v2 , ~(in) ) i 

J I Measurement v I HYDROLOGICAL SYSTEM 
C~ m) 

u 

~0(k+l) = ~(vl(k) , ~0(k) ) I Simulated 

~l(k ) = ~i ( £0(k ) ) L measurement 

MODEL 
£2 = ~2 ( ~ ' ~i (k)) 

S(out) = ~(~,S(in),~l(k),~2,~) 

(O(OuT))~°utP ut 

A~ 

ERROR 

CRITERION 

1 
ADJUSTMENT 

S T I ~ T E ~ Y  

Fi~. 8. SimulaYion and adjustment plan. 
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I V-NOISE 

l RUN-OFF I MODEL X 2 

t t-RESERVOIR INFLOW 

.Es.vo. I 
AND 

POWER STATION I STORAOE: il / v TIME 

F i g ,  11. Process and env i r onmen ta l  model .  Fig. 12. "Stationary" and conditional evolution 
of the probability density. 

V-NOISE 

RUN-OFF 
MODEL 

f - RESERVOIR INFLOW 

RESERVOIR 
AN D 

POWER STATION 

PF 
~lrelkWh] i 

lS. 

10 

P._FF (U,-U) 

S. 

3. 

.lo ;o ~ 3"o 
l- ~ , I 0 0 %  

Fig. 13. Principle Of control system solution. F i g .  14. Cost  per energy  u n i t .  

Us 

~ Xll0), 33% 

XilO) .INITIAL STORAGE-CONDITION 

2:s ~o T~S ,io lOW.; b x=(o) 
INITIAL RUN-OFF STATE 

Fig. 15. Optimum control for the Ist month as a function 
of the initial values in the states. 


