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Abstract

The thesis objective was to get a better insight in theories behind global navigation satel-
lite systems, inertial navigation systems and the two integrated. Current technology used
to realize such system was also investigated.
The development process started by specifying the requirements, designing and imple-
menting a solution.
The project resultet in a Navigation Module for INS with GNSS multi-antenna system
and a Kalman filter for estimating position, velocity, attitude and IMU biases.
Some of the findings were that a loosely coupled Kalman filter has great advantages com-
pared to a uncoupled filter and is good at estimating filter states through short GNSS
outages.
The conclusion of the results found in the experiment is that designing a Kalman filter
that performes well compared to established systems is achievable. The thesis lead to a
hardware and software module that performed as intended.
For future work an expansion of the filter can be done. Also, other coupling schemes can
be investigated further and implemented.
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Preface

This thesis is a continuation of a project with the same title and authors from December
2015. Parts of this thesis are directly copied from the project. It examines possible solu-
tions in inertial navigation systems (INS), global navigation satellite systems (GNSS) and
the integration of the two parts.
Norbit Subsea is aiming for a market where GNSS/INS integrated systems are used to-
gether with wideband multibeam sonars for seaflor mapping.
The project has been a collaboration between the students Håkon Leithe and Espen Lie. It
has been performed in partnership with Norbit Subsea. This report gives a brief overview
of background theory used in GNSS, INS and integrated systems. It also contains an ex-
periment where hardware for an integrated system is assembled. GNSS and INS data is
gathered and later analyzed and fused in a loosely coupled Kalman Filter. All hardware
used during experiments were founded by Norbit Subsea AS and temporary authorization
codes for R&D purposes were provided by NovAtel Europe Ltd.

We would like to thank our supervisors Kjetil Bergh Ånonsen from Norwegian University
of Science and Technology and Arild Søraunet at Norbit Subsea AS for guidance througout
the thesis.

Trondheim, Norway, 2016-06-06

Håkon Leithe Espen Lie
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Chapter 1
Introduction

This Chapter describes the current navigation solutions that Norbit Subsea are using today,
and the new markets they wish to explore. The project is performed in cooperation with
Norbit Subsea AS. Norbit Subsea designs, develops, manufatures and markets wideband
multibeam sonars(WBMS) for hydrographic applications, forward-looking applications
as well as advanced subsea leakage detection. One of the main products is an integrated
system with a wideband multibeam sonar and a GNSS/INS system.

Most of Norbit Subseas customers uses the system for some sort of seafloor mapping.
When dealing with applications off this kind, a highly precise and reliable navigation
solution with good accuracy is needed. Later in this Chapter, we also present goals for the
project.

1.1 Current solution
These are the solutions that Norbit Subsea is currently using with the WBMS. To be com-
petetive in the market an accuracy of 0.05◦ in attitude, and 10 cm in position is required.

1.1.1 External INS
The Norbit sonar can be used with an external INS. The Sonar then needs timing input
from the INS, to timestamp its detection points. The interface is $GPZDA(RS232)[4] +
PPS.

Figure 1.1: Sonar interface unit
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Chapter 1. Introduction

Figure 1.2: Wideband Multibeam Sonar without integrated navigation

1.1.2 Applanix integrated
The Applanix system uses a dual antenna GNSS receiver and a MEMS based IMU. The
IMU is mounted in a seperate housing, on the same bracket as the sonar. The sonar inter-
face unit is equipped with Trimble AP20 as the GNSS-Inertial system.

Figure 1.3: Sonar interface unit with navigation

Figure 1.4: Wideband Multibeam Sonar with IMU mounted in the same bracket

2
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1.1.3 NovAtel integrated
By integrating a MEMS IMU, STIM-300, in the Sonar head the need of an extra com-
ponent is removed. The GNSS receivers, NovAtel 615 and NovAtel 628, are mounted in
the Sonar interface unit. The weight and complexity of this system is lower than with the
Applanix system.

Figure 1.5: Sonar interface unit with navigation

Figure 1.6: Wideband Multibeam Sonar with IMU integrated in the sonar

1.2 New markets

1.2.1 Tightly integrated low cost navigation system
For the future Norbit wants to be able to integrate the navigation solution, used with their
sonar kits, tighter with their own software and hardware. Using third-party systems as
NovAtel/Sensonor and Applanix/IMU-42 with their integrating software gives constraints
in integrating with self-made software and hardware as one needs to rely on third-party
systems and their setup.

With a self integrated navigation system, the sale price could be lowered and user experi-
ence improved. This could make Norbit Subsea more competitive in rough markets.
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1.3 Project Goals
In this project we will look into current navigation solutions using GNSS/INS and the
theory behind such systems. We will take a look at the two systems separately at first,
followed by an integration part.

1.3.1 Global navigation satellite system
To get user-position on Earth, a GNSS has the main role. There are several satellite con-
stellations such as:

• Global postioning system (GPS)

• Global navigation satellite system (GLONASS)

• Galileo

• BeiDou

We will look into the basics of a GNSS; signals, frequencies and how user-position is cal-
culated. Also how the precision and accuracy of postion can be improved is of interest.
Specially using different techniques like differential GNSS (DGNSS), real-time kinemat-
ics (RTK), GNSS attitude determination among others. Current receiver solutions from a
couple of manufacturers (Applanix, NovAtel, uBlox) will be discussed.

1.3.2 Inertial navigation system
An inertial navigation system (INS) is important in integrated systems due to their fast dy-
namics and high update rates. In the project we will take a further look into basic theories
behind inertial navigation calulation with especially the strapdown navigation equations,
solutions currently on market (e.g. Sensonor, Honeywell) and sensors used for measure-
ments:

• Ring laser gyroscope

• Fiber optic gyroscope

• MEMS

• Accelerometers

1.3.3 Integrating GNSS and INS
There are several types of integration possibilities of GNSS and INS. We want to get a
clear overview of today’s technology used, as well as the theory behind it. Among other,
we will look into:

• Different types of Kalman filtering (loosely coupled vs tightly coupled)

• Open-source software solutions

• Heave measurent/compansation
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1.3.4 Experiment
During this project we will build an integrated system (hereby called Navigation Module)
consisting of an intertial measurement unit (IMU) and a GNSS receiver. The Navigation
Module will be made universal so it can be reused for future experiment. When building
a hardware module, software for interfacing with the components also needs to be devel-
oped. We will write software modules for interfacing with the hardware, for logging data
and for analyzing gathered data. In shorthand chronological order we will:

• Develop a hardware module

• Write software for interfacing and logging

• Gather data in the field

• Implement Kalman filter

1.3.5 Future work
In the future the error model can be expanded to included more states. A more realistic
error model gives a more correct estimate. It can be looked further into and possibly tried
out methods for improving the integrated systems precision and accuracy such as:

• Tighter hardware integration

• Further expansion of the error model

• Tightly coupled filter

Verifing precision and quantifying accuracy will also be emphasized.
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Chapter 2
Global Navigation Satellite
Systems

Global Navigation Satellite Systems(GNSS) provides geo-spatial positioning with global
coverage [16]. Global Positioning System (GPS), GLObal NAvigation Satellite System
(GLONASS), BeiDou and Galileo are all satellite constellation with operational satellites.
They operate in the same frequency range, and receivers often supports all the different
systems. They still have some different characteristics and parameters.

GPS is an American system operated by the U.S. Departement of Defense [16]. It was the
first system opened for civil applications, when it was opened for civilians in the 1980s. It
has been a gateway for other constellations.

The Russian system GLONASS is aslo a fully operational GNSS with a wide range of
satellites in operation. It is operated by the Russian Aerospace Defense forces.

In 2003 the first stage of the Galileo program was agreed upon by the European Union
and European Space Agency [9]. The system is not fully operational yet. As of 2012,
full completion of the Galileo system (24 operational and 6 active spares) is expected by
2020[17].

BeiDou is the chinese GNSS. It consists of two separate satellite constellations - a limited
test system, and a full-scale global navigation system that is currently under construction
[8].

See Table 2.1 for compared parameters of the constellations.

More information about GNSS can be found in [16] and [18].
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Chapter 2. Global Navigation Satellite Systems

Constellation Satellites in orbit Orbital period Inclination Orbital height
GPS 31 11h 58min 55◦ 20,200km
GLONASS 28 11h 15min 64,8◦ 19,100km
Galileo 8 14h 22min 56◦ 23,222km
BeiDou 20 12h 50min 55◦ 21,500km

Table 2.1: Overview of some GNSS constellation parameters.

2.1 Basic GNSS knowledge

2.1.1 Estimating postition and time

A GNSS receiver measures the pseudoranges (PR) from a GNSS satellite to the receiver.
Equation 2.1 shows how PR for a satellite is calculated. The positions dimension is
[xu, yu, zu] and travel time is, tu. To estimate position and time at least 4 visible satellites
are needed [33].

Pi =
√

(xu − xi)2 + (yu − yi)2 + (zu − zi)2 + ctu (2.1)

Position and time is usually estimated using Least Squares method or Kalman Filter of
different kinds.

2.2 GNSS error sources

GNSS precision and accuracy is very sensitive for timing errors and delays. Some errors
can be compensated for and others not. Below are some error sources listed [18].

1. Satellite

• Satellite Clock: Error in the satellites internal clock

• Ephermis data: The satellite drifts out of orbital route

2. Athmosphere

• Tropospheric Delay: 0-50 km above sea-level

• Ionospheric Delay: 50-200 km above sea-level

3. Detection errors

• Receiver clock: Receiver clock drift

• Multipath: Signal bounces via nearby structures

• Signal masking: Signal is blocked by nearby structures

• Jamming/Spoofing: Signal is jammed/spoofed by nearby transmitter

8



2.3 Improving the position accuracy and precision

2.3 Improving the position accuracy and precision
The position accuracy can be improved in many ways. Some of the most efficient methods
for seafloor mapping are mentioned in this Chapter.

2.3.1 Estimating the ionospheric delay using a dual-frequency receiver
When a dual-frequency receiver is outputting raw data, both L1 and L2 pseudorange are
available. The difference in the pseudorange can be used to calculate the ionospheric delay.
[33]

∆iono(fL1) =
(rL1 − rL2)f2

L1

1− ( fL1

fL2
)2

(2.2)

where

∆iono(fL1) = Pseudorange error for L1(m)

rL1 = Measured range on L1 frequency(m)

rL2 = Measured range on L2 frequency(m)

fL1 = L1 frequency = 1572.42 MHz

fL2 = L2 frequency = 1227.6 MHz

The corrected pseudorange can be found by subtracting the ionospheric delay.

rL1,L2 = rL1 −∆iono(fL1) (2.3)

This method is one of many methods to remove ionospheric delay [16].

2.3.2 Differential GNSS
DGNSS

By receiving Pseudorange (PR) corrections from a local reference station, the receiver is
able to remove common errors.

WADGNSS

The development of Wide Area DGNSS (WADGNSS) systems, such as Wide Area Aug-
mentation system (WAAS) in US, European Geostationary Navigation Overlay Service
(EGNOS) in EU and MTSAT satellite Augmentation System (MSAS) in Japan, are re-
placing the need of a local reference station. By gathering data from multiple Ranging
Integrity Monitoring Systems (RIMS) on the ground, the atmosphere over entire conti-
nents can be modelled. In fact, 10 cm level accuracies have been reported for up to 750
km baselines [33].
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Chapter 2. Global Navigation Satellite Systems

Figure 2.1: EGNOS RIMS Sites[3]

2.3.3 Real-time kinematic

Real-time kinematic (RTK) receivers utilize the carrier differential measurments in addi-
tion to the PR-corrections in DGNSS to achieve position accuracy in the order of a few
centimeters. To achieve the best possible result, the distance to reference receiver should
be as low as possible. With a baseline >1 km, it is cruicial to have a dual-frequency re-
ceiver. The expected performance using a single reference station can be seen in Table 2.2
and 2.3. The same technique with multiple sites can be applied for RTK as it is done with
DGNSS.

Baseline Search time with at least 6 satellites Horizontal accuracy
< 10 km 120 sec + 1.5sec/km 2 cm + 0.5 ppm
< 15 km 8 min 8 cm
< 25 km 14 min 10 cm
< 35 km 20 min 40 cm

Table 2.2: Dual-frequency RTK convergence numbers [33]

Providers of RTK data can be the national authorities of the country. In Norway it is the
national mapping service Kartverket that provides RTK among a variety of other posi-
tioning services. Kartverket offers correction services at a different degree of precision.
The CPOS service provides measurement accuracy in a centimeter level through Network-
RTK. Network-RTK differs from traditional RTK because it utilizes one or more Conti-
nous Operation Reference Stations (CORS) to provide the RTK data. In a traditional RTK
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2.3 Improving the position accuracy and precision

setup one usually need to find a suitable place for having a GNSS base, which sometimes
can be challenging. Also, there is usually need for UHF radio communication between
the station and the rover. The main drawback of using Network-RTK in advance of the
traditional RTK is the dependence of being inside of CORS coverage areas. The CPOS
service consists of GNSS correction data received in real-time via Networked Transport
of RTCM via Internet Protocol (NTRIP) client through an internet connection. CPOS
supports RTCM versions 2.3 and 3.1 which is a widely used protocol. The system uses
multiple CORS to calculate a virtual reference station (VRS) for the user [1], and the main
purpose to do this is to reduce the baseline distance between the rover and the reference
station in order to efficiently remove spatially correlated errors using differential process-
ing. The user can not distinguish between VRS and a real reference station.

CPOS is aimed for professional users and has a user base consisting of 3000 users. For
applications that do not require centimeter level accuracy, Kartverkets service DPOS pro-
vides accuracy at desimeter level throug DGNSS.

Currently, Kartverkets GNSS network consists of more than 170 GNSS reference stations.
They are located both on the mainland and on remote islands, such as Jan Mayen and
Svalbard. Full coverage for real-time services through station network in the entire coun-
try was reached in 2011. In Figure 2.2 an overview of the GNSS base stations situated
around Trondheim is shown.

Figure 2.2: Mid-Norway GNSS base station overview [2].

Baseline Search time with at least 5 satellites Horizontal accuracy
1 km 1 - 600 sec 100 to 25 cm
1 km 600 - 3000 sec 25 to 5 cm
1 km > 3000 sec < 5 cm

Table 2.3: Single-frequency RTK convergence numbers [33]
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2.4 GNSS Attitude determination
By measuring the carrier phase using multiple antennas, the attitude can be determined.
With three antennas, roll, pitch and yaw angles can be estimated, given that the antennas
are not placed on a straigt line. With two antennes placed as in Figure 2.5, pitch and yaw
can be estimated. It is cruical that the receiver clocks are synced for this to be possible.
Expected accuracy of GNSS Attitude determination is shown in Equation 2.4

Accuracy =
0.2

baseline

◦
(2.4)

Ant 1 Ant 2

ΔФ

λ L1 = 19cm

Line of sight vector

Figure 2.3: Attitude determination using GNSS

2.5 Current market
In this Section, a couple of GNSS receivers are listed, with some specifications and price.
This is meant to get and overview of what high-end and low-end receivers can offer and
their pricing.

2.5.1 ublox LEA-M8T
The ublox LEA-M8T is a low cost receiver for the consumer market. It supports all the
GNSS-systems, GPS, QZSS, GLONASS Galileo and BeiDou, but it lacks dual-frequency.
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It has possibility for outputting raw data and precise timing, which makes it a suitable
receiver to use when learning about GNSS or when high accuracy is not required. It can
be used with DGNSS, but not with RTK nor attitude determination. The price of a devel-
opment board, with chip is around $150.

Figure 2.4: u-blox LEA-M8T

2.5.2 NovAtel OEM617D
The NovAtel OEM617D is a dual-frequency, dual-antenna receiver. It is suited for both
RTK and GNSS Attitude determination. It supports all the usual GNSS systems and the
raw data is accessed easy through one of the three COM ports. The price is around $2.500.
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Figure 2.5: NovAtel 617D
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Chapter 3
Inertial Navigation Systems

In this Chapter we will look into the basics of inertial navigation systems (INS). Funda-
mental theory will be presented as well as transformations between desired frames used
for navigation. We will also look at common accelerometer and gyroscope technologies
used by manufacturers today in INS.

3.1 Introduction

The theory behind pure inertial navigation is to integrate acceleration to obtain velocity
and posistion in a desired coordinate frame. Attitude is obtained in the same manner using
gyroscope measurements. Since all measurements from the IMU are given in the frame
of reference, the body frame (often called vehicle frame), they must be transformed to the
desired navigation frame.

There are two types of INS platforms; strapdown and stabilized-platform (gimbaled sys-
tems). In strapdown INS the unit is rigidly fixed to the moving body. Since strapdown
systems move with the body, their gyroscopes will also experience and measure the same
changes in angular rate as the body in motion. In gimbaled systems on the other hand,
gimbals are used to isolate the inertial sensor assembly from vehicle rotation [20]. Today,
strapdown systems are the dominating type of system. In later years, MEMS based sen-
sors has improved enought to make this the dominating platform. Though, for application
that requires extreme precision, strapdown system will not be sufficient. Example of ap-
plication may be a nuclear submarine which may operate without GNSS fixed posistion
for several days.

In this Chapter we will go deeper into strapdown systems and strapdown navigation equa-
tions.
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3.2 Rotations and strapdown INS equations

The same naming scheme and parameters for equations as in [33] is used here. Also the
same notation for vectors and matrices is used.

3.2.1 Coordinate frames and transformation

While navigating, a position is obtained in a certain coordinate frame. There are several
types of coordinate frames, e.g. Earth Centered Coordinate Systems, Geographic Coordi-
nate Systems and Vehicle Coordinate Systems. A brief overview of the different coordinate
systems and their parameters is presented in Table 3.1.

Index Coordinate system Components
i ECI xi, yi, zi
e ECEF Cartesian xe, ye, ze
n NED N,E,D
t Tangent frame xt, yt, zt
b BODY xb, yb, zb
a General frame -

Table 3.1: Coordinate system variables index explanation [33]

Further information on the coordinate systems can be found in [18], [33]. While measure-
ments from GNSS are computed in ECEF, this does not give much value for the end-user.
In order to present position in terrestial position, the coordinates are transformed into the
ellipsoidal parameters longitude, latitude and height. Reference ellipsoid used for this
transformation is known as WGS-84 (World Gedetic System 1984). Parameters used for
the transformation are shown in 3.2.

Parameter Comments
re = 6378137m Equatorial radius of ellipsoid.
rp = 6356752m Polar axis radius of ellipsoid.
ωe = 7292115 · 10−11rad/s Angular velocity of the Earth.
µg = 3986005 · 108m3/s2 Gravitational constant of Earth.
e = 0.0818 Eccentricity of ellipsoid.

Table 3.2: WGS-84 parameters [33].

Variables used in the different systems are presented in Table 3.3 and 3.4. They will be
used throughout this Chapter.
In order to transform coordinates from one coordinate system to another, rotation matrices
are used. A rotation matrix is an orthogonal 3 × 3 matrix with some special properties
[33]. See [29] for detailed information on rotation matrices and their properties.
Rotation matrix from NED to BODY is given by:
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Frame Vectors Comments
BODY vb = [u, v, w] ∈ R3 Surge, sway and heave.
BODY/NED ωbnb = [p, q, r] ∈ R3 Roll, pitch and yaw rate
NED vn = [vN , vE , vD] ∈ R3 North, east and down velocity
NED/ECEF ωnen = [ωN , ωE , ωD] ∈ R3 Function of change in long. and lat.
ECEF ve = [vxe , vye , vze ] ∈ R3 Velocity in fram given by GPS.
ECEF/ECI ωeie = [0, 0, ωe] ∈ R3 ωe is angular velocity of earh.

Table 3.3: Velocity and angular velocity vectors [33].

Frame Vectors Comments
BODY/NED Θ = [φ, θ, ψ] ∈ S3 Roll, pitch and yaw angles.
NED rn = [xN , yN , zN ] ∈ R3 Position relative to a t-frame origin.
ECEF Ψ = [l, µ] ∈ S2 Geodetic longitude and latitude.
ECEF rr = [xe, ye, ze] ∈ R3 Cartesian ECEF position.

Table 3.4: Position and attitude vectors [33]

Rn
b = Rz,ψRy,θRx,φ

=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 (3.1)

where c = cos and s = sin.
Rotation between ECEF and NED frame is:

Re
n(Ψ) = Rze,lRye,−µ−π

2

=

−sµsl −sl −cµcl−sµsl cl −cµsl
cµ 0 −sµ

 (3.2)

where c = cos and s = sin.
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3.2.2 Navigation equations
The vector ωbib = [p, q, r] is the inertial angular rate of the BODY frame expressed in body
coordinates, which would be measured by an ideal set of platform-mounted gyros. Al-
though the inertial-frame implementation results in the most straight-forward differantial
equations [18], it is not commonly used. There are two main reasons; the complications
of calculation g and the desire for the navigation system to produce earth-relative position
and velocity.

Relation between NED angular velocity, and longitude and latitude is found with [33]:

ωbnb =

pq
r

 =

φ̇0
0

+ RT
x,φ

0

θ̇
0

+ RT
x,φR

T
y,θ

0
0

ψ̇


=

1 0 −sinθ
0 cosφ cosθsinφ
0 −sinφ cosθcosφ

φ̇θ̇
ψ̇

 ≡ TΘ(Θ)−1Θ̇

(3.3)

Continuing with the strapdown inertial navigation equations; see [33] for full derivation of
the equations.

The accelerometers measures absolute acceleration and can not distinguish between the
acceleration of gravity and inertial acceleration[18], Therefore the user must compensate
the specific force output for the effects of gravity in the equations. Under acceleration, the
specific force will be [33]:

f b = ab −Rb
ngn (3.4)

where ab is the variable of interest.

The NED velocity differential equation can be written [33]:

v̇n = Rn
b f b + gn − [2S(ωnie) + S(ωnen)]vn (3.5)

where S denotes the skew symmetric matrix [29] and [33]. The rotation differential equa-
tion is then found using Equation 3.6

Ṙn
b = Rn

b S(ωbnb) (3.6)

By using vn calculations of latitude, longitude and height can be done using:µ̇l̇
ḣ

 =

 1
rmer+h 0 0

0 1
(rprime+h)cosµ 0

0 0 −1

vn (3.7)

where rprime and rmer are the prime and meridian curvatures of Earth defined in Table
3.2

rprime =
re(1− e2)

[1− e2sin2µ]1.5
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rmer =
re

[1− e2sin2µ]0.5

Position can also be expressed in ECEF Cartesian coordinates:

ṙe = Re
nvn (3.8)

This formula is specially useful when integrating INS with GNSS measurements, which is
given in Cartesian ECEF coordinates.

Rotation in NED frame can be calculated directly from the NED velocities by using the
following equations [33]:

ωnen =

ωNωE
ωD

 =


1

rprime+h
vE

− 1
rmer+hvN

− tanµ
rprime+h

vE

 = Uvn (3.9)

where

U =

 0 1
rprime+h

0

− 1
rmer+h 0 0

0 − tanµ
rprime+h

0

 (3.10)
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3.3 INS errors
There are several error sources related to the IMU and the alignment. Some of the most
imortant are mentioned in this Section. There is also a more detailed explanation on bias
stability.

3.3.1 Error sources
A brief overview of accelerometer and gyroscope error sources are found in the list below
[18].

1. Accelerometer errors

• Accelerometer measurement noise: Random error added to measurements

• Accelerometer bias: Bias in specific force measurements

• Accelerometer scale factor: Error in the accelerometer calibrated scale factor

• Accelerometer nonlinearity: Deviation from desired linear input/output rela-
tionship

2. Gyroscope errors

• Gyro measurement noise: Random error added to measurements

• Gyro drift (bias): Bias in angular rate measurements

• Gyro scale factor: Error in gyros calibrated scaling factor

• Gyro alignement: Misalignement of the gyro measurement axis from the or-
thogonal platform axis

• Gyro g sensitivity: Sensitivity of the gyro output due to force applied along or
perpendicular to the sensitive axis of the gyro

3. Gravity anomalies and deflection of the vertical

4. Numeric computation error

3.3.2 Bias stability
Bias is a long term average of measurement data from a IMU. The biases tends to change,
it is called bias instability. It is meaningless in terms of single data points to look at bias
instability, longer datasets are needed. If the bias is constant, it can easily be cancelled
out by subtracting it from the measurements. Biases in gyros and accelerometers tends
to vary. The change in bias measurements is often a part of the specification of IMUs
given in ◦/hour or ◦/sec for gyroscopes and m

s2 or g for accelerometers. A bias stability
measurement tells you how stable the bias of a sensor is over a certain period of time.

To determine an IMUs bias parameters, the Allan variance (also known as two-sample
variance) can be calculated. The Allan variance (AVAR) is a measure of frequency stability
in clocks, oscillators and amplifiers [7]. It is defined as:
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σ2
y(τ) = 〈σ2

y(2, τ, τ)〉

=
1

2
〈(ȳn+1 − ȳn)2〉

(3.11)

where τ is the observation period, ȳn is the nth fractional frequency average over the
observation time τ . Then, the Allan deviation (ADEV), often called root Allan variance,
is given by [7]:

σy(τ) =
√
σ2
y (3.12)

From Allan deviation, angle random walk (ARW) for gyroscopes and velocity random
walk (VRW) for accelerometers can be estimated. ARW and VRW is a noise specification,
in units of ◦/

√
hour for ARW and m/s/

√
hour for VRW, that is directly applicable to angle

calculations. It describes the average deviation or error that will occure when you integrate
the signal.

3.4 INS Error Dynamics

The errors of the navigation parameters are defined as:

δrn = rn − r̂n

δvn = vn − v̂n (3.13)

R̂nb = (I − En)Rnb

Where the elements with the ∧ are the estimated values and the symbol δ is the error. En

is the skew-symmetric vector of the attitude errors in the ENU frame.

The bahaviour of the navigation parameter errors is obtained using the navigation equa-
tions in Section 3.2.2.δṙnδv̇n

ε̇n

 =

Frr Frv Frε
Fvr Fvv Fvε
Fεr Fεv Fεε

δrnδvn

εn

+

 03x1

Rnb δf
b

Rnb δw
b

 (3.14)

Where
δrb is the vector of errors in the measured position,
δvb is the vector of errors in the measured velocity,
εn is the vector of attitude errors in the ENU frame,
δf b is the vector of errors in the measured acceleration,
δωb is the vector of errors in the measured angular rate
The F matrix consists of velocity integration, gravity, Coriolis, centrifugal, Earthrate com-
pensation and leveling. The full derivation of the equation is in [20], [27].
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3.5 INS Technologies

3.5.1 Gyroscopes

For integrated navigation solutions using GNSS and INS, the most videly used gyroscopes
are MEMS gyroscopes, FOG and RLG. MEMS gyroscopes are known to be low-cost and
are easily produced in large numbers. In high-end integrated systems FOGs and RLGs are
prefered due to their accuracy compared to MEMS gyroscopes.

Microeletromechanical systems

Microelectromechanical systems (MEMS) is a kind of vibrating structure gyroscope and is
named Coriolis vibratory gyroscope (CVG) by IEEE [11]. MEMS gyroscopes are known
to be inexpensive but also less accurate than gyroscopes using fiberoptical technologies.

Manufacturers that provide IMUs which uses the MEMS technology are Panasonic, Ana-
log Devices and Sensonor. In Chapter 6, Sensonors STIM300 is used for the inertial
navigation part of the system.

Fiber optic gyroscope

A Fiber Optic Gyroscope (FOG) uses the interference of light to detect rotation of the
body. This is called the Sagnac effect. A beam of light is split up and the two beams are
made to follow the same path, but in opposite direction. In Figure 3.1 the principle of the
Sagnac effect is demonstrated. To the left in the figure, there is no rotation. To the right,
on the other hand, there is a clockwise rotation of the apparatus. The relative phases of the
two beams, and thus the position of the interference fringes, are shifted according to the
angular velocity of the apparatus [10].

Figure 3.1: The Sagnac effect

In FOGs the light beam is being sent through a coil of optical fibre which can be as long as
5 km. Advantages of the FOG vs a MEMS gyroscope is that it provides extremely precise
rotational rate information.
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Ring laser gyroscope

Ring Laser Gyroscope (RLG) uses the same Sagnac effect as FOG to detect rotation.
Instead of running the light through a fiber coil, the light beam is sent in a closed-loop
path with mirrors in the corners.

3.5.2 Accelerometers
An accelerometer is a device that measures proper acceleration (i.e. the physical acceler-
ation experienced by an object) [6]. There is a wide range of technologies used in todays
accelerometers, but the most important types of accelerometers is mechanical and vibra-
tory accelerometers [33]. Mechanical accelerometers exploits Newton’s laws to measure
the specific force on the unit. Vibratory accelrometers measures shift in frequency due to
changes in tension [33]. We will not look further into the two technologies here.
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3.6 Current market

3.6.1 Sparkfun Razor IMU
For $80 one can by the entrance-level IMU from Sparkfun. Gyroscopes used are ITG-
3200. At a zero rate they have a typically output of ±40◦/sec. Accelerometers used are
ADXL345 which have a bias instability of typically ±40mg. Boards like this Sparkfun
IMU board is often used onboard of small quadcopters for navigation.

Figure 3.2: Sparkfun Razor IMU

3.6.2 Sensonor STIM300
STIM300 is a mid-range IMU with pricings around $7500. MEMS gyroscopes are cheaper
to manufacture, but also not as accurate as high-end IMUs using RLG or FOG technolo-
gies. With a smaller form factor than IMUs using RLG or FOG they can fit into a wider
range of applications. The STIM300 is specified with nominal ARW 0.15 ◦/

√
hour and

bias instability 0.5 ◦/hour for the gyroscopes. For the accelerometers it has a nominal
VRW of 0.06 m/s/

√
hour and bias instability 0.05 mg [26].

Figure 3.3: Sensonor STIM300
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3.6.3 Honeywell HG9900 IMU
This is a high-end IMU from Honeywell. It is well-performing with specifications like
bias stability < 0.003 ◦/hour and ARW < 0.002 ◦/

√
hour for the gyroscopes. For ac-

celerometers the specificication for bias stability is < 25 µg. Gyroscopes of high accuracy
can be used for north-seeking. The price for a IMU of this type is around $100k.

Figure 3.4: Honeywell HG9900 IMU
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Chapter 4
Integration of GNSS and INS

A pure inertial navigation system will suffer from unbounded error growth [18] in the posi-
tion and velocity errors due to the integration of inertial measurements which will contain
various types of errors. INS could not be trusted for as a highly reliable stand-alone navi-
gation solution over longer time periods [18].

With the long term accuracy of GNSS in combination with the high output rate, high dy-
namic capability, robustness and reliability of INS, one can offer a more precise and accu-
rate navigation system by integration of the two. Integration is done by applying different
kinds of Kalman filtering techniques. In 1960, Rudolf Kalman presented a new approach
to linear filtering and prediction problems [23] which have evolved to be a cornerstone in
implementations of navigation systems.

When discussing integration of GNSS and INS systems, the term coupling is widely used.
There are several ways of integrating the two system - it ranges from uncoupled to ultra-
tight coupled. There are no clear definition of what is defining many of the types. Next we
will look at a few coupling methods, and define what they contain.

4.1 Integrated systems

GNSS is the most common method for navigation users worldwide. Some applications re-
quire a more accurate and robust position- and attitude-estimate. Inertial sensors can help
improve the system bandwith, provide error estimations and even allow navigation during
brief GNSS outages.

The Integration architectures are usually divided into four terms. Uncoupled, loosely cou-
pled, tightly coupled and ultra-tight coupled. Ultra-tight is the most complex integration,
and requires a more complex hardware than the others. In this Section a more detailed
explanation of the couplings will follow.
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4.1.1 Uncoupled integration
The least complicated integration method for GNSS and INS, is the uncoupled integration.
As the name states, the two systems are not coupled. The uncoupled scheme uses a lin-
earized filter and estimates the errors when GNSS measurements are received. GNSS and
INS produce independent navigation solution with no influence on the other. An uncou-
pled system tends to drift rapidly according to the grade of the IMU in absence of GNSS
data. For low-cost MEMS IMU it will propagate relatively large navigation errors in a
small time interval. Without a feedback loop for INS strapdown calculations high error
values can spoil the small error assumptions made in an INS error model, which will make
the linearization not valid. It could potentially degrade system performance.

IMU

GNSS
Receiver(s)

Strapdown
equations

Integration
Filter

f, ω

Pos, Vel, Att

  

Pos, Vel, Att

  Output

Figure 4.1: Uncoupled coupled integration

4.1.2 Loosely coupled integration
Loosely coupling is the simplest integration method. In comparance with a standalone
GNSS receiver it has higher bandwith, better attitude estimation and is fairly good during
GNSS outages. It is the least complicated closed-loop solution where the INS errors is
corrected by the integration filter. As we can see from Figure 4.2 it uses fixed values
(Pos, Vel, Att) from the GNSS in the integration filter. All raw GNSS measurements are
independently processed in the receiver.

IMU

GNSS
Receiver(s)

Strapdown
equations

Integration
Filter

f, ω

Pos, Vel, Att

  

Pos, Vel, Att

  Output

Pos, Vel, Att corrections

Figure 4.2: Loosely coupled integration

28



4.1 Integrated systems

4.1.3 Tightly coupled integration
Tightly coupled is a much more robust integration. It is often refered to as a ”centralized”
filter. By using raw data (PR, CP and Doppler) from GNSS, the integration filter can
estimate errors for every single GNSS measurement. The tightly integrated filter can utilize
its knowledge of GNSS raw data propagation to predict future measurements. In occasions
where the receiver have lock on less than 4 satellites it is not able to calculate position. A
tight integration is able to utilize the measurements from even one single satellite. The
advantage of this is particulary applicable where GNSS coverage is poor. Loose and tight
integrations basically differ in the type of information that is shared between the systems.
A lot more computation is carried out in the Kalman filter in case of the tightly coupled
filter.

IMU

GNSS
Receiver(s)

Strapdown
equations

Integration
Filter

f, ω

PR, CP, Doppler

  

Pos, Vel, Att

  Output

Pos, Vel, Att corrections

Figure 4.3: Tightly coupled integration

4.1.4 Ultra-Tight integration
In the Ultra-Tight integration strategy, the GNSS and INS devices does not work as inde-
pendent systems anymore. Measurements from GNSS is used to estimate INS errors and
measurements from INS is used to aid the GNSS receiver tracking loops. This is clearly at
a deeper level than the other integration strategies and it requires access to firmware in the
receiver to be able to achieve Ultra-Tight integration. The Ultra-Tight integration scheme
is shown in Figure 4.4.

IMU

GNSS
Receiver(s)

Strapdown
equations

Integration
Filter

f, ω

PR, CP, Doppler

  

Pos, Vel, Att

  Output

Pos, Vel, Att corrections

Estimated doppler (OR or NCO Commands)

Figure 4.4: Ultra-Tight integration
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4.1.5 Hardware requirements
Loosely coupled integration

For a loosely coupled system the GNSS receiver outputs position only. This is easily done
using the NMEA standard sentences[4]. When fusing data from IMU together with GNSS,
the time needs to be synchronized. As data lines from the receiver are not timing critical,
they should not be used for timing purposes alone. The receiver needs a timing output, e.g.
PPS, to be used for syncronizing the data. The IMU-data could be synced with the GNSS
clock using either external trigger on the IMU or timetagging on time of validity(TOV)
output.

Tightly coupled integration

A Tightly coupled integration requires raw data from the GNSS in addition to the syn-
cronization features with the IMU. Raw data is easily exchanged using RINEX(The Re-
ceiver Independent Exchange Format).

4.2 Kalman Filtering
After Rudolf Kalman presented a new approach to linear filtering and prediction problems
[23], later known as the Kalman filter, in 1960 researchers has used the work of Kalman
to adapt to their control problems. Since the Kalman filter is only the optimal solution if
it is a linear problem, linarization has been important considering that many of the early
applications were navigation where the measurements are nonlinear.

There are two common approaches to the nonlinear systems, that is the linarized Kalman
filter and the extended Kalman filter. Also, it has been presented some newer extensions
of the basic filter the recent years [14]. Three of these are the ensemble, unscented and
particle filter. We will not go further into the the newer extensions here. Only the lin-
earized Kalman filter and the extended Kalman filter will be presented here, with the most
emphasis on the extended Kalman filter.

4.2.1 Linearized Kalman filter
The linearized Kalman filter linearize the non-linear equations about some nominal trajec-
tory in state space that does not depend on the measurement data. That means it assumes
the trajectory is known in advance, such that the Kalman gain can be computed offline and
stored on a computer [33].
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4.2.2 Extended Kalman filter
The Extended Kalman filter (EKF) is one of the earliest extensions of the basic Kalman
filter and also probably the most widely used. Due to non-linearities in process dynamics,
in the measurements or both, linearization is needed in order to solve the Kalman filter
equations for these systems.

In the extended Kalman filter, the equations are expanded about the best current estimate
by using the partial derivatives of the nonlinear equations. The equations for the filter
algorithm can be found in 4.1.

Design matrices Q(k) = Gᵀ(k) > 0,R(k) = Rᵀ > 0

Initial conditions x(0) = x0

P(0) = E[(x(0)− x̂(0))(x(0)− x̂(0))ᵀ] = P0

H(k) = δh
δx |x=x(k)

Kalman gain matrix K(k) = P(k)Hᵀ(k)[H(k)P(k)Hᵀ(k) + R(k)]−1

State estimate update x̂(k) = x(k) + K(k)[y(k)− h(x(k), k)]

Error covariance update P̂(k) = [I−K(k)H(k)]P(k)[I−K(k)H(k)]ᵀ + K(k)R(k)Kᵀ(k)

Φ(k) = δf
δx |x=x̂(k)

State estimation propagation x(k + 1) = f(x̂(k),u(k), k)

Error covariance propagation P(k + 1) = Φ(k)P̂(k)Φᵀ(k) + Γ(k)Q(k)Γᵀ(k)

Table 4.1: Discrete extended Kalman filter [33].

Estimating the error states of the integrated system is a common approach for the PVT
problem. When error states are estimated in the filter we call it a indirect extended Kalman
filter. On the other hand, if the states are estimated directly in the filter it is a direct method.
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4.2.3 INS Error Models
Uncertainties in sensors and gravity field will cause the navigation parameters obtained
from the INS strapdown equations to contain errors. In order to obtain a good navigation
solution, these errors needs to be modeled and compensated for. Many models to describe
the time-dependent behaviour of INS sensor error has been developed. The choice of
which to use is mainly dependent on the application. Here, we will take a closer look at
the Phi-Angle Error Model.

The Phi-Angle Error Model is given in the true n-frame (navigation frame, here NED).
This is a classical approach that has the benefit of pertubating navigation parameters in
respect to the true n-frame.

Phi-Angle perturbation model can be written as follows [27]:

δṙn = −ωnen × δrn + δθ × vn + δvn (4.1)

δv̇N = Cn
b δf

b + Cn
b f b × φ+ δgn − (ωnie − ωnin)× δvn − (δωnie + δωnin × vn) (4.2)

φ̇ = −ωnin × φ+ δωnin −Cn
b δω

b
ib (4.3)

4.2.4 Sensor errors
In low-cost IMUs, the turn-on errors can be significant from time to time. In order to get
uncertanties down, we need to determine these errors. This is done as much as possible
through calibration. But even after calibration, specially in low-cost MEMS IMUs, there
will still exist error variations. Therefore we need to model this in the state vector of the
navigation filter in addition to the core variables (position, velocity and attitude errors).

Estimation of sensor errors is done by using simplified models. In reality, the error prop-
agation is more complicated than the models implemented. Modeling IMU sensor errors
can be done in a various ways, but modeling sensor bias and scale factor as shown in Equa-
tion 4.4 is a common approach. This is investigated to a deeper extend in [18].

The evolution of the sensor errors can be expressed as follows [27]:

ḃa = diag(cab)ba + wab, (4.4a)

ḃg = diag(cgb)bg + wgb, (4.4b)

ṡa = diag(cas)sa + was, (4.4c)

ṡg = diag(cgs)sg + wgs, (4.4d)

where cab, cgb, cas and cgs denotes the continous-time sensor error model parameters for
the random walk and the random constant. All w’s are first-order Gauss-Markov processes
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for their respective state.

The investegation of the behaviour of the sensor errors depends on the given application to
the system. If the system operation time is very short, one can consider treating all sensor
errors practically as constants. On the other hand, if the system is going to be in operation
over a longer period of time, the IMU error behaviour must be investigated further.

4.2.5 Filter design
In this Section we will take a further look at Kalman Filter design, and develop the discrete-
time extended Kalman filter as presented in 4.1. First, we will look at the discrete-time
system model, then we will dive into a linearized measurement model for the error state
model and look at the measurment space for the aiding sensors.

The linear continous-time model for the system is in the following form:

δẋ(t) = F(t)δx(t) + G(t)w(t), (4.5)

where F is the process error dynamics matrix, δx is the error state vector, G is the noise-
input mapping matrix and w is the noise vector.

Since strapdown inertial systems not are continous-time systems, but usually implemented
with a high-rate sampled data, we need a corresponding discrete-time form for the continous-
time form above 4.5:

δx(tk+1) = Φ(tk+1, tk)δx(tk) +

∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ, (4.6)

where the state transition matrix Φ is the first order approximation by using:

Φ(t) = eAt = I + At (4.7)

In abbriviated form, the system can be obtained:

δxk+1 = Φkδxk + wk, (4.8)

where Φk is the state transition matrix as before, and wk is the driven response at tk+1

due to the presence of the input white noise during current time interval [14].

In order to achive a well performing extended Kalman filter, the choice of Q is crucial. Too
small value for elements in Q will lead to overconfidence in the accuracy of the estimates
and, as a consequense, the filter will not pay attention to new measurements (Kalman gain
gets to small). This can cause filter divergence.
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4.3 Heave
Heave (vertical boat movement resulting from wave action) is especially destructive when
doing hydrographic surveys, as it affects the depth measurements directly. As GNSS have
high dilution of precision in the vertical axis, extra procation have to take place. To ensure
the best result INS computation together with tide tables is applied. The tide table is
applied to cancel out any biases in heave calculation. When good RTK is present, heave is
usually no issue.

4.4 Open-source software
There are many open-source communities around the world that develops sofware pack-
ages free to use. They often encourage users to contribute, which can be a great learning
possibiliy. Many of the these packages are generic and it can be hard to adapt functionali-
ties due to different hardware requirements. They are often best suited when working with
simulated datasets. They can be a great tool when learning about positioning systems and
as a supplement when developing a integrated system.

4.4.1 RTKlib
RTKlib is a open-source software package that provides a wide selection of navigation
and positioning possibilities. The software supports all major satellite constellations and
major data formats. It has both a command-line user interface (CLI) and a graphical user
interface (GUI). Executing GUI programs requires Windows platform, while the CLIs also
works for Linux [25]. It does not have support for integrating GNSS with a INS, though it
is on RTKLIBs To Do List [5]. RTKlib has two main modules; RTKNAV and RTKPOST.

RTKNAVI

RTKNAVI is a module for real-time position. It executes navigation processing in real-
time taking raw observation data of GPS/GNSS as inputs. The real-time module supports
a wide range of data formats such as u-Blox and NovAtel binary formats and has a wide
range of configuring possibilities. There is also function for converting from different
binary formats to RINEX format.

RTKPOST

If raw GNSS data is collected, it is possible to post-process the trace with RTKPOST. To-
gether with other inputs like precise ephemeris or correction messages, the accuracy of po-
sition can be improved. Data must be converted to RINEX format before post-processing.

4.4.2 INSTK
INSTK provides a toolkit for developing an interial navigation system. It consists of a
large number of octave/matlab scripts which implements the core navigation functions
and algorithms. It also includes integration of GNSS through aided INS.
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4.4.3 Mapping

Inspired by the success of Wikipedia, OpenStreetMap was created in 2004 with the aim
to create a free editable map of the world. Since the start it has grown to over 2 million
registered users. Map data is collected from scratch by volunteers performing systematic
ground serveys [? ]. The amount of work put into this project is significant.

For plotting posistion data in maps, there are several open-source track drawing web ser-
vices. One of them is uMap. uMap lets you create a map with OpenStreetMap layers and
easily embed them in other web based software solutions.

4.5 Current market

The current market in integrated positioning solution offers a wide range of products from
cheap all-in-one circuit boards to high-end systems containing state of the art INS with
GNSS integration. In this Section we will present a brief overview of whats offered.

4.5.1 Ublox NEO-M8L

The NEO-M8L is a very low cost GNSS receiver with integrated 3-axis gyroscope and
accelerometers[32]. It has an output rate up to 20 Hz, and can receive wheeltick-pulses
from external sensors, to estimate sensor biases during GNSS outage.

Figure 4.5: Ublox NEO-M8L

4.5.2 NovAtel

Figure 4.6 shows how the NovAtel is integrated in the WBMS. The NovAtel 615 is
for GNSS attitude determination with second antenna, and the MEMS Interface Card is
mounted inside the WBMS for powering and time-sync the STIM300.
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Inside SIU

Inside WBMS

STIM300                            
MEMS Interface
Card

NovAtel 615 NovAtel OEM628

Pos, vel, att

IMU data

Figure 4.6: NovAtel integrated solution

4.5.3 Applanix Wavemaster II
The Applanix Wavemaster II is similar to Norbit’s Applanix integrated system in Section
1.1.2. It is often used as external INS together with the WBMS. It consists of two GNSS
antennas and one IMU. It outputs Real-time (up to 200Hz) over ethernet. It can do Tightly
coupled integration, and RTK.

Figure 4.7: Applanix wavemaster II
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Chapter 5
Development

This Chapter describes how a device containing a dual-frequency, dual-antenna GNSS
receiver and a IMU was developed. The device will be refered to as the Navigation Mod-
ule. The main intention of the module is to get time-synced GNSS and IMU measurements
wich will ease the process of implementing a Kalman filter later. In addition there will also
be embedded a Odroid XU4, which is a small computer for data gathering and processing
purposes.

5.1 Design notes

Real-time          
Processor          

Time tagged
IMU data

IMU data @ 125 Hz

STIM300                            

Novatel 617D Odroid XU4                          

$GPZDA, PPS @ 1Hz           

#BESTPOSA, #BESTVELA,
#HEADINGA @ 20 Hz EthernetRTCM 2.3

Figure 5.1: Block diagram of components and data flow in the setup
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5.1.1 Interfaces
• NovAtel OEM617D to Odroid XU4

The Odroid and the NovAtel is connected through LVTTL.

• NovAtel OEM617D to RTK source
One of the LVTTL ports on the NovAtel goes through a RS232 transceiver and is
connected to a DSUB9 on the front panel. Any RTK source with RS232 can be
used.

• NovAtel 617D to Real-time processor
A LVTTL and PPS output from the NovAtel goes directly to the Real-time proces-
sor.

• IMU to Real-time processor
This data consists of RS422 and TOV (Time of Validity).
The RS422 (TX+) is used as output to the Real-time processor.
The TOV goes directly into Real-time processor, see Figure 5.2 for more details.

Figure 5.2: The TOV(yellow) and TX(green) outputs @ 125Hz

• Real-time Processor to Odroid
The TTL output goes through a TTL-232R-3V3 and into a USB port on the Odroid.

• Output from Odroid
The Odroid is connected to the world via 100Mbit ethernet.

5.1.2 NovAtel OEM617D
The GNSS receiver used in the Navigation Module is a NovAtel OEM617D. It has dual-
antenna input and supports dual-frequency for GPS, GLONASS, BeiDou and Galileo.
OEM617D comes on a PCB with antenna and communication (COM) connectors mounted.
There are 3 LVTTL for communication with the unit. Some key figures from NovAtel
datasheet on performance are mentioned in 5.1
The receiver uses the OEM6 family firmware and has a wide range of real-time output
logging options. In this experiment, there where used NovAtel ASCII log sentences for
position, velocity and attitude. The sentences are timetagged, and they contain information
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RMS Unit
Single point L1/L2 position accuracy 1.2 m
DGPS position accuracy 0.4 m
RTK position accuracy 0.01 + 1ppm m
Yaw accuracy 2m baseline 0.08 ◦

Velocity accuracy 0.03 m/s

Table 5.1: NovAtel OEM617D performance key figures.

about the measurement accuracy in terms of a standard deviation. The attitude measure-
ments contains yaw and pitch. The receiver also has possibilities for outputting log in a
binary format. For detailed description see [24].

The setup in the Navigation Module requires two LVTTL COM ports and a PPS output
from the GNSS receiver board. If RTK is used during logging, all three COM ports are
required. It is configured as follows:

• COM1: NMEA $GPZDA @ 1 Hz
Sent to real-time processor for timetagging purposes.

• COM2: NovAtel ASCII log @ 20 Hz
A variety of NovAtel ASCII setences for logging position, velocity and attitude on
computer.

• COM3: RTK input, RTCM 2.3 @ 1 Hz and $GPGGA output
RTK input to receiver to enchance the precision of data derived from GNSS.

• PPS @ 1 Hz
The PPS is configured to 1 Hz, 100ms pulse length, rising edge. It is used by the
Real-time Processor for timing precision.
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5.1.3 Real-time processor
The Real-time processor (AT91SAM7S256) is mounted on a development board (Olimex
SAM7-H256). The development board is fitted with a 18.432 Mhz crystal, for precise
timing. The Real-time processor is used to timestamp all data packets from the IMU.

During test of the timetagging function, it was observed that the crystal accuracy to keep
track on time between each PPS was not sufficient. The number of ticks in crystal per
second, varies enough to end outside the second marks. According to the datasheet the
crystal’s frequency may deviate with 30ppm. That means the counter could end outside
its bounds during longer times of operation. This will cause non linarities in the IMU
datastream. An adaptive tick rate has been implemented to avoid these situations. The tick
rate is set to number of ticks between two PPS edges, which is the reference for timing.

• UART1
Receives $GPZDA from GNSS.

• UART2
Receives IMU data from IMU.
Delivers Time stamped IMU data to Odroid.

• PPS
Used as a timestamp for the $GPZDA.

• TOV
Used as a timestamp for the IMU data.

5.1.4 STIM300
The intertial measurement unit (IMU) used in the Navigation Module is Sensonors STIM300.
Expected performance is seen in Table 5.2. It outputs the following:

Gyros Accelerometers
Bias Range ±250◦/h
Bias on/off repeatability ±0.75mg
Bias instability 0.5◦/h 0.05mg

Random walk 0.15◦/
√
hr 0.06m/s/

√
hr

Table 5.2: Sensonor STIM300 performance key figures[26].

• Rate
X, Y and Z-axis gyro output.

• Acceleration
X, Y and Z-axis accelerometer output.

• TOV
Indicates the time of when the datagram should be timestamped.
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5.1.5 Odroid XU4
The Odroid XU4 from Hardkernel co., Ltd is a single board computer. It runs Debian
”Wheezy” GNU/LINUX 7. It has a 8-core processor from ARM, 2 GB DDR3 RAM and
should be able to run a Kalman filter in real-time.

While testing the logging software with both GNSS receiver and IMU plugged in, it was
discovered a lot of discrepancies in measurements from IMU. Approximately every 100th-
300th measurement was a spike outside valid measurement range. This happens only when
running simuntanously from both UART ports, called SAC0 and SAC2. It could have been
a kernel interrupt or hardware related bug. Further investigation to find the core of the bug
has not been done, but the problem was solved by using a FTDI UART-USB adapter for
IMU data.

Unfortunately, the stock Linux kernel for ARM that is precompiled does not include all
hardware drivers which is needed for interfacing with serial port adapters. A custom Linux
kernel with all drivers enabled was compiled.

5.2 Implementation

5.2.1 Real-time firmware
The software is intended for time-tagging of the IMU-data, so that the IMU-data can be
synced with GNSS-data.

STIM300 interfacing

Sensonor STIM300 transmits measured data as packages of fixed format, called data-
grams. Packages are transmitted at intervals given by the sample rate which can be set
by the user (min. 125Hz, max. 2000Hz). For this experiment a sample rate of 125 Hz
is used. Internally in the STIM300, the sample rate is 2000Hz. The outputted values at
125Hz is averaged over the internal sample rate. The datagram is binary coded, and needs
to be decoded in the receiver end. STIM300 provides a selection of different measure-
ments, such as gyro, accelerometer, inclinometer and sensor temperatures. See [26] for
more information on datagram formats and interfacing with the unit.

Time tagging of IMU data

For best possible accuracy of IMU and GNSS data, they need to be synced in time. The
IMU has no timing, so in order to get time synchronisation of IMU data we need to times-
tamp datagrams transmitted from STIM300. For that purpose an Atmel SAM7S256 micro-
controller is used. It has two Universal Synchronous/Asynchronous Receiver/Transmitter
(called USART1 and USART2 from now) channels [13]. One channel is used to receive
GNSS/timing (USART1) info and the other IMU datagrams (USART2) as indicated in
Figure 5.1.
A pulse per second (PPS) provided by the GNSS receiver is used as second mark for
precise timing. When a PPS is received by the microcontroller, it resets an internal counter
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Init

Idle

TOV PPS GPZDA

Send saved
timestamp.

Bypass RX to 
TX on UART.

Rising edge?Falling edge?

Decode GPZDA
message.

Reset internal
second  

float counter.

Save timestamp.

Figure 5.3: Flowchart of timetag software.

which keeps track of the decimal point of the second by using the internal system clock.
The counter has 16 bits which theoretically will give a resolution of

1

216
s = 1.53 · 10−5s (5.1)

but that depends on a desired clock frequency offered by the main system clock. The
best resolution we achived with our was given by some division of the system clock. It
has 46,924 cycles per second, which gives the resolution 0.0000213 second. This is a
satisfying resolution compared to the output rate of IMU with a resolution of

1

125
s = 8 · 10−3s (5.2)

As we can see from Figure 5.2 TOV signal is normally high, and drops low when the data-
gram is being transmitted. From [26] we know that TOV is set low when the datagram is
ready to be transmitted.

The intention with USART2 in the first place was to continously read data from the chan-
nel while TOV is low, and then append the desired timestamp. The microcontroller was
not able to handle the data rate while it also was supposed to read from the other USART
channel and save timestamp.

Solution to this problem was to set the USART2 channel in bypass mode (See [13] for
further information on different operation modes of AT91SAM7 USART channels) while
TOV is low. Then, no data is handled by the code - everything is bypassed from RX to TX.
When the rising edge of TOV is received (which means STIM300 is finished transmitting
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datagram), bypass mode is turned off and the timestamp is sendt in ASCII encoding.

The microcontroller continously reads USART line from GNSS and checks for incoming
GPZDA messages. GPZDA is a NMEA sentence that provides GNSS timing data. For
more information on NMEA sentences and their structure, see [4]. GPZDA is transmitted
by the GNSS receiver after PPS is sent. In order to know the correct time simultaneously
as the PPS is received, the previous received timestamp from GPZDA needs to be incre-
mented on incomming PPS. Figure 5.4 demonstrates a PPS and GPZDA signal stream.

Figure 5.4: PPS (yellow) and GPZDA (green) signals.

A flowchart diagram of the operating software for timetagging is shown in Figure 5.3. An
internal interrupt handler of the microcontroller controls the scheduling when it receives
inputs on different channels. Receiving PPS has the highest priority, then follows TOV.
Reading from USART1 happens while no interrupts are received.

Two LED indicators are connected to the microcontroller and mounted above each con-
nector as shown in Figure 5.6. The intention with the LED lights is to clearify for the
user in which operational mode the Navigation Module is in. LED indicator behaviour is
described in Table 5.3. Since datagrams are bypassed by the microcontroller, IMU LED
indicates if TOV signal is received.

LED Steady on Flash @ 1Hz Flash @ 5Hz Off
PPS No GPZDA Timing OK No PPS No GPZDA or PPS
AUX TOV OK No TOV

Table 5.3: LED indicator behavior.
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5.2.2 Hardware
The module was built in a water-tight aluminium housing found on the shelf at Norbit.
It was already fitted with all the needed mounting holes for connectors and an interface
board that eased the integration with the hardware used in this thesis. Cables, mounting
holes and some PCB had to be custom built to connect all the transmission lines.

Transmission line protection

To ensure no high currents on the data lines, 1KΩ resistors were added in series with the
data lines.

Power

The power supply (Traco Power TEN 8-2411WI) is galvanic isolated and rated for 9-36
VDC. During operation, the module runs on ≈ 12W. That gives more than 50 hours of
operation on a standard car battery (12V, 40Ah).

Figure 5.5: The inside of the Navigation Module
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Figure 5.6: The outside of the Navigation Module.
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5.3 Long term static test of IMU
One of the main drawback of MEMS based IMUs is the instability over period of time. By
sampling data from the IMU under static circumstances over a long time period, the bias
stability can be investigated. Data samples from during 5 hour long time period is used.
Sampling frequency was, as mentioned earlier in this Chapter, 125 Hz.

Equation 3.11 was used on the dataset, to obtain Figure 5.9 and 5.10.
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Figure 5.7: Gyro averaging values of τ = 1min.

Figure 5.7 and 5.8 shows snippets from the dataset when computing Allan variance from
respectively x axis gyroscope and accelerometer. Figures shows averaging values with bin
size (τ ) 1 minute.

Different error sources can be read out from the Allan deviation plot:

• Quantization noise: slope -1

• Velocity random walk: slope -0.5

• Bias instability: slope 0

• Acceleration random walk: slope 0.5

• Acceleration ramp: slope 1
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Figure 5.8: Accelerometer averaging values of τ = 1min.
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Figure 5.9: Root Allan variance of static gyro measurements

Parameter Measurement x y z units
Angle Random Walk AllVar plot at T = 1 sec 0.15 0.15 0.17 ◦/

√
hour

Bias Instability AllVar plot at slope = 0 1.7 1.3 0.9 ◦/h
Correlation time Block size at slope = 0 200 300 500 s

Table 5.4: Spectral density of gyroscopes, reading from Figure 5.9
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Figure 5.10: Root Allan variance of static accelerometer measurements

Parameter Measurement x y z units
Vel Random Walk AllVar plot at T = 1 sec 0.072 0.06 0.06 m/s/

√
hour

Bias Instability AllVar plot at slope = 0 0.0004 0.0004 0.0004 m/s2

Correlation time Block size at slope = 0 100 100 100 s

Table 5.5: Spectral density of accelerometers, reading from Figure 5.10

By analyzing Figure 5.9 and 5.10 bias instability can be estimated.

By comparing Tables 5.2, 5.4 and 5.5, it is concluded that all measurements are close to
be as specified, except gyro bias instability. It was measured to be 2-3 times larger than
specified.

The testing conditions while sampling static data was probably not ideal and the duration
should have been longer. There may have been som small vibrations picked up by the
IMU which have affected the results. The test in STIM300 datasheet [26] assumes a test
temperature of 25◦C. Room temperature during static data sampling was around 23◦C.
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5.4 Long term static test of GNSS
To get a understanding of the GNSS performance a long term static test was performed.
Two roof-mounted antennas with 0.75m baseline were used and CPOS(RTK) from Kartver-
ket was connected. The test setup can be seen in Figure 5.11, and the results in Figure 5.12,
5.13, 5.14 and 5.15. The test ran for approximately 510 minutes at 20 Hz and consists of
612237 data points. The key figures are gathered in Table 5.6 and are within the specifica-
tion of the NovAtel OEM617D[22].

Pos, vel att @ 20Hz

PC

 $GPGGA @ 1 Hz

RTCM 2.3 @ 10Hz

Odroid XU4
Novatel 617D

Figure 5.11: Setup for long term GNSS static test
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Figure 5.12: Heatmap from long term static test GNSS
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Figure 5.13: Histogram of position in long-term static test GNSS
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The horizontal velocity is calculated from ’hor spd’ and ’trk gnd’ where

vn = sin(trkgnd)(horspd) (5.3)

and
ve = cos(trkgnd)(horspd) (5.4)
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Figure 5.14: Histogram of velocity in long term static test GNSS
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Figure 5.15: Histogram of attitude in long term static test GNSS
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The histogram plots in Figure 5.13, 5.14 and 5.15 can be well fitted under a probability
density function to underline that all are close to be Gaussians. This is a fundamental
property, and a key reason why Kalman filters are computationally feasible.

Parameter Standard deviation Unit
Latitude 0.00649 m
Longitude 0.01063 m
Height 0.01506 m
North velocity 0.01100 m/s
East velocity 0.01177 m/s
Down velocity 0.01477 m/s
Pitch 0.40377 deg
Yaw 0.15980 deg

Table 5.6: Standard deviation of position, velocity and attitude during long-term static test.

As we can see from all the distribution plots of both position, velocity and attitude they
are all close to Gaussians with an expected value:

E[X] = 0

and a standard deviation. Key figures from the long-term test can be found in Table 5.6.

5.5 Data integrity
Corrupt data may cause a degraded system. There are several approaches to the data
integrity problem. Mainly a hardware and a software approach. The hardware part of data
integrity has not been emphasized during the implementation, though common sense was
used during placement of components. With the means of placing noisy components such
as power supplies as far away as possible from sensitive transmission lines.

On the other hand, the software part has been laid much emphasis on. In the system, there
are data integrity checks on both transport layer and application layer. On the transport
layer, the STIM 300 supplies a Cyclic Redundancy Check (CRC). Both the NovAtel GNSS
receiver and the STIM 300 IMU provides various kinds of status messages which makes
the receiver able to filter on the message quality in software filters.

5.5.1 Cyclic Redundancy Check
Cyclic redundancy check (CRC) is an error detection technique that was invented in 1962
and is widely used in various forms in network and storage devices to detect accidential
changes to raw data, i.e. bit errors. Protocols like TCP uses CRC checksums. The aim of
an error detection technique is to make the receiver of a message transmitted over a noisy
channel to determine whether the message has been corrupted during the transmission
[34]. In order to do this, the transmitter constructs a value (called a checksum) that is a
function of the message and appends it to the message. A CRC is called a n-bit CRC when
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its checksum is n bits long. For each n-bit CRC, there are several options of checksum
polynomial. CRC uses polynomial arithmetic for computing a checksum of the message
being transmitted.

The STIM 300 provides a CRC checksum at the end of each datagram. This checksum is
32 bits, and the method has the name CRC-32/MPEG-2. This basically tells the receiver
which polynomial and what conditions that is used to compute the checksum value. With
all conditions right, it is trivial to the user how to check for data transmission errors.

Like the STIM 300, the NovAtel OEM617D also provides a 32-bit CRC for data verifica-
tion. The NovAtel does not use the same polynomial for calculation, it uses one named
CRC-32/ADCCP.

CRCs are not suitable for protecting agains intentional data corruption. There is no au-
thentication, a man-in-the-middle can easily modify the data and recompute the CRC.
CRCs are also reversible functions. In closed systems like the one implemented in this
thesis, these problems are not considered critical. Since it is easy applicable and computer
cost-efficient, the method is suitable for detecting accidential changes to raw data.

5.5.2 Software filters
In addition to Cycle Redundancy Check (CRC), the STIM 300 has a status byte for each
sensor. So even though the checksum calculation is correct, received data might not be
reliable. This makes it possible to filter out bad measurements of individual sensor from
the IMU.

As mentioned earlier in this Chapter, NovAtel OEM617D provides ASCII messages for
position and velocity updates. These messages contains various status flags explaining the
message quality. A software filtration algorithm can be used to filter out bad messages.
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5.6 Conclusion
In the end, software and hardware performed as intended, and the experiment could take
place. We will in this Section go further into some lessons learned from building a hard-
ware module and also the importance of a good analysis of sensors before they are inte-
grated to higher-level applications.

5.6.1 Data integrity
The implementation of CRC in the receiver software seems to be important. When ana-
lyzing the 5 hour static test data set, a quick verification of how corrupt data could have
been sent to the Kalman filter without a CRC could have looked was done. It showed
angular rates beyond 200deg/sec and accelerometer values exceeding 10g when the unit
was stationary. This kind of corrupt data could have caused trouble for the Kalman filter
behaviour. During the static test, the density of bad CRC was 4 ppm.

5.6.2 Timetagging of IMU data
By making the main clock of microcontroller run at a frequency divisible by a higher bau-
drate, the reading and writing from USART is faster and ensure it to be less busy.

Sending timestamp in ASCII encoding makes the data package unnecessary large (16
bytes). If the timestamp had been sent binary coded as in unix time format with a floating
part it could have been 6 bytes (32 bit unix time + 16 bit floating part).

5.6.3 Sensor analysis
Long-term static test of both NovAtel GNSS receiver and Sensonor IMU has proved that
the manufacturers specification might not be correct. The static test of NovAtel OEM617D
shows close to Gaussian distributed datasets with negligible offset and standard deviation
withing valid range according to datasheet. During static test of STIM300 IMU, charac-
teristics of the sensors was determined. Angular random walk, was found not to be within
specified range according to datasheet specification. However, as the test setup and envi-
roment were not perfect no further conclusion can be made.

This makes a good foundation for integration and Kalman filter implementation using the
the given GNSS receiver and IMU. Sensor characteristics derived for all sensors will be
the base for the Kalman filter implementation and tuning.
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During this Chapter a detailed description of how data was gathered, processed and an-
alyzed will follow. The intention was to use the hardware and software developed in
Chapter 5 to implement a uncoupled and loosely coupled Kalman filter.

As a performance measure, a field test comparing the integrated system developed in this
thesis with a commercial off-the-shelf (COTS) integrated system from Applanix has been
conducted. The Applanix system has a good standing in marine section and is considered
to be a good benchmark for performance tests.

6.1 Test setup

6.1.1 Navigation Module
The Navigation Module described in Chapter 5 has been used for all the data gathering in
this experiment. The flow of data is shown in Figure 6.1. Navigation Module with IMU
inside was mounted on a rigid aluminum frame containing two GNSS antennas with a
baseline of 1.35 meters. An illustration of the frame can be seen in 6.3.

The logging computer embedded in the Navigation Module used for data gathering from
IMU and GNSS can be interfaced through ethernet. Logging is easily started and moni-
tored over a SSH session.
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Real-time          
Processor          

Time tagged
IMU data

IMU data

STIM300                            

Novatel 617D
Computation                        
module                                

Timing

Pos, vel, att
Pos, vel attRTCM 2.3

Figure 6.1: Data-flow between components.
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6.1.2 Alignment of the IMU
The alignment of the IMU is shown in 6.3. The IMU frame and body frame is the same.
The simple rotation matrix between IMU and BODY frame is shown in equation 6.1.

Navigation module                  

IMU

Zimu

Zbody

Yimu

Ybody

Ximu

Xbody

Figure 6.2: The rotation between IMU and BODY-frame

Rbody
imu =

1 0 0
0 1 0
0 0 1

 (6.1)

ωbib = Rbody
imuωimu (6.2)

The IMU measures the rotational velocity of the BODY frame relative to the ECI frame
decomposed into the BODY frame.
The same procedure is done on the acceleration measurements.

fb = Rbody
imu fimu (6.3)
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6.1.3 Offsets

The position computed by the GNSS-receiver is computed at the primary antenna. The
secondary antenna is for computing yaw and pitch. The transformation between the GNSS
and IMU is given by Equation 6.4

Primary GNSSSecondary GNSS

Navigation Module

X

Y

Z

Figure 6.3: The transformation between GNSS and BODY-frame

TGNSS
IMU =


1 0 0 0.74
0 1 0 0
0 0 1 0.02
0 0 0 1

 (6.4)

6.1.4 Translation between IMU and GNSS

Position

pimu = pGNSS +

 1
M+h 0 0

0 1
(N+h)cosϕ 0

0 0 −1

Rb
n

0.74
0

0.02

 (6.5)

Velocity

vimu = vGNSS + S(ω)

0.74
0

0.02

 (6.6)

Where S(ω) is the skewmatrix of the measured angular velocity, found by using Euler
derivative on the previous estimates.

Attitude

Rimu = RGNSS (6.7)
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6.2 Determining variances

6.2.1 Determining process noise
The Q-matrix is the matrix for the dynamic process noise and reflects how much noise
from the IMU is affecting the process. Statistical data gathered makes a good foundation
for determine those values. The elements of the spectral density is derived in Chapter 5
and can be found in Table 5.5 and Table 5.4. Be aware that the filter is using other units.

Qk =


03 03 03 03 03

03 qa 03 03 03

03 03 qg 03 03

03 03 03 qba 03

03 03 03 03 qbg

 (6.8)

qa =

0.00122 0 0
0 0.0012 0
0 0 0.0012

 (6.9)

qg =

(4.36× 10−5)2 0 0
0 (4.36× 10−5)2 0
0 0 (4.84× 10−5)2

 (6.10)

The spectral density of the Gauss-Markov process is computed using equation 6.11.

qbai =
2σ2

bai

τbai

qbgi =
2σ2

bgi

τbgi
(6.11)

qba =


2(4×10−4))2

100 0 0

0 2(4×10−4))2

100 0

0 0 2(4×10−4))2

100

 (6.12)

qbg =


2(8.24×10−6)2

200 0 0

0 2(6.30×10−6)2

300 0

0 0 2(4.85×10−6)2

500

 (6.13)
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Setting values in Q-matrix is a crucial step when implementing a Kalman filter. If Q is to
small then the filter will be overconfident in its prediction model, and will diverge from
the actual solution. If it is to large then the filter will be unduly influenced by the noise in
the measurements and perform sub-optimally.

6.2.2 Initial process variance
The initial process variance is determined by characteristics given in datasheets, long term
static tests and manual tuning on a variety of datasets.

P0 =


σ2
δr 03×3 03×3 03×3 03×3

03×3 σ2
δv 03×3 03×3 03×3

03×3 03×3 σ2
δe 03×3 03×3

03×3 03×3 03×3 σ2
δba

03×3

03×3 03×3 03×3 03×3 σ2
δbg

 (6.14)

P0 is assumed diagonal for lack of sufficient statistical information to evaluate its off-
diagonal elements.

• σδr
Set from the reported standard deviation of the first position estimate from the GNSS
receiver. Typical accuracy is 0.01 to 0.02 meters.

• σδv
Set to 0.03m/s, according to expected accuracy [24].

• σδe
Roll is set to 0.8◦.
Pitch and yaw is set from the reported standard deviation of the first yaw estimate
from the GNSS receiver. Typical accuracy for pitch is 0.6◦ and 0.4◦ for yaw.

• σδba

Set to 0.05m/s2, wich is expected bias from the IMU [35]. It is about 4 times higher
than specified in [26]

• σδbg

Set to 0.0012rad/sec, wich is specified max bias from the IMU [26]. It is about 2-3
times higher than measured in [35].
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6.2.3 Measurement noise matrix
It is required that the measurement noise matrix is updated according to the standard de-
viation reported from the GNSS receiver for each measurement. Standard deviation of the
position and attitude is reported continously by the GNSS receiver. The velocity standard
deviation is not reported continously by the receiver, but is set to expected value 0.03m/s
according to [24]. 0.03m/s is a larger value than obtained during the long-term static test
of GNSS velocity in Chapter 5. Since we do not have any statistical data from GNSS
receiver during movement, the value from NovAtel datasheet is used.

R =

 rp 03x3 03x2

03x3 rv 03x2

02x3 02x3 ra

 (6.15)

rp =

σ2
µ 0 0
0 σ2

l 0
0 0 σ2

h

 (6.16)

rp =

σ2
µ̇ 0 0
0 σ2

l̇
0

0 0 σ2
ḣ

 (6.17)

ra =

[
σ2
ψ 0

0 σ2
θ

]
(6.18)

6.2.4 Measurement mapping matrix
The H-matrix indicates which states that are observable through measurements provided,
in this case, by the GNSS receiver. This matrix shows that position, velocity, pitch and
yaw is observable through measurements.

H =


I3 03 0 0 0 06

03 I3 0 0 0 06

03 03 0 1 0 06

03 03 0 0 1 06

 (6.19)
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6.3 Kalman filter implementation

This Chapter shows how a discrete extended Kalman filter is integrated to the hardware
and implemented. A mathematical description for a discrete-time extended Kalman filter is
shown in Chapter 4.2, and an equation overview can be found in 4.1. The intention of this
Section is to show the integration of the GNSS receiver and the IMU to those equations.
In figure 6.4 the filter flow is shown in form of a Kalman filter state machine.

Init from
GNSS/IMU

Waiting for
data

Strapdown data

Predictor Corrector
GNSS data  

Figure 6.4: State machine of a discrete extended Kalman filter.

6.3.1 State vector

The state vector consists of nine navigation parameters and six sensor bias parameters.
For the navigation parameters we have three position errors, three velocity errors and three
attitude errors. For the sensor bias parameters we have three gyro bias estimates and three
accelerometer bias estimates. The complete state vector is given by 6.20.

x =
[
δr δv δe ba bg

]ᵀ
(6.20)

where

δr =
[
δrN δrE δrD

]ᵀ
(6.21)

δv =
[
δvN δvE δvD

]ᵀ
(6.22)

δe =
[
δφ δθ δψ

]ᵀ
(6.23)

ba =
[
bax bay baz

]ᵀ
(6.24)

bg =
[
bgx bgy bgz

]ᵀ
(6.25)

is position, velocity and attitude error followed by accelerometer and gyroscope biases
respectively. Attitude is given in the well-known Euler angles.
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6.3.2 Initialization
Initialization of the filter is important for future filter performance. The initial state as well
as the initial belief in the state needs to be computed. A bad initial estimate may cause
filter divergense or sub-optimal performance.

The strapdown equation is initialized with the initial estimate from the GNSS. Initial roll
is estimated by assuming that the initial force contains only gravity.

The filter state estimate x̂ is initially modelled as:

x̂ =
[
015×1

]
(6.26)

The process noise matrix Q is from Equation 6.8, the measurement mapping matrix in H
is stated in Equation 6.19. P0 is initial covariance matrix and its initialization is showed
in Equation 6.14.

6.3.3 Prediction
When new IMU-data is received, a new prediction of the state estimate and the estimated
covariance is done in the Kalman filter. This is done by applying the propagation equations
in 4.1:

x(k + 1) = f(x̂,u(k), k) (6.27)

Φ(k) = I + f(x̂,u(k), k) (6.28)

P(k + 1) = Φ(k)P̂Φᵀ(k) + Q(k) (6.29)

6.3.4 Correction
GNSS receivers usually transmit PVT data at a lower rate than IMUs.
By applying the update equations in 4.1, a new Kalman gain and a correction of the state
estimate and the estimated covariances is being calculated based on a GNSS measurement
update with its associated variances. This step is done when GNSS-data is received.

S(k) = HP(k)Hᵀ + R(k) (6.30)

K(k) = P(k)HᵀS(k)−1 (6.31)

P̂(k) = [I−K(k)H]P(k)[I−K(k)H]ᵀ + K(k)R(k)Kᵀ(k) (6.32)
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z(k) = ss(k)− y(k) (6.33)

where ss is the current state of the strapdown equations. y(k) is the GNSS measurements.
Then we have the new state estimate by:

x̂(k) = x + K(k)[z(k)− x(k)H] (6.34)

6.3.5 Error dynamics

Process error dynamics is given by the F matrix. This is the model where all state errors
are propagated. It is a somehow complex matrix, so it has been split in to sub matrices for
clearer presentation. The derivation of the error dynamics equation is shown as written in
[27].

F =


Frr Frv 0 0 0
Fvr Fvv Fve Rb

n 0
Fer Fev Fee 0 Rb

n

0 0 0 ḃa 0

0 0 0 0 ḃg

 (6.35)

Submatrices in F are listed below:

Frr =

 0 0 −vN
(M+h)2

vEsin(ϕ)
(N+h)cos2(ϕ) 0 −vE

(N+h)2cos(ϕ)

0 0 0

 (6.36)

Frv =

 1
M+h 0 0

0 1
(N+h)cos(ϕ) 0

0 0 −1

 (6.37)

Fvr =


−2vEωecos(ϕ)− v2E

(N+h)cos2(ϕ) 0 −vNvD
(M+h)2 +

v2Etan(ϕ)
(N+h)2

2ωe(vNcos(ϕ)− vDsin(ϕ)) + vNvE
(N+h)cos2(ϕ) 0 −vEvD

(N+h)2 −
vN tan(ϕ)
(N+h)2

2vEωesin(ϕ) 0
v2E

(N+h)2 +
v2N

(M+h)2 − 2G
R−h


(6.38)
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Fvv =

 vD
M+h −2ωesin(ϕ)− 2vEtan(ϕ)

N+h
vN
M+h

2ωesin(ϕ) + vEtan(ϕ)
N+h

vD+vN tan(ϕ)
N+h 2ωecos(ϕ) + vE

N+h
−2vN
M+h −2ωecos(ϕ)− 2vE

N+h 0


(6.39)

Fve = skew(f) (6.40)

Fer =

 −ωesin(ϕ) 0 −vE
(N+h)2

0 0 vN
(M+h)2

−ωecos(ϕ)− vE
(N+h)cos2(ϕ) 0 vEtan(ϕ)

(N+h)2

 (6.41)

Fev =

 0 1
N+h 0

−1
M+h 0 0

0 −tan(ϕ)
N+h 0

 (6.42)

Fee =

 0 −ωesin(ϕ)− vEtan(ϕ)
N+h

vN
M+h

ωesin(ϕ) + vEtan(ϕ)
N+h 0 ωecos(ϕ) + vE

N+h
−vN
M+h −ωecos(ϕ)− vE

N+h 0

 (6.43)

Rb
n =

 c(ψ)c(θ) s(ψ)c(θ) −s(θ)
−s(ψ)c(ϕ) + c(ψ)s(θ)s(ϕ) c(ψ)c(ϕ) + s(ψ)s(θ)s(ϕ) c(θ)s(ϕ)
s(ψ)s(ϕ) + c(ψ)s(θ)c(ϕ) −c(ψ)s(ϕ) + s(ψ)s(θ)c(ϕ) c(θ)c(ϕ)

 (6.44)

ḃa =

 1
τbax

0 0

0 1
τbay

0

0 0 1
τbaz

 (6.45)

ḃg =


1

τbgx
0 0

0 1
τbgy

0

0 0 1
τbgz

 (6.46)

where N is given by:
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N =
6378137(1− 0.08182)

((1− 0.08182)sin2(ϕ))1.5
(6.47)

and is the radius of curvature in prime vertical. The meridian radius of the curvature in
prime horisontal is given by M :

M =
6378137

((1− 0.08182)sin2(ϕ))0.5
(6.48)

and is used to translate from latitude and longitude from meters to radians.

Earth rotation is denoted by ωe. It is assumed to be constant with the value:

ωe = 7.292115× 10−5rad/sec (6.49)

For gravitation model, the following is used:

G = gd(
R

R+ vN
)2 (6.50)

where:
R =

√
NM (6.51)

is the Gaussian mean Earth radius of curvature[27], and gd is the normal gravity at h = 0.
This given by the STIM300 datasheet to be 9.80665ms2 .

6.4 Data gathering
The rigid frame shown in Figure 6.3 was mounted to a inflatable boat with a small motor,
and the equipment were powered using batteries. In order to get some realistic challenging
situations a tour up and down the river Nidelva has been done in addition to a roundtrip on
the fjord. Due to several bridge passes and narrow straits in the river, the GNSS coverage
were all from poor to absent. This will be presented in later sections. The tour taken up
the river can be seen in Figure 6.5.

When sailing on the fjord, there were quite some more dynamics with rapid manouvering
and some mild seas. Datasets from the fjord has been used with most of the filter perfor-
mance analysis.

The results from different setups and filters are usually presented as graphs comparing two
or more systems. To avoid confusion, graph colors for the respective systems are consis-
tent. The colors used are found in Table 6.1. Also, in some cases there is a colored area
around the graph. This area indicates one standard deviaton from the result.
In the following chapters, different cases will be presented. A uncoupled Kalman filter
implementation will first be presented, followed by a loosely coupled filter. Finally, a
head-to-head performance analysis with the Applanix Wavemaster II is presented.
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Figure 6.5: Overview of route up the river Nidelva

System Graph color
Kalman filter
NovAtel GNSS receiver
IMU strapdown equations
Applanix Wavemaster II

Table 6.1: Graph colors overview
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6.5 Uncoupled Kalman filter
This Section describes how the uncoupled filter was implemented, results and discussion.

6.5.1 Results
The filter is able to follow the GNSS receiver on position and velocity. However, as the
IMU strapdown equation drifts of at the speed of sound after less than 300 seconds the
error is nonlinear and is hard to keep track of. Changes in attitude is especially hard to
keep track of, as the IMU strapdowns frame differs from the real frame.
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Figure 6.6: Uncoupled filter velocity

6.5.2 Discussion
Letting the IMU strapdown equation drift off is unstable, and a feedback from the Kalman
filter should be implemented. This can be done by changing coupling scheme to a loosely
coupled scheme, which introduces a feedback loop. In the next Section this will be done.
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Figure 6.7: Uncoupled filter attitude
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6.6 Loosely coupled Kalman filter
The uncoupled filter from previous Section has been extended to contain a feedback loop
for the IMU navigation equations. The strapdown state is updated by the corrector, and
the error estimate is set to zero. The bias estimate is kept in the state matrix and runs in a
open loop.

6.6.1 Tuning

When using the tuning parameters from Chapter 6.2, the filter is unstable. See Figure 6.8
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Figure 6.8: Unstable roll estimate

This is a divergence problem, and they are commonly caused by round-off errors, gross
modelling errors or observability problems[14].

Observability of INS with GNSS multi-antenna system is proven to be observable[28] and
is not considered an issue.

The Bayes method shown in Equation 6.32 will always produce symmetric results and
is the most important way of avoiding divergence due to computational frailties [14]. All
values in the Kalman filter is computed using numpy.float64, which is double precision
float: sign bit, 11 bits exponent, 52 bits mantissa. It ensures minimal round-off errors.

Gross modelling errors may cause divergence because of inaccurate modeling of the pro-
cess being estimated[14]. This occurs when the process does not behave as the Kalman
filter is ”told”. The obvious solution for this type of divergence problem is always to insert
som process noise. It can cause a suboptimal filter, but makes a much safer filter than
otherwise.

By increasing qa and qg to 2σ the Kalman filter became stable. Further tuning of R and
P0 was also tried without satisfying results.

6.6.2 Results

A Kalman filter can be considered good if input states and filter states are within eachothers
field of variance. As seen in Figure 6.9 and 6.10, the Kalman filtered solution is a smoothed
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version of the GNSS-measurements. The GNSS attitude is plottet with variance. The
Kalman filtered pitch moves very delicately within the GNSS variance.
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Figure 6.9: Loosely coupled filter attitude

As described in Chapter 6.2.2, biases for the accelerometers are expected to be within
0.05m/s2 and 0.0012rad/sec = 250deg/h for the gyros. All estimated biases are within
the expected values, Figure 6.11.

6.6.3 Discussion
The loosely coupled Kalman filter needs careful tuning to become optimal and prevent
divergence. When stable, state estimates are within the expected values.
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Figure 6.11: Estimated biases in the tuned filter
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6.7 Head-to-head performance analysis
We had the opportunity to do some head-to-head tests with an Applanix integrated system.
The system is a Applanix Wavemaster II integrated into Norbit Subsea’s mechanical solu-
tion. This is a high-end system with dual-band dual-frequency GNSS, and it consists of an
IMU with MEMS based gyros. Two different test approaches were used. One under cir-
cumstances with a good coverage of satellites. One where the unit was run under a bridge,
for bad GNSS coverage. As mentioned before, several GNSS outages were obtained under
bridges.

6.7.1 Applanix Wavemaster II
Some performance key figures can be seen in Table 6.2. According to the Applanix man-
ual, the integrated solution can run both tightly coupled and loosely coupled mode. The
POS MV software will automatically switch between the tightly coupled and loosely cou-
pled algorithms to ensure maximum performance. During the tests performed in this ex-
periment a loosely coupled solution with RTK was used in the Applanix POS MV soft-
ware.

RMS Unit
Single point L1/L2 position accuracy 1.2 m
DGPS position accuracy 0.4 m
Yaw accuracy 2m baseline 0.08 ◦

Velocity accuracy 0.03 m/s

Table 6.2: Applanix Wavemaster II performance key figures.

The integrated system used for reference, Applanix Wavemaster II, comes with a soft-
ware solution for configuring and monitoring the system. The software is called POS MV
(Position and Orientation System for Marine Vessels) as mentioned above.

POS MV has a variety of logging possibilites, both binary and ASCII encoded NMEA
sentences. Binary logging format was choosen in lack of sufficient information regarding
the accuracy and precision of the system in NMEA sentences. Binary logging also allows
for a higher sampling rate from POS MV software. Data was logged at 100 Hz in this
experiment.

6.7.2 Hardware setup
In this head-to-head test, both integrated systems where mounted on the same rigid alu-
minum frame as mentioned earlier in Section 6.4. The complete test setup can be seen to
the left in Figure 6.12.

Only one set of antennas were used, so no transformation between the two systems had
to be done. The signal from the GNSS antennas was split, so both receivers had the same
signal. A DC block was installed on one of the receivers to avoid both receivers powering
the antennas. Pictures of this solution can be seen in 6.12.

75



Chapter 6. Experiment

Figure 6.12: To the left, both system are mounted on same rigid frame. To the right a DC block to
ensure only one system powers the antennas.

6.7.3 Results
In this Chapter, two plots of the Kalman filtered solution and the Applanix solution are
compared. The position is not very interesting, as it is hard to see the difference between
the solutions. The RTK-soulution is very accurate and the position estimates are assumed
to be beyond cm accuracy. The velocity comparison in Figure 6.13 shows that velocity
is very well estimated. The accuracy of the GNSS receivers doppler measurements are
very accurate and corrects the solution if needed. In the attitude plot, Figure 6.14 it can be
seen that the Kalman filtered solutions roll is approximately 0.5◦ below the Applanix. It is
probably due to misalignment in the mounting. The filter is able to cancel out the forces
by estimating a negative bias on the y-axis accelerometer, as seen in Figure 6.11
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6.7.4 GNSS outage
When sailing under Gamle bybro the GNSS coverage was lost for about 20 seconds. In this
Chapter the filters accuracy during outage was compared to the Applanix. The solutions
are so close to eachother that it is hard to tell them apart. The biggest difference can be
seen in the North velocity and indicates that the Kalman filter position is about to drift
away. The GNSS coverage reappeared back before the difference is visible in the attached
plots. In Figure 6.18 .kml files were generated and uploaded to a uMap which is a track
drawing web site using OpenStreetMap.

Figure 6.15: Gamle bybro in Nidelva.
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6.7.5 Discussion
The head-to-head test with the Applanix proves that the Kalman filter estimates states and
biases correctly. The concept has been proven to work, and no further analysis is going to
be done in this thesis.
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80



6.7 Head-to-head performance analysis

0 10 20 30 40 50 60
+1.46435099×109

−2.6
−2.4
−2.2
−2.0
−1.8
−1.6
−1.4
−1.2

m
/s

N Velocity
Kalman filter
GNSS
Applanix

0 10 20 30 40 50 60
+1.46435099×109

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

m
/s

E Velocity
Kalman filter
GNSS
Applanix

0 10 20 30 40 50 60

unix time +1.46435099×109

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

m
/s

D Velocity
Kalman filter
GNSS
Applanix

Figure 6.17: Velocity during GNSS outage.
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Figure 6.18: Position plotted in map. Black is Applanix and yellow is Kalman filtered solution
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Chapter 7
Discussion

7.1 Findings in theory
The task was to integrate GNSS and INS for robust positioning. Obviously, this is a
significant task, and needs a good amount of theory in basis. There has been written about
GNSS and INS separately, and also a chapter about integration. Importance of precise and
accurate GNSS position has been studied, and it has been shown that GNSS aided attitude
determination, RTK and heave estimation are all improving the solution. A Kalman filter
is known for its superiour precision when a error dynamic model and sensor error models
are present. By using complex statistics and a state for every estimate it is able to utilize
the best part of all sensors.

7.2 Findings in experiment
In Section 5 a lot of effort were put into analysing the sensors. The errors that was looked
into were close to Gauss-Markov processes that is a fundemental property, and a key rea-
son why Kalman filters are computationally feasable.

Uncoupled filter

A uncoupled filter is unstable as the IMU solution drifts of. It is not suitable for navi-
gation. The loosely coupled filter resets the IMU strapdown eqautions and removes the
nonlinearities.

Sensor knowledge

A good knowledge of the sensors error model is cruical for the Kalman filter to work.
The Kalman filter depends on knowing the accuracy of every measurement to estimate its
process variance and computing the correctors gain. The measurements in Chapter 5 were
cruicial when tuning the filter.
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Scale factor

Scale factor is the relation between input and output. For application on a boat, the dynam-
ics are low and the IMU is working in a small part of its sensor range. Most of the scale
factor error is then compansated for in the bias estimate. By expanding the error model
with scale factor and scale factor linearity the solution can be improved.

Turn-on Bias

An IMU, including the STIM300, has a significant constant turn-on bias. It can be found
very easy by implementing a static initialization. As static initialization is impossible on
water, a In-Motion alignment is needed. A method for the Kalman filter to bether estimate
the Turn-on Bias, is to increase the Bias Instability in the Covariance matrix, qba, qbg[27].

IMU Non-orthogonality

The IMU mounting has 6 degrees of freedom, 3 axes in position and 3 axes in rotation.
Equation 6.4 describes the offsets in our setup. It is impossible to measure the offsets
correct manually and our Kalman filter has no property of estimating misalignments. To
get a more correct solution, the Error dynamics can be expanded to estimate misalignment.

GNSS bias

In this expirement RTK corrections from Kartverket were used, and as proven in Chapter
5.4 errors are expected to be on centimeter level. If the GNSS solution is calculated without
RTK, the expected accuracy is much lower, and large biases may occur. When such is
present, bias estimation can be cruicial.

Tight coupling

In a loosely coupled filter the GNSS solution is computed seperate from the IMU correc-
tions. By outputting raw data from the GNSS-receiver, the kalman filter can estimate the
error for every single satellite, assisted by the IMU. In areas with bad GNSS coverage, it
can utilize even a single satellite, while the loosely coupled filter looses the GNSS lock if
less than 4 satellites are present.
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Future work

This project is a good base for future work.

8.1 Hardware integration
A tighter hardware integration with few componets and cables is appreciated by customers.
By integrating the IMU into the sonar, the number of components and cables can be re-
duced, Figure 8.1. The alignment measurements are simplifyed for the end user, as the
Sonar and IMU are in the same rigid module. The IMU data can be timetagged by the
WBMS Motherboard and transferred through the already existing 100 Mbit ethernet inter-
face. The end user can connect to ethernet and interface with the Computation module and
the WBMS. RTK can be handled through ethernet by the Computation module to reduce
the number of needed connections.

8.2 Expanding the error model
As mentioned in the discussion, Chapter 7, the error model has potential for expansion.
By implementing GNSS bias, Turn-on bias, scale factor and IMU Non-orthoganality the
Kalmans filter estimates are more accurate. A more accurate model will give a more
accurate solution.

8.3 Tight coupling
By implementing a tight coupling, the accuracy can be improved, especially in areas with
bad GNSS coverage.
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Figure 8.1: Suggested setup for future work
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Chapter 9
Conclusion

9.1 Theory
A litterature survey gave important insight in the complexity of navigation. It became
evident that very delicate processes has to take place to estimate all errors.

9.2 Experiment
Kalman filter integration

A extended Kalman filter has been developed to use in the integration of the INS and GNSS
error models. Integration schemes and initialization of the filter states are explained and
argumented for. A number of real-world measured datasets are gathered and put through
the Kalman filter. They put the filter through more realistic tests than any simulation can
do and shows that the Kalman filter is working as intended.

Head-to-Head test

It is proven that todays established solutions can be challenged by something new. In
this thesis hardware and software has been developed and shown results comparable to a
established system with good reputation.

Future work

The implementation done in Chapter 6 does have many possibilities for further system
extensions which, if implemented, will make it more robust and reliable.

It is the author’s assessment that all objectives of this thesis has been met.
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