@NTNU

Norwegian University of
Science and Technology

Understanding Data Analysis in an
End-to-End loT System

Sindre Schei

Master of Science in Communication Technology
Submission date: June 2016

Supervisor: Frank Alexander Kramer, ITEM
Co-supervisor: David F Palma, ITEM

Norwegian University of Science and Technology
Department of Telematics

Title: Understanding Data Analysis in an
End-to-End IoT System
Student: Sindre Schei

Problem description:

The Internet of Things (IoT) is known as the concept of connecting everyday physical
devices to the Internet. It is natural to assume that the popularity and development
within this field will increase in the following years. This means that more and more
things will be able to communicate over the Internet. In the process of developing IoT,
an important part is to build reliable and scalable networks, and understanding where
data should be processed concerning power consumptions and costs of transferring
data in different parts of the network.

The task of the thesis will be to access data in a complete prototype of an IoT network,
and both collect and analyse the data. The goal is to study different alternatives for
a typical IoT system and provide an overview of current state-of-the-art technologies,
products and standards that can be used in such a setting. Data can be generated
by using and comparing different sensors connected to end nodes in the network.

To achieve these goals, a central part will be to understand the benefits of processing
data in the end nodes, concerning power, costs and time. This means much less data
needs to be sent through the network. If the calculations needed are too complex,
the measured data needs to be transferred to a central node with higher processing
power and easier access of energy. Another part is testing devices and sensors needed,
and write programming code associated with these.

Responsible professor: Frank Alexander Kraemer, ITEM
Supervisor: David Palma, ITEM

Abstract

The Internet of Things (IoT) is known as the concept of connecting
everyday physical devices to the Internet. It is natural to assume that the
popularity and development within this field will increase in the following
years. This means that more and more things will be able to communicate
over the Internet. In the process of developing IoT, an important part is to
build reliable and scalable networks, and understanding where data should
be processed concerning power consumption and costs of transferring
data in various regions of the network.

The task of the thesis will be to access data in a complete prototype
of an IoT network, and both collect and analyse the data. The goal is
to study different alternatives for a typical IoT system and provide an
overview of current state-of-the-art technologies, products and standards
that can be used in such a setting. Data can be generated by using and
comparing different sensors connected to end nodes in the network. A
complete network of both microcontrollers and single-board computers
will be built and explained in this thesis. The network will from now on
be referred to as testbed.

Microcontrollers as end nodes in an IoT network will be the central element
tested in this thesis. The primary focus is to establish a connection
between two devices, A and B, and form a network between these that
can transport data efficiently. A central point of discussion will be to find
transfer protocols and technologies that can be used in such a system. It
will be discussed the advantage and disadvantage of sending raw data,
rather than doing the computation in the end nodes. The main focus will
be on optimal throughput in the network. A deep understanding of the
benefits of processing data in the end nodes, concerning power, costs and
time is needed to achieve this.

Results from this work include graphs and discussions explaining in which
case the different transport protocols suggested are preferred, from tests
done in the testbed. These show that different protocols are suited for
different usage and that one of the tested possibilities more stable than
the other in the tests presented. Both protocols registered their highest
measured goodput at approximately 600 bytes/second. Being a quite slow
transfer rate, this opened up for another discussion about the possible
use cases for future Bluetooth Low Energy (BLE)-based IoT applications.

ii

Keywords: Optimizing payload sizes, fragmentation, maximizing through-
put, power usage.

Sammendrag

Tingenes Internet, mer kjent under det engelske navnet Internet of Things
(IoT), er konseptet der hverdagslige fysiske gjenstander kobles til Internet.
Det er naturlig & anta at populariteten og utviklingen rundt dette vil veere
okende de kommende arene. Dette betyr at flere og flere ting vil kunne
kommunisere over Internet. I prosessen der Tingenes Internet utvikles, er
en viktig del a bygge palitelige og skalerbare nettverk, samt a forsta hvor
i nettverket data bgr prosesseres med tanke pa energibruk og kostnader
ved a overfgre data mellom deler av nettverket.

Oppgaven i denne avhandlingen er a jobbe med data i en komplett proto-
type av et Tingenes Internet-nettverk, og bade samle og analysere dataene.
Malet er & studere de forskjellige alternativene til et slikt nettverk, samt
lage en oversikt over teknologiene og standardene som kan bli brukt i
denne sammenhengen. Ngdvendig data kan samles ved 4 sammenligne for-
skjellige sensorer koblet til endenodene i nettverket. Et komplett nettverk
bestaende av bade mikrokontrollere og smé datamaskiner pa en brikke,
vil bli bygget og forklart i denne oppgaven. Dette nettverket vil fra na av
refereres til som testbed.

Et sentralt testelement i denne oppgaven vil vaere bruk av mikrokontrollere
som endenoder i et Tingene Internet-nettverk. Hovedfokuset er & sette opp
en nettverksforbindelse mellom to enheter, A og B, og danne et nettverk
mellom disse slik at data kan overfgres pa en effektiv mate. I diskusjonen
vil et viktig punkt veere & finne transportprotokoller og teknologier som
kan benyttes i et slikt nettverk. Det vil bli diskutert fordelene og ulempene
ved & transportere radata istedenfor & gjgre utregninger i endenodene.
Hovedpoenget her vil veere gjennomstrgmmingen av data i nettverket.
For & gjore dette trengs en dyp forstaelse av fordelene ved & prosessere
data i endenodene med tanke pa energi, kostnader og tid.

Resultatene fra arbeidet bestar av grafer og diskusjoner rundt disse for
& forklare i hvilke situasjoner de forskjellige protokollene som har blitt
testedt er foretrukket. Utgangspuntket er tester gjort i testbed. Disse
testene viser at de forskjellige protokollene egner seg i ulike situasjoner,
men at en av de er mer stabil enn den andre protokollen som denne av-
handlingen presenterer. Begge protokollene hadde hgyest malte goodput pa
omkring 600 bytes/sekund. Siden dette er en forholdsvis lav sendingsrate
apnet dette for en annen diskusjon om mulig bruk i fremtidige Tingenes
Internett-nettverk der lavenergi Bluetooth er benyttet.

Ngkkelord: Optimalisering av stgrrelser pa faktiske data, fragmentering
av datapakker, maksimere pakkegjennomstrgmning, energiforbruk.

Preface

This thesis was issued by The Department of Telematics (ITEM) at The
Norwegian University of Science and Technology (NTNU) the spring of
2016 as a Master Thesis in Telematics. The responsible professor has
been Frank Alexander Kraemer, ITEM, who has given helpful advice
on how to build up and write such a large project, as well as answering
questions and providing support the whole period. David Palma has been
the supervisor, giving impressively close monitoring of the project to fill
in ideas, thoughts and good advice to help me finish the thesis. I would
like to thank both these ITEM representatives for the work they have
put down to make this project as good as possible.

Secondly, I would like to thank fellow students for the many discussions,
good advice and other more social activities the last five years. I would
like to point out the guys at A-179 for their support, Jon Anders for
helping me with code specific problems during the programming period,
and Anders for the many hours we spent together setting up central parts
of the network described in this thesis. Special thanks to you!

Last, but not least, I would like to thank my family for their support
both during the period of this thesis, but also during my entire period
as a student. Special thanks to my father, Svenn Arne, for helping me
review the thesis and to get a discussion point with someone without a
technical background.

Contents

List of Figures ix
List of Tables xi
List of Acronyms xiii
Glossary XV
1 Introduction 1
1.1 Motivation 1
1.2 Scope and objectives 2
1.3 Methodology L 4
1.4 Structure 5
2 Background 7
2.1 Hardware 7
2.2 Communication technologies 11
2.3 Transport protocols 14
2.4 Software tools L 19
3 System Architecture 21
3.1 Connecting Raspberry Piand nRF52 22
3.2 Raspberry Pi to Network Computer or Server 22
3.3 Connecting nRF52 and ADXL345. 23
3.4 Discussiono e 25
4 Network Measurements 27
4.1 Possible limitations in the network 28
4.2 Description of measurements 0L 31
4.3 Measurements e e 31
4.4 Transfer rates L 41
4.5 Chapter summary 48

vii

5 Discussion
5.1 Setupmnetwork
5.2 Gathersensor data
5.3 Send data through network
54 Analysedata
5.5 Easeofuse

6 Conclusion and Future Work
6.1 Future work

References

Appendices

A Appendix A
A.1 Measured values from tests

B Appendix B
B.1 Python programming scripts Lo

C Appendix C
C.1 Connecting Raspberry Piand nRF52
C.2 Connecting nRF52 and ADXL345.
C.3 C programming code for acceleration data

51
51
52
92
93
95

57
o8

59

61
61

65
65

69
69
72
72

List of Figures

1.1 Testbed, system architecture 2
2.1 Raspberry Pi3 8
2.2 Nordic Semiconductor nRF52 0L 9
2.3 ADXL345 Accelerometer 10
2.4 BLE protocol stack [16] 12
2.5 BLE Data Unit Structure [16] 13
2.6 CON CoAP set up sequence diagram [25] 16
2.7 NON CoAP set up sequence diagram [25] 16
2.8 CoAP NON, set up sequence, Wireshark capture 17
2.9 CoAP message format [25] oo 18
2.10 MQTT subscription sequence diagram [18]. 18
2.11 Copper example 19
3.1 End-to-End architecture in the presented system 21
3.2 Connected nRF52 — ADXL345 24
4.1 Ping nRF52 from Raspberry Pi oo 29
4.2 Packet fragmentation — train comparison.o L. 30
4.3 CoAP CON with ACKs, 0-200 bytes sent 34
4.4 CON with ACKs vs NON 0-200 bytes 36
4.5 CON with ACKs vs NON 0-1000 bytes 41
4.6 Time used to transfer payload CON 42
4.7 Time used to transfer payload NON 43
4.8 Average time to transfer payload, CON vs NON 44
4.9 Goodput compared to payload CoAP CON 45
4.10 Goodput compared to payload CoAP NON 45
4.11 Goodput for given payload, CONvs NON 46
4.12 Number of bytes persecond 47
A.1 Wireshark capture, 0 bytes CON 63

ix

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1

Al
A2

List of Tables

Connection scheme nRF52 to ADXL345 23
Wireshark CoAP CON 0 bytes payload 32
Wireshark CoAP CON 100 bytes payload 33
Wireshark CoAP NON 0 bytes payload 35
Wireshark CoAP NON 100 bytes payload 35
Wireshark CoAP CON 700 bytes 38
Wireshark CoAP NON 700 bytes 39
Comparison of CON and NON 54
Goodput and time, COAP CON 62
Goodput and time, COAP NON 62

Xi

List of Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks.

ACK Acknowledgement.
ACL Asynchronous Connection-Less.

AWS Amazon Web Services.
BLE Bluetooth Low Energy.

CoAP Constrained Application Protocol.
CON Confirmable CoAP message.

CPU Central Processing Unit.
DNS Domain Name System.
GUI Graphical User Interface.

HCI Host Controller Interface.

HTTP Hypertext Transport Protocol.

I2C Inter-Integrated Circuit.

ICMP Internet Control Message Protocol.

ICMPv6 Internet Control Message Protocol version 6.

IDE Integrated Development Environment.
IoT Internet of Things.

IPv4 Internet Protocol version 4.

xiii

IPv6 Internet Protocol version 6.
ISM Industrial Scientific Medical.

ITEM The Department of Telematics.

L2CAP Logical-link Control and Adaption Protocol.
LAN Local Area Network.

M2M Machine-to-Machine.
MQTT Message Queueing Telemetry Transport.

MTU Maximum Transmission Unit.

NDP Neighbor Discovery Protocol.
NON Non-Confirmable CoAP message.

NTNU Norwegian University of Science and Technology.
OS Operating System.

PAN Personal Area Network.

QoS Quality of Service.

radvd Router Advertisement Daemon.
RAM Random Access Memory.
RTT Round Trip Time.

SoC System on chip.

SPI Serial Peripheral Interface.

TCP Transmission Control Protocol.
TDMA Time Division Multiple Access.
TFTP Trivial File Transfer Protocol.

UDP User Datagram Protocol.
UI User Interface.

USB Universal Serial Bus.

ADXL345 accelerometer

byte

goodput

message code

message type

microcontroller

nRF52

packet

payload

Glossary

Small accelerometer mounted on a chip delivered
by Adafruit. Connected to the nRF52 in the
testbed.

Used as a synonym for octet, meaning 8 bits put
together as one unit.

The number of bytes in a packet that contains
the intended message, sent one way through the
network per time unit.

Is a code for a message in CoAP, for instance
PUT, SET or GET.

Is a type of message in CoAP, for instance CON,
NON or ACK.

Small computer that contains processor, mem-
ory and programmable parts in one integrated
circuit.

Nordic Semiconductor nRF52 DK , Develop-
ment Kit for the nRF52 microcontroller used as
end nodes in the testbed. From now on noted
as 'nRF52".

A network packet is a chunk of data transported
through the network as one piece. The packet
size may wary from protocol to protocol.

The part of the transmitted data that is the
intended message.

XV

Raspberry Pi

single-board computer

throughput

Mini computer in the size of a credit card. Runs
on electric power from a cord in the testbed.
From now on noted as "Raspberry Pi" or short-
ened to "Pi".

Small computer that contains processor, mem-
ory and programmable parts and I/O features
like ports and antennas on a single circuit board.

The total amount of data sent one way through
the network per time unit. The sum of payload
and additional header files needed to transport
the packet.

Introduction

1.1 Motivation

Internet of Things (IoT) is a general term describing a network of small devices
connected to the Internet with either a direct connection or using a forwarding device
as a central point of connection. The term includes all sort of devices, from small
sensors and microcontrollers to everyday smart objects, from phones and glasses
to cars and buildings. A common factor for all of these is Machine-to-Machine
(M2M) communication, where machines can communicate with each other without
Human-computer interaction. Kevin Ashton first used the term IoT in 1999 [13],
describing a global network of objects. He later explained how he predicted that
most of the data contained on the Internet today will be bypassed by the amount
of sensor collected data with M2M communication in the future. Both with this
as an argument, and the high interest for smart devices and sensors in the general
population, it may be said with a great certainty that this will be a central part of
the coming years of the Internet.

Developing from a network mostly based on human-made material to a system
based on data from sensors using M2M communication, require that several factors
are considered. It is natural to believe that most end nodes must be battery
powered for practical reasons. If a complete system contains hundreds of sensors
and microcontrollers, it would be impractical to set up a power cable to all of these.
From a users perspective, it would also be very annoying to have to change these
batteries very often. Because of this, the available computational power in the end
nodes is very limited, and should be limited further as much as possible to increase
the battery life.

A central point of discussion in any IoT system will be how to transport data
as efficient as possible. Raw data from sensors are seldom useful to an end user.
Therefore, the data need to be analysed and often represented in another form before
it can be useful to the user. A device in the network need to analyse the data,

2 1. INTRODUCTION

find out what is important or not, search for patterns, draw graphs or figures and
forward the results to a monitor, a web page, or to be stored on a server to be used
later. Arguments will be presented to discuss if the process of analysing data should
take place in the end nodes, or if it is preferable to forward raw data to a central
component of the network.

12C interface

ADXL345

Statlonary Computer Internet

Figure 1.1: Testbed, system architecture

Figure 1.1 shows the system, testbed, that will be constructed in this thesis. It
consists of a sensor connected to a microcontroller using the standard Inter-Integrated
Circuit (I2C) cable interface. The microcontroller used is the nRF52 from Nordic
Semiconductor, which is connected to a Raspberry Pi. The communication link
between these is using BLE, IPv6 over Low Power Wireless Personal Area Networks
(6LoWPAN) and Constrained Application Protocol (CoAP). Both these devices
and the technologies used will be described in chapter 2. The Raspberry Pi is
connected to the Internet, and can forward the data to a stationary computer if more
computational power is needed.

1.2 Scope and objectives

1.2.1 Scope

This thesis will mainly focus on the best way of optimizing transportation and
analysing data in a network. The goal is to find the optimal solution on how to treat
data. Central points of discussion will be:

1.2. SCOPE AND OBJECTIVES 3

— How to gather data from sensors efficiently, both concerning time and power
consumption

— How to transport data efficiently, considering power consumption and optimal
throughput, both concerning time spent, and amount of useful data that gets
through

— To find where in the network it is preferable to analyse the raw data, concerning
energy consumption and time spent in total

To achieve these central points mentioned, some explanation of background protocols,
used devices and network topology will be addressed as well, in addition to low-level
details needed to set up the system architecture, to maintain a stable and reliable
network.

1.2.2 Objectives

0O.1: Build a star network of microcontrollers

This is the most primary objective, to build a network that can be tested. All the
other objectives are dependent on this.

0.2: Connect sensors to the end-nodes to collect data

Objective two involves gathering real data. To do this, a sensor is needed which must
be configured correctly for the end node to be sure that the read data can be trusted
and reliable. Objective three and four can still be successful without this objective
since simulated data can be a replacement.

0.3: Gather information of the data sent through the network

Objective three is to find tools or write programming code to gather and analyse the
data sent through the network and present these in a way that makes it easy to spot
the advantages or disadvantages of the different protocols and technologies.

4 1. INTRODUCTION

0.4: Analyse and discuss the gathered information

Objective four involves discussing the presented results, and use these to discuss and
draw conclusions on how to optimize the network and propose solutions, improvements
or further work.

1.2.3 Research Questions

R.1: Which transport protocols are suitable for such a system?

To answer this question, the system must be built and tested, to see if there are any
noticeable differences in the tested protocols.

R.2: What are the main limitations concerning transporting data?

This question must be answered by measuring time spent in the different parts of
the network during routing of packets, to determine the bottleneck of the network or
system.

R.3: Are the microcontrollers powerful enough to gather data this fre-
quently?

This is not specified in the documentation of the microcontrollers since this depends
on the network, the type of sensor and the type of data. To answer this question,
the sensors must gather data at an even higher rate to see if it is possible to reach
an acceptable rate of sampling.

R.4: Could data analysis be done in the end nodes in this network?

This question is dependent on the result from R.3. It might be possible to do this if
the results reveal that the microcontrollers can easily handle the gathering of the
data and still have the power to do calculations. The alternative is to forward raw
data to a central node.

1.3 Methodology

The research methodology used in this thesis can be split into three main parts.
The first phase was to build and configure a complete end-to-end IoT system. This
included finding the most appropriate devices and technology that could be used in
such a system.

After the different devices have been connected and configured to communicate
with each other, the next phase of the methodology is to transfer data between the

1.4. STRUCTURE 5

different nodes. Data was collected using Wireshark, and programming code for the
different devices in the testbed.

The third and final phase were to analyse the data captured in the previous phase.
This was done by organizing data in tables and drawing graphs to find similarities,
differences and patterns in the data. Several different examples where conducted and
discussed in this phase.

1.4 Structure

Chapter 2 describes the technical background of technologies, protocols and devices
needed to understand the rest of this thesis, and explains why we chose some solutions
over others in this particular network. This chapter answers objective O.1 in detail
and discusses research questions R.1 and R.2.

Chapter 3 describes in detail how the different components of the network are
connected and set up to communicate with each other. This chapter answers objective
0.2 and discusses research question R.2 further.

Chapter 4 describes, explains and discusses the performed network measurements
using tables and graphs of gathered data as a central point of discussion. This
chapter answers objective 0.3 and discusses the research questions R.3 and R.4.
The chapter concludes that both CoAP Confirmable CoAP message (CON) and
Non-Confirmable CoAP message (NON), have their advantages in different scenarios,
which is summarized in chapter 4.6. CON has still been the most reliable when
tested in this network.

Chapter 5 discusses the results found in chapter 4 further, by going through the
central points of the objectives. It discusses what was most successful, what could
have been better and what should be considered for future works. The end of the
chapter contains an overall evaluation of the used devices and technologies, and how
the experience gained in this project can be used in the future.

Chapter 6 summarizes the entire work conducted in this project and presents the
final conclusion. In the end, possible future works are discussed.

All the images of devices in the testbed presented in this thesis have been taken by
the author, unless other is specified. Measured data can also be found on GitHub,
including data that could not be included in the thesis, https://www.github.com/
sische/MasterThesis/measurements.

https://www.github.com/sische/MasterThesis/measurements
https://www.github.com/sische/MasterThesis/measurements

Background

This thesis describes the setup and usage of an end-to-end IoT system. In order
for the testbed to be set up and reproduced by others, a detailed description of
components, sensors and protocols used, is provided. This chapter will undergo the
background information of the devices, technologies and protocols used, and why
these were chosen over other alternatives.

2.1 Hardware

The hardware section will undergo the physical devices used to build the IoT network,
which is central to solve objective O.1.

2.1.1 Raspberry Pi

Developed by Newark Element 14, the Raspberry Pi has become a central tool for
many people wanting to get started using small computers [7]. The device has been
known as a single-board computer specially designed for small network projects. It
can be used as an educational tool used all the way from elementary schools to
higher-education research environments, such as here at NTNU. This was a natural
device to use as a starting point in the testbed.

The Raspberry Pi is the size of a credit card. Model 3 of this was released in February
2016, just in time to become a part of the system set up in this project. This includes
a Central Processing Unit (CPU) speed of 1,2 GHz and 1 GB of Random Access
Memory (RAM). It is approximately 12 times faster than the first Raspberry Pi.
Both Bluetooth and WiFi are included, and it was quite easy to set up, given that the
right Linux kernel has been used in the Operating System (OS) of the Pi. Along with
the Raspberry Pi, a good and stable operating system with a kernel that supported
the 6LoWPAN architecture were needed. For this, Ubuntu Mate version 15.10 with
kernel version 4.15 was chosen, and used on the Raspberry Pi. As other versions of

7

8 2. BACKGROUND

Figure 2.1: Raspberry Pi 3

Ubuntu, this is Linux based and has a complete Graphical User Interface (GUI) of a
full OS.

2.1.2 nRF52

The most central device of this network is the microcontroller used as end-node,
the nRF52 developed by Nordic Semiconductor with the IoT development kit. It is
presented as a family of highly flexible, multi-protocol system-on-chip devices|8].

This device has been advertised as a powerful multiprotocol single chip solution, with
both a 32-bit ARM Cortex processor, a 512kB flash, and 64kB of flash memory. The
key features mentioned by Nordic Semiconductor [10] that will be relevant in this
network are:

Multi-protocol 2.4GHz radio

— Application development independent from protocol stack

Full set of digital interfaces including Serial Peripheral Interface (SPI) and 12C

— Low-cost external crystal 32MHz + 40ppm for Bluetooth, + 50ppm for ANT

2.1. HARDWARE 9

O Q@|4=6ND -
200

S cuirent
measurement
o o
o @4 ©

o
(=}
=
o
=
=]
=
o
=
=
o}
»

=
=3
]
=
&
I
(]
o=
2
=3
=
=
B
=

Button 1
I L

1Q
=
2
¥

¥ L
Ut

Button 3
i

Figure 2.2: Nordic Semiconductor nRF52

— Wide supply voltage range (1.7 V to 3.6 V)

The most interesting points here are the processing power, the flash storage and RAM,
the 12C and SPI buses, and the Bluetooth antenna. In this project, we used three
different versions of the nRF52, named (from oldest to newest) PCA10036 V1.0.0,
PCA10040 V0.9.0 and PCA10040 V1.0.1. All three shows similar results when
tested in this system, and Nordic Semiconductor reported that the only significant
change is that newer versions should be more stable. Almost all tests in this thesis
have been done by using PCA10040 V0.9.0.

A SoftDevice is a precompiled binary software that implements BLE on the nRF52.
This means that the user can start to work directly in a standard C language interface,
which is independent of the Soft Device implementation [11]. This makes it possible
for users to write standard programming code instead of requiring a deep knowledge
of device-specific configurations. There are several versions of SoftDevices to the
nRF52 that can be downloaded from Nordic Semiconductors website!.

Thttp://www.nordicsemi.com

http://www.nordicsemi.com

10 2. BACKGROUND

2.1.3 Adafruit ADXL345 Accelerometer

As seen in the previous section, the nRF52 have several possibilities when it comes
to radio communication. In addition to this device, an external sensor was needed
to collect data. Supporting both the I2C and SPI, the nRF52 has got most of the
standard interfaces needed. Objectives presented in the introduction to this thesis
says that it would be preferable both to collect, transport and analyse data in this
network. The sensor we chose to do this was the ADXL345 accelerometer from
Adafriut [1]. This was selected for the following main reasons:

— It can measure acceleration in all three axes, X, Y and Z.

— It sends digital data immediately, which means no need to use computational
power to calculate digital values as needed if the data was captured by an
analog accelerometer.

— It supports both 12C and SPI, which makes it possible to connect to the nRF52.

— It supports voltage of 3.3V-5.0V, which fits within the range of output from
the nRF52.

™ ADXL345 Digital
- . ﬂccelefon;et:er

Figure 2.3: ADXL345 Accelerometer

When connecting to the nRF52, using the 12C interface was chosen because it is
simple with few cables, it supports an acceptable bit rate, and several sensors in the
same link.

2.1.4 Additional computational power

The devices presented so far are small network devices, reaching from limited com-
putational power to a more powerful central device. These devices can be used

2.2. COMMUNICATION TECHNOLOGIES 11

as end nodes or more central nodes in an IoT network. The Raspberry Pi has
already network connectivity, and can be used as the final node before the results
are presented on a screen, a web page, or to be stored on a server. In many cases it
will be an advantage to include another node with considerably more computational
power before the results are being published. This both limits the computations
needed to be done at the Raspberry Pi and means that the systems are able to do
more deep analyses of the gathered data, without the fear of a system overload. A
central stationary computer, a supercomputer or computational power from a web
service like Amazon Web Services (AWS) are possible solutions. In this network, a
standard stationary computer running a Linux Ubuntu-based system was used as
this node. Because of the limited time provided for this thesis, the scope focuses
mostly on data analysis and transportation between small nodes in an end-to-end
IoT system. The results were mostly obtained and calculated on the Raspberry Pi,
meaning this last central node was not extensively used in this solution, but could
be a central topic for future projects aiming for a more complex data analysis.

2.1.5 Alternative devices

An alternative for the Raspberry Pi was never considered since this is a well-known
device with a good reputation. This should be easily to use, easy to find advice
and help when needed, and easy get hold on devices when needed. There are of
course other alternatives available? that could have been considered if there where
any problems with the Raspberry Pi. The main contestant to replace the nRF52
was the Zolertia Z13 microcontroller. This was a good alternative to use since it
already has got an accelerometer fitted on the board, but does not have the same
computational power as the nRF52.

2.2 Communication technologies

After we had chosen the devices to use, the next step was to find relevant commu-
nication technologies that could be used to establish a reliable, fast and low power
connection between the nRF52 and the Raspberry Pi.

2.2.1 Bluetooth Low Energy

BLE, also known as Bluetooth Smart, is a wireless technology for short-range commu-
nication developed by the Bluetooth Special Interest Group. The idea was to create
a low energy single-hop network solution for Personal Area Networks (PANs). A
major advantage of this solution is that Bluetooth 4.0 is already a well established
technology in cell phones, laptops and several other devices. This means that few

2For instance the Ardurino Uno, Banana Pi or the BeagleBone Black
3http://zolertia.io/product /hardware/z1-platform

http://zolertia.io/product/hardware/z1-platform

12 2. BACKGROUND

changes need to be made to these devices, in order to be able to work with Bluetooth
Smart. However, to this date, a device that only implements BLE is not able to com-
municate with a device that only implements classic Bluetooth [16]. The 6LoOWPAN
Working Group has recognized the importance of BLE in IoT [17], as one of the most
central technologies in the further development.

! Non-core profiles . A

GAP Generic Attribute Profile
[GATT) V4

Host SMP | Attribute Protocol (ATT)
- Logical Link Control and Applicationd | .
HCl T Protocol (L2CAP) AR
Link Layer /
Controller— GAP: Generic Access Profile
Physical Layer SMP: Security Manager Protocol

HCI: Host Controller Interface

Figure 2.4: BLE protocol stack [16]

The protocol stack of BLE has two main parts, the controller and the host, as shown
in 2.4 [16]. In the testbed, the Raspberry Pi represents the controller (master),
nRF52 the host (slave). The communication between these components are done
through the standard Host Controller Interface (HCI), a Bluetooth protocol. All
slaves are in sleep mode by default and are woken up by the master when these
components are needed. Links are being identified by a randomly generated 32-bit
code and the Industrial Scientific Medical (ISM) band used is 2,4 GHz [16]. Other
protocols include Logical-link Control and Adaption Protocol (L2CAP) used to
multiplex data between higher protocol layers, and the segmentation and reassembly
of packets. From here packets are being passed to the HCI, which is the interface used
to communicate between the two BLE devices. This interface is used in conjunction
with Asynchronous Connection-Less (ACL), which is used to create the Time Division
Multiple Access (TDMA) scheme used to transfer packets over the network link,
as well as controlling uptime of the end nodes, as this link is set to disconnect
automatically after a given time period if there is no activity on the link. Concrete
examples of these protocols will be shown later in the thesis. BlueZ Bluetooth
protocol stack for Linux [3] was also used on the Raspberry Pi in the testbed, to
include all the mentioned standard Bluetooth protocols to the Linux kernel.

2.2. COMMUNICATION TECHNOLOGIES 13

Par/Pay: Parameters and Payload

4 523 Op: ATT Opcode
[L2 He| | PDUHe: PDU Header
2 <27 4 3 L2 He: L2CAP Header
: Acc Addr: Access Address
| PDU He | ;M'C|CRC| Pre: Preamble
1 4 MIC: Message Integrity Check

| Pre [Acchddr I | CRC: Cyclic Redundancy Check

Figure 2.5: BLE Data Unit Structure [16]

Figure 2.5 shows the data unit structure in BLE, meaning the different fields that
can be used in a packet [16]. The header fields of 4 bytes of access addresses and
L2CAP will be central topics of discussion later in this thesis. In the case of the
network presented here, when the BLE slave has been connected to a master, it stops
searching for other connectable points. It is not possible for an nRF52 to connect
to several masters, and it will only be possible to create a star network, not a mesh
network. A mesh network would in many cases be preferable since BLE is considered
a PAN with a very limited range. In a mesh network end-nodes can communicate
with each other, meaning they can span a larger area without the need of a central
and shared point of connection. Otherwise, BLE seems like an excellent alternative
in this project.

2.2.2 6LoWPAN

6LoWPAN is a defined protocol for using Internet Protocol version 6 (IPv6) in low
energy networks, to identify sensors and devices over IEEE 802.15.4, as defined in
RFC 4944 [22]. To use The Internet Protocol in low energy networks in addition
to standard networks was proposed by Geoff Mulligan and the 6LoWPAN Working
Group[23]. We chose 6LoWPAN because it seemed like a straightforward and smart
protocol definition. Since packets in the testbed can end up being forwarded all the
way from a microcontroller to a central computer through several nodes without
being changed, it makes sense to use the same base protocol for all links. In [23],
the advantage of 6LoWPAN is explained as not too big to be used in small networks
with a small header field, and more flexible to network sized compared to Zigbee*
and Zensys®. As explained in [23]:

4http://www.zigbee.org/
Shttp://www.zensys.com/

http://www.zigbee.org/
http://www.zensys.com/

14 2. BACKGROUND

Utilizing IP in these networks and pushing it to the very edge of the network devices
flattens the naming and addressing hierarchy and thereby simplifies the connectivity
model. This obviates the need for complex gateways that, in the past, were necessary to
translate between proprietary protocols and standard Internet Protocols and instead can
be replaced with much simpler bridges and routers, both of which are well understood,
well developed and widely available technologies [23].

6LoWPAN was developed to be used in small sensor networks, and implementations
can fit into 32Kb flash memory parts. It uses a complex header comparison mechanism
that allows the transmission of IPv6 packets in 4 bytes, much less than the standard
IPv6 40 bytes. This is achieved by using stacked headers, same as in the IPv6 model,
rather than defining a specific header as for Internet Protocol version 4 (IPv4). The
device can send only the required part of the stack header, and does not need to
include header fields for networking and fragmentation [17]. The maximum packet
size of the physical layer is set to be 127 bytes [20]. It is expected from the protocol
that other layers will produce packets of the desired size to fit the system. In the
example code on the nRF52 in the testbed this is set to 270 bytes for every packet.
This will be shown in practical examples and tests later in the thesis.

2.2.3 Other alternatives

ANT was the other main alternative to BLE when network protocols were chosen
[2]. It also uses the 2,4 GHz ISM band and is made to be used in sensor-based
networks. It is supported by the nRF52, and could be used with a Raspberry Pi if
an ANT Universal Serial Bus (USB) dongle is fitted. Using ANT instead would have
solved the BLE problem not being able to connect several devices together in a mesh
network, since ANT supports this. Other than this the difference is small. BLE is,
on the other hand, backed up by other mobile devices, meaning it is possible to use a
mobile application developed by Nordic Semiconductor to test the connection. One
of the main intentions from ITEM, when the problem description was written was to
test BLE in such a setting. Because of this argument, we chose BLE.

Two other contestants other than 6LoWPAN, were Zigbee and Zensys. These are
compared directly in [23]. The major factors here are that 6LoWPAN has a network
size bigger than the others. It supports Internet connectivity using routers, the use
of User Datagram Protocol (UDP) and Transmission Control Protocol (TCP), low
amounts of RAM and small headers [23].

2.3 Transport protocols

To transfer data from the end nodes to the central points of the network, either for
analysing or already analysed data, a fast, efficient and stable transport protocol has

2.3. TRANSPORT PROTOCOLS 15

to be used. This is a central aspect of the testbed because the limitations of the
sending rate are assumed to be one of the main constraints for network throughput,
either in the form of limits of data at once or number of transmissions per second.
The protocol needs to be stable and energy efficient and work with both BLE and
6LoWPAN. Nordic Semiconductor provides example code and examples on how to
get started with this, having been used as the basis for this work.

2.3.1 CoAP

CoAP is a transport protocol designed to be used in constrained networks for M2M
communication. It is UDP based and works well in low-power and lossy networks. It
can be used with microcontrollers, and with IPv6 and 6LoWPAN. Both GET and
PUSH functionalities are available, as well as observable GET. Other commands
used in CoAP are GET, PUT, POST and DELETE, to get or change data. This
means that a server can "subscribe" to end nodes in the network, and get updates
either after a given time span or when there have been changes made to a followed
field. Therefore, this seemed like a promising protocol and was chosen as the main
transport protocol in the network test[25]. The main technical features described
in CoAP include fulfilling M2M requirements, support of asynchronous messages,
UDP based communication and stateless mapping to Hypertext Transport Protocol
(HTTP).

CoAP has several similarities with HTTP, using the same client and server roles. A
client sends a request, and the server sends a response back. Many of the response-
codes are also very similar, with 404: Not found as the best known. In M2M
communication, both participants sometimes need to be both client and server, and
the CoAP protocol handles this with a two-layer approach. There are four different
main message types defined in CoAP [25].

— A Confirmable message, CON, requires one Acknowledgement (ACK) for every
message received. If a message is not received correctly, the receiver will ask
for exactly one return message of the type Acknowledgement.

— A Non-confirmable message, NON, does not require an ACK. This may result
in a higher possibility of a packet getting lost, especially in lossy networks, but
it requires less capacity from the network and should, in general, be faster.

— An Acknowledgement confirms that a specific CON packet has reached its
destination.

— A Reset message tells the sender that a specific message was received, but some
content is missing to be able to understand it fully. For instance, if the receiver
has had a reboot during the transmission.

16 2. BACKGROUND

— An empty Reset message represents a ping test of Round Trip Time (RTT),
which we will use when testing a connection.

Client Server
% CON [0x7d34] . .
:11 ACK [0x7d34]
. CON
® >
L ACK
-

Figure 2.6: CON CoAP set up sequence diagram [25]

Client Server
é CON [0x01a0] >
54 ACK [0x01a0]
: NON

r
N -

NON

r
-

NON

r
N

Figure 2.7: NON CoAP set up sequence diagram [25]

Figure 2.6 shows the basic message sequence between the client and the server in a
CoAP CON network. Every CON request message needs to get an ACK back.

Figure 2.7 shows the same for NON, where no ACKs are required. The same initial
set up with CON and ACK messages are still needed, to establish a connection

2.3. TRANSPORT PROTOCOLS 17

between the client and server before a stream of NON-messages can be sent. We
here get a less reliable connection than using CON, since messages can be dropped
without either the client or the server gets notified. Systems where a few packets can
be lost without difficulties, for instance in a sensor based network like the network
presented in this thesis, can use this as an advantage. A message ID is still provided
to every message to remove duplicated messages, but dropped messages are lost
data. This is not a good solution if the sent packages contained data that could not
be dropped. For instance, containing crucial patient information from sensors on a
patient’s body. The more reliable solution CON is a better alternative in this case.
These differences are the same as being experienced in the IoT system described in
this thesis, which can be seen in figure 2.8. A CON message is sent several times, to
set up the initial connection. When an ACK is received as a response, the continuous
transportation of NON-packets without ACKs can begin.

©® « m XCc Q¢« VF L+ EE sccm@m @ -

Filter: | coap v | Expression.. Clear Apply Save
Time Source Destination Protocol Length Info
53 7.678640000 2081::1 2001::211:647f: fea5:8542 CoAP 114 CON, MID:3765
59 10.373197000 2001::1 2001::211:64ff:fea5:8542 CoAP 114 CON, MID:3765
66 15.764140000 2001::1 2001::211:64ff: fea5:8542 CoAP 114 CON, MID:3765

.542315000 2001::211:64ff:fea5:8542 114 CON,
116 27.509655000 :64ff:fea5:8542001::1 CoAP 576 ACK, MID:3765

133 28.348872000 :647T:Tea5:8542001::1 CoAP 577 NON, MID:1, 2
154 29.18979%6080 :64ff:fea5:8542001::1 CoAP 577 NON, MID:2, 2
183 30.0829089000 :64ff:fea5:8542001::1 CoAP 577 NON, MID:3, 2
204 30.869133000 64ff:fea5:8542001::1 CoAP 577 NON, MID:4, 2
230 31.708663000 64ff:fea5:8542001::1 CoAP 577 NON, MID:5, 2
251 32.689759000 64ff:fea5:8542001::1 CoAP 577 NON, MID:6, 2
276 33.669662000 64ff:fea5:8542001::1 CoAP 577 NON, MID:7, 2
308 34.649151000 :647f:fea5:8542001::1 CoAP 577 NON, MID:8, 2
335 35.628909000 :647T:Tea5:8542001::1 CoAP 577 NON, MID:9, 2
358 36.609750080 64ff:fea5:8542081::1 CoAP 577 NON, MID:1@

Figure 2.8: CoAP NON, set up sequence, Wireshark capture

The message format used in CoAP is very simple, as seen in figure 2.9. The four first
byte are header files, followed by optional tokens and options. When these are not
being used, like in the testbed, the minimal header size will be 4 bytes[25]. The rest
can be used for a variable sized payload. A small header size is a huge advantage in
ToT networks.

18 2. BACKGROUND

Bytes 0 1 2 3
gis |[0[1]2]3]4ls]6]7|o]1]2]a]4a|s]6]l7]o]l1]2]a]4]5]6]7]0]l1]2]a]4]5]6]7

\Versior| Type |Token Length Code Message ID

Token (if any, token length bytes)

Options (in any)

Payload (if any)

Figure 2.9: CoAP message format [25]

2.3.2 MQTT

An alternative transport protocol in a system such as this is Message Queueing
Telemetry Transport (MQTT). This is known as a publish-subscribe messaging
system based on TCP for M2M communication. A client will in this case subscribe to
a publisher in the network [18]. When a publisher updates a field of interest for the
subscriber, the subscriber will get notified. Subscriptions are being coordinated by a
broker, as seen in figure 2.10. Messages sent in such a network are either sub(topic)
to subscribe to a topic, or pub(topic, data) to publish data [6].

Publisher Broker Subscriber

sub(topic)

B

pubitopic, data)

pubitopic, data)

Figure 2.10: MQTT subscription sequence diagram [18]

MQTT supports end-to-end Quality of Service (QoS) and has a simple and effective
message architecture. This protocol would also be possible to use in the testbed.
Because of the limited time frame of this thesis, it was decided to study CoAP in
depth first, and leave the testing of MQTT to future work.

2.4. SOFTWARE TOOLS 19

2.4 Software tools

As an Integrated Development Environment (IDE), we used KEIL Vision, as rec-
ommended by Nordic Semiconductor in [8], for writing C programming code. For
other programming languages, (for instance Python 3.4), we used Sublime Text 2 for
Windows and Linux, as well as Pluma for Ubuntu Mate on the Raspberry Pi.

Wireshark is a software tool used to analyse networks and capture packets sent
with different technologies [21]. Later, the data can be filtered and analysed, for
instance by filtering out all packets except CoAP and BLE, which we used in this
case. Wireshark has been one of the most valuable tools to be able to analyse data
to such an extent as done in this thesis. An example of use is shown in figure 2.8.

Copper[4] is a generic browser which can be extended to a standard Firefox browser.
It is made to be used in IoT networks based on CoAP, just like this network. Using
Copper, it was easy to use GET and PUT messages, as well as observing a server
by using a simple GUI. By removing the need of using terminal commands and
programming scripts, this makes the system easier to use with less development effort
outside the scope of this thesis. An example of the GUI can be seen in figure 2.11
[19].

* [2001::2af:b7ff:Feb6:1494]/lights - Mozilla Firefox

|l [2001::2af:b7ff:febs... =

coap://[2001::2aF:b7FF:Feb6:1454):5683/lights
=Y piscover (©)ring KJGET POST PUT EJOELETE EJObserve Payload Text : Behavior -

[2001::2af:b7fF:Feb6:1494]:5683 (RTT: 263ms)
Pong: Remote responds to CoAP

v 4> [2001::2af:b7FRFeb6:1494]... | | Header value Option
* & .well-known Type Reset
@® core Code EMPTY
*@® lights rissagell:! 51 33;3
oKen em
) led3 Py
Payload
& Incoming () Rendered Outgeing

Figure 2.11: Copper example

20 2. BACKGROUND

Router Advertisement Daemon (radvd) is a software tool that can be used to advertise
IPv6 addresses in a local network, using Neighbor Discovery Protocol (NDP) [14].
It is being used to multicast and forward packets in this network. When a packet
is sent from an end node to another, the communication needs to go through the
central point in the star network, the Raspberry Pi in this case. Here, radvd ensures
that the packages are being routed to the right end-point, meaning the right nRF52
in the testbed. To make the most basic figures in this thesis the web-based tool
http:// draw.io was used. http://polt.ly was used to draw the graphs used.

http://draw.io
http://polt.ly

System Architecture

The purpose of this thesis is to build an end-to-end system, which will be able to
transfer data all the way from a microcontroller to a server. This chapter will describe
in detail how the different components of the testbed are connected, and how the
different protocols have been configured to read, process and transfer data efficiently.

ADXL345

Stationary Computer Internet

Figure 3.1: End-to-End architecture in the presented system

Figure 3.1 shows how the complete end-to-end system, the testbed, is set up. The
Several microcontrollers can be connected to a Pi at the time, forming a star network.
Up to eight connections have been tested successfully in the testbed. We will now go
through the details of setting up this system.

21

22 3. SYSTEM ARCHITECTURE

There are three main limitations in a system like this:

— Computational power in the different nodes
— Battery capacity of the end nodes

— Network limitations between the nodes

A central part of the testing in this thesis will be to test the different constraints, and
to understand the advantage and disadvantages of doing computations in end-nodes.
This will then be compared to transferring information to a server with higher
computational power. Power usage is often closely related to computational power,
and will also be a central factor. The next section will contain a walk-through of the
testbed, and discuss these three main limitations in each node and the links between
them.

3.1 Connecting Raspberry Pi and nRF52

Since it is not possible to connect a screen to the nRF52; it makes sense to connect
this to the Pi first, before measuring values. To set up the communication between a
Raspberry Pi and the nRF52, the two code examples TWI and Observable server
from Nordic Semiconductor were used as a starting point for coding on the nRF52.
Using the Observable server example, it should be possible to observe a field on a
server from a client in the testbed. It was however not straightforward to connect
these two devices together the first time. A detailed description on how to connect
these two can be found in appendix C.

The nRF52 microcontroller is battery powered using a small 8V Lithium CR 2032
battery. Given this limitation the computational power will be limited as well. A
point of discussion will be if it is profitable to handle data here, or if this should be
done by more powerful nodes in the network.

3.2 Raspberry Pi to Network Computer or Server

When running the Linux-based OS Ubuntu Mate, the Raspberry Pi can be used
more or less like a regular computer. This OS has a pre-installed version of the most
basic programs needed, for instance, Mozilla Firefox Browser, Pluma text editor and
Linux terminal. In the testbed, it has been connected to the Local Area Network
(LAN) using either a wireless or a wired connection. This makes the link from the Pi
to another computer very stable and quick, capable of much higher transfer rates
than the other links discussed in the system. Since neither the Pi nor the central

3.3. CONNECTING NRF52 AND ADXL345 23

computer is battery powered in the testbed, this is not an option. Using a forwarding
script it is simple to forward data either to the computer or directly to a location
on the web, as shown in 3.1. All these factors implicate that these links will not be
a bottleneck in the system. Since this is higher level computer programming and
not as limited concerning computational power or battery usage, it will be more
interesting to look at the other links in more detail in this thesis. To test these links
with higher capacity in more detail will be left to future works, proposed in chapter
6.

3.3 Connecting nRF52 and ADXL345

The used ADXL345 accelerometer was connected using 12C, which is supported by
the nRF52. Connection scheme is as follows (nRF52 — ADXL345 accelerometer):

Table 3.1: Connection scheme nRF52 to ADXL345

Pin connection Explanation

5V — VIN Power source, in Figure 3.2

GND - GND Ground, red cable in Figure 3.2

P0.27 - SDA 12C Serial Data Line, in Figure 3.2
P0.26 — SCL 12C Serial Clock Line, brown cable in Figure 3.2

nRF52 supports both I12C and SPI serial computer buses. I12C was chosen in this
case because it is fast enough, flexible and simple to set up with the use of few cables.
As seen in table 3.1 and figure 3.2, this interface only requires four cables, for power,
ground, data and clock. This gives a bandwidth of 1 bit and a maximum bitrate of 5
Mbit/s [24].

24 3. SYSTEM ARCHITECTURE

Figure 3.2: Connected nRF52 — ADXL345

After the physical connection was complete, it was possible to start the process of
initializing the ADXL345 accelerometer. Acceleration values can only be read from
this sensor if this has been correctly initialized at compile time. To do so, code to
write to and read from the registers had to be added. We used another example from
Nordic Semiconductor as a starting point to establish this communication. This was
called TWI master with TWI slave. By using specific methods from this example and
writing to the right accelerometer registers in the right order [15], it was possible to
configure the accelerometer as wanted. The detailed description of the programming
code used to do this can be seen in appendix C.3.

It turned out to be difficult and very time consuming to configure the ADXL345
accelerometer to work as expected with the nRF52. In short, we found that we
were able to measure 11 times for every main loop of the code, and 150 within

3.4. DISCUSSION 25

these 11 loops. This resulted in 1650 measurements every second. The ADXL345
accelerometer updates its acceleration value when instructed by the master, and the
default setting is to follow the oscillator tick of the nRF52. This gives an update
approximately every second. The result was that even though the register was being
read as often as possible, the same value was read up to 1650 times before it was
updated.

To solve this problem, the default setting of updating the register when told by
the oscillator needed to be changed. This turned out to be very time-consuming
and hard to solve in a proper way. Both because of problems with initializing the
accelerometer correctly and making the nRF52 read and store the values fast enough
to get proper data. The ideal solution would be to read at least 1000 values every
second, to get a good starting point before analysing values. At this point it was
not possible to get enough real data to be used in data analysis in another device
in the testbed. In order not to loose too much time on hardware problems, it was
decided to focus more on analysing the data sent over the network communication
with random generated data.

3.4 Discussion

Now the full system shown in figure 3.1 has been connected. Due to problems
explained in the previous section, the rest of the thesis will focus mainly on the
link between the nRF52 and the Raspberry Pi, with the option of using extra
computational power from the stationary computer or a web service if necessary.
The central point of discussion at this point is how to process and analyse data in
the system. The main options to consider in all the different devices concerning how
much computation to do on the Raspberry Pi are the following:

— Useful raw data: All data arrives as useful data, and can be posted directly to
a web page or a server for storage

— No computation: Forward all data directly to a computer with more computa-
tional power

— Some computation: Analyse the data to find data that is not relevant to filter
out

— Full computation: Do a full analysis of the data. The results can then be
posted directly to a server or displayed on a web page.

The most relevant option of these four depends on the data, and on how much
computational power is needed. It is possible to run the Raspberry Pi from a power

26 3. SYSTEM ARCHITECTURE

bank, but this has not been tested in this project. When set-up without a battery as
power source, the Pi is the first node that could do computations without having to
take power limitations as a major concern. The main limitation here is computational
power, while the main limitation may be battery power on the nRF52. Therefore, it
makes sense to do some easy computation on this device. For instance, if this network
is being used to measure vibrations, it is reasonable to assume that measurements
more frequent than once every 100 ms is needed. Any less frequent than this and
vibrations could be missed, especially if it is periodical. It would then be perfectly
reasonable to assume that the Pi could go through these values, and calculate whether
or not the current acceleration value has exceeded a given threshold. This result
can then be displayed directly on a web page or a connected monitor from the Pi.
If however the system is to calculate patterns in the acceleration values, several
values need to be compared together. The need of complex algorithms to find these
patterns is expected before the results can be displayed. In this case, it is reasonable
to assume that the Pi would need additional computational power. The Pi can then
be set up as a forwarding device, that forward data directly to a computer with more
computational power.

Network Measurements

This chapter will display the experiments carried out concerning data sending rate
from the nRF52 to the Raspberry Pi. The goal is to determine the most efficient
combination of the amount of data to send in one transmission. We will discuss
sending frequency, payload size and protocols to use in the different scenarios.

The following sections will discuss if fragmentation (explained in section 4.1.2) is a
major issue when sending data through low energy networks. We will be maximizing
the amount of payload compared to the total throughput, to find the best exploitation
of the testbed. This will be the starting point for the first major test presented.

Another point will be which of the protocols described in chapter 2 is the most
efficient to use when the goal is to maximize goodput. To test this, data will be
sent through the testbed, containing a payload of constant length. This will be the
starting point for the second major test.

The final major test will examine how much data is sent through the network in
total in best and worst case scenarios, using the different protocols. In all these
tests, Wireshark will be a central part, and the packet size will be systematically
increased to see the changes in transferring rates. These problems are essential in
the discussion of objective O.4.

The results from these tests overall show that the highest percentage of payload
compared to throughput achieved is 78,48 %. The highest measured goodput is 611
bytes/second. CON is the most stable during these measurements and is the fastest
for payloads under 500 bytes in the testbed. NON is the fastest for payloads over
500 bytes, and overall in the testbed. We summarize these results in table 5.1.

27

28 4. NETWORK MEASUREMENTS

4.1 Possible limitations in the network

4.1.1 Stable transfer rate

As soon as the end nodes of the network could communicate with the Raspberry
Pi using CoAP, the next step was to test the transfer rate of the connection. To
measure the network transfer rate, ping6 was used. This is a software tool used to
test networks using IPv6 in a network. Results from these measurements are being
shown as ms used for every Round Trip Time.

ping6 2001::2e6:6aff:fe64:54dd
ping6 google.com

To receive messages using CON, a CoAP GET-message is sent from a requesting
client. As soon as the response has been received at the client-side, another GET
message is being sent, which means there is always either a GET-message or a
message containing a payload in the network, given that the end node has a sensor
connected that provides streaming data.

In NON, there are two different options. A new message can be sent when the set
field Maz-Age has expired, which tells the number of seconds the device should wait
before sending a new packet [25]. The other choice is to send a new message every
time a given field has been updated. This would have been the best solution in the
testbed, but it was never possible to update this field using accelerometer data, as
expected in this case. The only choice was to set the Max-Age to 1 second, which
was the lowest setting leading to a stable . This gives a stable and reliable transfer
frequency at 1 second, even though this is a limitation compared to the sending
frequency in CON. After a test period, it was therefore decided that the best solution
for NON would be to gather data from sensors at a higher rate, and store them in
the nRF52 temporary. Every second all the measured values are being transferred to
the Raspberry Pi, the temporary values are deleted, and the measurement continues.
This method has proven to be a stable solution, with successful tests over several
days. CON can handle more frequent transportations than this in this system, on
average four times per second. See the test shown in chapter 4.6. Figure 2.8 shows
the initial set up of a NON-connection, where the stable transfer rate of one second
can be seen at the timestamps at the bottom of the figure.

Results from these first tests gave an approximate average of 250 ms RTT, from a
request is sent to the response is received. The standard deviation in these cases
was on average o = 25ms, which is a variation of 10 %. In total ten different
measurements at different time were performed, an example can be seen in figure
4.1. These measurements were performed using different versions of nRF52s, and a

4.1. POSSIBLE LIMITATIONS IN THE NETWORK 29

different amount of these devices connected to the central Raspberry Pi at once. This
is considered quite slow in such a system, and way beneath the transfer limitations of
both BLE, 6LoWPAN and CoAP. Another factor could be the limited power supply
and computational power, but it is not clear what is the main cause at this point.
This will regardless be a major limitation in the network.

bytes from 2001::2af: eb6:1494: i _seq=156 ttl=64 time=242
bytes from 2801 af: ; 94: 1 _seq=1 time=228
bytes from 2001 B ; 4: 1 _Sec 1 time=270
bytes from 2001:: B 6 94: 1 _sec c time=251
bytes from 2801:: B ; 4: 1i _Sec : time=230
bytes from 2001:: B ; g Al |] time=280
bytes from 2001:: B ; g Al _sed time=260
bytes from 2001:: B ebe 94: 1 _seq=16 time=240
bytes from 2001:: 5 ; 94: 1 _seq=16 time=289
bytes from 2001:: 3 ; 4: 1 _Sec time=270
bytes from 2801 3 6:1494: i _Sec 6 time=326
bytes from 2001] 1494: 1 _sec time=228
bytes from 2801 5 ; 94: 1 _seq=168 time=285
bytes from 2801 5 H i 4: 1 _sec - time=266
bytes from 2001::2af:b7ff:feb6:1494: i _Seq : 64 time=237

- 2001::2af:b7ff:feb6:1494 ping
transmit , 170 received, packet loss, time 169172ms
rtt minfavg/max/mdev = 214.144/253.089 .238/26.557 ms
sindre@PiMATE:~$ |]

Figure 4.1: Ping nRF52 from Raspberry Pi

The conclusion from these initial tests is therefore that CoAP CON can be used at a
lower transfer interval than CoAP NON in the testbed. CON can in best case send a
message every 250 ms, which is as expected compared to the high RTT measured in
this network. An example of one of the RTT tests can be seen in figure 4.1. NON
has shown the same results regarding RTT, but the connection has in general been
more unstable in the initial tests, even though Max-Age means data can only be sent
every second. From this starting point it is expected that CON can send a larger
payload per second for small payloads, but NON require less of the network to send
each message. In addition it is expected that NON will get a higher percentage of
payload compared through the total throughput for larger payloads, since no ACKs
are required in this solution.

4.1.2 Packet fragmentation

In Internet Routing, fragmentation is known as the action of splitting data into
smaller packets, to satisfy the maximal limits of the different technologies or protocols
used (e.g. BLE and 6LoWPAN in the testbed). Each of these packets needs header
fields of a certain size or other requirements. In a network of microcontrollers,
fragmentation can be a factor that needs to be taken into account to optimize the

30 4. NETWORK MEASUREMENTS

payload sent through the system. To better understand fragmentation, imagine a
train with carriages as shown in figure 4.2.

6LoWPAN
packet
[BLE BLE BLE 6LoWPAN W
packet packet packet header
i N i A
r 0o aor ar 1

BLE BLE BLE
header header header

Figure 4.2: Packet fragmentation — train comparison

To be able to operate at all, the train needs a locomotive with an engine driver,
a conductor and a cafe carriage. As soon as these things are already there, the
company owning the train gets better and better off for every passenger buying a
ticket. Let us assume that every carriage can carry 4 employees and 27 passengers,
to make it directly comparable to the BLE packets in the network. Eventually, all
the carriages will be full, and a decision has to be made if it will be profitable to
fit another carriage. It will, in general, be most profitable to use as many carriages
as the locomotive can handle, and to fill up every carriage as much as possible. It
will however not be a good idea to connect another carriage if there will only be
one additional passenger sitting there since the extra weight of the carriage adds
unnecessary additional weight to the train set compared to the company income.

In this example, the locomotive and employees are the 6LoWPAN packets, which
are needed no matter what to get the train working. Each additional carriage is a
BLE packet. The goal is to find the maximal number of passengers compared to the
cost of adding additional carriages, in other words, the maximum number of bytes
compared to the number of sent packets. Fragmenting data into smaller pieces to
satisfy the maximal limitations of packet sizes in the different protocols, is known
as fragmentation. This can be exploited by a system developer to maximize the
percentage of payload compared to throughput in the network.

4.2. DESCRIPTION OF MEASUREMENTS 31

4.2 Description of measurements

Before the experiment started, our expected result was that sending a small amount
of data at a time would not be preferable, because of the needed bytes to set up
the connection, header files and so on. We did not know the packet size required
before it would be considered profitable to send them regarding the cost of energy
and network capacity. This depends on which situation such a network will be used.
A system with sensors to analyse real-time patient data to see if a patient is in a
stable state needs to be reliable, and the data will be sent no matter if it is profitable
for the network or not. In this case, timing is the most important. A system used in
a company to monitor how many cups of coffee are brewed during a day can easily
store data in the end node and send larger amounts of data less frequently if this is
profitable for the network.

When sending BLE packets over the network, observations from the system show
that the maximum packet size is 31 bytes in the testbed. Each of these packages
needs a header field of 4 bytes, meaning 27 bytes left for useful data. However, to
start the connection at all, 76 bytes are needed, meaning three BLE packets. The
ratio between useful and needed data transferred start out very poorly if the payload
sent is tiny. The best possible ratio of useful data we can achieve will also be limited
by this. 27 bytes payload and 4 bytes header field is 87,1 %, shown in the following
equation:

x + 27 27 byte
x+31 31 byte

«100 ~ 87,1% (4.1)

During measurements in the physical testbed, the actual result will probably be
considerably lower than this because 6LoWPAN and CoAP packets could need some
additional fields for each packet. There are also other additional protocols in BLE
that will require some bits or packets, like the occasional ACKs from ACL. It is also
logical to expect some other disturbing factors in a real-world wireless network.

4.3 Measurements

4.3.1 CoAP CON

As previously explained, CoAP can be split into two different main sections. CON
messages can in the testbed be sent quite frequently, but every message needs to get
an ACK before the next message can be sent. This means that it has the possibility
of being quite fast, but several extra packets need to be transported through to get
usable data at the other end of the link. The other alternative is NON, where each
message does not need an ACK.

32 4. NETWORK MEASUREMENTS

In Wireshark, it is possible to display all captured packets, or filter packets regarding
what protocol they are using (e.g. TCP or CoAP). The following examples will only
focus on packets sent using CoAP in addition to capturing all Bluetooth packets.
These measurements will show how the fragmentation of CoAP packets needs to be
done to fit into the size of BLE packets. When measuring packet sizes concerning
fragmentation of the network, all measurements of the same constant payload gave
the same result, since fragmentation is being handled the same way every time. These
examples are taken from one of the experiments, even though several where carried
out?.

Table 4.1: Wireshark CoAP CON 0 bytes payload

Number Time Protocol Length Info

36 3.7471 CoAP 72 ACK, MID:57083, 2.05 Content

37 3.7759 CoAP 113 CON, MID:57084, GET

38 3.9571 HCI _ACL 31 Revd [Reassembled in #40]

39 3.9584 HCI_ACL 31 Revd [Continuation to #38]

40 4.0274 L2CAP 5 Recvd Connection oriented channel
41 4.0367 L2CAP 58 Sent Connection oriented channel
42 4.0368 L2CAP 50 Sent Connection oriented channel
43 4.0975 L2CAP 16 Recvd LE Flow Control

44 4.0977 HCI_EVT 7 Revd Number of Completed Packets
45 4.1678 HCI_EVT 7 Rcvd Number of Completed Packets
46 4.0275 CoAP 72 ACK, MID:57084, 2.05 Content

47 4.0366 CoAP 113 CON, MID:57085, GET

Table 4.1 shows the most basic example of a capture of packets in Wireshark using
CON. A larger excerpt from the capture can be seen in the Appendix A. In this case,
an empty char array was sent, meaning a payload equal to 0 bytes. As a consequence,
all the captured bytes correspond solely to data sent by the network protocols. The
31 bytes per BLE packet, the maximum for BLE in the system, have been exceeded
twice. Therefore, three packets were needed. The first packet is labelled [Reassembled
in #40], the second [Continuation to #38] and the last Connection oriented channel.
Then the ACK packages follow, two packages of 58 and 50 bytes, respectively. A
final pair of packets tells how many packages were completed, as a built-in feature in
BLE HCI and ACL. All of these packages can fit into one 6LoWPAN packet since
the total number of bytes are less than 270 bytes.

LAll the measured data can be found on https://www.github.com/sische/MasterThesis

https://www.github.com/sische/MasterThesis

4.3. MEASUREMENTS 33

Table 4.2: Wireshark CoAP CON 100 bytes payload

Number Time Protocol Length Info

29 24514 HCI_ACL 31 Recvd [Reassembled in #36)

30 2.4516 HCI_ACL 31 Revd [Continuation to #29]

31 2.2425 CoAP 173 ACK, MID:16354, 2.05 Content

32 2.2538 CoAP 113 CON, MID:16355, GET

33 2.5217 HCI_ACL 31 Revd [Continuation to #29]

34 2.5218 HCI_ACL 31 Revd [Continuation to #29]

35 2.5907 HCI_ACL 31 Revd [Continuation to #29]

36 2.5921 L2CAP 25 Rcvd Connection oriented channel
37 2.6099 L2CAP 58 Sent Connection oriented channel
38 2.6100 L2CAP 50 Sent Connection oriented channel
39 2.6610 L2CAP 16 Revd LE Flow Control

40 2.6621 HCI_EVT 7 Rcvd Number of Completed Packets
41 2.5922 CoAP 173 ACK, MID:16355, 2.05 Content

42 2.3097 CoAP 113 CON, MID:16356, GET

43 2.7311 HCI_EVT 7 Rcvd Number of Completed Packets

In table 4.2, we send a payload of 100 bytes through the network using CON. The
same basic packages are still needed there, but in addition 100 bytes of data is added.
This means adding more BLE packets, but also that the percentage of useful data
sent through is higher, approximately 34 % in this case, as seen in equation 4.2. By
doing several experiments like this, it was possible to create the graph in Figure 4.3.
This shows the correlation between payload and throughput compared to the number
of packets sent, measured every 10th byte from 0 bytes to 200 bytes large packets.

100 byte goodput
180 byte throughput + 113 byte ack

%100 ~ 34% (4.2)

In this particular case shown in figure 4.3, it makes no sense to send less than 50
bytes of useful data at once, since more than 50 % of the bytes sent will be header
files. This is comparable to having a locomotive and full crew at disposal, but only
a few or none paying passengers. The best possible result is to have every carriage
full, with 27 passengers and 4 employees. Since at least 4 bytes out of every 31
sent needs to be used to header information, the best possible result will be 87,1
%. In mathematics, this is described as a horizontal asymptote since the distance
between the graph and y = 87,1 will approach zero after an infinite number of bytes

34 4. NETWORK MEASUREMENTS

50

40

30

20

Payload out of total throughput [%]

0 50 100 150 200
Payload sent [bytes]

Figure 4.3: CoAP CON with ACKs, 0-200 bytes sent

has been transferred, if the only limitation was BLE packets. In the testbed, other
limitations like 6LOoWPAN header files need to be considered as well. The graph
will still approach 87,1 %, which was calculated in equation 4.1, just as the values
climbing in figure 4.3, even before the payload has reached 200 bytes.

100 byte goodput
180 byte throughput + 113 byte ack

%100 ~ 34% (4.3)

4.3.2 CoAP NON

A CoAP NON-request does not require a response in the form of an ACK to each
CoAP message being sent. This means that the 108 bytes sent to and handled by
the end node can be skipped. In the end nodes, this leads to less computational
power needed, and less network capacity is needed to transfer data both ways. This
solution makes sense to use in networks where the system will still work as needed
even if some packets are being dropped since packets can be lost without the use of
ACKs. As explained in chapter 4.1.1, the transfer frequency is limited using NON in
the testbed, due to the use of Max-Age instead of GET-requests. We therefore set
the transfer rate to one per second for this protocol.

A basic example of the CoAP NON connection is shown in table 4.32. This is directly

2The entire Wireshark capture can be seen in Appendix A

4.3. MEASUREMENTS 35

Table 4.3: Wireshark CoAP NON 0 bytes payload

Number Time Protocol Length Info

90 23.0405 HCI _ACL 31 Rcvd [Reassembled in #92]

91 23.0411 HCI_ACL 31 Revd [Continuation to #90]

92 23.1107 L2CAP 9 Recvd Connection oriented channel
93 23.1109 CoAP 76 NON, MID:14, 2.05 Content

comparable to table 4.1, that shows a Wireshark capture of CoAP CON packages. It
is easy to see that a lot fewer packages need to be sent using BLE, without the use
of ACKs. The total amount of bytes sent is 314+314+9=71 bytes, meaning three BLE
packages sent in one 6LOWPAN packet. CON has a packet size of 76 bytes in this
transmission, which means a total of 5 header bytes and additional fields are needed.
This is less than half of what was needed using CoAP CON, where the 108 ACK
packets were needed in addition. The packets are still recognizable the same way
as before when captured in Wireshark. The first packet is labelled [Reassembled in
#40], the second [Continuation to #38] and the last Connection oriented channel.

Fewer packets sent means less energy used in end nodes, less network capacity needed
and less computational power in the end node. This approach will hopefully lead to
a higher percentage of payload compared to throughput. Therefore, tests were set
up to measure this with payload sizes between 0 and 200 bytes, measuring with an
increasing interval of every 10 bytes. These tests will compare how the correlation
between payload and throughput developed as the payload size increased.

Table 4.4: Wireshark CoAP NON 100 bytes payload

Number Time Protocol Length Info

39 11.0363 CoAP 177 NON, MID:2, 2.05 Content
40 11.9452 HCI_ACL 31 Rcvd [Reassembled in #45]
41 11.9465 HCI_ACL 31 Rcvd [Continuation to #40]
42 12.0154 HCI_ACL 31 Rcvd [Continuation to #40]
43 12.0168 HCI_ACL 31 Revd [Continuation to #40]
44 12.0857 HCI_ACL 31 Revd [Continuation to #40]
45 12.0858 L2CAP 29 Rcvd Connection oriented channel
46 12.0860 CoAP 177 NON, MID:3, 2.05 Content

Table 4.4 shows the case where 100 bytes of data are sent using CoAP NON. This is
directly comparable to the test shown in table 4.2, where the same amount of data
is sent using CON. The overall structure is the same as before. Since it is only one
packet noted Reassembled in #n, which marks the beginning of a new 6LoWPAN

36 4. NETWORK MEASUREMENTS

packet. The total amount sent must be under 270 bytes, which makes sense. The
NON-packet size is here 177 bytes, compared to 173 bytes in CON, meaning that a
NON-packet requires an additional header field of 4 bytes. Overall a small difference
in the packets containing data, but as expected a lot more packets needs to be sent
in total in CON. Using these measurements the following plot could be drawn.

60
50

40

- CON with ACKs

30 »NON, no ACKs

20

Payload out of total throughput [%]

0 50 100 150 200
Payload sent [bytes]

Figure 4.4: CON with ACKs vs NON 0-200 bytes

Figure 4.4 shows the comparison between sending from 0 to 200 bytes of useful data
through the network. As expected from the Wireshark captures in the four previous
tables, there are no major differences between these graphs when it comes to payload
out of total throughput. The tables show that NON requires a few more bytes for
each packet, which gives the difference between the two in this plot.

4.3.3 Discussion

Even though these first tests were carried out with a very limited amount of data
transferred, it is easy to see that the curves clearly flattens out and forms the shape
of a parabola with a vertical directriz at © = 0. Several BLE packets have been
fragmented and sent during these test, without the graph showing a special payload
size where this gives a noticeable result. This means that the fragmentation of BLE
packets does not have a major impact of the percentage of payload compared to
throughput in the testbed. More data needs to be sent at once to check if the same
can be said for fragmentation of 6LoWPAN packets. The next step will be to transfer
a larger amount of data, to verify that the assumptions that the graph will converge

4.3. MEASUREMENTS 37

to the asymptotic value y = 87,1 % when lim,_, . The limitation of transfer rate
is not nearly yet met by neither BLE or 6LoWPAN.

To see what happens when the limit of a 6LoWPAN packet was breached in the
system, tests will be set up to send larger amounts of data than 200 bytes. The
following test and examples will send a fixed number of bytes at once from 0 to
1000 bytes (1 kB), with a 50 byte interval. This will also be a good way to test if
the percentage of payload compared to throughput will converge to 87,1 %, only
considering BLE packets. As the previous tests, CON will transfer data using GET-
messages, requesting a new message as soon as the ACK of the previous message
has been received. NON has a fixed Max-Age value at 1 second, that determines the
frequency of sending NON-packets.

4.3.4 Tests with more data

Table 4.5 shows a bigger and more complex case, where a payload of 700 byte is
being sent at once using CoAP CON. In total 889 bytes are being sent in this process,
which consists of four 6LoWPAN packets where three of them is the full 270 bytes.
This can be seen in the table, after 8 BLE packages of 31 bytes each has been sent,
there is only room for 22 bytes in the last packet before the 6LoWPAN packet has
reached its maximal capacity. The last packet contains 31 4+ 31 4+ 17 = 79 bytes,
which leaves 199 unexploited bytes in the packet. Concerning fragmentation, it would
probably have been better to send data with a slightly smaller payload. After this
the standard packages for ACK and Number of completed packages follows. This is a
good example of how fragmentation of packets works in this system. The percentage
of payload compared to throughput is therefore 700 bytes/889 bytes = 78, 74% in this
case.

38 4. NETWORK MEASUREMENTS

Table 4.5: Wireshark CoAP CON 700 bytes

Number Time Protocol Length Info

53 3.2570 CoAP 774 ACK, MID:35081, 2.05 Content
54 3.2727 CoAP 113 CON, MID:35082, GET

55 3.4671 HCI_ACL 31 Rcvd [Reassembled in #63]

56 34747 HCI_ACL 31 Rcvd [Continuation to #55]

57 3.5374 HCI_ACL 31 Revd [Continuation to #55]

58 3.5375 HCI_ACL 31 Revd [Continuation to #55]

59 3.6077 HCI_ACL 31 Rcvd [Continuation to #55]

60 3.6078 HCI_ACL 31 Revd [Continuation to #55]

61 3.6767 HCI_ACL 31 Revd [Continuation to #55]

62 3.6782 HCI_ACL 31 Revd [Continuation to #55]

63 3.7533 L2CAP 22 Rcvd Connection oriented channel
64 3.7534 L2CAP 16 Sent LE Flow Control

65 3.8172 HCI_EVT 7 Rcvd Number of Completed Packets
66 3.8172 HCI_ACL 31 Rcvd [Reassembled in #74]

67 3.8185 HCI ACL 31 Revd [Continuation to #66]

68 3.9575 HCI_ACL 31 Revd [Continuation to #66]

69 3.9577 HCI_ACL 31 Rcvd [Continuation to #66]

70 4.0266 HCI_ACL 31 Rcvd [Continuation to #66]

71 4.0342 HCI_ACL 31 Revd [Continuation to #66)

72 4.0979 HCI_ACL 31 Revd [Continuation to #66]

73 4.0982 HCI_ACL 31 Revd [Continuation to #66]

74 4.1671 L2CAP 22 Rcvd Connection oriented channel
75 42372 HCI_ACL 31 Revd [Reassembled in #83]

76 42373 HCI_ACL 31 Revd [Continuation to #75]

7 4.3075 HCI_ACL 31 Rcvd [Continuation to #75]

78 4.3076 HCI_ACL 31 Revd [Continuation to #75]

79 4.3777 HCI_ACL 31 Revd [Continuation to #75]

80 4.4466 HCI_ACL 31 Revd [Continuation to #75]

81 44480 HCI_ACL 31 Rcvd [Continuation to #75]

82 4.4481 HCI_ACL 31 Revd [Continuation to #75]

83 4.5170 L2CAP 22 Rcvd Connection oriented channel
84 45871 HCI_ACK 31 Recvd [Reassembled in #86]

85 4.5875 HCI_ACL 31 Rcvd [Continuation to #84]

86 4.6574 L2CAP 17 Rcvd Connection oriented channel
87 4.6731 L2CAP 58 Rcvd Connection oriented channel
88 4.6732 L2CAP 50 Rcvd Connection oriented channel
89 4.6577 CoAP 774 ACK, MID:35082, 2.05 Content
90 4.6729 CoAP 113 CON, MID:35083, GET

4.3. MEASUREMENTS

Table 4.6: Wireshark CoAP NON 700 bytes

Number Time Protocol Length Info

264 57.1476 CoAP T NON, MID:3, 2.05 Content

265 57.2177 HCI_ACL 31 Rcvd [Reassembled in #273]

266 57.2178 HCI_ACL 31 Rcvd [Continuation to #265]

267 57.2879 HCI _ACL 31 Revd [Continuation to #265]

268 57.2943 HCI_ACL 31 Revd [Continuation to #265]

269 57.3570 HCI_ACL 31 Revd [Continuation to #265]

270 57.3583 HCI_ACL 31 Revd [Continuation to #265]

271 57.4272 HCI_ACL 31 Revd [Continuation to #265]

272 57.4286 HCI_ACL 31 Revd [Continuation to #265]

273 57.4975 L2CAP 22 Rcvd Connection oriented channel
274 57.4979 L2CAP 16 Sent LE Flow Control

275 57.5676 HCI_ACL 31 Rcvd [Reassembled in #284]

276 57.5685 HCI_EVT 7 Rcvd Number of Completed Packets
277 57.5753 HCI_ACL 31 Rcvd [Continuation to #275)

278 57.6378 HCI _ACL 31 Rcvd [Continuation to #275]

279 57.6379 HCI_ACL 31 Revd [Continuation to #275]

279 57.7080 HCI_ACL 31 Revd [Continuation to #275]

280 57.7082 HCI_ACL 31 Revd [Continuation to #275]

281 57.7771 HCI_ACL 31 Revd [Continuation to #275]

282 57.7785 HCI_ACL 31 Revd [Continuation to #275]

283 57.7785 HCI_ACL 31 Revd [Continuation to #275]

284 57.8474 L2CAP 22 Revd Connection oriented channel
285 57.9176 HCI_ACL 31 Rcvd [Reassembled in #293]

286 57.9176 HCI_ACL 31 Revd [Continuation to #285]

287 57.9878 HCI_ACL 31 Revd [Continuation to #285]

288 57.9879 HCI ACL 31 Revd [Continuation to #285]

289 58.0580 HCI_ACL 31 Revd [Continuation to #285]

290 58.0581 HCI_ACL 31 Revd [Continuation to #285]

291 58.1270 HCI _ACL 31 Revd [Continuation to #285]

292 58.1284 HCI_ACL 31 Revd [Continuation to #285]

293 58.1972 L2CAP 22 Rcvd Connection oriented channel
294 58.2673 HCI_ACK 31 Revd [Reassembled in #296]

295 58.2688 HCI ACL 31 Revd [Continuation to #294]

296 58.3378 L2CAP 20 Rcvd Connection oriented channel
297 58.3379 CoAP 7T NON, MID:4, 2.05 Content

39

40 4. NETWORK MEASUREMENTS

As a direct comparison to table 4.5, table 4.6 represents the same goodput sent
through the network using CoAP NON. In this case, the total is 892 bytes, only
three more than the previous example. This confirms that CON and NON work in
very similar ways when it comes to packet fragmentation, and the same pattern of
270 bytes 6LoOWPAN packets is being recognised. Calculations show that in this case,
the percentage of payload compared to throughput is 700 bytes/892 bytes = 78, 47%.

4.3.5 Discussion

Using these results from measurements of payloads between 0 and 1000 bytes it was
possible to plot the graph in figure 4.5. Here it is easy to see the same trends as in
figure 4.4, but over a wider span of sent bytes. These results are as expected after the
previous tests and in compliance with the calculations done concerning horizontal
asymptote.

Table 4.5 and 4.6 shows the case where 700 bytes were sent at once through the
network, using both CoAP CON and NON. The size of the fragmented packet was
similar in both cases. The percentage of payload compared to throughput was more
or less the same, but CON needs ACKs in addition.

700 bytes payload

= 69,86 4.4
889 bytes throughput + 113 bytes ack ,86% (44)
700 bytes payload
= 78,48 4.5
892 bytes throughput 48% (45)
69, 86
—oag ~ 0,8902 — 100% — 89,02% = 10,98 % (4.6)

Calculations in equation 4.4 show that the percentage of payload in NON is 78,48 %,
compared to 69,86 % in CON. The difference between these two is 10,98 %. This
can also be seen clearly in 4.5. Because of this, it was concluded that the results
for using NON and CON can be considered as small for transmissions larger than
1 kB. Tests with larger quantities of data than this at once did therefore not seem
necessary, and will not be investigated in this project.

Given these results, it can be concluded that to send fewer data than 200 bytes at the
time is not preferable since the percentage of payload compared to the total amount
sent can be very low. On the other hand, the graph stabilizes around 65-70 % for
CON and 75-80 % for NON. Given these measurements, it looks like 400 bytes and
bigger packets are preferable in the testbed. The tests shows no signs of weakness as
the packet size grows, and it will, in theory, be possible to send as large packets as
needed until the limitations of technologies used, with the same amount of goodput

4.4. TRANSFER RATES 41

80 L e et

70

60 - CON with ACKs

50 #-NON, no ACKs

40
30
20

Payload out of throughput [%]

0 200 400 600 800 1000
Payload sent [bytes]

Figure 4.5: CON with ACKs vs NON 0-1000 bytes

at about 80 %. This was however never achieved in this configuration of the network,
but should be possible to do in future works. Concerning fragmentation, it was
concluded after having sent payloads up to 200 bytes that fragmentation of BLE
packets is not a major concern in this network. After having sent up to 1000 bytes to
check the same for 6LoOWPAN packets, the same thing can be concluded here. Both
graphs of CON and NON, shown in figure 4.5, show a flat and stable curve, with no
special weak points in the different payloads. This would be expected right after the
payload was big enough to exceed a BLE or 6LoWPAN packet, just as explained
in chapter 4.1.2. Our results from these tests does not recommend developers to
minimize the payload in CoAP just to avoid fragmentation, in networks similar to
the testbed.

4.4 Transfer rates

4.4.1 Time used to transfer payload

Previous sections in this chapter have shown the percentage of payload compared
to the total throughput, to measure if fragmentation was a major concern in this
network. This is a good overview of how the protocols are able to exploit the
network in systems similar to the testbed, and tells a lot about the different protocols.
Developers could use these results to build the IoT network. For end users in a real
world scenario, the actual throughput per time would be more relevant since this tells

42 4. NETWORK MEASUREMENTS

how much data can be transported every second. A common measuring unit for this
is known as goodput, measured in bytes per second.

There are several ways to measure throughput compared to time used. For instance,
by calculating the number of seconds it takes to transfer a known number of bytes
or the number of bytes that are transported on average every second. To calculate
this, values from measurements shown in table A.1 and A.2 in appendix A were used.
The numbers shown in these tables and used in the following experiments have been
measured by sending a considerable amount of packets through the network3. In
most cases more than 100 CoAP packets were sent for each constant payload, to
find the minimum, average and maximum value for both the time used to transfer a
packet and the goodput in each case.

*-Min time
- Avg Time
®-Max time

0.8
0.6
0.4

Time used to send payload [seconds]

0.2

0 200 400 600 800 1000
Payload sent [bytes]

Figure 4.6: Time used to transfer payload CON

Figure 4.6 shows the minimum, average and maximum time it took to send a constant
payload through the network using CON. This variation is relevant to see the stability
in the network, how much it can be trusted. A system carrying important data needs
a stable transfer rate at all times, not only a good average value. In this case, the
largest deviation from the average value is when the payload is 350 bytes. The max.
value here is almost 1 second, while the average is approximately 0.7 seconds. Both
the average and minimum graph has a quite linear development, with the exception of
900 bytes. The lowest transfer rate for CON is when the payload is below 100 bytes.
The transfer time at this payload is about 300 ms, which seems logical concerning

3 All measurements can be seen on GitHub: https://github.com/sische/MasterThesis

https://github.com/sische/MasterThesis

4.4. TRANSFER RATES 43

the ping tests in the beginning of the chapter at 250 ms. The slowest transfer time is
the max value when transferring 950 bytes when the time is approaching 2 seconds.

- Min time
- Avg time
®Max time

0.9 s

Time used to send payload [seconds]
N

0.8
0 100 200 300 400 500 600 700 800 900

Payload sent [bytes]

Figure 4.7: Time used to transfer payload NON

Time used to transfer a given payload using NON can be seen in figure 4.7. Even
though there are some slight variations from min. to max. time used, the average
transfer frequency is very stable. Because of the described difficulties concerning
Max-Age of the measured field in NON, the fastest transfer frequency achieved in
the testbed was 1 second. On average the transfer rate is very close to this, but the
min and max values vary from 0.85 seconds to 1.2 seconds in both 300 and 400 bytes
payload. 600 bytes is the maximum payload where the system is still able to transfer
data at 1 second rate. After this the graph starts to climb for larger payloads. For
NON with a payload larger than 650 bytes, the network was too unstable to do the
same amount of data as in previous tests. These values (NON > 650 bytes payload)
are therefore not as certain as the rest of the tests considering the amount of packets
sent.

To get a direct comparison of these data, the average values from CON and NON
are being compared in figure 4.8. This makes the differences between the two easy
to spot. It takes 0.4 seconds to transfer 100 bytes goodput in CON, while it takes 1
second using NON. However, as the graph shows, if the goodput is 500 byte, both
versions of the protocol uses I second to transfer the data. When the payload reaches
600 byte, CON needs to use 1,15 seconds to transfer the data, while NON is still able
to only use 1 second. After this CON is about 150 ms slower than NON to transfer

44 4. NETWORK MEASUREMENTS

©-CON Avg Time
@ NON Avg Time

0.8

0.6

0.4

Time used to transfer payload [seconds]

0.2
0 200 400 600 800 1000

Payload sent [bytes]

Figure 4.8: Average time to transfer payload, CON vs NON

the same payload, but this gap closes as the payload gets higher. In this case, it is
quite easy to see a trend — CON is definitely faster at small rates of data, below 500
bytes. If the payload is bigger than this, NON will be preferable, only taking the
time to transfer a given number of data one way into account.

From another approach, it is possible to look at how many bytes can be sent for
every given time using the two different versions of the protocol. This is profitable
because it will show which payload size that gives the maximal throughput for every
time interval, and can possibly be exploited by both developers and end users in
such a system. Figure 4.9 shows the direct correlation between the number of bytes
sent every second.

As in the previous tests, it is preferable to have a stable goodput through the
network, to be able to calculate and predict the capacity of the network. Figure
4.9 shows the minimum, average and maximum values of goodput using CON. The
values are in general quite stable, with a few exceptions of the min and max values
measured probably caused by a disturbance in the network. The graph rises fast at
low payloads and later flattens out. The highest achieved goodput in these tests was
611 bytes/second when the payload was 900 bytes. It reached 500 bytes/second at
500 bytes payload. From this graph, it looks like the maximum transfer rate using
CON is approximately 700 bytes, and will probably never hit 1 kB per second.

4.4. TRANSFER RATES 45

600
T 500
S - Min Goodput
()
©“ 400 - Avg Goodput
§ - Max Goodput
§ 300
o
>
Q. 200
©
(@]
o
O 100
0
0 200 400 600 800 1000
Payload [bytes]
Figure 4.9: Goodput compared to payload CoAP CON
600
500

- Min Goodput
400 - Avg Goodput
- Max Goodput

300

200

Goodput [bytes/second]

100

0 100 200 300 400 500 600 700 800 900
Payload [bytes]

Figure 4.10: Goodput compared to payload CoAP NON

In the same case using NON, the graph starts to climb almost linear with a climbing
rate of 100 bytes/second added for every 100 bytes payload added, as seen in figure

46 4. NETWORK MEASUREMENTS

4.10%. This makes sense, given that the transfer interval is constant at once per
second for payload sizes from 0 to 600 bytes. Variation to min and max values occurs,
but not more than expected compared to previous results. The highest achieved
goodput is 608 bytes/second, almost exactly the same as the maximum achieved in
CON. For payloads higher than this the goodput drops down to about 580 and stays
more or less constant there.

The direct comparison of the average values of goodput using CON and NON can be
seen in figure 4.11. In this case, both plots start at 0 bytes/second, since the payload
is 0. After this, the graphs have quite different forms. NON has a very linear rise, all
the way up to 600 bytes payload. When transferring a payload of 100 bytes, CON is
almost three times faster at 305 bytes/second compared to 108 byte/second using
NON. CON looks significantly more efficient for a small amount of data, but for
payload bigger than 500 bytes NON is preferable in the testbed.

600

500

400 - CON Avg Goodput
- NON Avg Goodput

300

200

Goodput [bytes/second]

100

0 200 400 600 800 1000
Payload sent [bytes]

Figure 4.11: Goodput for given payload, CON vs NON

4Note that this graph only reached 900 bytes payload, since NON was too unstable to transfer
1kB in the testbed

4.4. TRANSFER RATES 47

4.4.2 Bytes sent through network, best and worst case

These previous two tests show the throughput per time, while the tests earlier in
the thesis has focused on the amount of throughput that is payload, how much of
the data sent is useful data. Since these microcontrollers are used as end nodes in
the testbed, it is natural to assume that they will run on battery power only in
similar networks as well. In this case, it is preferable that they do as little work as
possible, meaning also handle as few packets as possible. Therefore, we will compare
how many packets that needs to go through the end nodes in the different cases,
CON and NON. Before the test, it was clear that fewer packets are needed using
NON, since no ACKs are required. The test is therefore done to see how much fewer
packets are needed here.

The main argument for trying the NON-version of CoAP in the testbed, was that
fewer bytes needed to be sent through the network, meaning less overall usage of
the network. This is relevant in a case where the network should be taken to its
maximum capacity with several sensors and microcontrollers.

1200
1000

800

600 - CON best case
- CON worst case
- NON best case

- NON worst case

400

200

Data sent in total, including ACKs [bytes]

o

6 100 200 300 400 500 600 700 800 900
Payload sent [bytes]

Figure 4.12: Number of bytes per second

Still, as seen in figure 4.12, this turns out not to always be the case. The figure shows
best and worst case of how many bytes that needs to be sent to transfer a given
number of payload. For example, using NON it takes 576 bytes to transfer 500 bytes
payload in best-case, but 856 bytes in worst-case. This is because of the architecture
of the two different versions of CoAP. Even though NON does not require ACKs,
fundamental parts of the Bluetooth architecture like ACL adds some support for this.

48 4. NETWORK MEASUREMENTS

Also, to prevent a situation where the end node sends data forever without anyone
receiving the data, ACK messages are still being sent regularly, approximately every
15th second in the testbed. This means, as shown in figure 4.12, that NON normally
requires a lower amount of bytes to transport a given payload, but in worst-case
scenario it needs even more bytes than CON.

The main question to comparison comes down to how often the worst case occurs, in
comparison to best case. Sending payload of 500 bytes in both cases, NON results
in mostly best case scenarios, while CON results in only worst case scenarios. In
specific numbers, this gives an average of 598 bytes sent for NON, and 791 bytes. This
gives us the following equations to calculate how much of the total bytes sent that
constitutes of the payload. These calculations are based on measurements similar
to the one shown in table 4.5 and 4.6. They are only one of several experiments
conducted, which all gave approximately the same result. The average values from
these tests was 63 % was payload for CON and 83 % for NON.

500 byte payload

791 bytes *x 15 packets
15

x 100% =~ 63, 21% payload (CON) (4.7)

500 byte payload
(576 bytes * 13 packets) + (856 bytes * 2 packets)
15

* 100% =~ 83, 56% payload (NON) (4.8)

From these results, it can be concluded that even though NON is considerably worse
in worst-case than CON, it is still needed about 20 % less packets sent through the
network to get the same amount of information through. The results are about the
same as what we expected before the tests.

4.5 Chapter summary

In this chapter, the most central experiments performed in the project have been
presented and compared. The first problem up for discussion was if fragmentation of
packets is a major issue in an IoT network like the network presented in this thesis.
Payloads from 0 to 1000 bytes were sent through the network, and the fragmented
packets sent were being captured on the client side using Wireshark. The comparison
between CON and NON shows both that there are small differences between the two
versions of the protocol are as expected. They are very similar, but CON must send
extra bytes to ACK messages. We also found that fragmentation of packets is not a
major issue in the testbed.

The next experiments focused on goodput in the system, the amount of data can be
sent per second. CON is faster at small payloads, mostly because this is requested

4.5. CHAPTER SUMMARY 49

by GET-requests. At approximately 500 bytes payload CON begins to use longer
than 1 second to transfer, and is being bypassed by NON, which can send 600 bytes
in one second. After this, both versions start to climb with approximately a rate
of 1 second per 500 bytes of payload. Comparisons to the capacity of the different
technologies are being discussed, to find out that these results are much lower than
expected. Another comparison experiment presented shows that between 500 and
900 bytes payload in CON, while 600 bytes payload is optimal for NON. This gives a
maximal goodput of approximately 600 bytes/second.

Because there are different additional protocols in the two versions of CoAP, the
amount of bytes sent in total through the network is not constant, even though
the payload is constant. Measurements show that NON requires the least packets
in best-case, but also the most in worst-case. Despite this, NON most of the time
manages to stay on best-case, giving it the best % payload of all packets sent at 500
bytes, with a calculate average of 83 % compared to 63 % in CON.

Discussion

5.1 Set up network
0O.1: Build a star network of microcontrollers

This objective was fulfilled by using the Raspberry Pi as a central node and nRF52s
as end nodes. Central points in the solution were the use of a version of Linux OS
with a pre-configured kernel of version 4.15 or later on the Raspberry Pi. Also, it
was important to understand how prefix in IPv6 works, and how this can be used to
identify a device connected using BLE. In this solution the end nodes with nRF52s
work as servers, while the central Raspberry Pi works as a client requesting services
from these servers.

R.1: Which transport protocols are suitable for such a system?

BLE was chosen over ANT, as explained in chapter 2.2.3. Bluetooth is a widely used
technology that is interesting for ITEM in an IoT setting, and was therefore the
obvious choice in this network. The BLE version of Bluetooth is designed to use a
minimal amount of energy and still be reliable and fast, which is central criteria in
the testbed. As a result of this 6LoWPAN also seemed like a suitable communication
protocol, because it is capable to work together with BLE. Zigbee and Zensys were
the main other options, which did not seem as fit in this case mostly because of
different solutions in routing. In the application layer, the two main choices was
between CoAP and MQTT. Because of time restrictions, CoAP was chosen to be
studied in depth in this thesis.

51

52 5. DISCUSSION

5.2 Gather sensor data
0.2: Connect sensors to the end-nodes to collect data

This objective was partially fulfilled. We connected an accelerometer to two of the
end nodes in the network, with the goal of gathering vibration data to be sent through
the network. Problems occurred when getting the accelerometer to communicate
properly with the end node, meaning that it was possible to gather acceleration data,
but not as frequently as expected. Getting reliable vibration data was therefore not
possible. Due to these problems, in addition to the main scope of this thesis, it was
decided to measure the different aspects of the network with simulated data instead
of real world vibration data. This would eliminate the possibility of errors due to
problems with the sensor, letting this objective to be completed later by future work.

Even though we did not fully complete this objective, related coding was done on
the nRF52 to be able to initialize and use the accelerometer connected. This code
can be useful for projects in future works. Therefore, we will include central aspects
from the code in appendix C.

5.3 Send data through network
0.3: Gather information of the data sent through the network

This object was fulfilled by using both Python scripts and Wireshark on the Raspberry
Pi to capture the packets sent through the network. Different Python scripts were
used to get data from the servers, save data locally after receiving, drawing graphs
directly to represent the data, or to forward the data to another device or online
storage facility. The most central of these code samples can be seen in appendix B.
Wireshark was used to monitor the live capture of packets, and to manually do a
detailed analysis of how packets were fragmented differently in the different scenarios.

R.2: What are the main limitations concerning transporting data?

Already in the first tests of RTT shown in chapter 4.1.1, it became clear that one of
the major limitations in this network would be the initial transfer speed. This was
not expected, and was not included as one of the main objectives of this thesis. It
concentrates more on analysing and discussing the data sent through the network, and
transport protocols used. It is assumed that this is a problem in a lower level of the
protocol stack, and will be left for future work to solve. Other than this, limitations
regarding network stability were found. Several of the tested solutions were not able
to transfer data at all, or only for a very short period (< 20 seconds). When a stable
solution was found, the link could be open as long as needed. Successful tests have
been running for several days. Other limitations discussed in detail in this thesis was

5.4. ANALYSE DATA 53

the frequency data can be sent through the network, unstable connections when the
payload gets too big, device failure at runtime then the payload gets too big and
power consumption increases.

R.3: Are the microcontrollers powerful enough to gather data this fre-
quently?

To gather detailed acceleration data to be analysed in another node of the network,
we assume that a fast measuring frequency of over 100 times per second is needed.
The maximum achieved in this system was to call a method from the main loop
11 times every second, and then read a measured value from the accelerometer 150
times for each of these 11 method calls. This adds up to 1650 measuring points
every second in a best case scenario. Yes, this is fast enough to gather data, even
though problems explained in chapter 3 means this practical experiment will be left
for future work in this thesis. The programming code referred to here can be seen in
appendix C.

5.4 Analyse data
0.4: Analyse and discuss the gathered information

This object was fulfilled by analysing the data by printing out tables and plotting
graphs. Using basic tools like this, it was possible to document both the differences
and similarities in the different protocols tested in this thesis. The results where
presented and discussed in detail in chapter 4.

R.4: Could data analysis be done in the end nodes in this network?

Referring to the result from research question R.3. The maximum capacity of the
microcontroller is needed to capture acceleration data from the accelerometer, get
the desired quality of the data, and forward this to a central node. The end nodes
were running on battery power. To do even more calculations in these nodes will
not be preferable in this network. This will be possible if the node is one of many
nodes in a complete network, where every node gets some time of sleep between
every measurement. Even here it is probably not a good idea, concerning the use
of batteries. The answer from our results presented in this thesis is therefore no.
More detailed analysing and representation of the data should probably be done in a
central node with more computational power and better access to power sources.

54 5. DISCUSSION

5.4.1 Measurements

As a summary of the measurements presented in this thesis, the positive and neg-
ative aspects of the two versions of CoAP that have been tested will be directly
compared. This will give a more clear representation of the differences, advantages

and disadvantages.

Table 5.1: Comparison of CON and NON

Case CON | NON Comments
Accational connection
Need of ACKs Yes No test at 16+7+7 bytes
in both cases
Minimum number of
bytes needed for 744104 76
empty CoAP message
Fragmentation of packets No No
are an issue
Fastest for payload X Almost 3x faster
<500 byte payload <10 byte
Fastest for payload X On average 0,2 s faster
>500 byte for payload >600 byte
Average time [seconds]
0,66 1,00
to send 200 bytes payload
Average time [seconds]
1,32 | 1,21
to send 700 bytes payload
Highest measured
goodput [bytes] 608 611
per second
Overall best stability X
in the network
Calculated lowest X
power concumption
% payload of all packets On average 20% more
sent through network 63 83 efficient in the number
(in case of 500 byte sent) of packet sent in total

5.5. EASE OF USE 55

Table 5.1 shows a summary of the main results found in the comparison of CoAP
CON and NON in the testbed. Results from the table shows that in 8 of the 11
cases presented, NON shows the best results. It could still be discussed, since NON
has been considerably more unstable than CON during the test period, and the
connection became unreliable if the payload was greater than 800 bytes. Our tests in
the testbed shows that NON is better in most cases.

Looking at the network in general using CoAP, the slowest transfer time is 2 seconds
to transfer 1 kB of payload. This is considered slow through a network like this. BLE
has a given Maximum Transmission Unit (MTU) of 1 MB per second, far beyond
what we achieved in the tests presented here. The highest achieved goodput was
about 500 bytes/second, or 1/2 MB/second. BLE is therefore not the main limitation
in the network. CoAP creates the messages sent, but should not influence on the
network throughput, if not the action of making the packets in the end node is the
limitation. 6LoWPAN is only used as a way of transporting data in the network, and
will therefore not affect the throughput in the system directly. A final possibility is
that the limitation is in the computational power of one of the devices communicating
with each other. We did not test this in further detail, because it was not a major
objective of this thesis. This could also be a relevant subject for future works.

These goodput-numbers brings the question up for discussion if it is profitable to send
data larger than 1 kB at all. If the sending rate keeps climbing at the same rate as
measured here, with a rate of 1 second slower for every 500 bytes. As a comparison,
it will take 1000 seconds to transfer 500 kb, which is more than 15 minutes.

5.5 Ease of use

5.5.1 Raspberry Pi

As a central device for the microcontrollers, the Raspberry Pi has worked great. There
are several good options when it comes to choosing an OS that can be customised
for a specific system, and several good guides that helps the user. This a simple and
fast small device for most end users.

5.5.2 nRF52

The nRF52 requires a lot more experience both in programming and general un-
derstanding of computers to be used properly than the Raspberry Pi. Online
documentation is available and is usually good, but also sometimes a bit confusing
and messy. A great tool is the Nordic Semiconductor forum?, specially designed for
questions regarding this and other Nordic devices. Example code is also provided

Lhttps://devzone.nordicsemi.com

https://devzone.nordicsemi.com

56 5. DISCUSSION

by Nordic, to show how the device can be used with different technologies. This
works as a starting point, but it is very time-consuming and difficult for an end user
without specific experience on this device. The example code used as a starting point
in this thesis was not optimized for battery consumption, and as a result the small
battery drained quickly during the testing. This is of course possible to optimize for
an experienced user, but should be taken into account for the average end user of
such a device in a complete system.

Conclusion and Future Work

In this thesis I have used microcontrollers, sensors, single-board computers and a
stationary computer to build an IoT network. Using this network I have tested
some of the choices a system developer can face when transporting data through the
network, particularly emphasising Bluetooth Low Energy and 6LoWPAN. Central
topics for discussion has been analysis of data with respect to network capacity,
network exploitation, transfer rate and power usage.

From the results presented concerning fragmentation of data, the thesis argues that
neither in CoAP CON or NON is fragmentation a major concern. Both the max size
of 31 bytes of BLE packets and 270 bytes of 6LoWPAN packets was exceeded in
the test, without having major affect on the percentage of payload sent through the
network compared to the total throughput. This would otherwise have resulted in a
more uneven slope of the graphs presented.

The thesis has presented experiments to analyse and discuss the goodput in the
system. Results shows that CoAP CON is faster for smaller payloads, while NON
if the payload is bigger than 500 bytes. The highest goodput achieved was 611
bytes/second, and overall the system needs almost 1 additional second for every
500 bytes of payload being added. This is quite slow compared to the limitations
of the different technologies used, and we discussed what can be the main reason
for this. The author did not have the resources to investigate this in detail within
the time frame, but it seems reasonable to assume that the limitation is not BLE
or 6LoWPAN, but rather limitations in the computational power or the wireless
software stack of one of the devices used.

The last experiment presented shows that NON require the least packets in best case,
but also the most in worst case to transfer the same payload. Despite this, NON
most of the time manages to stay on best case, giving it the best % payload of all
packets sent at 500 bytes, with an average of 83 % compared to 63 % in CON.

57

58 6. CONCLUSION AND FUTURE WORK

In summary, both BLE and 6LoWPAN works in such a system, together with both
versions of CoAP tested. In some cases the network was stable and reliable, but there
where also several limitations which lead to problems during the testing. Limited
sending frequency, limited payloads and difficulties when connecting to other devices
is the most central. Still I will say the network is a very interesting stating point
to a more complex IoT system, that can definitely be used as a starting point for
future projects.

6.1 Future work

A proposed future work is to build the network further both with microcontrollers
and computational power, as a direct addition to the system presented. The system
can be expanded a lot both concerning bigger and smaller devices. For instance can
several sensors be connected to the same microcontroller, and several microcontrollers,
both nRF52s and others, can be connected at the same time to get a more real world
environment to test data. In the other end the system can be set up both to ask for
computational power from a supercomputer or to automatically display the results
on a web page on a database. It would then be possible to create a more user friendly
User Interface (UI), which would make it easier to test and analyse even bigger loads
of data sent through the system.

References

[1] ADXL345: Digital Accelerometer Data Sheet. http://www.analog.com/media/
en/technical-documentation/data-sheets/ ADXL345.pdf. Accessed: 20-04-2016.

[2] ANT: This is ANT. http://www.thisisant.com. Accessed: 06-02-2016.

[3] Bluez: Official Linux Bluetooth protocol stack. http://www.bluez.org. Accessed:
06-02-2016.

[4] Copper: CoAP user-agent for Firefox. http://people.inf.ethz.ch/~mkovatsc/
copper.php. Accessed: 29-05-2016.

[5] Infocenter, Nordic Semiconductor: CoAP Server Example. http:
//infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.iotsdk.
v0.9.0%2Fiot__sdk__app_ coap_ server.html&cp=5_1_0_5_ 0_0. Accessed:
06-02-2016.

[6] MQTT: Web page. http://mqtt.org. Accessed: 07-04-2016.
[7] Newark: Element 14. https://www.newark.com/. Accessed: 13-05-2016.

[8] Nordic Semiconductor: development tools and software. https:
//www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/
nRF52832/Development-tools-and-Software/. Accessed: 12-04-2016.

[9] Nordic Semiconductor: IoT SDK Documentation. https://infocenter.nordicsemi.
com /index.jsp?topic=%2Fcom.nordic.infocenter.sdk52.v0.9.1%2Fexamples.html.
Accessed: 27-01-16.

[10] Nordic Semiconductor: nRF52 Series SoC. https://www.nordicsemi.com/
Products/nRF52-Series-SoC. Accessed: 25-03-2016.

[11] Nordic Semiconductor: s110 softdevice. https://www.nordicsemi.com/eng/
Products/S110-SoftDevice-v7.0. Accessed: 26-05-2016.

[12] Ubuntu Mate: Installation for Raspberry Pi. https://ubuntu-
mate.org/raspberry-pi/. Accessed: 31-01-2016.

[13] Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal 22(7), 97-114.

59

http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://www.thisisant.com
http://www.bluez.org
http://people.inf.ethz.ch/~mkovatsc/copper.php
http://people.inf.ethz.ch/~mkovatsc/copper.php
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.iotsdk.v0.9.0%2Fiot_sdk_app_coap_server.html&cp=5_1_0_5_0_0
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.iotsdk.v0.9.0%2Fiot_sdk_app_coap_server.html&cp=5_1_0_5_0_0
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.iotsdk.v0.9.0%2Fiot_sdk_app_coap_server.html&cp=5_1_0_5_0_0
http://mqtt.org
https://www.newark.com/
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF52832/Development-tools-and-Software/
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF52832/Development-tools-and-Software/
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF52832/Development-tools-and-Software/
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk52.v0.9.1%2Fexamples.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk52.v0.9.1%2Fexamples.html
https://www.nordicsemi.com/Products/nRF52-Series-SoC
https://www.nordicsemi.com/Products/nRF52-Series-SoC
https://www.nordicsemi.com/eng/Products/S110-SoftDevice-v7.0
https://www.nordicsemi.com/eng/Products/S110-SoftDevice-v7.0

60 REFERENCES

[14] Chown, T. and S. Venaas (2011). Rogue ipv6 router advertisement problem
statement.

[15] Devices, A. (2009). Digital accelerometer adx1345. Analog Devices 21.

[16] Gomez, C., J. Oller, and J. Paradells (2012). Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology. Sensors 12(9),
11734-11753.

[17] Hui, J. W. and D. E. Culler (2008). Extending ip to low-power, wireless
personal area networks. Internet Computing, IEEE 12(4), 37-45.

[18] Hunkeler, U., H. L. Truong, and A. Stanford-Clark (2008). Mqtt-s—a pub-
lish /subscribe protocol for wireless sensor networks. In Communication systems
software and middleware and workshops, 2008. comsware 2008. 3rd international
conference on, pp. 791-798. IEEE.

[19] Kovatsch, M. (2011). Demo abstract: human-coap interaction with copper.
In Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011
International Conference on, pp. 1-2. IEEE.

[20] Kushalnagar, N., G. Montenegro, D. E. Culler, and J. W. Hui (2007). Trans-
mission of ipv6 packets over ieee 802.15. 4 networks.

[21] Lamping, U. and E. Warnicke (2004). Wireshark user’s guide. Interface 4(6).

[22] Montenegro, G., N. Kushalnagar, J. Hui, and D. Culler (2007). Transmission of
ipv6 packets over ieee 802.15. 4 networks. Internet proposed standard RFC 4944.

[23] Mulligan, G. (2007). The 6lowpan architecture. In Proceedings of the 4th
Workshop on Embedded Networked Sensors, EmNets 2007, Cork, Ireland, June
25-26, 2007, pp. 78-82.

[24] Semiconductors, P. (2000). The i2c-bus specification. Philips Semiconduc-
tors 9397(750), 00954.

[25] Shelby, Z., K. Hartke, and C. Bormann (2014). The constrained application
protocol (coap).

Appendix A

Appendix A contains screenshots and detailed figures from the measurements done
in the network built in this thesis. This is meant to be a supplement to the figures
presented earlier in the thesis to give the reader a deeper understanding of the system.
In addition to the measurements presented here, all data gathered from the system
and code used will be public GitHub, http://github.com/sische/MasterThesis.

A.1 Measured values from tests

The following two tables present values discussed in chapter 4. These are minimum,
average and maximum values of goodput and time between each CoAP packet, using
both CON and NON. These values have been found by monitoring more than 100
packets in each case.

61

http://github.com/sische/MasterThesis

62 A. APPENDIX A

Table A.1: Goodput and time, CoAP CON

Payload Min goodput Avg Goodput Max Goodput Min Time Avg Time Max Time
0 0 0 0 0.27 0.28 0.35
50 142.41 178.12 183.09 0.27 0.28 0.35
100 237.56 284.8 335.87 0.3 0.42 0.35
150 267.9 345.33 353.34 0.41 0.44 0.56
200 314.52 353.53 485.6 0.41 0.57 0.64
250 353.74 391.43 401.35 0.62 0.64 0.71
300 424.29 428.58 432.81 0.69 0.7 0.71
350 354.35 443.3 459.17 0.76 0.79 0.99
400 408.16 472.34 485.63 0.82 0.85 0.98
450 490.37 494.4 498.64 0.9 0.91 0.92
500 446.23 504.35 562.4 0.89 0.99 1.12
550 491.24 523.1 527.21 1.04 1.05 1.12
600 504.16 534.45 538.85 1.11 1.12 1.19
650 466.14 510.67 518.67 1.25 1.27 1.39
700 476.04 525.06 529.18 1.32 1.33 1.47
750 486.82 526.31 538.33 1.39 1.43 1.54
800 517.42 543.6 546.74 1.46 1.47 1.54
850 506.12 541.44 554.19 1.53 1.57 1.68
900 559.14 611 615.06 1.46 1.47 1.61
950 502.66 559.18 567.89 1.67 1.7 1.89
Table A.2: Goodput and time, CoAP NON
Payload Min goodput Avg Goodput Max Goodput Min Time Avg Time Max Time
0 0 0 0 0.9 1 1.12
50 44.65 50.27 54.89 0.91 1 1.12
100 94.6 100.49 109.03 0.92 1 1.06
150 133.93 150.66 164.85 0.91 1 1.12
200 117.46 201.11 221.58 0.9 1 1.13
250 237.88 251.28 275 0.91 1 1.05
300 252.18 302.09 357.26 0.84 1 1.19
350 330.96 353.79 384.61 0.91 0.99 1.06
400 336.15 402.46 476.34 0.84 1 1.19
450 428.41 454.6 494.93 0.91 0.99 1.05
500 446.52 510.38 600.09 0.83 0.98 1.12
550 494.21 552.72 604.61 0.91 1 1.11
600 570.93 607.94 613.1 0.98 0.99 1.05
650 531.48 568.29 580.91 1.12 1.15 1.22
700 543.52 577.18 591.76 1.18 1.21 1.28
800 553.34 585.45 601.51 1.33 1.37 1.45
850 556.62 591.37 609.83 1.39 1.44 1.53

A.1. MEASURED VALUES FROM TESTS 63

The following capture shows a part of a Wireshark capture, as described in
chapter 4.1. This capture shows a payload of 0 byte sent using CoAP NON, and was
the base for values used in table 4.1.

e BLE_CoAPCON_LengthObyte.pcapng [Wireshark 1.12.7 (Git Rev Unknown from unknown)]

File Edit / ture Analyze Stat Tel To € elp
XC Q<K >»I¥ITFT & EE e ld @
Filter: | v|Expressinn... Clear Apply Ssave
Time Source Destination Protocol Length Info -
27 3.677948000 remote () localhost () HCI_ACL 31 Revd [Continuation to #26]
28 3.467689000 2001::211:647T:Tea 2001::1 CoAP 72 ACK, MID:57082, 2.05 Content, TKN:00 00 l?'
29 3.479460000 2001::1 2001::211:64ff:fea5:8542 CoAP 113 CON, MID:57083, GET, TKN:00 0@ 17 59, coap
30 3.746871000 remote () localhost () L2CAP 5 Rcvd Connection oriented channel
31 3.776017000 localhost () remote () L2CAP 58 Sent Connection oriented channel
32 3.776175000 localhost () remote () L2CAP 50 Sent Connection oriented channel
33 3.816997000 remote () localhost () L2CAP 16 Rcvd LE Flow Control Credit (CID: @048, Cr
34 3.817757000 controller host HCI EVT 7 Rcvd Number of Completed Packets
887728000 controller host HCI_EVT 7 Rcvd Number of Completed Packets
747139000 2001::211:647f:fea 2001::1 CoAP 72 ACK, MID:57083, 2.05 Content, TKN:00 00 17
.775872000 2001::1 2001::211:64ff:fea5:8542 CoAP 113 CON, MID:57084, GET, TKN:00 0@ 17 5a, coap
.957107000 remote () localhost () HCI_ACL 31 Rcvd [Reassembled in #40]
.958472000 remote () localhost () HCI ACL 31 Revd [Continuation to #38]
.027356000 remote () localhost () L2CAP 5 Rcvd Connection oriented channel
036697000 localhost () remote () L2CAP 58 Sent Connection oriented channel
.036783000 localhost () remote () L2CAP 50 Sent Connection oriented channel
.097517000 remote () localhost () L2CAP 16 Rcvd LE Flow Control Credit (CID: @048, Cr
.097737000 controller host HCI EVT 7 Rcvd Number of Completed Packets
.167761000 controller host HCI_EVT 7 Rcvd Number of Completed Packets
027474000 2001::211:647T:Tea 2001::1 CoAP 72 ACK, MID:57084, 2.05 Content, TKN:00 00 17
036580000 2001::1 2001::211:64ff:fea5:8542 CoAP 113 CON, MID:57085, GET, TKN:00 0@ 17 5b, coap
.237663000 remote () localhost () HCI_ACL 31 Rcvd [Reassembled in #50]
.237775000 remote () localhost () HCI ACL 31 Revd [Continuation to #48)
306702000 remote () localhost () L2CAP 5 Rcvd Connection oriented channel
320593000 localhost () remote () L2CAP 58 Sent Connection oriented channel
320715000 localhost () remote () L2CAP 50 Sent Connection oriented channel
376835000 remote () localhost () L2CAP 16 Revd LE Flow Control Credit (CID: 0048, Cr
377822000 controller host HCI EVT 7 Revd Number of Completed Packets
3069311 1:211:647T: fea 2| 531 CoAP 72 ACK, MID:57085, 2.05 Content, TKN:8@ 00 17
320394000 2001::1 2001::211:647T:Tea5:8542 CoAP 113 CON, MID:57086, GET, TKN:00 00 17 5c, coap
447866000 controller host HCI EVT 7 Rcvd Number of Completed Packets
516926000 remote () localhost () HCI_ACL 31 Rcvd [Reassembled in #60]
518293000 remote () localhost () HCI ACL 31 Revd [Continuation to #58]
587174000 remote () localhost () L2CAP 5 Rcvd Connection oriented channel
587305000 localhost () remote () L2CAP 16 Sent LE Flow Control Credit (CID: 0040, Cr
595934000 localhost () remote () L2CAP 58 Sent Connection oriented channel
596007000 localhost () remote () L2CAP 50 Sent Connection oriented channel
657334000 remote () localhost () L2CAP 16 Rcvd LE Flow Control Credit (CID: 0040, Cr
657811000 controller host HCI_EVT 7 Rcvd Number of Completed Packets
658791000 controller host HCI_EVT 7 Rcvd Number of Completed Packets
587289000 2001::211:647f:fea 2001::1 72 ACK, MID:57086, 2.05 Content, TKN:00 00 17
5958001 Sl 2 211:64ff:fea5:8542 113 CON, MID:57087, GET, TKN 17 5d, coap
727825000 controller host 7 Rcvd Number of Completed Packets
797616000 remote () localhost () 31 Rcvd [Reassembled in #72]
867761000 remote () localhost () 31 Revd [Continuation to #70] -

.]
+ Frame 12: 104 bytes on wire (832 bits), 104 bytes captured (832 bits) on interface 8
b Linux cooked capture
» Internet Protocol Version 6, Src: fe8@::21a:7dff:feda:7105 (feB80::21a:7dff:feda:71@85), Dst: ffe2::1 (ffe2::1)
» Internet Control Message Protocol vé

0800
ee1e
o020
o830
0040
0050

OM® Frame (frame), 104 bytes Packets: 867 - Displayed: 867 (100,0%) - Load time: 0:00.042 Profile: Default

Figure A.1: Wireshark capture, 0 bytes CON

Appendix B

Appendix B contains samples of programming code used to gather and transfer data
in the IoT system described in this thesis.

B.1 Python programming scripts
This first example is the most simple, using GET commands to get the measured

values from CoAP CON. All the python scripts uses example code from Nordic
Semiconductor in [5] as a starting point.

import asyncio
from aiocoap import *

SERVER_ADDR ’2001: :2AF :B7FF:FEB6:1494°
SERVER_PORT = ’5683’
SERVER_URI = ’coap://[’ + SERVER_ADDR + ’]:’ + SERVER_PORT

@asyncio.coroutine
def main():
protocol = yield from Context.create_client_context()
sequence_number = 1
number_of_measurements = 200
while sequence_number < number_of_measurements:
request_acceleration = Message(code=GET)
request_acceleration.set_request_uri(SERVER_URI + ’/lights/led3’)
response = yield from protocol.request(request_acceleration).response
print(’Acceleration’+str(sequence_number)+’: %s Response Code:
%s\n’% (response.payload, response.code))
sequence_number += 1

if __name__ == "__main__":

asyncio.get_event_loop() .run_until_complete(main())

65

66 B. APPENDIX B

This script was written to get observable values stored in a local file.

import asyncio
from aiocoap import *

#SERVER_ADDR = ’2001::211:64ff:feab:8542’

SERVER_ADDR = ’2001::2e6:6aff:fe64:54dd’

#SERVER_ADDR = ’2001::2af:b7ff:feb6:1494°

SERVER_PORT = ’5683’

SERVER_URI = ’coap://[’ + SERVER_ADDR + ’]:’ + SERVER_PORT

responselist = []
def observe_handle(response):
f = open(’/home/sindre/Desktop/desktopAccelValues’, ’a’)
if response.code.is_successful():
responselist = bytes.decode(response.payload)
for i in range(0, (len(responselist))):
f.write((str(responseList[i]) + ’> ’))
f.write(responselList)
f.urite(’\n’)
print("Written to file!")
else:
print (’Error code %s’ % response.code)
f.close()
Q@asyncio.coroutine
def main():
protocol = yield from Context.create_client_context()
request = Message(code=GET)
request.set_request_uri(SERVER_URI + ’/lights/led3’)
request.opt.observe = 0
observation_is_over = asyncio.Future()
try:
requester = protocol.request(request)
requester.observation.register_callback(observe_handle)
response = yield from requester.response
exit_reason = yield from observation_is_over
print (’Observation is over: %r’ % exit_reason)
finally:
if not requester.response.done():
requester.response.cancel()
if not requester.observation.cancelled:
requester.observation.cancel()

if __name__ == "__main__":
asyncio.get_event_loop() .run_until_complete(main())

B.1. PYTHON PROGRAMMING SCRIPTS 67

This example is to get observable measurements directly displayed in a graph:

import asyncio
from aiocoap import *
import matplotlib.pyplot as plt

#SERVER_ADDR = ’2001::211:64ff:feab:8542’
SERVER_ADDR = ’2001::2e6:6aff:fe64:54dd’
#SERVER_ADDR = ’2001::2af:b7ff:feb6:1494°

SERVER_PORT = ’5683’
SERVER_URI = ’coap://[’ + SERVER_ADDR + ’]:’ + SERVER_PORT

responselist = []
drawValuesList = []

def observe_handle(response):
if response.code.is_successful():
responselist = bytes.decode(response.payload)
print (responselList)

for i in range (0,len(responselist)):
drawValuesListappend(int (responseList[i]))

plt.plot(drawValuesList)

plt.xlabel(’Measurement number’)

plt.ylabel(’Acceleration values’)

plt.show()

else:
print (’Error code %s’ J response.code)

@asyncio.coroutine

def main():

protocol = yield from Context.create_client_context()

request = Message(code=GET)

request.set_request_uri(SERVER_URI + ’/lights/led3’)

request.opt.observe = 0

observation_is_over = asyncio.Future()

try:
requester = protocol.request(request)
requester.observation.register_callback(observe_handle)
response = yield from requester.response
exit_reason = yield from observation_is_over
print (’Observation is over: %r’ Y exit_reason)

finally:

68 B. APPENDIX B

if not requester.response.done():
requester.response.cancel()

if not requester.observation.cancelled:
requester.observation.cancel()

if __name__ == "__main__":
asyncio.get_event_loop() .run_until_complete(main())

Appendix C

Appendix C contains detailed description on how to connect and configure the
different devices in the testbed.

C.1 Connecting Raspberry Pi and nRF52

Following is a listing of Linux terminal commands for the Raspberry Pi, to get the
testbed up and running [9].

Install an OS on the Raspberry Pi that has a Linux kernel version later than 3.18.
On Raspbian version 3.18 is the only stable version, (Note: Jan. 2016), but Ubuntu
Mate is stable in version 4.15. Ubuntu Mate was therefore chosen as the best and
most stable OS, and was installed on the memory card from another computer [12].
When this is done, a resizing of the file system is needed to use all the capacity of the
memory card. This is not crucial to get the OS up and running, but recommended
to be able to use more than 4GB of the memory card. Recommended size of the
memory card is 16GB. To resize, after the initial boot of the OS on the Raspberry
Pi, run the following commands:

sudo fdisk /dev/mmcblkO
Delete partition (d,2), and run the following after a reboot
sudo resize2fs /dev/mmcblkOp2

All the following commands require admin rights on the system. It is therefore easier
to type in the following command to temporarily become a super user. Alternatively
type in sudo before every command in the rest of the recipe.

69

70 C. APPENDIX C

sudo su

It should now be possible to exploit the whole memory card, and start downloading
and activating services needed in the system. To use BLE, install Bluez and radvd
using apt-get:

apt-get install radvd
apt-get install bluez
apt-get upgrade
apt-get update

IPv6 forwarding is needed to let the end nodes discover each other through the
central node in the star network. To activate this, uncomment the following line
(remove "#") in the file /etc/sysctl.conf

net.ipv6.conf.all.forwarding=1

To find the IPv6 prefix in the network, run the command ifconfig. Find a field
named inet6 addr, and write down the first and last number on this line (For instance
2001 and /64). The communication will in this case go through a custom designed
interface. This will be named bt0. Start by creating the radvd.conf-file, and open it
for editing.

touch /etc/radvd.conf
pico /etc/radvd.conf

Write in the following bt0 interface. Replace the number 2001 and /64 with the
numbers found in the previous step.

interface btO

{
AdvSendAdvert on;
prefix 2001::/64

{
AdvOnLink off;
AdvAutonomous on;
AdvRouterAddr on;
};

C.1. CONNECTING RASPBERRY PI AND NRF52 71

To mount the modules bluetooth 6lowpan, 6lowpan and radvd, add the following to
/etc/modules. If the file does not exist, create it by entering touch /etc/modules first.

bluetooth_6lowpan
6lowpan
radvd

When the system is booted, these modules will be automatically loaded. The hcitool
command should now be available. This is a tool designed to connect and keep track
of connected devices, both through standard bluetooth and BLE.

hcitool lescan

lescan will scan for BLE devices nearby, and find the bluetooth address, for instance
00:AA:11:BB:22:CC. The normal procedure in this case would be to run the following
command:

echo 1 > /sys/kernel/debug/bluetooth/6lowpan_enable
hcitool lecc 00:AA:11:BB:22:CC
service radvd restart

These commands never established a stable connection in this system. It was not
possible to test the connection, and each connected device became automatically
disconnected after about 15 seconds. We never found the reason for this problem.
Instead, it was possible to not use hcitool for this part. The following commands
worked fine:

cd /sys/kernel/debug/bluetooth

echo 1 > 6lowpan_enable

echo "connect 00:AA:11:BB:22:CC 1" > 6lowpan_control
service radvd restart

The command hcitool con shows the connected BLE devices. If the device is connected,
the connection can be tested by typing:

ping6 2001::02AA:11FF:FEBB:22CC

72 C. APPENDIX C

Note that 2001::02AA:11FF:FEBB:22CC is the full IPv6 address of the device when
the Bluetooth address is 00:AA:11:BB:22:CC in the testbed. The IPv6 address can
be used to route packets using 6LoWPAN. Using the basic examples provided by

Nordic Semiconductor described in chapter 3.1, it was now possible to send messages
both using CoAP CON and NON.

C.2 Connecting nRF52 and ADXL345

In short, registers for data format control, initial power saving, interrupt enable
control, and the offset of each axis has to be written to in that order. After this, the
acceleration value from the different axes can be read. It was then possible to read
from the registers containing current acceleration values using the method read_reg
described in the next section.

In the solution proposed in this thesis, the acceleration values are being read as often
as possible, limited by the processing power of the nRF52 and the 12C connection.
Furthermore, the read value is being stored in a simple dynamic char array in the
nRF52 before being sent and reset when the BLE channel is ready. The highest
obtained measurement frequency in this system was 11 times for every main loop,
and 150 within these 11 loops. This resulted in 1650 measurements every second,
but as explained in chapter 3, even though the register was being read as often as
possible, the same value was read up to 1650 times before it was updated.

The next section contains samples of programming code written to read acceleration
data from the Adafruit ADXL345 accelerometer connected to the nRF52 using the
12C interface. This code was not being used in the testing of this thesis, as explained
in chapter 3. The code has been included and explained so it can be used by others
in later projects.

C.3 C programming code for acceleration data

The following code sample in C programming is parts of the main function in the file
main.c. From here methods accelerometer _init and start _measuring are being called
to intitialize the different registers of the accelerometer, and start the measuring
from the main loop.

C.3. C PROGRAMMING CODE FOR ACCELERATION DATA 73

int main(void){
uint32_t err_code;

app_trace_init();
leds_init();
timers_init();
accelerometer_init();

for (;;)

{
power_manage () ;
start_measuring();

accelerometer _init will initialize the different registers to be able to read from
the accelerometer. These registers should first be defined in a header file along with
information about the slave address and which nRF52 pins that represented SCL
and SDA, to clarify the code.

// Part of header file:

#define ADXL345_SLAVE_ADDRESS 0x53

#define TWI_SCL_M 27 //!'< Master SCL pin
#define TWI_SDA_M 26 //!'< Master SDA pin
#define X_AXIS_OFFSET Ox1E

#define Y_AXIS_OFFSET 0x1F

#define Z_AXIS_OFFSET 0x20

#define DATA_RATE_AND_POWER_INIT 0x2C

#define POWER_SAVING_INIT 0x2D

#define INTERRUPT_ENABLE_CONTROL Ox2E

#define DATA_FORMAT_CONTROL 0x31

#define READ_X_AXIS 0x32

#define READ_Y_AXIS 0x34

#define READ_Z_AXIS 0x36

74 C. APPENDIX C

// Initialize accelerometer in main.c file:

static void accelerometer_init()

{
write_reg(DATA_FORMAT_CONTROL, 0x00, 2);
write_reg(POWER_SAVING_INIT, OxFF, 2);
write_reg (INTERRUPT_ENABLE_CONTROL, OxFF, 2);
write_reg(X_AXIS_OFFSET, OxFF, 2);
write_reg(Y_AXIS_OFFSET, OxFF, 2);
write_reg(Z_AXIS_OFFSET, OxFF, 2);

The initialization of the accelerometer calls the function write reg, which is used
to write to a register.

static uint32_t write_reg(uint8_t register_address, uint8_t data_to_write,
uint8_t size)

{
ret_code_t ret;
uint8_t addr8 = (uint8_t)register_address;
ret = nrf_drv_twi_tx(&m_twi_master, ADXL345_SLAVE_ADDRESS, &addrS, 1,
true);
if (NRF_SUCCESS != ret)
{
break;
}
ret = nrf_drv_twi_tx(&m_twi_master, ADXL345_SLAVE_ADDRESS,
&data_to_write, size, false);
return ret;
}

After this initialisation process is successful, the start measuring can begin.

static void start_measuring()
{

char stringal150];

char anotherString[150];

for (imt j = 0; j < 150; j++)
{

C.3. C PROGRAMMING CODE FOR ACCELERATION DATA 75

int r = read_reg(READ_Z_AXIS, 0x00);
int t

numberOfMeasurements++;

sprintf(stringa, "%d,", numberOfMeasurements);

for (in i=0; i < 200; i++)

{
if (stringa[0] == ’\0’)
{
measuringCounter = i;
break;
}
else
{
if (!stringToSendOccupied)
{
appendChar (stringToSend, 150, stringalil);
}
}
}
numberOfMeasurements = 0;

This method calls the function read_reg, to read the registers that have been set
to update earlier.

static uint16_t read_reg(uint8_t register_address, uint8_t data_returnValue)
{

uintl6_t rd;

ret_code_t ret;

uint8_t buff[2];

uint8_t addr8 = (uint8_t)register_address;

ret = nrf_drv_twi_tx(&m_twi_master, ADXL345_SLAVE_ADDRESS, &addr8, 1,

true);

if (NRF_SUCCESS != ret)

{
break;

}

ret = nrf_drv_twi_rx(&m_twi_master, ADXL345_SLAVE_ADDRESS, buff, 2,
false);

rd = (uint16_t) (buff[0] | (buff[1] << 8));

76 C. APPENDIX C

return rd;

After this it is possible to get the acceleration value from another point in the
code, to be stores in a char array *str until it is being sent.

static void acceleration_value_get(coap_content_type_t content_type, char **
str)

stringToSendOccupied = true;
strcpy(newString, stringToSend);
*str = newString;

stringToSend[0] = ’\0’;

stringToSendOccupied = false;

	List of Figures
	List of Tables
	List of Acronyms
	Glossary
	Introduction
	Motivation
	Scope and objectives
	Methodology
	Structure

	Background
	Hardware
	Communication technologies
	Transport protocols
	Software tools

	System Architecture
	Connecting Raspberry Pi and nRF52
	Raspberry Pi to Network Computer or Server
	Connecting nRF52 and ADXL345
	Discussion

	Network Measurements
	Possible limitations in the network
	Description of measurements
	Measurements
	Transfer rates
	Chapter summary

	Discussion
	Set up network
	Gather sensor data
	Send data through network
	Analyse data
	Ease of use

	Conclusion and Future Work
	Future work

	References
	Appendix A
	Measured values from tests

	Appendix B
	Python programming scripts

	Appendix C
	Connecting Raspberry Pi and nRF52
	Connecting nRF52 and ADXL345
	C programming code for acceleration data

