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Summary

In this master thesis, I have solved the Boussinesq equations with Isogeometric Analysis
to study heat transfer coupled with air circulation. The Boussinesq equations consist of
the Navier-Stokes’ equations and the convection-diffusion equation, and they are coupled
together through the Boussinesq-Oberbeck approximation. The equation system is solved
on a closed domain with mixed boundary conditions. The Navier-Stokes’ equations model
the air motion, and the convection-diffusion equation models the temperature distribution.

In order to discretize this system of partial differential equations and to obtain sufficient
stability over long time, we combine isogeometric analysis with the mixed and multiscale
finite element methods. The global computational complexity and quasilinear structure
of the model are managed by using different A-stable time-integrators separately on the
sub-equations. Thus, the running time is reduced, and we avoid restrictions on the time
steps. We illustrate the advantages which isogeometric analysis has compared with the
classical finite element method, and show that it can be used together with already exist-
ing algorithms for computational fluid dynamics. An essential description of isogeometric
analysis and mesh generation is presented in the beginning.

We perform a systematic analysis of the suitable numerical methods for the Boussinesq
equations, with emphasis on h- and p-refinement with a simple tensor mesh on a square
domain. We also discuss which time-integrator is best. To verify whether the simulations
are correct, we have constructed manufactured reference solutions. Since the domain is
simple, we use B-splines as basis functions. We have written complete object-oriented
MATLAB codes for the simulations, and GLview Inova is used for visualizing dynamic
simulations.
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Sammendrag

I denne masteroppgaven har jeg løst Boussinesq ligningene med Isogeometrisk Analyse
for å studere varmetransport koblet sammen med luftsirkulasjon. Boussinesq ligningene
består av Navier-Stokes ligningene og konveksjon-diffusjonsligningen, og de er koblet
sammen ved hjelp av Boussinesq-Oberbeck approksimasjonen. Ligningssystemet er løst
på et lukket domene med blandede randbetingelser. Navier-Stokes ligningene modellerer
luftstrømningen, og konveksjon-diffusjonsligningen modellerer temperaturfordelingen.

For å diskretisere dette systemet av partielle differensialligninger og oppnå tilstrekkelig
stabilitet over lengre tid, kombinerer vi isogeometrisk analyse sammen med blandet og
multiskala elementmetode. Den globale beregningskompleksiteten og den kvasilineære
strukturen til modellen er håndtert ved å bruke ulike A-stabile tidsintegratorer separat på
hver delligning. Da reduseres kjøretiden, og vi unngår restriksjoner på tidskrittene. Vi
illustrerer fordelene som isogeometrisk analyse har sammenlignet med klassisk element-
metode, og viser at den kan brukes sammen med de allerede eksisterende algoritmene for
numerisk strømningsberegning. En utfyllende beskrivelse av isogeometrisk analyse og
grid-generasjon er presentert i begynnelsen.

Vi utfører en systematisk analyse av passende numeriske metoder for å løse Boussinesq
ligningene, med fokus på h- og p-forfinelse med et enkelt tensor-grid på et kvadratisk
domene. Vi drøfter også om hvilken tidsintegrator som er best. For å verifisere om alle
simuleringene er korrekte har vi konstruert egendefinerte referanseløsninger. Siden vårt
domene er lett bruker vi B-spliner som basisfunksjoner. Vi har skrevet komplette objekt-
orienterte MATLAB-koder for simuleringene, og GLview Inova er brukt for å visualisere
dynamiske simuleringer.
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Preface

This is a Master of Science thesis in numerical mathematics at the Norwegian University
of Technology and Science (NTNU). It was written in the spring of 2016. The Master of
Science in Applied Physics and Mathematics is carried out over five years and is titled
"sivilingeniør" in Norwegian. The first two years is a determined run with common topics
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Chapter 1

Introduction

1.1 Background

Air-conditioning and temperature regulation in an ice hockey stadium is a very complex
physical problem. It belongs to the multidisciplinary fields of fluid dynamics and heat
transfer. The temperatures at different parts of the stadium should be kept at their own
individual levels simultaneously, making good comfort for the audience and preventing
the ice from melting. It is also very important with sufficient air circulation to maintain
the oxygen levels stable, such that the ice-hockey players as well as the audience will not
faint. This has been a long-time research field for many years, but previous attempts for
modelling and simulating the situation well have been limited. The main reasons are that
we have a three-dimensional model where both temperature and fluid flow are coupled
together, and the nonlinearities in the model make it even harder to increase the accuracy
of the numerical solution. Nonlinear structure and full 3D character of a physical model
typically makes it challenging to solve a partial differential equation numerically with high
accuracy.

The time-evolution of air circulation and temperature variation in the ice hockey stadium
can be modelled with the Boussinesq equations, a system of partial differential equations
consisting of the incompressible Navier-Stokes equations (air circulation) coupled with the
convection-diffusion equation (temperature distribution). They are linked together with the
Boussinesq-Oberbeck approximation, relating fluid density linearly to temperature. The
underlying theory behind this system is quite basic and can be explained straightforward.
Although our model is incompressible and quasilinear (not fully nonlinear), the complete
theory of implementation is very advanced and is far beyond the scope of this master
thesis. Hence, we will just discuss the most important parts of the implementation theory
as simple as possible, and rather focus on the results from the simulations. They will play a
vital role for determining whether the conditions in the ice hockey stadium are acceptable
and satisfies the criterions for sustainable comfort.

1



2 1.1 Background

Figure 1.1. Leangen ice stadium in Trondheim, Norway

The complicated structure of the physical model makes it very necessary and desirable
to apply a robust and suitable numerical method which can reduce both the running time
and increase the accuracy of the solution. We also require that the simulation of time-
evolution is stable over long time intervals. The Finite Element Method (FEM), the most
general numerical method for solving partial differential equations, is appropriate because
it can handle complex geometries and boundary conditions easily without big difficulties.
Unfortunately, the requirement of high-accuracy is very time-consuming and reduces the
effectivity. Traditionally, the Spectral Element Method (SEM) has been used extensively
for solving numerical problems in fluid mechanics because of its high accuracy, but the
major drawbacks of this approach are adaption to very complicated domains and reduced
ability to handle material discontinuities.

To avoid these frequent bottlenecks occuring in the classical finite and spectral element
methods, we have chosen to use Isogeometric Analysis (IGA), a new finite element method
under development. It can represent complex geometries exactly, increase the numerical
accuracy at high scale, and reduce the computational complexity significantly. Solving
the Boussinesq equations with the finite element method is well-known and documented,
but solving this system with isogeometric analysis has not been researched much, only
separately on the Navier-Stokes and convection-diffusion equations. Results have shown
that isogeometric works properly for these sub-equations. Therefore, the main task of the
thesis can be formulated as follows:

To show that isogeometric analysis can be used for solving the Boussinesq equa-
tions by combining it with other existing numerical algorithms, and analyze how
the model can be applied to control the inner climate in an ice-hockey stadium.
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Figure 1.2. Current progress in the finite element method for the main equations

Isogeometric analysis is a big extension and generalization of the classical finite element
method. The procedure of creating the variational formulation for a partial differential
equation is exactly the same for both methods, and discretization of the domain is not so
very different. The main difference is that we are using a new type of shape functions,
splines, for approximating the solution and meshing the domain more accurately. These
new facilities results in a huge number of advantages, and many of them are not fully
available in the classical finite element method. Therefore, we find it very convenient to
give a concise description of these important properties before going on with the numerical
convergence studies with the Boussinesq equations.

It will also be necessary to use sophisticated techniques from Multiscale Modelling in the
numerical analysis of the Boussinesq equations. This is a relatively new scientific field of
research with a vast number of topics including complex multi-physics, decomposition of
functions, dimensional analysis, boundary layer theory, perturbation and multiresolution
analysis, just to mention a few. Many of the well-known numerical algorithms like multi-
grid, adaptive mesh refinement and domain decomposition also belong to this multiscale
hierarchy [19]. Some of the main topics in this subject will be of relevant interest in the
thesis because they provide better approximation of the unknown solutions.

The Multiscale Finite Element Method (MsFEM), developed in the 1980s by leading
experts like Babuška, Brezzi and Hughes, provides high stabilization in contrast to the
standard finite element approaches. Many of these new techniques have shown success
in computational fluid dynamics, so we find it appropriate to combine them together with
isogeometric analysis. This will be further discussed in the thesis.
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1.2 Outline of the thesis

In chapter 2, we present the derivation of the Navier-Stokes equations and the Boussinesq
equations. Then we show how to make them dimensionless by scaling. This part is quite
important for the code implementation, and it enables us to apply useful simplifications of
the model through perturbation analysis.

We continue with the finite element analysis in chapter 3 to establish the most important
properties of the Boussinesq equations. This approach is done with some basic functional
analysis and is relevant for the discretization process. The purpose is verifying analytically
that the finite element method works properly for our numerical problem.

In chapter 4, we discuss the most important advantages of isogeometric analysis and give
a full description of the underlying theory behind B-splines and NURBS (Non-Uniform
Rational B-Splines). They constitute the fundamental basis of isogeometric analysis and
all other types of splines used for more advanced applications.

The next step is to discretize the Boussinesq equations and determine which numerical
methods we can apply to solve the problem. This part is very convenient because the final
numerical procedure is a combination of many advanced algorithms. There are also some
small remarks on the mesh generation. Chapter 5 treats all these subjects in full detail.

Afterwards, we show that isogeometric analysis works for the Boussinesq equation. The
verification procedure is h- and p-refinement in 2D, where the domain is a square. Chapter
6 covers the whole numerical convergence studies, a short description of the refinement
techniques, and their compatibility with isogeometric analysis. We will also test a small
numerical example with temperature-driven Cavity.

The final conclusion of the thesis is covered in chapter 7.

The appendices at the end covers some of the underlying mathematical theory relevant
for this study, and some of the most commonly used algorithms in the simulations.
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1.3 Computer facilities

There are many different programming languages, softwares and computers used in the
whole thesis. We present them briefly and explain how they have been used.

Programming languages and software

• MATLAB: Used for the numerical examples with h- and p-refinement in 2D, and for
plotting the figures in chapter 4.

• Python: Used for writing the scripts taken as input by GeoModeller.

• XML: Used for writing the input files used by IFEM.

• GeoModeller: Software developed by SINTEF for creating spline-based meshes on
geometric domains, written in Python.

• IFEM: Software developed by SINTEF for solving a large class of partial differential
equations using isogeometric analysis, written in C++ and FORTRAN.

• GLview Inova: Software from Ceetron ASA for visualizing numerical solution of
partial differential equations, written in OpenGL.

Computers

• MacBook Pro: Personal computer.

• Markov: Supercomputer at the Department of Mathematical Sciences, used for all
the h- and p-refinements in MATLAB.

• AFEM: Supercomputer at SINTEF, used for plotting solutions in GLview.

• Flop-3: Supercomputer at SINTEF, used for the simulations with IFEM.





Chapter 2

Heat transfer and fluid flow

The simulation of air circulation inside an ice hockey stadium requires that we develop a
consistent model that combines fluid flow and heat transfer as a coupled system of partial
differential equations. In our case, we can assume that the air is moving stably with low
speed, so it can be regarded as a viscous fluid. The fluid density will not change much
during the whole circulation, so the fluid can also be classified as incompressible.

First, we show how to derive the incompressible Navier-Stokes equations by applying the
phenomenological approach, which is purely based on conservation laws. Then, we show
how to derive the time-dependent Convection-Diffusion equation and combine it with the
other one by modifying the fluid’s energy equation and using the Boussinesq-Oberbeck
approximation. This system of partial differential equations describes physically how heat
is generated in fluid flow and varies over time.

2.1 The Navier-Stokes equations

The Navier-Stokes equations are the fundamental equations of fluid mechanics. We will
only consider the incompressible model. The whole derivation is based on the approaches
described in [21, 34, 55, 56], and we denote the time interval as I = (0, τ ].

The continuity equation for mass transfer

We start with the universal continuity equation for mass conservation. Mass transport is
convective because diffusive flux is not present. There is no external mass source either,
so the change of mass inside a control volume Ω is defined as

∂

∂t

˚

Ω

ρ dV = −
‹

∂Ω

ρu · n̂ dS

7



8 2.1 The Navier-Stokes equations

To simplify this integral equation, we use Gauss’ theorem on the right-hand side such that
we can drop the integral signs. This yields a first order hyperbolic conservation law:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

We expand and simplify this conservation law as follows:

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u =

Dρ

Dt
+ ρ∇ · u

where D
Dt is the material derivative operator. The density change of the fluid is very small

and negligible. Hence, we can neglect D
Dt and divide everything by ρ. By doing so, we

obtain the linear incompressibility constraint:

∇ · u = 0 (2.2)

Physically interpreted, it states that the volume of the fluid is invariant of deformation
caused by shear strain acting on it, and the velocity is solenoidal (divergence-free).

Navier’s equation for linear momentum in fluids

We define ρu⊗u as the convective flux tensor applied to the linear momentum of the fluid.
Newton’s second law states that the sum of the forces acting on the fluid is given by

ΣF =
∂

∂t

˚

Ω

ρu dV +

‹

∂Ω

(ρu⊗ u) · n̂ dS (2.3)

The first integral models the internal change inside the fluid, and the second one represents
the outflow on the boundary. By applying Gauss’ theorem, we obtain

‹

∂Ω

(ρu⊗ u) · n̂ dS =

˚

Ω

∇ · (ρu⊗ u) dV (2.4)

Now, we must decouple the force ΣF on the fluid. We assume that there is an external
body force acting on the fluid. If f is the force per mass, then

Ff = ρ

˚

Ω

f dV (2.5)

Since our fluid is viscous, both normal and shear stress must be taken into account. The
viscous shear stress arises because of the internal friction force between fluid layers. By
applying Gauss’ theorem again, we can express the total surface force as

Fσ =

‹

∂Ω

σ · n̂ dS =

˚

Ω

∇ · σ dV (2.6)
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where σ = −pI + 2µε is the Cauchy stress tensor, and µ is the dynamic viscosity. First,
we combine equation (2.3), (2.4), (2.5) and (2.6) together and drop the integral operator.
It can be shown by expanding the right-hand side of (2.3) and applying Dρ

Dt = 0 that the
incompressible Navier equation is defined as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + ρf (2.7)

Incompressible divergence of the stress tensor

To obtain the final model, we must expand the divergence of the Cauchy stress tensor and
find the shear stress. This is done in two separate steps. First of all, we see that

∇ · (pI) = ∇p

The rate of strain tensor ε, used in the Cauchy stress tensor, is defined as

ε =
1

2

(
∇⊗ u + (∇⊗ u)T

)
Since our fluid is incompressible,∇ · u = 0 as shown in (2.2), and this yields

2µ∇ · ε = 2µ · 1

2

∇2ux + ∂
∂x (∇ · u)

∇2uy + ∂
∂y (∇ · u)

∇2uz + ∂
∂z (∇ · u)

 = µ∇2u

Hence, right-hand side of Navier’s equation (2.7), which also corresponds to Newton’s
second law on integral form, becomes

ΣF =

˚

Ω

−∇p+ µ∇2u + ρf dV (2.8)

Now, we can finally remove all the integral signs and combine the net force (2.8) with
(2.7). This yields the incompressible Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + ρf , Ω× I

∇ · u = 0, Ω× I
u = uD, ΓuD × I
∂u

∂n
− n̂ · p = uN , ΓuN × I

αu + β

(
∂u

∂n
− n̂ · p

)
= uR, ΓuR × I

u(x, 0) = u0(x) Ω× {t = 0}

(2.9a)

(2.9b)
(2.9c)

(2.9d)

(2.9e)

(2.9f)
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The boundary ∂Ω is split up in three parts: Dirichlet (ΓuD), Neumann (ΓuN ) and Robin
(ΓuR) boundary. They are mutually disjoint, and ∂Ω = ΓuD ∪ ΓuN ∪ ΓuR. The pressure is
not subject to any boundary condition at all. The time-dependence requires that we also
define an initial condition for the velocity field, but not the pressure. This is a quasilinear
and parabolic partial differential equation system of second order. It shows that mass,
momentum and energy is conserved in the fluid flow.

2.2 The Boussinesq equations

The derivation of coupled heat transfer and fluid flow using the Boussinesq-Oberbeck
approximation is based on the approaches described in [34, 45, 56]. This is the main
partial differential equation of interest for our purpose.

First law of thermodynamics

Our derivation starts with the connection between the first law of thermodynamics and
Navier’s equation (2.7). The total energy per unit volume is a conserved quantity. It is the
sum of internal and kinetic energy per unit volume, and is defined as

et = e+
1

2
(u · u)

Heat transmission and work done by external forces acting on the fluid are the main sources
causing variation of et. They give rise to the convective energy flux and diffusive heat flux,
which are respectively defined as

FC = ρetu , FD = −k∇T

where k is the thermal conductivity. The last flux is in accord with Fourier’s law of heat
conduction, for there is no flux related to the motion of the fluid.

The volume source is the sum of heat source and work done by volume forces, and the
surface source is work done by internal shear stress. They are respectively given by

QV = Q+ ρ(f · u) , QS = σu

Collecting every contribution on integral conservation form yields

∂

∂t

˚

Ω

ρet dV +

‹

∂Ω

(ρetu) · n̂ dS =

‹

∂Ω

[σu− (−k∇T )] · n̂ dS +

˚

Ω

Q+ ρ(f ·u) dV

Using Gauss’ theorem and dropping integral signs results in the conservation law

∂ρet

∂t
+∇ · (ρetu) = k∇2T +∇ · (σu) +Q+ ρ(f · u) (2.10)
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Applying incompressibility as simplification

Taking the dot product of (2.7) with u yields

ρ
D

Dt

(
1

2
(u · u)

)
= (∇ · σ) · u + ρ(f · u) (2.11)

If we apply∇ · u = 0 and Dρ
Dt = 0, then the left-hand side of (2.10) can be rewritten as

∂

∂t
(ρe) +∇ · (ρeu) + ρ

D

Dt

(
1

2
(u · u)

)
=ρ

De

Dt
+ ρ

D

Dt

(
1

2
(u · u)

)
(2.12)

Subtracting (2.11) from (2.10) and applying the simplification (2.12) yields

∂

∂t
(ρe) +∇ · (uρe) = −∇ · q +Q+ Φ (2.13)

Φ is the dissipation function, and it can be derived as follows:

Φ = ∇ · (σu)− (∇ · σ) · u
= ∇ · (−pu + 2µεu)− (−∇p+ 2µ∇ · ε) · u
= −∇p · u− p∇ · u +∇p · u + 2µ(∇ · (εu)− (∇ · ε)u)

= 2µ

3∑
i=1

3∑
j=1

εij
∂uj
∂xi

= µ

3∑
i=1

3∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uj
∂xi

Maxwell’s thermodynamic relations

If we apply Maxwell’s thermodynamic relations and the continuity equation (2.1), we can
formulate the internal energy on differential form as follows:

de =
∂e

∂T

∣∣∣∣
η

dT +
∂e

∂η

∣∣∣∣
T

dη = CvdT +

(
T
∂p

∂T

∣∣∣∣
η

− p

)
dη (2.14)

where Cv is the heat capacity. By applying the incompressibility of the fluid, we obtain

ρ
De

Dt
= ρCv

DT

Dt
+

[
T
∂p

∂T

∣∣∣∣
η

− p

]
(∇ · u)

De

Dt
= Cv

DT

Dt
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Boussinesq-Oberbeck approximation

The Boussinesq-Oberbeck approximation [2, 18] can be applied when the buoyancy force
on the fluid is caused by density change due to very small temperature variation. We can
assume that the pressure change will not affect the density significantly because the fluid
is incompressible. Hence, the constant β for isobaric volume expansion is

β = −1

ρ

(
∂ρ

∂T

)
p

If T0 is the reference temperature, and the temperature change ∆T = T − T0 is small, we
obtain the desired linear relation

ρ = ρ0[1− β(T − T0)] (2.15)

The dimension of β is K−1, so the temperature should be measured in Kelvin. Since
f = g, the gravity vector, the Boussinesq equations for the buoyancy-driven and non-
isothermal flow can be stated as a parabolic system subject to a hyperbolic constraint:

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u

+ ρ0[1− β(T − T0)]g, Ω× I

ρ0C

(
∂T

∂t
+ u · ∇T

)
= k∇2T +Q+ Φ, Ω× I

∇ · u = 0, Ω× I

u = uD, ΓuD × I
∂u

∂n
− n̂ · p = uN , ΓuN × I

αu + β

(
∂u

∂n
− n̂ · p

)
= uR, ΓuR × I

T = TD, ΓTD × I
∂T

∂n
= TN , ΓTN × I

T − µ∂T
∂n

= TR, ΓTR × I

u(x, 0) = u0(x) Ω× {t = 0}
T (x, 0) = T0(x) Ω× {t = 0}

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

(2.16f)

(2.16g)

(2.16h)

(2.16i)

(2.16j)

(2.16k)
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2.3 Dimensional analysis and scaling

Hydrodynamic quantities

Making a differential equation of any type dimensionless is a useful technique when we
are studying complex mathematical problems. This allows us to determine whether the
model can be further simplified. It will not depend explicitly on the physical parameters.
The computer implementation becomes less complicated. Scaling an equation can be done
in several ways. A good approach is ensuring that the highest order derivatives becomes
independent of dimension parameters. This enables us to neglect specific quantities in the
equations by using regular perturbation. In boundary layer theory, it can be necessary
with singular perturbation on the highest order derivatives, and this is more complicated.

In fluid mechanics and heat transfer, there is a lot of dimensionless parameters for situation-
specific applications [16, 21]. Before concerning the scaling of the Boussinesq equations,
we will list some of these numbers, which have been used extensively in this thesis.

ν and α are respectively the kinematic viscosity and thermal diffusivity, defined as

ν =
µ

ρ0
, α =

κ

ρ0C

Table 2.1. List of important dimension parameters in fluid mechanics and heat transfer

Number Formula Description

Brinkman number Br = µU2

k∆T Compares heat from viscous dissipation
with thermal conduction

Courant number Cr = U∆t
L Measure of artificial viscosity

Grashof number Gr = αg∆TL3

ν2 Ratio of buoyancy forces to viscosity
Nusselt number Nu = L

δT
∂T
∂x Measuring horizontal flux over the domain

Péclet number Pe = UL
κ Measure of convection in heat transfer

Prandtl number Pr = ν
κ Material characteristic

Rayleigh number Ra = βg∆TL3

νκ Compares destabilizing buoyant terms to
stabilizing terms in transition problems

Reynold number Re = UL
ν Measure of turbulence in fluid flow

Richardson number Ri = αg∆TL
U2 Compares the buoyant force with the

kinetic energy
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Scaling the Advection-Diffusion equation with force

If Q is a heat source, and a is the convection field, we can use the scaling parameters

x∗ =
x

L
T ∗ =

T

T0
Q∗ =

TA

L
Q a∗ =

1

A
a t∗ =

A

L
t

Inserting these expressions, simplifying and dropping all the primes, we obtain

∂T

∂t
− 1

Pe
∇2T + (a · ∇)T = Q, in Ω (2.17)

When Pe → ∞, we obtain the linear advection equation, and the transport goes in the
direction of the vector a. The boundary layers arising will not be so complicated to handle.

Scaling the Navier-Stokes equation with force

This scaling is very relevant for the numerical examples in chapter 6 where we need to
verify that the code for solving the Navier-Stokes equation is correct. We assume that
the force can be a non-trivial expression different from the gravity vector, and we use the
following dimensionless parameters listed below:

x∗ =
x

L
u∗ =

u

U
p∗ =

p

ρU2
f∗ =

U2

L
f t∗ =

U

L
t

Inserting these expressions, simplifying and then dropping all the primes, we obtain the
standard non-dimensional equations

∂u

∂t
− 1

Re
∇2u + (u · ∇)u +∇p = f , in Ω

∇ · u = 0, in Ω

(2.18a)

(2.18b)

When Re → ∞, we obtain the inviscid Euler equations, and there is no diffusion at all.
This will also create boundary layers and complex fluctuations in the fluid flow.

Two scalings of the Boussinesq equations

There are two main techniques for scaling the Boussinesq equation. In the first approach,
we assume that none of the terms are neglected. The procedure is an extension of the
approach in [43], with an additional formula for U as shown in [28]. The dimensionless
parameters are listed below:

x∗ =
x

L
u∗ =

u

U
t∗ =

Ut

L

p∗ =
p− ρ0(g · x)

ρ0U2
U =

√
βgL∆T
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The formula for U is appropriate for Boussinesq approximation because it expresses the
velocity by the buoyancy term. Putting all these quantities in (2.16), simplifying everything
and dropping the primes yields the system

∂u

∂t
+ u · ∇u = −∇p+

√
Pr

Ra
∇2u− g

‖g‖
T, in Ω

∂T

∂t
+ u · ∇T =

1√
RaPr

[
∇2T +

1

k
(Q+ Φ)

]
, in Ω

∇ · u = 0, in Ω

(2.19a)

(2.19b)

(2.19c)

In most applications, the term Q does not appear, so we can discard it. Using the same
approach described in [16], we list up the new dimensionless parameters:

x∗ =
x

L
u∗ =

u

U
t∗ =

Ut

L

p∗ =
p− ρ0(g · x)

ρ0U2
T ∗ =

T − T0

∆T

The new difference is that the temperature is scaled instead of the velocity, and the new
version of the Boussinesq equations becomes

∂u

∂t
+ u · ∇u =

1

Re
∇2u−∇p−Ri g

‖g‖
T, in Ω

∂T

∂t
+ u · ∇T =

1

Pe

(
∇2T +BrΦ

)
, in Ω

∇ · u = 0, in Ω

(2.20a)

(2.20b)

(2.20c)





Chapter 3

Analysis of the equations

The idea of the finite element method is converting the strong form of a partial differential
equation into its equivalent weak form by variational calculus, and then approximate the
solution by a linear combination of appropriate basis functions. To really ensure that the
approach will work, we can analyze the solution’s properties like existence, uniqueness
and regularity, if possible. It can be shown that strong and weak solutions are equivalent
under special circumstances. This is independent on the type of basis functions. In our
case, it is possible to analyze the two parts of the Boussinesq equations separately.

3.1 Analysis of the convection-diffusion equation

Weak formulation

The initial/boundary value problem for the convection-diffusion equation is

∂T

∂t
+ (u · ∇)T −∇2T = Q, in Ω× I

T = TD on ΓTD × I
∂T

∂n
= TN , on ΓTN × I

(n̂ · u)T − ∂T

∂n
= TR, on ΓTR × I

T (x, 0) = T0(x), in Ω× {t = 0}

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)

We assume that there is no dissipation. Problem (3.1) is on conservative form because it
is solenoidal, in accordance with the fluid’s velocity [38]:

∇ · u = 0 =⇒ ∇ · (uT ) = (u · ∇)T

17
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In order to possess a suitable solution, we must require the conditions u ∈ L∞(Ω) and
f ∈ L2(Ω) [53]. We define S as a sufficiently smooth test function, and use Galerkin
projection on the convection-diffusion equation:

∂T

∂t
+ (u · ∇)T −∇2T = Qˆ

Ω

∂T

∂t
S + (u · ∇T )S − (∇2T )S dΩ =

ˆ
Ω

QS dΩ

ˆ
Ω

∂T

∂t
S dΩ +

ˆ
Ω

(u · ∇T )S +∇T · ∇S dΩ︸ ︷︷ ︸
a(T,S)

=

ˆ
Ω

QS dΩ +

˛
∂Ω

∂T

∂n
S ds︸ ︷︷ ︸

F (S)

We see that a(·, ·) : H1(Ω)×H1(Ω)→ R and F (·) : L2(Ω)→ R. Thus, we must find a
solution T ∈ VT such that it satisfies

ˆ
Ω

∂T

∂t
S dΩ + a(T, S) = F (S), S ∈ VT (3.2)

where VT is the function space defined as

VT =
{
S ∈ L2

(
I,H1(Ω)

)
: S satisfies the boundary conditions (3.1b)-(3.1d)

}
Continuity and coercivity

We see that a(·, ·) is bilinear and f(·) is linear. Continuity of these functionals follows
from Hölder’s inequality for the space Lp, and the inequality ‖ · ‖L2 ≤ ‖ · ‖Hk which
follows from the universal inclusion W k,p ⊂ Lp:

|a(T, S)| =
∣∣∣∣ˆ

Ω

(u · ∇T )S +∇T · ∇S dΩ

∣∣∣∣
≤
ˆ

Ω

|(u · ∇T )S| dΩ +

ˆ
Ω

|∇T · ∇S| dΩ

≤ ‖u‖L∞‖S∇T‖L1 + ‖∇T · ∇S‖L1

≤ ‖u‖L∞‖∇T‖L2‖S‖L2 + ‖∇T‖L2‖∇S‖L2

≤ ‖u‖L∞‖T‖H1‖S‖H1 + ‖T‖H1‖S‖H1

= CT ‖T‖H1‖S‖H1

|F (S)| =
∣∣∣∣ˆ

Ω

QS dΩ +

˛
∂Ω

∂T

∂n
S ds

∣∣∣∣
≤ ‖QS‖L1 + ‖gS‖L1

≤ ‖Q‖L2‖S‖L2 + ‖g‖L2‖S‖L2

≤ CQ‖S‖H1
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To prove coercivity of a(·, ·), we use the incompressibility constraint ∇ · u = 0 and
Poincaré’s inequality (B.11) on the non-symmetric and symmetric parts, respectively:

ˆ
Ω

T (u · ∇T ) dΩ =
1

2

ˆ
Ω

u · ∇(T 2) dΩ

=
1

2

˛
∂Ω

T 2(u · n̂) ds− 1

2

ˆ
Ω

T 2(∇ · u) dΩ

=
1

2

˛
∂Ω

T 2(u · n̂) ds

‖T‖2H1 = ‖T‖2L2 + ‖∇T‖2L2

≤ C2
Ω‖∇T‖2L2 + ‖∇T‖2L2

= (C2
Ω + 1)‖∇T‖2L2

α‖T‖2H1 ≤ ‖∇T‖2L2

The first derivation shows that coercivity is ensured if u · n̂ > 0 and meas(ΓTD) > 0 are
satisfied. We just combine both inequalities directly to obtain

α‖T‖2H1 ≤ ‖∇T‖2L2 +
1

2

˛
∂Ω

T 2(u · n̂) ds

= a(T, T )

Thus, we have shown that a(·, ·) and F (·) are always continuous, and a(·, ·) is coercive as
long as u · n̂ > 0 on the boundary ∂Ω.

Regularity through energy estimate

To prove regularity, we must establish two inequalities first. Since ‖ · ‖L2 ≤ ‖ · ‖Hk , the
coercivity of a(·, ·) implies that we have

α‖T‖2L2 ≤ a(T, T ) (3.3)

If ε = 1
2α , we can use Young’s inequality (B.3) to obtain∣∣∣∣ˆ

Ω

fT dΩ

∣∣∣∣ ≤ ‖f‖L2‖T‖L2

≤ 1

2α
‖f‖2L2 +

α

2
‖T‖2L2 (3.4)
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Combining (3.3) and (3.4) together yields
ˆ

Ω

∂T

∂t
T dΩ + a(T, T ) = F (T )

1

2

∂

∂t
‖T‖2L2 + α‖T‖2L2 ≤

1

2α
‖f‖2L2 +

α

2
‖T‖2L2

∂

∂t
‖T‖2L2 + α‖T‖2L2 ≤

1

α
‖f‖2L2

‖T‖2L2 + α

ˆ τ

0

‖T‖2L2 dt ≤
1

α

ˆ τ

0

‖f‖2L2 dt+ ‖T0‖2L2 (3.5)

The energy estimate (3.5) shows that any solution of (3.1) is regular and stable.

Uniqueness of the solution

Let us assume that (3.1) has two solutions T1 and T2. If w = T1 − T2, then the equation
for w will have homogeneous initial and boundary conditions, and (3.5) takes the form

‖w‖2L2 ≤ −α
ˆ τ

0

‖w‖2L2 dt

The only way to satisfy this inequality is claiming that w = 0, i.e. T1 = T2. Hence, the
solution of the convection-diffusion equation is unique.

Convergence of the solution

The bilinear form in (3.2) time-dependent and non-symmetric, so it does not define an
inner product. Since the equation involves ∂

∂t , the time-dependent energy norm becomes

‖T‖2E = ‖T‖2L2(I,H1) +

∥∥∥∥∂T∂t
∥∥∥∥2

L2(I,H1)

A classical a-priori estimate for this norm [25] is

‖T‖E ≤ C
(
‖f‖L2(I,H−1) + ‖T0‖L2

)
From this one, it is possible to show by Galerkin orthogonality and the L2-projection onto
VT that the solution converges [20], due to the following inequality:

‖T − Th‖E ≤ Ch

(
‖T‖L2(I,H2) +

∥∥∥∥∂T∂t
∥∥∥∥
L2(I,L2)

)



Chapter 3 Analysis of the equations 21

3.2 Analysis of the Navier-Stokes equations

Weak formulation

The initial/boundary value problem for the Navier-Stokes equations is

∂u

∂t
+ u · ∇u−∇2u = −∇p+ f , in Ω× I

∇ · u = 0, in Ω× I
u = uD, on ΓuD × I(
∂u

∂n
− n̂ · p

)
= uN , on ΓuN × I

αu + β

(
∂u

∂n
− n̂ · p

)
= uR, on ΓuR × I

u(x, 0) = u0(x), in Ω× {t = 0}

(3.6a)

(3.6b)
(3.6c)

(3.6d)

(3.6e)

(3.6f)

where f is the force on the fluid. When we couple the Navier-Stokes equations with
the convection-diffusion equation, we replace f by h(T ) = ρ0 [1− β(T − T0)] g, the
Boussinesq approximation. In any case, the force is independent of u.

This time, we must define a pair of sufficiently smooth test functions (v, q) on a system of
equations. Applying Galerkin projection again, we obtain

∂u

∂t
+ u · ∇u−∇2u = −∇p+ f

ˆ
Ω

(
∂u

∂t
+ (u · ∇u)−∇2u

)
· v dΩ =

ˆ
Ω

(−∇p+ f) · v dΩ

ˆ
Ω

∂u

∂t
v dΩ +

ˆ
Ω

∇u · ∇v dΩ +

ˆ
Ω

(u · ∇u)v dΩ =

ˆ
Ω

p∇ · v dΩ +

ˆ
Ω

f · v dΩ

The incompressibility criterion must also be taken into account. It becomes

∇ · u = 0ˆ
Ω

(∇ · u)q dΩ = 0

In order to make the pressure unique, we must impose an important compatibility criterion:ˆ
Ω

p dΩ = const. (3.7)

We require that q cancels over constant values, and this can only be achieved if the average
pressure above is zero. This simple integral equality will be of high relevance during the
implementation of the numerical method, which involves solving saddle-point systems. It
shows that the pressure belongs to L2

0, which ensures sufficient stability and uniqueness.
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We collect the weak formulations as a system of equations:
ˆ

Ω

∂ux
∂t

vx dΩ +

ˆ
Ω

∇ux · ∇vx dΩ︸ ︷︷ ︸
a(·,·)

−
ˆ

Ω

p
∂vx
∂x

dΩ︸ ︷︷ ︸
b(·,·)

+

ˆ
Ω

(u · ∇ux)vx dΩ︸ ︷︷ ︸
c(·,·,·)

=

ˆ
Ω

fxvx dΩ︸ ︷︷ ︸
f(·)ˆ

Ω

∂uy
∂t

vy dΩ +

ˆ
Ω

∇uy · ∇vy dΩ︸ ︷︷ ︸
a(·,·)

−
ˆ

Ω

p
∂vy
∂y

dΩ︸ ︷︷ ︸
b(·,·)

+

ˆ
Ω

(u · ∇uy)vy dΩ︸ ︷︷ ︸
c(·,·,·)

=

ˆ
Ω

fyvy dΩ︸ ︷︷ ︸
f(·)ˆ

Ω

∂uz
∂t

vz dΩ +

ˆ
Ω

∇uz · ∇vz dΩ︸ ︷︷ ︸
a(·,·)

−
ˆ

Ω

p
∂vz
∂z

dΩ︸ ︷︷ ︸
b(·,·)

+

ˆ
Ω

(u · ∇uz)vz dΩ︸ ︷︷ ︸
c(·,·,·)

=

ˆ
Ω

fzvz dΩ︸ ︷︷ ︸
f(·)ˆ

Ω

∂ux
∂x

q dΩ︸ ︷︷ ︸
b(·,·)

+

ˆ
Ω

∂uy
∂y

q dΩ︸ ︷︷ ︸
b(·,·)

+

ˆ
Ω

∂uz
∂z

q dΩ︸ ︷︷ ︸
b(·,·)

= 0

We see that the forms and scalar functionals are

a(·, ·) : H1(Ω)×H1(Ω)→ R
b(·, ·) : H1(Ω)× L2

0(Ω)→ R
c(·, ·, ·) : H1(Ω)3 ×H1(Ω)×H1(Ω)→ R
f(·) : L2(Ω)→ R

It can be appropriate to define the functionals and forms as vectorial mappings:

A(·, ·) : H1(Ω)3 ×H1(Ω)3 → R3

B(·, ·) : H1(Ω)3 × L2
0(Ω)→ R

C(·, ·, ·) : H1(Ω)3 ×H1(Ω)3 ×H1(Ω)3 → R3

F (·) : L2(Ω)3 → R3

Find (u, p) ∈ Vu × Vp for each t > 0 such that they satisfy
ˆ

Ω

∂u

∂t
v dΩ +A(u,v)−B(v, p)T + C(u,u,v) = F (v) v ∈ V (3.8a)

B(u, q) = 0 q ∈W (3.8b)

where Vu and Vp are the function spaces defined as

Vu =
{
v ∈ L2(I,H1(Ω)3) : S satisfies the boundary conditions (3.6c)-(3.6e)

}
Vp =

{
q ∈ L2(I, L2

0(Ω)) :

ˆ
Ω

q dA = 0

}
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Continuity and coercivity

Continuity of A(·, ·), B(·, ·) and F (·) follows from Hölder’s inequality and the inequality
‖ · ‖L2 ≤ ‖ · ‖Hk . Using the same procedure as previously, we obtain

|A(u,v)| =
∣∣∣∣ˆ

Ω

∇u · ∇v dΩ

∣∣∣∣
≤ ‖∇u · ∇v‖L1

≤ ‖∇u‖L2‖∇v‖L2

= ‖u‖H1‖v‖H1

|B(v, p)| =
∣∣∣∣ˆ

Ω

p∇ · v dΩ

∣∣∣∣
≤ ‖p∇ · v‖L1

≤ ‖p‖L2‖∇ · v‖L2

|F (v)| ≤ ‖f‖L2‖v‖L2

≤ CF ‖v‖H1

For C(·, ·, ·), we need to decompose the integrand by double sums:

|C(u,u,v)| =
∣∣∣∣ˆ

Ω

(u · ∇u)v dΩ

∣∣∣∣
=

∣∣∣∣∣∣
3∑
i=1

3∑
j=1

ˆ
Ω

uxj
∂uxi
∂xj

vxi dΩ

∣∣∣∣∣∣
≤

3∑
i=1

3∑
j=1

ˆ
Ω

∣∣∣∣uxj ∂uxi∂xj
vxi

∣∣∣∣ dΩ

=

3∑
i=1

3∑
j=1

∥∥∥∥uxj ∂uxi∂xj
vxi

∥∥∥∥
L1

Next, we apply the inclusion L4(Ω) ⊂ L2(Ω), which is valid because the domain Ω has
finite measure. The Sobolev embedding theorem provides that ‖ · ‖L4 ≤ ‖ · ‖H1 because
H1(Ω) ↪→ L4(Ω) up to three spatial dimensions [6]. Using Hölder’s inequality twice, we
obtain a component-wise estimate:∥∥∥∥uxj ∂uxi∂xj

vxi

∥∥∥∥
L1

≤
∥∥∥∥∂uxi∂xj

∥∥∥∥
L2

‖uxjvxi‖L2

≤
∥∥∥∥∂uxi∂xj

∥∥∥∥
L2

‖uxj‖L4‖vxi‖L4

≤ |u|H1 ‖uxj‖H1‖vxi‖H1
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The Sobolev norms and seminorms will always satisfy the inequality | · |Wk,p ≤ ‖ · ‖Wk,p .
Since u is a vector function, its corresponding Sobolev tensor norm becomes

‖u‖2Wk,p = ‖ux‖2Wk,p + ‖uy‖2Wk,p + ‖uz‖2Wk,p

By combining these two important results, we obtain

|u|H1 ‖uxj‖H1‖vxi‖H1 ≤ ‖u‖2H1‖v‖H1

Finally, we can insert this inequality in the double sum to end up with the desired estimate:

|C(u,u,v)| ≤ 9‖u‖2H1‖v‖H1

The nonlinear convection term C(·, ·, ·) has also the vanishing property:

|C(u,u,u)| = 〈u · ∇u,u〉L2

= −1

2
〈∇ · u, |u|2〉L2

= 0

Coercivity of A(·, ·) follows in almost the same way as for the temperature T :

α‖u‖2H1 ≤ A(u,u)

Hence, the weak formulation is continuous and coercive.

Energy estimate for regularity

The inequality ‖ · ‖L2 ≤ ‖ · ‖Hk implies that

α‖u‖2L2 ≤ A(u,u) (3.9)

From Young’s inequality (B.3), we obtain the following result:

|F (u)| ≤ ‖f‖L2‖u‖L2

≤ 1

2α
‖f‖2L2 +

α

2
‖u‖2L2

Combining everything yields the following energy estimate ensuring regularity.
ˆ

Ω

∂u

∂t
u dΩ +A(u,u) + C(u,u,u) = B(u, p) + F (u)

1

2

∂

∂t
‖u‖2L2 + α‖u‖2L2 ≤

1

2α
‖f‖2L2 +

α

2
‖u‖2L2

∂

∂t
‖u‖2L2 + α‖u‖2 ≤ 1

α
‖f‖2L2

‖u‖2L2 + α

ˆ τ

0

‖u‖2 dt ≤ Du

ˆ τ

0

‖f‖2L2 dt+ ‖u0‖2L2

Hence, the solution of the Navier-Stokes equation is regular for low Reynolds number.
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Uniqueness of the solution

There is no general proof for the uniqueness of solutions of the Navier-Stokes equations.
In some special cases, it is possible to show uniqueness under strict circumstances. The
most famous result until now is Leray’s theorem. For more details, we refer to [6, 61].

According to Leray’s theorem, if the pressure and velocity field satisfies some special
functional properties, and the domain Ω is finite, then the solution of the Navier-Stokes’
equations are unique in two dimensions. For three dimensions, the solution exists, but the
uniqueness is not clear. In both cases, the velocity field will satisfy the energy estimate
derived previously, so we have regularity too.

When we start with the numerical convergence studies in chapter 6, we will solve the
Navier-Stokes’ and Boussinesq equations in two spatial dimensions. The manufactured
reference solutions have a characteristic structure which makes the initial/boundary value
problem unique, and this makes it easier to verify numerically that the implementation of
the finite element code is correct.





Chapter 4

Isogeometric Analysis

This is the part of the thesis that really begins to focus on the new technique for solving
our partial differential equations. First, we give a full description of the main ideas of
isogeometric analysis and why it is more appropriate to use for our problem rather than
the classical finite element method. Then, we focus on the main properties of B-splines
and NURBS, which constitute the core of our numerical convergence studies.

4.1 A new paradigm for the finite element method

Main ideas of Isogeometric Analysis

Isogeometric Analysis (IGA) was introduced by Hughes, Bazilevs and Cottrell in their
landmark paper from 2005 [36] and formalized in the book [12]. It is a new finite element
method under current research and has many efficient advantages that are not available in
the classical finite element method. The main idea of isogeometric analysis is using splines
as interpolating shape functions. These can be B-splines, NURBS, T-splines, L-splines,
M-splines, LR B-splines etc, depending on the specific situation.

An important feature of isogeometric analysis is that the procedure of creating the weak
formulation of a partial differential equation, the fundamental cornerstone of finite element
modelling, is the same as before, in accordance with standard finite element theory. The
basic structure of the discretization matrices are quite similar, so the assembly processes
will not be so different. But the real power of isogeometric analysis lies in its ability of
discretizing the domain exactly, which is not always possible to achieve with the classical
finite element methodology. Several articles have confirmed that this new method works
well in structural engineering, fluid mechanics, electromagnetism and other computational
mechanics disciplines.

27
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Completeness of the isoparametric approach

The isoparametric concept, formally introduced by Zienkiewicz [63], is one of the most
important facilities of modern finite element technology. It requires that we use the same
shape functions for approximating the unknown solution uh and creating a suitable mesh
the domain Ω. Hence, the shape functions define both the elements’ geometric shape and
displacement within them. To achieve this, the total number of interpolation points must
equal the total number of geometric nodes. The interpolation elements and the geometric
elements will therefore coincide with each other at their nodes [46].

In the classical finite element method, the continuity between the interpolation elements
is usually C0. Rising this to higher order continuity is challenging and yields often new
interpolation elements that are expensive to use with respect to computational effort and
implementation. But in isogeometric analysis, this is not a problem at all. The usage of
splines as basis functions yields higher continuity between the elements, and NURBS can
represent conic sections exactly. The same spline basis is used both for the geometry and
the unknown solution field, so the isogeometric elements are fully isoparametric for any
continuity. Because of this characteristic property, it is said that isogeometric analysis
really creates a bridge over the existing gap between Computer Assisted Design (CAD)
and Finite Element Analysis (FEA). We obtain an automatic and efficient geometry-to-
mesh mapping by using splines. This improves mesh optimization and removes the need
for time-consuming conversion between different shape functions used for approximation
and visualization of the unknown solution.

In the old finite element methodology, we choose basis functions first to interpolate the
numerical solution, and then we use them to mesh the geometry of the domain. But in iso-
geometric analysis, this procedure is fully reversed. We choose suitable functions for the
geometry, and then we use them to interpolate the unknown solution afterwards. Hence,
our approximation is geometry independent. If the mesh on the geometry is as exact as
possible, then the numerical error is reduced quite much. This new advantage is not fully
available in the classical finite element method because the shape functions are straight-
edged, so curved edges on the domain are only approximated.

Classical Finite Element Method: Geometry ⇐ Solution field
Isogeometric Finite Element Method: Geometry ⇒ Solution field

Splines are appropriate to use because they form a partition of unity, providing stability
and better control of the computations. By combining this property with the isoparametric
concept, it can be shown that isogeometric analysis is complete. This means that the
unknown solution uh can be written as a linear infinite sum of the basis functions. Another
advantage is that we can vary the continuity easily from 0 to p− 1, where p is the spline’s
polynomial degree [12].
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Characteristic approximation features

Isogeometric analysis provides higher continuity of the numerical solution such that error
oscillation becomes lower than classical finite element functions [12]. The error is reduced
significantly for smooth problems. By using proper adaptive refinement, we can achieve
the same effect for non-smooth problems [40]. The standard refinement strategies from
the finite element method are fully incorporated in isogeometric analysis, and this makes
reduction of numerical error easy. Recently, there has also been intensive research on
local refinement of splines [27, 40, 24]. Isogeometric analysis provides also k-refinement,
which does not exist in the classical finite element method. It has also been shown that
splines generate commutative de Rham diagrams, and this makes approximation of the
differential operators better [10].

In contrast to the classical finite element method, the B-spline parameter space is local
to a patch on the domain, not a single individual element. This is time-saving because we
do not need to define several different maps for every element, only for specific parts of
the global domain of the partial differential equation [12].

(a) Isoparametric mapping using classical finite element method

(b) Isoparametric mapping using isogeometric analysis

Figure 4.1. Comparision of isoparametric mappings in the finite element methods
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4.2 B-splines

4.2.1 Univariate B-splines

Definition and properties of B-splines

A spline function is a piecewise defined but globally differentiable function on an interval
[a, b]. We construct it from a knot vector, an ordered sequence of nondecreasing numbers
(knots), Ξ = {ξ0, ξ1, . . . , ξm}, where m = n + p. From this vector, we can define a
B-spline (basic spline) of polynomial degree p, consisting of n+ 1 basis functions. The m
knots are classified as follows:

1. End knots: ξ0, ξ1, . . . ξp = a and ξm−p, ξm−p+1, . . . ξm = b.

2. Interior knots: ξp+1, ξp+2, ξp+3, . . . , ξm−p−1.

The B-splines are defined by the recursive Cox-de Boor formula [14]:

Ni,d(ξ) =
ξ − ξi

ξi+d − ξi
Ni,d−1(ξ) +

ξi+d+1 − ξ
ξi+d+1 − ξi+1

Ni+1,d−1(ξ) (4.2a)

Ni,0(ξ) = χ[ξi,ξi+1) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(4.2b)

We can write the general form of a spline function as

s(x) =

n∑
i=0

ciNi,p(ξ) (4.3)

The derivative of B-splines is given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (4.4)

This formula can be generalized to any order as follows [52]:

dk

dξk
Ni,p(ξ) =

p!

(p− k)!

k∑
j=0

ak,jNi+j,p−k(ξ) (4.5a)

a0,0 = 1 (4.5b)

ak,0 =
ak−1,0

ξi+p−k+1 − ξi
(4.5c)

ak,j =
ak−1,j − ak−1,j−1

ξi+p+j−k+1 − ξi+j
1 ≤ j ≤ k − 1 (4.5d)

ak,k = − ak−1,k−1

ξi+p+1 − ξi+k
(4.5e)
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From equation (4.4), we can define the first derivative of a spline function as

s′(x) =

n∑
i=0

diNi,p−1(ξ) , di =


c0p
tp−t0 i = 0

p
(
ci−ci+1

ti+p−ti

)
1 ≤ i ≤ n− 1

cnp
tn+p−tn i = n

(4.6)

The B-splines have many important properties. We refer to [49, 52] for the proofs.

1. Uniqueness: Ni,p depends only on the knots ξi, ξi+1, . . . ξi+p+1.

2. Positivity: Ni,p > 0, ξ ∈ (ξi, ξi+p+1).

3. Local support: supp(Ni,p) = (ξi, ξi+p+1).

4. Openness: ξ = ξi+1 = · · · = ξi+p < ξi+p+1 =⇒ Ni,p(ξ) = δij .

5. Continuity: ξ ∈ Ξ has multiplicity m =⇒ Ni,p ∈ Cp−m at ξ. Otherwise, Ni,p is
a smooth polynomial between the knots.

6. Stability: B-splines form a stable and linearly independent basis for all piecewise
polynomials on closed intervals.

7. Partition of unity: B-splines form a partition of unity:

n∑
i=1

Ni,p(ξ) = 1 ∀ξ ∈ Ξ, p ∈ N

P0
m−p P0

m−p+1 P0
m−p+2 P0

m−p+3. . . P0
m

...

P1
m−p+1

∨ <
P1
m−p+2

∨ <
P1
m−p+3

∨ <
. . . P1

m

...

P2
m−p+2

∨ <
P2
m−p+3

∨ <
. . . P2

m

...
...

Pp−1
m−1 Pp−1

m

Pp
m

∨ <

Figure 4.2. Visualization of the Cox-de Boor algorithm for B-spline evaluation
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(a) N0,0 (b) N1,0 (c) N2,0 (d) N3,0

Figure 4.3. B-splines of order 0 on Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}

(a) N0,3 (b) N1,3 (c) N2,3 (d) N3,3

(e) N4,3 (f) N5,3 (g) N6,3

Figure 4.4. B-splines of order 3 on Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}

We see from figure 4.3 and 4.4 that the Cox-de Boor algorithm starts with defining four
constant functions on disjoint intervals, and then they are combined recursively into seven
new functions of degree 3. In general, this algorithm can be visualized as shown above in
figure 4.2. The process is recursive, but we can use dynamic programming and implement
it with for-loops to obtain polynomial running time.

Spaces of univariate B-splines

We define a uniform partition on the interval [a, b] as follows:

∆ : a = x0 < x1 < · · · < xn−1 < xn = b

p is the polynomial degree, and r is the smoothness degree. From these quantities, we can
define the univariate spline space as follows:

Spr(∆) =

{
s(x) =

n∑
i=1

ciNi(x) : {ci}ni=1 ∈ R, s ∈ Cr([a, b])

}
(4.7)
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where {Ni : 1 ≤ i ≤ n} is the set of B-splines generated by the knot vector Ξ [59]. The
restriction of s on a subinterval [xi−1, xi] is just a polynomial of degree p:

s

∣∣∣∣
[xi−1,xi]

∈ Pp(R)

If the interior knots occurs only one time, then r = p− 1 globally. The dimension is

dim (Spr(∆)) = n(p− r) + p+ 1 (4.8)

We also have the multiplicative relation

f1 ∈ Sp1
r1 (∆), f2 ∈ Sp2

r2 (∆) =⇒ f1f2 ∈ Sp1+p2

min(r1,r2)(∆) (4.9)

Knot insertion

Knot insertion [49] is adding an extra knot ξ̂ into a knot vector Ξ such that we get more
basis functions and better shape control of the spline. This can be done without changing
the geometric shape or subdividing the spline at the new inserted knot. The method is
based on Böhm’s theorem. We have a B-spline curve C(ξ) =

∑n
i=0Ni,pPi defined by

Ξ = {ξ0, . . . , ξm}, and ξ̂ ∈ [ts, ts+1). Then we can represent C(ξ) =
∑n
i=0 N̂i,pP̂i by

the new knot vector Ξ̂ = {ξ0, . . . , ξs, ξ̂, ξs+1, . . . , ξm} as follows:

P̂i =


Pi, 0 ≤ i ≤ s− p
(1− αi)Pi−1 + αiPi, s− p+ 1 ≤ i ≤ s
Pi−1, s+ 1 ≤ i ≤ n+ 1

(4.10)

αi =
ξ̂ − ξi

ξi+p − ξi
=

ξ̂ − ξ̂i
ξ̂i+p+1 − ξ̂i

(4.11)

This process can be generalized such that we can insert multiple knots simultaneously, and
a well-known technique for this procedure is the Oslo algorithm

Degree elevation

Degree elevation is increasing a spline’s polynomial order, making it more differentiable
and compatible with the geometric shape [52]. This can be illustrated by a knot vector Ξ
on[a, b], where a = ξ0 < ξ1 < · · · < ξs < ξs+1 = b:

Ξ = {a, . . . , a︸ ︷︷ ︸
p+1

, ξ1, . . . , ξ1︸ ︷︷ ︸
m1

, ξ2, . . . , ξ2︸ ︷︷ ︸
m2

, . . . , ξs, . . . , ξs︸ ︷︷ ︸
ms

, b, . . . , b︸ ︷︷ ︸
p+1

}

{mk, 1 ≤ k ≤ s} are the multiplicities of each knot. The initial degree is p, so the
multiplicity at the endpoints becomes p+ 1. To elevate the order to p+ 1, we define

Ξ̂ = {a, . . . , a︸ ︷︷ ︸
p+2

, ξ1, . . . , ξ1︸ ︷︷ ︸
m1+1

, ξ2, . . . , ξ2︸ ︷︷ ︸
m2+1

, . . . , ξs, . . . , ξs︸ ︷︷ ︸
ms+1

, b, . . . , b︸ ︷︷ ︸
p+2

}
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A similar process can be done for reducing the degree to p− 1:

Ξ̂ = {a, . . . , a︸ ︷︷ ︸
p

, ξ1, . . . , ξ1︸ ︷︷ ︸
m1−1

, ξ2, . . . , ξ2︸ ︷︷ ︸
m2−1

, . . . , ξs, . . . , ξs︸ ︷︷ ︸
ms−1

, b, . . . , b︸ ︷︷ ︸
p

}

Numerical approximation properties

The advantage of defining B-splines implicitly by knot vectors is saving memory. Explicit
symbolic manipulation requires too much memory and computational effort, reducing the
algorithm efficiency. When we define the matrices and vectors in the discretization of a
partial differential equation, it becomes appropriate to calculate integrals numerically with
low error, so it is better to evaluate splines defined by knot vectors quickly at given points.
The same can be done with the derivatives of any order, accelerating the algorithmic speed.

Isogeometric analysis provides high accuracy. The old Lagrange interpolation functions
illustrate this. Their C0-continuity is invariant of increasing the polynomial degree p.
Doing so can generate high error oscillations in the numerical solution and causes bad
approximation. But splines do not share this disadvantage. If the degree is p, then we can
easily vary the continuity between 0 and p− 1. High continuity reduces the error because
the solution is more smooth. The computational complexity is also reduced significantly
because the discretization matrices are sparse and have lower spectral radius. This may
increase the speed of iterative algorithms [15, 23].

In contrast to the other previous finite element approaches, isogeometric analysis tackles
discontinuous data much better. This is because splines have the variation diminishing
approximation property, which smooths out discontinuities and prevents further spurious
oscillations in the final solution. This is achieved when the spline continuity is high.

From figure 4.5, the Lagrange functions have C−1-discontinuity at the points 0, 1, 2, 3
and 4, where they are piecewise continuous. This can cause spurious error propagation.
But the B-splines have a uniform pattern without discontinuities, making them better.

(a) Cubic Lagrange interpolants (b) Cubic B-splines

Figure 4.5. Comparison of Lagrange interpolants and B-splines
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(a) Bivariate basis function N3,3,3

(b) Bivariate basis function N3,5,3
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(c) Bivariate basis function N5,5,3

Figure 4.6. B-spline surfaces of order 3 on Ξ,H = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}

4.2.2 Multivariate splines

Spaces of multivariate B-splines

In several dimensions, we need the partitions ∆x, ∆y and ∆z for each spatial direction.
The bivariate and trivariate spline spaces are defined as

Spx,pyrx,ry (∆x,∆y) =
{
s2(x, y) : {cij}

nx,ny
i=1,j=1 ∈ R, f ∈ I2

}
(4.12)

Spx,py,pzrx,ry,rz (∆x,∆y,∆z) =
{
s3(x, y, z) : {cijk}

nx,ny,nz
i=1,j=1,k=1 ∈ R, f ∈ I3

}
(4.13)

where I2 = Crx,ry ([ax, bx, ]⊗ [ay, by]) and I3 = Crx,ry,rz ([ax, bx, ]⊗ [ay, by]⊗ [az, bz]).
s2 and s3 are the bivariate and trivariate tensor-product splines, respectively.

s2(ξ, η) =

n1∑
i=1

n2∑
j=1

cijNi,p(ξ)Mj,q(η) (4.14a)

s3(ξ, η, ζ) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

cijkNi,p(ξ)Mj,q(η)Lk,r(ζ) (4.14b)
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The restriction property for univariate splines holds in several dimensions. For multivariate
B-splines, it is useful with the general decomposition relations [50, 59]:

Ppx1 ,...,pxd (Rd) =

d⊗
i=1

Ppxi (R) (4.15a)

Spx1
,...,pxd

rx1 ,...,rxd
(∆x1 , . . . ,∆xd) =

d⊗
i=1

Spxirxi
(∆xi) (4.15b)

Crx1 ,...,rxd

(
d⊗
i=1

[axi , bxi ]

)
=

d⊗
i=1

Crxi ([axi , bxi ]) (4.15c)

dim
(
Spx1

,...,pxd
rx1 ,...,rxd

(∆x1 , . . . ,∆xd)
)

=

d∏
i=1

dim
(
Spxirxi

(∆xi)
)

(4.15d)

Curves, surfaces and volumes

Tensor products are used to create B-spline curves, surfaces and volumes [50]. By using
control vectors instead of scalar weights, they become more flexible, and we can easily
manipulate the shape. The general tensor product formulas for curves (C), surfaces (S)
and volumes (V) are compactly defined as follows:

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi C ∈ Ck1

S(ξ, η) =

n1∑
i=1

n2∑
j=1

Ni,p(ξ)Mj,q(η)Pij S ∈ Ck1 ⊗ Ck2

V(ξ, η, ζ) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pijk V ∈ Ck1 ⊗ Ck2 ⊗ Ck3

where {Ni,p}i∈[1,n1], {Mj,q}j∈[1,n2] and {Lk,r}k∈[1,n3] are the sets of B-spline basis
functions in ξ-, η- and ζ-directions, respectively, defined by knot vectors Ξ, H and Z .
P is the control point for the shapes, and the set of these points form a control polygon
CP. It is defined as a control net in 2D and control lattice in 3D.

CP =

nx⊕
i=1

ny⊕
j=1

Pij Pij ∈ R2×1 (4.16a)

CP =

nx⊕
i=1

ny⊕
j=1

nz⊕
k=1

Pijk Pijk ∈ R3×1 (4.16b)
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Physical mesh

Control mesh Control point

Figure 4.7. Illustration of physical mesh and control mesh

In isogeometric analysis, we distinguish between two different meshes because splines are
used as interpolating functions. The physical mesh is the actual geometry of the domain
decomposed into several local patches with their own knot spans making the discretization
more flexible, while the control mesh is defined by the splines’ control points used for
adjusting the geometry. The control nets and lattices can be viewed as compositions of
quadrilaterals and hexahedrons, respectively. This type of distinction does not exist in the
other finite element approaches because their characteristic basis functions cannot change
their shape in the same way as splines.

(a) B-spline surface
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(b) B-spline solid

Figure 4.8. B-spline surface and B-spline solid

4.2.3 Changing spline basis through least-squares projection

If we have a spline function f , we can change its basis from S1 to S2 by least-squares
approximation. That is, changing the coefficient vector by L2-projections in matrix form:

f =
∑
i∈S1

fiψi ≈
∑
j∈S2

f̃jφj (4.17)

This is a linear least-squares problem where we reduce the approximation error in the
L2-norm [51]. The new basis functions are defined through the new knot vector. The
mathematical statement of this minimization problem is

min
f̃∈Rn

ˆ
Ω

∣∣∣∣∣∣
∑
i∈S1

fiψi −
∑
j∈S2

f̃jφj

∣∣∣∣∣∣
2

dΩ ≡ min
f̃∈Rn

‖ΨT f −ΦT f̃‖2L2 (4.18)

Expanding the expression above by using the L2 inner product, taking the gradient with
respect to the target coefficient vector f̃ , and defining the matrices A =

´
Ω

ΦΦT dΩ and
B =

´
Ω

ΦΨT dΩ, the linear equation system for f̃ becomes

Af̃ = Bf (4.19)

This procedure is valid both for B-splines and NURBS, since the target object is the new
coefficient vector defining the spline function linearly. In the case of NURBS, the whole
procedure becomes more complicated because the shape functions are rational, and we
also need to adjust both weights and control points. The resulting system will be nonlinear
and requires sophisticated least-squares algorithms for solving it.
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4.3 NURBS

4.3.1 Univariate and multivariate NURBS

Definition and properties of NURBS

NURBS (Non-Uniform Rational B-Splines) are the heart of isogeometric analysis. They
have the ability of representing conic sections exactly, and this enables us to mesh curved
domains better. The generic form of this spline is

R(u) =

n∑
i=0

Ri,p(u)Pi (4.20)

NURBS are in many ways a flexible generalization of B-splines which can be used to
define curves, surfaces and volumes in the same way as shown previously:

C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n
i=1Ni,p(ξ)wi

C ∈ Ck1

S(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wijPij∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wij

S ∈ Ck1 ⊗ Ck2

V(ξ, η, ζ) =

∑n
i=1

∑m
j=1

∑l
k=1Ni,p(ξ)Mj,q(η)Lk,r(ζ)wijkPijk∑n

i=1

∑m
j=1

∑l
k=1Ni,p(ξ)Mj,q(η)Lk,r(ζ)wijk

V ∈ Ck1 ⊗ Ck2 ⊗ Ck3

w are the weights of the shape, and the denominator W is the weighting function. The
NURBS have also many useful properties [49, 50, 52]:

1. Positivity: Ri,p ≥ 0, ξ ∈ [ξi, ξi+p+1).

2. Uniqueness: Ri,p only depend on the knots ξi, ξi+1, . . . ξi+p+1.

3. Positivity: Ri,p > 0, ξ ∈ (ξi, ξi+p+1).

4. Local support: supp(Ri,p) = (ξi, ξi+p+1).

5. Unique maxima: If p > 0, then Ri,p has one unique maximum.

6. Continuity: ξ ∈ Ξ has multiplicity m =⇒ Ri,p ∈ Cp−m at ξ. Otherwise, Ri,p is
a smooth polynomial.

7. Nonsingularity: All derivatives of Ri,p exists in the interior of the knot span.

8. Partition of unity: NURBS form a partition of unity:

n∑
i=1

Ri,p(ξ) = 1 ∀ξ ∈ Ξ, p ∈ N

9. Invariance: NURBS are completely invariant of operations like scaling, rotation,
translation, shear and projection.
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(a) NURBS surface

(b) NURBS solid

Figure 4.9. NURBS surface and NURBS solid
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Evaluation and differentiation

Evaluation of a NURBS-curve C differs from B-splines because a d-dimensional NURBS
curve is the projection of a (d + 1)-dimensional B-spline curve [26]. Therefore, we must
apply a projection P : Rd 7→ PRd on the control points as follows:

{P}i∈[1,n] = {(xi, yi, zi)}i∈[1,n] −→ {Q}i∈[1,n] = {wi(xi, yi, zi, 1)}i∈[1,n] (4.21)

The new curve defined by the original knot vector Ξ and the projected points {Q}i∈[1,n]

is a 4-dimensional and non-rational B-spline that can be evaluated directly. The final input
is obtained by the inverse projection P−1 : PRd 7→ Rd:

Qe = (x0, y0, z0, d0) −→ Pe =
1

d0
(x0, y0, z0) (4.22)

This method described above is also used for surfaces. After projecting every control
point, we use the same matrix procedure for non-rational B-spline surfaces to evaluate at
a point, and then we project inversely to find the value we seek for.

If A(ξ) = W (ξ)C(ξ) [52], then the derivative of order a is defined recursively by

C(a) =
1

W

(
A(a) −

a∑
i=1

(
a

i

)
W (i)C(a−i)

)
(4.23)

A similar formula holds for surfaces too, where A(ξ, η) = W (ξ, η)S(ξ, η):

S(a,b) =
1

W

A(a,b) −
a∑
i=1

(
a

i

)
W (i,0)S(a−i,b) −

b∑
j=1

(
b

j

)
W (0,j)S(a,b−j)

 (4.24)

− 1

W

a∑
i=1

b∑
j=1

(
a

i

)(
b

j

)
W (i,j)S(a−i,b−j) (4.25)

The real projective space RPn (RCn) consists of all points x ∈ Rn+1 such that x and αx
define the same location when α 6= 0. The properties of NURBS depend heavily on this
n-dimensional manifold with quotient topology [26, 44].

Knot insertion and change of degree

Knot insertion and degree elevation for NURBS must also be done with projection. To
insert s new knots in the knot vector Ξ, we project the control points to obtain a non-
rational curve, as shown in (4.21). After the insertion, we use inverse projection and
obtain a new NURBS, as follows:

{Q′}i∈[1,n+s] = {(x′i, y′i, z′i, w′i)}i∈[1,n+s] −→ {P′}i∈[1,n+s] =
1

w′i
{(x′i, y′i, z′i)}i∈[1,n+s]
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4.3.2 Conic sections and quadric surfaces

As an introductory illustration of NURBS, we use the following parameters [49]:

Ξ =

{
0, 0, 0,

1

4
,

1

2
,

1

2
,

3

4
, 1, 1, 1

}
w =

{
1,

1

2
,

1

2
, 1,

1

2
,

1

2
, 1

}
P =

{(
1
0

)
,

(
1
1

)
,

(
−1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
1
−1

)
,

(
1
0

)}
These parameters are used to construct a circle exactly by NURBS. If we scale the x- and
y-coordinates of the control points, we get an ellipse, so the procedure is generic.

Surfaces of revolution can also be created by NURBS. We represent the cross section
in a proper way and rotate it with respect to an axis. This is done by using the standard
transformation matrices. For example, we can create a torus by generating a circle first
and then rotate it with respect to the z-axis. A sphere can also be created in a similar way,
but that requires a semicircle, and it can be parametrized as follows [52]:

(x(t), y(t)) =

(
1− 2t

1− 2t+ 2t2
,

2t(1− t)
1− 2t+ 2t2

)
It is important to notice that there is not a unique way for creating a NURBS surface.
Indeed, there are many different approaches for representing the same surface exactly. The
choice of representation is often depending on the specific situation. For further general
details about tensor spaces and their properties, which are used for describing multivariate
splines and their respective spaces, we refer to [29].

(a) Circle (b) Ellipse

Figure 4.10. Circle and ellipse constructed exactly by NURBS
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(a) Sphere

(b) Ellipsoid
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(c) Cylinder

(d) Torus

Figure 4.11. Torus, cylinder, sphere and ellipsoid constructed exactly by NURBS





Chapter 5

Computational algorithms

We present the discretization of the Boussinesq equations and discuss the relevant methods
for solving the whole system effectively. In order to reduce the computational complexity,
we combine several methods and split the equation system in several parts. These parts are
solved separately, and their solutions are stepwise coupled together such that they produce
the final solution we seek for. The whole numerical procedure is a combination of several
algorithms, equipped with efficient techniques from numerical linear algebra.

5.1 Main features of the discretization

General theory of Ritz-Galerkin discretization

The Galerkin projection discussed in chapter 2 converts a partial differential equation into
a variational equation, and the next step is to make the numerical solution uh belong to
a finite-dimensional function space Vh, a proper subspace of the trial space V where u
belongs to. At this point, we must invoke the element shape functions, in our case splines,
and apply the Ritz-Galerkin discretization of the unknown solution:

uh(x) =
∑
m∈S

ψm(x)um = ΨTu (5.1)

where S is the linearly independent basis of shape functions. We define W as the test
space of the function v used in the Galerkin projection. When the trial and test spaces
coincide (the functions are of same type), we have the Bubnov-Galerkin method, which
is most common. It works well for most partial differential equations. The residual error
is forced to be orthogonal to every basis function, and this is optimal for equations with
self-adjoint partial differential operators.

47
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In some cases, the Petrov-Galerkin method is more appropriate for stabilizing advection.
We decompose W in two parts such that W = Wcoarse ⊕Wfine. This upwind technique is
useful in situations where we must avoid spurious oscillation caused by boundary layers,
a common phenomenon which occurs in equations with odd-order derivatives [12].

Both approaches described above are special cases of the Method of Weighted Residual,
the core of finite element discretization. The concept is to minimize the residual error of
the discretized solution over the entire domain [46]. This is analogous to minimizing the
potential energy of a system, but the fundamental problem is that in many applications, its
corresponding functional cannot be derived analytically. If L is the differential operator,
and uh is the discretized solution, then the two Galerkin methods can be formulated as

• Bubnov-Galerkin (GFEM)
´
L(uh)Ni dΩ = 0.

• Petrov-Galerkin (PGFEM)
´
L(uh)

(
Ni + F̃i

)
dΩ = 0.

It should be noted that implementation of Petrov-Galerkin discretization depends on the
equation itself and the procedure for solving the discretized system arising from it.

Mixed finite element discretization

The most appropriate method for solving a system of partial differential equations is the
Mixed Finite Element Method (MFEM) [5]. This is because the unknown solution consists
of several components, and each of them have their own individual features that must be
preserved as well as possible. This can be done by using different element shape functions
and approximate the functions individually in their respective trial spaces. As a result,
the algebraic system arising from the discretization will have a solution and can be solved
without applying too complicated stabilization techniques.

The mixed discretization itself must always satisfy the Ladyzhenskaya-Babuška-Brezzi
(LBB) condition, ensuring the existence of a stable and regular solution. For Stokes’
equation, this can be formulated compactly as follows:

inf
U∈H1(Ω)2

sup
p∈L2

0(Ω)

1

2
A(U,U) + F (U)−B(U, p) (5.2)

This holds for the Navier-Stokes equation although it is not fully linear. If we discretize
it such that the LBB condition is satisfied, the numerical solution exists. Traditionally,
the discretization has been performed with the Taylor-Hood, Nédélec and Raviart-Thomas
elements. It has been shown recently that these classical elements can be generalized for
any polynomial degree and continuity such that the LBB condition (5.2) is satisfied and the
mesh becomes conformal. This is very crucial in the isogeometric discretization. These
three methods also form a hierarchy of the discretized velocity field and pressure: [9]

Velocity: V̂ RTh ⊂ V̂ Nh ⊂ V̂ THh

Pressure: Q̂RTh ≡ Q̂Nh ≡ Q̂THh
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To simplify the code implementation, we choose the isogeometric Taylor-Hood method,
where deg(Uh) = deg(ph) + 1 due to the fact that U ∈ H1(Ω)3 and p ∈ L2

0(Ω). If we
denoteM = (∆x,∆y,∆z) as the discretization of Ω, then

V̂ THh : Uh ∈
3×
i=1

Sp+1,p+1,p+1
α,α,α (M) Q̂THh : ph ∈ Sp,p,pα,α,α(M)

where 0 ≤ α ≤ p− 1. In order to obtain high accuracy, the continuity should be maximal,
i.e. α = p − 1 both for the velocity field and the pressure. The velocity field’s continuity
is reduced in order to fulfill the LBB-condition, see [7]. However, for the temperature, it
can be chosen with maximum continuity, i.e. Th ∈ Sp+1,p+1,p+1

p,p,p (M). Using the same
notation as in [56], we define the numerical solutions as

ud,h(x, y, z, t) =

nx∑
i=1

ny∑
j=1

nz∑
k=1

ψi(x)ψj(y)ψk(z)ud,ijk(t) = ΨTUd (5.3a)

ph(x, y, z, t) =

nx∑
i=1

ny∑
j=1

nz∑
k=1

φi(x)φj(y)φk(z)pijk(t) = ΦTP (5.3b)

Th(x, y, z, t) =

nx∑
i=1

ny∑
j=1

nz∑
k=1

θi(x)θj(y)θk(z)Tijk(t) = ΘTT (5.3c)

where d ∈ {x, y, z}. The system of equations arising from the discretization is given by

MUU̇x + CU (U)Ux + a1KUUx −DT
xP = 0

MUU̇y + CU (U)Uy + a1KUUy −DT
y P = 0

MUU̇z + CU (U)Uz + a1KUUz −DT
z P = −a2RUTT

DxUx + DyUy + DzUz = 0

MT Ṫ + CT (U)T + a3KTT = Q

(5.4a)

(5.4b)

(5.4c)
(5.4d)

(5.4e)

where a1 = Re−1, a2 = Ri and a3 = Pe−1. The matrices are defined as follows:

MU =

ˆ
Ω

ΨΨT dx , KU =

ˆ
Ω

(∇Ψ) · (∇Ψ)T dx , Dd =

ˆ
Ω

Φ
∂ΨT

∂xd
dx

MT =

ˆ
Ω

ΘΘT dx , KT =

ˆ
Ω

(∇Θ) · (∇Θ)T dx , RUT =

ˆ
Ω

ΨΘT dx

CT (U) =

ˆ
Ω

ΘΨT

(
Ux

∂ΘT

∂x
+ Uy

∂ΘT

∂y
+ Uz

∂ΘT

∂z

)
dx , Q =

ˆ
Ω

ΘQdx

CU (U) =

ˆ
Ω

ΨΨT

(
Ux

∂ΨT

∂x
+ Uy

∂ΨT

∂y
+ Uz

∂ΨT

∂z

)
dx (5.5)

We see that the convection term u · ∇ can be discretized in two ways, depending on the
solution component it is applied to.
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Remarks on the semi-discretization

A more compact way of rewriting the semi-discretized Navier-Stokes equations is

Ut = M−1
(
−C(U)U−KU + DTP

)
≡ F(U,P)

0 = DU ≡ G(U)

From this simplified notation, we can deduce an important relation:

∂G
∂U

∂F
∂P

= DM−1DT

= DxM
−1
U DT

x + DyM
−1
U DT

y + DzM
−1
U DT

z

The pressure is stabilized through the LBB-condition (5.2), so D has full rank, and M
is always invertible. Hence, the Schur complement DM−1DT is nonsingular, and the
Navier-Stokes equations can be classified as a differential algebraic equation of index 2,
commonly abbreviated as index-2 DAE. This means that we have a differential equation
(system) subject to an algebraic equation, and the solvability depends on the product of
two derivatives, one for each equation in the system [33].

The convection-diffusion equation is not subject to any constraint, so it becomes just a
linear dynamical system of differential equations when we semi-discretize it.

5.2 A hybrid multistage algorithm

The procedure of choosing an efficient time-integrator for any dynamical system is always
depending on the equation itself and the conditions we want to examine. When we solve
complex systems like the Boussinesq equations, it is very appropriate to segregate it. This
means that for each time step, we find a solution of the Navier-Stokes and convection-
diffusion equations separately. Then we repeat the same process repeatedly. Doing so
is more effective than solving both equations simultaneously for every time-step because
smaller equations are easier to handle quickly. We can even use different time-integrators
for each equation, and this yields higher flexibility of the complete numerical procedure.

5.2.1 Time-integration of the Navier-Stokes equations

Choice of implicit time-integrator

The first approach tested for solving the Navier-Stokes equations in this thesis was the
fractional-step method. The goal was to separate the linear and nonlinear parts of the
equation system in such a way that we could avoid Newton-iteration. Unfortunately, this
method did not give sufficiently accurate solutions although it was correctly implemented.
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Hence, the conclusion was that the saddle-point structure of the Navier-Stokes equations,
discretized with isogeometric analysis, caused instabilities. If we were solving a single
partial differential equation or an equation system which was not classified as a saddle-
point system, then the splitting method would probably have worked correctly and given
the desired results. Hence, the conclusion was to discard the fractional-step method and
use a fully implicit time-integrator using Newton-iteration in each time step.

The natural choice was therefore to use the Backward Differentiation Formula (BDF), one
of the most common integrators used for solving large stiff systems arising from partial
differential equations. Its main characteristics are A-stability and low usage of memory.
We do not need to store the nonlinear convection from the previous time steps, only the
one for the next step, which will be used in the Newton iteration. As long as the BDF-
integrator does not have more than 2 steps, it will indeed be A-stable as a consequence of
the universal Dahlquist barrier [32, 33].

Implementation of Newton-iteration

By using compact tensor notation and dropping the scaling parameters, we can assume for
simplicity that the Navier-Stokes equations with force is given by

MUt + C(U)U + KU−DTP = F (5.6a)
DU = 0 (5.6b)

It is important to notice that the pressure is used for adjusting the velocity field such that
it remains solenoidal for each time step, so we do not need to discretize the pressure with
respect to time. The generic form of any BDF-integrator, applied on the model equation
y = f(y, t), can be formulated as follows:

γ0y
n+1 +

k∑
i=1

αiy
n+1−i = hfn+1

Applying this implicit integrator on the Navier-Stokes equations, which has been earlier
classified as a differential algebraic equation of index 2, we obtain

(γ0

h
M + K + C(Un+1)

)
Un+1 −DTPn+1 = Fn+1 − 1

h
M

[
k∑
i=1

αiU
n+1−i

]
DUn+1 = 0

This can be more compactly stated as the nonlinear equation system[
γ0

h M + K −DT

−D 0

] [
U
P

]n+1

+

[
C(Un+1)Un+1

0

]
−
[
Gn+1

0

]
=

[
0
0

]
(5.7)



52 5.2 A hybrid multistage algorithm

For each time step, this nonlinear system must be solved by Newton-iteration. Thus, the
Jacobian of the left-hand side of (5.7) is defined as

J =

[
γ0

h M + K −DT

−D 0

]
+

[
R(U) 0

0 0

]
(5.8)

As we see, the first matrix is a constant saddle-point matrix which never changes it value
during the whole time-integration, but the second one is nonlinear and has to be updated
for each iteration. In order to define the nonlinear part of the Jacobian, we need some
special differentiation rules. Let us assume that a, b and c are vectors with n entries, and
In is the identity matrix. Then we can state the following relations:

∂

∂a

(
cbTa

)
= cbT (5.9a)

∂

∂a

(
abT c

)
=
(
bT c

)
In (5.9b)

∂

∂a

(
abTa

)
= abT +

(
bTa

)
In (5.9c)

Applying this on the nonlinear vector C(U)U, we obtain the components of R:

Rij(U) = δijC(U) +

ˆ
Ω

(
∂ΨT

∂xj
Uxi

)
ΨΨT dx (5.10)

where δij is Kronecker’s delta and 1 ≤ i, j ≤ 3. The convergence of Newton’s method is
quadratic, so we do not need many iterations before reaching the desired tolerance level.

Algorithm 1 Newton’s method for systems of equations

1: procedure NEWTON_ITERATION(H, J)
2: Define the tolerance level λ
3: Define the maximal iteration number N
4: Define the initial guess Z0 as a zero vector
5: Initialize the number of iterations, k = 1
6: Initialize the error of the iteration, err = inf
7: while k ≤ N and err ≤ λ do
8: Update the equation’s left-hand side, H(Zk−1)
9: Update the Jacobian, J(Zk−1)

10: Calculate the increment Yk−1 = J(Zk−1)−1H(Zk−1)
11: Find the new iterate Zk = Zk−1 −Yk−1

12: Calculate the new error, err = ‖Yk−1‖∞
13: Increment the number of iterates, k = k + 1

14: return Z
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Solvability by multipoint constraining

Since the pressure belongs to L2
0(Ω), it must satisfy the compatibility conditionˆ

Ω

p(x, y, z, t) dx = 0

In terms of the element shape functions, the left-hand side can be expressed as
nx∑
i=1

ny∑
j=1

nz∑
k=1

ˆ
Ω

φi(x)φj(y)φk(z)pijk(t) dx =
∑
m∈S

(ˆ
Ω

φm(x, y, z)

)
pm(t) dx

If there are Np basis functions for the pressure, then we can express the first coefficient as

p1(t) = − 1

α1

Np∑
J=2

αJpJ(t)

We apply the multipoint constraint above on equation system in (5.6). If DT = [dTIJ ] and
gn+1
I comes from the composite right-hand side vector, then

Np∑
J=2

(
dTIJ −

αJ
α1
dTI,1

)
pn+1
J = gn+1

I , 2 ≤ I ≤ Nu (5.11)

5.2.2 Solving the linear convection-diffusion equation

Choice of implicit-explicit time-integrator

The convection-diffusion equation is parabolic, so explicit time-integrators do not work.
If the advection field was given by a known function, a fully implicit integrator would
work very well. But in the Boussinesq system, the advection is given by the unknown
velocity field. If we use an implicit integrator, we need information about Un+1 when we
are at step tn, but this quantity belonging to the next step tn+1 is unknown. Similarly for
the Navier-Stokes equations, the use of the BDF integrator requires the value of Fn+1 for
each time step tn, and this is straightforward because the force on the right-hand side of
the equation is known. In the Boussinesq system, anyway, we also require the value of
Tn+1 as shown in (5.4), and this quantity is also unknown.

Fortunately, this bottleneck preventing the Boussinesq system from being segregated can
be efficiently removed if we also use an IMEX integrator on the convection-diffusion equa-
tion. This means that the convection and diffusion terms are integrated explicitly and im-
plicitly, respectively. By doing so, we only require Un when we are at step tn. Since
the equation is linear, A-stability of the integrator’s implicit part is sufficient. Thus, the
Navier-Stokes and convection-diffusion equations are fully separated from each other. The
computational complexity required for solving the Boussinesq equations is reduced quite
significantly.
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The first attempt was using IMEX Runge-Kutta methods because they have large stability
regions. This approach did not give sufficiently accurate results during the simulation. A
probable explanation of this failure might be that we need to evaluate the convection matrix
several times in each time step, but we only did it a few times because we are using the BDF
integrator on the Navier-Stokes equation. Hence, we had to use IMEX multistep methods
instead, and the natural choice was therefore the Semi-implicit Backward Differentiation
Formula (SBDF), since it shares the same advantages of BDF like low storage and less
computational effort. By using BDF and SBDF simultaneously on the Boussinesq system,
the segregation was achieved, and it did indeed give accurate results. This will be shown
in chapter 7, where the MATLAB-codes are verified numerically. Further details on IMEX
integrators and their construction can be found in [4, 3].

Coupling the equations together

We assume that the convection-diffusion equations is defined as

MT Ṫ + CT (U)T + KTT = Q (5.12)

By applying the SBDF integrator, we just need to solve the linear equation

(γ0

h
MT + KT

)
Un+1 = Qn+1 − 1

h

k∑
i=1

[
αiMTUn+1−i + βi(CT (U)T)n−i

]
(5.13)

This equation has the same structure as the Helmholtz equation. When the temperature
Tn+1 is found, we multiply it with the matrix RUT from (5.4). This can actually be
regarded as a least-squares projection Sp+1

p → Sp+1
p−1, ensuring that the temperature is

transferred to the right-hand side of the Navier-Stokes equations.

Special facilities for reducing computational effort

In the whole finite element projection, the matrices are not inverted more than necessary,
and the inversions are performed such that matrix sparsities are preserved. It is also a good
idea to define the convection as vectors, CT (U)T and CU (U)U. The assembly will take
less time, and we do not need to multiply matrices with vectors afterwards. Thus, the
global running time of the algorithm is minimized in the first stage.

The next stage is solving the equation systems effectively. The symmetry of equation
(5.13) makes it appropriate to use algebraic multigrid. It is completely independent of the
discretization method and is an optimal multiresolution algorithm for solving linear partial
differential equations. The saddle-point system in (5.7) might be decomposed with special
algorithms resembling the classical Uzawa decomposition. Because of its nonlinear and
nonsymmetric structure, the process can be a little bit complicated.
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5.3 Stabilizing boundary layers

In fluid mechanics, the solution of partial differential equations might contain boundary
layers. The reason is that the highest order derivative depends on a very small parameter.
When it tends to zero, we lose one of the specified boundary conditions. This yields the
outer solution of the equation, in the context of singular perturbation. When we apply the
Bubnov-Galerkin method to a convection-dominated problem, the odd-order derivatives
make the problem nonsymmetric, and spurious oscillations ruin the approximation. But
the Petrov-Galerkin method adds a small perturbation function to the test function in the
weak formulation, resulting in high stabilization of the numerical solution. There is a big
hierarchy of similar algorithms, and a complete description is given in [57].

5.3.1 The Streamline-Upwind/Petrov-Galerkin method

The SUPG (Streamline-Upwind/Petrov-Galerkin) method is a classical stabilization in the
multiscale finite element method (MsFEM). It was originally designed by Zienkiewicz
for the advection-diffusion equation [62], and then generalized by Brooks and Hughes for
the Navier-Stokes equations [8]. This method is compatible with isogeometric analysis,
mostly with respect to the ease of implementation.

In the finite difference method, upwind discretization precludes the spurious oscillations
caused by boundary layers. Instability will always imply inaccuracy, but stability does
not imply high accuracy automatically. Although the upwind method is stable, consistent
and removes the oscillatory modes, the accuracy is just O(h). Transferring this directly
to multidimensional and unsteady problems, as in the artificial diffusion method, causes
a potential risk of adding too much artificial diffusion, which is O(h) in all directions.
Unexpected crosswind diffusion perpendicular to the advection field can also occur. The
stabilizing term is not compatible with the polynomial approximation’s optimal order no
matter the polynomial degree of the finite element interpolant [54]. The error estimate of
this upwind discretization is just

‖u− u∗h‖ ≤ C
(

inf
vh∈V

‖u− vh‖H1 + h‖u‖H1

)
(5.14)

The advantage of SUPG is adding some artificial diffusion in the streamline direction, an
appropriate limitation. Hughes et al. showed in [36] that if we combine SUPG together
with isogeometric analysis, the stabilization is strengthened because of high continuity in
the spline interpolants. Thus, we combine two stabilizing factors together such that any
spurious oscillation is easily removed away. Asymmetric weight functions ensure that
nodal upstream is weighted more heavily than the nodal downstream, for each element.
The mesh does not need to be too dense in order to avoid spurious oscillation, and the
solution will be efficient to find, but mesh-dependency must be taken into account in order
to determine the stabilizing parameters.
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Figure 5.1. Quadrilateral and hexahedral elements with characteristic element length

The characteristic element length is a frequent quantity used in the SUPG-formulation of
partial differential equations with the same structure as the advection-diffusion equation.
It simplifies much of the calculations because it is easy to compute. For any finite element,
the characteristic element length is defined as

he =

{
|h1|+ |h2| 2D
|h1|+ |h2|+ |h3| 3D

(5.15)

We define ue as the element convection and obtain

h1 =
1

‖ue‖
(ue · hξ) h2 =

1

‖ue‖
(ue · hη) h3 =

1

‖ue‖
(ue · hζ) (5.16)

If the convection is given by a known function, or the mesh is a rectangular grid, then the
formulas above can be very simplified [17].

5.3.2 Outline of the different formulations

SUPG on convection-diffusion equation

We assume first that the convection-diffusion equation is on the general form

∂T

∂t
− k∇2T + (u · ∇)T = Q



Chapter 5 Computational algorithms 57

We use the same approach described in [17]. If the current element is denoted by e, we
can define the element-wise collection of perturbed test functions as

W e
I (x) = Ne

I (x) +
he

2‖ue‖

(
α+

β∆t

2

∂

∂t

)
(ue · ∇Ne

I (x))

α ∈ [0, 1] is a free upwind parameter for artificial diffusion, and β is the dependent upwind
parameter for temporal discretization. They are defined as

α = coth(Pe)− 1

Pe
β =

Cr

3
− α

PeCr

Pe =
‖ue‖he

2k
Cr =

‖ue‖∆t
he

Pe and Cr are the local Péclet and Courant numbers, respectively. he is the characteristic
element length. The adjustable tuning parameters α and β are optimally constructed for
any dimension, and the local definition on each element makes the method more flexible.
The velocity field is not a constant vector field as in the case of linear advection, and
it is given as a sum of interpolating shape functions. An easy and flexible procedure is
computing the L2-norm on the current element:

‖u‖2L2(Ωe) = ‖ux‖2L2(Ωe) + ‖uy‖2L2(Ωe) + ‖uz‖2L2(Ωe) (5.17)

Applying this on the convection-diffusion equation yields

ÃT Ṫ + B̃TT = Q̃

The SUPG-matrices for the convection-diffusion equation are defined by

ÃT =

ˆ
Ω

(Θ + (e · ∇)Θ) ΘT dx

Q̃T =

ˆ
Ω

(Θ + (e · ∇)Θ)Qdx

B̃T =

ˆ
Ω

d∑
i=1

[
k
∂Θ

∂xi
+ (Θ + (e · ∇)Θ) ΨTuxi

]
∂ΘT

∂xi
+ . . .

k

d∑
i=1

ei ∂2Θ

∂x2
i

∂ΘT

∂xi
+
∑
j>i

∂2Θ

∂xixj

(
ei
∂Θ

∂xj
+ ej

∂Θ

∂xi

)T dx
where Θ + (e ·∇)Θ is the perturbed test function. It should be noted that the components
multiplied with e will change for each time step because the velocity field is varying over
time, which again changes the value of e. The integrals of Θ and Ψ are invariant of time
evolution because they depend on the spatial derivatives. Only e and u are not constant and
change the SUPG-matrices. Hence, it can be appropriate to store the integrals efficiently
with complex linked lists and use them as function handles for the matrices. In this way,
we do not need to calculate the integrals over and over again for each time step, for it is
only the coefficient vectors for the velocity field that changes during the whole simulation.
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SUPG on Navier-Stokes equations

There are several ways of creating an SUPG-formulation of the Navier-Stokes equations.
They are chosen after special conditions like turbulence and compressibility in order to
make them more flexible. For the incompressible model, the SUPG method formulated
for the convection-diffusion equation is exactly the same for the Navier-Stokes equation.
The main difference is that we replace Pj with Rj , the local Reynolds number [8]:

βj = coth(Rj)−
1

Rj
Rj =

ρ0ujhj
2µ

(5.18)

Several numerical experiments have shown that this approach above works properly for
the Navier-Stokes equations. We can also determine the tuning parameter β with the L2-
norm as in equation (5.17). Unfortunately, there was not enough time to implement SUPG
on Navier-Stokes, so we will restrict ourselves to a problem which is relatively easy to
solve and also diffusion-dominated.

5.4 General remarks on the global assembly process

5.4.1 Brief description of the local assembly

All the integrals defined in (5.5) must be evaluated on each individual element before they
are inserted into the global matrices and vectors used in the discrete equation system. The
only difference is that the domain changes from Ω (global) to Ωe (local), and we must
detect which spline functions are defined on this local element. But the integrand formula
is still the same. To do so, we need an efficient enumeration of each element, and this will
be used to determine how the local matrices and vectors will be inserted into the global
ones. There are many ways of doing this. If the domain is a square or rectangle, as in our
introductory case, it is easiest to use standard lexicographical enumeration of the elements,
as depicted in figure 5.2. This procedure is quite straightforward.

In any case, the procedure of inserting the local components depends on the polynomial
degree and continuity of the spline interpolants. High continuity implies that the global
matrices and vectors become smaller and smaller when rising the polynomial degree, and
the spectral radii decreases. This is one of the superior advantages isogeometric analysis
has over the classical finite element methodology as pointed out in chapter 4.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

Figure 5.2. Lexicographical enumeration on a rectangle

The physical coordinates, (x, y, z), are those ones describing the actual geometry of the
real physical domain Ωe. They are mapped first to the parameter coordinates (ξ̂, η̂, ζ̂) of
the parameter space Ω̂e, used for the interpolating shape functions. Lastly, they are mapped
to the parent coordinates (ξ̃, η̃, ζ̃) of the integration domain Ω̃e, as shown in figure 5.3.
This is vital for the numerical integration on each element, which requires a continuous
and isoparametric mapping to the parent elements. The whole process, expressed through
the Jacobian of the coordinate transform, can be stated as

˚

Ωe

f(x, y, z) dx dy dz =

ˆ 1

−1

ˆ 1

−1

ˆ 1

−1

g(ξ̃, η̃, ζ̃)
∣∣det(J)

∣∣ dξ̃ dη̃ dζ̃ (5.19)

≈
nx∑
i=1

ny∑
j=1

nz∑
k=1

wiwjwkg(ξ̃i, η̃j , ζ̃k)
∣∣det(J)

∣∣
The Jacobian of the isoparametric coordinate mapping is defined as

J(ξ̃, η̃, ζ̃) =


∂x

∂ξ̃

∂y

∂ξ̃

∂z

∂ξ̃
∂x
∂η̃

∂y
∂η̃

∂z
∂η̃

∂x

∂ζ̃

∂y

∂ζ̃

∂z

∂ζ̃

 (5.20)

When the domain is a square or rectangle, the Jacobian will always have a constant value
depending on the length and width of each element, and it does not change indeed. But
such domains are quite simple, and in the general case, the coordinate mapping shown
in (5.19) must be invoked. Using the same notation as Hughes [35], we can describe the
assembly process of the global matrices and vectors as

M =

ne

A
e=1

(Me) , f =

ne

A
e=1

(fe) (5.21)
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Figure 5.3. Mapping between different spaces in the quadrature process

5.4.2 Implementation of boundary conditions

The finite element method is very flexible because it can handle any boundary condition
by incorporating them directly in the weak formulation, instead of approximating them as
in the finite difference method. Although we are using splines as the new basis functions
in isogeometric analysis, the procedure is exactly the same as before.

Neumann conditions are often called natural because they are implemented as vectors
in addition to the load vector on the right-hand side of the equation. We loop over the
element edges, calculate line integrals, and then we assemble them in a vector.

Dirichlet conditions are essential because they are enforced in the system of equations.
If u = g on ∂Ω, we can express this as Bu = g, where B is a rectangular constraint
matrix. In terms of Lagrange multipliers, the system of equations becomes[

A BT

B 0

] [
u
λ

]
=

[
f
g

]
The easiest procedure is removing the entries in A and f corresponding to the boundary,
solve the modified system Ãũ = f̃ , and then insert g correctly into ũ to obtain u.

For Robin conditions (radiation), we must combine both procedures mentioned above
simultaneously, since displacement and flux are coupled together at once.
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5.4.3 Optimal quadrature

In the finite element method, Gaussian quadrature is used in the assembly, and it works
because the continuity between most of the elements is C−1. The splines form a smooth
subspace of C−1, so Gaussian quadrature works, and it integrates polynomials exactly if
we use enough quadrature points. But in isogeometric analysis, high continuity of the
splines is required for increasing accuracy, and this causes a problem pointed out in [37].

Gaussian quadrature neglects high continuity between the elements, so it integrates the
splines more than necessary, and the assembly speed is slowed down. Hence, it becomes
desirable to create weights and nodes to an individual knot vector. The optimal quadrature
of splines should work for any polynomial degree and continuity. If the spline space has
dimension n, we do not need more than n+1

2 quadrature points. If the total running time of
Gaussian quadrature is O(Nd), optimal quadrature can reduce it up to O((N/2)d), where
d is the Euclidean dimension. A full description of this algorithm is given in [39].

This approach was tested in the early assembly implementation, but it only worked for
p ≤ 3. The reason was too low continuity causing divergence in the Newton iteration.
This had already been pointed out because the nonlinear equation system for nodes and
weights is very ill-conditioned. Hence, Gaussian quadrature had to be used. In the future,
it can be actual to use a more robust quadrature method that converges for any continuity.

5.5 Post-processing of the solution

When we solve a partial differential equation by the finite difference method, we obtain a
solution vector containing evaluations of the unknown solution at discrete points, and this
can be plotted directly without complications. The more discretization points or higher
order of the scheme, the more will the discrete solution converge to the exact solution. In
terms of functional analysis, this is an example of strong convergence.

In the finite element method, anyway, the solution vector contains coefficients of the shape
functions that are used to interpolate the unknown solution, so the plotting becomes quite
different. We must loop over every element, plot the local solutions, and then combine all
these local plots together such that they form the final graph or surface of the unknown
solution. Since the coefficients are used in a functional describing the unknown solution,
the convergence is classified as weak. The number of element shape functions increases
covariantly with the polynomial degree and the total number of elements.

The static visualizations are done in MATLAB, and this goes relatively fast because the
solution is stationary. But the time-dependent problems requires too much computational
effort to visualize, so we have chosen to use GLview Inova. To do so, we create a .vtf-file
for the numerical data, and then we use it directly as input for visualization. The final
calculation of relative error in the L2- and H1-norms are always done in MATLAB, for
we only require the final coefficient vector for doing this task.
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START

Initialize number of elements,
polynomial degrees, number

of time steps, upper time limit
and BDF/SBDF-integrator

Create knot vectors and store
them in a linked list

Assemble the invariant matrices
and vectors for velocity, pressure

and temperature

Is SUPG
needed?

NO

YES

Define SUPG-parameters

Create matrix function handles
for the SUPG-components

Create matrix function handles for
the nonlinear convection vector

Create linked lists for the variables
and the nonlinear convection term

Define the initial conditions for
each variable and store them

Start the time-integration and
begin at time t = 0

Go to the next time step

Is SUPG
used?

Update the invariant matrices
by adding SUPG-components

NO

YES

Apply bootstrapping if the time-
integrators have more than one step

Find the temperature with the
SBDF integrator (IMEX)

Find pressure and velocity with
the BDF integrator (implicit) and

Newton iteration

Store the solution vectors in their
respective linked lists

Is the
final step
reached?

NO

YES

Post-processing of solution

END

Figure 5.4. Complete flowchart for solving the Boussinesq equations
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START

Pass the linked lists with solution
vectors for each time step
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to plot the
solution?
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Store the solution vector for
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in a matrix W

Create a compact .vtf-file
from the matrix W

Give the .vtf-file as input
to GLview Inova

Dynamical plots of the
unknown solution variables

Loop systematically over each
element and extract knots for

the current element

Calculate the relative error for
the current element

Add the local error to the global
relative global error

Relative error in the unknown
solution’s norms

FINISH

Figure 5.5. Flowchart for post-processing the solution

1

1The MATLAB-file used for creating .vtf-files was originally written by Kjetil André Johannessen in 2012
for the classical finite element method, and later extended for isogeometric analysis with B-splines.





Chapter 6

Numerical examples

6.1 General theory of refinement

6.1.1 Incorporation in isogeometric analysis

Refinement is an important feature of the finite element method. It allows us to verify that
the code is correct through convergence analysis, and can be used to make the numerical
simulation more accurate in cases where geometry of the domain is complicated. All the
classical refinement techniques are directly incorporated in isogeometric analysis and can
be implemented such that the computational complexity is significantly reduced. Using
splines allows us to apply refinement methods that preserves the geometric structure and
its parametrization [12].

In h-refinement, the polynomial degree p of the shape functions is constant, and the mesh
size h is reduced. This can be done in several ways [63]:

• Uniform Mesh Refinement (UMR): The global mesh is preserved, and every element
is divided repeatedly into smaller elements over and over again.

• Element Subdivision: Only some selected elements are locally refined individually,
and by proper handling of "hanging nodes", we achieve a conformal mesh.

• Remeshing: The whole global mesh is discarded and replaced by a new one.

In p-refinement, we maintain the global mesh while increasing p. This process can be
done globally (degree elevation on every shape function) or locally (only some functions
are elevated). If h- and p-refinement are combined, we can obtain hp-convergence.

65
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(a) Initial mesh. (b) Tensor refinement. (c) Uniform refinement.

(d) T-mesh refinement. (e) Local refinement. (f) Diagonal refinement.

Figure 6.1. Examples of refinement using different types of splines.

These refinement techniques exist in isogeometric analysis with additional advantages.
Reducing the mesh size is equivalent to knot insertion, and this can be done such that the
continuity of a spline is preserved on its interval of support. The increase of polynomial
degree and continuity of a spline are covariant, and the numerical accuracy will be higher.
We do not need to start from scratch with a C0-continuous mesh, and computational effort
is lower that the classical finite element approach.

B-splines and NURBS provide tensor refinement. If we refine a single element, we must
refine the other ones such that the global mesh remains conformal. If we use LR B-splines
or T-splines, we can apply local refinement over the elements in many interesting ways
[40, 41, 27, 24]. However, both these methods are quite complicated to implement from
scratch and beyond the scope of this thesis, so we will not consider them.

Isogeometric analysis provides k-refinement. It is applicable due to the homogeneous
structure of the patches, and the growth of control variables is limited. When we want to
increase the polynomial order from p to p + 1, we increase the continuity similarly from
q to q + 1. This yields a Cq-continuous spline, so we can raise the degree and continuity
simultaneously. This is not possible in the classical finite element method. The operators
for h- and p-refinement are not commutative, so if we use knot insertion first, then the
continuity is the same on the new knots after degree elevation [12].

Another strategy is r-refinement [63]. The number of nodes on the mesh is constant,
but their position is adjusted such that the error is reduced. This special refinement was
complicated to achieve in the past, but now it is easier because of efficient mappings and
exact geometry representations provided by isogeometric analysis [12].
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(a) Uniformly distributed nodes. (b) Adjusted nodes

Figure 6.2. Illustration of node adjustment in r-refinement.

Using the same notation as in [42], we define M as the initial mesh and M is the new
mesh obtained by halving h. If Sp,kh (M) is the isogeometric finite element subspace of
M, then the three refinement strategies can be defined mathematically as

Sp,kh (M)
h-refinement−−−−−−→ Sp,kh/2(M) (6.1a)

Sp,kh (M)
p-refinement−−−−−−→ Sp+1,k

h (M) (6.1b)

Sp,kh (M)
k-refinement−−−−−−→ Sp+1,k+1

h (M) (6.1c)

It can also be shown that these subspaces satisfy

Sp,kh (M) ⊆ Sp,kh/2(M) (6.2a)

Sp,kh (M) ⊆ Sp+1,k
h (M) (6.2b)

Sp,kh (M) * Sp+1,k+1
h (M) (6.2c)

Sp,kh (M) + Sp+1,k+1
h (M) (6.2d)

6.1.2 Remarks on error estimates

When we analyze h- and p-refinement, it is preferable to use the number of degrees of
freedom (ndof), the total number of unknowns in the discrete equation system. This is
because the mesh size can vary freely, and the elements can even be locally refined. If
the domain is Ω ⊂ Rd, and the splines’ polynomial degree is p, then we can express the
convergence rate in the Hk-norm asymptotically as

O
(

ndof−
p+1−k
2d−1

)
(6.3)

The general convergence estimates for refinement are

Smooth: ‖u− uh‖E ≤ Chp‖u‖Hp+1 (6.4a)
Non-smooth: ‖u− uh‖E ≤ Chα‖u‖Hα+1 (6.4b)
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where α = min{p, λ}, and λ is a real number characterizing the singularity strength [40].
The last estimate holds for insufficiently smooth functions. In both cases, the convergence
is algebraic for h-refinement and exponential for p-refinement.

For time-dependent problems, the situation becomes somewhat different, for in this case,
there are two sources of inaccuracy in the simulations: spatial and temporal errors. The
relative error in the energy norm can be expressed as

‖u− uh‖E
‖u‖E

≤ C1h
p + C2(∆t)s (6.5)

where s is the order of the time-integrator, and ∆t is the time step. We define t-refinement
as the process where h and p are constant, while ∆t is halved repeatedly. Hence, we
expect that the convergence rate in t-refinement is the same for the relative L2-norm and
H1-seminorm.

6.2 Hierachy of the models

It was pointed out in the early stages in this thesis that implementing the whole Boussinesq
system at once from scratch would be very risky because it is quite difficult to debug such
a complex system. First of all, this is a system of partial differential equations with quasi-
linear structure, and there are many algorithms that must be combined simultaneously in
order to solve it. Therefore, we decided here to build up the whole code by analyzing the
different parts separately and making sure that all of them worked properly as they should.
At the end, all these parts were combined together into a single unity which could be used
for solving the Boussinesq equations.

Because of this systematic work methodology, were the code is builded block by block, we
will present all the convergence studies which have been performed during the work on the
different parts of the Boussinesq system. In the specialization project during the autumn
2015, the Poisson equation and Stokes’ equation were solved using isogeometric analysis,
and those algorithms were used as a basis for the present study. The Poisson equation
was extended to the heat equation by adding the time-dependent term, and then we added
a linear convective term to obtain a solver for the unsteady advection-diffusion equation.
The Navier-Stokes’ equations were created similarly by extending the Stokes solver, but
this was more challenging because Newton-iteration had to be applied, and there was a
need for effective routines updating the nonlinear convection for each iteration.

When the unsteady advection-diffusion and Navier-Stokes solvers were implemented and
tested, the last stage was to combine them together and obtain a code for the Boussinesq
system. At this point, we found it convenient to segregate the system properly to reduce
the computational complexity, and this approach did work very well. The whole procedure
for building up the Boussinesq solver is shown in figure 6.3.
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START

Poisson’s equation

Heat equation

Unsteady advection-diffusion equation

Steady Stokes equations

Unsteady Navier-Stokes equations

Boussinesq equations

Block 1 Block 2

Figure 6.3. Procedure for building up the Boussinesq solver blockwise.

− 1
Re∇

2u = f

1
∇p

∇ · u = 0

2

(u · ∇)u+

3

∂u
∂t +

4

− 1
Pe∇

2T = Q
1

(u · ∇)T

5
∂T
∂t +

6

−Ri g
‖g‖T

7

1. Poisson’s equation
2. Steady Stokes’ equations
3. Steady Navier-Stokes’ equations
4. Unsteady Navier-Stokes’ equations
5. Steady advection-diffusion equation
6. Unsteady advection-diffusion equation
7. Boussinesq equations

Figure 6.4. Illustration of the composition of the Boussinesq system.
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6.3 Heat equation

6.3.1 Manufactured reference solution

If u is a continuous temperature distribution, and κ is the thermal diffusivity, then the
homogeneous heat equation is defined as

∂u

∂t
= κ∇2u (6.6)

The domain is a rectangle, Ω = (0, Lx) ⊗ (0, Ly). We assume homogeneous Dirichlet
conditions along the whole boundary ∂Ω. We apply separation of variables by setting
u(x, y, t) = X(x)Y (y)T (t) and defining γ as a positive constant. This splitting yields

X(x)Y (y)T ′(t) = κ [X ′′(x)Y (y) +X(x)Y ′′(y)]T (t)

T ′(t)

κT (t)
=
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −γ2

We assume from Pythagoras’ theorem that γ2 = α2 + β2 and obtain

X ′′(x) + α2X(x) = 0

Y ′′(y) + β2Y (y) = 0

T ′(t) + κγ2T (t) = 0

Since the Dirichlet conditions are homogeneous, we get the following eigenfunctions:

X(x) = sin

(
nπx

Lx

)
Y (y) = sin

(
mπy

Ly

)
X(x)Y (y) is the amplitude function, and the time function becomes

T (t) = C(0)e
−
[
( nπLx )

2
+
(
mπ
Ly

)2
]
κt

If we denote the initial condition as u0(x, y), then C(0) is the double Fourier coefficient
dnm. We obtain the final solution

u(x, y, t) =

∞∑
n=1

∞∑
m=1

dnm sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
e
−
[
( nπLx )

2
+
(
mπ
Ly

)2
]
κt

We eliminate the whole series by assuming that u0 is a sinusoidal function in the x- and
y-directions, and this yields the manufactured reference solution

u(x, y, t) = sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
e
−
[
( nπLx )

2
+
(
mπ
Ly

)2
]
κt

(6.8)
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6.3.2 Discussion on the results

In our analysis, we choose the parameters such that the analytical solution becomes

u(x, y, t) = sin (2πx) sin (4πy) e−t (6.9)

This is a product of trigonometric and exponential functions, so we cannot express it as a
finite linear combination of polynomial splines. This is valid both for the amplitude part
and time part of the function. When we do convergence studies, we expect the numerical
discretization errors to decrease whenever we reduce the mesh size h, increase the degree
p, and reduce the time increment ∆t. Thus, when we do t-refinement, p and h should be
as large and small as possible, respectively. Otherwise, they will generate disturbing noise
(large spatial error) making it harder to analyze the individual behavior of the temporal
error. Likewise, ∆t should be very small in the h- and p-refinements.

In the h- and p-refinements, we set ∆t = 0.001 on the time interval [0, 1] and used the
Runge-Kutta Gauss-Legendre (RKGL) method of order 3. This symplectic and symmetric
integrator is both A- and B-stable. The linear systems of equations are relatively small, so
RKGL works well for our purpose. The graphs decreased quite well in figure 6.6 and 6.7.
There were some small irregularities when the error reached 10−14, but this was probably
noise in the error computation. The number of Gauss points was chosen such that most
quantities were integrated exactly, so the lack of sufficiently enough Gauss quadrature
points cannot have influenced the numerical accuracy very much.

In the t-refinement, we set p = 9 and h = 1/40 for the multistep integrators Adams-
Moulton Formula (AMF) and Backward Differentiation Formula (BDF), and h = 1/50
for the RKGL-integrators. In total, eight integrators were tested. We see from figure
6.8 and 6.9 that the numerical and analytical convergence graphs coincide with each other,
which indicates strongly that the simulation is reliable. The graphs of the three last RKGL-
integrators reached machine precision quite fast instead of decaying gradually as the two
first ones. This behaviour was expected due to their high order.

Figure 6.5. Heat equation: Contour plot of manufactured reference solution.
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(a) h-refinement: Relative error (L2-norm).

(b) h-refinement: Relative error (H1-seminorm).

Figure 6.6. Heat equation: h-refinement, relative error plots (%) in L2-norm and H1-seminorm.
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(a) p-refinement: Relative error (L2-norm).

(b) p-refinement: Relative error (H1-seminorm).

Figure 6.7. Heat equation: p-refinement, relative error plots (%) in L2-norm and H1-seminorm.



74 6.3 Heat equation

Table 6.1. Heat equation: UMR with p = 1.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
49 1/8 2.1409e-01 - 4.1005e-01 -

225 1/16 5.0641e-02 2.0798 2.0788e-01 0.98002
961 1/32 1.2479e-02 2.0208 1.0437e-01 0.99408
3969 1/64 3.1096e-03 2.0047 5.2239e-02 0.99849

16129 1/128 7.7683e-04 2.0011 2.6126e-02 0.99962

Table 6.2. Heat equation: UMR with p = 2.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
64 1/8 3.8953e-02 - 1.0974e-01 -

256 1/16 3.2898e-03 3.5656 2.2298e-02 2.2991
1024 1/32 3.6593e-04 3.1684 5.2774e-03 2.079
4096 1/64 4.4338e-05 3.0449 1.3011e-03 2.02

16384 1/128 5.4984e-06 3.0115 3.2415e-04 2.005

Table 6.3. Heat equation: UMR with p = 3.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
81 1/8 1.2254e-02 - 3.2483e-02 -

289 1/16 4.4503e-04 4.7832 2.8939e-03 3.4886
1089 1/32 2.3185e-05 4.2626 3.2463e-04 3.1561
4225 1/64 1.3778e-06 4.0728 3.9406e-05 3.0423

16641 1/128 8.5000e-08 4.0187 4.8888e-06 3.0109

Table 6.4. Heat equation: UMR with p = 4.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
100 1/8 3.4773e-03 - 9.5811e-03 -
324 1/16 5.9762e-05 5.8626 3.7550e-04 4.6733
1156 1/32 1.4779e-06 5.3376 2.0164e-05 4.2189
4356 1/64 4.3113e-08 5.0993 1.2146e-06 4.0533

16900 1/128 1.3242e-09 5.0249 7.5423e-08 4.0093
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Table 6.5. Heat equation: UMR with p = 5.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
121 1/8 1.2355e-03 - 3.4368e-03 -
361 1/16 8.3811e-06 7.2038 5.4083e-05 5.9898
1225 1/32 9.6396e-08 6.442 1.3310e-06 5.3445
4489 1/64 1.3661e-09 6.1409 3.8712e-08 5.1036

17161 1/128 2.0778e-11 6.0388 1.1866e-09 5.0279

Table 6.6. Heat equation: UMR with p = 6.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
144 1/8 4.0661e-04 - 1.0671e-03 -
400 1/16 1.1701e-06 8.4409 7.4258e-06 7.1669
1296 1/32 6.1146e-09 7.5801 8.4266e-08 6.4614
4624 1/64 4.2391e-11 7.1724 1.2030e-09 6.1303

17424 1/128 3.2254e-13 7.0381 1.8428e-11 6.0285

Table 6.7. Heat equation: UMR with p = 7.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
169 1/8 1.2128e-04 - 3.2601e-04 -
441 1/16 1.6942e-07 9.4835 1.0536e-06 8.2734
1369 1/32 4.1321e-10 8.6795 5.6255e-09 7.5491
4761 1/64 1.8171e-12 7.8291 4.1748e-11 7.0741

17689 1/128 5.2241e-14 5.1203 1.0137e-12 5.3641

Table 6.8. Heat equation: UMR with p = 8.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
196 1/8 3.9845e-05 - 1.1209e-04 -
484 1/16 2.2766e-08 10.7733 1.4227e-07 9.6218
1444 1/32 2.6390e-11 9.7527 3.5424e-10 8.6497
4900 1/64 4.3017e-14 9.2609 1.1960e-12 8.2104

17956 1/128 1.2030e-14 1.8383 2.1691e-14 5.7849
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(a) t-refinement with multistep integrators: Relative error (L2-norm).

(b) t-refinement with Runge-Kutta integrators: Relative error (L2-norm).

Figure 6.8. Heat equation: t-refinement, relative error plots (%) in L2-norm.
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(a) t-refinement with multistep integrators: Relative error (H1-seminorm).

(b) t-refinement with Runge-Kutta integrators: Relative error (H1-seminorm).

Figure 6.9. Heat equation: t-refinement, relative error plots (%) in H1-seminorm.
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Table 6.9. Heat equation: t-refinement with AM0.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 5.9435e-02 - 5.9435e-02 -
1/16 3.0461e-02 0.96436 3.0461e-02 0.96436
1/32 1.5425e-02 0.98171 1.5425e-02 0.98171
1/64 7.7620e-03 0.99073 7.7620e-03 0.99073

1/128 3.8936e-03 0.99534 3.8936e-03 0.99534

Table 6.10. Heat equation: t-refinement with AM1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.3043e-03 - 1.3043e-03 -
1/16 3.2566e-04 2.0018 3.2566e-04 2.0018
1/32 8.1389e-05 2.0005 8.1389e-05 2.0005
1/64 2.0346e-05 2.0001 2.0346e-05 2.0001

1/128 5.0863e-06 2 5.0863e-06 2

Table 6.11. Heat equation: t-refinement with BDF2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 7.3022e-03 - 7.3022e-03 -
1/16 1.7061e-03 2.0977 1.7061e-03 2.0977
1/32 4.1557e-04 2.0375 4.1557e-04 2.0375
1/64 1.0274e-04 2.0161 1.0274e-04 2.0161

1/128 2.5554e-05 2.0074 2.5554e-05 2.0074

Table 6.12. Heat equation: t-refinement with RKGL1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.3043e-03 - 1.3043e-03 -
1/16 3.2566e-04 2.0018 3.2566e-04 2.0018
1/32 8.1389e-05 2.0005 8.1389e-05 2.0005
1/64 2.0346e-05 2.0001 2.0346e-05 2.0001

1/128 5.0863e-06 2 5.0863e-06 2
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Table 6.13. Heat equation: t-refinement with RKGL2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 3.3940e-07 - 3.3940e-07 -
1/16 2.1198e-08 4.001 2.1198e-08 4.001
1/32 1.3246e-09 4.0003 1.3246e-09 4.0003
1/64 8.2786e-11 4.0001 8.2787e-11 4

1/128 5.1748e-12 3.9998 5.1886e-12 3.996

Table 6.14. Heat equation: t-refinement with RKGL3.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 3.7867e-11 - 3.8163e-11 -
1/16 5.9108e-13 6.0014 1.0072e-12 5.2437
1/32 1.9513e-14 4.9208 3.7941e-13 1.4086
1/64 1.7429e-14 0.16295 3.7729e-13 0.0081038

1/128 1.7350e-14 0.0065589 3.7648e-13 0.0030852

Table 6.15. Heat equation: t-refinement with RKGL4.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 6.5519e-14 - 3.0532e-12 -
1/16 1.7803e-14 1.8798 4.2437e-13 2.8469
1/32 1.7453e-14 0.028669 3.7744e-13 0.16907
1/64 1.7371e-14 0.0068064 3.7646e-13 0.0037761

1/128 1.7330e-14 0.003384 3.7609e-13 0.0014096

Table 6.16. Heat equation: t-refinement with RKGL5.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 3.9911e-14 - 1.7967e-12 -
1/16 1.7563e-14 1.1843 3.8202e-13 2.2337
1/32 1.7406e-14 0.012944 3.7689e-13 0.019482
1/64 1.7352e-14 0.0044182 3.7616e-13 0.0028001

1/128 1.7346e-14 0.0005068 3.7627e-13 -0.00040924
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6.4 Unsteady advection-diffusion equation

6.4.1 Manufactured reference solution

The unsteady and homogeneous advection-diffusion equation is given by

∂u

∂t
+ (c · ∇)u = κ∇2u (6.10)

where c = (c1, c2) is a constant advection field and κ is the thermal diffusivity. The
unknown function u can be a distribution for temperature or chemical concentration. The
boundary value problem is exactly the same as the heat equation. Before using separation
of variables, we introduce u(x, y, t) = v(x, y, t)eax+by to get rid of the advection term.
With this substitution, it can be shown that choosing a = c1/2κ and b = c2/2κ will make
the first partial derivatives vanish. This yields the unsteady diffusion-reaction equation:

∂v

∂t
− κ∇2v +

c21 + c22
4κ

v = 0

Thus, we can find v by separating the variables as before and assuming that the initial
condition v0 is sinusoidal in both directions. After finding v, we obtain the final analytic
solution of the unsteady advection-diffusion equation:

u(x, y, t) = sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
eax+by−Rt

a =
c1
2κ

b =
c2
2κ

R = κ

[(
nπ

Lx

)2

+

(
mπ

Ly

)2

+
c21 + c22

4κ2

] (6.11a)

(6.11b)

When we analyzed the heat equation, we only had one manufactured solution because the
physical problem represented pure diffusion. This time, advection will also be taken into
account, so we will use the following two test functions instead:

u1(x, y) = sin(πx) sin(πy)eπ
2(0.05x+0.1y)−(2+0.0125π2)t (6.12a)

u2(x, y) = 0.01 sin(πx) sin(πy)eπ
2(0.2x+0.8y)−(1+0.34π2)t (6.12b)

The second function is advection-dominated and will therefore be solved with SUPG-
formulation, but not the first one since it is diffusion-dominated. It is not always possible
to be completely sure whether we should use SUPG-formulation or not. The best idea is
to solve the equation with the standard Bubnov-Galerkin method first, and then use SUPG
afterwards if the solution is too inaccurate.

As we see from figure 6.10, the peak of the first solution is almost at the middle of the
domain, but the second one is more centered to the upper part and indicates a boundary
layer with sharply decreasing gradient.
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(a) Diffusion-domination. (b) Advection-domination.

Figure 6.10. Advection-diffusion equation: Contour plot of manufactured reference solutions.

6.4.2 Discussion on the results

As we see from figure 6.11, 6.12, 6.13 and 6.14, the graphs converged very well as they
should. There were some small irregularities when the relative error reached 10−40, but
this is very close to machine precision. Since ∆t = 0.001 as previously, the temporal
error’s influence has been quite limited. It also seems that the advection was not so very
significant, and the SUPG method worked for this elementary problem.

From figure 6.15 and 6.16, the numerical convergence graphs almost coincided with the
exact convergence graphs, both for the multistep and Runge-Kutta integrators. Hence, we
can conclude that the spatial error has been small enough (h = 1/50 and p = 9) and did
not cause too much noise in the total error.

All the simulations until now shows that the isogeometric discretization of the heat and
advection-diffusion equations has worked well. Hence, the latter one is ready for being
incorporated in the Navier-Stokes’ equations. As a final note, the RKGL integrators could
be applied because the systems of equations were not so large, and the total computational
effort required for solving them were sufficiently limited. But if the systems of equations
are very large, and we still want a high-order method that does not take too much time, it
can be appropriate to use diagonally implicit Runge-Kutta methods (DIRK). The structure
of these integrators enables us to make a sophisticated type of LU-factorization which can
reduce the total amount of memory needed. They are also unconditionally A-stable. A full
description of these integrators and their characteristic properties can be found in [33]. All
the coefficients of the RKGL integrators up to order 10 are listed in [11]. For more details
on Runge-Kutta integrators and their stability properties, we refer to [32, 33, 31].

For the nonlinear simulations in the next sections, it will not be actual to use Runge-Kutta
methods because they will be too expensive, and will just restrict ourselves to the standard
BDF-integrators because they are not so time-consuming.
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(a) h-refinement: Relative error (L2-norm).

(b) h-refinement: Relative error (H1-seminorm).

Figure 6.11. Advection-diffusion equation, Case 1: h-refinement, relative error plots (%) in
L2-norm and H1-seminorm.
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(a) h-refinement: Relative error (L2-norm).

(b) h-refinement: Relative error (H1-seminorm).

Figure 6.12. Advection-diffusion equation, Case 1: p-refinement, relative error plots (%) in
L2-norm and H1-seminorm.
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(a) h-refinement: Relative error (L2-norm).

(b) h-refinement: Relative error (H1-seminorm).

Figure 6.13. Advection-diffusion equation, Case 2: h-refinement, relative error plots (%) in
L2-norm and H1-seminorm.
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(a) h-refinement: Relative error (L2-norm).

(b) h-refinement: Relative error (H1-seminorm).

Figure 6.14. Advection-diffusion equation, Case 2: p-refinement, relative error plots (%) in
L2-norm and H1-seminorm.
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Table 6.17. Advection-diffusion equation, Case 1: UMR with p = 1.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
49 1/8 2.6427e-02 - 1.3073e-01 -

225 1/16 6.6370e-03 1.9934 6.5090e-02 1.0061
961 1/32 1.6617e-03 1.9979 3.2509e-02 1.0016
3969 1/64 4.1558e-04 1.9994 1.6250e-02 1.0004

16129 1/128 1.0391e-04 1.9998 8.1246e-03 1.0001

Table 6.18. Advection-diffusion equation, Case 1: UMR with p = 2.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
64 1/8 5.2866e-04 - 5.7289e-03 -

256 1/16 6.2763e-05 3.0744 1.4052e-03 2.0274
1024 1/32 7.7379e-06 3.0199 3.4951e-04 2.0074
4096 1/64 9.6382e-07 3.0051 8.7260e-05 2.0019

16384 1/128 1.2037e-07 3.0013 2.1808e-05 2.0005

Table 6.19. Advection-diffusion equation, Case 1: UMR with p = 3.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
81 1/8 3.8446e-05 - 4.1688e-04 -

289 1/16 2.3997e-06 4.0019 5.2803e-05 2.9809
1089 1/32 1.5114e-07 3.9889 6.6760e-06 2.9836
4225 1/64 9.5047e-09 3.9911 8.4034e-07 2.9899

16641 1/128 5.9624e-10 3.9947 1.0545e-07 2.9945

Table 6.20. Advection-diffusion equation, Case 1: UMR with p = 4.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
100 1/8 2.3527e-06 - 2.4745e-05 -
324 1/16 6.8638e-08 5.0991 1.4852e-06 4.0584
1156 1/32 2.1073e-09 5.0256 9.2106e-08 4.0112
4356 1/64 6.5583e-11 5.0059 5.7543e-09 4.0006

16900 1/128 2.0636e-12 4.9901 3.5990e-10 3.999
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Table 6.21. Advection-diffusion equation, Case 1: UMR with p = 5.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
121 1/8 1.6460e-07 - 1.6692e-06 -
361 1/16 2.3812e-09 6.1111 5.0804e-08 5.0381
1225 1/32 3.6626e-11 6.0227 1.5910e-09 4.9969
4489 1/64 5.7394e-13 5.9958 4.9988e-11 4.9922

17161 1/128 5.3252e-14 3.43 1.5705e-12 4.9922

Table 6.22. Advection-diffusion equation, Case 1: UMR with p = 6.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
144 1/8 1.0955e-08 - 1.1744e-07 -
400 1/16 7.9642e-11 7.1039 1.7398e-09 6.0768
1296 1/32 6.1195e-13 7.024 2.6865e-11 6.0171
4624 1/64 1.4464e-14 5.4029 4.2084e-13 5.9963

17424 1/128 3.1604e-15 2.1942 4.2703e-14 3.3009

Table 6.23. Advection-diffusion equation, Case 2: UMR with p = 1.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
49 1/8 2.0525e-02 - 6.1663e-03 -

225 1/16 5.0753e-03 2.0158 3.0152e-03 1.0321
961 1/32 1.2645e-03 2.005 1.4985e-03 1.0088
3969 1/64 3.1583e-04 2.0013 7.4809e-04 1.0022

16129 1/128 7.8937e-05 2.0003 3.7390e-04 1.0006

Table 6.24. Advection-diffusion equation, Case 2: UMR with p = 2.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
64 1/8 2.7945e-03 - 1.2370e-03 -

256 1/16 2.9407e-04 3.2484 3.0209e-04 2.0338
1024 1/32 3.4161e-05 3.1057 7.4600e-05 2.0177
4096 1/64 4.1770e-06 3.0318 1.8571e-05 2.0062

16384 1/128 5.1909e-07 3.0084 4.6369e-06 2.0018
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Table 6.25. Advection-diffusion equation, Case 2: UMR with p = 3.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
81 1/8 3.1290e-04 - 1.7810e-04 -

289 1/16 2.0777e-05 3.9126 2.4063e-05 2.8878
1089 1/32 1.4630e-06 3.828 3.2592e-06 2.8842
4225 1/64 9.7314e-08 3.9102 4.2752e-07 2.9305

16641 1/128 6.2655e-09 3.9571 5.4817e-08 2.9633

Table 6.26. Advection-diffusion equation, Case 2: UMR with p = 4.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
100 1/8 4.3728e-05 - 2.2937e-05 -
324 1/16 1.9557e-06 4.4828 1.9370e-06 3.5657
1156 1/32 6.7421e-08 4.8584 1.3828e-07 3.8082
4356 1/64 2.1743e-09 4.9546 9.1596e-09 3.9162

16900 1/128 6.8755e-11 4.9829 5.8799e-10 3.9614

Table 6.27. Advection-diffusion equation, Case 2: UMR with p = 5.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
121 1/8 9.4351e-06 - 4.0392e-06 -
361 1/16 1.6428e-07 5.8438 1.5980e-07 4.6597
1225 1/32 2.5962e-09 5.9836 5.3994e-09 4.8873
4489 1/64 4.0900e-11 5.9882 1.7445e-10 4.9519

17161 1/128 6.4308e-13 5.991 5.5388e-12 4.9771

Table 6.28. Advection-diffusion equation, Case 2: UMR with p = 6.

ndof h
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
144 1/8 1.2824e-06 - 6.0792e-07 -
400 1/16 9.4988e-09 7.0769 1.0284e-08 5.8854
1296 1/32 7.6718e-11 6.952 1.6830e-10 5.9332
4624 1/64 6.1974e-13 6.9517 2.7082e-12 5.9575

17424 1/128 1.5041e-14 5.3647 4.3047e-14 5.9753
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(a) t-refinement with multistep integrators: Relative error (H1-seminorm).

(b) t-refinement with Runge-Kutta integrators: Relative error (H1-seminorm).

Figure 6.15. Advection-diffusion equation, Case 1: t-refinement, relative error plots (%) in
H1-seminorm.
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(a) t-refinement with multistep integrators: Relative error (H1-seminorm).

(b) t-refinement with Runge-Kutta integrators: Relative error (H1-seminorm).

Figure 6.16. Advection-diffusion equation, Case 2: t-refinement, relative error plots (%) in
H1-seminorm.
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Table 6.29. Advection-diffusion equation, Case 1: t-refinement with AM0.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 2.7141e-01 - 2.7141e-01 -
1/16 1.3832e-01 0.97249 1.3832e-01 0.97249
1/32 6.9808e-02 0.98654 6.9808e-02 0.98654
1/64 3.5065e-02 0.99337 3.5065e-02 0.99337

1/128 1.7572e-02 0.99672 1.7572e-02 0.99672

Table 6.30. Advection-diffusion equation, Case 1: t-refinement with AM1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.2520e-02 - 1.2520e-02 -
1/16 3.1198e-03 2.0047 3.1198e-03 2.0047
1/32 7.7932e-04 2.0012 7.7932e-04 2.0012
1/64 1.9479e-04 2.0003 1.9479e-04 2.0003

1/128 4.8695e-05 2.0001 4.8695e-05 2.0001

Table 6.31. Advection-diffusion equation, Case 1: t-refinement with BDF2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 6.2155e-03 - 6.2155e-03 -
1/16 8.4523e-04 2.8785 8.4523e-04 2.8785
1/32 1.8645e-04 2.1805 1.8645e-04 2.1805
1/64 4.5908e-05 2.022 4.5908e-05 2.022

1/128 1.1510e-05 1.9959 1.1510e-05 1.9959

Table 6.32. Advection-diffusion equation, Case 1: t-refinement with RKGL1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.2520e-02 - 1.2520e-02 -
1/16 3.1198e-03 2.0047 3.1198e-03 2.0047
1/32 7.7932e-04 2.0012 7.7932e-04 2.0012
1/64 1.9479e-04 2.0003 1.9479e-04 2.0003

1/128 4.8695e-05 2.0001 4.8695e-05 2.0001



92 6.4 Unsteady advection-diffusion equation

Table 6.33. Advection-diffusion equation, Case 1: t-refinement with RKGL2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.4698e-05 - 1.4698e-05 -
1/16 9.1574e-07 4.0045 9.1574e-07 4.0045
1/32 5.7189e-08 4.0011 5.7189e-08 4.0011
1/64 3.5736e-09 4.0003 3.5736e-09 4.0003

1/128 2.2334e-10 4.0001 2.2334e-10 4.0001

Table 6.34. Advection-diffusion equation, Case 1: t-refinement with RKGL3.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 7.3853e-09 - 7.3855e-09 -
1/16 1.1516e-10 6.0029 1.1793e-10 5.9687
1/32 1.8035e-12 5.9967 1.4357e-12 6.3601
1/64 3.4604e-14 5.7037 4.1820e-14 5.1014

1/128 1.0489e-15 5.044 2.1594e-15 4.2755

Table 6.35. Advection-diffusion equation, Case 2: t-refinement with AM0.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.4068e+00 - 1.4068e+00 -
1/16 6.5423e-01 1.1045 6.5423e-01 1.1045
1/32 3.1260e-01 1.0655 3.1260e-01 1.0655
1/64 1.5237e-01 1.0368 1.5237e-01 1.0368

1/128 7.5160e-02 1.0195 7.5160e-02 1.0195

Table 6.36. Advection-diffusion equation, Case 2: t-refinement with AM1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.0654e-01 - 1.0654e-01 -
1/16 2.6836e-02 1.9891 2.6836e-02 1.9891
1/32 6.7209e-03 1.9974 6.7209e-03 1.9974
1/64 1.6810e-03 1.9994 1.6810e-03 1.9994

1/128 4.2029e-04 1.9998 4.2029e-04 1.9998
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Table 6.37. Advection-diffusion equation, Case 2: t-refinement with BDF2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 3.3431e-01 - 3.3431e-01 -
1/16 6.6298e-02 2.3341 6.6298e-02 2.3341
1/32 1.4616e-02 2.1814 1.4616e-02 2.1814
1/64 3.4439e-03 2.0855 3.4439e-03 2.0855

1/128 8.3639e-04 2.0418 8.3639e-04 2.0418

Table 6.38. Advection-diffusion equation, Case 2: t-refinement with RKGL1.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.0654e-01 - 1.0654e-01 -
1/16 2.6836e-02 1.9891 2.6836e-02 1.9891
1/32 6.7209e-03 1.9974 6.7209e-03 1.9974
1/64 1.6810e-03 1.9994 1.6810e-03 1.9994

1/128 4.2029e-04 1.9998 4.2029e-04 1.9998

Table 6.39. Advection-diffusion equation, Case 2: t-refinement with RKGL2.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 5.4112e-04 - 5.4112e-04 -
1/16 3.3372e-05 4.0192 3.3372e-05 4.0192
1/32 2.0788e-06 4.0048 2.0788e-06 4.0048
1/64 1.2982e-07 4.0012 1.2982e-07 4.0012

1/128 8.1120e-09 4.0003 8.1120e-09 4.0003

Table 6.40. Advection-diffusion equation, Case 2: t-refinement with RKGL3.

∆t
‖u−uh‖L2

‖u‖L2
log2

(
uL2(∆t)

uL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.1386e-06 - 1.1386e-06 -
1/16 1.7638e-08 6.0124 1.7639e-08 6.0124
1/32 2.7501e-10 6.0031 2.8855e-10 5.9338
1/64 4.2980e-12 5.9996 7.2261e-12 5.3194

1/128 6.9388e-14 5.9528 1.1451e-13 5.9796
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6.5 Unsteady Navier-Stokes equations

6.5.1 Manufactured reference solution

Throughout this section, we will consider the scaled and unsteady Navier-Stokes equations
with force. The domain Ω is a unit square, and we still assume homogeneous Dirichlet
conditions on the velocity field.

∂u

∂t
− 1

Re
∇2u + (u · ∇)u +∇p = f (6.13a)

∇ · u = 0 (6.13b)

This time, we define f and g as polynomials of the same degree, and they are constructed
such that the velocity field becomes a priori solenoidal. The velocity field and pressure
are multiplied with the same amplitude function h, and these constructions result in some
tedious expressions for the force. We have the following class of reference solutions:

ux(x, y) = f(x)g′(y)h(t)

uy(x, y) = −f ′(x)g(y)h(t)

p(x, y) =
1

Re
f ′(x)g′(y)h(t)

fx(x, y) = f(x)g′(y)h′(t)− 1

Re
f(x)g′′′(y)h(t)

+
[
g′(y)2 − g(y)g′′(y)

]
f(x)f ′(x)h(t)2

fy(x, y) = −f ′(x)g(y)h′(t) +
1

Re
[2f ′(x)g′′(y) + f ′′′(x)g(y)]h(t)

+
[
f ′(x)2 − f(x)f ′′(x)

]
g(y)g′(y)h(t)2

(6.14a)
(6.14b)

(6.14c)

(6.14d)

(6.14e)

This manufactured solution allows us to construct four test functions from

Case 1.1: f(x) = 4(x− x2)2 g(y) = 4(y − y2)2 h(t) = t

Case 1.2: f(x) = 8(x− x2)3 g(y) = 8(y − y2)3 h(t) = t

Case 2.1: f(x) = 4(x− x2)2 g(y) = 4(y − y2)2 h(t) = 1 + t3

Case 2.2: f(x) = 8(x− x2)3 g(y) = 8(y − y2)3 h(t) = 1 + t3

The main advantage of this construction is that we can reach machine precision very fast,
and we can also define p and ∆t in such a way that temporal error is totally excluded from
the h- and p-refinements. Similarly, we can choose p such that spatial error is not influent
on the temporal error, and thus, we do not need so many elements on the domain. The h-
and p-refinements are performed with BDF1, and Re = 1 such that the problem is always
diffusion-dominated and becomes easy to solve.
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(a) Velocity, x-component. (b) Velocity, y-component.

(c) Pressure.

Figure 6.17. Navier-Stokes equations, Case 1.1: Contour plot of the manufactured reference
solutions’ initial value.

(a) Velocity, x-component. (b) Velocity, y-component.

(c) Pressure.

Figure 6.18. Navier-Stokes equations, Case 1.2: Contour plot of the manufactured reference
solutions’ initial value.
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6.5.2 Discussion on the results

In the simulations with the Navier-Stokes equations, the time interval was still [0, 1] as
before, but we only used ∆t = 0.05 in the h- and p-refinements. This was because we
had h(t) = t and used the BDF1 integrator in these refinements. The time function was
integrated exactly and the temporal error vanished, so we did not need to make ∆t very
small. As we see from figure 6.19 and 6.20, the numerical convergence graphs decayed
gradually in accordance with the theoretical assumptions. When pp = 3 and pu = 4, the
graphs dropped down immediately to machine precision. This is because the analytical
solution was represented exactly as a finite linear sum of B-splines with the same degree.
This expected behaviour was also observed in figure 6.21 and 6.22, and this shows that the
h- and p-refinements are correct.

In the t-refinements, we excluded the spatial error by letting the polynomial degree be the
same as the analytical solution. These simulations went quick because we let h = 1/16
all the time. As we see from figure 6.23 and 6.24, all the numerical convergence graphs
coincided with the analytical convergence graphs, so the simulation has worked.

Since the Navier-Stokes equations are nonlinear, Newton-iteration had to be invoked. The
error in the approximation from this technique must have been very small because the
iteration was subject to two predefined restrictions:

tolerance ≤ 10−12

# iterations ≤ 6

Empirical observations showed that the tolerance level was reached after 3 or 4 iterations,
and since this value is so small, it is not probable that error from the Newton iteration has
influenced the refinements much. It was also expected that this iteration would go very
fast because of its quadratic convergence.

The described strategy of reducing the global computational effort will also be used when
we are finally going to solve the Boussinesq equations, which are more complex than the
Navier-Stokes equations.
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(a) h-refinement: Relative error in the pressure (L2-norm).

(b) h-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.19. Navier-Stokes equations, Case 1.1: h-refinement, relative error plots (%) in L2-
norm and H1-seminorm.
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(a) p-refinement: Relative error in the pressure (L2-norm).

(b) p-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.20. Navier-Stokes equations, Case 1.1: p-refinement, relative error plots (%) in L2-
norm and H1-seminorm.



Chapter 6 Numerical examples 99

(a) h-refinement: Relative error in the pressure (L2-norm).

(b) h-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.21. Navier-Stokes equations, Case 1.2: h-refinement, relative error plots (%) in L2-
norm and H1-seminorm.
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(a) p-refinement: Relative error in the pressure (L2-norm).

(b) p-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.22. Navier-Stokes equations, Case 1.2: p-refinement, relative error plots (%) in L2-
norm and H1-seminorm.



Chapter 6 Numerical examples 101

Table 6.41. Navier-Stokes equations, Case 1.1: UMR with pu = 2 and pp = 1.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
170 1/4 2.1227e-01 - 1.0966e-01 - 7.9135e-02 -
626 1/8 5.8763e-02 1.8529 1.4820e-02 2.8874 1.9028e-02 2.0562

2402 1/16 1.2614e-02 2.2198 1.9356e-03 2.9367 4.6934e-03 2.0194
9410 1/32 2.7914e-03 2.176 2.4760e-04 2.9667 1.1688e-03 2.0056

Table 6.42. Navier-Stokes equations, Case 1.1: UMR with pu = 3 and pp = 2.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
215 1/4 2.4073e-02 - 1.0205e-02 - 6.6533e-03 -
711 1/8 2.7836e-03 3.1124 6.9124e-04 3.884 8.5179e-04 2.9655

2567 1/16 3.4313e-04 3.0201 4.4472e-05 3.9582 1.0804e-04 2.9789
9735 1/32 4.2856e-05 3.0012 2.8177e-06 3.9803 1.3633e-05 2.9864

Table 6.43. Navier-Stokes equations, Case 1.1: UMR with pu = 4 and pp = 3.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
266 1/4 3.1919e-13 - 6.7961e-15 - 5.0355e-15 -
802 1/8 2.2632e-13 0.49604 3.6291e-15 0.90511 5.5837e-15 -0.14907

2738 1/16 1.1709e-12 -2.3711 4.6608e-15 -0.36098 4.3986e-15 0.34416
10066 1/32 1.9604e-11 -4.0655 1.5059e-14 -1.692 1.0986e-14 -1.3206

Table 6.44. Navier-Stokes equations, Case 1.2: UMR with pu = 2 and pp = 1.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
170 1/4 3.6914e-01 - 3.9285e-01 - 2.2976e-01 -
626 1/8 9.1049e-02 2.0195 6.2189e-02 2.6592 6.3422e-02 1.8571

2402 1/16 1.5171e-02 2.5853 8.8246e-03 2.8171 1.6058e-02 1.9817
9410 1/32 3.3267e-03 2.1891 1.1805e-03 2.9022 4.0197e-03 1.9981
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Table 6.45. Navier-Stokes equations, Case 1.2: UMR with pu = 3 and pp = 2.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
215 1/4 3.0135e-01 - 9.8461e-02 - 5.9489e-02 -
711 1/8 1.4155e-02 4.4121 7.2767e-03 3.7582 8.0594e-03 2.8839

2567 1/16 1.4609e-03 3.2764 5.2996e-04 3.7793 1.0895e-03 2.887
9735 1/32 1.8949e-04 2.9466 3.5957e-05 3.8815 1.4272e-04 2.9324

Table 6.46. Navier-Stokes equations, Case 1.2: UMR with pu = 4 and pp = 3.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
266 1/4 2.3033e-02 - 1.9355e-02 - 1.0651e-02 -
802 1/8 1.5922e-03 3.8546 6.9366e-04 4.8023 7.5920e-04 3.8103

2738 1/16 1.0518e-04 3.9201 2.3713e-05 4.8705 5.0797e-05 3.9017
10066 1/32 6.8078e-06 3.9495 7.7967e-07 4.9267 3.2857e-06 3.9505

Table 6.47. Navier-Stokes equations, Case 1.2: UMR with pu = 5 and pp = 4.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
323 1/4 4.5875e-03 - 2.1766e-03 - 1.3323e-03 -
899 1/8 1.2397e-04 5.2097 3.8233e-05 5.8311 4.3789e-05 4.9272

2915 1/16 3.8282e-06 5.0172 6.2465e-07 5.9356 1.3859e-06 4.9817
10403 1/32 1.2049e-07 4.9897 9.9562e-09 5.9713 4.3624e-08 4.9895

Table 6.48. Navier-Stokes equations, Case 1.2: UMR with pu = 6 and pp = 5.

ndof h
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖L2

‖u‖L2
log2

(
uL2(h)

uL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
386 1/4 3.5898e-12 - 4.4562e-14 - 3.9615e-14 -

1002 1/8 1.2813e-11 -1.8357 2.4020e-14 0.89158 3.2152e-14 0.30111
3098 1/16 3.1793e-12 2.0108 1.7998e-14 0.41642 1.5923e-14 1.0138
10746 1/32 2.0584e-10 -6.0167 9.7242e-15 0.88816 6.7446e-14 -2.0826
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(a) t-refinement: Relative error in the pressure (L2-norm).

(b) t-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.23. Navier-Stokes equations, Case 2.1: t-refinement, relative error plots (%) in L2-
norm and H1-seminorm.
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(a) t-refinement: Relative error in the pressure (L2-norm).

(b) t-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.24. Navier-Stokes equations, Case 2.2: t-refinement, relative error plots (%) in L2-
norm and H1-seminorm.
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Table 6.49. Navier-Stokes equations, Case 2.1: t-refinement with BDF1.

∆t
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 2.6095e-03 - 3.1617e-03 -
1/16 1.3336e-03 0.96844 1.6159e-03 0.96835
1/32 6.7402e-04 0.98448 8.1672e-04 0.98443
1/64 3.3881e-04 0.9923 4.1055e-04 0.99228

1/128 1.6986e-04 0.99617 2.0582e-04 0.99615

Table 6.50. Navier-Stokes equations, Case 2.1: t-refinement with BDF2.

∆t
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 2.3143e-04 - 2.8051e-04 -
1/16 5.7856e-05 2 7.0127e-05 2
1/32 1.4464e-05 2 1.7532e-05 2
1/64 3.6160e-06 2 4.3829e-06 2

1/128 9.0400e-07 2 1.0957e-06 2

Table 6.51. Navier-Stokes equations, Case 2.2: t-refinement with BDF1.

∆t
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.8327e-03 - 3.1010e-03 -
1/16 9.3670e-04 0.96828 1.5849e-03 0.96836
1/32 4.7344e-04 0.9844 8.0105e-04 0.98443
1/64 2.3799e-04 0.99226 4.0267e-04 0.99228

1/128 1.1932e-04 0.99615 2.0187e-04 0.99616

Table 6.52. Navier-Stokes equations, Case 2.2: t-refinement with BDF2.

∆t
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.6299e-04 - 2.7509e-04 -
1/16 4.0748e-05 2 6.8772e-05 2
1/32 1.0187e-05 2 1.7193e-05 2
1/64 2.5468e-06 2 4.2982e-06 2

1/128 6.3669e-07 2 1.0746e-06 2
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6.6 Boussinesq equations

6.6.1 Manufactured reference solution

Finally, we can focus on the scaled Boussinesq equations with force. The domain Ω is a
unit square, and we also assume homogeneous Dirichlet conditions on the temperature.

∂u

∂t
− 1

Re
∇2u + (u · ∇)u +∇p = f −Ri g

‖g‖
T (6.15a)

∇ · u = 0 (6.15b)
∂T

∂t
− 1

Pe
∇2T + (u · ∇)T = Q (6.15c)

We will use the exactly same procedure for creating manufactured reference solutions as
for the Navier-Stokes equations. The new trick is to define f(x)g(y) as the temperature’s
amplitude function. By doing so, the linear convection in the source term vanishes, and
source itself gets a simple structure. The force component fy must be extended because of
the extra temperature term. Hence, we obtain the following class of reference solutions:

ux(x, y) = f(x)g′(y)h(t)

uy(x, y) = −f ′(x)g(y)h(t)

p(x, y) =
1

Re
f ′(x)g′(y)h(t)

T (x, y) = f(x)g(y)h(t)

fx(x, y) = f(x)g′(y)h′(t)− 1

Re
f(x)g′′′(y)h(t)

+
[
g′(y)2 − g(y)g′′(y)

]
f(x)f ′(x)h(t)2

fy(x, y) = −f ′(x)g(y)h′(t) +
1

Re
[2f ′(x)g′′(y) + f ′′′(x)g(y)]h(t)

+
[
f ′(x)2 − f(x)f ′′(x)

]
g(y)g′(y)h(t)2 +Rif(x)g(y)h(t)

Q(x, y) = f(x)g(y)h′(t)− 1

Pe
(f ′′(x)g(y) + f(x)g′′(y))h(t)

(6.16a)
(6.16b)

(6.16c)

(6.16d)

(6.16e)

(6.16f)

(6.16g)

As before, we can still construct four test functions from

Case 1.1: f(x) = 4(x− x2)2 g(y) = 4(y − y2)2 h(t) = t

Case 1.2: f(x) = 8(x− x2)3 g(y) = 8(y − y2)3 h(t) = t

Case 2.1: f(x) = 4(x− x2)2 g(y) = 4(y − y2)2 h(t) = 1 + t3

Case 2.2: f(x) = 8(x− x2)3 g(y) = 8(y − y2)3 h(t) = 1 + t3
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(a) Velocity, x-component. (b) Velocity, y-component.

(c) Pressure. (d) Temperature.

Figure 6.25. Boussinesq equations, Case 1.1: Contour plot of the manufactured reference solu-
tions’ initial value.

(a) Velocity, x-component. (b) Velocity, y-component.

(c) Pressure. (d) Temperature.

Figure 6.26. Boussinesq equationa, Case 1.2: Contour plot of the manufactured reference solu-
tions’ initial value.
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6.6.2 Discussion on the results

In the simulations with the Boussinesq equations, we have used the same procedure for
choosing p, h and ∆t as for the Navier-Stokes equations. To be as simple as possible, we
assume that Re,Ri, Pe = 1 such there are no boundary layers in the solution. This time,
we are using two different integrators to segregate the whole system, and the second one
has an explicit part. It seems that ∆t = 0.05 was a suitable time restriction for the SBDF
integrator used in the h- and p-refinements, for the numerical convergence graphs have
behaved in exactly the same way as for the Navier-Stokes equations.

We see from figure 6.27, 6.28, 6.29 and 6.30 that all the numerical convergence graphs
decay as expected from the theoretical assumptions. This behaviour is clearly observed
in the temperature, pressure and velocity field. Hence, we can conclude that the h- and
p-refinements have worked as they should.

In the t-refinement, the numerical convergence graphs for the pressure and velocity field
coincided with the analytical graphs, but the temperature converged faster than expected.
This behaviour has been observed both in figure 6.31 and 6.32. The reason for this is not
clear, and it might happen that this was just incidental for our particular problem.

Anyway, the method of segregating the Boussinesq system by using two time-integrators
instead of just one has given suitable solutions and ensured that the total running time
is sufficiently limited. Using Newton iteration on the whole coupled system would have
taken much more effort to solve. Therefore, we can finally conclude that our approach has
worked as it should.
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(a) h-refinement: Relative error in the temperature (H1-seminorm).

(b) h-refinement: Relative error in the pressure (L2-norm).
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(c) h-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.27. Boussinesq equations, Case 1.1: h-refinement, relative error plots (%) in L2-norm
and H1-seminorm.

(a) p-refinement: Relative error in the temperature (H1-seminorm).
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(b) p-refinement: Relative error in the pressure (L2-norm).

(c) p-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.28. Boussinesq equations, Case 1.1: p-refinement, relative error plots (%) in L2-norm
and H1-seminorm.
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(a) h-refinement: Relative error in the temperature (H1-seminorm).

(b) h-refinement: Relative error in the pressure (L2-norm).
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(c) h-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.29. Boussinesq equations, Case 1.2: h-refinement, relative error plots (%) in L2-norm
and H1-seminorm.

(a) p-refinement: Relative error in the temperature (H1-seminorm).
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(b) p-refinement: Relative error in the pressure (L2-norm).

(c) p-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.30. Boussinesq equations, Case 1.2: p-refinement, relative error plots (%) in L2-norm
and H1-seminorm.
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Table 6.53. Boussinesq equations, Case 1.1: UMR with pt = 2, pp = 1 and pu = 2.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
138 1/4 1.2473e-01 - 8.2577e-02 - 8.2577e-02 -
594 1/8 2.9768e-02 2.067 1.9855e-02 2.0562 1.9855e-02 1.8533
2466 1/16 7.3431e-03 2.0193 4.8975e-03 2.0194 4.8975e-03 2.22

10050 1/32 1.8292e-03 2.0051 1.2197e-03 2.0056 1.2197e-03 2.1761

Table 6.54. Boussinesq equations, Case 1.1: UMR with pt = 3, pp = 2 and pu = 3.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
188 1/4 1.4101e-02 - 6.9427e-03 - 6.9427e-03 -
692 1/8 1.8599e-03 2.9226 8.8884e-04 2.9655 8.8884e-04 3.1125
2660 1/16 2.3827e-04 2.9646 1.1274e-04 2.9789 1.1274e-04 3.0202

10436 1/32 3.0148e-05 2.9824 1.4226e-05 2.9864 1.4226e-05 3.0012

Table 6.55. Boussinesq equations, Case 1.1: UMR with pt = 4, pp = 3 and pu = 4.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
246 1/4 1.2694e-15 - 5.5246e-15 - 5.5246e-15 -
798 1/8 1.7858e-15 -0.49241 5.9368e-15 -0.10381 5.9368e-15 -0.14567
2862 1/16 9.7651e-15 -2.4511 4.2300e-15 0.48903 4.2300e-15 -0.64602

10830 1/32 7.2781e-14 -2.8979 4.3433e-15 -0.038148 4.3433e-15 -0.89591

Table 6.56. Boussinesq equations, Case 1.2: UMR with pt = 2, pp = 1 and pu = 2.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
138 1/4 1.5325e-01 - 2.2976e-01 - 2.2976e-01 -
594 1/8 4.0561e-02 1.9177 6.3422e-02 1.8571 6.3422e-02 2.0198
2466 1/16 9.5631e-03 2.0845 1.6058e-02 1.9817 1.6058e-02 2.5854

10050 1/32 2.3209e-03 2.0428 4.0197e-03 1.9981 4.0197e-03 2.1892
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Table 6.57. Boussinesq equations, Case 1.2: UMR with pt = 3, pp = 2 and pu = 3.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
188 1/4 7.4405e-02 - 5.9489e-02 - 5.9489e-02 -
692 1/8 7.8907e-03 3.2372 8.0594e-03 2.8839 8.0594e-03 4.4123
2660 1/16 1.0191e-03 2.9528 1.0895e-03 2.887 1.0895e-03 3.2764

10436 1/32 1.3392e-04 2.9279 1.4272e-04 2.9324 1.4272e-04 2.9466

Table 6.58. Boussinesq equations, Case 1.2: UMR with pt = 4, pp = 3 and pu = 4.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
246 1/4 1.6391e-02 - 1.0651e-02 - 1.0651e-02 -
798 1/8 1.1105e-03 3.8836 7.5920e-04 3.8103 7.5920e-04 3.8546
2862 1/16 7.4223e-05 3.9032 5.0797e-05 3.9017 5.0797e-05 3.9201

10830 1/32 4.8132e-06 3.9468 3.2857e-06 3.9505 3.2857e-06 3.9495

Table 6.59. Boussinesq equations, Case 1.2: UMR with pt = 5, pp = 4 and pu = 5.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
312 1/4 2.5682e-03 - 1.3323e-03 - 1.3323e-03 -
912 1/8 8.4729e-05 4.9218 4.3789e-05 4.9272 4.3789e-05 5.2097
3072 1/16 2.6999e-06 4.9719 1.3859e-06 4.9817 1.3859e-06 5.0172

11232 1/32 8.5190e-08 4.9861 4.3624e-08 4.9895 4.3624e-08 4.9897

Table 6.60. Boussinesq equations, Case 1.2: UMR with pt = 6, pp = 5 and pu = 6.

ndof h ‖T−Th‖E
‖T‖E log2

(
TE(h)

TE(h/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(h)

pL2(h/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(h)

uE(h/2)

)
386 1/4 2.3901e-14 - 3.8543e-14 - 3.8543e-14 -
1034 1/8 4.2023e-15 2.5078 3.1583e-14 0.28732 3.1583e-14 -1.9467
3290 1/16 2.6659e-14 -2.6654 1.5655e-14 1.0125 1.5655e-14 0.92971

11642 1/32 6.6789e-14 -1.325 6.5052e-14 -2.0549 6.5052e-14 -4.9212
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(a) t-refinement: Relative error in the temperature (H1-seminorm).

(b) t-refinement: Relative error in the pressure (L2-norm).
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(c) t-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.31. Boussinesq equations, Case 2.1: t-refinement, relative error plots (%) in L2-norm
and H1-seminorm.

(a) t-refinement: Relative error in the temperature (H1-seminorm).
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(b) t-refinement: Relative error in the pressure (L2-norm).

(c) t-refinement: Relative error in the velocity field (H1-seminorm).

Figure 6.32. Boussinesq equations, Case 2.2: t-refinement, relative error plots (%) in L2-norm
and H1-seminorm.
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Table 6.61. Boussinesq equations, Case 2.1: t-refinement with BDF1/SBDF1.

∆t ‖T−Th‖E
‖T‖E log2

(
TE(∆t)

TE(∆t/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 8.9024e-02 - 3.2992e-03 - 3.9061e-03 -

1/16 3.4955e-02 1.3487 1.6862e-03 0.96835 1.8068e-03 1.1123
1/32 1.2237e-02 1.5142 8.5225e-04 0.98443 8.2581e-04 1.1296
1/64 3.8591e-03 1.6649 4.2841e-04 0.99228 3.8314e-04 1.1079

1/128 1.1849e-03 1.7035 2.1478e-04 0.99615 1.8305e-04 1.0656

Table 6.62. Boussinesq equations, Case 2.1: t-refinement with BDF2/SBDF2.

∆t ‖T−Th‖E
‖T‖E log2

(
TE(∆t)

TE(∆t/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.1193e-02 - 2.9271e-04 - 4.2091e-04 -

1/16 1.8232e-03 2.6181 7.3178e-05 2 8.5340e-05 2.3022
1/32 2.5783e-04 2.822 1.8294e-05 2 1.7820e-05 2.2597
1/64 3.5419e-05 2.8638 4.5736e-06 2 4.0330e-06 2.1436

1/128 5.2984e-06 2.7409 1.1434e-06 2 9.6460e-07 2.0639

Table 6.63. Boussinesq equations, Case 2.2: t-refinement with BDF1/SBDF1.

∆t ‖T−Th‖E
‖T‖E log2

(
TE(∆t)

TE(∆t/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 8.6767e-02 - 3.1010e-03 - 2.6482e-03 -

1/16 3.5813e-02 1.2767 1.5849e-03 0.96835 1.2448e-03 1.0891
1/32 1.3325e-02 1.4264 8.0105e-04 0.98443 5.7510e-04 1.114
1/64 4.3834e-03 1.604 4.0267e-04 0.99228 2.6688e-04 1.1076

1/128 1.3328e-03 1.7176 2.0187e-04 0.99616 1.2708e-04 1.0705

Table 6.64. Boussinesq equations, Case 2.2: t-refinement with BDF2/SBDF2.

∆t ‖T−Th‖E
‖T‖E log2

(
TE(∆t)

TE(∆t/2)

)
‖p−ph‖L2

‖p‖L2
log2

(
pL2(∆t)

pL2(∆t/2)

)
‖u−uh‖E
‖u‖E log2

(
uE(∆t)

uE(∆t/2)

)
1/8 1.1717e-02 - 2.7509e-04 - 3.0036e-04 -

1/16 2.0795e-03 2.4943 6.8772e-05 2 6.2296e-05 2.2695
1/32 3.1251e-04 2.7343 1.7193e-05 2 1.2834e-05 2.2792
1/64 4.2540e-05 2.877 4.2982e-06 2 2.8362e-06 2.1779

1/128 5.9335e-06 2.8419 1.0746e-06 2 6.7186e-07 2.0778
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ux, uy = 0

T = Thot

ux, uy = 0

T = Tcold

ux, uy = 0 ∂T
∂n = 0

ux, uy = 0 ∂T
∂n = 0

g

Figure 6.33. Temperature-driven cavity: Mixed boundary conditions.

6.6.3 Temperature-driven cavity

Boundary conditions

To test the proposed numerical algorithms, we will investigate a well-known benchmark
example denoted temperature-driven cavity. The velocity field’s Dirichlet conditions are
still homogeneous as before (no-slip boundary), but the temperature is subject to mixed
boundary conditions (figure 6.33). The momentum and temperature equations do not have
any force term f and Q, respectively. The driving force is the non-homogeneous Dirichlet
condition on the temperature field, which couples to the momentum equation through the
buoyancy term on the right-hand side (2.16).

Before starting with the simulations, we will make some remarks on the discretization.
The mixed temperature boundary conditions are continuous because the inhomogeneous
Dirichlet conditions are constant, and this is indeed compatible with the homogeneous
Neumann conditions. We use the decomposition H1 = H1 ⊕ H1

0 and write the solution
as T = TI + TH , where TH is homogenous along the boundary. The constant Dirichlet
conditions implies, in the sense of isogeometric analysis, that the shape functions on ΓTD
have the constant coefficients Thot and Tcold (partition of unity).

To create TI , we need a zero matrix of size nT × nT . Then we insert Thot and Tcold in
the entries corresponding to ΓTD, and transform the matrix into a tensor vector for TI . By
inserting T = TI + TH in the temperature equation, we get a "source term" Q and solve
the equation with respect to TH . The term Q does not vary with time because ∂Ti

∂t = 0.

Since we are using a tensor mesh, it is appropriate to make the grid lines very dense
near the boundary, as shown in figure 6.34. This makes the approximation of the boundary
layers more accurate. Since the solution does not have sharp gradients in the centre of the
domain, the grid resolution may be less there.
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(a) Temperature-driven cavity: Graded tensor mesh M0, ndof = 3352.

(b) Temperature-driven cavity: Graded tensor mesh M1, ndof = 8012.
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(c) Temperature-driven cavity: Graded tensor mesh M2, ndof = 23332.

Figure 6.34. Temperature-driven cavity: Adaptive tensor meshes.

We also need compatible initial conditions. Since the velocity field has homogeneous
Dirichlet conditions, it is natural to choose u0(x, y) = 0. For the temperature, we choose
an interpolating blending function defined as

T0(x, y) = Thot + (Tcold − Thot)x

On the Neumann boundary ΓTN , we require ∂T
∂y = 0, and since the initial condition is

independent of y, the Neumann conditions are satisfied at the corners.

The Nusselt number

When the solution has been found, we will calculate the Nusselt number [34]. This is
a dimensionless coefficient used for estimating the wall heat transfer by measuring the
horizontal heat flux over the domain. It can be expressed as follows:

Nu = Tu−∇T (6.17)

Since we need to measure the heat flux on the wall, we will use the formula

NuΓ =

ˆ
Γ

(Tu−∇T ) · n̂ dΓ (6.18)

It is common to analyze how the Nusselt number varies as a function of the Rayleigh
number. In our MATLAB-code, the Boussinesq system is scaled in terms of the Reynold,
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Péclet and Richardson numbers. From table 2.3, we can deduce a new relation:

Ra = RePeRi

6.6.4 Simulation of temperature-driven cavity

Procedure of the simulation

In the next simulations, we let Re = 1 and Pe = 1, and Ri varies between 101, 102, 103

and 104. We expect from the theory that higher Ra will cause highly varying fluctuations
and patterns in the contour lines of the numerical solution components.

In the initial mesh M0, there are 10 elements in each spatial direction. The boundary
elements are divided into 5 smaller parts such that we can manage the boundary layers
better, since we have not implemented SUPG for our Boussinesq solver. The polynomial
degrees are pt = 3, pp = 2 and pu = 3. We run the simulation with 200 time steps on the
interval [0, 0.5], such that the time step restriction of the IMEX-integrator is satisfied.

The contour lines of the four solution components are plotted with GLview, while the
velocity components and average Nusselt numbers along x = 1/2 and y = 1/2 are plotted
with MATLAB. The Nusselt number is plotted as a function of time, using formula (6.18)
along the mentioned streamlines.

Discussion on the results

We see from figure 6.35 that the graphs of the velocity components along the streamlines
x = 1/2 and y = 1/2 have a sinusoidal shape. As Ra increases, the graph is scaled by a
factor of 10, but the shape is the same. But we see that the y-component along y = 1/2
becomes a little bit irregular when Ra = 104. This is expected because high Rayleigh
number causes dynamical chaos. The same was observed in figure 6.38 and 6.41.

As seen in figure 6.36, 6.39 and 6.42, the graph of the Nusselt number as a function of
time has some interesting patterns. For the Nusselt number along x = 1/2, the three
first graphs have the same shape but is scaled with a factor of 10 as the Rayleigh number
increases, but the last graph has a high peak before it flattens out. Along the streamline
y = 1/2, the first plot is quite jagged, the two next ones are smooth and resemble each
other, and the last has a negative peak. This is almost like in the streamline x = 1/2.

In figure 6.37, 6.40 and 6.43, we have contour plots of the velocity (x- and y-components),
pressure and temperature. The velocity components do not change much in the beginning,
but when Ra = 104, the contour lines become skewer. The contour plots of the pressure
and temperature, anyway, changes much already at Ra = 102. At the end, the patterns
become extremely irregular, and this indicates the highly varying fluctuations as expected
from the theory.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.35. Temperature-driven cavity: Cross-section plot of the velocity components along
x = 1/2 and y = 1/2, for mesh M0.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.36. Temperature-driven cavity: Plot of average Nusselt number, for mesh M0.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104

Figure 6.37. Temperature-driven cavity: Contour plots of (from left) velocity components (ux

and uy), pressure (p) and temperature (T ), for mesh M0.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.38. Temperature-driven cavity: Cross-section plot of the velocity components along
x = 1/2 and y = 1/2, for mesh M1.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.39. Temperature-driven cavity: Plot of average Nusselt number, for mesh M1.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104

Figure 6.40. Temperature-driven cavity: Contour plots of (from left) velocity components (ux

and uy), pressure (p) and temperature (T ), for mesh M1.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.41. Temperature-driven cavity: Cross-section plot of the velocity components along
x = 1/2 and y = 1/2, for mesh M2.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101.

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102.

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103.

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104.

Figure 6.42. Temperature-driven cavity: Plot of average Nusselt number, for mesh M2.
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(a) Re = 1, Ri = 101, Pe = 1, Ra = 101

(b) Re = 1, Ri = 102, Pe = 1, Ra = 102

(c) Re = 1, Ri = 103, Pe = 1, Ra = 103

(d) Re = 1, Ri = 104, Pe = 1, Ra = 104

Figure 6.43. Temperature-driven cavity: Contour plots of (from left) velocity components (ux

and uy), pressure (p) and temperature (T ), for mesh M2.
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Table 6.65. Temperature-driven cavity: Maximal value of velocity component ux along x = 0.5
and the associated y-coordinate.

Ra 101 102 103 104

Ref [13] — — 3.649 16.178
— — (0.813) (0.823)

Ref [47] — — 3.68 16.1
— — (0.817) (0.817)

Ref [22] (FEM) — — 3.489 16.122
— — (0.813) (0.815)

Ref [22] (DSC) — — 3.6434 15.967
— — (0.8167) (0.8167)

Ref [30] strat25% — — 3.6574 16.1732
— — (0.8000) (0.8000)

Ref [30] stratηeT — — 3.652 16.094
— — (0.8) (0.8)

Ref [30] stratmax(ηeNS ,η
e
T ) — — 3.649 16.202

— — (0.813) (0.825)
MeshM0 0.040 0.398 3.711 16.171

(0.814) (0.814) (0.815) (0.818)
MeshM1 0.040 0.395 3.672 16.126

(0.814) (0.814) (0.814) (0.819)
MeshM2 0.039 0.394 3.659 16.119

(0.814) (0.814) (0.814) (0.819)

There is no analytical solution to the temperature-driven cavity problem. Hence, we must
compare our numerical results with other previous results to determine whether our own
simulations are good enough. In the PhD-thesis of Hægland (2006), we found a detailed
comparison of various results on temperature-driven cavity using the finite element method
with adaptive meshing. Thus, we found it convenient to list down some of these results
directly in this thesis and compare them with our own.

In table 6.65, we have listed the maximal value of the velocity’s x-component along
x = 1/2, and the corresponding y-coordinate (in paranthesis). The same is done in table
6.66 with the y-component of the velocity along y = 1/2. None of the other authors
did not consider the cases where Ra = 10 and Ra = 100, so parts of the corresponding
columns are therefore blank. We have taken all the three meshesM0,M1 andM2 into
account in the comparison of the results.
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Table 6.66. Temperature-driven cavity: Maximal value of velocity component uy along y = 0.5
and the associated x-coordinate.

Ra 101 102 103 104

Ref [13] — — 3.697 19.617
— — (0.178) (0.119)

Ref [47] — — 3.73 19.9
— — (0.1827) (0.1246)

Ref [22] (FEM) — — 3.686 19.79
— — (0.188) (0.12)

Ref [22] (DSC) — — 3.686 19.98
— — (0.183) (0.117)

Ref [30] strat25% — — 3.6224 19.4871
— — (0.2000) (0.1250)

Ref [30] stratηeT — — 3.699 19.43
— — (0.2) (0.125)

Ref [30] stratmax(ηeNS ,η
e
T ) — — 3.697 19.61

— — (0.175) 0.125
MeshM0 0.040 0.398 3.714 19.708

(0.186) (0.186) (0.181) (0.125)
MeshM1 0.040 0.395 3.695 19.696

(0.186) (0.186) (0.180) (0.122)
MeshM2 0.039 0.394 3.693 19.722

(0.186) (0.186) (0.179) (0.122)

As we see from table 6.65 and 6.66, the obtained results from temperature-driven cavity
do not deviate so much from the other authors, and this indicates that the simulation went
well. It might happen that if we had used SUPG-formulation on the Boussinesq equations,
then the results would have been more accurate, in addition to using adaptive mesh refine-
ment. The latter one would make approximation of the boundary layers better.

Davis [13] has estimated the error in the benchmark solutions that he reports to be 0.1 %
and 0.2 % for Ra = 103 and Ra = 104, respectively. Notice that his benchmark solu-
tions are obtained by using Richardson extrapolation of the computed numerical results.
Our results obtained with the finest meshM2 are within 0.5 % difference to the reported
benchmark solutions of Davis [13], which we consider to be very convincing results.





Chapter 7

Concluding remarks

7.1 Conclusion

The numerical examples have demonstrated that isogeometric analysis works very well
for solving many of the partial differential equations arising in heat transfer and fluid flow.
All the numerical solutions converged as expected from the theoretical assumptions. There
were sometimes a few small disturbances in the convergence graphs, but this was mostly
caused by noise at the machine precision level, so this can be neglected.

The use of a conformal mesh with elementary tensor refinement worked well because
all the analytical solutions belonged to C∞. It seems that combining the Bubnov-Galerkin
and Petrov-Galerkin methods with splines as basis functions is optimal for reducing the
effect of boundary layers, especially the latter one.

When we solved the Boussinesq equations, we observed that segregating the system of
equations by applying two different but A-stable integrators worked properly. The global
computational complexity was quite reduced, and the final results were suitable. From the
theoretical assumptions, we presumed that the convergence of the numerical solution in
the h- and p-refinements could be expressed asymptotically by the general estimate

O
(

ndof−
p+1−k
2d−1

)
(7.1)

as described in chapter 6. This pattern was discovered in all the numerical studies. There
were some irregularities in the heat and advection-diffusion equations, for the analytical
solutions were not polynomials. But for the Navier-Stokes and Boussinesq equations, we
could construct polynomial solutions such that either the spatial or temporal error was
totally excluded. Hence, there were no disturbing noise polluting the error convergence.

In the t-refinement, we assumed that the convergence in the different norms would be
the same because h and p were constant all the time, so the order of the time-integrator
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alone would determine the convergence rate. This behaviour has been observed, and this
indicates that the time integration was correct.

Our final benchmark case, Temperature-driven cavity, has been thoroughly investigated
by many authors and in particular Davis [13]. He has estimated the error in the benchmark
solutions (obtained with Richardson extrapolation) that he reports to be 0.1 % and 0.2 %
for Ra = 103 and Ra = 104, respectively. Our results obtained with the finest meshM2

are within 0.5 % difference to the reported benchmark solutions of Davis [13], which we
consider to be very good.

7.2 Future work

In all the simulations, we used a very simple tensor mesh with B-splines, and it worked
properly. In the future, it will be very appropriate to use LR B-splines such that we can
apply local refinement and adaptive mesh generation. This makes it easier to approximate
parts of the domain where the numerical solution behaves irregularly, like boundary layers.

Applying algebraic multigrid and special saddle-point algorithms can be very important
because the equation system is large and nonlinear, so we need some robust methods to
solve it quickly. Implementing the solver in C++ could also have been an alternative way
for increasing the algorithmic speed. Using a supercomputer with higher memory and
faster computations can also be relevant for future work where the boundary and initial
value problems are more complicated to handle.

Anyway, the next major task is to examine how we can control the inner climate of ice
hockey stadiums, by solving the Boussinesq equations inside the stadium and determine
how the air circulation and temperature distribution can be regulated effectively such that
all the criterions for good inner climate are fully satisfied. This is too complicated to be
implemented from scratch, so using IFEM for this purpose will be of high importance.



Appendix A

Multivariate calculus

The derivation of the Navier-Stokes equation and Boussinesq equations relies on many
vector identities and multiple integral theorems. Therefore, we present all these topics
detailed but short. For further details, we refer to [25, 48, 58].

A.1 Multiple integration

Proposition 1 (Line and surface integrals). Let f be a continuous function, and C is a
smooth curve parametrized by r(t) = a(t)̂i + b(t)̂j + c(t)k̂, and t1 ≤ t ≤ t2. Then the
line integral of f over C is

ˆ
C

f(x, y, z) ds =

ˆ t2

t1

f(a(t), b(t), c(t))|r′(t)| dt

Let a smooth surface S be parametrized by r(u, v) = a(u, v)̂i + b(u, v)̂j + c(u, v)k̂,
u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2, such that r ∈ C1 and ∂r

∂u ×
∂r
∂v 6= 0 on int(S). Then the

surface integral of f over S is
¨
S

f(x, y, z) dS =

ˆ v2

v1

ˆ u2

u1

f(a(u, v), b(u, v), c(u, v))

∣∣∣∣ ∂r

∂u
× ∂r

∂v

∣∣∣∣ du dv
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140 A.2 Vector calculus

Definition 1 (Jacobian transform). Define (x, y, z) and (u, v, w) as two different sets of
coordinates. The Jacobian of the bijective coordinate transformation x = g(u, v, w),
y = h(u, v, w), z = k(u, v, w) is defined as the determinant

J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣
(A.1)

The determinant of the inverse transformation (u, v, w) 7→ (x, y, z) is given by

J(x, y, z) =
1

J(u, v, w)
(A.2)

Proposition 2 (Variable change in multiple integrals). LetG be a region in the uvw-plane
transformed into the region R in the xyz-plane, such that the coordinate transform is a
diffeomorphism (bijective and smooth at every point). Then R is the image of G, and G
is the preimage of R. If J is the Jacobian of the transform, then we have the following
change of variables in a multiple integral:

˚

R

f(x, y, z) dx dy dz (A.3)

=

˚

G

f(g(u, v, w), h(u, v, w), k(u, v, w))
∣∣J(u, v, w)

∣∣ du dv dw

A.2 Vector calculus

Definition 2 (Common operators). Let f : R3 → R be a scalar field, and F : R3 → R3 is
a vector field. The standard differential vector operators in Cartesian coordinates are

Gradient: ∇f =
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂

Divergence: ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

Curl: ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
Laplacian: ∇2f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
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Proposition 3 (Vector identities).

∇× (∇f) = 0 (A.5a)
∇ · (∇× F) = 0 (A.5b)

∇ · (∇f) = ∇2f (A.5c)
∇(F ·G) = F× (∇×G) + G× (∇× F) + (F · ∇)G + (G · ∇)F (A.5d)
∇ · (F×G) = G · (∇× F)− F · (∇×G) (A.5e)
∇× (F×G) = (G · ∇)F− (F · ∇)G + (∇G)F− (∇F)G (A.5f)

∇× (∇× F) = ∇(∇ · F)−∇2F (A.5g)
∇ · (∇f ×∇g) = 0 (A.5h)

∇2(fg) = f∇2g + g∇2f + 2(∇f · ∇g) (A.5i)

(F · ∇)F = (∇× F)× F + (1/2)∇|F|2 (A.5j)

Theorem 1 (The theorems of Green, Stokes and Gauss). Let A be a closed area with
the piecewise smooth boundary C, and V is a closed volume with the piecewise smooth
surface S. Let k̂ be the unit vector in z-direction, and n̂ is the unit normal vector on the
surface. Then we have the following integral theorems:

Green’s theorem 1:
˛
C

F · dr =

¨
R

(∇× F) · k̂ dA (A.6a)

Green’s theorem 2:
˛
C

F · n̂ ds =

¨
R

∇ · F dA (A.6b)

Stokes’ theorem:
˛
C

F · dr =

¨
S

(∇× F) · n̂ dS (A.6c)

Gauss’ theorem:
‹
S

F · n̂ dS =

˚
V

∇ · F dV (A.6d)

Corollary 1 (Green’s identities). From Gauss’ theorem, Green’s identities holds:
˚

V

g∇2f dV =

‹
S

g
∂f

∂n
dS −

˚
V

∇f · ∇g dV (A.7a)
˚

V

g∇2f − f∇2g dV =

‹
S

g
∂f

∂n
− f ∂g

∂n
dS (A.7b)
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Corollary 2 (Special integral identities). From Stokes’ and Gauss’ theorems, we have the
following integral identities:

˚
V

∇f dV =

‹
S

f n̂ dS (A.8a)
˚

V

∇2f dV =

‹
S

∂f

∂n
dS (A.8b)

˚
V

f(∇ · F) dV =

‹
S

f(F · n̂) dS −
˚

V

∇f · F dV (A.8c)
˚

V

∇× F dV = −
‹
S

F× n̂ dS (A.8d)
˚

V

F · (∇×G) dV =

˚
V

G · (∇× F) dV −
‹
S

(F×G) · n̂ dS (A.8e)



Appendix B

Real and functional analysis

The proofs in Chapter 3 relies on many theorems and inequalities from real and functional
analysis, so we give a brief but systematic description of the relevant theory.

B.1 Lebesgue space

Definition 3 (Lebesgue space Lp [1]). If Ω ⊂ Rn has nonzero measure and p ≥ 1, then
the Lebesgue space Lp(Ω) is a Banach space consisting of Lebesgue measurable functions
on Ω such that they possess the following finite norms:

‖u‖Lp =

(ˆ
Ω

|u(x)|p dx
) 1
p

1 ≤ p <∞ (B.1a)

‖u‖L∞ = sup
x∈Ω
|f(x)| p =∞ (B.1b)

The space L2(Ω) is a Hilbert space with the inner product

〈u, v〉L2 =

ˆ
Ω

|u(x)v(x)| dx (B.2)

Theorem 2 (Young’s inequalities [1]). Let p and q be conjugate exponents (1 ≤ p, q ≤ ∞,
1/p+ 1/q = 1), and a, b, ε > 0. Then, Young’s inequalities are defined as follows:

Young’s inequality 1: ab ≤ ap

p
+
bq

q
(B.3a)

Young’s inequality 2: ab ≤ εa2 +
b2

4ε
(B.3b)
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Theorem 3 (Lp-inequalities [1]). In Lp, we have the following inequalities:

Hölder’s inequality: ‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq (B.4a)
Minkowski’s inequality: ‖u+ v‖Lp ≤ ‖u‖Lp + ‖v‖Lp (B.4b)

Theorem 4 (Completeness, inclusion and reflexivity properties of Lp [1]). The space Lp

is the completion of C0 in the Lp-norm:

Lp ≡ C0
‖·‖Lp

If Ω is a domain with finite measure, and 1 < p < q <∞, then we have the inclusion

Lq(Ω) ⊂ Lp(Ω) ⊂ L1(Ω)

Lp is reflexive iff p and q are conjugate exponents satisfying 1 < p < q <∞:

(Lq)∗ = Lp

Definition 4 (Quotient Lebesgue space [6]). The quotient Lebesgue space is a Banach
space given by

Lp0(Ω) =

{
f ∈ Lp(Ω) :

ˆ
Ω

f dx = 0

}
(B.5)

‖u‖Lp0 = inf
α∈R
‖u+ α‖Lp (B.6)

Definition 5 (Time-dependent Lebesgue space [25]). Lp([0, T ], X) is a Banach space
consists of time-dependent Lp-functions u : [0, T ]→ X such that

‖u‖Lp([0,T ],X) =

(ˆ T

0

‖u(t)‖pX dt

) 1
p

1 ≤ p <∞ (B.7a)

‖u‖L∞([0,T ],X) = sup
0≤t≤T

‖u(t)‖X p =∞ (B.7b)

B.2 Sobolev space

Definition 6 (Sobolev space W k,p [1]). Let p ∈ [1,∞) be the Lebesgue index, and k is
the derivative order. The Sobolev spaceW k,p(Ω) consists of all functions u ∈ Lp(Ω) such
that the k− 1 first partial derivatives are absolutely continuous, and the k-th derivative is
Lebesgue measurable. When 1 ≤ p <∞, the seminorm and norm are defined as
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|u|Wk,p =

∑
|α|=k

‖Dαu‖pLp

 1
p

(B.8a)

‖u‖Wk,p =

 k∑
|α|=0

‖Dαu‖pLp

 1
p

=

 k∑
|α|=0

|u|p
Wk,p

 1
p

(B.8b)

For p =∞, the seminorm and norm become

|u|Wk,∞ = max
|α|=k

‖Dαv‖L∞ (B.9a)

‖u‖Wk,∞ = max
|α|≤k

‖Dαv‖L∞ (B.9b)

W k,p(Ω) is a Banach space. If p = 2, we have a Hilbert space Hk with the inner product

〈u, v〉Hk =

k∑
|α|=0

〈Dαu,Dαv〉L2 (B.10)

Theorem 5 (Inequalities for W k,p [1]). If Ω has finite measure and u ∈ W 1,p
0 , then we

have the following inequalities in the Sobolev space:

Poincaré’s inequality: ‖u‖Lp(Ω) ≤ CΩ|u|W 1,p(Ω) (B.11a)
Gagliardo-Nirenberg inequality: ‖u‖Lq(Rn) ≤ C‖u‖Lp(Rn) (B.11b)
General Sobolev inequality: ‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω) (B.11c)

Theorem 6 (Completeness, inclusion and reflexivity properties of W k,p [1]). The space
W k,p is the completion of Ck in the W k,p-norm:

W k,p ≡ Ck
‖·‖

Wk,p

If Ω is a domain of any measure, then for 1 ≤ p <∞, we have the inclusion

· · · ⊂W 3,p(Ω) ⊂W 2,p(Ω) ⊂W 1,p(Ω) ⊂ Lp(Ω)

If k is fixed, Ω has finite measure, and 1 < p < q <∞, then the following inclusion holds:

W k,q(Ω) ⊂W k,p(Ω) ⊂W k,1(Ω)

W k,p is reflexive iff p and q are conjugate exponents satisfying 1 < p < q <∞:

(W k,q)∗ = W k,p
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Definition 7 (Sobolev space W k,p
0 [1]). The space W k,p

0 (Ω) consists of functions u ∈
W k,p(Ω) such that {f i : 1 ≤ i ≤ k} equal zero on the boundary ∂Ω:

W k,p
0 ≡ C∞‖·‖Wk,p

If 1/p+ 1/q = 1, then the dual space is W−k,q(Ω) equipped with the supremum norm

‖v‖W−k,q = sup
u∈Wm,p

0 ,‖u‖
Wk,p≤1

|〈u, v〉| (B.12)

These special Sobolev spaces satisfy a very special inclusion:

W k,p
0 (Ω) ⊂ Lp(Ω) ⊂W−k,q(Ω) (B.13)

Definition 8 (The time-dependent Sobolev space [25]). W k,p([0, T ], X) consists of time-
dependent W k,p-functions u : [0, T ]→ X such that

‖u‖Wk,p([0,T ],X) =

(ˆ T

0

k∑
i=0

‖u(i)(t)‖pX dt

) 1
p

1 ≤ p <∞ (B.14a)

‖u‖Wk,∞([0,T ],X) = max
i≤k
‖u(i)(t)‖L∞ p =∞ (B.14b)

Definition 9 (Convergence types). Let {un}n be a sequence in a Banach space X , and
{fn}n is a sequence in the dual space X ′. Then we can define the following types of
convergence for these elements.

Strong convergence: un −→ u

Weak convergence: f(un) −→ f(u)

Weak-* convergence: fn(u) −→ f(u)



Appendix C

Finite element analysis

Definition 10 (Functionals and forms [53]). A functional is an operator F (·) : V → R,
assigning a real number to each element in V . We call it 1

Linear: F (λu+ µv) = λF (u) + µF (v)

Bounded: ‖F (u)‖ ≤M‖u‖V

A form is an operator a(·, ·) : V × V → R, assigning a real number to a pair of elements
in V . For any u, v ∈ V and λ, µ ∈ R, we call it

Bilinear: a(u, λv + µw) = λa(u, v) + µa(u,w)

a(λu+ µv,w) = λa(u,w) + µa(v, w)

Continuous: ‖a(u, v)‖ ≤M‖u‖V ‖v‖V
Coercive: α‖u‖2V ≤ a(u, u)

Symmetric: a(u, v) = a(v, u)

Positive: a(u, u) > 0

Theorem 7 (Lax-Milgram theorem [25]). Let a finite element problem be given by

find u ∈ V : a(u, v) = F (v), ∀v ∈ V.

If V is a Hilbert space, a(·, ·) is a continuous and coercive bilinear form, and F (·) is a
linear and continuous functional, then the problem above has a unique solution.
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Definition 11 (Regular bilinear form [60]). Let C(·, ·) : A×B → R such that A,B ⊂ X
have dimension n. A and B are the test and trial spaces, respectively. If

∀u ∈ A, u 6= 0, ∃v ∈ B : C(u, v) 6= 0

∀v ∈ B, v 6= 0, ∃u ∈ A : C(u, v) 6= 0

then C(·, ·) is regular, and the discretization matrix arising from C is nonsingular.

Definition 12 (Boundary conditions [25]). Let Ω ⊂ Rn be a well-defined domain with
a regular boundary ∂Ω. For any 2nd order partial differential equation, we have the
following general boundary conditions

Dirichlet conditions: u = gD , u ∈ ΓD

Neumann conditions:
∂u

∂n
= gN , u ∈ ΓN

Robin conditions: α
∂u

∂n
+ βu = gR , u ∈ ΓR

We assume that ∂Ω = ΓD∪ΓN ∪ΓR, and all the boundary segments are mutually disjoint.



Appendix D

Spline algorithms

In the whole implementation, several algorithms have been used for increasing the speed
of the assembly process and post-processing. Some of them are slight generalizations of
already existing methods for evaluation of splines. Hence, we will therefore present the
most important ones in a general way that can be implemented in any language.

The first algorithm is creating a knot vector for representing a spline of degree p with
continuity Cα on a closed interval I . This method is constructed in such a way that all the
interior knots in the final vector are sorted in a nondecreasing way, and the end knots have
multiplicity p+ 1. The continuity will automatically define the multiplicity of the interior
knots, and the resulting knot vector is uniform.

Algorithm 2 Generating knot vectors

1: procedure GENERATE_KNOT_VECTOR(p, α)
2: I← Sorted, increasing array with s unique knots of multiplicity 1
3: k = p− α
4: e = 2(p+ 1) + (s− 2)k
5: Ξ← Array of e zeros
6: for k = 1 to p do
7: Ξi = I1
8: Ξe−p−1+i = Is

9: for i = 1 to s− 2 do
10: for j = 1 to k do
11: Ξp+1+(i−1)k+j = Ii+1

12: return Ξ
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Algorithm 3 Evaluation of a B-spline

1: procedure EVALUATE(Ξ, p, t)
2: R← Array of 2p+ 1 zeros
3: for k = 1 to p do
4: NV← Array of 2p+ 1− k zeros
5: for i = 1 to 2p+ 1− k do
6: LBF = Ri
7: a = Ξi+k − Ξi
8: if a > 0 then
9: LRU = (t− Ξi)/a

10: else
11: LRU = 0
12: RBF = Ri+1

13: a = Ξi+k+1 − Ξi+1

14: if a > 0 then
15: RRD = (Ξi+k+1 − t)/a
16: else
17: RRD = 0
18: NVi = LBF ∗ LRU +RBF ∗RRD
19: R = NV
20: return R

Algorithm 4 First derivative of a B-spline

1: procedure DERIVATIVE_1(Ξ, p, t)
2: C← Array of p zeros
3: for i = 1 to p do
4: r = Ξi+p+1 − Ξi+1

5: if r = 0 then
6: Ci = 0
7: else
8: Ci = p/r

9: E = EVALUATE(Ξ, p, t)
10: R← Array of p+ 1 zeros
11: R1 = −C1/E1

12: for i = 1 to p− 1 do
13: Ri+1 = CiEi − Ci+1Ei+1

14: Rp+1 = Cp+1Ep+1

15: return R
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Algorithm 5 Second derivative of a B-spline

1: procedure DERIVATIVE_2(Ξ, p, t)
2: C← Array of p zeros
3: D← Array of p+ 1 zeros
4: for i = 1 to p+ 1 do
5: if i ≤ p then
6: r = Ξi+p+1 − Ξi+1

7: if r 6= 0 then
8: Ci = 1/r

9: s = Ξi+p − Ξi+1

10: if s 6= 0 then
11: Di = 1/s

12: e = p+ 1
13: R← Array of e zeros
14: if p = 2 then
15: R1 = C1D2

16: R2 = −(C1 + C2)D2

17: R3 = C2D2

18: else if p = 3 then
19: E = EVALUATE(Ξ3:e−2, 1, t)
20: R1 = C1D2E1

21: R2 = −(C1 + C2)D2E1 + C2D3E2

22: R3 = C2D2E1 − (C2 + C3)D3E2

23: R4 = C3D3E1

24: else if p ≥ 4 then
25: E = EVALUATE(Ξ3:e−2, p− 2, t)
26: R1 = C1D2E1

27: R2 = −(C1 + C2)D2E1 + C2D3E2

28: for i = 2 to p− 2 do
29: Ri+1 = CiDiEi−1 − (Ci + Ci+1)Di+1Ei + Ci+1Di+2Ei+1

30: Re−1 = Ce−1De−2Ee−1 − (Ce−1 + Ce)De−1Ee
31: Re = Ce−1De−1Ee

32: R = p(p− 1)R
33: return R

Algorithm 3, 4 and 5 are optimal because they evaluate all the B-splines on an interval
I0 ⊂ I such that t ∈ I0. This is crucial in the assembly process because we loop over
several elements, and we need to evaluate all the B-splines that belong to this specific
element. When the element matrix or vector has been found by taking tensor product, they
are inserted into the global matrices and vectors.
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Algorithm 6 Evaluation on a surface

1: procedure EVALUATE_SURFACE(Ξ, p1, ξ,H, p2, η)
2: Find the knot span such that ξ ∈ [ξi, ξi+1].
3: Evaluate the basis functions Ni−p,p(ξ), . . . , Ni,p(ξ).
4: Find the knot span such that η ∈ [ηj , ηj+1].
5: Evaluate the basis functions Mj−q,q(η), . . . ,Mj,q(η).
6: Multiply the function values with the corresponding control points.

S(ξ, η) =
[
Na,p(ξ)

]T
[Pab] [Mb,q(η)]

{
i− p ≤ a ≤ i
j − q ≤ b ≤ j

(D.1)

The same method is applied to the partial derivative:

∂s1+s2

∂ξs1∂ηs2
S(ξ, η) =

[
N (s1)
a,p (ξ)

]T
[Pab]

[
M

(s2)
b,q (η)

] 
0 ≤ s1 + s2 ≤ d
i− p ≤ a ≤ i
j − q ≤ b ≤ j

(D.2)
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