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Abstract

A good reservoir model, which correctly represents both the static parameters and

�ow properties, is essential to optimize production from any reservoir. Much time

and e�ort is put into the description of the reservoir and major �nancial decisions

rest on forecasts from the model. The use of multiple models for forecasts is

increasing in popularity and history matching methods Ensemble Kalman Filter

are suitable for this.

The Ensemble Kalman Filter was proposed by Evensen in 1994 as a data assimila-

tion method for large-scale nonlinear systems, and have been reviewed and tested

several times in the petroleum industry since then. The �lter uses an ensemble of

state vectors to represent multiple realization of the same system and the ensemble

covariance is used to represent both error statistics and the reservoir response to

state and model parameters.

In this Thesis, the EnKF has been used to history matching the PUNQ S-3 syn-

thetic case, in order to see the e�ects of additional information. This was done

through two di�erent method, the �rst one using boundaries to constrain model

parameters. In the second case the evolution of the same history match was

presented through di�erent timesteps. The models were evaluated through their

forecast ability and model parameter match.

Although �ow performance in terms of forecasted rates improved for all models,

the model parameters did not improve. An evolution towards a wrong parame-

ter solution was seen, even though this solution made a good forecast for future

production. The prior geological knowledge was not well enough de�ned in the

updating step, thus the conditioned models evolved further from the truth than

III



the initial model.
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Sammendrag

En god reservoarmodell, som både representerer de statiske parametrene og strømn-

ingsegenskaper, er avgjørende for å optimalisere produksjonen fra hvilket som helst

reservoar. Mye tid og krefter blir brukt til å beskrive reservoaret så godt som

mulig og store økonomiske beslutninger hviler på prognosene fra denne modellen.

Prognoser utført ved bruk av �ere realisasjoner basert på samme modell blir stadig

mer populære for å fange usikkerhet. Historietilpasningsmetoder som Ensemble

Kalman Filter er godt egnet for dette.

EnKF ble foreslått av Evensen i 1994 som en data-assimilasjon metode innen

oceanogra�, og har blitt utviklet og testet �ere ganger innen petroleumsindustrien

siden da. Filteret bruker et ensemble av vektorer for å beskrive reservoarparam-

eterne og hver av disse vektorene beskriver en realisasjon av reservoaret. Kovar-

iansen mellom disse vektorene brukes til å representere både spredning og reser-

voarets respons til parameterverdier.

I denne oppgaven har EnKF blitt brukt til historietilpasning av PUNQ S3, en syn-

tetisk reservoarmodell, for å se e�ekten av tilgjengelig informasjon. Dette ble gjort

gjennom to ulike simulering, hvor den første ble gjennomført med grenseverdier

for å begrense de statiske parameterne. I det andre tilfellet ble utviklingen av

en historietilpasning presentert gjennom ulike tidsskritt. Modellene ble evaluert

på bakgrunn av sin prognose for fremtidig produksjon, samt sine avvik i parame-

terverdi sammenliknet med de sanne parameterne.

Selv om prognosene ble forbedret for samtlige modeller, ble det ikke observert

noen forbedring i reservoarparameterne. En utvikling mot en falsk løsning ble

observert. Denne løsningen hadde feil parameterverdier, men gav en prognose for
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fremtidig produksjon som var veldig lik sannheten. Den geologiske kunnskapen

ble ikke anvendt i oppdateringen, noe som førte til at de oppdaterte modellene var

lengre unna sannheten enn det opprinnelige utgangspunktet.
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Chapter 1

Introduction

Reservoir management is an important aspect in order to optimize hydrocarbon

production and thus �eld value. Optimizing of production can be done innu-

merable ways and could include drilling of new wells or selection of an increased

recovery method. Common for most projects is that they begin with the reservoir

model. The value of such a model, built on geophysical and geological data, is

proportional with its ability to predict the �eld production. Inaccuracies in such

a model lead to a deteriorating forecast ability with time. To keep the predictive

ability of the model, it is updated using production data and in some cases data

from geophysical 4D surveys.

The updating sequence of a reservoir model is called history matching or condi-

tioning procedure. Going two decades back in time, this was almost solely done

manually. With increased computational power, semi-automated methods have

become more prominent. Ensemble Kalman �lter has been chosen for this Thesis

due to the easy implementation and its continuous update property. It can also

update both model and state parameters. While being semi-automated, the con-

ditioning method still relies on prior knowledge that needs to be de�ned. The aim

of this study was to see how a di�erence in information given would change both

the conditioning process and the future forecasts.

The �rst chapter of this thesis gives an introduction to fundament statistics. Both

Chapter 4 and 5 later build on this basic statistics. In Chapter 3, a general intro-
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CHAPTER 1. INTRODUCTION

duction to reservoir modeling and forecasts is given. Also included is a short sum-

mary of errors present in both reservoir simulation and history matching. Chap-

ter 4 lists some of the challenges met in history matching and explains various

objective functions used. A link between objective functions and the prior statis-

tics is given. Both the Kalman Filter and the Ensemble Kalman Filter is derived

in Chapter 5. A short review of �eld application is also given, but as this method

still increases in popularity, a full review is not given. The EnKF was applied

in two di�erent settings on the same synthetic case. Background information of

the reservoir model and the software used is given in Chapter 6, while results are

given in Chapter 7 and 8. As both cases have similar results, an overall discus-

sion is given in Chapter 9 and the most important observations is summarized in

the following conclusion. In the end, references, nomenclature and appendices are

included.
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Chapter 2

Statistical fundament

Some elements of the Ensemble Kalman Filter is based on a Bayesian update

procedure. This chapter will serve as a review of the basic statistical fundament for

continuous variables used in the derivation of EnKF, which is covered in Chapter 5.

First a de�nition of the probability density distribution is introduced; follow by

an explanation of the most simple statistical moments. This provides a basic

fundament before introducing the Monte Carlo simulations, on which the Ensemble

Kalman Filter methodology is based.

2.1 Probability density functions

The probability density function can be derived from the cumulative density func-

tion. Given a random continuous variable x, we can assign F(X) as a cumulative

density function for this variable. F(X) is a distribution function which denotes

the probability that x will take a value less than or equal to X. This relationship

can be expressed by

F (X) = P (x ≤ X) =

∫ X

−∞
f(u)du (2.1.1)

3



CHAPTER 2. STATISTICAL FUNDAMENT

where f , if it exist, is the probability density function of the random variable x.

If f is continuous at X, one could write

f(X) =
d

dX
F (X) (2.1.2)

The probability density function is de�ned as non-negative everywhere and the

total area under its curve is equal to one. The probability of x taking a single

given value is zero, as the upper and lower limit would coincide.

f(X) ≥ 0 forallX, (2.1.3)∫ ∞
−∞

f(X)dX = 1 (2.1.4)

P (x = a) =

∫ a

a

f(X)dX = 0 (2.1.5)

The area under the pdf curve can in other words be described as the likelihood of

a continuous random variable, x, to take a value within an interval assigned.

P [a ≤ x ≤ b] =

∫ b

a

f(X)dX (2.1.6)

One of the most common probability density functions is the Gaussian distribution,

also called the normal distribution, which is completely described by its mean and

variance. The Gaussian distribution can be written in the form

f(x) =
1√

2πσ2
exp(−(x− µx)2

2σ2
) (2.1.7)

The Gaussian distribution is bell shaped and symmetric, as seen in Figure 2.1.1
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CHAPTER 2. STATISTICAL FUNDAMENT

Figure 2.1.1: Three gaussian probability distributions with zero mean and variances of

0.8, 1.5 and 3.

2.2 Statistical moments

Moment in statistics is loosely de�ned as a quantitative measure of the shape of

a set of point. For the �rst two moments, these will describe the location and the

width of the set. Below follows a statistical de�nition of the expected value and

variance in addition to equations to calculate this from sample sets.

Expected value

The expected value, denoted E[X], of a set of random variables x is the weighted

average of all possible values the variable can take. The weights are described by

the probability density of the variable.

E[X] =

∫
xfX(x) (2.2.1)

EFFECTS OF INFORMATION IN HISTORY MATCHING 5



CHAPTER 2. STATISTICAL FUNDAMENT

For a sample of data containing N independent realizations of a variable x, the

expected value can be written as a sample mean by

E[X] ' x̄ =
1

N

N∑
i=1

xi (2.2.2)

When N approaches in�nity, the di�erence between the sample mean and the

expected value approaches zero.

Variance

The variance is a measure of the average squared distance between a set of data

point and their mean value.

V AR(X) = E[(X − µ)2] (2.2.3)

= E[X2]− (E[X])2 (2.2.4)

The sample variance can be approximated using a similar expression as the ex-

pected value

V AR(x) ' (x− x̄)2 (2.2.5)

=
1

N − 1

N∑
i=1

(xi − x̄)2 (2.2.6)

The normalization by dividing the sum by N-1 is a method to create an unbiased

sample variance. Since one of the degrees of freedom is used to calculate the sam-

ple mean,x̄, the degrees of freedom is reduced to N-1.

Covariance

The relationship between two random variables can be described using the covari-

ance as a measure of their linear dependency. If both variable entries are greater,

or smaller, than their respective means, their contribution to the covariance takes

EFFECTS OF INFORMATION IN HISTORY MATCHING 6



CHAPTER 2. STATISTICAL FUNDAMENT

a positive value. Covariance is dependent on the scale used, thus not a good

measurement for linear dependency across variable sets.

COV [X, Y ] = E[(X − E[X])(Y − E[Y ])] (2.2.7)

' (x− x̄)(y − ȳ) (2.2.8)

=
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (2.2.9)

These basic statistical terms forms the basis for analyzing data in the Ensemble

Kalman Filter.

2.3 Monte Carlo simulations

Computing an integral, A, over a high dimensional space with uncertainty input

variables can be challenging computational. Considering such an integral

A =

∫
R

h(x)dx (2.3.1)

Given the vector x de�ned in the domain R with d dimensions. Assuming that

uniform samples are drawn to evaluate the integral numerically, say a minimum of

s samples in each direction are required to represent a grid on which the function is

to be evaluated. The computational workload, W , to calculate the function values

for the samples, are proportional to:

W ∝ sd (2.3.2)

In addition to calculating the function values, it's also needed to store and keep

track of the grid used.

To cope with this workload, alternative sampling methods exist. Monte Carlo

(MC) methods are such a class of computational algorithms using random sam-
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CHAPTER 2. STATISTICAL FUNDAMENT

ples to compute the result. The use of random samples makes this a stochastic

alternative to the deterministic grid method described above. The methods are

especially applicable for simulations with signi�cant uncertainty in inputs and sys-

tems with a high degree of freedom.

Using a MC method, N independent and identically distributed (i.i.d) samples of

x are drawn from the domain R. An approximating to A can be done with these

samples by:

ÂN =
1

N
[h(x1) + ...+ h(xN)] (2.3.3)

Given a set of independent random variables with a common and �nite mean and

variance, the mean of the samples will converge towards the expected value when

the sample size approaches in�nite.

lim
N→∞

ÂN = A (2.3.4)

The accuracy of this sampling is given by the central limit theorem:

√
N(ÂN − A)

R−→ N(0, σ2), as n→∞ (2.3.5)

σ2 = V ar[h(x)] (2.3.6)

Seen from Equations 2.3.5 and 2.3.6, the accuracy of the sampling estimate does

not depend of the dimensionality of the space sampled, but only on the �nite

variance of the variable. The variance is normal increasing with higher dimen-

sionality, so for a high dimension problem it could be very large, thus requiring

a larger sample size for the sampling to be accurate. Errors with the use of this

method is proportional to the square root of the sample size, N .

Several versions of sampling schemes exist, with MCMC (MarkovChain Monte-

Carlo) being one that is frequently used in reservoir simulation. One of the bene-

�ts of using such a method in reservoir simulation is through the evolution of the

parameters. Considering a single prede�ned best estimate realization of a reser-
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CHAPTER 2. STATISTICAL FUNDAMENT

voir model. By letting the parameters change with time through the use of a

simulator, a future state vector,ψ can be de�ned though the used of a non-linear

function operator, A, as seen in Equation 2.3.7. Similarly one can use an ensemble

of models,ϕj based on the same mean as the single estimate and let these models

evolve with the use of the same simulator.

ψk+1 = A(ψk) (2.3.7)

ϕjk+1 = A(ϕjk) (2.3.8)

As stated in Equation 2.3.9, the mean of the future ensemble is not necessarily

the same as the future best estimate vector. Based on the stochastic nature of the

Monte Carlo simulations, the mean of the future ensemble will neither have to be

the same every time.

ψk+1 6= ϕjk+1 (2.3.9)
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Chapter 3

Reservoir modelling and forecast

Any uncertainty dynamic model used for predictions needs to be updated in order

to get a more accurate forecast. In the petroleum industry these forecasts are

based on the reservoir model, which is introduced in the �rst section of this chapter.

Further a short analysis of error present in modelling is given and a short discussion

of forecast accuracy is presented towards the end.

3.1 Reservoir modelling

In short terms, the reservoir model is a computer model based on the geological

model. The purpose of the reservoir model is to help facilitate numerical calcu-

lations in an e�ective matter. To achieve this, a huge detailed geological model

must go through a reduction in parameters to reduce simulation time, usually

done by dividing the geological model into a grid system where each grid block is

completely homogeneous. Each grid block contains quantitative parameters from

the static geological model in addition to dynamic parameters. This makes the

reservoir model a good base for consistent analysis of the hydrocarbon presents,

thus also giving a good basis for further economical assessment. It is also used for

production optimization through well placement and tertiary recovery techniques.

Dynamic parameters are parameters that change during production history. These
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CHAPTER 3. RESERVOIR MODELLING AND FORECAST

could be well rates, grid block pressure or water saturation. Some of the dynamic

parameters, like grid block pressure, can vary signi�cantly during years, or even

months, of production. Matching these parameters are very challenging, as one

during production does not have data speci�c to one grid cell, but rather data

only from the production and injection wells which is a result of actions from

many grid-blocks. Static parameters, like mineralogy and net to gross ratio, do

not change during production history. These kinds of parameters should thus

be easier to model, as they would have the same value during the entire history

matching period.

With all these parameters that needs to be de�ned, data is acquired from several

di�erent sources in the petroleum industry. Each type of data has a certain spa-

tial extent associated to it. A large-scale geophysical survey, like a seismic survey,

could provide us with rock-types, fault placement and in some cases porosity esti-

mates. These data does not reveal much of the heterogeneity within a cubic meter

of rocks. Through well tests one can get estimates of the product of permeability

and thickness of the reservoir, but as with geophysical surveys these data are a sum

of actions across a large volume of the reservoir, thus does not explain the actual

parameters in one region or in one grid cell. Further data collection through well

logs and core samples could give data like net to gross ratio, electric resistivity,

hydrocarbon content and porosity. Applying these data to a reservoir model needs

to be done with consideration to both spatial variance and measurement errors.

With all this data incorporated in the model, a �nal quality check needs to be done

in order to see whether the model is geological plausible. This requires a geological

interpretation, and could be performed by seeing if e.g. porosity and permeability

values are consistent with rock type. Mezghani and Roggero 1 presented an ap-

proach where both the �ne-scale geostatistical model and the course-scale reservoir

�ow-model is updated with dynamic data, in order to have a consistency between

the two models.

An assumption of spatial relationship in the parameters is one of the cornerstones

of multivariate geostatistics. By knowing the property value in several locations,

an estimation of the maining nearby locations are available. This could be done by

interpolation techniques like kriging. The spatial dependence of such a parameter
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is described by a variogram.

Using commercial reservoir simulators, one can use the reservoir model to predict

future production. The accuracy of the prediction is in�uenced by several uncer-

tain factors. Possible sources of error include, among others, the reservoir model,

simulator and �ow physics. This prediction is often used as a basis for major reser-

voir development decisions and huge decisions are based on the expected recovery

from the simulations. Development in o�shore oil �eld is especially sensitive for

these simulations, due to low economic return and limited �exibility in form of low

amount of information2.

3.2 Uncertainty and sources of error

Within regular mechanics in deterministic systems, uncertainty can be seen as a

subjective lack of knowledge. This means that an increased amount of informa-

tion, through further analysis or surveys, might reduce the uncertainty associated

with the system. The uncertainty in production forecast can be traced back to

two main categories of errors3, measurement errors and modeling errors.

Measurement error is generally well observed, as measurement tools have a known

uncertainty and can often be calibrated. In addition to a standard deviation from

the true value due to accuracy, measurement errors can also be present as a con-

tinuous drift from the true value due to wear or operating conditions.

The introduction of continuous well data, like down-hole pressure and multi-phase

�ow rates, make a lot of information available for matching4. The accuracy of

�ow rates is generally not good, and often separator rates are considered a better

estimate. Due to this discrepancy between well measurements and �eld mea-

surements, back-allocation of produced volumes needs to be distributed either

uniformly across producing wells based by their performance, or by a weighting

scheme based on experience with the �eld in question if certain well �ow rates are

more uncertainty than others. This could lead to a bias in production data used
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for history matching, which can increase the uncertainty.

Carter 5 list two types of modeling error present; simpli�ed assumptions in the

reservoir model and numerical schemes used in the simulator.

To summarize one could attribute this error to averaging of data during upscaling.

Since modeling error in general is hard to quantify, the simulator predictions must

be presented with an estimate of their accuracy and limits of their applicability.

DeVolder et al. 6 states that simulator results must come with error bars as is

expected of experimental results. In production forecasts the results could, as

we have seen from the posterior, be given as a spread of values in a probability

distribution. Achieving this is not straight forward with a single reservoir model.

In order to quantify this uncertainty, the modeler must display the error based on

his prior information and assumption. The receiver should in this case be aware

of the modeler's view on uncertainty. Some approaches to this are listed by Floris

et al. 7 .

The errors associated with modeling could also be present in the wellbore or near

wellbore area. Perforations, skin e�ect or blockings of other kinds could restrict

the �ow, thus resulting in inaccurate production data8. Separating these factors

in the modeling is di�cult based on the production data only.

3.3 Predictive capacities

Through the process of history matching a reservoir model to �eld production

data, a process covered in Chapter 4, it is often assumed that the model will have

a forward modeling ability that give results corresponding to the future production.

Carter et al. 3 showed that their reservoir model had poor predictive capacity, even

though it had identical physics and identical spatial and temporal resolution as the

true model. This contradicts the explanation of model errors based on improving

resolution or inclusion of more physics. The reservoir in question was a relatively

simply model, a cross-section with alternating layers of good and poor sand and

a vertical fault. Three parameters were adjusted during the conditioning phase
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with monthly data over three years, and the model forecasted production for the

following seven years. The conditioning was done with a genetic algorithm.

Figure 3.3.1: Left: Objective function of model �t versus fault height and the poor-

sand permeability.

Right: Objective function of model forecast versus fault height and the

poor-sand permeability. No modeling error. Figure by Carter et al. 3 .

As seen from the left plot in Figure 3.3.1 several local minima exists that would

be considered a match. Only one (the true case) could represent the prediction

period. They were able to obtain a good �t to production rates and a bad �t to

parameter, and vice versa. Tavassoli et al. 9 show a relationship between forecast

accuracy and the minimized objective function for the same case, still without

modeling errors.
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Figure 3.3.2: ∆forecast vs ∆modelfit. Figure by Tavassoli et al. 9

The risk associated with the uncertainty in production forecast can be assessed by

a sensitivity analysis of the key variables, but due to the non-linear nature of the

oil �eld such an analysis doesn't have to be conclusive. Tavassoli et al. 9 state that

bad parameter �ts could still produce a good forecast, while being far away from

the true case. Since the true model represents the complex geological structure

of the reservoir, one cannot guarantee a true representation. This is also seen

in Figure 3.3.2. An updated reservoir model will have an associated parameter

uncertainty, but this model uncertainty is not directly correlated with production

uncertainty10.
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Chapter 4

History Matching

The reservoir model is the basis for many decisions in the oil industry and inac-

curacy could signi�cantly change the estimated value of projects. First a general

introduction to history matching and it's value is presented. This is followed by

some of the challenges involved in estimating the input parameters based on the

system output. Evaluation of the match of data is performed through some ob-

jective function. Three widely used functions is presented, and a short statistical

analysis on the update is given.

4.1 History Matching in general

History matching is de�ned as an adjustment, or conditioning, of the reservoir

model using the data history in order to make it reproduce the observed behavior11.

The purpose of such updating is mainly in order to make better predictions of the

future production by the use of a numerical simulator.

Production rates, pressure and GOR are some among several observable parame-

ters that could be used as input variables in a history match. This could be done

manually or as a semiautomatic procedure.

Manual history matching is often done in two steps12, a pressure match and a

saturation match. Since the model is updated by manually changing reservoir
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parameters, few parameters are changed in each updating step. The heterogeneous

model with thousands of grid blocks makes the engineers experience an important

factor for an improved model.

Parameters like absolute and relative permeability is often changed by multiplying

the base parameter from the latest model, with a constant for the entire region

updated. Since small changes is used in order to control the evolution of the model,

this could be time consuming and rely on the reservoir engineers experience not

only with the model, but also with the �eld itself. The engineers needs to use his

own assigned probabilities in order to decide which parameters that is going to

be updated and what restrictions these parameter are subject of. The �exibility

regarding which parameters to update is great, but for a large number of variables

this is not an optimal technique.

With large reservoir models the time required to run the simulator might be sig-

ni�cant in order to match data. Manual history matching then becomes a time

consuming task with the resulting update being a single case reservoir model,

hopefully better than the last version. In addition, this will not lead to a better

assessment of uncertainty

4.2 Value of Information

The sole purpose of history matching is the introduction of new information to a

reservoir model. Available �eld data is processed and the reservoir model descrip-

tion is optimized with respect to these data. The amount of work and time spent

on history matching is signi�cant, and is also re�ected in the amount of papers

published. However, conditioning the reservoir model has by itself no meaning un-

less the added information to the model could be used to change a decision. Such

a decision might be the choice of well locations or enhanced oil recovery methods.

If no such decisions exist or is planned, the only advantage of history matching is

the reduced uncertainty of the forecasts, which by itself has no value.

Value of information is an expression often used in quanti�cation, in terms of

money, of value gained from gathering new information. In short terms, value of
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information (VOI) can be thought of as the value of a project or decision with the

information in question versus the same project or decision without the additional

information. By calculating the Net Present Value (NPV) for a project with and

without added information, we could conclude whether added information actually

has a value. The cost of information must be included in the calculations. Thus

for information not given for free, it must bring additional monetary value higher

than the cost in order to be justi�able.

The uncertainty of new information is an aspect to be considered. As history

matching is a complex inverse problem, several solutions exist. We know that a

history matched model isn't a perfect representation of the reality, thus the in-

formation given by the history match is imperfect. Real life information is often

imperfect; examples are seismic surveys, well-logs and core samples. Imperfect in-

formation can be described with a probability less than 1 of being true or give an

estimate with expected deviation (continuous variables), while perfect information

will have a probability of 1. This doesn't necessary mean that imperfect informa-

tion bring less value to a project than perfect information. The VOI is dependent

on a change in decision, so both imperfect information and perfect information

can give then same calculation of NPV.

Some might argue that a history matching model is better because of its improved

predictive capacities. Forecast inaccuracy put aside, reduction of uncertainty itself

is virtually worthless. If the cumulative hydrocarbon production doesn't increase,

revenues will stay the same, because oil in place (OIP) doesn't change with the

assessed probabilities. An assumption in this statement is that the history match

doesn't increase the production rates early in production history without increasing

the recovery factor. An uncertainty reduction might add �exibility to companies

where a accurate prediction of revenues is necessary in order to support other

projects, but the increase accuracy comes with the price of new information.

An assumption made in the sections above, is that the history match actually

increases production predictability. As mentioned by Carter et al. 3 this is not

necessarily the case, and this topic will be covered in Chapter 7 and 8 as well.
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4.3 Assisted History Matching

Assisted history matching routines uses optimization algorithms to mathematically

describe the observed mismatch and update the reservoir model. Such routines can

be divided in two groups, deterministic and stochastic models. The deterministic

models require calculations of Jacobian or Hessian matrices in order to approach

the true solution. Stochastic models focuses on minimizing a objective function

without the use of gradients. This is generally more computationally demanding

because of the model parameter space being searched can be very large, but can

generally be applied to non-linear cases where gradient calculations are very hard.

Major challenges for both methods are the huge parameter sets, the non-linearity

of reservoir simulation and several local minimas in the objective function.

Even though these methods are called assisted or automatic, subjectivity from

the reservoir engineer still plays a major role in how these methods are applied.

Subjectivity is present in boundary condition as well as the uncertainty analysis

of data used. This means that any gut feeling used in a manual history match,

needs to be quanti�ed and placed into the model.

4.4 Inverse Theory

By combining a model description of a physical system with the physical theories

governing the behavior of the system, we can make predictions of the system

outcome13. This prediction of a problem is called a forward problem and in a

deterministic setting, this forward problem has a unique solution. For instance,

oil production can't be both high and low at the same time, it has a certain value.

The physical theories can often be summarized by mathematical equations, di-

viding the system model into smaller processes. Processes that are assumed less

important for the application of the model, is in many cases excluded14. This is a

source for modeling error, as described in Section 3.2.

During a history matching procedure, we already have the output from the real-

life system and we want to optimize the model description. This is called an
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inverse problem, and in contrast to the forward problem, it does not necessarily

have a unique solution. Albert Tarantola 13 postulated the concept of the state of

information over a parameter set. In the textbook cited, the author states that

the most general way to describe a state of information is by de�ning a probability

density over a parameter space.

In the case where model parameters are directly observable in nature, data acquired

in the �eld makes the basis for the probability density of the observable parameter.

For some parameters, like production data or neutron density in a wireline log,

information of the physical correlation between the observed parameter and the

model parameter is necessary.

The parameter space is de�ned by the physical nature of the parameter and based

on geological or reservoir engineering knowledge, additional boundaries in the pa-

rameter space can be made. An example is the porosity de�nition; based on the

physics we know that it can't have a negative value. In a certain �eld, our experi-

ence might tell us that the porosity value is not likely to be higher than 30% based

on cementation environment, thus creating an upper boundary value. Equivalently,

apriori information can constitute a lower boundary for a parameters.

Central in Tarantolas text is that observable parameters, apriori information of

model parameters and physical correlation can all be described by a probability

density. The inverse problem can then be solved as a combination of all this

information. This general solution to inverse problems can be used to solve both

linear and non-linear problems. The solution is not a speci�c solution, but rather

a sample from the posterior probability distribution. Understanding the results

presented in a posterior probability distribution is further explored in the following

sections.

4.5 Objective function

Assessment of the quality of a history matching procedure is normally done by min-

imizing some objective function. Oliver and Chen 15 lists three di�erent purposes

for the objective function;
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1. minimization of mismatch to the observed data
2. computation of the a posteriori solution
3. obtaining samples from the posterior pdf of the model parameters

With the �rst one being the one most people associate with, the use of Markov-

Chain Monte-Carlo (MCMC) simulation makes the latter points highly relevant.

The objective function is also used as a quality indicator of the history match.

This represents a challenge, since the goal of history matching often is a more

accurate prediction, not just the matching of previous observed behavior.

Oliver and Chen 15 speci�es the goal of history matching to �nd some variable m

such that the squared norm of the data is minimized;

J(m) =
1

2
||g(m)− dobs||2D (4.5.1)

where g(m) is the model output. This is a representation of the widely used sum

of squared error method, but it can also be normalized with the inverse of the noise

variance. Such an equation is typically used in history match methods where the

number of variables is small. Another method is proposed in the literature based

on the latter, with the inclusion of the model covariance as regularization;

J(m) =
1

2
(g(m)− dobs)TC−1D (g(m)− dobs)

+
1

2
(m−mpr)

TC−1M (m−mpr)
(4.5.2)

where C−1D is the noise covariance and C−1M is the model parameter covariance.

When the number of parameters in CM becomes large, inversion of the matrix be-

comes impractical due to computational requirements. The solution of this object

function often has multiple minima, which could cause problems for gradient-based

history matching methods. Equation 4.5.2 could be rewritten as the generalized

least square:
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J(m) =
1

2
(1− β)(g(m)− dobs)TC−1D (g(m)− dobs)

+
1

2
β(m−mpr)

TC−1M (m−mpr)
(4.5.3)

where β is a subjective weighting factor.

4.6 Bayesian likelihood and posterior pdf

Equation 4.5.2 is an often used objective function, due to its Bayesian interpre-

tation. This is especially the case with MCMC simulations. Floris et al. 7 and

Oliver and Chen 15 respectively describes functions for the likelihood and posterior

probability distribution based on Equation 4.5.2.

From Bayes theorem one can write14 :

f(φ, ψ) = f(φ|ψ)f(ψ)

= f(ψ|φ)f(φ)
(4.6.1)

f(ψ|φ) =
f(φ|ψ)f(ψ)

f(φ)
(4.6.2)

where the conditional probability distribution of ψ given φ, is given in terms of

the likelihood, probability of φ given ψ, and the marginal probability distributions

of ψ and φ. In Bayesian probability theory and history matching the marginal

distribution of ψ is called the prior, the marginal distribution of φ is called the

preposterior, while ψ given φ is called the posterior. In reference with reservoir

modeling, the prior is typically the distribution of our existing models, while the

posterior is our output after conditioning the data to the likelihood. Equation 4.6.2

can be rewritten without the normalizing denominator, by saying the posterior is
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proportional to the product of likelihood and prior:

f(ψ|φ) ∝ f(φ|ψ)f(ψ) (4.6.3)

The likelihood is a statistical approach to estimate the probability of observation,

given the model parameters. By assuming the measurement and model errors are

Gaussian, the likelihood can be written as

f(dobs|m) = c× exp
[
−1

2
(g(m)− dobs)TC−1D (g(m)− dobs)

]
(4.6.4)

and the prior as

f(m) = exp

[
−1

2
(m−mpr)

TC−1M (m−mpr)

]
(4.6.5)

Combining these two as in equation 4.6.3 gives the posterior

f(m|dobs) = f(dobs|m)× f(m) (4.6.6)

= c× exp
[
−1

2
(g(m)− dobs)TC−1D (g(m)− dobs)

]
(4.6.7)

× exp
[
−1

2
(m−mpr)

TC−1M (m−mpr)

]
= c× exp

[
−1

2
(g(m)− dobs)TC−1D (g(m)− dobs)

− 1

2
(m−mpr)

TC−1M (m−mpr)

]
(4.6.8)

where c is the normalization constant caused by p(dobs) in the denominator. As

seen the posterior probability distribution will also be Gaussian given that the

prior and the likelihood is.

The posterior distribution is recommend by Floris et al. 7 for conditioning reser-

voir models, in order to reduce ill-posed mathematics compared to using only the

likelihood function.
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Ensemble Kalman Filter

This chapter explains the mathematical background of the Kalman Filter and the

derivation and application of the Ensemble Kalman Filter. Section 5.1 gives a

short induction to the �lter and an overview of some of terminology used later

in this chapter. Section 5.2 describe the updating step of the original Kalman

Filter, then the forecasting step. Sections 5.3, 5.4 and 5.5 cover the Ensemble

Kalman Filter and some of the di�erences from the deterministic predecessor.

Iterative Kalman Filter and handling of constraints in the �lter update is covered

in Section 5.5 and 5.6. In the end Section 5.7 summarizes some the published

application of EnKF in the petroleum industry.

5.1 Background and terminology

The original Kalman Filter is a mathematical method named after Rudolf E.

Kalman 16 , who introduced the method in 1960 to estimate the state of a sys-

tem with noise or other inaccuracies in the existing model and the measurements.

The method described combines the predicted state with the observations, with

the use of their respective uncertainties. It can be thought of as a simple weighting

function, given most weight to the state with least uncertainty. An assumption in

the theoretical formulation of the Kalman �lter is that the underlying system is lin-
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ear and it's uncertainties through error terms and measurements can be described

using Gaussian probability distributions.

The Kalman Filter consists of two main steps, the forecast and the analysis. In the

forecast step, the model observed is allowed to evolve through time. In the original

Kalman Filter this was done with a linear matrix operator, but newer method like

Extended Kalman Filter allows for non-linear operators. The second step is also

called the updating step, and is where the model is conditioned to measurements

available. One of the major advantages, especially in reservoir engineering, is the

sequential assimilation in the various types of Kalman Filter. This allows the user

to continue working with the model after the update is applied, without the need

to rerun the model from start.

For the following sections, some terminology needs to be de�ned. The reservoir

is described with model parameters and state parameters.Model parameters, also

called static parameters, are parameters that normally does not change with time.

Some model parameters are porosity and permeability. These parameters could

change with the production of the reservoir in extreme cases, primarily due to

pressure changes, but for all practical purposes they remain fairly constant. When

these parameters are updated using a data assimilation method, they are not up-

dated due to change, but rather due to the inherent uncertainty associated with

the initial estimation. State parameters are in contrast to model parameters time-

dependent and changes with the production of the reservoir. Due to their changing

nature, they are also called dynamic parameters. In reservoir engineering state

parameters could include gas-oil-ratio, pressures and saturation of �uids. The un-

certainty of state parameters is often directly in�uence by the model parameters

in addition to other sources.

The data we observe in a �eld is often derived directly from state parameters

and indirectly from the model parameters, for instance �uid �ow rates and well

pressure. The data observed is the reservoir response to the static and dynamic

parameters present in the system, and the covariance matrix of the state vector is

an approximation to explain this correlation.
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The Ensemble Kalman Filter derived later has several properties which make it

a suitable method for many history matching projects. The simple conceptual

formulation creates a lower threshold for engineers, together with the ease of im-

plementation compared to many other methods, especially gradient based meth-

ods. It could in many cases reduce the computational requirements through the

sequential update.

A full review of the Ensemble Kalman Filter can be found in Evensen 14 .

5.2 Deriving the Kalman Filter

Considering a stochastic system governed by a linear di�erential equation of the

form

ψk = Akψk−1 + qk−1 (5.2.1)

where A is the linear model operator, q is the unknown model error and ψ is

the system state vector. When advancing a numerical model through time, the

evolution of the state vector and the covariance matrix will be according to

ψf
k = Akψ

a
k−1 (5.2.2)

Cf
ψψ(tk) = ACa

ψψ(tk−1)A
T +Cqq(tk−1) (5.2.3)

with

Cqq(tk) = qkq
T
k (5.2.4)

This summarizes the equations used in the forecasting step of the Kalman �lter.

If we ignore the time-dependency of the variables, we can write the following

equation for t = tk. First we de�ne the state vector for a system by
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ψ =

 m

f(m)

g(m)

 (5.2.5)

Here the state vector is a combination of the model parameter, state parameters

and observations. The vector is su�ciently de�ned to describe the unforced motion

of the system, given an understanding of the physics and the control functions

acting on the system. Since the true parameters to the system is not known, any

representation of the system though ψ is an approximation with an associated

uncertainty. Thus we can write

ψf = ψt + pf (5.2.6)

where ψf is a predicted state, ψt is a the true state and pf is the error in the

model. The data associated with the system is also uncertain and can be written

as

d = Mψt + ε (5.2.7)

where d is the observation, ε is the associated measurement error and M is a

forward operator that relates the system state vector to the observation. For �nite-

di�erence calculation of reservoir performance, a simulator is used to calculated

the data, g(m), stored in the state vector. M in the form [0|I], is just an operator

matrix that selects the relevant rows in ψ. With the exception of M , all of the

right-side parameters in Equations 5.2.7 and 5.2.8 are unknowns. By making

some assumptions about the error terms, we can try to estimate the true state:
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pf = 0 pf (pf )T = Cf
ψψ

ε = 0 εεT = Cεε

εpf = 0

(5.2.8)

The measurement error covariance matrix,Cεε, is a diagonal matrix if the errors are

uncorrelated. In the further derivation this is assumed. In the updated estimate

of the true state, a linear relationship between the predicted state,ψf , and the

observations is used. By minimizing the analyzed state error variance, Ca
ψψ, we

obtain the following set of equations for the analyzed state and its error covariance:

ψa = ψf +K(d−Mψf ) (5.2.9)

K = Cf
ψψM

T (MCf
ψψM

T +Cεε)
−1 (5.2.10)

Ca
ψψ = (I −KM)Cf

ψψ (5.2.11)

The minimization of Ca
ψψ implies a maximation of the posterior pdf for the state

vector within the Bayesian context. K in Equation 5.2.10 is named the Kalman

gain, and is the weighting scheme used to update the state vector. When K ap-

proached one, the term Cf
ψψM

T being signi�cantly larger than Cεε, all weight is

based on the measurement. Otherwise, when K approaches zero, not trust is put

in the measurement, and thus no update is performed.

A more thoroughly derivation of the Kalman Filter can be found in Evensen 14 .

This constitutes the basis for the Kalman Filter. The �lter is sequential, so new

data can be applied once they are available without the need to run the model

from time zero. If no data is available, the system is forecasted to the next step,

t = tk+1. Non-linear dynamics can be solved using the Extended Kalman Filter

(EKF) where the forward operator, A, is replaced with a non-linear function. In

reservoir engineering, state dimensions are large and calculations of nonlinear state

derivatives can be computationally demanding17. Even for the regular Kalman
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Filter, maintaining the covariance matrix through time is not computationally

feasible for high-dimensional systems. This makes the EKF not suitable for history

matching of reservoirs.

5.3 EnKF

In 1994 Evensen 18 introduced the Ensemble Kalman �lter (EnKF). EnKF is re-

lated a class of particle �lters, which is a numerical method for implementing

a recursive Bayesian �lter through Monte-Carlo simulation. This separates the

EnKF from the KF and EKF by being a stochastic method rather than the for-

mer deterministic methods. Particle �lters can solve state estimation problems for

multi-modal and non-Gaussian distributions, but the EnKF make the assumption

that all probability distribution is in fact Gaussian. This makes it much more

computational e�cient than many other particle �lters.

5.4 Analysis scheme

The error covariance matrices from the original Kalman �lter are approximated

by the ensemble covariance around the ensemble mean, ψ

Cf
ψψ ' (Ce

ψψ)f = (ψf −ψf )(ψf −ψf )T (5.4.1)

Ca
ψψ ' (Ce

ψψ)a = (ψa −ψf )(ψa −ψa)T (5.4.2)

In 1998 Burgers et al. 19 showed that the observations need to be treated as random

variables having a distribution with the mean equal to the observation and a

covariance equal to Cεε. The ensemble of observations was described as:
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dj = d+ εj (5.4.3)

Ce
εε = εεT (5.4.4)

where j counts from 1 to number of ensemble members, Ne. Evensen
14 states that

the approximation to the error covariance is justi�ed since the true observation

error covariance is poorly known and errors introduced by this perturbation can

be made less than the uncertainty in the true Cεε by choosing a large enough

ensemble size. It is later commented, among others by Evensen 20 2004, that this

may be an additional source of error. The use of a square root scheme has been

proposed21.

By rewriting Equation 5.2.9 with Equation 5.2.10, 5.4.3 and 5.4.4 :

ψa
j = ψf

j + (Ce
ψψ)fMT (M (Ce

ψψ)fMT +Cε
εε)
−1(dj −Mψf

j ) , (5.4.5)

ψa = ψf + (Ce
ψψ)fMT (M (Ce

ψψ)fMT +Cε
εε)
−1(d−Mψf ) (5.4.6)

By subtracting Equation 5.4.5 from 5.4.6, the di�erence ψa
j − ψa can be used to

derive an expression for (Ce
εε)

a:

ψa
j −ψa = (I −KeM)(ψf

j −ψ
f ) +Ke(dj − d) (5.4.7)

Ke = (Ce
ψψ)fMT (M (Ce

ψψ)fMT +Cε
εε)
−1 (5.4.8)

(Ce
ψψ)a = (I −KeM )(Ce

ψψ)f (5.4.9)

The covariance matrix, Cψψ, is the essence in the updating of the state vector.

As stated in Section 4.5 one of the di�culties regarding Kalman Filter and other

deterministic algorithms deriving from it, is the calculation, inversion and storage

of this matrix.

Ce
ψψ =

1

Ne − 1

Ne∑
j=1

(yfi − ȳf )(y
f
i − ȳf )T (5.4.10)
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The covariance matrix seen in equation 5.4.10 has the dimension Ny×Ny, with Ny

being the length of the state vector. In the synthetic case evaluated in this thesis,

the number of variable in the state vector was more than 15000. For a large oil-

�eld, this number could be signi�cantly higher, thus increasing the computational

requirements. This is bypassed in the EnKF by storing only the square root of the

matrix22. This square root matrix will include the ensemble members deviation

from the mean as seen in Equation 5.4.11.

Le =
1√

Ne − 1
(yfi − ȳf ) (5.4.11)

Ce
ψψ = LeL

T
e (5.4.12)

Replacing the covariance matrix with the square root matrix in Equation 5.4.11

into Equation 5.2.10 to get a new expression for the Kalman gain.

K =
Cf
ψψM

T

(MCf
ψψM

T +Cεε)
(5.4.13)

Ke =
Le(MLe)

T

(MLe)(MLe)T +Cεε

(5.4.14)

(5.4.15)

The signi�cant bene�t of this replacement is the dimensions of the matrices used

in calculating the update. The product MLe is the last Nd rows of Le and has

the dimensions Nd ×Ne, where Nd is the number of measurements and Ne is still

the ensemble size.

An additional assumption made is that measurement errors are uncorrelated in

time. The advantage of EnKF over deterministic methods, like the KF or EKF, is

that the Kalman Gain, Ke, is approximated from the ensemble of members, thus

decreasing the relative computational workload.

The EnKF is a sequential updating �lter, which could be applied every time new
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Figure 5.4.1: Model state and observation discretized in time. Observations only avail-

able at discret subset of times. Figure by Evensen 14 .

data is available as seen in Figure 5.4.1. In contrast to the Kalman Filter and the

Extended Kalman Filter, only the ensemble state vectors are updated by the arrival

of new measurements. In the KF and EKF the covariance matrix is also updated,

but as seen in the derivation above the EnKF uses the updated state vectors for

this calculation. Given an in�nite ensemble size, the EnKF will give the same

results as the KF for a linear case. Still, this EnKF scheme is an approximation

by its sampling and processing of non-Gaussian priors for ψ. It doesn't solve

the Bayesian update for non-Gaussian pdfs, but since the updates that are added

to the prior are linear, the updated ensemble will inherit some of non-Gaussian

properties.

A �nite sized ensemble will always provide an approximating to the error covariance

matrix. Based on the Berry-Esseen theorem23, the errors of the sampling will

decrease proportional to 1√
Ne
, as seen in Section 2.3. Evensen 24 states that small

mis-speci�cation of the initial ensemble will not in�uence the results much over

time, and recommends an approach of adding perturbations to the best-guess

estimate and verifying that the ensemble is stable over the characteristic time

scale. The initial ensemble has also been research by, among others, Oliver and

Chen 25 . A reduction in ensemble size was attempted with the use of eigenvalues

from the initial ensemble and added orthogonality between the realizations, with

a biased result for a non-linear case.
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Figure 5.4.2: The general EnKF work�ow for petroleum application. Figure by Seiler

et al. 26 .

As seen by the work�ow of EnKF in Figure 5.4.2 the ensemble changes with time,

but the ensemble size stays the same. The reservoir simulator is used as the forward

operator, both for predictions and forecasting of the state vector.

5.5 Iterative EnKF

Even though the Ensemble Kalman Filter consists of a linear update, it still cap-

tures some non-linear behavior. When the non-linearities becomes signi�cant or

with a large update of the state vector, the regular EnFK could fail updating the

model27. Often seen, the state variables are assigned value after the update which

is outside their physical domain. Modeling of a water front through Sw could result

in such a fail, because of the bimodal probability distribution.

An iterative approach could be incorporated in order to cope with these challenges.

In an update consisting of a signi�cant change in both model parameter and state

parameters, the state parameters values will depend on the model parameters, thus

there is a need to update the model parameters �rst. Seen below is a representation

of the iterative work�ow.
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ψak−1
forecast−−−−−→ ψfk

updatemodel−−−−−−−→
parameters

ψa
′

k (5.5.1)

ψa
′

k =ψ
a′(k)
0

{
model parameters from t = tk

state parameters from IC
(5.5.2)

ψ
a′(k)
0

forecast−−−−−→ ψ
f ′(k)
k

update state−−−−−−→
parameters

ψak (5.5.3)

In the �rst step the model is forecasted in the same way as the regular EnKF, but

in the analysis only the model parameters are updated. A criterion could also be

used, revoking the iterative function only if the update is signi�cant enough. The

reservoir model is then rerun from the beginning with updated model parameters

and initial dynamic conditions. The EnKF loses its sequential properties, but

the dynamic conditions are conditioned to the static parameters. Initial dynamic

conditions is often described through a form of equilibrium, thus they would be

less uncertain than any updated conditions.

It can also be shown that this update is a correct statistic approach. From Gu

and Oliver 27

f(mk, fk|dobs,k) ∝ f(dobs,k|mk, fk)f(mk, fk|dobs,k−1)

∝ f(dobs,k|mk, fk)f(fk|mk, dobs,k−1)

× f(mk|dobs,k−1)

∝ f(dobs,k|mk)f(mk|dobs,k−1) (5.5.4)

5.6 Constraint handling

In Chapter 7 simulations using a constraint on some parameters is performed.

Given an assumption that these parameters earlier were distributed with a Gaus-

sian function, a disruption in this distribution can cause some changes in the EnKF.

In Figure 5.6.1 below, such a disruption is presented through an lower limit on the
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porosity by assuming a resampling from the Gaussian prior if the porosity value

is below the limit.

Figure 5.6.1: Constrained cumulative and probability distributions created from a prior

Gaussian distribution with mean=0.12 and a standard deviation=0.1, by

using a lower limit of 0 to avoid non-physical values.

We often come across variables in the nature which has a non-Gaussian prob-

ability density function. In reservoir simulation two such parameters could be

permeability and water saturation. Permeability has a log-normal distribution,

while the water saturation has a bimodal distribution. These distributions cannot

be as easily explained as the Gaussian distribution which only needs the mean and

the variance. When handling a Gaussian distribution, the mean, mode and the

median is in the same place. As this rarely is the case with non-Gaussian distribu-

tions, the mean is often not the most interesting parameter. When working with

a multimodal distribution, knowing the modes is bene�cial. Adding constraint to

a previously Gaussian distribution without changing the explaining parameters;

mean and variance, will cause the distribution to gain non-Gaussian elements.

EFFECTS OF INFORMATION IN HISTORY MATCHING 36



CHAPTER 5. ENSEMBLE KALMAN FILTER

5.7 EnKF in practice

Aanonsen et al. 28 summarize some of the studies done within the petroleum in-

dustry since the �rst application was done in 2001. During the subsequent years,

history matching of permeability and porosity was done on several synthetic cases,

before applying it to �eld cases.

Bianco et al. 29 claimed to be the �rst to publish the use of EnKF to evaluate

uncertainty in the production forecast. An on-shore oil �eld in West Africa was

history matched using three ensemble sizes, with 50, 100 and 135 ensemble mem-

bers. A normalized least square objective function was used to analyze the history

matching results, using the GOR and WCT. Considerable improvement was seen

for all ensemble sizes, and the forecast uncertainty was assessed by predicting

future production using the update ensemble.

Haugen et al. 30 used the EnKF on a North Sea reservoir model with 45000 active

grid cells and �ve years of production history. Updated permeability and porosity

�eld match production better than the manually updated reservoir model. Evensen

et al. 31 applied the EnKF to a larger North Sea case, with over 80000 grid blocks,

to assimilate oil rate, gas rate and water cut data. The objective match improved

signi�cantly, but was not able to reproduce all data from this reservoir. Both

processes used an ensemble of 100 members. In 2005 Skjervheim et al. 32 applied

a combination of the EnKF and the Ensemble Kalman Smoother (EnKS) on a

reservoir model using 4D seismic data.

Seiler et al. 26 applied the EnKF to the Omega �eld in the North Sea, a �eld with

high spatial and temporal variations. The parameters evaluated were porosity,

permeability, relative permeability and fault multipliers. These parameters were

history matched against 6 years of monthly production data, with 20 ensemble

members. The posterior distribution has a much smaller uncertainty span than

the priors. The initial ensemble did not predict a correct water breakthrough and

the updated ensemble was not able to correct this bias. Results showed a de-

cent prediction capacity during the following months of the history match, with

a deterioration as time progressed. Still, the results show that the last updated
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ensemble has a prediction closer to the measured value than the former ensem-

ble. Seiler et al. 26 states that the predictions are not directly comparable to the

measurement, due to workovers and choke manipulation at the platform.

A combination of the EnKF and the RML has been proposed in order to maximize

the likelihood. This method is an iterative version of the EnKF, in order to enforce

constraints and correctly sample the posterior pdf. Because of its iterative nature,

it is computationally more expensive than the EnKF, but has a better predictive

capacity in non-linear applications. Gu and Oliver 27 , Chen et al. 33 recommend

combination of EnKF and EnRML, where the EnRML is applied only when state

variable corrections are large.
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Simulation

This chapter serves to give a short overview of the software and the model used

for the simulations and history matching, in addition to the �eld geology and

development.

6.1 Software

The application of the Ensemble Kalman Filter is done through a protected MATLAB-

code provided by the International Research Institute of Stavanger, IRIS. MAT-

LAB is a numerical computing environment and programming language. The

entire ensemble is managed, stored and updated using MATLAB, while the reser-

voir forecasts is performed by Schlumberger's ECLIPSE 100. ECLIPSE 100 is a

fully-implicit, three phase black oil simulator using a �nite volume method to solve

material and energy equations. The software have been run on a Unix platform.

Some of the results have been displayed and exported using S3Graf.
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6.2 The PUNQ S3 Synthetic case

6.2.1 Geological description

The PUNQ-S reservoir models is based on a reservoir engineering study by Elf

Exploration & Production. The geological model was made up from regional

geology which was known from adjacent �elds and wildcat wells. The depositional

history is from a deltaic, coastal plain environment. The reservoir is divided into

5 layers, where the layer thickness is in the order of 5meter for all layers.

Layers 1, 3 and 5 are deposited similarly and consist of �uvial channel �lls encased

in �oodplain mudstone. They all have linear streaks of high-porous sands with an

azimuth somewhere between 110 and 170 degrees southeast, which is perpendicular

to the paleocurrent. Estimates of the streak width range are respectively 800m,

1000m and 2000m and the porosity is estimated to be higher than 20%. The sand

streaks are enclosed by low-porosity shales, with porosity less than 5%. The streak

spacing is estimated to be in the range 2km to 5km for layers 1 and 3 and in the

range 4km to 10km for layer 5.

Layers 2 and 4 facies can be described respectively as marine or lagoonal shale

and mouthbar or lagoonal deltas, with a lower porosity than the other layers. In

layers 2, irregular spots of porosity higher than 5% can be found, but the shaly

sediments is predominantly made up with porosity less than 5%. In layer 4, the

delta depositions can be modeled with an intermediate porosity while embedded

by a low porosity lagoonal clay deposit. The intermediate porosity is estimated

to be in the order of 15% and shaped like a lobe, similar to an ellipsoid, with the

longest axis having an azimuth between 110 and 170 degrees southeast.

As the PUNQ-S3 was a base for comparison of conditioning and uncertainty in

reservoir models, a truth case was created. A geostatistical model generated the

porosity and permeability �eld based on Gaussian Random Field, with geostatis-

tical value like mean and variograms consistent to the original geological model.
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6.2.2 Reservoir Model

Based on the real reservoir, a simulator grid model was constructed for the Pro-

duction UNcertainty Quanti�cation project. The PUNQ-S3 model consists in total

of 2660cells, divided in a 19x28x5 grid where 1761cells is de�ned as active. This

active de�nition creates a shoebox shaped reservoir, where the simulation is not

a�ected by the cells outside the actively de�ned reservoir. The extent of the reser-

voir is approximately 3.5x5.0km

The reservoir is bounded to the east and south by an impermeable fault. To the

north and west it's supported by a strong aquifer. Due to this pressure support, no

injection wells have been drilling. A gas cap is present in the upper, dome shaped

region. Initially six production wells were drilled in the reservoir, but a later part

of the PUNQ-S3 project was to capture the e�ect of adding �ve additional wells.

These �ve wells are not included in the presented work.

The reservoir is modeled for use with Schlumberger's ECLIPSE 100. Cornerpoint

geometry has been used to describe the spatial extent. Aquifer and PVT data

stems from the original model. The relative permeability is set using a power law

function and no capillary pressure is assumed.

6.2.3 Production Schedule

Data from the �rst eight years of operation was provided in the synthetic PUNQ-

S3 case, inspired by the reference reservoir. The �rst year was devoted to extensive

well testing, divided into four three-month sessions where each had its own pro-

duction rate. This was followed by a three year shut-in period. This formed the

basis for the �rst part of the history matching comparison. After this four years

of actual �eld production followed. The �rst two weeks of each year was devoted

to a shut-in in order to collect pressure data.

The production in Eclipse was controlled using the keyword WCONHIST and
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Figure 6.2.1: The PUNQ S3 model seen from above. Grid color refer to depth.

Figure 6.2.2: A 3D representation of the reservoir model. Relative X:Y:Z-scale = 1:1:25
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matching with oil rate through ORAT. After the conditioning period producing at

given oil rates, the oil rate constraint was changed to a maximum of 150SM3/day

per well or production at 120bar BHP. An upper limit on gas oil ratio was applied

from 1st of July 1975, at 200, with oil as the control phase to adjust.

Well 1 Well 4 Well 5 Well 11 Well 12 Well 15
3 x x
4 x x x x x x
5 x x x

Table 6.2.1: Completion by layers

Seen from Table 6.2.1 all wells are completed in layer 4 and some in layer 3 and

5. Wells 1 and 11 are located to the southwest of the top of reservoir, while wells

5 and 12 are located to the northeast. Wells 4 and 15 are located respectively to

the west and southeast.

6.3 History matching the PUNQ S3 model

Production values from a true solution were calculated using the true porosities and

permeability to provide measurement data for the conditioning. Dynamic variables

were initially de�ned through the equilibrium keyword, EQUIL, in ECLIPSE. The

measurement data consisted of bottom hole pressure (BHP), gas to oil ratio(GOR)

and water cut (WCT). Since oil production data was used to control the simula-

tions in Eclipse, they were not useable for a conditioning process.

The EnKF was used to update seven variables; three static parameters and four

dynamic parameters. The static parameters to be used were porosity, horizontal

permeability and vertical permeability. As the equilibrium was initially de�ned

with a certain depth, the initial dynamic condition were considered reliable, but

as their evolution is dependent on static parameter a correct initial estimate does

not necessarily mean they will be correct after a certain time with production.

Thus BHP, GOR and water and gas saturation were updated in every step.
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Problem 1: E�ects of boundaries

In the �rst problem examined, the e�ects of setting boundaries on the static pa-

rameters were investigated. Preliminary results from the history matching process

on PUNQ-S3 using EnKF showed some very high values for the porosity. An at-

tempt to reduce the extreme porosity values is presented through two constrained

cases with a comparison to an unrestricted case. Section 7.1 introduces the prob-

lem background and the boundaries chosen, while the results and a discussion is

presented in Section 7.2.

7.1 Background

The initial porosities are determined from geological facies, but since the placement

of the porous streaks is not known the initial porosity distribution is very uncertain.

In addition, the oil reserves could also be very uncertain, as the pore volume is

proportional to the porosity. Conditioning the porosity to the production data

could then give a more accurate estimate of the reserves in the reservoir and could

thus tell something about future income given a certain recovery factor. In a setting

like the real reservoir the PUNQ-S3 model is built upon, a history matching of the

�rst 8 years with respect to oil in place might a�ect the need of �ve additional wells.

Too account for �ow performance, permeability is also updated. The permeability
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is normally correlated with porosity, but no such connection is explicitly de�ned in

the code. Understanding the �ow patterns in the reservoir is essential to increased

recovery.

Physics de�ne some boundaries for the porosities. We know that as the porosity

is de�ned by the ratio of pore volume to the bulk volume, it will take values in the

range [0, 1]. The same lower limit applies to permeability, so lower limits for both

porosity and permeability is incorporate in the code for both simulations to avoid

non-physical values.

In addition the geological model sets some boundaries for the estimate parameters

that are hard to de�ne in a linear updating sequence like the EnKF. As the porosi-

ties are de�ned for each layer which represent the same depositional time, some

upper limits could be set for the porosity layers as well. Based on the knowledge

provided by the geological description, upper limit are not explicitly de�ned so an

estimate have been used. In the layers 1, 3 and 5 the porosity ranges from higher

than 20% in the high-porous streak too less than 5% in the enclosing shales. In

the EnKF code it is possible to de�ne ranges for every single cell if the streaks are

known, but as they are not, upper boundaries are de�ned according to layers. The

assigned boundaries are based on the geological description and are summarized

in Table 7.1.1.

Initial simulations show that very weak constraints limiting values above 35% for

layer 1,3 and 5, and respectively 25% and 15% for layer 2 and 4, did not show

a signi�cant change in static parameters. Several attempt where made until the

boundaries listed in Table 7.1.1 was decided upon.

All simulations were conditioned to 8 years of production history, and the same

measurements was used in all instances.

Preliminary results showed that the Constrained case did not perform as well as

the unbounded case when the forecast was analyzed. As explained later in the

following section the update step was not complete, so the analyzed state was not

fully conditioned to the available data. An iterative version of the EnKF was used

with the same input data as the constrained case.
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PoroUB PermxUB PermzUB
Layer [%] [mD] [mD]
1 0.30 1000 550
2 0.15 250 100
3 0.30 1000 550
4 0.23 550 200
5 0.30 1000 550

Table 7.1.1: Boundaries in EnKF run

This problem has been examined in two parts after the history match. For the

�rst part, a prediction of an ensemble with 100 members is performed to see the

forecasting ability of the updated reservoir models. Here the �eld performance has

been the primary point of interest. The second part of problem is a more thorough

look at the parameterization of static properties. In this case the mean static

parameters have been used to compare the di�erent cases. As the simulations

were run from time zero in part two of the problem, dynamic parameters were

de�ned with the same equilibrium conditions as the true case.

7.2 Results

ENSEMBLE FORECAST From Figure 7.2.1, 7.2.2 and 7.2.3, showing the

forecast of the Full case, Constained case and the Iterated case, one can observe

that neither of the cases completely span the true solution for production data

at all times. Looking at the uncertainty of the production forecast, one of the

main arguments of using ensemble method is to capture the true production in

the forecast. The span of the oil and gas forecasts is in this case very narrow and

is not spanning the true data all the time. The increase in the forecast span with

time is expected because of the evolution of the model error. When looking at the

three forecasts, it is easily observed that the Constrained and Full case perform

similarly compared to the Iterated case. One of the observable di�erences is that

the ensemble outliers are slightly further out in the Full case compared to the

Constrained case. Because of this, comparison of the Full case and the Iterated

case is prioritized in the following paragraphs.
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Looking at the oil and gas produced, the Full case performs slightly better than

the Iterated case. Both cases span the gas production at all times, with the Full

case having the true production closer to the middle of the ensemble at the end

of observed time. When it comes to oil production, both cases underpredict the

production early in the production history, but approach the true data towards

the end. The Full case encloses around the true production during the last years,

while the Iterated case never spans the true solution.

The total discrepancy in the gas and oil production is not very big, the deviation

in cumulative oil production between the mean of the full case and the true data

was in 1979 approximately 2.4%. This was the highest deviation observed for oil

production. Although this deviation was small, the ensemble was still expected to

span the true solution from the beginning of the forecast.

Contrary to the oil and gas production, the water production shows a more signif-

icant deviation. A clear di�erence between the Iterated case and the Full case is

seen. The Full case never spans the true data, and consequently overestimates the

water produced. The trends of the water production is similar to the true data,

but clearly o�set. The Iterated Case does not span the true data for the �rst 4

years either, but is fairly close. In the following 4.5 years, its ensemble encloses

the true data and towards the end of the observation time the true data is located

close to the middle of the ensemble. Even though the ensemble spans the true

solution after some time, this behavior is opposite of what is expected. Since the

updated case is continuously conditioned to data during the �rst 8 years, it is

expected to have a decent forecast the �rst following time period with gradually

declining accuracy. Seen from the ensemble production plots, the ensemble has a

very narrow span during the �rst years, as all the members are updated to the

same measurement. Adding of measurement noise and increasing the estimate of

measurement inaccuracy could have helped to avoid this.
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Figure 7.2.1: Production forecasts from end of history match for ensemble members in

the Constrained case
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Figure 7.2.2: Production forecasts from end of history match for ensemble members in

the Full case.
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Figure 7.2.3: Production forecasts from end of history match for ensemble members in

the Iterated case
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Given these �eld data, it can be seen that none of the three versions is su�cient

to describe the truth. While the Full case outperforms the Iterated case when it

comes to oil and gas production, the signi�cant discrepancy in water production

for the Full case makes the Iterated case a better forecast for water production.

The production forecast based on the mean of the ensembles is presented later in

the section.

The forecasted production data is one of the primary concerns of the history match-

ing process, in addition to a correct parameterization of the static parameters.

From the ensemble forecasts, we see that the measurement span does not enclose

the true data everywhere. It is not given that the span of the forecast will capture

the true data, even though the span of the reservoir parameters might include the

true solution.

STATIC PARAMETER FIELDS A graphical representation of the condi-

tioned porosity and permeability for layer 1 is shown in Figure 7.2.4 and 7.2.5.

Plots of the remaining four layers in the reservoir can be found in the Appendix.

All grid cells with a dark blue color is cells with a porosity or permeability value

above the scale.

The �rst observation when taking a quick look at these plots is that none of

the history matched cases has the same signi�cant geological pattern as the true

solution. As the updating step is only a linear interpolation using the covariances

as a weighting factor, no geological conditioning is included. The consequence

of this is that each model is allowed to evolve without any concern about the

underlying porosity and permeability distribution, thus not creating the streaks

of high porous sand which the true solution contains. This has to be explicitly

de�ned in the updating algorithm, but is left for further work.

From Figure 7.2.5 we can see the the same lack of geological pattern also exists

in the permeability plots. Based on layer 1 we can see that the zones with low

permeability are hard to capture using the EnKF. As an example, the lower left

third of layer 1 should have permeability close to 0mD, but instead the updated
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Figure 7.2.4: Porosity in layer 1.
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Figure 7.2.5: Permeability in x-direction and z-direction for layer 1

cases have spots of permeability with high value, even above 1000mD for the Full

case. The Iterated case is partly able to capture the streaks of shale enclosing the

porous streak in the middle of the layer, but the contrast is not stunning.

PERFORMANCE OF MEAN CASES As stated in Section 6.2.3, the pro-

duction constraint was set to a maximum of 150SM3/day. Seen from Figure 7.2.6,

the three examined cases was not able to produce at this rate during the entire

production phase. This results in some challenges when interpreting other �eld

performance numbers, but as the deviation in oil production is much smaller than

the other observed deviations and the cases should only be considered against each
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other, this deviation was accepted.

Figure 7.2.7 and 7.2.9 show the total �eld gas and water production for the three

cases examined. The mean of the static parameters in the ensemble is used, and

the simulation is run from 1967 with the same initial conditions as the true case.

The �gures show the production from 1975, and some of the same trends as seen

in ensemble analysis is present here as well. The gas production for all three

cases is clearly o�set from the true production, but the distance does not increase

signi�cant throughout the production time. From Figure 7.2.8 we see that the gas

deviation has grown large during the conditioning phase and continue to increase

during most of the �rst year of observation. As seen from the ensemble �gures the

Iterated case has the highest deviation from the true case, but all cases is in the

same range. When looking at the cumulative production the di�erence between

the three cases in gas production is not large compared the o�set from the true

data.

When looking at the water production forecast, the di�erences between the models

become more evident. All three cases are separated, but they all show some of the

same trends as the true case. This is a consequence of all models being based on the

same initial ensemble, they follow the same updating algorithm principles and they

are subject to the same measurements. Seen from Figure 7.2.9 the Constrained case

and the Full case does not have the same starting point as the true case after the

conditioning. This corresponds with the gas production o�set as seen earlier. An

interesting observation is that the Constrained case produces a less accurate water

production forecast compared to the Full case. This separation between these two

parameters increases steadily with time, in addition to an increased deviation from

the true data. Seen from Figure 7.2.10 the similar trends is very pronounced. Note

that Figure 7.2.10 has 1974 as a starting point, thus capturing the last year before

the production forecast phase. The deviation from the true case starts before the

forecasting phase, while the oil production in this time period was the same. Both

the Constrained case and the Full case show a water breakthrough very early in

Well 5 compared to the true case, and in all three inspected cases the breakthrough

in Well 12 is signi�cantly earlier than the true case. Another observation made

from the well data, is that the true case has a much earlier water breakthrough
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in Well 4 than the conditioned cases. Figure A.4 in the Appendix show the water

cut from these wells.

Figure 7.2.6: Field oil production from 1975.
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Figure 7.2.7: Field gas production from 1975.

Figure 7.2.8: Deviation in gas production from 1975 compared to the true solution.
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Figure 7.2.9: Field water production from 1975.

Figure 7.2.10: Deviation in water production from 1974.
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The production forecasting ability of the mean cases seen in the conjunction with

the parameter �t reveals an interesting result. The Constrained case has the most

accurate parameter �t , but at the same time the worst forecasting ability out of the

three. Similarly the Iterated case has the best forecast with the worst parameter

�t. Due to the non-linear nature of a reservoir simulator, a single answer to explain

these results is hard. The Iterated is subject to the same additional information as

the Constrained case, while the Full case does not have any additional information

and served as a basecase. This means more prior information in the constrained

cases, but also a parameter probability distribution that is less Gaussian. For

the Iterated case, the uncertainties in the dynamic parameters follow the static

parameter, so with the iterative work�ow, a theoretical more correct update of the

dynamic parameters is performed though the update of dynamic parameters based

on the constrained model parameters. This could help to explain why the Iterated

case outperform the other two, since the Constrained case also had the same

information given, but these have di�erent updating work�ows. It was surprising

to see that the Full case outperformed the Constrained case in �eld performance.

One reason for this might be the non-gaussian probabilty distributions involved

in the update. As the Kalman Gain is calculating without any regards to the

constraints involved, the update is applied and then corrected to stay within the

boundaries.

PARAMETERIZATION MATCH. An attempt is made to capture the pa-

rameterization match compared to the true solution and is seen in the table below.

The numbers presented are the mean of the squared deviation from the true so-

lution in all active cells. The simple Constrained case outperforms the others

when it comes to static parameter match. Surprisingly the Iterated case with the

same boundaries as the Constrained case show a high deviation from the truth

compared to the Full case without boundaries. Presented in Table 7.2.2 is the

deviation based on layers.

As seen on the porosity values from all cases, the deviation from the true case is

signi�cantly higher in layer 1. This deviation could be partially explained from

the completion data. None of the wells are completed in layer 1 or 2, thus no
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direct measurements are made from these layers. This means that the correlation

between measured data and grid cell values in layer 1 is hard to de�ne. Layer 2 is

subject to heavy constraints and the deviations cannot grow very large, resulting

in the lowest deviation values across all cases.

Case Porosity Perm-X Perm-Z
Constrained 0.0097 3.875 3.511

Full 0.0104 3.924 3.536
Iterated 0.0119 4.032 3.852

Table 7.2.1: Sum of squared deviation compared to true solution

Constrained Case
Layer Porosity Perm X Perm Z
1 0.0198 6.619 6.433
2 0.0022 2.413 2.075
3 0.0101 2.190 2.197
4 0.0059 4.914 3.570
5 0.0101 2.950 2.942

Full Case
Layer Porosity Perm X Perm Z
1 0.0222 6.686 6.400
2 0.0021 2.399 2.074
3 0.0099 2.342 2.254
4 0.0063 4.973 3.559
5 0.0104 2.940 3.075

Iterated Case
Layer Porosity Perm X Perm Z
1 0.0216 6.589 6.395
2 0.0029 2.727 2.454
3 0.0124 2.747 2.945
4 0.0068 4.984 3.685
5 0.0159 2.829 3.521

Table 7.2.2: Squared deviation for each case compared to the true solution

The deviation in all three cases follow the same trends, with the highest porosity

deviation in the layers with highest porosity; layer 1, 3 and 5. It was expected to

see a high deviation in layers 1, partially due to dynamics from grid cells that are
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hard to observe and partially due to the large range of possible porosity values.

Layers 3 and 5 had a signi�cant lower deviation than layers 1, which was expected

since the observability should be higher with, respectively, two and three out of

six wells completed in these layer. The permeability deviation was higher in layer

5 than layer 3, both in x-direction and z-direction. Based on the well completion,

the observability of layer 3 with two wells could be lower than layer 5 with three

wells, when they are subject to similar geological deposition and simulation con-

straints. This is not the case neither in the Constrained or Full case, where the

di�erence between them are insigni�cant. In the Iterated case both the porosity

and some of the permeability values are higher than the two other cases, but the

horizontal permeability in layer 1 and 5 is more accurate. We can also see that the

permeability deviation in layer 3 and 5 is more consistent with the observability

mentioned above.

As stated in the introduction of this problem, a conditioned porosity �eld could

a�ect the initial reserves. Table 7.2.3 summarizes the initial hydrocarbon volumes.

As seen, the three cases investigate is actually further away from the true case

than their common initial model. Even though the hydrocarbon estimate becomes

less accurate after the history matching, the �ow performance of all three history

matched model increase signi�cantly when it comes to replicating the performance

of the true case.

Constrained Full Iterated Initial True
OIP[SM3] 1.856E+07 1.879E+07 1.845E+07 1.805E+07 1.737E+07

Percent of true 106.8 % 108.2 % 106.2 % 103.9 % 100 %
GIP[SM3] 1.719E+09 1.743E+09 1.703E+09 1.696E+09 1.650E+09

Percent of true 104.1 % 105.6 % 103.2 % 102.7 % 100 %

Table 7.2.3: Hydrocarbons in place at the beginning of production in 1967.

Restrictions in the Constrained case and the Iterated clearly a�ect the porosity

estimates, creating an observable separation from the Full case. The di�erence

between the two cases with boundaries also show reveal some information of their

updating work�ow. As stated earlier, in the Iterated the dynamic parameters are

conditioned to the static for each timestep. The resulted in an overall smaller

update of porosity than in the Constrained case.
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Problem 2: E�ects of additional

conditioning time

One of the goals for this thesis was to see how additional time spent on condi-

tioning a reservoir model would a�ect the both the parameters estimation and the

forecast ability. To start o�, a short description of why this is important is given.

Afterward, the simulation results are presented and discussed.

8.1 Background

The purpose of conditioning the reservoir is to add more information to the model.

This increase of information could be used to reduce the uncertainty in future pred-

ication or add more information to a decision being made in the �eld development.

For the case evaluated in this thesis, such a decision could be the drilling of the

�ve new production wells. The time spent on history matching is assumed to be

correlated with the amount of information provided. It is expected that an in-

crease in time spent on history matching will provide additional information that

in turn will improve the model in question.

Some moments during the life of a �eld producing is especially important with

regards to history matching. As the well is producing oil, and gas, the �ow perfor-
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mance of the reservoir with regards to the permeability tensor is given continuous

new information. This production will also give information about some of the

dynamic conditions, like the gas to oil ratio. In this PUNQ-S3 case, it seems the

water breakthrough is a critical phase giving much information. Given an under-

standing of the primary streamlines of the �ow pattern in the reservoir, this water

breakthrough could provide information about both static parameters like porosity

and the dynamic water saturation. One of the cases evaluated was conditioned

past the �rst water breakthrough in the true model, seen in Figure 8.2.7, thus

should include some information that the other two cases do not have.

Multiple simulations is performed on the PUNQ S3 case using the same updating

algorithm, initial condition and initial ensemble as presented in Problem 1. No up-

per boundaries are speci�ed for the static parameters. Results are presented with

case names Half, Semi and Full according to the time spent on history matching.

They are each separated with 2 years of production following a common schedule.

This means the information give in the time between the Half case and the Semi

case is quantitatively equal to the information given in the time between the Semi

case and the Full case.

As in Chapter 7, result from the ensemble predictions are presented �rst, followed

by the parameterization match and the predictions from the mean of the respective

ensembles.

8.2 Results

ENSEMBLE FORECASTING As in Problem 1, the conditioned models

were not able to produce at the given oil rate for the entire production period.

This di�erence is present both in the ensemble forecast and the forecast of the

mean state vector. Looking at the oil rates in Figure 8.2.1, 8.2.2 and 8.2.3 we can

see an convergence towards the true oil production as the models are conditioned

to more time. Since the wells are given an oil rate limit, the bottom hole �owing

pressure is adjusted to get the target rate. In the cases analyzed the drawdown was

increased to a maximum, but the target �ow rate was not reached. This is telling
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us that there is a di�erence in the �ow patterns between the true model, which was

able to reach the target rate, and the conditioned cases. Without drilling injection

well, this is also an estimate for the maximal possible production. This becomes

even clearer in the analysis on the ensemble means.

From the same �gures one can see that the gas rate is close to the truth is all three

cases, but slightly overestimated for the Half and Semi case. For the Half case the

ensemble spans the true solution from 1977 with one outlier. Towards the end of

production time, a total of three ensemble member have a lower estimate than he

truth while the main part of the ensemble still overestimates. In comparison, the

Semi case has seven members below the true production, and the Full case has one

third of the members below. In both the oil and the gas production, the ensemble

approaches the cumulative true production towards the end of production. This

means that the estimate production rates are too high in �rst period of production,

and too low towards the end.

As seen in Chapter 7, the biggest deviation from the truth is found in the water

produced. This is also where the biggest changes are seen between the three

cases. It easy to observe from looking at a single case, that the ensemble span

increases with time, much as expected. From the Half case we observe that the

cumulative water production is continuously increasing compared to the true case.

As more time is given for the conditioning of the models, the trend is not only

a more accurate forecast in terms of being closer to the truth case, but also a

narrower ensemble span. Having the ensemble close to the truth is in every setting

bene�cial, but a decrease in the span without having the truth enclosed is adverse.

Both the Half and Semi case has some outliers creating a large span. In a forecast

analysis, these could be considered outliers with reduced predictive capacity. A

more uniform distribution would be considered more reliable, as seen in the Full

case.
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Figure 8.2.1: Production forecasts from end of history match for ensemble members in

the Half case.
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Figure 8.2.2: Production forecasts from end of history match for ensemble members in

the Semi case.
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Figure 8.2.3: Production forecasts from end of history match for ensemble members in

the Full case.
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MEAN ENSEMBLE PROGNOSE. Much of the same characteristics is seen

both in the ensemble forecast and the forecast produced by the mean of the ensem-

ble, which was run from time zero with the same initial conditions as the true case.

This approach using the mean parameters results in a dynamic view of the param-

eterization match through the production pro�les. One of the interesting aspects

of this comparison is to see how the magnitude of the additional conditioning time

presents itself in the forecast.

Figure 8.2.4: Cumulative oil production from 1967.
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Figure 8.2.5: Cumulative gas production from 1967.

Figure 8.2.6: Cumulative water production from 1967.
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Figure 8.2.7: Watercut for the four cases starting from 1971.

Seen in Figure 8.2.5 the di�erence in gas production between the Semi and Full

cases is negligible. These two cases place themself in between the Half case and the

True case. From Figure 8.2.4 we can see that although the production from the

di�erent cases is quite similar, the Semi case is closer to the Half case than the Full

case. All three cases fail to meet the production schedule, which the true case is

able to. In addition, the Half and Semi case is in�uenced by the GOR limit, causing

an oil rate cutback in Well 15. The di�erence in gas production is steady after 1975,

which means the static parameters fail to reproduce the reservoir behavior even

in the conditioned period. This was also seen in the analysis of constrained cases

in Chapter 7. Since the gas production is dependent on oil production, a closer

look on the relative gas production compared to oil is presented in Figure 8.2.8.

As seen in the total gas production, the performance of the Semi case and the Full

case is similar and both these cases di�er signi�cantly from the true case.

As stated earlier, the prediction of a water production could in many �elds be

a very important parameter. On production facilities o�shore, signi�cant water

EFFECTS OF INFORMATION IN HISTORY MATCHING 71



CHAPTER 8. PROBLEM 2: EFFECTS OF ADDITIONAL CONDITIONING

TIME

production could give challenges both in the separation process and in the pu-

ri�cation and removal of the water. An increase in water production accuracy

corresponding to time spent on conditioning the model is seen in Figure 8.2.6.

The early production phase evaluated in this thesis, is clearly important for the

water forecast. The introduction of a water breakthrough in a well clearly gives

important information in the EnKF algorithm. One of the reasons for this could

be the bimodal probability distribution of the water saturations. Often saturation

values behind the water front take very high values, in comparison with the very

low value ahead of the front. Using the EnKF algorithm it can be hard to model

this due to the Gaussian probability distribution assumption.

Figure 8.2.8: Fraction of gas produced to oil produced from 1967.
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Figure 8.2.9: Fraction of water produced to oil produced from 1971.

Common through the analysis of production data from these three cases, the per-

formance of the Full case is closest to the truth with the Half case being the worst

predictor. The Semi case places itself between the two others, being close to the

Full case in terms of oil and gas production and closer to the Half case in terms of

water production.

PARAMETERIZATION MATCH Production pro�les are very dependent

on �ow pattern, thus largely controlled by the permeability. As in the problem

reviewed in Chapter 7, the porosity was also conditioned. Since the cumulative

production of both oil and gas was quite close to the truth for all cases examined,

having an estimate on remaining oil in the reservoir would in�uence the remaining

value of reservoir. The initial oil in place is presented in Table 8.2.1. As seen, and

further explored below, there is an increase in the deviation from truth case as

more time is spent conditioning the model. This could lead to an overestimation

of the �eld value, the a�ecting the NPV of a project.
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HALF SEMI FULL Initial True
OIP[SM3] 1.82E+07 1.84E+07 1.88E+07 1.81E+07 1.74E+07

Percent of true 104.8 % 105.8 % 108.2 % 103.9 % 100 %
GIP[SM3] 1.66E+09 1.69E+09 1.74E+09 1.70E+09 1.65E+09

Percent of true 100.9 % 102.7 % 105.6 % 102.7 % 100 %

Table 8.2.1: Hydrocarbons in place at the beginning of production in 1967.

In comparison with Probem 1, where that same trend of increase in initial oil in

place also was seen on the gas in place, the table above show another evolution of

the gas in place for Problem 2. Starting in time from the inital model there was

�rst an increase of oil in place, but a decrease in gas in place. In the period between

the Half case and the Full case the initial gas in place increases signi�cantly. As

seen in the statistics presented later, this could be attributed to an increase of

porosity in layer 1 where the gas cap was present. Another explaination could be

an update in gas saturation.

Tables D.1 through D.4 presents the deviation of the three cases with respect to

each other and with respect to the true case. Both the sum of squared error and

the sum of absolute error is presented. One of the reasons behind two sets of

deviation parameters is to estimate whether outliers are the main reason for the

squared deviation or if it is a uniform di�erence between the respective cases.

It was expected that the deviation from the truth would be highest in the Half

case and reduced in the Semi and Full case. Seen from Table D.3 and D.4 the

opposite is presented, with the Full case having the highest deviation from the

truth both in term of absolute and squared deviation. By looking at the same

deviation parameters distributed by layers, the same trend is seen in every layer.

As the information given in the time between the cases is quantitatively equal,

the deviation between the cases would show if the two di�erent time periods had

di�erent e�ects on the parameter update. Without any knowledge of the true

production schedule it was expect that the deviation between the Half case and

the Semi case would be lower than the deviation between the Half case and the Full

case, showing a convergence towards a solution. As shown in Table D.2 there is a

much bigger change in parameters during the time between the Semi and the Full
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case than the previous phase. More information is given in the second phase, even

though this results in a higher deviation from the truth. During this phase, two

wells experienced water breakthrough which would help explain why the update

is much higher in this phase.

A closer look at the porosity and permeability �eld are presented in Appendix C.

As seen in the previous chapter, the �eld is not very smooth thus not capturing

the continuity of the geological facies.
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Discussion

For the evaluated problems with a simple, but clearly multifacies geology, we can

observe from the porosity and permeability plots that the EnKF algorithm is not

able to distinctively separate the facies. No information about the geology was

explicitly de�ned in the updating algorithm, and it is challenging to incorporate

such information in the code used since the updating step is very dependent on the

ensemble covariance matrix. In the EnKF, this matrix is derived from the ensemble

thus not a good geostatistical parameter restrictor. An approach de�ning upper

and lower boundaries for every cell in the reservoir could be performed, but this

is time consuming and requires a very detailed knowledge of the reservoir. Other

options can be history matching by facies, where an attempt is done to update

the facies distribution, where every facies has parameter values associated, rather

than a direct parameter update. A big loop model, where the updates are applied

to a geological model before returned to the reservoir simulator could also be an

option. This requires a good communication platform between the simulator and

the geological modeling software.

One of the most interesting observation from both Chapter 7 and 8 was the accu-

racy of the parameter match versus the forecasting ability. Especially given that

the cases evolved from the same ensemble, it was surprising to see the case with

worse parameter �t having the more accurate forecast. Through the analysis per-

formed in Problem 2 it was shown that the deviation from the truth case increases
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with time. Since the conditioned model and the true model are run on the same

simulator using the same spatial resolution, model errors in the simulation are not

very likely to in�uence this result. Some plausible explanations arise:

� the initial model does not su�ciently span the true solution

� the reservoir response to the initial ensemble it not observable

� the main contributor for the deviation in static parameters has, in practice,

a too small in�uence on the production data

Based on the data presented, it seems that the models converge towards a solution

other than the truth, but with similar production data. This leads us back to

the inverse theory, with multiple models giving the same response. Locating the

reason for the deterioration of the parameter match is left for further work.

For Problem 2 where the evaluated cases were di�erent time steps of the same

updated model, the change in parameter values was easily evaluated. An increase

in the change of the parameters where seen in the last two years, which was the time

of the water breakthrough. Based on this we can state that a change in produced

�uids can bring signi�cant amounts of information to a reservoir conditioning

process. In the Full case, we can see a signi�cant increase in forecast accuracy

compared to the Semi case resulting from this information.

In Problem 1 the ensemble covariance matrix, essential in the update of ensemble

members, was challenged in a constrained setting. As the updated step of the

EnKF is linear, constraining the model parameter after the update is applied will

lead to a too large update in state variables. Given a non-linear system, or a non-

Gaussian probability distribution, calculating a change in state variables equivalent

to the constrained change in model parameters is di�cult.

The evolution of dynamic parameters is, in addition to being non-linear, uncertain

due to their correlation with static parameters. In a reservoir simulation setting

the dynamic conditions could be correctly represented by the initial condition,

but by history matching of the static parameters the dynamic parameters will

no longer be correct for the new static parameters. One of the advantages of

the Kalman Filters is the update of both model and state parameters, but the

EnKF will in non-linear cases have trouble updating the dynamic parameters to
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the newly updated model parameters, even without constraints. By rerunning

the model from time zero with the same initial condition, as done in the iterative

EnKF, the dynamic parameters are conditioned to the new static parameters.

This work�ow eliminates the sequential property of the EnKF, thus increasing the

computer workload signi�cantly. A criterion to invoke the iterative module could

be incorporated in an EnKF algorithm to avoid unnecessary reruns from time zero.

The e�ect of information have been examined in both problems reviewed. In

Problem 1, most apriori information was present in the two constrained cases. The

Iterated case outperforms both the other two models, but with the least accurate

parameter �t. The static parameter match in the Iterated case should be examined

closer in further work, to see whether this case was able to capture more of the

geological distribution. When comparing the Full case to the Constrained case,

the latter have a smaller discrepancy in the parameter match, but are signi�cantly

outperformed in the forecast analysis. While both cases seem to converge towards

a wrong model parameter solution, the �ow performance of the Full case is closest

to the truth out of these two. Although the Iterated case gave the most accurate

forecast, it was given most information and most computational time. For Problem

2 the same tendencies in forecast accuracy versus information given are shown. As

expected the Full case outperformed the other two, but the parameter estimation

was a surprise. The value of this increase in forecast accuracy could be used in a

further analysis to estimate the value of additional time used on conditioning the

model.
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Conclusion

The Ensemble Kalman Filter have been derived in this thesis and applied to a

synthetic reservoir model. The history matching e�ects of increased information

have been examined in two di�erent setting on the same reservoir using the EnKF.

Results show a successful history match with regards to �ow performance, but the

EnKF method failed to correctly update the model parameters. An increase in

amount of information given was seen to correlate with increased �ow performance,

but also with a reduced parameter match.

The reviewed problems show that the updated models converge towards a solu-

tion with wrong model parameters. The system in question is unobservable with

multiple solutions creating correct �ow performance, but the underlying geological

description was not captured in the update.

The quality of information is seen to be high during water breakthrough for the

�ow performance of the �eld in this thesis. In essence, changes in production style

create more information than monotonous steady production of a single �uid.

Based on the results presented, an economical calculation of the consequences of

such an history match would be bene�cial to see the value of the history match.

81



Further Work

For further work, �nding the reason for the wrong convergence of the conditioned

models is important. As a correct convergence will make the simulations more

meaningfull, it might also change the conclusions of this paper.

Using EnKF in a big loop model communicating with a geomodel is also something

that should be looked into. Incorporating the EnKF in the geomodel could, in

addition to a better constraint on apriori knowledge, facilitate other sources of

information, like 4D geophysical surveys.

Putting all the information gathering and history matching in a concrete setting

where a decision about further �eld development needs to be taken, would be

interesting in order to see how a history matched model might steer a decision.

This will also give a value of the history match.
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NOMENCLATURE

Nomenclature

Abbreviations

BHP = Bottom Hole Pressure
EKF = Extended Kalman Filter
EnKF = Ensemble Kalman Filter
EnRML = Ensemble Randomized Maximum Likelihood
GIP = Gas In Place
GOR = Gas to Oil Ratio
KF = Kalman Filter
MCMC = Markov-Chain Monte-Carlo
OIP = Oil In Place
pdf = Probability Density Funciton
VOI = Value of Information
WCT = Water Cut

Symbols

A = forward modeling function
Ca
ψψ = analysed covariance matrix of ensemble

Cf
ψψ = forecasted covariance matrix of ensemble

Cεε = covariance matrix of measurement error
Cqq = covariance matrix for model errors
dobs = observed measurement data
f = dynamic condition function
g = reservoir response function
J = objective function
K = Kalman Gain
Le = square root matrix of ensemble covariance
m = model parameters
M = linear operator
Ny = length of state vector
Ne = number of ensemble members
Nd = number of measurements
ψ = state vector
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Appendix A

Problem 1: Additional information

Attached is porosity and permeability representations for layers 2-5 in Problem 1.
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APPENDIX

Figure A.1: Porosity for layers 2-5
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APPENDIX

Figure A.2: Permeability in x-direction for layers 2-5
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APPENDIX

Figure A.3: Permeability in z-direction for layers 2-5
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APPENDIX

Figure A.4: Watercut for selected wells from Problem 1. These wells showed a clear

separation from the true case.
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Appendix B

Problem 1: Statistical parameters

Attached is an overview of the deviation compared to the true parameters for the

cases in Problem 1.

Case Porosity Perm-X Perm-Z
CONSTRAINED 0.07606 1.49109 1.41740
ITERATED 0.08489 1.53069 1.50941

FULL 0.07793 1.50695 1.42672

Table B.1: Sum of absolute deviation compared to true solution
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Constrained case
Layer Porosity Perm X Perm Z
1 0.115 1.988 1.958
2 0.039 1.280 1.232
3 0.083 1.192 1.172
4 0.063 1.715 1.343
5 0.080 1.217 1.302

Iterated case
Layer Porosity Perm X Perm Z
1 0.122 1.987 1.952
2 0.042 1.336 1.314
3 0.091 1.330 1.377
4 0.069 1.733 1.405
5 0.102 1.207 1.443

Full case
Layer Porosity Perm X Perm Z
1 0.121 2.001 1.951
2 0.038 1.278 1.234
3 0.083 1.247 1.187
4 0.065 1.735 1.341
5 0.082 1.214 1.346

Table B.2: Absolute deviation compared to true solution
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Appendix C

Problem 2: Additional information

Attached in this Appendix is porosity and permeability plots for all layers in

Problem 2. The �rst �gure show all plots for layer 1, while the remaining is

organized by parameter, showing the porosity for layers 2 to 5 �rst.
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Figure C.1: Porosity and permeabilities for layer 1
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Figure C.2: Porosity for layers 2-5
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APPENDIX

Figure C.3: Permeability in x-direction for layers 2-5
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APPENDIX

Figure C.4: Permeability in z-direction for layers 2-5
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Appendix D

Problem 2: Statistical parameters

Attached is some of the calculations done on the deviation compared to the true

parameters and the deviation internally between the cases for Problem 2.

Absolute deviation
Case Porosity Perm-X Perm-Z
HALF 0.07103 1.46377 1.42052
SEMI 0.07186 1.46718 1.41134
FULL 0.07793 1.50695 1.42672

Squared deviation
Case Porosity Perm-X Perm-Z
HALF 0.00817 3.79340 3.44147
SEMI 0.00843 3.80846 3.41500
FULL 0.01037 3.92394 3.53593

Table D.1: Sum of absolute deviation and squared deviation compared to the true case.
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Absolute deviation
Case Porosity Perm-X Perm-Z

Half vs Semi 0.0108 0.0847 0.0997
Semi vs Full 0.0301 0.2463 0.3060
Half vs Full 0.0348 0.2844 0.3548

Squared deviation
Case Porosity Perm-X Perm-Z

Half vs Semi 0.00024 0.0152 0.0198
Semi vs Full 0.00163 0.1259 0.1938
Half vs Full 0.00220 0.1700 0.2602

Table D.2: Sum of absolute deviation and squared deviation relatively between the

cases.

Half case
Layer Porosity Perm X Perm Z
1 0.106 2.011 1.971
2 0.034 1.249 1.228
3 0.075 0.993 1.082
4 0.063 1.755 1.346
5 0.077 1.235 1.394

Semi case
Layer Porosity Perm X Perm Z
1 0.108 2.004 1.965
2 0.035 1.253 1.224
3 0.076 1.031 1.092
4 0.064 1.749 1.346
5 0.076 1.227 1.346

Full case
Layer Porosity Perm X Perm Z
1 0.121 2.001 1.951
2 0.038 1.278 1.234
3 0.083 1.247 1.187
4 0.065 1.735 1.341
5 0.082 1.214 1.346

Table D.3: Absolute deviation organized by layers compared to the true case.
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Half case
Layer Porosity Perm X Perm Z
1 0.0198 6.619 6.433
2 0.0022 2.413 2.075
3 0.0101 2.190 2.197
4 0.0059 4.914 3.570
5 0.0101 2.950 2.942

Semi case
Layer Porosity Perm X Perm Z
1 0.0222 6.686 6.400
2 0.0021 2.399 2.074
3 0.0099 2.342 2.254
4 0.0063 4.973 3.559
5 0.0104 2.940 3.075

Full case
Layer Porosity Perm X Perm Z
1 0.0216 6.589 6.395
2 0.0029 2.727 2.454
3 0.0124 2.747 2.945
4 0.0068 4.984 3.685
5 0.0159 2.829 3.521

Table D.4: Squared deviation organized by layers compared to the true case.
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