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4.5 Peak Periods

The conditional distribution of the 1 hour peak periods, Tp , were estimated for

different Hs . The wave heights were divided into bins with width of 0.5m, and

the Tp in each class seemed to fit to a lognormal distribution, Equation (4.8).

fTp |Hs (t |h) = 1p
2πσT t

exp

{
−1

2

(
ln(t )−µT

σT

)2}
(4.8)

As with the wave height distribution, the lognormal distribution parameters

were fitted to smooth functions to describe the conditionality:

µT = c1 + c2uc3 (4.9)

σ2
T = d1 +d2ed3h (4.10)

The estimated parameters from each bin are shown in Figure 4.8, along with the

fitted function. The parameters describing the relationship between H s and Tp

and between Uw and Hs , are shown in Table A.2.
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5. SHORT TERM ENVIRONMENTAL CONDITIONS

The raw data from NKUA describe the long term distribution of the wind and

waves. In order to perform reliable dynamic analyses of the construction, the

short term modeling of the environment must be considered. This chapter de-

scribes how the long term distributions of the hourly raw data were considered

to model the short term distribution of the environment.

5.1 Wind

For time-domain response analysis, IEC-61400-1 (2005) suggests using a Kaimal

spectrum to model the frequency contents of the turbulent wind field. This

spectrum, shown in Equation 5.1, models the spectral density function for the

three directions. Here, k represents the main longitudinal (k = 1), lateral (k = 2),

and vertical (k = 3) directions.

Sk ( f ) =σ2
k

4Lk

Uhub(
1+6 f

Lk

Uhub

) 5
3

(5.1)

where f is the frequency (Hz), σk is the standard variation of the wind speed

in the k direction, Lk is the integral length scale parameter. and Uhub is the

wind speed at hub height. The parameters are given in Table 5.1, where the
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longitudinal turbulence scale parameter,Λ1, is given by the hub height, as:

Λ1 =


0.7 for zhub ≤ 60m

42 for zhub ≥ 60m
(5.2)

For the NREL 5 MW turbine, which has a hub height of 90m, the longitudinal

turbulence scale parameter isΛ1 = 42.

Tab. 5.1: Distribution Parameters for Uw given θ

Wind Speed Component Index, k

1 2 3

Standard Deviation, σk σ1 0.8σ1 0.5σ1

Integral Length Scale, Lk 8.1Λ1 2.7Λ2 0.66Λ1

The wind speed in the longitudinal direction is represented by a mean value

and a dynamic component, U +u1(t ), while the lateral and vertical components

are described by only the dynamic parts, u2(t ) and u3(t ). The dynamic com-

ponents are zero-mean Gaussian distributed random processes, with standard

deviation σk . For the Normal Turbulence Model (NTM), IEC-61400-1 (2005)

suggests Equation 5.3 to get a representative value for the standard deviation

in operational conditions.

σ1 = Ir e f (0.75Uhub +5.6) =Uhub I (5.3)

where I is the Turbulence Intensity factor, and Ir e f = 0.12 is the reference value

at a wind speed of 15 m/s.

In addition to the turbulence, the wind speeds change over height. The Nor-

mal Wind Profile (NWP) model describe the average wind speed as a function of

the height:

U (z) =Uhub

(
z

zhub

)α
(5.4)
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where zhub is the hub height. This is also known as the Power Law. A quick ex-

amination of the raw data indicated that an exponent α= 0.1 could be applied.

Using theses parameters, the turbulent wind fields were created in TurbSim.

The wind fields were made up of longitudinal planes for each time step, were

each plane consisted of 32x32 points. Each point then contained the velocities

in all three directions.

5.2 Waves

5.2.1 Wave Spectra

The short term wave conditions are characterized by wave spectra (JONSWAP)

defined by the significant wave height and spectral peak period, Hs and Tp re-

spectively.

The JONSWAP wave spectrum is defined as:

S(ω) =αg 2ω−5 exp

{
−5

4

(
ω

ωp

)−4}
γ

exp

−
(
ω/ωp −1

)2

2σ2


(5.5)

where the peak enhancement factor, γ, the spectral width parameter,σ, and the

generalized Phillips’ Constant, α, are defined in Equations (5.6), (5.7) and (5.8).

γ=


5 for

Tpp
Hs

≤ 3.6

exp
{

5.75−1.15
Tpp
Hs

}
for 3.6 < Tpp

Hs
≤ 5.0

1 for 5.0 < Tpp
Hs

(5.6)

σ=


0.07 for ω≤ωp

0.09 for ω>ωp

(5.7)
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α= 5π4 H 2
s

g 2T 4
p

(1−0.287lnγ) (5.8)

To avoid unphysical high frequency waves, the wave spectra in this thesis

are cut off at ωmax =
√

2g
Hs

(Stansberg, 1998). The spectra are then smoothed

aroundωmax . Figure 5.1 shows an example of a JONSWAP Wave Spectrum used

in the analyses.
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Fig. 5.1: JONSWAP Wave Spectrum for Hs = 1.17m, Tp = 5.48s



6. LOAD CASES

In order to ensure a conservative representation of the lifetime of a wind tur-

bine, a range of load cases must be analysed. These load cases represent differ-

ent combinations of wind and waves. As it is very time consuming to simulate

all combinations, a range of representative load cases were chosen, using the

raw data from NKUA.

Wind Speed

To adequately capture all load contributions from the wind, the wind speed

range was chosen to include wind speeds between 1 m/s and 25 m/s. This cor-

responds to wind speed below cut-in, to model the idling turbine, going in steps

of 1 m/s up to cut-out speed.

Significant Wave Height

From the probability distributions calculated for significant wave height given

wind speed, Equation 4.5, the expected Hs was calculated for each Uw by:

Hs = E [Hs |Uw ] =βH Γ(
1

αH
+1) (6.1)

where αH and βH are the shape and scale parameters of the distribution, given

by the wind speed bu Equations 4.6 and 4.7. The relationship between Uw and

Hs is shown in Figure 6.1.
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Peak Periods

The peak periods, Tp , of the load cases were chosen in a similar matter. From

the distribution of Tp given Hs , Equation 4.8, the peak periods were calculated

as:

T p = E
[
Tp |Hs

]= exp

(
µT + σ2

T

2

)
(6.2)

where µT and σ2
T were given by Equations 4.9 and 4.10. In addition, a set of Tp

slightly above, and slightly below the expected value were chosen, as shown in

Figure 6.2. This was done to examine the effect of the wave frequencies on the

loads.
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Fig. 6.2: Relationship between Hs and Tp for all loadcases

Given wind speeds of Uw = 11m/s and Uw = 20m/s, comparisons were made

to see how the chosen load cases corresponded to the probability of occurrence

in the raw data. Figure 6.3 show that the load cases chosen are representative.
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Fig. 6.3: Conditional Distributions of Hs given Uw

Relative Misalignment Between Wind and Waves

For an offshore wind turbine, the largest damping will be the aerodynamic damp-

ing, in the direction of the wind. This means that for waves coming from an

angle of 90◦, the wind turbine will experience no aerodynamic damping in the

direction of the waves. The effects of the waves may therefore be larger, and po-

tentially increase the fatigue damage. For this reason, the variation of wind and

wave misalignment must also be taken into account when designing the load

cases. As shown in Figure 4.3, the misalignment angles in the raw data were

mainly close to 0◦, and quickly decreased for increasing angles. Since most of
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the misalignment angles are below 90◦ (see Table 4.1), and misalignment above

90◦ is assumed to contribute very little to fatigue, the misalignment angles were

chosen between 0◦ and 90◦.



7. POST-PROCESSING OF DATA

7.1 Calculation of Stress

In order to calculate fatigue damage, the results from FAST had to be processed

in MATLAB. Since FAST models the wind turbine as beam elements, the dy-

namic response analyses resulted in time histories of the loads at the centerline

of the tower, such as the axial force, Nx , or the side-to-side and fore-aft mo-

ments, Mx and My . The loads were output at 11 positions along the tower, with

steps of 2.5m between the bottom (z =−20m) and 5m above the MSL. MATLAB

was then used to calculate time series of the stress, by:

σ= Nz

A
+ My

I
r sin

(
ϕ

)+ Mx

I
r cos

(
ϕ

)
(7.1)

where A is the cross sectional area, r is the outer radius of the tower, ϕ is the

position and I is the second moment of area of the cross section. In order to get

find the stress distribution around the tower, the stress histories were calculated

for 8 positions around the perimeter of the tower, with steps of 22.5◦ (see Figure

7.1).

To minimize the transients in the beginning of the simulations, the turbine

did not begin the analyses stationary. Instead, the initial conditions were modi-

fied, so the rotor speed and blade pitch matched the steady state conditions (see

Figure 2.3). This meant that for each of the 10 minute simulations, a shorter ini-

tial startup period could be introduced. The simulations were therefore run for

650s, before the first 50s were removed. For all the environmental conditions,
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analyses were run for three cases: Morison’s Equation, MacCamy-Fuchs Theory,

and with only wind, as shown in Figure 7.2.
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Fig. 7.2: Transient period in the beginning of the analyses

7.2 Fatigue Calculation

As described in Section 3.3, the fatigue calculation depends greatly on factors

such as the environment. For the case of an offshore wind turbine, the environ-

ment is highly corrosive. To calculate the fatigue damage on the wind turbine,
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Curve D in Figure 3.9 was therefore used with the parameters listed in Table

7.1. These results, corresponding to fatigue damage in seawater with cathodic

protection, were calculated for each load case, and the results were scaled cor-

responding to the probability of occurrencee.

Tab. 7.1: Parameters for SN-curve

Fatigue limit Thickness Reference
N ≤ 106 cycles N > 106 cycles at 107 cycles [MPa] exponent Thickness [m]

m1 log a1 m2 log a2 σl i m k tr e f

3.0 11.764 5.0 15.606 52.63 0.2 0.032

The fatigue damage was calculated through rainflow counting, using the

WAFO toolbox for MATLAB, developed by the WAFO-group (2011). The origi-

nal script was made for single sloped SN curves, so a modified version was used

to account for the two slopes in the applied curve.

When calculating the fatigue damage over 20 years, the damage from the 10

minute simulations were simply extrapolated to 20 years. The damage was then

weighted, using the probabilities for each sea state.

7.3 Spectral Analysis

In order to investigate the responses of the wind turbine in the frequency do-

main, power spectra were calculated for the responses the WAFO toolbox. An

investigation of these power spectra can reveal differences in the methods of

modeling, and also indicate what kind of loads dominate. As with the time se-

ries, the spectral analyses were performed for the two hydrodynamic models,

and with only wind. It should be noted that the calculated spectra are very

sensitive to spectrum smoothing, meaning that the values may not be exact.

However, as the same smoothing was used on all spectra, they may be used to

compare the frequency response between the different methods and load cases.
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A comparison between the power spectra for the stress at the is shown in

Figure 7.3. The differences between Morison (M1), MacCamy-Fuchs (MF) and

only wind (W) are negligible for the purely wind driven loads, such as around

f3p and for the low frequency wind turbulence (LF). However, the wave fre-

quency (WF) loads show the differences more clearly.
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8. RESULTS AND DISCUSSION

Simulations have been performed on the wind turbine, in order to investigate

the effect of hydrodynamic modeling. The simulations are investigated in this

chapter.

8.1 Effect of Weather

In order to investigate the effect of the different weather conditions, a range of

load cases were examined. The load cases in question are listed in Table 8.1.

The spectra in this section show the stress at the bottom of the structure,

in the direction of the wind. The power spectra of the stress are marked as

SM1(ω) and SMF (ω) for the spectra calculated with Morison’s equation and with

MacCamy-Fuchs, respectively. The power spectra of the wave elevation, SW (ω),

are included in the figures, to visualize where the frequencies that are affected

by the waves.

The rotor frequency and the blade passing frequency are marked with f1p

and f3p . These are approximate values, as they change with time. The frequen-

cies shown are calculated using the mean rotor speed of the load case.

In addition, the first tower eigenfrequency and the peak frequency of the

wave spectra are marked as T 1 and Tp .
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Tab. 8.1: Load cases for examination of weather effects

Load Mean Wind Speed Significant Wave Height Spectral Peak Period
Case Uw [m/s] Hs [m] Tp [s]

1a 1 0.60 7.12
1b 1 0.60 6.12
1c 1 0.60 5.12
2a 5 1.00 7.37
2b 5 1.00 6.37
2c 5 1.00 5.37
3a 11 2.37 8.35
3b 11 2.37 7.35
3c 11 2.37 6.35
4a 20 5.91 11.44
4b 20 5.91 10.44
4c 20 5.91 9.44
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Load Case 1 - Uw = 1m/s

The response spectra of the fore-aft stress at the bottom for loadcases 1.1a, 1.1b

and 1.1c are shown in Figure 8.1-8.2, comparing the spectra computed with

Morison’s equation to the spectra computed with MacCamy-Fuchs. As the wind

loads are small, the differences from the wave excitation forces are very clear.

The main peaks are at the frequencies corresponding to the first tower eigen-

frequency, T1, and the blade passing frequency, f3p . However, as the peak of

the wave spectra, Tp , are close to T1, the high frequency waves excite the tower.

As the mass terms are smaller for high frequency waves when using MacCamy-

Fuchs, the forces are smaller, and the peaks are therefore lower than for Mori-

son’s equation.
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Load Case 2 - Uw = 5m/s

When the wind speed increases, the aerodynamic effects increase in impor-

tance. As the power spectrum of the stress in Figure 8.3 shows, there is a peak

at approximately 2.4 rad/s, corresponding to f3p . Note that the wave excitation

in the high frequency range show a clear difference between M1 and MF, while

the peaks excited by the wind are approximately equal. The low frequency ex-

citation by the wind is equal for both M1 and MF. As the wind speed increases,

the energy in the low end of the spectrum increases significantly. To be able to

compare the higher frequency ranges, this low frequency part of the spectra are

cut off.
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Load Case 3 - Uw = 11m/s

The spectra in Figures 8.5-8.6 show that the blade passing frequency f3p de-

creases in importance as the wind speed increases, due to aerodynamic damp-

ing. As f3p move away from the wave frequencies, the peaks become equal for

M1 and MF.
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Load Case 4 - Uw = 20m/s
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Fig. 8.7: Spectral density of the stress at the bottom - Load Case 4a
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Fig. 8.8: Spectral density of the stress at the bottom - Load Case 4c

8.2 Damage on the tower

When combining the damage from all load cases, the difference between the

fatigue lives could clearly be seen. Figure 8.9 shows the fatigue damage around

the circumference of the tower at the mudline. The shape of the distribution

is due to the fact that all wind always was in the same direction, 0◦, and thus

increasing the damage in the fore-aft direction. As could be expected from the

load spectra, the damage at the bottom from MacCamy-Fuchs is slightly larger

than the damage from using Morison’s equation.

The difference in damage between the bottom at at the MSL is very large.

As Figure 8.10 shows, the circumferential fatigue damage at the MSL is an order

of magnitude smaller than at the bottom. However, the fatigue damage here is
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Tab. 8.2: Mean and standard deviation of the time series of the stress at the bottom.

Load Morison MacCamy-Fuchs Difference [%]
Case Mean [MPa] STD [MPa] Mean [MPa] STD [MPa] Mean STD

1.1a 7.54 1.11 7.54 1.04 0 -6.31
1.1b 9.82 1.94 9.82 1.91 0 -1.55
1.1c 12.08 2.54 12.08 2.51 0 -1.18
1.2a 15.56 3.20 15.57 3.18 0.06 -0.63
1.2b 18.59 4.19 18.59 4.16 0 -0.72
1.2c 22.83 4.15 22.83 4.14 0 -0.24
1.3a 27.49 4.57 27.49 4.52 0 -1.09
1.3b 33.14 4.67 33.15 4.65 0.03 -0.43
1.3c 40.63 6.11 40.63 6.09 0 -0.33
1.4a 47.60 7.60 47.60 7.58 0 -0.26
1.4b 51.84 5.51 51.84 5.47 0 -0.73
1.4c 47.62 7.45 47.62 7.42 0 -0.40

different than the damage at the bottom, as the damage is larger when using

Morison’s equation.

The maximum fatigue damage at the bottom and at the MSL are compared

for each seed in Tables 8.3 and 8.4, while the differences are shown in Figure

8.11.

Tab. 8.3: Maximum fatigue damage at the bottom

Seed Morison MacCamy-Fuchs Difference (%)

1 2.595 2.656 3.13
2 2.44 2.516 2.24
3 2.552 2.609 2.14
4 3.151 3.218 3.80
5 2.513 2.608 3.06
6 2.485 2.561 2.37

Mean 2.623 2.695 2.79

A distribution of the maximum fatigue damage for one of the seeds is shown

in Figure 8.12, where it is clearly seen that the differences increase with increas-

ing depth. Note that the differences above MSL are approximately constant.
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Tab. 8.4: Maximum fatigue damage at MSL

Seed Morison MacCamy-Fuchs Difference (%)

1 0.303 0.295 -2.92
2 0.279 0.271 -2.52
3 0.293 0.286 -2.51
4 0.390 0.380 -2.63
5 0.283 0.275 -2.19
6 0.298 0.291 -2.76

Mean 0.308 0.300 -2.59

This is because there is no wave excitation above MSL, as wave stretching is not

included.
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8.3 Fatigue Contributions

The damage at the bottom was sorted to investigate which load cases contributed

the most to fatigue damage. As Table 8.5 shows, there is a clear trend. All the

load cases with the most damage have a wind speed around rated wind speed

(11.4 m/s), while the misalignment angles that contribute the most are 11.25◦

and 22.5◦. This suggests that although there are differences between the hy-

drodynamic models, the aerodynamics are much more important. As shown in

Figure 2.3, the thrust is largest around rated wind speed, leading to more fatigue

damage. In addition, misalignments of 11.25◦ and 22.5◦ result in the least aero-

dynamic damping, which also contribute significantly to the fatigue damage.
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Tab. 8.5: Load cases with the most fatigue damage

Rank Uw Hs Tp θ

1 12 2.6826 7.5956 11.25
2 14 3.3653 8.1541 11.25
3 13 3.0132 7.8628 11.25
4 12 2.6826 6.5956 11.25
5 12 2.6826 6.5956 22.5
6 13 3.0132 6.8628 11.25
7 14 3.3653 7.1541 11.25
8 12 2.6826 7.5956 22.5
9 12 2.6826 8.5956 11.25

10 16 4.1327 8.8108 11.25
11 15 3.7385 8.4699 11.25
12 14 3.3653 7.1541 22.5
13 13 3.0132 8.8628 11.25
14 9 1.8229 5.935 11.25
15 12 2.6826 7.5956 0
16 13 3.0132 6.8628 22.5
17 14 3.3653 9.1541 11.25
18 12 2.6826 6.5956 0
19 12 2.6826 8.5956 22.5
20 13 3.0132 7.8628 22.5



9. SUMMARY AND RECOMMENDATIONS

In this thesis, an investigation has been performed on how hydrodynamic load-

ing effects influence the fatigue life of an offshore wind turbine. A code was de-

veloped to run FAST with MacCamy-Fuchs theory instead of the standard Mori-

son’s equation. Hindcast data from the North Sea was the used to simulate the

weather over 20 years, to investigate the responses and fatigue damage of the

wind turbine.

The results in Chapter 8 show that there are small differences between the

loads with Morison’s equation and the loads with MacCamy-Fuchs theory. While

the mean forces are approximately the same using either of the models, there

are small differences when the dynamic effects are taken into account. Table

8.2 shows that there is no difference in the mean stress at the bottom for the two

hydrodynamic models. There are, however, small differences in the standard

deviations. These differences are mostly noticable for the small waves.

When looking at the fatigue damage on the tower, a clear difference can

be seen. At the bottom, where the stresses are largest, MacCamy-Fuchs theory

leads to slightly more damage than Morison’s equation. This is due to the fact

that the inertia coefficients for the large waves are slightly larger for MacCamy-

Fuchs . As the large waves decay slowly towards the bottom, the difference is

clear in the fatigue damage.

The fatigue damage at the MSL is slightly lower for MacCamy-Fuchs than for

Morison. This because Morison’s equation overestimates the forces from short

waves. As the short waves decay fast towards the bottom, the effect of this is
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most apparent at the MSL.

Although there are differences between the hydrodynamic models, the struc-

ture analysed in this thesis does not seem very sensitive to this. In addition, the

maximum contribution to the fatigue damage came from load cases with large

thrust from the wind, suggesting that aerodynamics may be more important

with respect to fatigue damage.

9.1 Further work

There are several improvements that can be done to further investigate the re-

sults in this thesis. First, a study should be performed to investigate the effect

of the wind direction. In this thesis, the wind direction was constant, leading

to significantly more fatigue at some places around the perimeter. By analysing

the wind turbine with different wind directions, a better comparison between

MacCamy-Fuchs and Morison may be performed.

In addition to the wind directions, a study should be performed on different

diameters of the structure. As larger cylinder will experience more diffraction,

this may give a better understanding of the differences between the hydrody-

namic theories, and how they affect large wind turbines.

An investigation should also be performed on a hybrid model between Mori-

son’s equation and MacCamy-Fuchs theory. While there are differences between

the models, they are most apparent for small waves. However, as the waves grow

in size, diffraction becomes less important. In addition, the wave crests become

more important when the waves are larger. Therefore, a fatigue analysis should

be performed where MacCamy-Fuchs is used for small waves, where diffraction

is important, and wave crests are not. For larger waves, the wave kinematics

may be integrated to the wave crest, and the forces estimated using Morison’s

equation.
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APPENDIX



A. STATISTICAL DISTRIBUTION PARAMETERS

Tab. A.1: Distribution Parameters for Uw given θ

Angle, θ αU βU

0.00 2.885 10.776
5.00 2.881 10.807

11.25 2.849 10.435
22.50 2.703 8.955
45.00 2.436 7.311
67.50 2.252 6.133
90.00 2.125 5.590

135.00 1.985 5.933

Tab. A.2: Parameters for Conditionality between Distributions

Distribution
Parameter Equation Parameter Value

αH (4.6)
a1 1.1717

a2 0.3608

a3 0.8571

βH (4.7)
b1 0.6420

b2 0.0275

b3 1.7827

µT (4.9)
c1 1.6157

c2 0.1895

c3 0.7537

σ2
T (4.10)

d1 0.0131

d2 0.2258

d3 –1.0611
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B. SCATTER DIAGRAM OF MISALIGNMENT AND WIND SPEED
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