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ABSTRACT 

Water coning is a complex phenomenon that depends on a large number of variables 

which include among others: production rate, perforation interval, mobility ratio, 

capillary pressure, etc. Its production can greatly affect the productivity of a well and 

the reservoir at large. In fractured reservoirs, the phenomenon is more complex owing 

to the high permeability of the fractures in the porous media. With this complexity in 

mind, water coning behaviour in fractured reservoir was studied by simulating a 

reservoir supported by a strong aquifer using ECLIPSE-100 Black-Oil Simulator. The 

water cut (WCT), oil production rate (OPR) and water saturation (BWSAT) at the 

producing interval (Block 1, 1, 7) were used to evaluate the coning phenomenon in a 

fractured reservoir. In the course of the study, sensitivity analyses on the modelled 

reservoir’s anisotropy ratio (kv/kh), production rate (q), storativity capacity (ω), 

fracture width (b) and fracture permeability (kf) were conducted to evaluate their effect 

on coning behaviour in fractured reservoir. The results obtained depict that while the 

anisotropy ratio is very significant in water cut and water saturation at the perforating 

interval it has no adverse effect on oil production rate. It was however, observed that 

the water cut and oil production rate decreased as the production rate (q) increased. 

Furthermore, the water cut, oil production rate and water saturation (BWSAT) from 

the fractured reservoir is sensitive to the storativity capacity (ω) depending on the 

fracture porosity (φf). Conversely, the fracture’s width (b) and permeability (kf) have 

no significant effect on the coning behaviour of the modelled fracture reservoir. 

However, anisotropy ratio (kv/kh), production rate as well as storativity capacity (ω) 

are significant parameters in evaluating coning phenomenon in fractured reservoirs. 
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NOMENCLATURE 

Bo: Oil formation volume factor, rb/stb 

h: Initial oil formation thickness, ft 

hop: Oil column height above perforations, ft 

hp: Perforation length, ft 

kh: Horizontal permeability, md 

kv: Vertical permeability, md  

kf: Fracture permeability, md  

km: Matrix permeability, md  

kro: Oil relative permeability, md 

µo: Oil viscosity, cp 

µw: Water viscosity, cp  

rDe: Dimensionless drainage radius, ft  

re: Drainage radius, ft 

rw: Wellbore radius, ft 

M: Water oil mobility ratio 

ρo: Oil density, lb/cuft 

ρw: Water density, lb/cuft  

Δρ: Density difference, lb/cuft 

tD: Dimensionless breakthrough time 

tBT: Breakthrough time, day 

φm: Matrix porosity 

φf: Fracture porosity 

ψw: Water dimensionless function 

ε: Fraction of oil column height above perforations 

δw: Fraction of perforated intervals. 

Pwf: Flowing bottom hole pressure, psi 

Pws: Static well pressure, psi 

qD: Dimensionless production rate 

Qoc: Critical oil production rate, std/d 
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1.0 INTRODUCTION 

The production of water from oil producing wells is a common occurrence in oilfields 

(Namani et al., 2007). This is attributed to one or more of such phenomenon; normal 

rise of oil-water contact (WOC), water coning as well as water fingering. Oil 

production from a well that partly penetrates oil zone overlying water may cause the 

oil/water interface to deform into a bell shape. This deformation is usually called water 

coning and occurs when the vertical component of the viscous force exceeds the net 

gravity force (Høyland et al., 1989). In other words, simultaneous production of oil 

and water from the oil well because of unbalancing between viscous and gravitational 

forces is known as water coning phenomenon. Therefore, it is worth mentioning that 

two forces control the mechanism of water coning in oil and/or gas reservoirs: 

dynamic viscous force and gravity force. Water coning phenomenon constitutes one of 

the most complex problems pertaining to oil production (Saad et al., 1995). Coning 

phenomenon is more challenging in fractured reservoirs owing to their intrinsic 

difference of them and the heterogeneity and high permeable medium of the fractures 

compared to matrixes (Foroozesh et al., 2008). On the other hand, water coning in 

naturally fractured reservoirs often result in excessive water production which can kill 

a well or severely curtain its economics life due to water handling (Beattie and 

Roberts, 1996). 

In the study of water coning phenomenon both in homogeneous (conventional) and 

fractured reservoirs, three parameters are determined: critical rate, breakthrough time 

and water cut performance after breakthrough. It is of essence to understand the term 

critical rate. At a certain production rate, the water cone is stable with it apex at a 

distance below the bottom of the well, but an infinitesimal rate increase will cause 

instability and water breakthrough. This limiting rate is called the critical rate for water 

coning (Høyland et al., 1989). Therefore, critical rate is defined as the maximum 

allowable oil flow rate that can be imposed on the well to avoid a cone breakthrough 

(Salavatov and Ghareeb, 2009). In fractured reservoirs, critical rate are influenced by 

extra factors such as fracture storativity (ω), fracture transmissivity (λ), fracture pattern 

and their interaction to matrixes; especially around the wellbore (Namani et al., 2007). 

Bahrami et al. (2004) mention that in naturally fractured reservoirs because of 
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heterogeneity and non-uniform fracture distribution, development of cone is 

asymmetrical and estimation of critical rate and breakthrough time requires modelling 

with an understanding of fracture pattern around the producing well. These facts attest 

to the challenges and complexity of coning study in fractured reservoirs. 

In conventional reservoirs the extent of cone growth and/or its stabilization depend on 

factors such as; mobility ratio, oil zone thickness, the extent of the well penetration 

and vertical permeability; of which the most important parameter is the total 

production rate (Namani et al., 2007). In addition Saleh and Khalaf (2009) mention 

that water coning depends on the properties of the porous media, oil-water viscosity 

ratio, distance from the oil-water interface to the well, production rate, densities of the 

fluids and capillary effects. Conversely, in fractured reservoirs this problem is more 

complicated because of the dual porosity system in the fractured reservoir which 

results in formation of two cones (i.e. coning in the fracture and matrix). Depending on 

the rates, a fast moving cone may be developing in the fracture whilst a slow moving 

cone is observed in the matrix. The relative position of the two cones is rate sensitive 

and is a function of reservoir properties (Al-Aflagh and Ershaghi, 1993). It is worth 

mentioning here that the key parameter in determining water coning tendency is the 

vertical to horizontal permeability ratio, kv/kh. The presence of natural fractures 

however often results in high values of kv/kh providing conditions conducive to water 

coning (Beattie and Roberts, 1996). Therefore high vertical permeabilities in fractures 

are bound to accelerate the coning process resulting in lowering of the critical rates 

and more rapid breakthrough times. In addition, the preferential path for fluid flow 

through the fractures and the uneven fracture conductivities commonly observed in 

naturally fractured reservoirs is expected to affect wells regardless of their structural 

position (Al-Aflagh and Ershaghi, 1993). 

In order to study the coning phenomenon in fractured reservoir, solving the two phase 

governing partial differential equations of oil and water flow in heterogeneous porous 

media for radial system is utmost important. Besides, understanding the effect of 

various rock and fluid properties such as absolute permeability, oil thickness, 

completion interval location, production rate, fluid viscosity and density is very crucial 



Water Coning in Fractured Reservoirs: A Simulation Study 2012 
 

NTNU MASTERS THESIS:- September, 2012 Page 11 
 

(Foroozesh et al., 2008). Therefore, coning phenomenon in fractured reservoir will be 

studied using ECLIPSE-100 simulator. The simulation study will evaluate the effect of 

this phenomenon on the water cut, oil production rate and water saturation at the 

producing interval of the modelled fractured reservoir. Furthermore, a sensitivity study 

of the reservoir parameters on the coning phenomenon will be examined in this study. 

1.1 STATEMENT OF THE PROBLEM 

Coning is a near wellbore problem that requires careful study and understanding of the 

phenomenon. In heterogeneous reservoirs the phenomenon is more complex compared 

to homogeneous reservoirs as a result of the permeability difference between the 

matrixes and the fractures in the fractured (heterogeneous) reservoirs. As a result of 

this, the phenomenon result in adverse water production in the producing well, thus 

resulting to excessive water handling related problems which may lead to early 

abandonment of the well. 

1.2 PURPOSE OF THE STUDY 

A fractured reservoir is model with ECLIPSE-100 Simulator. The main purpose of this 

simulation study is to; 

 Evaluate the water coning effect on the water-cut in fractured reservoirs. 

 Evaluate the coning effect on the oil production rate in fractured reservoirs. 

 Evaluate the sensitivity of the reservoir parameters on the coning study. 
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2.0 LITERATURE REVIEW 

A survey of literature indicates that many studies have been reported on water coning 

in homogeneous (conventional) oil reservoirs; ranging from experimental studies to 

analytical and numerical simulation. The focus of study has tended to be on the 

development of correlations for critical rate, time to breakthrough and WOR (water-oil 

ratio) following breakthrough (Beattie and Roberts, 1996). In contrast to homogeneous 

oil reservoir, relatively few studies have been reported on aspect of water coning in 

fractured oil reservoir. In other words, some research efforts and solutions have been 

developed to reduce the level of severity of water coning in fractured reservoirs. An 

overview of the research findings are presented below: 

Høyland et al. (1989) presented critical rate for water coning from correlation and 

analytical solution. Their analytical solution is an extension of Muskat and Wyckoff 

theory developed in 1935. Numerical simulation was employed to check the validity of 

the analytical solution obtained. After several simulation runs, Høyland et al. stated 

that the critical rate of water coning is independent of water permeability, the shape of 

the water/oil relative permeability curve between endpoints, water viscosity and 

wellbore radius. Thus, the critical rate is a linear (direct) function of oil formation 

volume factor (Bo) and a nonlinear function of well penetration, radial extent, total oil 

thickness and permeability ratio. 

Al-Afaleg and Ershaghi (1993) assess the coning phenomena in naturally fractured 

reservoir from simulation approach. They established that the empirical correlation for 

homogeneous single porosity reservoirs are inapplicable to naturally fractured 

reservoirs, as the results are optimistic in estimating the breakthrough time and critical 

rates. However, Al-Afaleg and Ershaghi state that if the naturally fractured reservoir is 

represented by a homogeneously fractured system then the correlation developed can 

be used to approximate the estimation of breakthrough time provided bulk fractured 

properties are pre-estimated from well tests and other data. They further mention that 

no correlation or even simulation study can help to predict the estimation of critical 

rates and breakthrough time if the fracture pattern is not accurately delineated. Al-

Afaleg and Erashaghi establish that two cones are observe in naturally fractured 
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reservoirs; a fast moving cone in the fracture network followed by a slower moving 

cone in the matrix. 

Golf-Racht and Sonier (1994) examine water coning in fractured reservoir. Their 

simulation work demonstrates that the critical rates in a conventional reservoir and a 

fractured reservoir are controlled by the same criteria and therefore the flows in both 

cases are governed by the same forces. They further demonstrate that under certain 

conditions the limitations of oil rate in the Muskat critical rate is not justified. They 

mention that to assess the capacity of a well to produce with moderate or with high 

coning water-cut, the best approach is to estimate it before the production testing 

through reverse coning. Therefore, Golf-Racht and Sonier established that the 

existence of high vertical permeabilities arising from a high vertical fracture density is 

a key parameter in influencing water coning behaviour in naturally fractured 

reservoirs. 

Saad et al. in 1995 evaluates water coning in fractured basement reservoir from 

experimental study. Their results indicates that the capillary pressure effect may be 

generally neglected if the distance between the oil-water contact (WOC) and the fluid 

entry is sufficiently large compared to the capillary rise. They also put forth that the 

difference in viscosity between the oil and water phases is the main factor affecting the 

breakthrough time. Furthermore, they established that the critical radius (Rc) is 

independent of the position of the initial oil-water contact for a given production rate. 

Beattie and Roberts (1996) study water coning in naturally fractured gas reservoirs. 

Their simulation work established that high vertical permeability due to the presence 

of natural fractures enable water to cone significant distances above the initial gas-

water contact. They establish that imbibition of water from fractures to the matrix has 

a significant influence on water coning behaviour. Thus, reservoir properties which 

restrict the degree of invasion of the matrix block favour rise of the water level in the 

fractures toward the well. They further mention that the operating conditions and 

reservoir properties conducive to water coning behaviour in single porosity formations 

influence the water coning behaviour in naturally fractured reservoirs in a similar 

manner. 
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Bahrami et al. in 2004 evaluate coning phenomena in naturally fractured reservoirs. 

From their numerical simulation study they presented (develop) a method suitable for 

hand calculations to predict breakthrough time and water cut at each time for a specific 

oil production rate. They stated that as water breaks into the well through fractures, a 

considerable amount of producible oil remains in matrix in cone-invaded zone and 

decreases oil recovery. They further mention that increase in matrix porosity or 

fracture porosity results delay in breakthrough time and increase water cut. Thus, 

breakthrough time is more sensitive to fracture porosity and water cut is more sensitive 

to matrix porosity. Also breakthrough time is more sensitive to horizontal fracture 

permeability and vertical fracture permeability and water cut is more sensitive to 

horizontal fracture permeability and horizontal matrix permeability. Finally, they 

established that the matrix block size does not have any specific effect on 

breakthrough time and water cut in coning phenomenon in fractured reservoirs. 

Namani et al. (2007) investigate water coning phenomenon in Iranian carbonate 

fractured reservoir. Their investigation reveals that oil layer thickness, well 

penetration, fracture permeability; especially horizontal fracture permeability, 

production rate, mobility ratio, storativity and conductivity have considerable effect on 

water coning in fractured reservoirs. They further states that fracture spacing, skin 

factor and aquifer power have no effect on the water coning in fractured reservoirs. 

Also the fracture pattern especially around the well is very important in water coning 

study in fractured reservoirs. Thus, the role of horizontal permeability is more than 

vertical permeability because the increase of horizontal permeability can distribute 

water cone in horizontal plane and delays the water breakthrough time. 

Perez-Martinez et al. (2012) presented a simulation study of water coning in naturally 

fractured carbonate heavy oil reservoir. They found that water coning occurs in 

fractured porous media with permeabilities up to 10 Darcys and that water coning 

occurs in both good and poorly cemented wells. They also obtain correlations to 

determine the maximum height of water coning considering good and poor cement. 

Thus, with the correlations obtained the minimum safe distance between the oil-water 

contact and the producing interval for a specified free of water oil production rate 
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(critical rate) can be easily determined. Based on the analysis of their results, they 

stated that the matrix-fracture partition ratio has little influence in determining the 

maximum height of water coning. 

2.1 CRITICAL PRODUCTION RATE 

The term which is widely used in the literature to describe the critical limits for the 

occurrence of water coning is the critical production rate, Qc (Saad et al., 1995). A 

number of methods have been developed to determine the critical production rate (Qc) 

in homogeneous reservoirs. Such method include Muskat and Wyckoff’s(1935) 

method, Chaney et al. (1956) method, Craft and Hawkins (1959) method, Meyer and 

Gardner’s (1963) method, Chierici-Ciucci’s (1964) method, Schols (1972) method, 

Chaperon’s (1986) method, Høyland et al. (1989) method, Guo and Lee (1993) 

method, etc. In this regard, some of these equations as well as correlations are stated 

below: 

Chaney et al. (1956) method: 

               [
  (     )
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Chierici – Ciucci’s (1964) method: 
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Schools (1972) method: 
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Conversely, in fractured reservoir Birk’s (1963) method is the only method available 

method in the literature for determining critical oil production rate (Saad et al., 1995; 

Namani et al., 2007). However, some correlations have been proposed for determining 

the critical production rate in heterogeneous reservoir. Saleh and Khalaf (2009) 
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proposed correlation (Eq. 9) for determining critical rate in fractured reservoir. This 

equation took into account the heterogeneity degree (H*D) of the reservoir as well as 

the capillary pressure (Pc) between water and oil in the reservoir. 

Saleh and Khalaf (2009) equation: 

             (
     

  (
  

  ⁄ )
)

     

(
  

    
) (            )(   )          . .(9) 

 

2.2 BREAKTHROUGH TIME 

The second parameter of concern to the reservoir engineer in predicting water or gas 

coning is the breakthrough time, that is; the time needed for the water or gas to enter 

the perforation after the beginning of oil production. Several correlations have been 

developed to calculate the critical oil production rate to avoid water or gas 

breakthrough. However, fewer of such correlations are available in literature for 

predicting water or gas breakthrough time. Sobocinski and Cornelius (1965) developed 

a correlation for predicting the breakthrough time based on laboratory experimental 

data and computer program results. The correlation involves dimensionless groups of 

reservoir and fluid properties i.e., dimensionless cone height (Z) and dimensionless 

breakthrough time (tD)BT. Bournazel and Jeanson (1971) developed a method for 

calculating breakthrough time based on their experimental data. Their model assumed 

a homogeneous reservoir and radial flow of oil and water at the outer limit. However, 

Bournazel correlation involves the same dimensionless group as the Sobocinski 

correlation. These equations are presented below: 

Sobocinski and Cornelius (1965) Method: 
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Bournazel and Jeanson (1971) Method: 
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 Z and Fk are the same as Eq. (11) and Eq. (12) above respectively. Also in the 

both equations α is given as; 

α = 0.5 for M ˂ 1 and 0.6 for 1 ˂ M ˂ 10 

Apart from Sobocinski (1965) and Bournazel (1971) methods, Rhecam et al. (2000) 

developed a correlation to estimate the breakthrough time as a function of the various 

reservoir and fluid properties. The results of their regression analysis are express as; 

Rhecam, Osisanya and Touami (2000) Method: 
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However, Behrami et al. (2004) propose a correlation to predict the breakthrough time 

for a specific oil production rate in homogeneous fractured reservoirs. The results of 

the sensitivity analysis were used to provide data for developing the correlation for 

breakthrough time as a function of various reservoir parameters. Thus, the correlation 

is given as; 

 



Water Coning in Fractured Reservoirs: A Simulation Study 2012 
 

NTNU MASTERS THESIS:- September, 2012 Page 19 
 

Bahrami, Shadizadeh and Goodarzniya (2004) Method: 
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3.0 RESERVOIR MODEL/DESCRIPTION 

ECLIPSE-100 Simulator is used in this work to study water coning in fractured 

reservoir. The simulator is an adaptable dual porosity dual permeability simulator that 

account for the matrixes and fractures porosity and permeability respectively. A radial 

model is employ in this study. The fractured model comprises of 15 layers (i.e. 8-

matrixes and 7-fractures) in the z-direction and 10 grids in the r-direction, the model is 

depicted in Figure 1. A production well with a radius of 0.20ft is placed at the center 

with the producing intervals between layer 7 and 8. Table 1 through 3 shows the base 

case reservoir rock and fluid properties (description) used in the simulation studies. 

The reservoir fluid description data in the model is extracted from Chappelear 

ECLIPSE data file (i.e. CHAP.DATA). These reservoir fluid data is depicted in figure 

2 and 3. Worth noted in this simulation study is that the fracture compressibility is 

assumed to be equal to the oil compressibility (i.e. Cf = Co). 

 

Fig. 1: RESERVOIR MODEL 

 

Table 1: Reservoir Fluid Properties  

Water Density (ρw), lb/cuft 63.02 

Water Viscosity (µw), cp 0.96 

Oil Density (ρo), lb/cuft 45.00 

Oil Viscosity (µo), cp 1.233 

Formation Volume Factor (Bo), RB/STB 1.0915 
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Table 2: Reservoir Model Properties (Base-case) 

Reservoir Thickness (h), ft 100 

Drainage Radius (re), ft 2098 

Perforation Interval, ft 20 

Well Radius (rw), ft 0.20 

Fractured Porosity (φf) 0.001 

Fractured Permeability (kf), md 300 

Fractured Width, ft 0.001 

Fracture Compressibility (Cf), psi
-1

 4.0 x 10
-6

 

Matrix Porosity (φm) 0.18 

Matrix Permeability (km), md 1.25 

Matrix Block size, ft 5.0 

Matrix Compressibility (Cf), psi
-1

 3.0 x 10
-6

 

Initial Water Saturation (Swi) 0.22 

Production Rate (q), BPD 3000 

 

Table 3: Relative Permeability Data 

 Matrix  

Sw Krw Kro Pc (psia) 

0.22 0.00 1.000 7.00 

0.30 0.07 0.400 4.00 

0.40 0.15 0.125 3.00 

0.50 0.24 0.065 2.50 

0.60 0.33 0.005 2.00 

0.80 0.65 0.001 1.00 

0.90 0.83 0.000 0.50 

1.00 1.00 0.000 0.00 

 

 Fracture  

Sw Krw Kro Pc 

0.00 0.00 1.00 0.00 

1.00 1.00 0.00 0.00 
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Fig. 2: Relative Permeability Curve 

 

Fig. 3: Capillary Pressure Curve 

3.1 SIMULATION WORK 

As earlier alluded to, the simulation study was performed with ECLIPSE-100 

Simulator. The reservoir properties (Table 1), fluid properties (Table 2) and relative 

permeability data (Table 3) were used to write the ECLIPSE input data file that result 

in the Base-case model study/results. To evaluate the water coning effect in the 

fractured model, three (3) parameters were  selected for evaluation, that is; water cut 

(WCT), oil production rate (OPR) and water saturation (BWSAT) at the producing 
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interval (1, 1, 7). However, it is worth mentioning here that since coning is a near 

wellbore effect the water saturation at the producing interval will present the effect of 

this phenomenon in the wellbore. In this regard, the results of the Base-case model are 

depicted in Figure 4 through 6. 

3.2 SENSITIVITY STUDY 

Further simulation studies were carried out to evaluate the effect(s) of the reservoir 

properties on the coning phenomenon in fractured reservoirs. The properties evaluated 

are as follows; 

 Anisotropy ratio (kv/kh). 

 Production rate (q). 

 Storativity capacity (ω). 

 Fracture width (b). 

 Fracture Permeability (kf). 

Anisotropy Ratio (kv/kh): 

Anisotropy ratio simply implies the ratio of the vertical permeability (kv) to the 

horizontal permeability (kh) in the reservoir. To evaluate this effect in coning behavior 

in fractured reservoir, five scenarios were selected. The scenarios ratios are presented 

in Table 4. The results obtained from these simulation runs are depicted in Figure 4 

through 6. 

Table 4: Anisotropy Ratio (kv/kh) 

RUN NAME Anisotropy Ratio 

Base-case 0.10 

CON1 0.20 

CON2 0.25 

CON3 0.50 

CON4 1.00 

 

Production Rate (q): 

The production rate (q) was also employ in this simulation study to evaluate the effect 

of water coning in fractured reservoir. Therefore, five (5) different scenarios were 
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simulated. Table 5 shows the production rates used in the different scenarios; as the 

results obtained are presented in figure 7 through 9. 

Table 5: Production Rate (q) 

RUN NAME Production Rate (q), BPD 

Base-case 3000 

CON5 500 

CON6 1000 

CON7 1500 

CON8 2000 

CON9 2500 

 

Storativity Capacity (ω): 

Another parameter considered in this simulation study is the reservoir storativity 

capacity (ω). To evaluate this parameter’s effect on coning study in fractured reservoir, 

the fracture porosity (φf) was varied. Four (4) scenarios were evaluated in this work; 

Table 6 shows the fracture’s porosity (φf) and storativity capacity (ω) of different 

scenarios. Equation 18 expressed the storativity capacity (ω) in this simulation study. 

The results obtained are presented in Figure 10 through 12. 

  
    

(         )
. . . . . . . . (18) 

 

Table 6: Storativity Capacity (ω) 

RUN NAME Fracture Porosity (φf) Storativity Capacity (ω) 

Base-case 0.001 0.007 

CON10 0.002 0.013 

CON11 0.003 0.018 

CON12 0.004 0.023 

CON13 0.005 0.027 

 

Fracture Width (b): 

The fracture width (b) was varies in the study to examine it effect in the coning 

phenomenon in fractured reservoir. In this regard, four (4) scenarios were examined; 

the different scenarios are indicated in Table 7. Figure 13 through 15 depict the results 

obtained from the simulation runs. 
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Table 7:  Fracture Width (b) 

RUN NAME Fracture Width (ft) 

Base-case 0.001 

CON14 0.005 

CON15 0.010 

CON16 0.015 

CON17 0.020 

 

Fracture Permeability (kf): 

Finally in this sensitivity evaluation of coning phenomenon in fractured reservoir, the 

fracture permeability was evaluated with different scenarios of fracture permeability 

(kf). Table 8 present the different scenarios fracture permeability (kf) and the results 

obtained from the simulation runs are presented in Figure 16 through 18. 

Table 8:  Fracture Permeability (kf) 

RUN NAME Fracture Permeability(kf), md 

Base-case 300 

CON18 600 

CON19 900 

CON20 1200 

CON21 1500 
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4.0 RESULTS AND DISCUSSION 

4.1 BASE-CASE MODEL RESULT 

 

Fig. 4: Water Cut vs Time (Base-case) 

 

 

Fig. 5: Oil Production Rate vs Time (Base-case) 
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Fig. 6: Water Saturation (Block 1, 1, 7) vs Time (Base-case) 

Figure 4 through 6 depict the results obtained from the Base-case model simulation 

run. As already mentioned in this work, three parameters are taken into account to 

evaluate the water coning phenomenon in fractured reservoir. These parameters are: 

Water Cut (WCT), Oil Production Rate (OPR) and Water Saturation (BWSAT) at the 

producing (perforation) interval (Block 1, 1, 7). Figure 4 indicate the water cut from 

the fractured model in the simulation study. The figure (Fig. 4) shows that the water 

cut of the fractured model increase as the production time increases. Thus, this is a 

direct indication that water is produce more than the oil in the model matrix, as the 

water in the aquifer cone into the producing interval. However, the causes of this high 

water cut in fractured reservoir is difficult to establish with a single reservoir 

parameter as the fluid flow in fractured reservoir is more complex compared to 

conventional reservoir. In this regard, the water cut is quite challenging to predict 

coning phenomenon in fractured reservoir as the storativity, transmissivity, imbibition 

mechanism and matrix-fracture interaction are significant. 

Figure 5 shows the oil production rate from the fractured model. The result (Fig. 5) 

indicate a rapid decrease in the oil production rate in the first 200 days after which 

there was a steady decline in the oil production rate. However, this rapid decline in oil 

production is attributed to the presence of coning phenomenon in the matrix of the 
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fractured model reservoir. Therefore, as the water cone through the fracture (fast 

moving) and matrix (slow moving) in the modeled reservoir, this result in decrease in 

the oil production rate. Conversely, as the coning move into the matrix block the 

declination of oil production rate become steady. Thus, it worth mentioning that in 

fractured reservoirs two coning phenomenon are experience; fast moving coning at the 

fracture and slow moving in the matrix block. 

Figure 6 present the water saturation (BWSAT) at the producing (perforation) interval 

(Block 1, 1, 7). The result (Fig. 6) indicates a rapid water saturation of the producing 

interval matrix block. This increased water saturation is as a result of coning 

phenomenon in the matrix block, whereby the coning water saturate the producing 

matrix block and increases the water saturation (Sw) rapidly from its connate water 

(Swi) as the oil is produce. However, the rapid increase in the water saturation at the 

producing interval (Fig. 6) account for the increased in the water cut (Fig. 4) from the 

fractured model in the simulation study. Therefore, it is imperative to state here that 

the coning phenomenon in fractured reservoir increases the water saturation at the 

perforation interval hereby resulting in increased water cut. 

4.2 SENSITIVITY STUDY MODEL RESULTS 

As aforementioned five reservoir’s parameters were considered for the sensitivity 

study, that is; anisotropy ratio (kv/kh), production rate (q), storativity capacity (ω), 

fracture width (b) and fracture permeability (kf). The results obtained from these 

simulation runs are depicted as follows: 
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4.2.1 EFFECT OF ANISOTROPY RATIO 

 

Fig. 7: Water Cut vs Time (Anisotropy Ratio) 

 

 

Fig. 8: Oil Production Rate vs Time (Anisotropy Ratio) 
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Fig. 9: Water Saturation (Block 1, 1, 7) vs Time (Anisotropy Ratio) 

Figure 7 through 9 presents the effect of anisotropy ratio compared to the Base-case 

fractured model reservoir in this simulation study of water coning in fractured 

reservoir. Figure 7 depict the effect of anisotropy ratio of different scenarios on the 

fractured model water cut. The result (Fig. 7) indicates that the water cut obtained 

increase as the anisotropy ratio increases. That is to say that increase in the vertical 

permeability (kv) will enhance coning phenomenon in the fracture reservoir, since 

water coning phenomenon is an upward movement of water as a result of pressure 

drawdown in the wellbore. Therefore with reference to Table 4, variation of the 

anisotropy ratio in the vertical permeability (kv) establish upward movement of water 

in the fractured model reservoir and result in high water cut from the simulation study 

of water coning in fractured reservoir. 

Figure 8 shows the oil production rate from the effect of anisotropy ratio on the 

fractured model different scenarios compared with the Base-case. The result (Fig. 8) 

depicts that there is no significant variation in the oil production rate obtained from all 

cases (scenarios) compared with the Base-case fractured model. This result shows that 

increase in  anisotropy ratio (i.e. increase in vertical permeabilty) have no effect on oil 
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production from fractured reservoir. This is as a result of the horizontal movement of 

oil into the wellbore; that is, distribution of fluid in horizontal plane. Therefore, in 

coning study in fractured reservoir increase in the vertical permeability has no role in 

the oil production rate as the oil transmissibility is in the horizontal direction. 

Figure 9 is the result of the different scenarios of anisotropy ratio effect compared with 

the Base-case fractured model. The result (Fig. 9) depicts that the water saturation at 

the producing interval increase as the anisotropy ratio increases. As already stated that 

increase in anisotropy ratio result in upward movement of water. Therefore, this 

upward movement of water cone into the producting interval matrix block and increase 

its water saturation. In other words, the increased water saturation at the producing 

(perforation) interval as  a result of increased anisotropy ratio explain the high water 

cut obtained from the same scenarios in the simulation study. 

4.2.2 EFFECT OF PRODUCTION RATE 

 

Fig. 10: Water Cut vs Time (Production Rate) 
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Fig. 11: Oil Production Rate vs Time (Production Rate) 

 

 

Fig. 12: Water Saturation (Blocl 1, 1, 7) vs Time (Production Rate) 
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Figure 10 through 12 present the different scenarios effect of production rate (q) on the 

fractured model compared with the Base-case. Figure 10 depict the production rate 

effect of different scenarios and Base-case water cut. The results (Fig. 10) indicate that 

the water cut obtained with least production rate; 500 BPD (barrel per day) is higher 

compared to other scenarios and the Base-case production rate from the fractured 

model. Hence, water cut decrease as the production rate increase. This is owing to the 

fact that at the production rate of 500 BPD (low production rate) coning phenomenon 

is controlled by the fast moving coning in the fracture. However, with increased 

production rate the water cut is controlled by the slow moving coning phenomenon in 

the matrix. This account for the low water cut obtained as the production rate increases 

in the sensitivity study as well as the Base-case fracture model.  

Figure 11 shows the oil production rate obtained from sensitivity study of different 

scenarios of production rate on the fractured model. The result obtained (Fig. 11) 

indicates a significant difference among the different scenarios and the Base-case 

model. From the figure (Fig. 11) it is observed that the least production rate (500 BPD) 

produces the highest oil production rate compared to other scenarios’ production rate 

and the Base-case model. This is  attributed to the different role of coning at the 

fracture and the matrix. Thus, at the least (low) production rate the coning 

phenomenon in the matrix is slower allowing much oil to be produce from the matrix 

into the fracture for production. As such, this account for the high oil production rate 

at low production rate. Apparently, the coning phenomenon in the matrix increase as 

the production rate increases thereby hinders the movement (production) of oil from 

the matrix. In this regard, increase in production rate will result in decrease in the oil 

production rate from the study on coning phenomenon in fractured reservoir. 

Figure 12 present the water saturation at the producing interval from the different 

sensitivity study scenarios compared with the Base-case model. The figure (Fig. 12) 

indicate variations in the water saturation at the producing interval obtained from all 

cases (i.e. sensitivity scenarios and Base-case). Two distinct results are observed: 

 The rate of water saturation at the producing interval. 

  The ultimate water saturation at the producing interval. 
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Thus, the rate of water saturation at the producing interval is a direct response to the 

production rate. In other words, the rate of water saturation at the producing interval 

increase as the production rate increases. It is worth to state here that the rate of water 

saturation at the producing  interval is much controlled by the fast moving coning in 

the fracture. Conversely, the variations in the ultimate water saturation at the 

producing interval is about the same for all cases except for the lowest production rate 

(500 BPD). Therefore, the ultimate water saturation at the producing interval is 

controlled by the slow moving coning phenomenon in the matrix of the fractured 

reservoir. 

4.2.3 EFFECT OF STORATIVITY CAPACITY (ω) 

 

Fig. 13: Water Cut vs Time (Storativity Capacity) 
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Fig. 14: Oil Production Rate vs Time (Storativity Capacity) 

 

 

Fig. 15: Water Saturation (Block 1, 1, 7) vs Time (Storativity Capacity) 
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Firgure 13 through 15 present the result of the sensitivity study of storativity capacity 

(ω) in the fractured model by varying the fracture porosity (φf). The different scenarios 

of storativity capacity (ω) are compared with the Base-case model. Figure 13 depict 

the water cut obtained from different scenarios of storativity capacity (ω) compared 

with Base-case. The result (Fig. 13) shows that the there was no significant variation in 

water cut from the different scenarios of storativity capacity (ω). But there was a 

variation in water cut when comparing the Base-case and different  storativity capacity 

(ω) scenarios results. Thus, the increased storativity capacity (ω) causes rapid 

movement of oil from the matrix into the fracture. As such the fast moving cone in the 

fracture and displacement of water by oil in the fracture will result in high water cut. 

Conversely, this phenomenon is not significant among the different storativity capacity 

(ω) scenarios as their difference (storativity capacity (ω)  value) in this simulation 

study is not  much. Thus, the fast movement of oil from the matrix into the fracture as 

well as  fast coning in the fracture occur almost at the same interval. 

Figure 14 shows the different scenarios of storativity capacity (ω) effect on the oil 

production rate from the fractured model. The figure (Fig. 14) indicates that oil 

production rate from the different scenarios are not effected by variation of the 

storativity capacity (ω). However, comparing the different scenarios of storativity 

capacity (ω) with the Base-case model, the result indicate an increase in the oil 

production rate form the different scenarios. With reference to Table 6, the increased 

oil production rate result from the different scenarios is attributed to the fact that there 

is a significant increase in the storativity capacity (ω) value of the different scenarios 

compared to the Base-case model value. Thus, there was a faster movement of oil from 

the matrix to the fracture that result in increased oil production rate. Conversely, the 

similarity in the different scenarios’s oil production rate is owing to the fact that there 

is no significant difference in their storativity capacity (ω) value. 

Figure 15 present the water saturation at the producing interval obtained from 

sensitivity study of storativity capacity (ω) and compared with the Base-case fractured 

model. The result (Fig. 15) shows that there was no significant variation among the 

different scenarios of storativity capacity (ω)  water saturation at the producing 
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interval. However, comparison of the Base-case and different scenarios’ storativity 

capacity (ω) water saturation at producing interval depicts an increase in the water 

saturation. These difference between the Base-case and different scenarios’ storativity 

capacity (ω) water saturation at the producing interval is as a result of the coning of 

water into the producing  interval matrix, because of rapid movement of oil from the 

matrix into the fracture. Conversely, this phenomenon was not very significant among 

the different scenarios as their storativity capacity (ω) values were very close. In other 

words, the difference between the storativity capacity (ω) value of different scenarios 

was not much compared to the Base-case model. 

4.2.4 EFFECT OF FRACTURE WIDTH (b) 

 

Fig. 16: Water Cut vs Time (Fracture Width) 
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Fig. 17: Oil Production Rate vs Time (Fracture Width) 

 

 

Fig. 18: Water Saturation (Block 1, 1, 7) vs Time (Fracture Width) 
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Figure 16 through 18 present the results obtained from variation of fracture width (b) 

in the fractured model in this coning phenomenon study in fractured reservoir. Figure 

16 depict the water cut from the different scenarios compared with the Base-case 

model result. The result (Fig. 16) indicates that there was no significant variation in the 

water cut obtained from all scenarios and the Base-case model. The result is owing to 

the fact that the coning at the fracture is a fast moving one. Thus, it is independent of 

the fracture width; as the fracture is a passive channel (network) in the fracture 

reservoir. 

Figure 17 present the oil production rate from the different scenarios compared with 

the Base-case model. The figure (Fig. 17) shows that the oil production rate obtained 

from all cases depicts no significant variation. This result is attributed to the fact that 

the coning phenomenon in the fracture has no or less impact on the matrix, as the oil is 

accumulated in the matrix. Thus, oil production rate in fracture reservoir is dependent 

on the matrix characteristic. Therefore varying the fracture width has no effect on the 

oil production rate in this coning  phenomenon study in fracture reservoir. 

Figure 18 shows the water saturation at the producing interval from the different 

scenarios compared with the Base-case model. The result (Fig. 18) depict no 

significant variation in the water saturation at the producing interval obtained from all 

cases (different scenarios and Base-case). Apparently the result is in line with the 

result obtained in the water cut (Fig. 16) from the variation of fracture width. 

Therefore, the water saturation at the producing  interval in all cases is dependent on 

the coning phenomenon in the matrix. This account for the no variation in water cut 

(Fig. 16) and water saturation at the producing interval (Fig. 18) in the coning study in 

fracture reservoir. Hence, fracture width has no direct compact on the water cut, oil 

production rate and water saturation at the producing interval in water coning in 

fractured reservoir. 
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4.2.5 EFFECT OF FRACTURE PERMEABILITY (kf) 

 

Fig. 19: Water Cut vs Time (Fracture Permeability) 

 

Fig. 20: Oil Production Rate vs Time (Fracture Permeability) 
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Fig. 21: Water Saturation (Block 1, 1, 7) vs Time (Fracture Permeability) 

Fracture permeability is the most important uncontrollable parameter in water coning 

phenomenon, because in fracture reservoir water cone front in fractures moves faster 

than matrixes (Namaniet al., 2007). Figure 19 through 21 present the sensitivity study 

of different scenarios of fracture permeability and the Base-case model results. Figure 

19 depict the water cut from the different scenarios compared with the Base-case. The 

result (Fig. 19) indicates that the fracture permeability has no effect on the water cut 

obtained from the coning study in fractured reservoir. This result is attributed to the 

fact that the water cut is controlled by the coning movement in the matrix. Moreover in 

fractured reservoir fracture act as a passive channel (network) for fluid flow. Therefore 

owing to the high permeability of the fracture compared to the matrix, the water cut 

obtained does not depend on the fracture permeability (kf). 

Figure 20 account for the oil production rate from different scenarios of fracture 

permeability compared with Base-case model. The result (Fig. 20) depicts that the 

fracture permeability variation has no significant effect/result on the oil production 

rate obtained from the coning study in fractured reservoir. The attributing factor to this 

result is that oil is accumulated in the matrix block (low permeability) of the fractured 
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reservoir. In that case, the coning phenomenon in the fracture with high permeability 

moves faster without any effect on the oil production rate from the matrix. 

Figure 21 present the water saturation at the producing interval from different 

scenarios of fracture permeability (kf) compared with Base-case model. Apparently the 

result (Fig. 21) indicates no significant variation from the different scenarios results 

and the Base-case model. This is owing to the fact that the coning phenomenon at the 

producing interval is controlled by the slow moving coning in the matrix. Therefore 

varying the fracture permeability did not increase the water saturation at the producing 

interval. As this also account for the results obtained in the water cut (Fig. 19). 
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5.0 CONCLUSION 

Water coning behaviour is important reservoir phenomenon that occurs in reservoirs 

that are driven and/or supported by aquifers. In fractured reservoirs this phenomenon 

is very challenging owing to the dual permeability of the porous media resulting in two 

coning phenomena: fracture and matrix coning. In the course of this simulation study, 

sensitivity analysis was carried out to determine the sensitivity of certain parameters to 

coning behaviour in a fractured reservoir. These parameters include, among others 

anisotropy ratio (kv/kh), production rate (q), storativity capacity (ω), fracture width (b) 

and fracture permeability (kf). Based on the results obtained from the fractured model, 

the following conclusions can be drawn from this simulation study: 

1. Increase in the vertical permeability (i.e., increase in anisotropy ratio (kv/kh)) 

will result in increased water cut and water saturation at the producing interval 

without any significant effect on the oil production rate from the fractured 

reservoir. 

2. The water cut and oil production rate obtain decreased as production rate 

increased due to the fact that at low rate, water cut is controlled by fast moving 

cone at the fracture whilst oil production rate is controlled by slow moving cone 

in the matrix. 

3. The water cut oil production rate and water saturation at the producing interval 

increased as the storativity capacity (ω) increased. However, the sensitivity of 

these parameters depends to a large extent, on fracture porosity (φf) just as the 

storativity capacity (ω) depends on the fracture porosity (φf). 

4.  The fracture width (b) has no effect on the water cut, oil production rate and 

water saturation at the producing interval. 

5. The water cut, oil production rate and water saturation at the producing interval 

is not dependable on the fracture permeability (kf) in water coning phenomenon 

in fractured reservoirs. 
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APPENDIX  

BASE-CASE DATA FILE: 

-- THE WELL RATE IS SUBJECT TO LARGE CHANGES, 
AND AT ABOUT 250 DAYS 

-- CHANGES FROM FLOW RATE TO BHP CONTROL. 

-- 
=========================================
============================ 

RUNSPEC 

TITLE 

          WATER CONING IN FRACTURED RESERVOIRS: A 
SIMULATION STUDY 

DIMENS 

   10    1   15  / 

RADIAL 

NONNC 

OIL 

WATER 

FIELD 

EQLDIMS 

1  100   10    1   20 / 

TABDIMS 

    1    1   19   15   15   15 / 

REGDIMS 

   15    1    0    0  / 

WELLDIMS 

    1    2    1    1 / 

NUPCOL 

    4 / 

START 

   1 'JAN' 2010  / 

NSTACK 

   24 / 

DEBUG 

2  0  0   0  0  0  1 / 

--NOSIM 

GRID     
=========================================
====================== 

-------- IN THIS SECTION , THE GEOMETRY OF THE 
SIMULATION GRID AND THE 

-------- ROCK PERMEABILITIES AND POROSITIES ARE 
DEFINED. 

---------------------------------------------------------------------
--- 

COLUMNS 

10  60 / 

--3456789 

         PSEUDO 

         SAVE 

          / 

         COLUMNS 

1  80 / 

--  SPECIFY INNER RADIUS OF 1ST GRID BLOCK IN 
THE RADIAL DIRECTION 

INRAD 

  0.25 / 

--  SPECIFY GRID BLOCK DIMENSIONS IN THE R 
DIRECTION 

DRV  

    0.10 0.25 0.65 1.15 10.85  

    45.0 135.0 285.0 515.0 1105.0 / 

-- SPECIFY CELL THICKNESSES ( DZ ), RADIAL 
PERMEABILITIES ( PERMR ) 

-- AND POROSITIES ( PORO ) FOR EACH LAYER OF 
THE GRID. ALSO CELL TOP 

-- DEPTHS ( TOPS ) FOR LAYER 1. DTHETA IS SET TO 
360 DEGREES FOR EVERY 

-- GRID BLOCK IN THE RESERVOIR. 
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--     ARRAY    VALUE  ------ BOX ------ 

EQUALS 

'DTHETA'  360   /  BOX DEFAULTS TO THE WHOLE 
GRID 

      'DZ'      20     1 10  1  1  1  1  /  LAYER 1 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'TOPS'    9000  / 

      'DZ' 0.001  1 10  1  1  2  2  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20     1 10  1  1  3  3  /  LAYER 2 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  4  4  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20     1 10  1  1  5  5  /  LAYER 3 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  6  6  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20     1 10  1  1  7  7  /  LAYER 4 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  8  8  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20     1 10  1  1  9  9  /  LAYER 5 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  10  10  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20     1 10  1  1  11  11  /  LAYER 6 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  12  12  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20      1 10  1  1  13  13  /  LAYER 7 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      'DZ' 0.001  1 10  1  1  14  14  / 

      'PERMR'   300   / 

      'PORO'    0.001 / 

      'DZ'      20      1 10  1  1  15  15  /  LAYER 8 

      'PERMR'   1.25  / 

      'PORO'    0.18  / 

      /   EQUALS IS TERMINATED BY A NULL RECORD 

--  COPY RADIAL PERMEABILITIES ( PERMR ) INTO 
VERTICAL PERMEABILITIES 

--  ( PERMZ ) FOR THE WHOLE GRID, AND THEN 
MULTIPLY PERMZ BY 0.1. 

-------- SOURCE     DESTINATION 

COPY 

         'PERMR'      'PERMZ'     / 

/ 

-------- ARRAY     FACTOR 

MULTIPLY 

        'PERMZ'     0.1    / 

/ 

-- OUTPUT OF CELL DIMENSIONS, PERMEABILITIES, 
POROSITY AND TOPS 
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-- DATA IS REQUESTED, AND OF THE CALCULATED 
PORE VOLUMES, CELL 

-- CENTRE DEPTHS AND X AND Z DIRECTION 
TRANSMISSIBILITIES 

RPTGRID 

 1  1  1  1  0  1  0  0  0  1  0  1  1  1  1  0  1 / 

PROPS    
=========================================
====================== 

-------- THE PROPS SECTION DEFINES THE REL. 
PERMEABILITIES, CAPILLARY 

-------- PRESSURES, AND THE PVT PROPERTIES OF 
THE RESERVOIR FLUIDS 

---------------------------------------------------------------------
- 

-- WATER RELATIVE PERMEABILITY AND CAPILLARY 
PRESSURE ARE TABULATED AS 

-- A FUNCTION OF WATER SATURATION. 

-- 

--  SWAT   KRW   PCOW 

SWFN 

0.22  0       7 

    0.3   0.07    4 

    0.4   0.15    3 

    0.5   0.24    2.5 

    0.6   0.33    2 

    0.8   0.65    1 

    0.9   0.83    0.5 

    1     1       0      / 

-- SIMILARLY FOR GAS 

-- 

--  SGAS   KRG   PCOG 

--SGFN       1 TABLES   19 NODES IN EACH           FIELD   
16:31 18 JAN 85 

   -- .0000  .0000  .0000 

   -- .0400  .0000  .2000 

   -- .1000  .0220  .5000 

   -- .2000  .1000 1.0000 

   -- .3000  .2400 1.5000 

   -- .4000  .3400 2.0000 

   -- .5000  .4200 2.5000 

   -- .6000  .5000 3.0000 

   -- .7000  .8125 3.5000 

   -- .7800 1.0000 3.9000 

/ 

-- OIL RELATIVE PERMEABILITY IS TABULATED 
AGAINST OIL SATURATION 

-- FOR OIL-WATER AND OIL-GAS-CONNATE WATER 
CASES 

-- 

--  SOIL     KROW      

SOF2 

    0.00     0.000          

    0.20     0.000          

    0.38     0.00432    

    0.40     0.0048     

    0.48     0.05288    

    0.50     0.0649     

    0.58     0.11298    

    0.60     0.125      

    0.68     0.345      

    0.70     0.400        

    0.74     0.700        

    0.78     1.000            / 

    / 

-- PVT PROPERTIES OF WATER 

--    REF. PRES. REF. FVF  COMPRESSIBILITY  REF 
VISCOSITY  VISCOSIBILITY 

PVTW 
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        3600     1.00341        3.0D-6          0.96             0  / 

   PVDO 

--PVT PROPERTIES OF DEAD OIL 

--OIL (PRE)  BO     UO    control   output  from  section 

   3200    1.0985    0.98 

   3600    1.0915    0.95 

     / 

-- ROCK COMPRESSIBILITY 

-- 

--    REF. PRES   COMPRESSIBILITY 

ROCK 

         3600          4.0D-6   / 

-- SURFACE DENSITIES OF RESERVOIR FLUIDS 

-- 

--        OIL   WATER   GAS 

DENSITY 

           45   63.02   0.0702  / 

-- PVT PROPERTIES OF DRY GAS (NO VAPOURISED 
OIL) 

-- WE WOULD USE PVTG TO SPECIFY THE 
PROPERTIES OF WET GAS 

-- 

--   PGAS   BGAS   VISGAS 

--PVDG 

     -- 400    5.9   0.013 

     -- 800    2.95  0.0135 

     --1200    1.96  0.014 

     --1600    1.47  0.0145 

     --2000    1.18  0.015 

     --2400    0.98  0.0155 

     --2800    0.84  0.016 

     --3200    0.74  0.0165 

     --3600    0.65  0.017 

     --4000    0.59  0.0175 

     --4400    0.54  0.018 

     --4800    0.49  0.0185 

     --5200    0.45  0.019 

     --5600    0.42  0.0195 / 

-- PVT PROPERTIES OF LIVE OIL (WITH DISSOLVED 
GAS) 

-- WE WOULD USE PVDO TO SPECIFY THE 
PROPERTIES OF DEAD OIL 

-- 

-- FOR EACH VALUE OF RS THE SATURATION 
PRESSURE, FVF AND VISCOSITY 

-- ARE SPECIFIED. FOR RS=1.81  THE FVF AND 
VISCOSITY OF 

-- UNDERSATURATED OIL ARE DEFINED AS A 
FUNCTION OF PRESSURE. DATA 

-- FOR UNDERSATURATED OIL MAY BE SUPPLIED 
FOR ANY RS, BUT MUST BE 

-- SUPPLIED FOR THE HIGHEST RS (1.81). 

-- 

--   RS      POIL    FVFO    VISO 

--PVTO 

   --0.165      400   1.012    1.17  / 

   --0.335      800   1.0255   1.14  / 

   --0.500     1200   1.038    1.11  / 

   --0.665     1600   1.051    1.08  / 

   --0.828     2000   1.063    1.06  / 

   --0.985     2400   1.075    1.03  / 

   --1.130     2800   1.087    1.00  / 

   --1.270     3200   1.0985   0.98  / 

   --1.390     3600   1.11     0.95  / 

   --1.500     4000   1.12     0.94  / 

   --1.600     4400   1.13     0.92  / 
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   --1.676     4800   1.14     0.91  / 

   --1.750     5200   1.148    0.9   / 

   --1.810     5600   1.155    0.89 

   --          6000   1.1504   0.89 

   --          6400   1.1458   0.89 

   --          6800   1.1412   0.89 

   --          7200   1.1367   0.89  / 

/ 

-- SWITCH ON OUTPUT OF ALL PROPS DATA 

RPTPROPS 

  8*1   / 

REGIONS  
=========================================
====================== 

-------- THE REGIONS SECTION DEFINES HOW THE 
RESERVOIR IS SPLIT INTO 

-------- REGIONS BY SATURATION FUNCTION, PVT 
FUNCTION, FLUID IN PLACE 

-------- REGION ETC. 

---------------------------------------------------------------------
--- 

EQUALS 

FIPNUM 1 1 10 1 1 1 1 / 

FIPNUM 2 1 10 1 1 2 2 / 

FIPNUM 3 1 10 1 1 3 3 / 

FIPNUM 4 1 10 1 1 4 4 / 

FIPNUM 5 1 10 1 1 5 5 / 

FIPNUM 6 1 10 1 1 6 6 / 

FIPNUM 7 1 10 1 1 7 7 / 

FIPNUM 8 1 10 1 1 8 8 / 

FIPNUM 9 1 10 1 1 9 9 / 

FIPNUM 10 1 10 1 1 10 10 / 

FIPNUM 11 1 10 1 1 11 11 / 

FIPNUM 12 1 10 1 1 12 12 / 

FIPNUM 13 1 10 1 1 13 13 / 

FIPNUM 14 1 10 1 1 14 14 / 

FIPNUM 15 1 10 1 1 15 15 / 

/ 

  -- SWITCH ON OUTPUT OF FIPNUM 

RPTREGS 

  0 0 0 1 / 

SOLUTION 
=========================================
====================== 

-------- THE SOLUTION SECTION DEFINES THE 
INITIAL STATE OF THE SOLUTION 

-------- VARIABLES (PHASE PRESSURES, 
SATURATIONS AND GAS-OIL RATIOS) 

---------------------------------------------------------------------
--- 

-- DATA FOR INITIALISING FLUIDS TO POTENTIAL 
EQUILIBRIUM 

-- 

--    DATUM  DATUM   OWC    OWC    GOC    GOC    RSVD   
RVVD   SOLN 

--    DEPTH  PRESS  DEPTH   PCOW  DEPTH   PCOG  
TABLE  TABLE   METH 

EQUIL 

       9035   3600   9099    0     9020    0       0      0  / 

-- SWITCH ON OUTPUT OF INITIAL SOLUTION 

RPTSOL                                           FIELD   16:05 12 DEC 
88 

   1   0   1   1   1   0   2   1   1   0   0   0   0   0   0   0   0 

   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   / 

SUMMARY 
=========================================
======================= 

-------- THIS SECTION SPECIFIES DATA TO BE 
WRITTEN TO THE SUMMARY FILES 

-------- AND WHICH MAY LATER BE USED WITH THE 
ECLIPSE GRAPHICS PACKAGE 
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---------------------------------------------------------------------
--- 

-- FIELD Rates for Oil, Water, Liquid & 3 Phase 
Voidage 

FOPR 

FWPR 

FLPR 

FVPR 

EXCEL 

/ 

/ 

BWSAT 

1 1 1 

1 1 2  

1 1 3  

1 1 4 

1 1 5 

1 1 6 

1 1 7 

1 1 8  

1 1 9 

1 1 10 

1 1 11  

1 1 12 

1 1 13 

1 1 14 

1 1 15 

/ 

-- BOTTOM HOLE PRESSURE FOR WELL 

WBHP 

'W1' 

/ 

-- FIELD Water Cut, GOR and Pressure 

FWCT 

FGOR 

FPR 

-- SWITCH ON REPORT OF WHAT IS TO GO ON THE 
SUMMARY FILES 

RPTSMRY 

1  / 

SCHEDULE 
=========================================
====================== 

-------- THE SCHEDULE SECTION DEFINES THE 
OPERATIONS TO BE SIMULATED 

---------------------------------------------------------------------
--- 

-- CONTROLS ON OUTPUT AT EACH REPORT TIME 

RPTSCHED                                         FIELD   16:07 12 DEC 
88 

   1   0   1   1   0     0   2   2   2   0     0   2   0   0   0 

   0   0   0   0   0     0   0   0   0   0     0   0   0   0   0 

   0   0   0   0   0     0   0   0   1   0     0   0   0   0   0  / 

-- FREE GAS IS NOT ALLOWED TO DISSOLVE IN 
UNDERSATURATED OIL 

DRSDT 

 0.0 / 

-- WELL SPECIFICATION DATA 

-- 

--     WELL   GROUP LOCATION  BHP   PI 

--     NAME   NAMEI  J   DEPTH DEFN 

WELSPECS                                         FIELD   16:32 18 JAN 
2010 

'W1','G       ',  1,  1,9110.00,'OIL' / 

/ 

-- COMPLETION SPECIFICATION DATA 

-- 



Water Coning in Fractured Reservoirs: A Simulation Study 2012 
 

NTNU MASTERS THESIS:- September, 2012 Page 52 
 

--     WELL     -LOCATION- OPEN/ SAT CONN 

--     NAME     I  J K1 K2 SHUT  TAB FACT 

COMPDAT 

'W1'  1  1  7  7 'OPEN' 0  27.228  / 

'W1'  1  1  8  8 'OPEN' 0  2.1079  / 

  / 

-- PRODUCTION WELL CONTROLS - OIL RATE IS SET 
TO 1000 BPD 

-- 

--      WELL     OPEN/  CNTL   OIL  WATER   GAS  LIQU   
RES   BHP 

--      NAME     SHUT   MODE  RATE RATE RATE RATE 
RATE 

WCONPROD 

    'W1'  'OPEN' 'ORAT' 1000   4*                      3000  / 

  / 

-- SPECIFY UPPER LIMIT OF 1 DAY FOR NEXT TIME 
STEP 

TUNING 

1  / 

/ 

 12 1 50 / 

-- SPECIFY REPORT AT 10 DAYS 

TSTEP 

 10.00000 

/ 

-- CUT OIL RATE TO 100 BPD 

WELTARG 

'W1', 'ORAT'  100.000000 / 

/ 

-- SPECIFY UPPER LIMIT OF 1 DAY FOR NEXT TIME 
STEP 

TUNING 

1  / 

/ 

 12 1 50 / 

-- ADVANCE SIMULATION TO 50 DAYS 

TSTEP 

 40.00000 

/ 

-- PUT OIL RATE BACK TO 1000 BPD 

WELTARG 

'W1', 'ORAT'  1000.00000 / 

/ 

-- SPECIFY UPPER LIMIT OF 1 DAY FOR NEXT TIME 
STEP 

TUNING 

1  / 

/ 

 12 1 50 / 

-- AND ADVANCE TO 720 DAYS - WELL SWITCHES TO 
BHP CONTROL AT 250 DAYS 

TSTEP 

50.00000  100.0000  100.0000  100.0000  100.0000  
100.0000  120.0000 

/ 

-- CUT OIL RATE TO 100 BPD 

WELTARG 

'W1', 'ORAT'  100.000000 / 

/ 

-- SPECIFY UPPER LIMIT OF 1 DAY FOR NEXT TIME 
STEP 

TUNING 

1  / 

/ 

 12 1 50 / 
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-- ADVANCE TO 800 DAYS 

TSTEP 

 80.00000 

/ 

-- RESET OUTPUT CONTROLS TO GET FULL OUTPUT 
FOR LAST REPORT 

RPTSCHED 

   1   1   1   1   1   1   2   2   2   1   2   2   1   1   2   / 

-- ADVANCE TO END OF SIMULATION (900 DAYS) 

TSTEP 

 100.0000 

/ 

END      
=========================================
===================== 


	Title Page
	NTNU MASTERS THESIS:- September, 2012

