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ABSTRACT 

Reproduction is known to be one of the most energetically demanding processes in the life of 

an organism, and in seasonal environments, vertebrate offspring production is therefore timed 

to coincide with the annual peak in resource availability. However, the recent advancement of 

spring phenology due to increased global temperatures may lead to a mismatch between peak 

resource availability and the high-energy requirements of reproduction. For high Arctic 

herbivores, such as reindeer, the onset of spring represents the start of a short time window of 

high resource availability crucial for development and survival, and a trophic mismatch may 

potentially influence reproductive success. As initiation of reproduction is often determined 

by cues distant in time of the annual peak in resources, one important question is therefore 

whether herbivores are able to match the recent advancement of plant phenology. Using data 

describing the timing of calving in Svalbard reindeer over a time period of 37 years, I here 

document the lack of changes in calving phenology in this species, despite significant 

advancement in the onset of spring during the same period. This suggests that the potential 

development of a trophic mismatch may already be happening, or will happen, but the future 

consequences are more difficult to predict. Also, my results indicate that the Svalbard 

reindeer display a certain degree of response in their calving phenology in relation to annual 

weather fluctuations. My findings suggest that an earlier onset of spring seemed advance 

calving date when the preceding winter conditions had been severe, whereas this effect was 

not found when the preceding winters conditions were milder. This interaction effect is 

possibly due to icing events which decrease forage accessibility in winter, and in turn, reduce 

body condition of parturient females. Even so, results should be interpreted cautiously due to 

low sample size and potential confounding factors. Therefore, in future studies, more 

comprehensive data is needed to adequately address questions about the influential 

mechanisms on phenology. 
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ABSTRACT IN NORWEGIAN 

Reproduksjon er en av de mest krevende prosessene i organismers liv, og i områder med 

sesongvariasjon er derfor produksjon av nye individer synkronisert til å treffe den årlige 

toppen i ressurstilgang. Den raske oppvarmingen av det globale klimaet de siste årene har 

derimot forskjøvet vårfenologien til tidligere tidspunkt, noe som kan lede til en mismatch 

mellom toppen i ressurstilgang og de store ressurskravene som følger med reproduksjon. For 

Arktiske herbivorer som reinsdyr er starten på den korte plantevekstsesongen i Arktisk viktig 

å få med seg for å sikre størst muligheter til vekst og overlevelse. Et trofisk mismatch kan 

derfor påvirke reproduktiv suksess. Siden reproduksjonsprosessen initieres på et tidspunkt 

som er langt unna den årlige toppen i ressurstilgang og gjerne bestemmes via mekanismer 

som ikke er sensitive til temperaturøkninger, er det derfor viktig å se om herbivorer følger 

etter forskyvningen i plantefenologi. I denne studien bruker jeg data på kalvingstidspunkt av 

Svalbardrein over en 37 år lang studieperiode for å dokumentere at det ikke eksisterer 

endringer i kalvingsfenologien til Svalbardreinen, til tross for forskyvninger av vårstarten i 

samme periode. Dette indikerer at et trofisk mismatch allerede er i utvikling, eller at det vil 

skje i fremtiden. Konsekvensene av dette er dog vanskeligere å forutse. Resultatene fra 

studien indikerer også at kalvingsfenologien til Svalbardreinen til en viss grad responderer til 

årlige fluktuasjoner i værforhold. Mine funn viser at en tidligere vårstart ser ut til å forskyve 

kalvingsdatoen fremover når det det aktuelle året også har hatt harde vinterforhold, men 

denne effekten sees ikke i år der vinterforholdene har vært mildere. Resultatene må dog sees i 

lys av liten datamengde og potensielle konfunderende faktorer, og derfor trengs det bedre og 

mer omfattende data i fremtidige studier for å kunne dra sikre konklusjoner om i hvilken grad 

ulike faktorer påvirker fenologien i organismer. 
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INTRODUCTION 

According to life history theory, organisms adapt to their environment through evolutionary 

mechanisms to maximize their fitness (Stearns 2000). These adaptations may be expressed as 

behavioral or morphological traits, but also as phenology – the timing of seasonal activities of 

plants and animals (e.g. bud break, flowering, calving, egg laying, migration; Walther et al. 

2002). The phenology of reproduction is one of the most important life history traits (Stearns 

1992, 2000), but reproduction also represents one of the most energetically demanding 

processes for an organism (Gittleman & Thompson 1988; Wade & Schneider 1992). In 

seasonal environments, there is often only a limited time of the year when conditions are 

favorable enough to support reproduction, and this period is most often determined by the 

availability of food (Bronson 1989). Therefore, to increase the probability of a successful 

reproduction, temporal overlap between offspring production and peak resource availability 

is crucial (Bronson 1989; Visser & Both 2005).  

 

The most favorable time for when to give birth is usually determined by the abundance of 

focal prey species in lower trophic levels. This principle of phenological synchrony between 

trophic levels is evident in a broad range of ecosystems in both terrestrial and aquatic systems 

(see e.g. Visser & Both 2005; Parmesan 2006; Durant et al. 2007). However, recent climate 

change (IPCC 2014) now challenges this relationship, as consumer and prey species display 

unequal responses to the rapidly increasing temperatures (Walther et al. 2002; Visser & Both 

2005). Several comprehensive studies show that climate change has already had impacts on a 

variety of plant and animal life throughout the world in both terrestrial, marine, and 

freshwater systems (Walther et al. 2002; Parmesan & Yohe 2003; Parmesan 2006; IPCC 

2014). As temperatures rise, the phenology at lower trophic levels (e.g. plants) is expected to 

respond strongly to such environmental cues (Menzel et al. 2006), with one consequence 

being that the spring phenology has advanced significantly during the last decades (Cleland et 

al. 2007; Høye et al. 2007; Gilg et al. 2012; IPCC 2014). Such rapid shifts in phenology may 

lead to a decoupling of the phenological synchrony and the development of a trophic 

mismatch, as documented in several bird species (Visser et al. 1998; Both & Visser 2001; 

Strode 2003; Both et al. 2006; Visser et al. 2006; Both et al. 2009; Saino et al. 2011), 

mammals (Inouye et al. 2000; Post & Forchhammer 2008; Kerby & Post 2013; Plard et al. 

2014), as well as in aquatic systems (Edwards & Richardson 2004; Winder & Schindler 

2004; Mackas et al. 2007; Søreide et al. 2010). According to the “match/mismatch 
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hypothesis” (Cushing 1990; Durant et al. 2007), the consequence of a mismatch in phenology 

between the trophic levels is typically reduced reproductive success and survival of the 

consumer (Durant et al. 2007), especially in seasonal environments (see Durant et al. 2005). 

  

In the Arctic, the effects of climate change are expected to exceed those in temperate areas as 

temperatures rise at almost twice the rate near the poles, as compared to the rest of the world 

(Overpeck et al. 1997; ACIA 2004; IPCC 2014). Moreover, the highly variable weather 

conditions in the Arctic are likely to escalate with the predicted increase of extreme weather 

events, such as heat waves and heavy rainfalls (Rennert et al. 2009; IPCC 2014). In tundra 

ecosystems, the effects of climate change are most likely to be associated with a longer and 

warmer snow-free season (Høye et al. 2007; Meltofte et al. 2008; Post et al. 2009; van der 

Wal & Stien 2014). One important question in current research on the consequences of Arctic 

climate change is whether species at higher levels are able to adjust their phenology to track 

the advancement of the phenology of their prey species (Post & Forchhammer 2008; Gilg et 

al. 2012; Grabowski et al. 2013; Kerby & Post 2013; Doiron et al. 2015). This can be 

problematic as the phenology at higher trophic levels is usually determined by environmental 

cues distant in time (e.g. timing of mating and parturition) or space (e.g. timing of long-

distance migration). This is the case for the reproductive phenology of circumpolar ungulates, 

such as caribou and wild reindeer (both Rangifer tarandus), where rut and conception occurs 

in fall, while parturition is timed to coincide with the favorable conditions at the onset of 

spring (Skogland 1989; Post et al. 2003). At higher latitudes, the nutritional quality and 

digestibility of plants reach a peak soon after they emerge in spring, followed by a rapid 

decline (Klein 1990; Post & Klein 1999), and the newly emerged and nutritious plant tissue 

at the onset of the plant-growing season may therefore be vital after parturition, as the main 

cost of reproduction is represented by lactation (Gittleman & Thompson 1988; Clutton-Brock 

et al. 1989). Considering the seasonality of circumpolar regions, sufficient time to forage on 

plant tissue before winter is also important to enhance growth and chances of winter survival 

of calves (Guinness et al. 1978; Festa-Bianchet 1988), as well as to supply energy for the 

demanding process of lactating (Clutton-Brock et al. 1989). Consequently, the spatial 

variation in calving dates between R. tarandus populations highly corresponds to the local 

onset of the plant-growing season (Skogland 1989; Post et al. 2003), with delayed calving at 

higher latitudes (Skogland 1989). 
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At the most extreme latitudes in the high Arctic, the plant-growing season is particularly brief 

(Malnes et al. 2010), and with such high seasonality in food availability and quality, one 

should expect strong selection for females to time parturition to match plant phenology. 

Indeed, in the high Arctic archipelago of Svalbard, populations of the wild Svalbard reindeer 

(Rangifer tarandus platyrhynchus) seem to exhibit a birth-synchrony unparalleled by other 

Rangifer populations (Skogland 1989). The birth-synchrony of Rangifer has previously been 

proposed to be a strategy to avoid predation of newborn calves (e.g. Bergerud 1974), but as 

predators are virtually absent in Svalbard (only one observation exists in the literature of a 

Svalbard reindeer calf being killed by predators; Prestrud 1992), the high birth-synchrony is 

most likely an adaptation to the short plant-growing season (Skogland 1989; Post et al. 

2003)). However, as in other parts of the Arctic, climate is changing and temperatures are 

rapidly increasing (Forland et al. 2011). In an environment with such a brief plant-growing 

season and rapid advancement of spring (Karlsen et al. 2014), there is clearly a potential for 

the development of a trophic mismatch if the Svalbard reindeer fail to respond to the 

advancement of plant phenology. Moreover, recent changes in winter climate have already 

been shown to influence the population dynamics of herbivores (Miller & Gunn 2003; 

Putkonen & Roe 2003; Hansen et al. 2011) and, in turn, higher trophic levels (Hansen et al. 

2013), due to increased winter rain and the formation of impenetrable snow packs that 

decrease forage accessibility (Hansen et al. 2011). Artic vertebrates are highly adapted to the 

extreme conditions of where they reside, but with obvious limitations in migration strategies, 

circumpolar species are particularly vulnerable in a rapidly changing world.  

  

In this study, I seek to investigate the potential development of a trophic mismatch in the 

reproductive biology of the Svalbard reindeer in relation to its resources. Being subject to 

negligible predation, this sub-species of Rangifer provides an excellent opportunity for 

studying phenological effects of climate change. I used calving time data from 13 years, 

covering a range of 37 years (1979-2015) to generate a time series of population-level 

estimates of the annual calving date. I expected that, given sufficient phenotypic plasticity 

and/or adaptation via natural selection, the pronounced advancement of spring in this system 

(Karlsen et al. 2014) would over time lead to earlier calving dates. Furthermore, several 

studies have recently demonstrated how reindeer behavior and population dynamics are 

driven by winter climate and, in particular, rain-on-snow (hereafter ROS, also including rain 

on frozen ground) and icing events (Miller & Gunn 2003; Kohler & Aanes 2004; Hansen et 

al. 2011; Stien et al. 2012). Because severe (in this case: rainy) winter conditions lead to 
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reduced body condition in late winter due to decreased forage accessibility (Albon et al. in 

revision), I expected that ROS would possibly delay calving dates (cf. Skogland 1989). To 

evaluate this, I first compared temporal trends in climate covariates (i.e. proxies for spring 

onset and winter severity) and calving dates, using simple regression techniques. Secondly, I 

used multiple regressions and model selection to analyze how annual calving dates were 

related to variation in proxies for the onset of spring and the degree of winter severity. 
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METHODS 

Study system 

The study was conducted in the high Arctic archipelago of Svalbard (74–81°N, 10–35°E; 

Figure 1), situated approximately half way between mainland Norway and the North Pole. 

Typical features of the islands are long fjords, wide valleys and steep mountains, with 

glaciers covering about 60% of the total land area (Tyler 1987). The archipelago is inhabited 

by the endemic Svalbard reindeer, which is found in almost all non-glaciated parts of the 

islands (Tyler 1987). I studied populations residing in the inner fjord zone of Svalbard’s 

biggest island, Spitsbergen, in the valleys of Adventdalen and Reindalen (including 

Semmeldalen and Colesdalen; Figure 1). These valleys are in relatively close proximity of 

the weather station at Svalbard airport, Longyearbyen, and have high densities of reindeer. 

For the study period of 1979-2015, the mean temperature was –4.8 °C and the mean 

precipitation was 0.8 mm. 

 

Figure 1. The study area of Adventdalen and Reindalen (including Semmeldalen and 

Colesdalen). Red points mark the location of Longyearbyen and Svalbard airport. Longitude–

latitude coordinates shown at the map border and map scale in bottom-right corner. The map 

is made in ArcGIS Rest API 10.11. © Norwegian Polar Institute  
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The Svalbard reindeer is the only large, terrestrial herbivore in Svalbard. Besides humans, 

which perform annual low-level reindeer harvest, the only two other mammals that reindeer 

may encounter are the polar bear (Ursus maritimus) and the Arctic fox (Vulpes lagopus), but 

they very rarely prey on reindeer (Prestrud 1992; Derocher et al. 2000). Hence, contrary to 

many other Rangifer species, the Svalbard reindeer has no mammal competitors and virtually 

no natural predators. As a combined effect of the harsh Arctic environment, limited food 

resources and the absence of predators, the Svalbard reindeer have adapted a somewhat 

different behavior than most other Rangifer. They have a sedentary way of living (Tyler & 

Øritsland 1989), possibly to reduce energy outputs (Loe et al. 2007), and are most often 

found in small groups rather than large herds (Tyler 1987). As for other ungulates, the annual 

reproductive cycle is initiated by seasonal changes in day length in fall (in this case October) 

followed by ovulation and conception (Skogland 1994). During the scarce winter months in 

Svalbard, forage availability is limited and reindeer are usually found feeding along ridges, 

mountain slopes, or other places where snow accumulation is low (Bjune et al. 2005). At the 

end of the assumed  ~230-day long gestation period (for other species of R. tarandus, Leader-

Williams 1988; Mysterud et al. 2009), a single calf is born, usually in early to mid-June 

(Tyler 1987; Skogland 1989). The favorable conditions at the onset of the plant-growing 

season are presumed to provide optimal conditions for growth and development of newborn 

calves, which suckle for about a month before they are able to also feed on plant tissue (Tyler 

1987). This phenological synchrony between plant-growth and calving is also important for 

females in order to optimize the process of accumulating sufficient fat reserves needed to 

meet the energetic demands represented by a new reproductive cycle and survival through 

winter (Clutton-Brock et al. 1989; Skogland 1994) 

 

Calving time data  

I used calving time data from three different time periods: 1979-1981 (Tyler 1987), 1996-

1998 (R. J. Irvine et al. unpubl.) and 2009-2015 (L.E. Loe unpubl.), which provided temporal 

distributions of calving dates for 13 years in total. Until 1998, the calving time data are based 

on in situ observations made in the calving areas (see Appendix, Table A1 for a summary), 

whereas calving time data for years 2009-2015 were obtained by activity data recorded by 

GPS-collars (see below). Observations in 1979-1981 were recorded at irregular intervals 

along a predetermined route in Adventdalen (Tyler 1987). The frequency of observations 

differed between years, but generally covered the range from June 1st to the middle of July, at 

the time of the main summer census. For these years, the number of observed adult females 
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ranged from 10–244 per day (mean±SD = 85±76), and the number of observed calves ranged 

from 0–171 per day (mean±SD = 32±48). Observations in 1996-1998 were recorded in 

Reindalen on a daily or close-to-daily basis (R. J. Irvine et al. unpubl). The frequency of 

observations differed between years, but generally covered the range from the first days of 

June to the 1st of July, with the exception being 1997, when observations started the 24th of 

May. For these years, the number of observed adult females ranged from 5–164 per day 

(mean±SD = 46±35), and the number of observed calves ranged from 0–123 per day 

(mean±SD = 20±25). Despite the spatial distance between Adventdalen and Reindalen 

(Figure 1), the two studied populations fluctuate in synchrony and are shaped by similar 

environmental drivers (Aanes et al. 2003), which are also highly correlated in space (B.B 

Hansen, pers.comm.) Furthermore, in 1979, independent calves per female observations were 

done in both Adventdalen (Tyler 1987)  and Reindalen (Skogland 1989), with approximately 

the same estimates of calving phenology (see Appendix, Figure A1), suggesting that valley 

differences are negligible.  

 

Since 2009, about 30 adult females in Reindalen have carried GPS-collars as part of a long-

term capture-mark-recapture project (see Loe et al. In press). In addition to tracking the 

location of the animals, the GPS-collars also record and store activity data for individual 

reindeer. Records from pregnant females show unusually high levels of activity during a 

short time interval of the day in periods when calving is expected to occur, i.e. mainly early 

to mid-June, which is typically followed by a long resting period lasting for several hours. 

The increased activity around parturition is probably related to a general restlessness prior 

and during birth, as well as intensive licking of the newborn calf. When analyzing the activity 

data (V. Veiberg & L.E. Loe, unpubl), the peak activity followed by an extended resting 

period is seen as a clear anomaly from the normal activity pattern, and this characteristic 

signature can thus be used as an estimate for the individual calving date without observing 

the actual calving itself (Vebjørn Veiberg, pers. comm.). This assumption is supported both 

by studies on other species (Langbein et al. 1998; Jensen 2012), as well as in in situ field 

observations (see below). 

 

Each April since 2009, as many GPS-collars as possible have been retrieved during fieldwork 

and their data analyzed, generating a series of calving time data from 2009-2015. Activity 

data from 12 collars retrieved in April 2016 were compared to in situ observations of calving 
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in 2015 (V. Veiberg, unpubl) and the high match in estimated calving date gave strong 

support for using the indirect method of estimating calving date (see Appendix, Figure A2).  

 

Climate proxies for spring onset and winter severity 

In the absence of data on the timing of spring onset and winter severity covering the entire 

study period, I used proxies based on weather data. It has been shown that the timing of 

spring onset (Karlsen et al. 2014) is closely related to the heat sum in May-June and, in 

particular, from the second half of May (Karlsen et al. In prep). Furthermore, the amount of 

winter ROS is strongly correlated with icing extent (Kohler & Aanes 2004; Hansen et al. 

2011; Hansen et al. 2014; Albon et al. unpubl.), and reflects feeding conditions in winter 

well. I therefore used spring heat sum as proxy for spring onset, and amounts of ROS as 

proxy for winter severity. I downloaded data containing measurements of daily mean 

temperature and daily precipitation from Svalbard airport (Figure 1, 78.25°N, 15.50°E), 

available through the Norwegian Meteorological Institute, for all years in the study period 

(1979-2015). To estimate spring heat sum, I used the sum of all above-zero temperatures 

from 15th of May to 30th of June. Note that this heat sum was almost perfectly correlated with 

heat sum for May plus first half of June (r = 0.88, P < 0.01), and also with the entire May-

June period (r = 0.99, P < 0.01). To estimate ROS for year t, I used the sum of daily 

precipitation at above–1°C temperatures from Novembert-1 to Aprilt. November–April was 

chosen because the soil usually freezes in late October (Roth & Boike 2001) and the snow 

starts melting in early May. 

 

Statistical analyses 

The statistical analyses consisted of (1) estimating annual population-level calving dates, (2) 

investigating temporal trends in climate and calving data, and (3) investigating potential 

correlations between variation in climate proxies and annual variation in calving dates. 

 

To obtain population-level estimates of the annual calving date, I used calving time data 

containing the number of calves and adult females observed (until 1998; Table A1), as well 

as individual calving time data based on activity levels (2009-2015). I chose the point at 

which 50% of the parturient females had given birth as my estimate of the annual calving 

date. At any given observational day, the number of observed calves and adult females yields 

a proportion of calves per female. However, this proportion also includes observations of 

non-parturient females. This can be accounted for by using a scaling parameter, and thus the 
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point at which 50% of parturient females can be estimated. In the analyses, I assumed the 

proportion of parturient females giving birth a certain day to be normally distributed around 

the 50%-calving date for each year. Thus, the proportion of parturient females that have 

given birth follows a cumulative normal distribution, with mean µ and standard deviation σ, 

where the mean µ is equal to the 50%-calving date (Garel et al. 2009). The proportion of 

parturient females that have calved p is given by  

 

! = !! • !ϕ !!!!
!       (1) 

 

where ϕ denotes the cumulative distribution, and x = Julian date (i.e. day of year) and q is the 

scaling parameter. Equation (1) displays a sigmoid relationship between p and x, leveling off 

at the scaling parameter q (Garel et al. 2009). If q = 1 (i.e. a population with only parturient 

females), the proportions of observed calves per female could have been used directly to 

estimate the sigmoid curve. Equation (1) can after re-parameterization be written as 

 

!"#$%&! !! = !!! + !!!     (2) 

 

where the probit link function is the inverse of the cumulative standard normal density ϕ and 

the new parameters, the regression coefficients 

 

!! = !
! ,!!!!!!!! = !

!
!      (3)  

 

Using the probit link function, I estimated the date where 50% of the parturient females had 

given birth (Garel et al. 2009), giving a time series of calving dates for all years. 

 

Based on the time series of the climate proxies (spring heat sum and ROS), I used simple 

linear regression models with each proxy as the response variable against year to examine 

climatic trends during the study period (1979-2015). Then, I used the time series of annual 

calving dates as the response variable against year to investigate for any potential long-term 

trend in calving phenology. 

 

To investigate for potential effects of variation in weather on the annual calving date, I used 

the climate proxies as covariates in multiple linear regression models (assuming Gaussian 
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distribution). A priori, either variable could possibly affect calving date (see above, 

Introduction). In addition, it is not unlikely that the effect of one climate variable is 

influenced by the level of the other variable (i.e. an interaction effect). Thus, starting with a 

global model that included annual calving date as the response variable, and spring heat sum, 

ROS and an interaction between the two as explanatory variables, I ran all possible subsets of 

this model, including the null model, giving a total of five candidate models.  

 

Model selection was done using an information-theoretic approach according to the Akaike 

Information Criteria corrected for small sample size (AICc; Anderson & Burnham 2002), 

available through the “MuMIn” package (Barton 2016). The model with lowest AICc score 

was considered as the best-fitted model, given the data and the candidate models. As a rule of 

thumb, and in accordance with Burnham & Anderson (2002), models with ∆AICc < 2 were 

considered to have substantial support. Natural log-transformation of the covariates was done 

to see if this yielded a better fit, but it did not. Note that the sample size was low, hence, the 

full model should be cautiously interpreted. All statistical analyses were done in R version 

3.2.4 (R Core Team 2016) 
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RESULTS 

Temporal trends in climate proxies  

During the study period, spring heat sum ranged from 20.2–171.4 °C (mean±SD = 

100.5±34.3) and increased by an average of 2.2 °C per year (Figure 2a). Notably, the ten 

years with highest spring heat sum all occurred from 2002 and onwards, while the five years 

with lowest spring heat sum all occurred before 1988. Even though there were strong inter-

annual fluctuations indicating variable weather conditions, the trend of an increasing spring 

heat sum across the study period is highly significant (β = 2.23, SE = 0.38, t = 5.86, P < 0.01; 

Figure 2a). 

  

The amount of ROS ranged from 0–66.2 mm (mean±SD = 15.5±19.1; Figure 2b). Many 

years show zero, or close to zero ROS, while certain years show high amounts of ROS 

relative to adjacent years. 1996, 2010 and 2012 represent the rainiest winters with 62-66 mm 

of ROS. Note that the eight winters with lowest amounts of ROS ( < 1.5 mm) all occurred 

before 1999, whereas all winters after 1999 have ROS amounts above 3 mm. Even so, annual 

fluctuations were high, with no statistically significant linear trend of change in the amount of 

ROS during the study period (β = 0.28, SE = 0.29, t = 0.96, P = 0.34; Figure 2b) 

 

Calving phenology 

For years 1979-1981, 1996-1998 and 2009-2015, the earliest calving date was Julian date 154 

(3rd June) in 2013, and the latest calving date was Julian date 164 (12th June) in 1996 

(mean±SD = 158±9.5; Figure 2c & Figure 3). The three earliest calving dates all occurred 

late in the study period (2009, 2010 and 2013), but there was no statistically significant linear 

trend of change in the calving dates over the course of the study (β = -0.048, SE = 0.058, t = -

0.830, P = 0.424; Figure 2c)  
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Figure 2: Time series (1979-2015) showing the annual (a) spring heat sum, (b) rain-on-snow 

(ROS), and (c) calving date ±standard errors. Calving date is reported as Julian date (mean = 

158, corresponding to June 7th [6th in leap years]) 
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Figure 3: Estimates of annual calving date (blue vertical line) based on observational data 

(1979-1998, left side) and activity data (2009-2015, right side). The x-axis displays Julian 

date and the y-axis display the proportion of calves per adult female. The annual calving date 

is estimated to the date where 50% of the parturient females have calved. The size of the data 

points is proportional to the sample size. 
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Effects of climate proxies 

Based on five candidate models, the variation in annual calving dates was best explained by 

the global model, including spring heat sum, ROS, and the interaction between them as 

explanatory variables (Table 1; Model 1; AICc = 66.53). Note that the null model was ranked 

second in the model selection process (Table 1; Model 2; AICc = 67.22, ∆AICc < 2). The 

global model indicated a significant positive effect of ROS on calving date (i.e. a delaying 

effect) at low (zero) spring heat sum, with a negative interaction effect suggesting that the 

effect of ROS decreased and became non-significant at higher spring heat sum (Table 1). The 

negative interaction term indicates an advance in calving dates with increasing spring heat 

sum, but only when the amount of ROS is high (Figure 4). Thus, an earlier onset of spring 

seem to advance the timing of calving when winter conditions have been severe (i.e. rainy), 

but this is not the case when winter conditions have been less severe. To evaluate whether the 

spring heat sum effect was simply an effect of time (i.e. a confounding factor, due to the 

linear trend displayed in Figure 2a), the global model was tested with year as a covariate 

instead of spring heat sum. This alternative model yielded a less good fit (AICc = 73.64), but, 

although non-significant, it showed the same tendency (Intercept: β = 181.644, SE = 

122.917, t = 1.478, P = 0.174; Year: β = -0.012, SE = 0.062, t = -0.200, P = 0.846; ROS: β = 

11.150, SE = 6.250, t = 1.79, P = 0.110; Year:ROS: β = -0.006, SE = 0.003, t = -1.777, P = 

0.109) 
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Figure 4. Visualization of the interaction effect in the global model, showing how the 

relationship between calving date and spring heat sum is dependent on the amounts of ROS. 

ROS is here categorized as either high (six years with highest ROS, blue) or low (seven years 

with lowest ROS, red).  
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DISCUSSION 

In the present study I addressed potential changes in the reproductive phenology of a high 

Arctic herbivore in relation to climate change. I here document that the Svalbard reindeer 

display no significant changes in calving phenology over the course of 37 years (Figure 2c), 

despite significant warming (Figure 2a) and advancement of spring onset in the same period. 

To my knowledge, this is the first study to document temporal patterns and the lack of a 

response in calving dates of the Svalbard reindeer in relation to climate change. My results 

suggest that the development of a trophic mismatch may already be happening, or will 

happen in this system. However, my results indicated an advance in calving dates when 

spring was warm, but this apparent effect depended on the preceding winter conditions 

(Figure 4), suggesting a possible interaction effect with reduced body condition due to 

decreased forage accessibility in severe winters. Even though the relatively consistent of 

calving dates over the study period suggests no long-term directional response to advanced 

spring onset, my findings indicate that the Svalbard reindeer display a certain degree of 

plasticity in calving phenology in response to their environment (Table 1). 

 

Calving phenology and long-term changes in climate 

Like in other parts of the Arctic, temperatures are rising in Svalbard (Figure 2a; Forland et al. 

2011) and the onset of spring has advanced (Clausen & Clausen 2013). Given the assumption 

that timing of reproduction in relation to resources is important for fitness (Durant et al. 

2007), addressing whether consumers adequately match the phenological shifts of their focal 

prey species is crucial (Visser & Both 2005). Over evolutionary time spans, the Svalbard 

reindeer have apparently been under a strong selection pressure for the timing of calving, 

indirectly evident by their high population-level synchrony in births. Having been shaped by 

the environment in Svalbard for at least 4000 (Van der Knaap 1986) and possibly as long as 

20000-40000 years (Hakala et al. 1986), the high inter-annual variation in the onset of the 

plant-growing season in the Arctic (Meltofte 2007; Malnes et al. 2010; Gilg et al. 2012) 

would suggest a “bet-hedging” calving strategy where parturition is timed to coincide with 

the long-term average onset of spring (Seger 1978). Assuming a constant selection pressure, 

the Svalbard reindeer should in theory track the recent advancement of plant phenology, 

given sufficient time and additive genetic variation. In contrast, this study demonstrates the 

lack of long-term changes in calving phenology over the course of the study (Figure 2c & 3).  
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One possible explanation for this may be that the present study encompasses the calving 

phenology over a period not sufficiently long to see enough to see any response even if 

evolutionary mechanisms are presently operating. As evidence suggests that calving date is 

genetically determined (Plard et al. 2013), adaptation by the differential selection of certain 

genotypes may be a slow process for ungulates, who are long-lived animals with long 

generation times (Gilg et al. 2012). However, the magnitude of recent climate change and the 

rapid advancement in the onset of spring clearly demonstrates the potential for the 

development of a trophic mismatch. The Svalbard reindeer reside in an environment with 

particularly strong seasonality in resources and the development of a trophic mismatch is 

therefore expected to decrease reproductive success and survival (Durant et al. 2007). 

Accordingly, it has been showed that a trophic mismatch caused by advancement of plant 

phenology has lead to reduced survival of calves and reduced offspring production in caribou 

in another high Arctic system (Post & Forchhammer 2008; Kerby & Post 2013). In this view, 

the rapidly changing climate may also have similar effects on the Svalbard reindeer. 

 

While the global climate is certainly changing, the biological consequences are very difficult 

to predict (see e.g. Mustin et al. 2007; Wookey et al. 2009; Gilg et al. 2012). For Arctic 

herbivores, such as the Svalbard reindeer, the increased temperatures in the snow-free season 

may be beneficial in such a low-productivity environment. Studies show how Svalbard 

reindeer selectively choose food abundance rather than food quality when given a choice, 

possibly due to the low productivity and the general high quality of plants in the Arctic (Van 

der Wal et al. 2000). With increasing temperatures, biomass production (van der Wal & Stien 

2014) and the length of the snow-free season in the Arctic is expected to increase. Thus, 

contrary to the effects on e.g. birds, where warming-induced shifts in spring phenology leads 

an advancement of peak resource availability relative to the peak resource requirements of 

offspring (Visser et al. 2006), Arctic herbivores may experience a general increase in food 

abundance and/or availability that at least partly may counteract potentially negative effects 

of a trophic mismatch in the breeding phenology. An earlier spring advances the accessibility 

of vegetation, shortening the period of winter starvation for parturient females, in turn 

benefiting the fetus and/or calf. As capital breeders, this is clearly beneficial as the energetic 

demands represented by lactation are very high (Clutton-Brock et al. 1989). Also, newborn 

calves should benefit from a longer plant-growing season and higher biomass production by 

increasing their chances of winter survival. This then, could seemingly ease the selection 

pressure on timing of calving. Thus, increased food abundance and availability from warmer 
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summers suggest enhanced reproductive success and population growth (Hansen et al. 2013, 

especially in a bottom-up controlled system such as is the case with the Svalbard reindeer. 

 

Although there are, arguably, positive effects of increased biomass and a prolonged length of 

the plant-growing season, the expected increase in the frequency of extreme weather events, 

such as ROS (Hansen et al. 2011; Hansen et al. 2014; IPCC 2014), may act in the opposite 

direction. As herbivores must face the harsh winter months of the high Arctic where food is 

limited, ROS may cause massive ice blocking of vegetation and, in turn, reduce population 

growth rates (Putkonen & Roe 2003; Kohler & Aanes 2004; Hansen et al. 2011; Hansen et 

al. 2014). Also, ROS may have more complex effects on herbivores than previously 

acknowledged, as icing can damage vegetation (Milner et al. 2016) and thereby influence the 

herbivores indirectly and with a delay. This then, suggests that the negative effects of ROS 

may potentially counteract any positive effects by increased plant biomass and a longer plant-

growing season. Despite this high Artic system being relatively simple, there are clearly 

several influential mechanisms on population dynamics and, though out of scope for this 

study, this illustrates the difficulties of predicting the ecological consequences of climate 

change. 

 

Calving phenology and annual weather fluctuations 

To what degree an organism is able to display a short-term response to changes in the 

environment (i.e. phenotypic plasticity) is highly relevant for whether there is a potential for 

the development of a trophic mismatch (Visser 2008). Interestingly therefore, my results 

suggest that annual weather fluctuations may influence the annual calving date (Table 1, 

Model 1). The negative interaction term in the best-fitted model suggests that an earlier onset 

of spring may advance calving date when the preceding winter has been severe (i.e. rainy; 

Figure 4). For instance, in 1996, the onset spring was relatively late and the preceding winter 

was severe, resulting in the latest calving in the study period (Figure 2c). Winters in 2010 and 

2012 were also severe, but the earlier spring seemingly advanced calving. Noting the low 

sample size and the fact the null model gained substantial support as the best fitted (Table 1; 

AICc < 2), results should be cautiously interpreted, but presumably, in winters with high 

levels of ROS, the forage accessibility is reduced due to icing (Putkonen & Roe 2003; 

Hansen et al. 2011; Hansen et al. 2014), and hence, body condition of parturient females is 

poor (Albon et al. unpubl). Accordingly, studies on the Svalbard reindeer show correlations 

between high amounts of ROS and a lower April body mass (Albon et al. unpubl; Loe et al. 
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In press). On the individual level, low April body mass is furthermore associated with late 

calving dates (Leif Egil Loe pers comm.) In theory then, a warm spring with early snowmelt 

may at least partly counteract the reduced body condition due to increased forage 

accessibility, enhancing the fetal growth rate (Clements et al. 2011), as shown in studies 

where captive red deer (Cervus elaphus) calve earlier with increased nutrition in late 

gestation (Asher et al. 2005).  

 

However, there is also a possibility that the effect of spring heat sum is actually an effect of 

time (i.e. a confounding factor due to the significant increase in temperature displayed in 

Figure 2a). This was tested for and, although the results were non-significant (see Results), 

the trend remained the same, indicating that the general trend of increasing temperatures 

might counteract the apparent delaying effect of ROS on calving date. ROS is known to 

influence population dynamics, also indirectly indicated in this study, as the poor conditions 

in 1996 (i.e. the year with highest amounts of ROS, Figure 2b) was associated with a very 

low proportion of calves per female in the population (see Table A1; Solberg et al. 2012). 

Furthermore, in 2012 (i.e. the year the third-highest amount of ROS, Figure 2b), a high 

number of Svalbard reindeer carcasses were recorded despite favorable winter-feeding 

conditions before the ROS events (Hansen et al. 2014). However, the possibility that the 

advancing effect of spring heat sum is an effect of time once again illustrates that one should 

be cautious to regard the results as conclusive.  

 

Most studies on reproductive phenology address the effects of shifts in spring plant 

phenology, but when discussing the timing of parturition, an inevitable question is to what 

extent autumn affects the process of phenological synchronization. In very simple terms, two 

factors are decisive in determining the date of parturition: (1) the date of conception and (2) 

the species-specific length of the gestation period. Adjusting the date of conception in 

autumn obviously has implications on the range of possible parturition dates in spring if the 

gestation period is relatively fixed (which is the case for ungulates; Clements et al. 2011). In 

some ungulates it has been shown that the date of conception may influence the timing of 

calving to a larger extent than spring phenology (Clutton-Brock et al. 1982; Kourkgy et al. 

2016) However, in lack of data on conception dates, this is impossible to account for in the 

present study. Moreover, factors such as age (Clutton-Brock et al. 1992; Langvatn et al. 

2004; Mysterud et al. 2009), previous reproductive history (Guinness et al. 1978), and 

offspring sex (Clutton-Brock et al. 1982; Holand et al. 2006; Mysterud et al. 2009) may also 
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affect gestation length, further increasing the complexity of the question. Due to the low 

sample size of this study then, one should be cautious to be conclusive, as extreme years may 

also have impacted the results, especially 1996, with high ROS and late calving. Furthermore, 

there is some uncertainty around the estimated calving dates, with 1996 having the highest 

standard error (Julian date = 164, Figure 2c). Nevertheless, no calves were observed up until 

day 162 (Figure 3; 1996), so it might be plausible to suggest the true calving date to occur, if 

not after, then at least not before day 164, and thus this would have had minimal impacts on 

the results. Moreover, excluding 1996 (or 2010 or 2012) from the analyses did not 

qualitatively influence the results from the model selection (analyses not presented). 

However, this clearly demonstrates the need of quality data when addressing complex 

questions regarding to phenological studies to determine to what extent different factors are 

influential. 

  

 

 

Concluding remarks 

The present study gives an insight of the past and the present situation of the reproductive 

phenology of a high Arctic herbivore in relation to climate change. This study is to my 

knowledge the first to document long-term temporal patterns in the calving dates of the 

Svalbard reindeer, and this during a period with significant changes in climate. The expected 

continuation of global warming indicates that a trophic mismatch has, or will, develop in this 

system, but the consequences are more difficult to predict. Despite no long-term directional 

response, however, my results indicate that the Svalbard reindeer show some response to 

fluctuations (or possibly long-term changes) in spring onset, but only when winter conditions, 

and hence, body condition, are poor. However, phenology is a complex area of study and 

more comprehensive data sets are needed to adequately address questions regarding the 

influential mechanisms. Nevertheless, gaining more knowledge about such mechanisms is 

crucial to determine potential future consequences in a rapidly changing world, especially for 

the vulnerable organisms in the Arctic.  
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APPENDIX 

 
Table A1. A summary of the in situ observations included in this study, showing the temporal 

range of the census, the frequency of observations in the census, and the total number of 

observed adult females and calves during the census, reported for years 1979-1981 (Tyler, 

1989) and 1996-1998 (R. J. Irvine unpubl.) For 2009-2015, GPS-collars were used to give 

individual estimates of calving date (see methods). The ratio of calves per female is reported 

for all years, based on in situ observations during the annual main summer census (Solberg et 

al. 2012). 

 

 
 
 
 
 
 
 
 
 
 

Year Census range Observations 
(days) 

Observed 
adult 

females 

Observed 
calves 

Calves 
per 

female 
 

1979 1st June – 1st July 7 474 87 0.26 
1980 2nd June – 27th June 5 498 357 0.73 
1981 4th June – 1st July 4 388 70 0.24 
1996 1st June – 1st July 13 628 47 0.16 
1997 24th May – 1st July 34 1531 628 0.77 
1998 3rd June – 1st  July 22 1016 685 0.78 
2009 10th May – 29th June - - - 0.54 
2010 10th May – 19th June - - - 0.49 
2011 10th May – 29th June - - - 0.68 
2012 10th May – 28th June - - - 0.47 
2013 10th May – 29th June - - - 0.65 
2014 10th May – 29th June - - - 0.61 
2015 10th May – 29th June - - - 0.83 
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Figure A1. The estimated calving date in 1979 based on observations in (a) Adventdalen 
(Skogland 1989)  and (b) Reindalen (Tyler 1978). Despite spatial differences between valleys 
(see Figure 1), the estimated calving dates are nearly identical (blue vertical lines). The x-axis 
displays Julian date and the y-axis display (a) the proportion of calves per female, and (b) the 
percentage of females that have calved. Due to lack of raw data, (b) was copied from 
Skogland (1989, p 31) by using PlotDigitizer 2.6.8 and R studio 10.11. 
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Figure A2. The estimated calving date in 2015 based on (a) records of activity data from 
GPS-collared females (Loe et al. unpubl), and (b) in situ observations of calving (V. Veiberg 
unpubl). Despite different methods of calving detection, the estimated calving dates are 
virtually identical (blue vertical lines). The x-axis displays Julian date and the y-axes display 
the proportion of calves per female. Data points are proportional to sample size. 
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