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Abstract 

Pre stack inversion of seismic data consists of numerous difficulties. Two of the 

problems of greatest concern are the problems of non-uniqueness and non-

linearity of the inversion. There may exist several solutions to any given 

inversion problem, and to be able to choose the correct solution we are 

dependent on a priori information. This thesis will explain how a priori 

information can be implemented with the seismic data using Bayesian modeling 

and fractal based initial methods in order to obtain the most likely solution for 

the inversion.  

This thesis will also explain the theory behind global optimization routines, such 

as the random walk Monte Carlo, the Metropolis algorithm and Simulated 

Annealing. A Simulated Annealing routine has been made, and this is used to 

solve optimization problems.  The routine is analyzed for its capability of 

finding global optimums and the requirements for its success. It is then 

implemented to simulate the inversion of a seismic dataset. The solutions of the 

inverted data is then analyzed and compared to the actual solution. This is done 

for an uncontaminated dataset, and for a dataset containing noise. 

The work has shown that Simulated Annealing can be a good method for finding 

a global optimum, but that the global optimization routine is unable to produce 

good results without good constraints and a good initial model, due to the 

problem of non-uniqueness. 
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Sammendrag 

Pre stack inversjon av seismiske data byr på en del problemer. To av de største  

problemene er det med de ikke-unike løsningene og det ikke-linære forholdet 

mellom de modellerte og de faktiske seismiske dataene. Det kan eksistere flere 

løsninger til et gitt inversjonsproblem, og for å velge den riktige løsningen er vi  

avhengige av tilleggsinformasjon om våre data. Denne oppgaven vil forklare 

hvordan denne tilleggsinformasjon kan implementeres med de seismiske dataene 

ved hjelp av Bayesisk modellering og fraktalbaserte inisielle modellere for å 

oppnå den mest sannsynlige løsningen. Denne oppgaven vil også forklare 

teorien bak globale optimalisering rutiner, slik som random walk Monte Carlo, 

Metropolis algoritmen og Simulated Annealing. En Simmulated Annealing 

rutine har blitt lagd, og denne vil brukes for å løse optimaliseringsproblemer.  

Simulated Annealing rutinen er analysert for sin evne til å finne globale 

optimum og hvordan parameterinnstillingene må være for at den best skal klare 

det.  

Løsningene av de inverterte data blir deretter analysert og sammenlignet med 

den faktiske løsningen. Både rene data og data som har blitt tillagt støy blir 

invertert. Dette for å vise konsekvensene støy vil gi inversjonen. Resultatene 

viser at Simmulated Annealing kan være en veldig effektiv global 

optimaliseringsmetode, men at den globale løsningen ikke nødvendigvis er den 

rette løsningen når dataene inneholder støy. Den inisielle modellen for de 

inverterte parameterene er derfor veldig vikitg, og er med på å farge inversjonen
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1 Introduction 

Seismic inversion can generally be described as the determination of subsurface 

properties from seismic data. Seismic data can be described as an interface 

property, while seismic inverted data can be described as a rock property. There 

are several types of inversion. Inversion can be done both post-stack and pre-

stack.  The data can be inverted in a deterministic or a stochastic matter. It can 

be model based or recursive. The problem with most model based inversion 

schemes is that the relationship between the model and the real seismic data is 

assumed to be linear. In fact, this is very seldom the case. If this is assumed we 

require that the global minimum is in the neighborhood of our initial guess in 

order to find it. If our initial guess is wrong, we will not be able to find the 

global minimum. 

This thesis will focus on pre-stack seismic inversion using Monte Carlo methods 

in general and Simulated Annealing specially. These are global optimization 

techniques which choose parameters randomly and calculate their fitness to a 

certain inversion problem. By doing this we hope that our solution will not be a 

local minimum, but that we find the global minimum, which should be the best 

possible solution. The solution should be found, regardless of initial choice of 

parameters.  

The difficulties in seismic inversion with respect to implementation of a priori 

information together with a global optimization routine will be discussed. It will 

be done by going through the theory behind Bayesian modeling and fractal 

based initial models. The global optimization theory behind Simulated 

Annealing will be explained, together with its origin from Markov Chain Monte 

Carlo and the Metropolis algorithm. 

The Simulated Annealing method is regarded as an effective method of finding a 

global minimum in a non-linear inversion problem (Rothman, 1985). The thesis 
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will show examples of a Simulated Annealing algorithm used to find global 

minima in both basic optimization problems and a simulation of a synthetic 

seismic inversion problem. This will be done by a simple inversion routine 

showing the principles of how Simulated Annealing can be used in a full scale 

inversion of a seismic dataset. It will also discuss the drawbacks and difficulties 

of this method, and address the important factors in getting the best possible 

inversion result. 
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2 Pre stack inversion and the inversion parameters 

 

The main reason to conduct a seismic pre-stack inversion is to be able to get as 

much information as possible from the seismic data. The reflection coefficients 

contain information about the elastic parameters of the subsurface. By finding 

these parameters we may be able to attach physical properties to the seismic 

data, thereby increase our understanding of the subsurface.  

Properties that can be found using seismic inversion are considered to be (Dahl, 

1990): 

- Seismic velocities 

- Densities 

- Elastic parameters 

- Impedances 

- Zero offset reflection coefficients 

- Attenuation factors 

- Parameters describing the geometry of layers 

The reason we can say something about these parameters is that when a plane 

pressure wave (P-wave) or a vertical polarized shear wave (SV-wave) meets an 

interface between two layers at a non-vertical angle, four plane waves are 

created. These are reflected P- and SV-waves and transmitted P- and SV-waves. 

This means that the reflection coefficient matrix can be written in the following 

form (Tarantola, 1987):  

 

      [
      

      
]                                                                                (2.1) 
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Where the first subscript represents the down-going wave and the second 

represent the up-going wave, where   is a pressure wave and   is a shear wave.  

Seismic data can be inverted by only regarding     or by regarding both     

and     , so called joint inversion. An exact expression for the entire reflection 

matrix can be found in (Zoeppritz, 1919). The problem with the Zoeppritz 

equations is that they are regarded to be highly non-linear, and rely on six 

parameters for any given angle. These are the P-wave velocity, the S-wave 

velocity and the density on both sides of the reflecting interface. However, only 

four of these parameters are independent. 

There has been made a lot of equations which are good approximation of the 

Zoeppritz equations when contrast between layers and incident angles are small. 

Aki and Richard (1980) or Smith and Gidlow (1987) are examples of these. 

These are linear approximations of the Zoeppritz equations, and are favorable 

because of the reduction of unknown parameters.  

In these approximations the PP reflection coefficient relies on only four 

parameters. This may for example be the ratio between the two densities, the 

ratio between the two P-wave velocities and the ratio between the P- and S-wave 

velocities in the two separate layers. This means that if densities or velocities are 

changed by the same factor, the reflection amplitude will not change. However, 

if we use pre critical PP data we are only able to establish three of these 

parameters (Ursin, 1996) 

Since the common used equations that represent seismic reflection coefficients 

are defined as a function of angle, we also want to have our seismic data as a 

function of angle. A seismic Common Mid-Point (CMP) gather can be regarded 

as the amplitude variations with angle, when all other amplitude effects are 

accounted for and Normal Move Out (NMO) is conducted. It is therefore 

important that this is done before the inversion is conducted. 
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2.2 The Forward Problem 

In this paper the linear approximation of the Zoeppritz equation rearranged by 

Fatti et al. (1994) has been used. This is a total representation of an elastic earth 

(Ma, 2002): 
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For small reflectivity series we can use the approximations: 

       
 

 
[                  ]                                                               (2.4) 

       
 

 
[                  ]       ,                                                        (2.5) 

where    and    are the average acoustic and shear velocities over the two 

interfaces, respectively.   is the angle of incident of the reflected wave.    and 

   is the average acoustic and shear impedances over the two layers, 

respectively.    is the average density over the two layers, and    is the density 

difference between the lowermost and uppermost layer. 

Equations (2.4) and (2.5) represent the logarithmic differences of P- and S-

impedance values in the two layers. This is a fair assumption if the reflectivity 

series are under 0.5. If we substitute equation (2.4) and (2.5) into equation (2.2) 

we obtain equation (2.6).  
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In equation (2.6) we have also used the relationship that         and    

     

 

With these equations the number of unknown parameters is reduced to three, the 

average acoustic impedance, the average shear impedance and the relative 

change in density over the two layers. This is an approximation of the Zoeppritz 

equation and is only valid for small angles and small variations in properties 

over the interface. Further, this representation assumes a horizontally layered 

earth model and the two media to be isotropic with a welded contact (Ma, 2002). 

As we can see from equation (2.6) the reflection coefficients does not change if 

the acoustic and shear impedance changes by the same factor. These reflection 

coefficients are what we in theory obtain when the seismic data is processed and 

all other amplitude effects than the reflections are removed.  

Model based inversion methods use the forward model to create a synthetic 

response. The relationship between the synthetic and the real seismic data can be 

described as: 

                                                                                                       (2.7)  

Where m is the model parameters,    is the observed seismic data,      is the 

modeled synthetic data, and n is the noise. 
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It is the difference between the seismic data    and the modeled data      we 

want to minimize by varying the model parameters  . By doing this we are able 

to find the rock properties   which gave the seismic response   . 

As we can see from equation (2.7) we will not get exactly the same response 

from the model as the real seismic data. The reasons for this are: 

- The real seismic data contains noise 

- The mathematical description of wave propagation in the earth is not 

correct. 

- Simplifying assumptions about the earth parameters are made. The 

equations for reflection coefficients are approximate. 

 

 

We can also see from equation (2.7) that the relationship between the model 

parameters m, and the synthetic seismic data d(m) may be strictly non-linear. If 

these strictly non-linear functions are optimized linearly we are highly 

dependent on the initial estimates of the model parameters in order to find the 

global minimum. This is because when a function has several local minima, the 

function can’t be solved using a set of linear equations. No such set of linear 

equations exist unless other assumptions are made.  

A complete search of the model space are in many cases not computational 

feasible because of the amount of possible solutions. For example if there are   

parameters, where each parameter can have   values, the number of possible 

solutions will be   . With a couple of unknown parameters the number of 

possible solution will quickly become enormous.     
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2.2 General Pitfalls in Seismic Inversion 

There are several factors which affect our inversion algorithm which needs to be 

accounted for. These are: 

2.1.1 Non-Uniqueness 

There may be several solutions which all explain the model equally well, even 

though the model parameters vary extensively. If this is the case there is no 

unique solution to our inversion problem. 

This may happen if several solutions have zero prediction. Since the seismic 

data is limited in bandwidth both by an upper and lower boundary we do not 

have all the information about the properties of the reflecting interface as we 

may need to have one unique solution with zero prediction error. This means 

that our model may be a good fit to our seismic band limited data but may not 

have been a good fit if the lower and upper areas where we do not have any 

information where known. We may also experience that none of the solutions 

have zero prediction error, but several solution has the same low prediction 

error. This means that none of the solutions fit the model perfectly but several 

solutions have the same close estimate.   

2.1.2 Existence 

In order to invert the seismic data correctly there need to exist a solution to the 

inverse problem. An example where an analytic solution does not exist is if we 

have more unknowns than equations. This is called an underdetermined 

problem. This happens when the solution does not provide the information 

necessary to determine the model parameters uniquely. To resolve this problem 

extra information need to be added to single out one of the many possible 

solutions. Such information is called a priori information. This information can 

for example state that the unknown parameter must be in a certain range. This 

may greatly reduce the number of possible solutions and help us choose the 

correct solution. The problem with a priori information is that it may in itself be 
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an uncertainty and we need to evaluate the probability of these constrains in our 

model.  

 

2.1.3 Stability 

Stability is a measurement of how the model responds to small errors. If our 

model shows instability it will change drastically to many small errors.  Because 

of presence of noise in our dataset such small errors commonly occur and it is 

therefore important that this does not affect our inversion considerably. An 

unstable inversion may therefore alter our model completely, giving a wrong 

inversion and create non-uniqueness. 

 

2.1.4 Robustness  

Robustness is how the model replies to few large errors. Large errors may come 

from different types of noise. It is therefore important that our model is robust so 

these large errors do not affect our model considerably. Lack of robustness may 

also create non-uniqueness.  

 

2.1.5 Inversion intervals 

Noise is generally considered to be larger at the bandwidth limits in the seismic 

data. Close to the upper frequency boundary, noise can cause a significantly 

greater influence than the data itself. This limitation applies also to our decision 

of how many intervals or layers we should invert.  If we choose too many 

reflections close together it will cause noise to be modeled as reflections 

resulting in a greater uncertainty in the inverted acoustic impedances. This is 

called “over fitting” the data. 
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2.1.6 Absolute impedance 

There may also be some limitations in the lower boundary of the frequency 

spectrum. The lower frequencies contain the information about the absolute 

values of the acoustic impedance. This means that it is impossible to recover the 

absolute acoustic impedances from a seismic trace. The inversion can only give 

us the relative change in impedance. To get the absolute impedances from the 

relative we therefore need to add the low frequencies from well data. This is 

often done by an interpolation over the frequencies and impedances from the 

well data. This problem may also create non-uniqueness. 
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3 Monte Carlo Methods 

 

A problem arising in most inversions procedure is that the relationship between 

the model and the real data is often assumed to be linear and a linear approach is 

therefore conducted. If the initial model is chosen nearby a local minimum we 

will not get the optimal solution which should be the global minimum. 

To solve non-linear inversion problems we may therefore use a Monte Carlo 

method which may create an acceptable solution in a shorter time period than 

the complete exploration of the model space, and not be highly dependent on the 

initial guess as a linear method would. A standard Monte Carlo inversion can be 

described by the following steps (Tarantola, 1987): 

 

- Define a domain of possible inputs 

- Generate random inputs by using a probability distribution 

- Compute the inputs 

- Reject or accept 

 

It is based on completely random picking of samples hoping that we will get a 

good fit in a small number of trials. In theory it means that if a problem has a 

search space of N, we may find the solution we are looking for after between 1 

and N searches. This has the immediate disadvantage that the routine may be 

very computational expensive. The advantage of Monte Carlo simulation is that 

it does not rely on a linear relation between the real seismic data and the 

synthetic seismic. The synthetic data is created in a random fashion and they are 

then compared to the real seismic data and the model are either rejected or 
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accepted. To make sure that the routine does not accept un-probable solutions 

we can make constraints on the algorithm, for example that density or velocity 

can’t be negative.  

Because of the problems of non-uniqueness the accepted models should be 

interpreted to see if the inverted parameters seem unlikely or are in great 

contrast with what is to be expected even though they produce a small misfit 

error. When the seismic data contains considerable amount of noise, linear 

method may fail to produce accurate results because of the then increased non-

linear relationship between the initial model and the seismic data (Stoffa, 1995). 

If we should use the non-linear Monte Carlo simulation or a linear inversion 

method is therefore highly dependent on the nature of the data-model 

relationship. There are examples where linearized inversion methods may be 

favored. For example if the data is known to contain little noise and the model 

parameters range are known a priori with high degree of certainty. However, as 

the data become more complex the error estimation in the linearized methods 

will also increase in complexity. This may favor Monte Carlo methods.  

  

3.1 Markov Chain Theory  

 

A Monte Carlo algorithm which is frequently used is the Markov Chain Monte 

Carlo. The reason for this algorithms popularity is that if the number of 

iterations is sufficiently, the chain will reach a stationary distribution, 

independent of the initial distribution. The requirement for this to happen is that 

the chain is irreducible and aperiodic. (Walsh, 2004) 

A Markov chain can be described as a system which undergoes a random 

transition from one state to another. The transition is without memory, meaning 
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that the next state depends only on the current state, and not the previous. This 

can be described for a random 1 dimensional sequence in the time domain as:  

  [            ]                                                                                         (3.1) 

        |                               |                  (3.2)  

Meaning that the next time state t is only dependent on the previous time  

state t-1. This means that knowledge of the history of the sequence does not give 

you any new information. 

When we are dealing with multiple dimensions a Markov Chain is referred to as 

a Markov random field. If we define the random variable in two dimensions as:  

                                                                                                                  (3.3) 

Then the random variable depends on the neighborhood. The neighborhood can 

be defined as 

     {                                                                           (3.4) 

Then we can state a 2-D Markov field as: 

 [          |                       ]   [         |                   

     ]                                                                                                                 (3.5) 

Here      can in theory be an arbitrary neighborhood function and does not need 

to be on the form of (3.4). The probability of X if also required to always be 

positive for all x. (Rothman, 1985) 

The advantage of the Markov chain is that even though the process is generating 

samples randomly, we can still say something about its statistical properties. The 

Markov chain property is that it exhibits a Gibbs probability distribution and all 

Gibbs distributions define a Markov random field. 
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3.2 Gibbs distribution 

The Gibbs distribution is a distribution based on the principles of canonical 

ensemble. The canonical ensemble can be described as representing the 

probability of microstates in a certain system. The distribution can be described 

as the probability p of finding the system in a state with a certain energy level E, 

with the constraint that the total energy on the total system is remained constant, 

the particle number N and the volume V is kept constant.  

The Gibbs distribution can be described by the following analogy of a heat bath: 
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We assume that   is a closed system. Inside    we have    and        is the area 

of interest while    is the environment.    <<   .  The energy in these areas are 

respectively    and    and   is the total energy of the system.   =    +    . The 

total energy of the system is fixed, but    and    are not. The particle number of 

  and    are fixed and energy is the only thing exchanged from the two systems.  

We want to find the probability that the system    is in a given state.   
  

The total energy can then be written as   =   
  +   . 

If we assume that   
  is the probability of     being in the energy state   

   and     

for    being in the energy state    we can then write the ratios of probabilities 

as: 

Figure 1: Illustration of a heath bath 
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                                                                                      (3.6) 

Where       defines the multiplicity when the system is a fixed value. This 

assumes that every state is equally likely. 

By using the Gibbs entropy formula we can express this in forms of entropy: 

           ,                                                                                                 (3.7) 

this can be rewritten as: 

   
  
                                                                                                            (3.8) 

By substituting equation (3.8) into equation (3.6) we obtain: 
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           (3.9) 

 

The second last term in equation (3.9) is found by the two term Taylor 

expansion. This is done by assuming that      

The definition of the second part of the second law of thermodynamics can be 

written: 

   

  
  

 

 
    ,                                                                                                     (3.10) 

where T is defined as the temperature. 

Finally, the probability of one given state can then be written as:  

       
   
    ,                                                                                               (3.11) 
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which is the definition of the Gibbs distribution. It can be showed that the 

constant C can be defined as 
 

 
 where Z is defined as: 

   ∑    [
     

   
]                                                                                     (3.12) 

where    is the Boltzmann constant. The Boltzmann constant relates energy at 

individual particle level with temperature. This nature of the Gibbs distribution 

makes it an ideal distribution in simulated annealing routines (Javanainen, 

2009). 

3.3 Bayesian Modeling  

Because of many of the issues described in section 2.2 it is clear that inverting 

seismic data is not a simple procedure. As we can see, one of the biggest issues 

is the non-uniqueness of the inversion problem. There are a lot of different 

factors which may create this, and this complicates the inversion considerably. 

If our inversion is a linear inversion routine the initial model becomes very 

important in the inversion scheme. By choosing a wrong initial model our 

routine may not converge to the correct solution and our inversion becomes 

inaccurate or wrong. To be able to get a good estimate of an initial model as 

possible we can formulate a prior probability distribution. By doing this we can 

assign low probability to unlikely areas of the search space thereby ruling them 

out as acceptable solutions. By doing this we ensure that the routine don’t find a 

minimum which in reality is of low probability even though the error estimate is 

low.  

To incorporate a priori information into the seismic inversion Bayesian 

modeling may be used. This can be regarded as a good method of incorporating 

new information into an existing model. Bayes’ theorem can be given as:  

        
          

     
                                                                                 (3.13) 
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Here M is the model and D is the data, and P is the probability distribution.  

The        can be regarded as the distribution of the model parameters given 

our data. The term        is the likelihood function and corresponds to the 

forward model.  

     is the prior information we have about the model before the data is 

known. This may be theoretical knowledge such as that the densities can’t be 

negative, and information gathered from the geological setting. The      can be 

regarded as the prior marginal distribution of D. When the data is observed this 

is just a normalizing term, and the denominator in equation (2.8) can be skipped 

and write the equation as a proportionality (Rabben, 2009). 

Bayes theorem can be used in seismic inversion by first assuming prior 

distributions, variance and covariance to our model parameters.  If we assume 

multivariate Gaussian distribution for the model parameters and the noise we 

may write: 

                                                                                                   (3.14) 

                                                                                                   (3.15) 

 

where the noise has an expected value of zero and    is the expected value of 

the model parameters.    is the covariance of the prior model parameters and 

   is the covariance of the noise. The likelihood function can then be written: 

   |                                                                                       (3.16) 

where      is the deterministic non-linear forward model. The covariance of 

the noise and data are then important in deciding if the prior information or the 

data has the greatest influence on the posterior distribution. If the variance of the 

noise is small compared to the variance of the prior information, the posterior 
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will be mainly determined by the data, and it will be concentrated around the 

prior mean    if the opposite is the case (Rabben, 2009). 

The properties of the covariance are therefore very important for the inversion. 

The covariances can be defined as: 

      
                                                                                                     (3.17) 

      
                                                                                                        (3.18) 

 

By introducing equation (3.17) and (3.18) we partly let the covariance be 

decided by the data, since the estimation of the variances   
  and   

  are part of 

the inversion routine and    and    are scaling factors given a priori. Then we 

can write the new likelihood distribution on the following form: 

   |  
             

                                                                            (3.19) 

                                                      

   |    
               

                                                                      (3.20) 

with these equations we can write the total posterior distribution in Bayes 

theorem as: 

      
    

 |      |    
    

        
    

   

     |    
     |  

      
      

                                                                  (3.21) 

 

This means that we can calculate the probability of a model based on our prior 

knowledge and information about the data. Then we can constantly update our 

model when new information is available and compare different models to each 

other based on the probability of their correctness. As equation (3.21) shows we 

now have an expression for the probability distribution for the different model 
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parameters, their variance and the noise. The variance of the noise and the prior 

information can also be implemented on such a way, that the information we see 

as most likely is given the most influence. Bayesian modeling may help us 

implement as much information as possible, it is however important to note that 

a Bayesian approach does not remove the problems of non-uniqueness, it only 

helps identifying it (Rabben, 2009). 

 

3.4 Bayesian Modeling and The Gibbs distribution 

As mentioned earlier it is of paramount importance to incorporate a priori 

information into our probability distribution. It can be showed that the posterior 

probability, i.e. the conditional probability after all relevant evidence is taken 

into account, P(X=x | D = d) is also a Gibbs distribution. This can be showed by 

using Bayes theorem (2.8) If we substitute Gibbs prior for P(X=x) and keep 

P(d=d) a constant we obtain: 

     |      
 

 
     |       [

     

 
]                                     (3.22) 

Z is now a new constant because it is a combination with the constant in 

equation (2.8).  

We then include noise into the model. If we assume the noise to be Gaussian or 

exponential, identically distributed, independent of X and with a zero mean.  

The noise can then be defines as: 

        
 

 
    [ 

 

 
 
‖ ‖  

 

 
 ]    (3.23) 

Where c and are constant and ‖ ‖  is the    norm. If p = 1 the noise is 

exponential and if p = 2 it is Gaussian.  

 



21 

The posterior can then be written: 

     |      
 

 
          |       [

     

 
]  = 

     |      
 

 
          |       [

     

 
]                       (3.24) 

Since the Noise N is independent of X: 

     |      
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]                                    (3.25) 

By substituting in equation number (3.14) we obtain: 

     |      
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 ]                                            (3.26) 

 

If we then write: 

             
 

 
 
||      ||

 

 
                                                                  (3.27) 

Then: 

 

     |      
 

 
   [

       

 
]                                                            (3.28) 

And it is shown that the posterior distribution is also a Gibbs distribution 

(Rothman, 1985).  

 

3.5 Metropolis algorithm 

The Metropolis algorithm is a Monte Carlo routine which can be described in 

the following way: An initial model is chosen according to an educated guess 

based on a priori information. The energy for this model is calculated. In our 
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case the energy can be analogous to for example the least square or the absolute 

error between our synthetic seismic and the real seismic data.  The initial 

parameters are then used as basis to create a new random guess. This can be 

done from a probability distribution or from a random perturbation. Then the 

new energy is calculated. If this energy is lower than the original one, this 

energy is accepted as the new model. If the energy is higher it is accepted with a 

probability of  

        
  

                                                                                     (3.29) 

 Where    is the change in energy state and T is the temperature. As shown in 

the last section, equation (3.29) is the Gibbs distribution. 

The criteria in (3.29) is easily fulfilled by choosing a random number α from an 

uniform distribution between 0 and 1 and accept the new energy if  

 

                                                                                              (3.30) 

If this is not the case, the existing values are retained.  This is called the 

Metropolis criteria. Because of this criterion the algorithm has the possibility to 

make uphill moves. In this way it is possible for the algorithm to “climb” out of 

a local minimum.   

 

3.6 Fractal based initial models   

As we can see from the Bayesian Modeling section it may be important to 

choose the initial model carefully in order to get an acceptable solution. This 

may for example apply in circumstances where the variance of the noise is large, 

and the model is more influenced by the initial guess. If the initial model is 

completely wrong in these circumstances the inversion will also fail to give 
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reasonable results. The initial model should contain as much information about 

the area under research as possible. This means incorporating information as for 

example well logs, geological models and, magnetic- and gravimetric 

measurements if possible.  

Well logs contribute to the most accurate source of vertical resolution of 

geophysical information. The disadvantage of well logs is the very limited 

horizontal resolution. This is why it is important to use some sort of geo-

statistical interpolation to try to obtain a higher resolution. Seismic imaging has 

a lower resolution than the well logs, but has a greater horizontal extent. It can 

therefore be of great importance to incorporate these two to gain as much 

information as possible. This is somewhat difficult due to the different nature of 

the seismic data and the well-logs. The difference in scale and properties of the 

seismic signal and the well logs are significant. The well logs are typically very 

high frequent (in the order of KHz) while the seismic signal is much lower (in 

the order of 5-100 Hz).  

This means that the very low and the very high frequencies of the model are in 

the null space, which is unconstrained by the seismic data. It has been suggested 

that this problem can be solved by using fractals (Sen, 2010). Fractals can be 

defined as self-repeating patterns over different scales. This means that a fractal 

will look the same from a far distance as from a close distance. The structure 

does not need to be exactly similar on all scales, but need to exhibit the same 

type of structure on all scales. 

Sen et al., (2010) argues that a reflectivity sequence also follows this fractal 

behavior, unlike the common assumption of whiteness. It is also assumed that 

the power spectrum, variogram and covariance of the well logs follow a power 

law behavior with a scaling exponent in terms of the Hurst coefficient. The 

Hurst coefficient will be defined in the next section. The idea is that the random 

reflectivity series we create in our synthetic model are influenced by fractal 
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Gaussian noise and not completely random noise. The fractal Gaussian noise can 

be derived from the well logs. 

Fractional Gaussian noise can be described as the increment process of a 

fractional Brownian motion. Brownian motion can be described as a random 

process but with the properties of:  stationary, independent increments and that it 

have a finite standard deviation. When this is derived from the well logs the 

probability density function of the fractional Gaussian noise represents variation 

in subsurface properties. Other advantages of the initial model created in this 

way are that the parameters are high resolution estimates and that they are in the 

same frequency range as the well logs. The fractional Gaussian noise process 

generates fractal noise such that the output time series follow the mean and 

autocovariance of the input series, which naturally are the well logs (Sen, 2010). 

If we take a time series which is sampled by a uniform sample spacing in time, 

  , with random normal distributed parameters, and a zero mean. Then the 

autocorrelation can be defined as (Caccia, 1997): 

       
 

 
  [|   |    | |   |   |  ]                                          (3.31) 

Where    is the variance of the process,   is the time separation of the random 

variables and H is the Hurst coefficient.        represent therefore the 

autocorrelation between two of the random samples with a time separation of  .  

 

The Hurst coefficient may be referred to as the “index of long-range 

dependence”. It is a number between 0 and 1. When 0< H <0.5 the time series is 

said to be negatively correlated, meaning that a large value will probably be 

followed by a low value. When 0.5<H<1 the time series is said to be positively 

correlated meaning that a high value will probably be follow by another high 

value. Since the Hurst coefficient is an expression for long term dependencies it 
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is plausible that this tendency may go on for quite some time. As we can see 

from equation (2.10) if the Hurst coefficient is 0.5 it is said to be long term 

uncorrelated, in other words Gaussian white noise.  

The Wiener-Khinchin theorem says that if we take the Fourier transform of the 

autocorrelation we get the power spectral density of a wide-sense stationary 

random process (Sen, 2010).   

The way of generating a fractional Gaussian time series {    of length N when 

we have the H from the well logs, can be described as follows (Sen, 2010): 

The power spectrum can be calculated by a discrete Fourier transform of 

equation (2.10): 

     ∑             
 

 
     

   
   ∑               

 

 
        

  
 

 
  

,         (3.32) 

If we let N be a power of 2, and we let       . Then for               .  

It is important to check that the spectrum is positive for all values of k, or the 

series are invalid. Caccia (1997) mentions that negativity has never been 

observed, but that it does not exist a proof that it could not occur.  

If we then let    be a set of independent and identically distributed random 

variables with zero mean and unit variance the randomized spectral amplitudes 

can be written as: 

   √                                                                                              (3.33) 
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                                                                                        (3.35) 

       
                                                                                              (3.36) 



26 

 

Where * denotes complex conjugate.  

 

Finally, we used the first N elements of the discrete Fourier transform on    to 

compute the time series: 

    
 

√ 
∑    

      
 

 
    

                                            (3.37) 

In this way we are able to produce a reflection time series with noise which does 

not have a completely random nature, but is longtime correlated with data from 

the well logs.   

 

It can also be showed that statistics of interest in fractal Gaussian noise are 

related. This includes mean, variance, spectra and fractal dimension. The 

relationship can be written: 

      
 

  
                                                                                               (3.38) 

Where      is the spectrum,    is the frequency and   is defined as: 

                                                                                                   (3.39) 

For the case of white noise, equation (3.38) shows that the spectra are constant. 

This because when H = 0.5, the fractal Gaussian noise turns into Gaussian noise 

by equation (3.31) and   = 0, thereby giving a constant amplitude spectra in 

equation (3.38) (Caccia, 1997). 

3.6.1 Computing the Hurst coefficient 

If the number of samples is sufficient, the Hurst coefficient can be calculated 

using rescaled range analysis.  Many dataset in nature follow a power law on the 

form of (Sen, 2010) : 
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                                                                                                  (3.40) 

Where N is the number of samples,    is the standard deviation and    is the 

running sum range defined as: 

  
                    ,                                                                    (3.41) 

where    is the function being investigated. 

Equation (2.19) can easily be used to find H by plotting it in a log-log scale 

where H would be the gradient (Caccia, 1997). So by using the rescaled range 

method we can estimate a Hurst coefficient from our impedance data and 

thereby be able to get an expression for the long term “memory” of the time 

series. This is mainly done by inverting the seismic data into impedance 

information, both acoustic and shear impedance. 
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4 Simulated Annealing 

 

Simulated annealing is a method used in solving optimization problems. It uses 

the analogy from the process of slowly cooling a melt until a crystal is formed. 

This happens when the substance reaches its lowest energy state. It is important 

that the cooling is conducted very slowly or a metastable state may form. The 

procedure can be thought of as finding a global minimum where many local 

minima are present. If the cooling happens too quickly it represents finding a 

local minimum (Tarantola, 1987). 

Simulated Annealing is a Monte Carlo method which uses a probability density 

function in order to make reasonable guesses in the neighborhood of an initial 

model. If a random realization represents a better fit than the initial guess, the 

properties of the model are updated, and new random realizations are made.  

To be able to go “uphill” and escape from local minima it uses the Metropolis 

criteria in equation (3.29). Simulated Annealing can be used in all optimization 

problems where the goal is to find a global minimum. Many geophysical 

problems, including model based inversion problems endeavor to find the global 

minimum of the error between the modeled synthetics and the real seismic data.   

 

4.1 Mathematical Background 

The Mathematical background of simulated annealing is an adjustment of the 

Metropolis algorithm. While the Metropolis algorithm remains a constant 

temperature, thereby simulating the average behavior of a physical system in 

thermal equilibrium, Simulated Annealing lowers the temperature gradually. As 

number of iterations increase, the temperature decreases gradually with the 

result that the probability of making an uphill move also decreases. The constant 
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temperature of the Metropolis algorithm makes the same change in energy has 

the same likelihood of accepting an uphill move regardless of how many 

iterations that has been made, simulated annealing gradually decreases the 

probability of accepting a uphill move as the algorithm goes towards the end. 

This makes the algorithm only accept perturbations which lower the energy, as 

the temperature goes towards zero.  

  

The algorithm works in the following way (Rothman, 1985): 

- Choose an initial model 

- Choose an initial temperature 

1) Make a Perturbation of the initial model with a random variable X 

2) Calculate the error of the new parameters, if the error is smaller than the 

previous accept the new model as answer 

3) If the error is larger than the previous, accept according to the Metropolis 

criteria 

4) Lower the temperature, repeat from step 1 

 

The random variable we make the perturbation to our parameters with can be 

described in the following form: 

                                                                                                          (4.1) 

Where   is a uniform random number between -1 and 1 and   is a scaling 

vector, or increment size. By doing this we are upholding the Markov chain 

criteria since the next variable is only dependent on the previous. The choice of 

scaling vector is highly dependent on the parameters we want to compute and 

should be chosen wisely. It is common that the scaling vector is reduced 
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dramatically toward the end of the routine in order to find the minimum in the 

neighborhood of the current best parameters.   

The method has the advantage of all other Monte Carlo methods that the 

relationship between the synthetic data and the real data do not need to be linear. 

Because of these relaxed assumption, the algorithm can more easily deal with 

very complicated functions.  

 

4.2 Cooling Schedule 

With cooling schedule we mean the rate at which the temperature is lowered. If 

the temperature is lowered too quickly we may miss the global minimum and 

get “trapped” in a local minimum instead. (Rothman, 1985) The most effective 

cooling schedule is starting up with a high temperature. This enables our initial 

guess to be very widespread and can therefore “detect” possible minima in the 

entire search space. If our probability distribution is the Gaussian or the Gibbs 

distribution, the initial very high temperature is more or less the equivalent of a 

uniform purely random distribution. When the temperature decrease sufficiently 

this is ensuring that we narrow our search around the current optimum. As the 

temperature reaches zero the distribution is starting to look like the gradient 

ascent assuring that we find the absolute minimum searching in the neighboring 

solutions (Rothman, 1985).  The rate of which we cool down the temperature is 

very important in order to be sure that we are converging to a probability of 1 of 

finding the global minimum. Geman and Geman (1984) proved that if the 

temperature is lowered by the formula: 

     
 

         
                                                                                    (4.2) 

Where k is number of realizations and c is a constant independent of k. 



32 

 

As       the probability of finding a global minimum will converge to 1. 

This sounds good in theory but the logarithmic decrease of the temperature may 

also be to slow to be feasible in an inversion problem. For example, after 1 

million iterations, the temperature is only lowered by a factor of 6. If the natural 

logarithm is chosen it is lowered by a factor of approximately 14. If a linear 

approximation is assumed it is lowered by a million. Rothman (1985) suggested 

that the temperature should initially be lowered on the form 

          
  ,                                                                                     (4.3) 

where k is the current number of iterations. This should be used in the start of 

the routine examining the search space before the logarithmic temperature 

decrease in equation (4.2) takes over to assure slow enough decrease to enable 

annealing.  

Which cooling schedule that should be used is very case specific. In the example 

of seismic inversion, using the forward model in section 2.2 the error function is 

the difference between the observed reflection coefficient and the calculated 

reflection coefficient. These have the range between -1 and 1 and their 

difference may be very low. The greatest difference it can have is 2, and by 

choosing the initial temperature in this area, we should be sure that the 

temperature is sufficiently high for the possible exploration of the complete 

model space. However, we also need to make sure that the temperature is 

lowered sufficiently. If the number of iterations is chosen to be one million, and 

the cooling schedule is natural logarithmic, the end temperature would be 

approximately 0.14 with 2 as initial temperature. This temperature may be too 

large and it should be investigated if this is sufficient, or if the temperature 

should be lowered at a faster rate in the beginning. An increase in the number of 

iterations is also a possibility though it would increase the computational time. 

These are questions that need to be addressed. 
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4.3 Pitfalls 

Simulated Annealing is a very effective method of finding a global minimum if 

used correctly. Where other inversion schemes often find local minima certain 

variants of Simulated Annealing will find the global minimum. Problems occur 

however when the exact solution is not the global minimum, i.e. not the solution 

that gives the least error between the synthetic and the real data. The reason for 

this is the fact that the forward modeling procedures are approximations, the real 

data contain noise and also numerical limitations of the routine. Other problems 

are non-uniqueness, several solutions which gives the same error as the correct 

solution. It may be very difficult to distinguish these. This applies for all global 

inversion routines. 

As seen in chapters 3.3 and 3.6 we can try to reduce the number of solution by 

setting constraints on our parameters and incorporate all prior information in a 

sensible way. This can be done by incorporating maximum and/or minimum 

acoustic impedance limits, velocity limits, density limits or other constraints 

regarding the maximum allowed change from our initial guess. This also creates 

a problem that our solution is “colored” by our initial guess. If the correct 

solution is not in our range of constraints, we will never find it no matter which 

inversion routine we use. 
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5 Synthetic modeling 

 

Simulated Annealing can be used in various optimization problems. In the 

following section there will be showed how simulated annealing can be used to 

invert a seismic dataset. An earth model has been created and the reflection 

coefficients for different angles have been calculated. These have been 

calculated following the forward model in section 2.2.  A simulated annealing 

routine has been made with the intension of inverting these reflection 

coefficients back to rock properties. The Simulated Annealing routine has been 

programmed in Matlab and can be found in Appendix D. The routine can in 

principle be used in any optimization scheme.  

Since the initial temperature, the initial parameters and the cooling schedule all 

effects the routine and its ability to detect a global minimum the routine will be 

demonstrated on a simple forth order equation with two minima in order to 

clearly see which properties that affect the routines ability to find the global 

minimum.  

 

5.1 Example of Optimization Problem 

First, it will be demonstrated that simulated annealing can be used in any 

optimization problem. The equation: 

                           (5.1) 

Has the model space seen in figure 2. 
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Figure 2: A graph of equation (5.1) 

 

As seen from the figure this equation has two minima. The simulated annealing 

routine has been tested on equation (5.1) to find the global minimum. The global 

minimum is located at approximately X = -7.79462. The local minimum is 

located on the positive x-axis at approximately X = 6.7.   

The algorithm will be run by trying several different initial guesses, different 

temperatures, different increments and different number of iterations, and see 

how these reflect the algorithms ability to locate a global minimum. The 

perturbations have been chosen uniform randomly, and the Metropolis criteria 

have been implemented. The simulation was done in Matlab and the Matlab 

code can be found in Appendix B. The algorithm was run 1000 times with each 

parameter setting and it was then observed how many times the routine found 

the global or the local minimum.  
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The cooling schedule was chosen to be logarithmic as seen in equation (4.2). 

After 90% of the iteration the increments were reduced by a factor 10 in order to 

search in the neighborhood of the current minimum  

This procedure assured that the global minimum always was found with an 

accuracy of      . All runs are done with an initial guess of values x = -15, -10, 

-5, 0, 5, 10 and 15. The values of -15 and + 15 lie in a strongly dipping slope on 

the left side of the global maximum, and on the right side of the local minimum, 

respectively. The values of -10 and -5 are located near the global maximum, 

while the values of 5 and 10 are located near the local maximum. 

First, 1000 iterations or random guesses were made for each run. Since the 

global solution is assumed to be found when the solution lie in an interval of  

      of the actual solution, the equivalent full model space exploration would 

be to search through the X range from -20 to 20 with an interval of 0.02 which 

comprises of 2000 iterations.  Half of this should be a good place to start the 

Simulated Annealing algorithm. 

 5.1.1 Increment Size 

First we will take the increment size of equation (4.1) into consideration. We 

need to find out how important the choice of increments size is to the routines 

ability to find the global minimum. We will start with a low increment size and 

increase it gradually until all the runs finds the global minimum. The algorithm 

was run with an initial temperature of 100, decreasing logarithmically as a 

function of iterations, described by function (4.2) with   being the initial 

temperature. 
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Table 1: Increment 5, Temperature 100 

Number of 

iterations 

Increment Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 5 -15 1000 0 0 

1000 5 -10 1000 0 0 

1000 5 -5 1000 0 0 

1000 5 0 515 0 485 

1000 5 5 0 0 1000 

1000 5 10 0 0 1000 

1000 5 15 0 0 1000 

 

As seen from the table the increment is too small for the algorithm to be able to 

climb out of the minimum from where it started. When the starting position is 

X= 0, which is in between the two minima, the number of global minima and 

local minima obtained are almost equal. The increment size is clearly too small, 

and the routine success rate is only based on the initial guess of X.  
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Table 2: Increment 9, Temperature 100 

Number of 

iterations 

Increment Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

Obtained  

Local 

Minimum 

Obtained 

1000 9 -15 1000 0 0 

1000 9 -10 1000 0 0 

1000 9 -5 1000 0 0 

1000 9 0 515 0 485 

1000 9 5 0 0 1000 

1000 9 10 199 0 801 

1000 9 15 63 0 937 

 

When the increment size where chosen to 9 we can see that the global minimum 

where found every single time if our initial guess was in the neighborhood of the 

answer. This is the same as in table 1, and is to be expected due to the initial 

values proximity to the global minimum. However if the initial guess was near 

the local minimum the global solution was found on a small number of runs. It is 

an increase from when the increment size was 5, but it is very low. When initial 

guess was x= 10, it was found on approximately 20% of the times, and 6.3% of 

the times when the initial guess was x = 15. However when x= 5 the global 

minimum was not found a single time. The reason for this may be that x=5 is the 

starting value which has a very low value in the local minimum. If the increment 

size is not large enough, it is highly unlikely that the routine will find a lower 

value that is not in its neighborhood.   
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Table 2: Temperature 100 

Number of 

iterations 

Increment Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained  

Local 

Minimum 

Obtained 

1000 10 -15 1000 0 0 

1000 10 -10 1000 0 0 

1000 10 -5 1000 0 0 

1000 10 0 626 0 374 

1000 10 5 274 0 726 

1000 10 10 368 0 632 

1000 10 15 142 0 858 

 

By increasing the temperature the global minimum is obtained more often even 

though the number of iterations and temperature are kept constant. We can see 

that even this minor adjustment in increment size increases the number of global 

minima found when the initial model has been chosen in a local minimum. They 

are indeed a minority but they are found between 10-30% depending on the 

initial value. 

 

If we were to increase the increment to 12 the global minimum will be found on 

every single test independent of starting position. The same is the case for 

increments over 12. What this test basically shows is that for an initial 

temperature chosen as low as this the Simulated Annealing routine is more or 

less just a Monte Carlo method with the range of guesses outside the area where 

the global minimum is located. When the temperature is as low as in this 

example the Metropolis criteria is probably very seldom fulfilled, and the 

routine is unable to climb out of the local minimum. 
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5.1.2 Temperature 

It is important for the algorithm to work that the temperature is relatively high in 

the beginning. If it does not start high enough we may not be able to fulfill the 

Metropolis criteria in a number of cases. If the Metropolis criteria is not fulfilled 

the algorithm does not have the ability to climb uphill and thereby escaping 

local minima. In that case the algorithm acts like a pure random Monte Carlo 

method where the model parameter is never updated unless a better minimum is 

found. This was the case in the last section.  We need to find out a good starting 

point for the temperature. 

The energy, error or cost function is the function we would like to minimize. In 

our example it is the function itself because it is this minimum we are interested 

in. The change in cost function can be described in this example as the 

difference between the current minimum and the so far best obtained minimum. 

The global minimum of equation (5.1) has a value of approximately – 3224.52 

at x = -7.794. As we can see from figure 2 the values quickly arises to several 

tens of thousands when the X is increased to around and over 20. We need 

therefore to have a temperature which is high enough to be able to fulfill the 

Metropolis criteria when the energy has a difference of at least a couple of 

hundreds.  

Let us say that we are located around the global minimum with an X value of 6. 

Here the function has a value of -1787. We can then calculate the probability 

that the algorithm will accept an uphill move to a lower energy level. At X = 3, 

the minimum is -740.  

In the table below you can see the acceptance probability at the different initial 

temperatures: 
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Table 3: Temperature versus Acceptance Probability 

Temperature Change in energy divided by 

temperature 

Probability of accepting uphill 

move 

100 -10.47 0.000028375 

200 -5.235 0.005326824 

500 -2.094 0.123193376 

1000 -1.047 0.350989139 

1500 -0.698 0.497579438 

2200 -0,475 0.621319693 

2300 -0.455 0.634310060 

 

From table 3 we can see that the acceptance probability increases dramatically 

with temperature. This has the effect that the Metropolis criteria are fulfilled 

more often. With the lower temperatures practically none are accepted, and 

thereby no uphill moves are made. We need to find out how this affects the 

algorithm in obtaining the global minimum. 
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We will now use the same increment and number of iterations as in table 1 but 

change the starting temperature to see if the global minimum is obtained more 

often with higher temperatures. The calculations can be found in Appendix A. 

 

 

Figure 3: Global minimum found as a function of initial starting value. The different 

functions represent different starting temperatures.  

 

As we can see the algorithm finds the global minimum when the initial 

parameter is in its neighborhood regardless of temperature. This is what is to be 

expected for low temperature since it is strictly speaking just a Monte Carlo 

method with an increment too low to reach the model space where the local 

minimum is located. Since the temperature is low, the Metropolis criteria will 

very rarely be fulfilled. 

As the initial temperature increase the number of global minima increases 

gradually in the area where the initial guess is close to the local minimum. This 
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shows that the Metropolis criteria are fulfilled more often and the algorithm is 

able to search in the complete model space. This is the same as table 3 suggest. 

When the temperature is increased to approximately 2200 the global minimum 

is found regardless of initial parameter. If we go back to our example in table 3, 

in this particular case the temperature of 2200 would have a starting acceptance 

probability of 0.62, which means that the trade would be accepted with a 62% 

probability. This may give us a clue in what order the minimum starting 

acceptance probability, hence the temperature should be.  

Figure 3 shows us that by increasing the initial temperature we find the global 

minimum in all cases even though the increment is low. This is very easily 

explained by the fact that the high temperature allows many starting moves to be 

accepted as the new parameter thereby letting the algorithm search in the entire 

search space. As number of iterations increase fewer and fewer bad transitions 

are made, and the algorithm chooses only to move downhill.  

This means that the increment size is not a very important factor as long as the 

temperature is chosen sufficiently high.  

Geman and Geman (1984) showed that if we use a logarithmic method in 

equation (4.2) the probability goes toward 1 of finding the global minimum as 

number of iterations goes towards infinity. The problem with this method is that 

the number of iterations that is required before the temperature is lowered 

sufficiently for the simulated annealing to only search in its neighborhood for 

the optimum solution may in some cases be enormous. So unless we have a 

sufficiently number of iterations, we need to implement an algorithm that 

searches in the neighborhood of the current solution as the run go towards the 

end. However, the problem is that if there are many parameters involved, this 

may take a lot of time. 
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5.1.3 Number of iterations 

Then the algorithm was run with the best increment and temperature found in 

sections 5.1.1 and 5.1.2 and the number of iterations was slowly lowered in able 

to find how few iterations it was possible to choose and still get the global 

minimum as the answer. The increment was set to 12 and the initial temperature 

to 2300. After 90% of the iterations, the increment size was lowered by a factor 

of 10 for the algorithm to search in the neighborhood of the current minimum. 

The algorithm found the global minimum on all 1000 runs, regardless of initial 

guess, down to approximately 150 iterations. Then 1 out of the 1000 runs gave 

the local minimum as the answer, if the initial parameter was chosen inside the 

local minimum. This clearly shows the ability of the algorithm to find a global 

minimum on relatively few iterations. 

With this example we have found that if the starting temperature is high enough, 

this algorithm is able to find a global minimum on a relatively small number of 

trials. The increment size is not important when the temperature is high, because 

a great number of the initial perturbations are accepted as new models, thereby 

letting the algorithm search through the entire model space.  

 

5.2 Seismic Inversion 

In this section the inversion routine will be conducted on a more complicated 

problem. A seismic synthetic set has been made by creating reflection 

coefficient using the equations showed in section 2.2 regarding the forward 

problem. These have then been inverted by using Simulated Annealing 

algorithm quite similar to the algorithm used in section 5.1. In section 5.1 there 

is however only one unknown parameter and it is therefore easy to model the 

search space. In the inversion of seismic data we have, however, three unknown 

parameters and the search space is more difficult to examine.  
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5.2.1 The model 

 

 

            

                                      

 

 

            

 

 

 

The synthetic model can be illustrated in figure 4:  

As shown on the figure this is the most basic layer model we are trying to invert. 

The    represents the density while    is the pressure velocity and    is the shear 

wave velocity. The reflection coefficients has been calculated for six different 

angles representing an angle gather corrected for all other amplitude effects. As 

showed in the section of forward modeling, we are inverting for three 

parameters using the linear approximation of the Zoeppritz equation showed in 

equation (2.6).  These are the average P impedance across the interface, the 

average S impedance across the interface, and the relative change in density.  

The properties of the layer were set to the following: 

 

Layer 1 

Layer 2 

Figure 4: Basic reflection model showing a wave hitting an interface 

between two solid media 
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This makes the layers average pressure, shear impedance and relative change in 

density: 

 

            
  

  

 

 
 

            
  

  

 

 
 

           

 

 

 

The reflection coefficients were calculated for the pre critical angles of 2, 10, 15, 

17, 20 and 30. The calculated reflection coefficients were then:   

 

Table 4: Reflection coefficients versus angle 

Angle 2 10 15 17 20 30 

Reflection 

coefficient: 

0.15331 0.14585 0.13653 0.13194 0.12425 0.09419 
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5.2.2 The Inversion Routine  

The zero offset reflection coefficients for pressure waves, shear waves and 

densities have been taken from the routine that created the model. These have 

been calculated as the logarithmic approximations in equations (2.4) and (2.5).  

These reflection coefficients represent reflection coefficients from the seismic 

dataset, which are completely filtered from all other sources of noise. The only 

issues regarding these coefficients are the approximations in the equations and 

the numerical accuracy of the script. The zero offset reflection coefficients were 

implemented with an accuracy of 15 digits. The routine was run a hundred 

times, each with 100 000 iterations. The initial guesses were set to: 

            
  

  

 

 
  

            
  

  

 

 
  

        

The only constraints made on the algorithm was that the range of     was set to 

be between 0 and 0.7. This is a very loose constraint and should probably have a 

smaller range, since the approximations of the Zoeppritz equations are not valid 

for the outer part of this range. However, since the goal of this inversion is to 

illustrate a global optimization algorithm the constraints were soft rather than 

hard. The reason this constraint was implemented was because without any 

constraint the inversion produced only unphysical solutions. These solutions had 

negative relative change in density and impedance below 1 
  

  

 

 
. 

The term that is to be minimized by the algorithm: 

      ∑ |              | 
 
                                                                         (5.2) 
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Where    is the reflection coefficient from the data,    is the reflection 

coefficients generated by the model,    is the current angle of incident and N is 

the number of angles. 

As shown in the previous example these initial models should be irrelevant as 

long as the temperature is set to be large enough. The initial temperature was set 

to 0.01, which should be sufficient. This may seem like a low temperature, but 

the cost function of this problem is a lot smaller than the previous example. 

Reflection coefficients are in the order of 0.01-0.3. The absolute error between 

the modeled data and the real data may be as low of magnitude as     and 

     and then the starting temperature of 0.01 is relatively large. If we were to 

have the energy any higher we would risk that the Metropolis criteria was 

fulfilled on every single iteration, since we have limited number of iterations 

and the temperature would not have been lowered enough. This would make the 

routine into just an ordinary random walk Monte Carlo method. The error 

function was calculated as an absolute value instead of least means square. This 

was because of numerical limitation of the software. The seismic data which the 

error estimate is calculated from was implemented with 5 digits of numerical 

accuracy. The inversion script can be found in Appendix D. 

 

The number of iterations were set to 100 000 to ensure that the model space is 

searched completely. After 90% of the iterations are run, the algorithms 

increment size is reduced by a factor of 100 to let the algorithm search closer to 

its neighborhood for a more optimal solution.  
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5.2.3 Results 

 

Figure 5: Acoustic impedance (AI) versus shear impedance (SI) 

Figure 5 shows the relationship between the hundred different solutions pressure 

and shear impedances. As we can see they exhibit a linear relationship. This we 

would assume due to the nature of the forward model. A factorial change in the 

ratio between the shear and pressure impedance will not change the reflection 

coefficients. The linear relationship also contains the actual solution as we can 

see it is marked by the red dot. The problem is however underdetermined and 

without more information we are unable to obtain the correct solution.  

 

AI 

SI 
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Figure 6: Acoustic impedance (AI) versus relative density (Rd) 

As we can see from figure 6 above it does not seems like there are any 

relationship between the impedance and the relative density. The scatter of 

solutions looks rather random. The actual solution is marked as the red dot. Here 

the relative density is approximately 0.17391. A great number of solutions are 

centered around this area. There are also a number of solutions which has the 

same relative density but vary greatly in acoustic impedance. To find this 

solution may therefore be a considerable problem. The advantage, however, is 

that all the solutions are located inside an area of 0.006 change in relative 

density. This is a very small change, and all the solutions can be thought of as 

acceptable with respect to the relative density. If our solution has a relative 

density of 0.1736 or 0.1742 would not be of particularly much concern. 

AI 

Rd 



52 

 

 

Figure 7: Shear impedance (SI) versus relative density (Rd) 

Figure 7 shows that the plot of shear impedance versus relative density is the 

same exact plot as figure 5 but just scaled differently due to the linear 

relationship between the shear and pressure impedance. This is what we would 

expect. 

 

SI 

Rd 
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Figure 8: Absolute error ( e ) versus acoustic impedance (AI) 

Figure 8 shows the distribution of acoustic impedance against the absolute error. 

The two lowest result had an absolute error of             and         

    . These give the pressure impedance of               and           

     
   

   
 respectively. Both of these are quite larger than the correct answer, 

and because of the linear relationship the shear impedance will also be too large. 

All of the solutions have an acceptable error if we regard the fact that the 

numerical accuracy of the input reflection coefficient is five digits and all the 

solutions are more or less in this area. This leads us back to the fact that all of 

these answers may represent the correct model, when we only use the 

information provided by the reflection coefficients. This means that we may 

have infinite solutions which have a linear relationship between the P and S-

impedance. The ratio of the pressure and shear impedance are more or less 

AI 

e 
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constant for all solutions. We can see this by equation (2.6) that changing Zp 

and Zs with the same factor will produce the same result. 

 

 

5.2.4 Introduction of noise 

As seen from the last section we get an infinite number of possible solutions just 

because of the error caused by numerical accuracy, the introduction of the 

logarithmic approximation of the reflectivity model and the linear solution 

space. As we know seismic data contains various sources of noise. We will now 

try to demonstrate the effects of introduction of random noise to the angle 

dependent reflections coefficients and see how this will influence the inversion 

results. There has been made a random perturbation between -0.01 and 0.01 to 

each reflection coefficient.  

 

 

Figure 9: Acoustic impedance (AI) versus shear impedance (SI) 

From figure 9 we can see that the solution space still has a linear relationship 

between the pressure and shear impedance. This is due to the nature of the 

AI 

SI 
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forward model. The linear relationship are however different from the 

relationship without noise. We can however see that none of the solutions found 

are near the correct solution. The correct solution marked by the red dot has 

considerable larger acoustic impedance than what is suggested from that specific 

shear impedance. 

 

 

Figure 10: Acoustic impedance (AI) versus relative density (Rd) 

Figure 10 shows the relationship between the relative density and the acoustic 

impedance. Because of the linearity the plot of the shear impedance and the 

relative density would have the same solution space but been downscaled.  As 

we can see all the solutions are close together in the relative density domain 

from values of approximately 0.58215 to 0.58245. The problem is that the 

acoustic impedance in this interval varies drastically from around 6.8 to 8 

million  
    

   
. It is therefore difficult to point out a solution. We can also note 

that the relative impedance is very large. They are definitely too large for what 

AI 

Rd
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the linear approximation of the Zoeppritz equations are made for, and their 

physical meaning should also be investigated.  

 

When we introduce noise we see some of the problems regarding global 

optimization techniques. First, we have 100 different solutions which all exhibits 

more or less the same error. The inverted parameters vary hugely in range so we 

need an interpretation of all the solutions in order to establish the most likely. 

Secondly, when we introduced noise, all the solutions moved from the correct 

relative density of around 0.17, to around 0.58. With respect to the change in the 

relative density, all of our solutions are thereby completely wrong. A relative 

density of 0.58 would suggest that layer number 2 has almost twice the density 

as layer number 1. This is in most cases unrealistic. However, all of our 

solutions which apparently have the lowest error between the seismic data and 

the synthetic data suggest that this is the best solution. Since all the solutions we 

have found are unrealistic and wrong, we need to constrain the data, in order to 

see if the correct solution can be found. 
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5.2.4.1 Constraining the noise 

The constraint set to the algorithm was that the relative density has to be 

between the intervals of 0 and 0.25.   

 

 

Figure 11: Acoustic impedance (AI) versus shear impedance (SI) 

Figure 11 shows the linear relationship between the acoustic and shear 

impedance for the solution space when the relative density has been constrained. 

The correct solution has been marked by the red dot, and we can see that the 

routine has not been able to produce the correct solution. The shear impedance is 

too low for that specific acoustic impedance.  

We can also see two solutions which does not have the same linear relationship 

with the rest of the solutions. These have been marked by blue dots. It may also 

seem that these have a linear relationship with each other. This may indicate that 

AI 

SI 
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these two solutions have found another minimum than the rest of the solutions. 

In order to find out if this is the global or a local minimum we need to look at 

the error of these two solutions. 

 

 

 

Figure 12: Acoustic impedance (AI) versus Relative density (Rd) 

From figure 12 we can see the relationship between the acoustic impedance and 

the relative density for all the solution. We can see that all the solutions are in 

more or less the same area regarding the relative density except for two 

solutions marked in blue. These are the same solutions which did not follow the 

same linear relationship when plotted as acoustic impedance against shear 

impedance as the other solutions. We can see that these two solutions have 

approximately the double relative density then the rest of the solutions. 

AI 

Rd 
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Regardless, we can see that the correct solution with respect to relative density, 

which is marked by the red dot, is not found by any of the hundred runs.  

 

Figure 13: Acoustic impedance (AI) versus Absolute error ( e ) 

We can see from figure 13 that the two samples with the higher estimated 

relative density, and which does not have a linear relationship with the other 

solutions in the P-S impedance domain, has a bit larger error than the other 

solutions. This means that the algorithm has not been able to find the global 

minimum value on 2 of the 100 runs, and been trapped in a local minimum. To 

have avoided this it can be discussed if the temperature or the number of 

iterations should have been increased.  

AI 

e 
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Figure 14: Relative density (Rd) versus Absolute error ( e ) 

Figure 14 tells us the same as figure 13. Two of the runs computed solutions 

where the relative density was found to be too high, and the absolute error did 

not match the other 98 solutions.  

 

Rd 

e 



61 

6 Discussion 

 

In section 5.1 we showed how Simulated Annealing can be used to find a global 

minimum where local minima are present. As long as the temperature is chosen 

correctly, allowing the routine to make uphill moves, the optimal solution is 

found regardless of initial parameters.  

When the routine was implemented on the forward model, problems quickly 

arose. We went from estimating one to three parameters, and the problem 

became underdetermined because of the linear nature of the forward model. The 

reflection coefficients computed does not change as long as the ratio between 

the acoustic and shear impedance are constant. This introduces non-uniqueness 

immediately, and we are essentially only inverting for two parameters, the 

relative density and the ratio between the impedances. 

When the inversion was conducted on an uncontaminated dataset, the correct 

solution was found as one out of the hundred runs. All the solutions had a linear 

relationship in the impedance plot, while the relative density was scattered over 

a small interval. The inversion algorithm successfully inverted for the relative 

density and the ratio between the two impedances.  

When random noise was implemented we saw how this dramatically affected 

the routine. At first, a completely unconstrained run was made. The result was 

that all the impedances where in the order of     and the relative density was 

negative. These are clearly unphysical solutions. However, all of them had more 

or less the exact same low error estimation. The algorithm needed constraints on 

the relative density in order to make reasonable results. There was not the same 

need to constrain the impedances, because it was the negative relative densities 

which gave unrealistically low impedances.  
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The relative impedance was constrained to a range between 0 and 0.7. The 

global minimum of this inversion had still too high relative densities with 

around 0.58. It was clear that the inversion algorithm needed harder constraints.   

The relative density was then constrained to an interval between 0 and 0.25. 

When this constrain was implemented the routine produced two solutions which 

were local minima, while the other 98 represented global minima. This may 

suggest that the starting temperature was set too low, or the number of iterations 

should have been higher. The great majority of the solutions had a relative 

density of around 0.14. This is a much better estimate than the previous loser 

constrained inversion. The ratio between the acoustic and shear impedance are 

found to be significantly higher than it should be, giving a wrong picture of the 

acoustic and shear impedance relationship.  

The inversion of data contaminated by noise confirms that the forward model is 

very sensitive to changes in the reflection coefficients. By introducing errors the 

global minimum is very quickly not the correct solution. A minor change in the 

reflection coefficients, which are between -1 and +1 may change the ratio 

between acoustic and shear impedances. The change in this ratio may affect the 

impedance drastically since they are in order of million  
  

  

 

 
. As we can see the 

quality of the inversion increase as we add more information through constraints 

on the parameters. This shows that the constraints on the parameters influence 

and color the inversion result considerably. 

 

.  
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7 Conclusion 

 

As seen from the previous chapters we have showed how optimization problems 

can be solved using the global optimization routine, Simulated Annealing. The 

theoretical advantage of such a routine is that it should be capable of finding a 

global minimum, where the model parameters and the data have a non-linear 

relationship independent of the initial parameter. 

In theory, the error between the real seismic data, and the synthetic seismic data 

should be zero when the correct solution is found. In our case, the difference 

between the computed reflection coefficients and the coefficients created from 

the model should therefore be zero. This was not the case in any of the 

experiments. Even when the data was not affected by noise, the numerical 

accuracy of the program prohibited the real solution to have zero error. In this 

case the global minimum was the correct solution, but due to the linearity of the 

forward model we are only able to invert for two parameters and not three. 

The success of Simulated Annealing is highly dependent on the initial choice of 

temperature, the rate of decrease of the temperature and number of iterations. 

Even when an initial guess is made completely in the dark, and completely 

wrong, this routine will be able to produce the global minimum on a great 

majority of the runs as long as the other parameters are chosen wisely.  

Due to the effects noise and mathematical approximations has to the inversion it 

is not guaranteed that the global minimum will be the correct solution. The 

forward model is very sensitive to small changes in the reflection coefficients, 

and this may alter our inversion parameters completely. 

To be able to solve these problems in seismic inversion we are in need of more 

information. As seen in the synthetic example, the inversion results improve as 
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more information is given about the model parameters through the constraints. It 

is important that this information is implemented in a correct manner with 

respect to the inversion. This thesis has described how this can be done, and 

showed the importance of it. 
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9 APPENDIX  

 

APPENDIX A 

This appendix shows the results from the Simulated Annealing routine, where 

equation 5.2 was inverted. 

Table 5: Increment 5, Temperature 100 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 200 -15 1000 0 0 

1000 200 -10 1000 0 0 

1000 200 -5 1000 0 0 

1000 200 0 492 0 508 

1000 200 5 0 0 1000 

1000 200 10 0 0 1000 

1000 200 15 0 0 1000 
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Table 6: Increment 5, Temperature 500 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 500 -15 1000 0 0 

1000 500 -10 1000 0 0 

1000 500 -5 1000 0 0 

1000 500 0 507 0 493 

1000 500 5 36 0 964 

1000 500 10 20 0 980 

1000 500 15 2 0 998 
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Table 7: Increment 5, Temperature 1000 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 1000 -15 1000 0 0 

1000 1000 -10 1000 0 0 

1000 1000 -5 1000 0 0 

1000 1000 0 727 0 283 

1000 1000 5 497 0 503 

1000 1000 10 462 0 538 

1000 1000 15 144 0 856 

 

 



71 

Table 8: Increment 5, Temperature 1500 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 1500 -15 1000 0 0 

1000 1500 -10 1000 0 0 

1000 1500 -5 1000 0 0 

1000 1500 0 963 0 37 

1000 1500 5 947 0 53 

1000 1500 10 920 0 80 

1000 1500 15 744 0 256 
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Table 9: Increment 5, Temperature 2000 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 2000 -15 1000 0 0 

1000 2000 -10 1000 0 0 

1000 2000 -5 1000 0 0 

1000 2000 0 995 0 5 

1000 2000 5 997 0 3 

1000 1500 10 996 0 4 

1000 1500 15 978 0 22 
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Table 10: Increment 5, Temperature 2200 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 2200 -15 1000 0 0 

1000 2200 -10 1000 0 0 

1000 2200 -5 1000 0 0 

1000 2200 0 999 0 1 

1000 2200 5 997 0 3 

1000 2200 10 1000 0 0 

1000 2200 15 998 0 2 
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Table 11: Increment 5, Temperature 2300 

Number of 

iterations 

Temperature Initial  

Parameter 

X 

Global 

Minimum 

Obtained 

Other 

value 

obtained 

Local 

Minimum 

Obtained 

1000 2000 -15 1000 0 0 

1000 2000 -10 1000 0 0 

1000 2000 -5 1000 0 0 

1000 2000 0 1000 0 0 

1000 2000 5 1000 0 0 

1000 1500 10 1000 0 0 

1000 1500 15 1000 0 0 
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APPENDIX B MATLAB CODE 5.1 

% simulated annealing Solution of the forth degree equation 

totalglobal = 0; 

totallokal=0; 

totalglobalut = 0; 

utenfor =0; 

for o = 1:1000 

k=1; 

%t0 = 100; 

x = 15; 

x1= 15; 

min = 1000; 

n=1000; 

b=10; 

increment = 12; 

maxminx = 10; 

t0 = 2300; 

  

for i=1:n 

    k=k+1; 
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   if i == 0.9*n 

        

        increment= increment./10; 

   end 

           a = (x^4)+2*(x^3)-(98*(x^2))+(2*x)+1; 

       if min>a  

    min = a; 

    maxminx= x; 

    x1 = x; 

    else 

        if i<n*0.9 

        t = t0./log10(k+2); 

        %abs(min) 

        %abs(a) 

         c = exp((-(abs((a)-min)))./t); 

    d= rand(1); 

       if c>d % Metropolis criteria 

       x1 = x; 

       end 

        end 
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        x1=maxminx;     

    end 

   posneg = rand(1); 

     

    if posneg > 0.5 

         

     pos =  rand(1); 

      

     x = x1 + pos*increment; 

      

    else 

         

        neg = rand(1); 

        x = x1 - neg*increment; 

    end 

 end 

  

if -7.80462< maxminx && maxminx <-7.78462 

    totalglobal = totalglobal +1; 
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else if  maxminx>0 

    totallokal = totallokal + 1; 

    else if  -9 < maxminx  && maxminx < -5 

            totalglobalut = totalglobalut +  1; 

        else  

            utenfor = utenfor +1 ; 

        end 

 

    end 

end 

  

maxminx; 

end 

  

utenfor 

totalglobalut 

totalglobal 

totallokal 
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APPENDIX C MATLAB Code for creating the reflection Model 

% Program creates an reflectivity series based on an zoeppritz 

% approximation. 

  

  

tetta=[2 10 15 17 20 30;] % Reflection for angles 

rho2=[2500]; %density of layer 2 

rho1=[2100];% densiy layer 1 

vp1= [2800]; % VP layer 1 

vp2=[3200];  % Vp layer 2 

vs1=[1500]; % vs layer 1 

vs2=[1800]; % Vs layer 2 

  

  

Rpp = zeros(size(rho2,2),size(tetta,2)); 

for j = 1:size(rho2,2); 

     

rho(j) = (rho2(j)+rho1(j))./2; 

deltarho(j) = rho2(j)-rho1(j); 

deltavp(j) = vp2(j)-vp1(j); 

vp(j) = (vp2(j)+vp1(j))./2; 
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deltavs(j) = vs2(j)-vs1(j); 

vs(j) = (vs2(j)+vs1(j))./2; 

Zp2(j) = vp2(j)*rho2(j); 

Zs2(j) = vs2(j)*rho2(j); 

Zp1(j)= vp1(j)*rho1(j); 

Zs1(j)= vs1(j)*rho1(j); 

Zp(j) = (Zp1(j)+Zp2(j))./2; 

Zs(j) = (Zs1(j)+Zs2(j))./2; 

  

Lp(j) = 0.5*(log(Zp2(j)) - log(Zp1(j))); 

Ls(j) = 0.5*(log(Zs2(j)) - log(Zs1(j))); 

  

  

Rp(j) = 0.5*(deltavp(j)./vp(j) + deltarho(j)./rho(j)); 

Rs(j) = 0.5*(deltavs(j)./vs(j) + deltarho(j)./rho(j)); 

Rd(j) = (deltarho(j)./rho(j)); 

  

Rp0n(j) = (Zp2(j)-Zp1(j))./( Zp2(j) + Zp1(j)); % Normal zero offset 

Rs0n(j) = (Zs2(j) - Zs1(j))./ (Zs2(j) +Zs1(j));% Normal zero offset 

Rp0a = 0.5*( (deltavp(j)./vp(j)) +(deltarho(j)./rho(j))); % approximated p-wave 

zero offset 
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Rsoa = 0.5*((deltavs(j)./vs(j)) + deltarho(j)./rho(j)); % approximated s-waave 

zero offset 

  

for i = 1:size(tetta,2) 

     

tettar(i) =tetta(i)*pi./180; 

  

tetta; 

Rpp(j,i) = (1+(tan(tettar(i)))^2)*Rp(j) - 

(8*(Zs(j)./Zp(j))^2*sin(tettar(i))^2)*Rs(j) - ((0.5*tan(tettar(i))^2 - 

2*(Zs(j)./Zp(j))^2*sin(tettar(i))^2))*Rd(j); 

  

  

end 

end 

  

tetta; 

(Rpp) 

  

  

str = ['Reflection coefficients  '  num2str(Rpp)] 
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Appendix D, MATLAB code for the inversion algorithm 

% Simulated Annealing layer model with Metropolis Criteria 

  

reflectioncorr = [0.15362 0.14614 0.1368 0.13219 0.12448 0.09434];  

  

for l = 1:6 

     

   random = rand(1); 

    if random > 0.5 

    ru1 = rand(1)    ; 

    reflectioncorr(l) = reflectioncorr(l) + 0.01*ru1; 

    else 

        ru2= rand(1); 

       reflectioncorr(l) = reflectioncorr(l) - 0.01*ru2; 

    end 

 end 

 for o = 1:100 

 % Modeled result 

  

tetta = [2 10 15 17 20 30]; % Reflection for angles 
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muzp = 700000; %Starting values 

Zp = 7000000; 

muzs = 4000000; 

Zs = 4000000; 

%murho= 0.2; 

Rd = 0.2; 

murd= 0.2; 

%sigma = 100000; 

%sigma2 = 0.1; 

t0= 0.01; 

%t0=sigma; 

%t1=sigma; 

%t2=sigma2;     

k = 1; 

n = 100000; 

%m=0; 

increment = 50000; 

 incrementr = 0.01; 

  

savedminimum(1,1) = 100; 
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min(1) = 10; 

 for j = 1:n 

 %s1= sqrt(t1); 

 %s2=sqrt(t2); 

  

 if i == n*0.9 

     increment = increment/100; 

 end 

 Lp = 0.153942389884650; % The logarithmic reflectivities 

Ls = 0.178337471969366; 

 deltaz = 0; 

 for i = 1:length(tetta)     

tettar(i)=tetta(i)*pi./180; 

  

  

Rpp = (1+(tan(tettar(i)))^2)*Lp - (8*(Zs./Zp)^2*sin(tettar(i))^2)*Ls - 

((0.5*tan(tettar(i))^2 - 2*(Zs./Zp)^2*sin(tettar(i))^2))*Rd; 

% reflection coefficient calculations 

temp = Rpp; 

 deltaz = abs(reflectioncorr(i) - temp) + deltaz; 

end 
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if (min > deltaz )    

    k = k +1; 

    min = deltaz; 

     

    savedmuzp= Zp; 

    savedmuzs= Zs; 

    savedmurd = Rd; 

    savedminimum(1,k) = deltaz; 

    muzp = Zp; 

    muzs = Zs; 

    murd = Rd; 

else  

     

    if j<0.9*n %Only 90 % of the runs 

    t = t0/log10(j+2); 

    c = exp((min-abs(deltaz))./t); 

    d= rand(1); 

    e =rand(1); 

    f = rand(1);                   % Metropolis criteria 
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    if   c> d  

       muzp = Zp; 

    end  

    if c>e 

        muzs = Zs; 

    end 

    if c>f 

        murd = Rd; 

    end 

         

   muzp=savedmuzp; 

   muzs= savedmuzs; 

   murd =savedmurd; 

    end 

   posnegr = rand(1);%Randomly picking a negative or positive number 

% to make a perturbation for P-impedance 

  if posnegr > 0.5 

     posr =  rand(1); 

     Rd = murd + posr*incrementr; 

    else 
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          negr = rand(1); 

        if  murd- negr*incrementr < 0.25 

             

        if  murd - negr*incrementr >0 

        Rd = murd - negr*incrementr; 

        end 

        end 

     

    end 

   posnegp = rand(1);%Randomly picking a negative or positive number 

% to make a perturbation for P-impedance 

     if posnegp > 0.5 

        posp =  rand(1); 

       Zp = muzp + posp*increment; 

      

    else 

        negp = rand(1); 

        Zp = muzp - negp*increment; 

    end 

   posnegs = rand(1); %Randomly picking a negative or positive number 

% to make a perturbation for S-impedance 
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    if posnegs > 0.5 

         

     poss =  rand(1);  

      

     Zs = muzs + poss*increment; 

      

    else 

         

        negs = rand(1); 

        Zs = muzs - negs*increment; 

    end 

     

end 

savedminimum; 

 min; 

 muzp; 

 muzs; 

 end  

 totalmin(o,1) = min; % Saving the minimum value for each run 
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 totalmin(o,2) = savedmuzp; % Saving the pressure impedance at the minimum 

for each run 

 totalmin(o,3)= savedmuzs;% Saving the shear impedance at the minimum for 

each run 

 totalmin(o,4) = savedmurd; 

end 

totalmin 

 %plot(totalmin(1:100,3),totalmin(1:100,2)) 
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