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Abstract

As the world’s population is expanding, the global demand for energy will continue

to increase. The global demand for all energy will grow by over 50 % the next 25

years(1). New technology and renewable energy will help us face these challenges, but

an essential breakthrough in oil and gas production and exploration is also needed. The

most common method for secondary oil recovery is water flooding implemented early

during the primary production phase. This is done by forcing water down the injection

wells in order to maintain reservoir pressure above bubble point, and to sweep the oil

towards the production wells.

Micro- and nano- technologies have already proved to be important in technical advances

in a variety of industries, and the potential in upstream petroleum industry is great.

Nanotechnology will have the ability to improve the industry when it comes to energy

supply, by introducing technologies that are more efficient, and more environmental

friendly. Many materials, tools and devices with qualities that cannot be matched by

conventional technologies can be developed using nanotechnology(2).

In this master’s thesis I will look at the unique possibilities of using nanotechnology in

oil and gas E&P. The thesis expands my project thesis, where I studied the potential

for nanotechnology in exploration, drilling, production and especially enhanced oil

recovery. Some believe that nanotechnology has the opportunity to increase the recovery

factor up to 10 % in the future(3). This can be achieved by using for example tailored

surfactant that can be added to the reservoir in a more controlled way than existing

substances. Other applications could be smart fluids and new metering techniques for

use in upstream petroleum industry(4).

Experimental studies of the potential of hydrophilic silica nanoparticles have been

carried out. Core flood experiments using Berea sandstone were performed to assess the

potential in nanoparticle flooding. Permeability impairment was studied by flooding,





and clear identification of retention was observed. It showed that concentration, injection

volume and rate are important parameters when injecting particles through a porous

media. Scanning Electron Microscope (SEM) was applied to detect any residual

particles inside the core sample, which could explain permeability impairments. Further,

implementations of silica nanofluid as both secondary and tertiary recovery method

were tested. The results showed little mobilization when implemented as tertiary

recovery method, but a clear reduction of residual oil saturation was observed when

applying as secondary recovery method. Using nanoparticles in EOR is currently only

tested at laboratory scale, but integrating this in large scale fields could improve the

lifetime, recovery and make oil production even more economically beneficial. This

thesis summarizes available information within the topic, and performs laboratory

experiments in order to study the potential of hydrophilic silica nanoparticles for EOR

purposes.





Sammendrag

Det globale behovet for energi vil fortsette å øke de kommende årene. Ny teknologi og

fornybar energi vil hjelpe oss å møte disse utfordringene, men et gjennombrudd i olje-

og gassproduksjon er nødvendig. Mikro og nanoteknologi har allerede vist seg å være

viktig for tekniske fremskritt i en rekke bransjer, og potensialet i oppstrøms petroleums-

virksomhet er stort. Utvikling av materialer, verktøy og utstyr med kvaliteter som ikke

kan oppn̊as gjennom konvensjonell teknologi, kan oppn̊as ved hjelp av nanoteknologi(2).

I denne masteroppgaven har jeg sett p̊a de unike mulighetene for nanoteknologi i olje

og gass E&P. Avhandlingen bygger videre p̊a prosjektoppgaven, hvor potensialet for

nanoteknologi innen leting, boring, produksjon og spesielt innen økt oljeutvinning ble

studert.

Eksperimentelle studier av potensialet til hydrofile silisium nanopartikler ble

gjennomført. Flømming av Berea sandstein ble utført, og reduksjon i permeabilitet som

følge av denne fløm,ingen ble studert. Klare indikasjoner p̊a retensjon ble

observert, og konsentrasjon, injeksjonsvolum og rate viste seg å være viktige parametere

ved flømming av nanopartikler. Videre ble Scanning Electrom Microscope (SEM)

brukt til å p̊avise retensjon av partikler inne i kjerneprøvene. I tillegg til utførelse av

eksperimenter hvor silisium nanopartikler ble anvendt for økt utvinning av olje.

Resultatene viste liten mobilisering av olje n̊ar partiklene ble anvendt som tertiær

utvinningsmetode, mens en tydelig reduksjon i residuell oljemetning ble observert ved

sekundær flømming. Nanopartikler er foreløpig bare testet p̊a laboratorieniv̊a, men

anvendelse i virkelige olje- og gassfelt kan øke levetiden, utvinningsgraden, samt være

økonomisk gunstig i fremtiden.
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1

Introduction to Nanotechnology

Nanometer technology originated at the end of the 1980’s and has developed into a

new high technology, by which new materials can be formed by rearranging atoms

or molecules(5). It is believed that nanotechnology will introduce many cutting-edge

applications in the coming years. In this chapter, the most important properties of

nanoparticles (NP) are mentioned. A wider study of nanoparticle properties, and a

study of present and further nanotechnology applications was done in the project thesis,

and is therefore not mentioned here(6).

1.1 What is Nanotechnology?

A nanometer is one thousand millionth of a meter. In comparison, a red blood cell

is approximately 7,000 nm wide and a water molecule is almost 0.3 nm across(7).

There are different definitions of the range of the nanoscale, but it is usually defined

to be from 100 nm down to approximately 1 nm. Nanotechnology is the term that is

used to cover design, construction and utilization of functional structures with at least

one characteristic dimension measured in nanometer(8). What distinguishes nano-

technology and nano-structure from other technologies is the special properties that

are unique in terms of its nanoscale proportions. Composites made from particles

of nano-size metals smaller than 100 nm can become stronger than anticipated by

existing material-science models. This drastic change in properties may be due to

two reasons. Nanomaterials have a relatively high surface area when compared to the

same mass of materials produced in larger scale, which can enhance strength, electrical
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1. INTRODUCTION TO NANOTECHNOLOGY

properties and make materials more chemical reactive. In addition, quantum effects can

be dominating, affecting the optical, electrical and magnetic behavior of materials(7).

These nanostructured materials and systems are classified with respect to the number

of dimensions which lie within the nanometer range, confined in either one, two or three

dimension system(8).

1.2 Properties

Atoms, molecules and solids are the basic building blocks of nanotechnology. Material

properties are determined by the cooperative effect of a huge number of similar particles

in a three-dimensional arrangement(9). When it comes to solid materials, the properties

of a surface may differ from the bulk conditions, where the number of surface atoms

is small compared to the number of bulk particles. In the case of nanotechnology, this

ratio is inverted. This relates the properties of nanostructure more closely to the state

of individual molecules, or molecules on the surface or interface, rather then properties

of the bulk material(9).

1.2.1 Structural Properties

Nanoparticles have a high surface area to volume ratio. Decreasing particle size in

addition with increasing surface area leads to changes in interatomic spacing. This

effect can be related to the compressive strains induced by internal pressure as a

consequence to the small radius of curvature in the nanoparticles. There is also an

apparent stability of metastable structures in small nanoparticles and clusters. Small

nanoparticles and nano-dimensional layers may adopt a different crystal structure than

normal bulk material (8).

1.2.2 Chemical Properties

Reduction of system size may change the chemical reactivity because of the increase

in surface area to volume ratio. Catalysis using finely divided nanoscale systems can

increase the rate, selectivity and efficiency of chemical reactions such as combustion

or synthesis, whilst simultaneously significant reducing waste and pollution. It is also

observed that nanoparticles change chemical behavior distinct from larger counterparts.
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A substance may for example not be soluble in water at micro scale, but will dissolve

easily when at nanostructure scale(8).

1.2.3 Mechanical Properties

Mechanical properties are dependent on the ease of the formation or the presence of

defects within a material. When the system size decreases, the ability to

support such defects become more difficult, and mechanical properties will be altered

correspondingly(8). Single-walled carbon nanotubes have proved to be stronger than

steel due to its high mechanical strengths(7). In addition, many nanostructured metals

and ceramics are observed to be super elastic. They have the ability to undergo

extensive deformation without necking or fracture(8). These are properties that extend

the current strength-ductility of conventional materials, and give nanomaterials a great

advantage when it comes to mechanical properties.

1.3 Production Methods

There are several ways to fabricate nanostructures. Richard Faynman had the original

vision, to arrange the atoms the way we wanted, which ended up as the “bottom-up”

approach. This approach fabricated methods at the atomic or molecular scale, using

self-organization and self-assembly of the individual building blocks(10). On the other

hand, the “top-down” approach is much simpler and relies on miniaturization of bulk

fabrications(8).

1.3.1 “Bottom-up” Process

The “bottom-up” method includes chemical synthesis and/or highly controlled

deposition and growth of materials. The chemical synthesis may be carried out in either

vapor, liquid or solid phase. Obtaining nanoscale systems via the solid state is difficult,

and vapor and liquid fabrications are therefore most common(8). The “bottom-up”

nanofabrication is based on building nanostructures atom by atom

using either self-assembly techniques or manipulation of atoms by employing scanning

probing microscopy(11).
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1.3.2 “Top-down” Process

The “top-down” method is simpler and relies either on the removal or division of bulk

material, or to produce the desired structure with suitable properties by

miniaturizing bulk fabrication process(8). The approach is based on physical and micro-

lithographic philosophy, which is a contrast to the “bottom up”-method, where atomic

or molecular units are used to assemble molecular structures(9). There are several

ways of fabrication regarding the “top-down” approach. Milling, which is known as

mechanical attrition or mechanical alloying, is a technique that can be operated in a

large scale, hence making it interesting for the industry. The most common method is

the lithographic process. This process uses either X-rays, ultraviolet light, electrons or

ions to project an image containing a given pattern onto a photo-resisting surface(8).

One of the advantages regarding the “top-down” approach is that the parts are both

patterned and built in place, so no assembly step is required(11).
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Reservoir and Fluid Properties

Knowledge of rock and fluid properties are of essential importance to understand the

behavior and principles of a reservoir. Rock and fluid properties are usually determined

by laboratory experiments on core samples of actual reservoir fluids. This chapter will

address the most important reservoir and fluid properties.

2.1 Reservoir Properties

2.1.1 Porosity

Beside permeability, porosity is considered the most important reservoir property.

Porosity is the measurement of storage capacity of a reservoir. It is defined as:

φ =
porevolume

bulkvolume
=
bulkvolume− grainvolume

bulkvolume
(2.1)

There are two different types of porosity. Absolute, or total porosity, is the

ratio of all pore spaces in the rock to the bulk volume of the rock, while effective

porosity is the ratio of interconnected void spaces to bulk volume. Of these two, only the

effective porosity contains fluids that can be produced. For highly cemented rocks

like eq. shale, the difference between total and effective porosity may be significant.

While for granular materials like sandstone the effective porosity approaches the total

porosity.
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2. RESERVOIR AND FLUID PROPERTIES

During deposition of sediments, primary porosity is developed. After deposition, due

to geological processes subsequent to formation of the deposit, secondary porosity is

formed. These changes in the origional pore space can be created by eq. ground stresses

or water movement(12).

2.1.2 Permeability

Permeability is the ability or measurement of a rocks ability to transmit fluids.

Formations that transmit fluids readily are described as permeable and tend to have

many large, well-connected pores. Shales and siltsotens are defined as impermeable

formations, with finer or mixed grain size, and with smaller, fewer, or less interconnected

pores(13). Permeability may be expressed through Darcy’s equation:

q

A
=
k

µ

dP

dx
(2.2)

Permeability, or absolute permeability, is referred to as 100 % saturation of a single

face, while effective permeability is the ability of the porous material to conduct a fluid

when its saturation is less than 100 % of the pore space(12).

2.1.3 Relative Permeability

Relative permeability is the ratio of the effective permeability of a given phase, eq. oil

in presence of other phases, to the absolute permeability:

kro =
ko
k

(2.3)

The relative permeability is influenced by several factors like wettability, saturation,

temperature, pore geometry and viscous, capillary and gravitational forces. Oil and

water relative permeabilities are usually plotted as a function of water saturation. As

seen in Figure 2.1, there are two different curves, drainage and imbibitions. Drainage
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is when the wetting phase is decreasing, while imbibition is when the wetting phase

is increasing in magnitude. These two recovery mechanisms, drainage and imbibiton,

are discussed in the project thesis and therefore not further explained here(6). The

curves consist of three important elements; the end point fluid saturations, end point

permeabilities and the curvature of the relative permeability function. Especially the

end point saturations are of interest as they are directly related to the recoverable oil.

The end point relative permeabilities are used in the mobility ratio calculations and

tell us about the sweep efficiency of a displacement process(12).

Figure 2.1: Relative Permeability - Drainage and imbibition curves for oil and

water(12).

The concept of relative permeability is fundamental to the study of simultaneous flow

of immiscible fluids thorugh porous media. For oil and water, we have the following

equations:

qw =
kwA

µw
(
dP

dx
+ ρwgsinα) (2.4)

qo =
koA

µo
(
dP

dx
+ ρogsinα) (2.5)

By defining these two equations, the fractional flow equation for the displacement of

oil by water can be obtained.
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2. RESERVOIR AND FLUID PROPERTIES

2.1.4 Wettability

Wettability of a reservoir rock-fluid system is defined as the ability of one fluid in

the presence of another to spread onto the surface of the rock. Wettability plays an

important role in the production of oil and gas because it is a main factor in the flow

processes in the reservoir rock, as well as determine initial fluid distribution(12). Rocks

may be water-wet, oil-wet or intermediate-wet. The intermediate state between oil-wet

and water-wet can be caused by a mixed-wet system where some surfaces are oil-wet

and other water-wet, or a neutral system where surfaces are not strongly wet by neither

water nor oil(14). Wettability of a rock will depend on many factors like rock material

and pore geometry, geological mechanisms, composition and amount of oil and brine,

pressure and temperature, and mechanisms occurring during production(12).

2.1.5 Capillary Pressure

When a discontinuity in pressure between two immiscible fluids exists across the

interface separating them, this difference in pressure is called capillary pressure. The

capillary pressure is defined as the difference between the pressure in the non-wetting

phase and the pressure in the wetting-phase.

Pc = Pnon−wetting − Pwetting (2.6)

The capillary pressure can have both positive and negative value, and the conditions

for capillary forces to exist are a certain curvature of the fluid-fluid interface. The

relationship between saturation and capillary pressure is a function of wettability, pore

sizes, interfacial tension and fluid saturation history. In Figure 2.2 the relationship

between capillary pressure and water saturation can be seen(12).
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Figure 2.2: Capillary Pressure - Capillary Pressure Curve and the relationship of

wettability measurements by Amott Method and USBM test to Pc (12).
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2. RESERVOIR AND FLUID PROPERTIES

2.2 Fluid Properties

2.2.1 Saturation

Oil, water and gas saturations are important parameters in the study of oil and gas

reservoirs. Fluid saturations are defined as the ratio of the volume of fluid in a core

sample to the pore volume of the sample(12).

Sw =
Vw
Vp
, So =

Vo
Vp
, Sg =

Vg
Vp

(2.7)

Where Vw, Vo and Vg are water, oil and gas volumes, and Sw, So, and Sg are water,

oil and gas saturations. Fluid saturation are more meaningfull if expressed with the

respect to effective porosity, since pore spaces that are not interconnected with each

other, not are producible.

So + Sw + Sg = 1 (2.8)

2.2.2 Viscosity

Viscosity is defined as the internal resistance for a fluid to flow.

τ = µγ (2.9)

Where τ is share stress, µ viscosity and γ is the share rate defined as dvx
dy

Viscosity of fluids varies with temperature and pressure. Most fluids are rather

sensitive to changes in temperature, but relatively insensitive to changes in pressure

until rather high pressure has been attained. The viscosity of fluids usually rises

with pressure at constant temperature. Nevertheless, one exception to this rule exists,

water. The viscosity of water decreases with increasing pressure, but for most cases

the pressure effect on fluid viscosity can be ignored. Temperature has a different effect

on the viscosity of liquids and gases. A decrease in temperature causes the viscosity

of a fluid to rise. In addition, the liquid viscosity increases with increasing molecular

weight(12).
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2.2 Fluid Properties

Figure 2.3: Viscosity - Steady-state velocity profile of a fluid entrained between two

flat surfaces(12).

2.2.3 Surface and Interfacial Tension

There is a natural tendency for liquids to minimize their surface area. Drops tend to

take a spherical shape in order to achieve this. This tendency for a liquid to expose

such minimum free surface is called surface tension, and this will cause an increase of

internal pressure in order to balance the surface force(15).

Figure 2.4: Surface Tension - Capillary equilibrium of a spherical gap(12).

The interfacial tension is a similar tendency which exists when two immiscible fluids

are in contact. Surface and interfacial tension of fluids result from molecular properties

occurring at the surface or interface(12).
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2. RESERVOIR AND FLUID PROPERTIES

2.2.4 Density

Density is defined as the mass of fluid per unit volume. It varies with temperature

and pressure, and is measured in kg/m3. Specific gravity is defined as the ratio of

the weight of a volume liquid to the weight of an equal volume of water at the same

temperature(12). Density varies a lot by temperature and pressure. Because of this, the

units of mass and volume used at the measured temperature must be explicitly stated

when reporting the density. The standard reference temperature for international trade

in petroleum is 60 oF and 1 atm(15).

Figure 2.5: Density - Density variations of water with pressure and temperature

changes(16).
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3

Nanotechnology in the Petroleum

Industry

Nanotechnology can contribute in countless areas of oil and gas Exploration and

Production (E&P). The ability to be more efficient, less expensive and more

environmentally friendly will play a very important role in the years to come. However,

many of the opportunities are still only in laboratory and research development.

Companies would like to be at the forefront regarding nanotechnology, but reasonable

costs compared to oil price are necessary. In this chapter, current challenges faced in

the industry, and the potential for solutions based on nanotechnology will be presented.

3.1 Nanotechnology Applications for the Oil Industry

3.1.1 Nanoparticles, Nanofluids and Nanosensors

Nanoparticles, nanofluids and nanosensors are attracting a great deal of interest with

their enormous potential to provide enhanced performance properties, their size, and

their ability to significantly alternate optical, magnetic and electrical properties.

Customized nanoparticles have the ability to enhance oil recovery, improve exploration,

and be useful in formation scale control. Nanoparticles can be tailored to alter reservoir

properties such as wettability, improve mobility ratio, or control formation fines

migration. Nanofluids have successfully been developed in laboratories, and the up-

coming challenge is to develop techniques for cost-efficient industrial-scale production

of nanofluids. In nearly all cases, the thermal conductivity of conventional heat transfer

13



3. NANOTECHNOLOGY IN THE PETROLEUM INDUSTRY

of fluids is improved by the addition of small amounts of nanoparticles(17). In addition,

development of pressure- and temperature-sensitive nanosensors will enable in-situ

measurements within the reservoir(18). Nanosensors can provide improved temperature

and pressure ratings in deep wells and hostile environments(6).

3.2 Recent Progress in the Oil Indudstry

3.2.1 Exploration

The need for exploration in even more challenging remote and offshore sites requires

revolutionary technical solutions for the oil and gas industry. Developing more

sophisticated methods to enhance field characterization techniques and processes can

lead to improved oil recovery. The natural field methods utilize the gravitational,

magnetic, electrical, and electromagnetic fields. Searching for local perturbations in

these naturally occurring fields may be of economic or other interest due to their

concealed geological features(19). By improving these survey methods, a better

understanding of the reservoir, both its chemical and physical properties, can be achieved,

and more oil and gas could be extracted. Many of these current state of art technologies,

beside seismic acquisition, only penetrate and provide information a few inches from

the wellbore.

As mentioned, many of these techniques lack the required resolution and the capacity to

deeply penetrate reservoir lithologies, especially in tight formations. In harsh

environment, like high temperature and high pressure, many of the logging tools

become unreliable. Reasons can be reduction in quality due to tool failures, and

lessening in available downhole sensors(20). By introducing sensors that can migrate

under their own power, or with the movement of injected fluids, one may provide an

accurate description of the rock and fluid interactions. Micro- and nano-sensors can

illuminate the hydrocarbon reservoirs by describing chemical and physical properties

of reservoir fluids and rocks beyond the wellbore, three-dimensional distribution of

reservoir fluids and rocks, and dynamic paths of fluids(21). Nanomaterials make great

tools for the development of these sensors, and the formation of imaging-contrast agents

due to their substantial alternation in optical, magnetic, and electrical properties.
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Nanomaterials combined with smart fluids can be used as extremely sensitive sensors

for pressure, temperature, and stress downhole under harsh conditions(22).

3.2.2 Drilling

Enhancing drilling performances will reduce operational cost and non-productive time.

Since the average field size has been declining drastically since the 1960s and 1970s(23),

and new discoveries are less frequent, the drilling efficiency becomes more important.

Furthermore, the drilling challenges and environmental regulations have increased due

to E&P in more and more fragile environments. Drilling in ultra deep water and

Arctic areas imposes substantial demands on the operators. Future operations will

possibly face challenges due to operation depth, the nature of subsurface geo-hazards

with increasing depth, and complexity in drilling operations to mention some(24).

To face these problems, the industry is in need of mechanically strong, chemically

and physically stable, and physically small materials to be used in nearly all areas of

E&P(24).

Synthetic nanoparticles represent the most promising progress of technology in drilling(22).

These nanoparticles have exhibited exceptional rheological properties. Advanced drilling

fluids based on polymers that are physically and chemically associated with nano-

particles, along with amphiphilic surfactants or polymers have been developed. These

fluids have properties that can be altered in response to a change in stimuli, such

as temperature, pH and salinity(22). Designed nanoparticles, and especially nano-

crystaline materials in combination with advanced drilling fluids, will probably improve

the rate of penetration and decrease wear on drilling equipment significantly(22). Nano-

based mud additive is expected to improve the thermal conductivity of nanofluids,

which consequently will provide more efficient cooling of drill bits, and longer operational

cycles.(25). In addition, additives in casing to increase compressive and flexural strength,

as well as light-weight rugged structural materials was studied in the project thesis, The

Use of Nanotechnology in the Petroleum Industry(6).

3.2.3 Production

Completion is one of the most challenging processes of production, since it is important

to assure an efficient flow toward the surface. Completion and stimulation fluids are
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used in every well and are critical for reservoir productivity and improved flow of

hydrocarbons(26). Viscoelastic surfactant fluids have been used as completion fluids

in the oil industry as gravel-packing, fracture-packing, and fracturing fluids because of

its excellent rheological properties, and maintain low-formation-damage characteristics

compared to cross-linked-polymer fluids. Nanotechnology can be used to maintain

viscosity of such fluids at high temperature, and controlling the loss of viscoelastic

surfactant fluids without generating formation damage(27).

During processing of oil, heavy organic compounds are one of many challenges. The

production of bitumen, or other heavy-organic containing hydrocarbons, may be

affected by flocculation and deposition of asphaltenes. Dispersed nickel nano- and

micro-particles in heavy oil matrixes have made it possible to remove up to 85 % of

the asphaltenes in the original solution(28). In addition, a new generation of nano-

membranes has been developed for the separation of metal impurities in heavy oil, and

impurity gases in tight gas. These membranes may enhance the exploration of tight

gas substantially by providing efficient methods for removing impurities(22).

3.2.4 Enhanced Oil Recovery

As the production rate of existing fields start to decline and the frequency of new

explorations are significantly lower, increasing the recovery factor is of great importance.

Many fields are abandoned with a residual oil saturation of more than 30 %(29).

Increasing the recovery factor by few percent may provide billions of dollars in additional

profit. Enhanced oil recovery techniques, or tertiary recovery, are designed to increase

the oil recovery above secondary recovery base line. Thermal recovery which introduces

heat to reduce the viscosity of especially heavy oil, miscible or immiscible gas injection,

and chemical injection, which includes the use of polymers, alkali, and surfactants are

all tertiary recovery methods(2).

Nanotechnology has the possibility to improve these methods beyond current applications.

With ultra-small size and high surface area to volume ratio, nanoparticles have the

ability to penetrate pores where conventional recovery methods are unable to. Injecting

displacement fluids, such as water, CO2 or surfactant solution, often possess a lower

viscosity than the oil. By adding nanoparticles, the viscosity of the injected fluid can
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be increased, and a lower mobility ratio may be achieved. A laboratory study by Shah

and Rusheet showed that both density and viscosity of CO2 increased by adding only

1 % CuO nanoparticles. The viscosity of CO2 nanofluids proved to be 140 times greater

than conventional CO2(30). Some papers also address experiments where combinations

of nanoparticles and surfactant solutions are tested. Le et al. studied synergistic

blends of SiO2 nanoparticles and surfactants for EOR in high-temperature reservoirs.

They performed experiments blending different types of surfactants with SiO2 nano-

particles. Some of the blends showed great potential for EOR application because of

their resistance to adsorption onto the rock surface, and thermostability at 91oC (31).

Suleimanov et al. carried out experiments which showed how dispersed nanoparticels

in an aqueous phase could modify the interfacial properties of a liquid/liquid system,

if their surface were modified by the presence of an ionic surfactant. The application

of nanosuspension in their study permitted significant increase in the efficiency of oil

displacement flow rate. In homogeneous pore media, oil recovery before water break-

through was increased by 51 % and 17 % for surfactant aqueous solution with nano-

particle addition respectively to water and surfactant aqueous solution(32).

Polysilicon nanoparticles (PSNP) have been considered as an EOR agent by Onyekonwu

and Ogolo. One important characteristic of polysilicon nanoparticles is its ability to

change rock wettability. Onyekonwu and Ogolo discuss three different PSNP which

alter the rock wettability in different manners. Their results showed that silane treated

NWPN, and HLPN which is treated by a single layer organic compound, had an

improvement of over 50 % after primary and secondary recovery on a water-wet rock

(33). Ju and Fan address the challenges relating to the application of nanopowder

in oilfields to enhance water injection by the effect of changing wettability through

adsorption on porous walls of sandstone. Their result revealed that wettability of

surface sandstone can be changed from oil-wet to water-wet by adsorption of untreated

polysilicon nanoparticle, LHPN. Furthermore, the sandstones’ effective permeability of

water was improved, while a decrease in absolute permeability was observed(34).

Nanoparticles have properties that are potentially useful for certain oil recovery processes,

as they are solid and two orders of magnitude smaller than colloidal particles. The

nanoparticle stabilized emulsions droplets are small enough to pass typical pores, and
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flow through the reservoir rock without much retention(35). Spherical fumed silica

particles with a diameter in the range of several to tens of nanometers are the most

commonly used. Their wettability is controlled by the coating extent of silanol groups

on the surface, and are considered to be hydrophilic if over 90 % of the surface is

covered by silanol groups. With these hydrophilic properties, they will consequently

form a stable oil-in-water emulsion. Conversely, if the silica particles are coated with

only 10 % of silanol groups on the surface, they are hydrophobic, and will form a

water-in-oil emulsion(35). Nanoemulsions are very stable over time, and resistant to

coalescene and the exchange of the dispersed phase between droplets(2). The particles

are also able to stabilize supercritical CO2-in-water emulsion(36) and water-in-

supercritical CO2 emulsion(37).

Even though nanoparticles in many cases show encouraging results through their

applications, the quantity and size of the particles are vital. Kanj et al. identified the

usable size of nanoparticles in reservoir rocks, and validated their transport potential(38).

Another study performed by Skauge et al. concludes that silica particles propagate

easily through a pore system, and due to their natural occurrence in the reservoir, they

pose no harm to the environment. They also seem to be too small to strain or block

pores, which make them of great interest for EOR purposes(39).

The potential for using nanotechnology in EOR is enormous. The technology has

been widely used in several other industries, and the interest in the oil industry is

increasing. Silica nanoparticles are the most widely tested, and have shown good EOR

applications. Recently, studies have explored the potential of Al2O3, MgO, Fe2O3

in addition to SiO2 nanoparticles. The results showed that some combinations have

yielded better results than SiO2(40). Based on the current knowledge, it is expected

that both chemical EOR and specifically micellar flooding will make huge benefits from

nanotechnology and nano-emulsion in particular in the future(41).

3.2.5 Environmental and Occupational Issues

While the production and use of engineered nanostructured particles is an essential

part of the ”nanotechnology revolution”, the safe and responsible use of such particles

present several challenges(42). Research and evaluation is needed to create a shared

18



3.2 Recent Progress in the Oil Indudstry

understanding and sufficient knowledge of nanotechnology development and risk

management issues that must be addressed(43). It is important that the oil and gas

industry leverage lessons and best practices from other industries that are utilizing

nanotechnology. By doing this, the oil and gas industry can enhance their understanding

of the environmental and occupational safety and health implications of nanotechnology(44).

On the other hand, nanoparticles represent a new generation of environmental remediation

technologies that could help solve some of the most challenging environmental problems.

Nanoscale iron particles can be very effective for the transportation and detoxification

of different common environmental containments, as chlorinated organic solvent and

PCBs (45).

This improvement concerning handling of environmental hazards can make it easier

to get public and politic acceptation for oil and gas E&P, especially in fragile areas.

Even though nanotechnology in some areas can help to remedy these problems, the

importance of understanding and accepting the health and safety challenges is essential.

Making the handling of environmental containments easier, more effective, and more

economical profitable is valuable, as long as it can be proven to be risk-free.
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4

Nanoparticle Effect on Reservoir

Properties

Formation damage is an undesirable operational and economical problem that can occur

during the various phases of oil and gas recovery from subsurface reservoirs, including

production, drilling, hydraulic fracturing, and workover operations. Formation damage

can be caused by different unfavorable processes including chemical, physical, biological,

and thermal interactions of formation and fluids. The indicators of formation damage

include permeability impairment, skin damage, and deformation of formation under

stress and fluid shear(46). Once injecting particles of nanometer size, retention in

porous media can damage formation properties, and is one of the major issues regarding

nanoparticle transport.

4.1 Retention in Porous Media

Porous media is a complex structure of pore bodies and throats covering a range of

sizes. Particle retention in porous media has been a concern for many industries, since

the transport of particles is limited to the degree to which the particles are retained by

the porous medium. Reservoir rocks that bear oil and gas can be severely affected by

particle invasion(47).

Particle movement in porous media is a very complex process due to complexity and

forces controlling solid movement in porous media. Many authors have addressed these
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problems, and three main mechanisms are mentioned in the literature. Adsorption

of particles onto rock surface because of the Brownian motion, and the electrostatic

interaction between the migration particles and the solid surface of the pores is one of

the mechanisms(47). Mechanical entrapment, or deep-bed filtration, in small pores has

been recognized as another element of retention(48). The mechanism, also known as

straining, leads to blocking of narrow pore throats by larger particles. The evidence

for mechanical entrapment is taken to be either that the particle concentration in the

effluent does not reach the injected concentration, or that it would do so only after

injecting a large volume of particles (39).

The third entrapment mechanism is known as log-jamming. This mechanism is similar

to straining, but particles can block pores larger than the particle size. Due to

density differences between moving particles and carrying fluid, sedimentation or

gravity settling will take place. When pore throats narrows, flow velocity will increase.

Water molecules will then accelerate faster than heavier particles, and accumulation will

occur. Due to gravity settling the pore throat will gradually be reduced and eventually

blocked. The main factors governing the log–jamming effect are particle concentration

and effective hydrodynamic size, pore size distribution and flow rate(47),(49).

Figure 4.1: Entrapment Mechanisms - Four different entrapment mechanisms; log-

jamming, mechanical entrapment, gravity settling and adsorption.
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4.2 Effect on Permeability and Porosity due to Adsorption of
Nanoparticles

These mechanisms are to be considered when injecting nanoparticles or other agents

in a porous media. Blocking of pores can damage the reservoir, change the flow

pattern and reduce the permeability. Although in some cases, blocking agents have been

applied to the reservoir to prevent channeling of fluids through high permeable zones(50).

For most EOR methods, the agents used have a different target than blocking pores

or fractures. Blocking pores and reducing permeability are therefore not desirable,

and several parameters affect the degree of blocking. Flow rate, fluid viscosity, particle

concentration, pH and ionic strength all have certain effects on the permeability

decline. Experiments have shown that low fluid velocity and large particle size lead to

shallow and severe damage, while higher concentration leads to more severe permeability

damage(47).

4.2 Effect on Permeability and Porosity due to Adsorption

of Nanoparticles

Authors have presented experimental and mathematical models regarding changes in

reservoir properties due to adsorption of nanoparticles. Ju et al. have studied the

wettability and permeability changes caused by adsorption of nanometer particles onto

rock surfaces. They have evaluated the changes of porosity and absolute permeability

caused by particle injection. Instantaneous porosity is expressed by equation 4.1

φ = φ0 − Σ∆φ (4.1)

Where Σ∆φ is the variation in porosity, caused by retention of nanoparticles.

In addition, a modification of Xianghui and Faruk Civan’s model for permeability is

presented as an expression for instantaneous permeability.

K = K0[(1 − f)kf +
fφ

φ0
]n (4.2)

K0 and φ0 are initial permeability and porosity, while K and φ are existing local

permeability and porosity. kf is given as a constant for fluid seepage allowed by the

plugged cores, and f is a flow efficiency factor of cross-section area open to flow(5).
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4. NANOPARTICLE EFFECT ON RESERVOIR PROPERTIES

Ju et al. also present an evaluation of relative permeability alternation caused by

nanoparticle injection. It is known, as mentioned in Section 3.2.4, that nanoparticles

that spread on rock surfaces can alter the wettability of a rock. Wettability is one

of the most important parameters to determine relative permeability of a porous

media. Assume a given volume, V, of one type of nanoparticle trapped in pore space.

If supposing spherical particles with equal diameter touching each other at one point,

and using real volume of particles as the dominator, the specific area can be defined as

sb =
A

V
=

n3d2π
1
6n

3d3π
=

6

d
(4.3)

If further assuming that v is the volume of particles adsorbed on the pore surface, and

v∗ is the volume of particles entrapped at pore throats per unit bulk volume of the

media, in addition to supposing that adsorption is first developed as a single layer, the

total surface area in contact of fluids per bulk volume of the porous media is calculated

by

s = β(v − v∗)sb (4.4)

where β is the surface area coefficient. The specific area of sand core can be calculated

by an emperical formula

sv = 7000φ

√
φ

K
(4.5)

At the time s ≥sv, the total surface per unit bulk volume of the porous media is

completely covered by particles that have been adsorbed on pore surfaces or entrapped

at pore throats. At this point, wettability is determined by nanoparticle properties.

Continued, further deposition of particles will only lead to reduction in porosity and

permeability(5). Before injection of nanoparticles, the relative permeability to oil and

water are given as Kro and Krw. If the surface per unit bulk volume of a porous media

is not completely occupied by nanoparticles, the relative permeability of oil and water

are to be considered as a linear function of the surfaces covered by nanoparticles(5).

Then the relative permeability of oil and water will change gradually in relation to the

area covered by particles.

With this evaluation as a background, Ju and Fan later performed both experimental

and numerical studies on porosity and permeability changes caused by nanoparticle

flooding. Their results show that both ratios (K/K0 and φ/φ0) are declining with
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4.3 Wettability Alternation and Surface Wetting

increasing volume nanofluid injected, where Ko is initial permeability and φo is initial

porosity. Also, numerical solutions show that porosity and permeability ratios are

smaller close to the inlet than to the outlet. Both rations are functions of dimensionless

distance, and are increasing gradually toward the initial value when dimensionless

distance approaches 1. These results imply that nanoparticle adsorption at pore walls,

and pore throat blocking, occur at a higher frequency closer to the inlet(34).

4.3 Wettability Alternation and Surface Wetting

As stated in Section 3.2.4, different types of nanoparticles can alter the wettability

depending on their surface coating. Most of the particles that have been examined to

this day are polysilicon nanoparticles. Three different types of polysilicon nanoparticles

can change the wettability of a rock surface differently. The untreated polysilicon nano-

particle, LHPN, can turn an already water-wet rock strongly water-wet, or make an

oil-wet rock water-wet. HLPN is treated with single layer organic compound, and

can render a water-wet rock oil-wet, or make an already oil-wet rock strongly oil-wet.

While NWNP is treated with silane, and can achieve intermediate wetness by making

a rock either strongly oil-wet and strongly water-wet at the same time, or make the

rock neither oil- or water-wet(33). For these different types of polysilicon nanoparticles

to change the wettability of a rock surface, they need to adhere and spread over the

surface. For optimal distribution, factors such as concentration and particle size are

important. The degree of dispersion plays an important role in the change of contact

angle and wettability, and has been widely addressed by various authors..

Vafaei et al. look at the effect of nanoparticles on sessile droplet contact angle. The

study indicates that the concentration and size of nanoparticles in solution have an

important role in the variation of the droplet contact angle(51). With increasing

concentration, the contact angle is increasing linearly for the same droplet volume

until it reaches a peak, before decreasing with increasing concentration. Observations

from the study also show that smaller nanoparticles were more effective in raising

the contact angle(51). Sefiane et al. suggest that that improvement in contact line

motion affected by the presence of a nanoparticle solution may have two potential

underlying mechanisms. The mechanisms could be either enhancement caused by
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structural disjoining pressure, or enhancement due to nanoparticle adsorption on the

surface(52). Wasan et al. studied the role of disjoining pressure for wetting and

spreading of nanofluids on a solid surface. Disjoining pressure is a pressure that arises

when two surface layers reciprocally overlap, and is caused by the total effect of forces

that are different by nature. Electrostatic forces, the forces of “elastic” resistance of

solvated, or adsorbed solvated, films, and the forces of molecular interaction can act as

components of the disjoining pressure(53).

Wasan et al. reported that the driving force for the spreading of a nanofluid is the

structural disjoining pressure direct towards the wedge from the bulk solution. The

film tension is high near the vertex, because the particles are structuring in the wedge

confinement. As the tension on the film gets bigger towards the top of the wedge, it

will cause the nanofluid to spread at the wedge tip. This will improve the dynamic

spreading behavior of the nanofluid(54). Figure 4.3 shows how nanoparticles structure

inside the wedge film, formed between an oil droplet and a solid surface. The result

is that the nanoparticles exert a large pressure through the wedge film relative to the

bulk solution. This excess pressure, also called disjoining pressure, will separate the

two phases from each other(54).

Figure 4.2: Oil drop placed on a solid

surface (54).

Figure 4.3: Nanoparticle structuring

in the wedge-film, resulting in structural

disjoining pressure at the wedge vertex(54).
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5

Experimental Procedure

5.1 Cleaning and Measurement of Core Properteis

The laboratory experiments were performed on Berea Sandstone cores delivered by IRIS

in Stavanger. Berea Sandstone is a sedimentary rock whose grains are predominantly

sand-sized and are composed of quartz sand held together with silica. The sandstone

has relatively high porosity and permeability, which makes it a good reservoir rock(55).

5.1.1 Soxhlet Extraction

The cores were relatively clean and dry when they arrived from IRIS, but extraction

using Soxhlet apparatus were still conducted. Soxhlet is one of the most widely used

cleaning methods, and is primarily used in laboratories. Toluene, or in the case of

relatively clean cores, methanol is heated to a slow boil in a Pyrex flask. The methanol

has a boiling point at 65 oC(56), and the vapor will move upwards and engulf the core.

If the core is contaminated by oil, toluene must be applied. Toluene has a much higher

boiling point than methanol and any water within the core sample in the thimble will

be vaporized. Toluene and water, or methanol vapor, will enter the inner chamber of

the condenser and condense as a result of cold water circulating. The liquefied toluene

will fall from the condenser onto the core in the thimble, and further soak the core

and dissolve any oil present. If no oil is present, methanol is applied. The vapor

will condense in the same manner and dissolve any contaminations. When either the

toluene or methanol level within the Soxhlet tube reaches the top of the siphon tube

arrangement, the liquids will flow into the boiling flask due to a siphon effect. The
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5. EXPERIMENTAL PROCEDURE

extracted fluids and contaminations are then collected in the boiling flask, and another

cycle of cleaning can be performed(12).

Figure 5.1: Soxhlet Apparatus - Schematic Diagram of Soxhlet Apparatus (12).

The duration of Soxhlet extraction can vary from hours to several weeks, depending

on eq. the composition of the oil or the permeability of the rock. Further, the samples

were placed in a desiccator-cabinet to remove humidity.

5.1.2 Porosity Measurements

The method used for measuring effective porosity is the helium technique. The helium

porosimeter uses the principle of gas expansion.

The use of helium has several advantages(12):

• Helium particles are small and can penetrate small pores.

• It is an inert gas and does not adsorb on rock surfaces as air may do.
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5.1 Cleaning and Measurement of Core Properteis

• Helium can be considered as an ideal gas for pressures and temperatures usually

employed in the test.

• Helium has high diffusivity and therefore affords a useful means of determining

porosity of low permeability rocks.

First the diameter and length of each core was measured for bulk volume calculations.

Step two was to measure a reference volume, as seen in Figure 5.2. The helium

porosity apparatus was applied with a helium supply of 10 bar, and reference volume

V2 was measured. Further, V1 for each matrix cup containing the cores were measured.

Combining the information in Table A.1, the effective porosity for each core can be

calculated from Equation 5.1.

φe =
Vb − Vk
Vb

(5.1)

Figure 5.2: Porosity Apparatus - Schematic of apparatus used to porosity by helium

method.
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5.1.3 Air Permeability Measurements

Determining the gas permeability was done by using a constant head parameter as

shown in Figure 5.3. This equipment is designed for plug or whole core permeability

measurement. The clean and dry core was placed inside the core holder. A sleeve

pressure of approximately 20 bar was applied. Upstream and downstream pressures are

measured by manometers on both sides of the core, and air flow is measured by means

of a calibrated outlet. Different injection pressures with the same varying pressure

drop from inlet to outlet were tested. Pressure and flow rate were measured, and gas

permeability was calculated using Equation 5.2.

k =
QatmµL2Patm

A(P 1
2 − P 2

2)
(5.2)

This information was used to make Klinkenberg plots and find the absolute permeability.

Figure 5.3: Constant Head Parameter - Schematic of apparatus used to measure gas

permeability (12).
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5.2 Fluid Properties

5.2.1 Formation Brine

Different compositions of brine were prepared, 0,3 wt%, 3 wt% and 10 wt% NaCl.

The NaCl was mixed with distilled water and stirred to make sure that all salts were

completely dissolved. For all flooding experiments, saturation of cores, and dissolving

nanoparticles, 3 wt% brine was applied.

5.2.2 Oil

The oil used in the experiments was kerosene, a type of paraffin oil. The oil was delivered

by UNITOR Chemicals AS. The oil is a clear liquid formed from hydrocarbons. Kerosene

is a lighter oil, which can be obtained either from the distillation of crude oil under

atmospheric pressure, or from catalytic, thermal or steam cracking of heavier petroleum

steams. It consist of mainly carbon chains containing between 6-16 carbon atoms per

molecule, like eq. alkyl benzenes and alkylnaphthalenes(57)

5.2.3 Nanoparticles

The particles used in this thesis are SiO2 nanoparticles. Three different types of

hydrophilic silica nanopowder were delivered by Evonik Industries and Elkem Silicon

Materials. They had a specific surface area ranging from 50 to 300 m3/g, and an

average particle size from 7 to 100 nm. The three different types were Elkem 999,

Aerosil 130 and Aerosil 300.

Table 5.1: The three different types of nanoparticles examined.
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5.2.4 Nanofluid

Nanofluids were prepared by dispersing silica nanoparticles in 3 wt% brine. First, a

stability analysis of the three different particles in Section 5.2.3 were conducted. Each

type was prepared in a 1 wt% nanoparticle solution. The solutions were mixed using a

magnetic stirrer, before being synthesized using an ultrasonic reactor for 3-4 minutes

to assure complete dissolution. The solutions were stored for several hours, and the

solution of Aerosil 300 proved to be the most stable. These are the particles that have

the highest surface area to volume ratio, as well as the smallest average particle size.

Aerosil 300 was therefore chosen for further experiments.

5.2.4.1 Viscosity, Density & pH

Determination of viscosity for different nanofluids with varying nanoparticle concentration

and salinity was conducted using an Ostwald viscometer. The viscosity is deduced from

the comparison of the time required for a given volume of the tested liquid, and of a

reference liquid, to flow through a given capillary tube under specified initial head

conditions(12). Three nanofluids with different concentrations of nanoparticles, 0,1

wt%, 0,5 wt% and 1 wt%, were tested. Each concentration was mixed with brine of

varying salinity. The salinities prepared were 0,1 wt%, 1 wt% and 10 wt%. Based on

previous stability analysis, Aerosil 300 was applied.

Density was measured using a pycnometer which is an accurate made flask. The

pycnometer is filled with a known volume of a liquid, and the weight divided by

this volume results in density. Density measurements were performed on the same

combinations of salinity and nanoparticle concentration as viscosity measurements.

pH-measurements were performed using an 827 pH Lab produced by METROHM.

This is an accurate apparatus for measurement of pH, and was also applied to all

solutions.
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5.3 Preparing Cores for Flooding

5.3.1 Saturation with Brine by Vacuum Pump

When rock properties had been measured and calculated, core samples were saturated

with 3 wt% brine. The core samples were placed inside the vacuum-container as seen

in Figure 5.4, until an under–pressure of approximately 100 mbar was reached. This

under-pressure extracted all fluids from the pore system. The cores where then soaked

with brine for about one hour, to assure complete saturation.

Figure 5.4: Vacuum Pump - Illustration of vacuum pump used in saturation of

cores(58).

5.3.2 Liquid Permeability Measurements

Permeability measurements were performed to determine the liquid permeability to

each core. Permeability differences before and after injection of nanofluid were also

examined. Each core was placed inside a Hassler core holder, and a sleeve pressure of

20 bar was applied. Knauer Smartline Pump 1000, which is a piston pump, provided

a constant flow of brine through the core. Pressure was recorded using a Keller PD-

33X pressure gauge, measuring pressure in 10−3bar. Brine was flooded through each

core at different rates, and pressure differences between inlet and outlet were recorded.

Continued, different amount and concentrations of Aerosil 300 nanofluid was flooded

through the core at constant rate. Pressure was recorded during nanoparticle flooding.

Finally, flow with brine was continued at the same rates as before injection of nano-

particles. Pressure was again recorded, and permeability both before and after flooding

with nanofluid was calculated using Darcy Equation 2.2, where viscosity of water is 1,02

cP. Only one cycle was performed on each core sample.
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Figure 5.5: Flowing Apparatus - Schematic of apparatus used to flow cores with brine

for permeability measurements.

5.4 Establishing Irreducible Water Saturation

After saturation as explained in Section 5.3.1, cores were 100 % saturated with water.

Using the design in Figure 5.6, with Exxol-D60 as pumping fluid, displacement process

where oil is displacing water was initiated. Each core was placed in a Hassler coreholder

as described in Section 5.3.2. A rate of 0,5 ml/min at ambient temperature and pressure

was applied until no more water was produced. Continued, the rate was increased to

1 ml/min, 2 ml/min and 4 ml/min until no more water was produced. Produced water

was recorded and irreducible water saturation was calculated by Equation 5.3.

Swi = 1 −
Vwaterproduced

Vp
(5.3)

where Swi is the irreducible water saturation, Vwaterproduced is the produced water and

Vp is the pore volume.
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5.5 Flooding

Figure 5.6: Design for flowing of cores - Schematic of apparatus used to flow cores

with brine, oil and nanofluid. Each cylinder contains one of the fluids.

5.5 Flooding

Two scenarios were applied for flooding experiments with nanoparticles. The first

scenario used nanofluid as a tertiary recovery method. Nanofluid with a concentration

of 0,1 wt% was injected after reaching residual oil saturation by brine flooding. The

second scenario implemented nanofluid as a secondary recovery method. In this case,

brine was replaced by nanofluid from the start, and all oil was displaced by a nano-

particle solution. The setup, Figure 5.6, was used for flooding, and a constant rate

of 0,5 ml/min was applied. For scenario number two, oil was initially displaced by

brine, until reaching Sor. Continued, the cores were cleaned and re-saturated before

an identical flooding experiment applying nanoparticle solution as displacing fluid was

conducted. Production of oil was recorded and recovery factor was calculated using

Equation 5.4, and residual oil saturation was calculated using Equation 5.5.

RF =
ProducedOil

OriginalOilInP lace
=

1 − Swi − Sor
1 − Swi

(5.4)

Sor = 1 − Swi −RF (1 − Swi) (5.5)
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5.6 Scanning Electron Microscope

Scanning Electron Microscope (SEM) was used to analyze the surface of core samples

before and after nanoparticle flooding. Analysis of Aerosil300 nanopowder was also

conducted. The microscope was located at the Department of Materials Science and

Engineering and was operated by Ph.D. student Suwarno. The microscope used was a

Zeiss Supra 55 VP low vacuum SEM. A scanning electron microscope uses a focused

beam of high-energy electrons to generate a variety of signals at the surface of solid

specimens. The signals that derive from electron-sample interactions reveal information

about the sample including external morphology, chemical composition, and crystalline

structure and orientation of materials making up the sample(59).

Before analyzing the core samples by SEM-apparatus, the samples needed to be prepared.

A maximum height of one inch inside the SEM required either cutting or crushing of

the samples. Both methods were performed, in which crushing gave a cleaner rock

surface and a better result. The pieces were also covered by a thin carbon layer to

assure conductive samples.

36



6

Results

The results presented in this chapter were obtained through the experimental procedure

explained in Chapter 5. All results presented are based on tables included in the

Appendix. The porosity and permeability readings for each core sample are presented

as bar charts. Experiments performed on permeability impairment measurements were

conducted on 9 of a total of 15 core samples, with varying parameters. Some of the

9 core samples used for permeability reduction experiments were brought to SEM-

analysis. Finally, six core samples were used for EOR experiments, where two scenarios

were tested, and three core samples were applied for each scenario.

6.1 Porosity

The helium porosity measurement gave porosities ranging from 16,6 to 24,5 %. Porosities

for the individual core samples are presented in Figure 6.1. Sandstone is predominantly

made of quartz sand, but also contains feldspar and clay. The relatively high porosity

can be explained by generally sand-sized particles. The size of pore throats are between

0,5 to 5 µm, and the pore chamber is from 5 to 50 µm. The figure is based on results

from Table A.1 in Appendix A.1.
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Figure 6.1: Porosity Measurements - Porosity readings for the individual core sample.

Figure 6.2: Air Permeability Measurement - Permeability readings for the individual

core sample.
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6.2 Air Permeability

When performing gas permeability measurements, air is used as injection fluid. Air has

a viscosity of 0,00179 cP at ambient pressure and temperature. A variety of pressures at

the inlet and outlet were applied, and calculation using Darcy’s equation was performed.

Absolute permeability is found by plotting a Klinkenberg plot for each core sample,

as seen in Figure A.1 to A.15 in Appendix A.2.1. The results of air permeability

measurements can be seen in Figure 6.2, presented as absolute or liquid permeability.

Figures are based on numbers from Table A.2 and A.3 in Appendix A.2.

6.3 Viscosity Measurements

6.3.1 Oil

An Ostwald viscometer was used to determine viscosity of fluids. The oil used in

flooding experiment was a type of paraffin oil, kerosene. Kerosene oil has a density

of 0,802 g/cm3, measured with a pycnometer. Two viscosity measurements were

performed. The oil had a viscosity of 1,96 cP, and result from the calculation can

be seen in Table 6.1.

Table 6.1: Viscosity calculations for kerosene oil.

6.3.2 Nanofluid

The same procedure as for oil was used to determine the viscosity of nanofluid. A

combination of three different salinities with different concentrations of nanoparticles

as described in Table 6.2 were examined. For each salinity, the results show that the

viscosity increases with increasing nanoparticle concentration, Figure 6.3.

39



6. RESULTS

Table 6.2: Viscosity calculations for varying salinity, with three different nanofluid con-

centrations.

Figure 6.3: Viscosity Measurements - Plot of viscosity versus nanofluid concentration

for different salinities.

6.4 Density & pH Measurements of Nanofluids

Density measurements of the combinations described in Table 6.2 show densities around

1 g/cc at ambient pressure and temperature. The tendency of increasing nanofluid

concentration shows a slight increase in density. The results obtained using a

pycnometer can be seen in Table A.4 in Appendix A.3.

For pH measurements, an 827 pH Lab produced by METROHM was used. pH

measurements were performed for each combination of varying salinity and concentration,

as already presented. As seen in Figure 6.4, the pH decreases with increasing nanofluid

concentration. Brine containing only sodium chloride should not affect the pH with

varying salinity as the results show. However, the tendency of decreasing pH with

increasing nanofluid concentration is uniform. Figure based on Table A.5 in Appendix

A.3.
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Figure 6.4: pH Measurements - pH vs. nanofluid concentration for different salinities.

6.5 Permeability

6.5.1 Liquid Permeability

The core samples were saturated by a vacuum pump. Liquid permeability measurements

were performed on each core, applying the setup shown in Figure 5.5. Different rates

were applied, and a very accurate pressure gauge plotted the differential pressure versus

time as seen in Figure 6.5. The pump used is a piston pump, and the fluctuations

in pressure are caused by this. Darcy equation was used to calculate the liquid

permeability for each core, either applying several rates, or one single rate. The results

can be seen in Table A.6 in Appendix A.4.

Figure 6.5: Differential Pressure vs. Time - Plot from Keller used for calculation of

liquid permeability. Differential pressure in 10−3bar.
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6.5.2 Permeability Reduction Experiments

Injecting particles through a core or a reservoir will lead to particle retention in some

manner. It can be explained by log-jamming, mechanical entrapment or adsorption

onto rock surface as mentioned earlier. In this section, injecting hydrophilic silica nano-

particles through a porous media, and an examination of the effect on permeability is

executed. When injecting a solution through a porous medium, permeability

impairment or other reduction in reservoir properties should not exceed a desired order

of magnitude. The setup shown in Figure 5.5 was used, and a Keller PD-33X pressure

gauge was installed to record the differential pressure. Examination of permeability

impairment was conducted by comparing the flow ability of brine before and after

nanofluid injection. By knowing all parameters, and recording ∆P, Darcy’s equation

was used to calculate pre and post nanofluid permeability.

To ensure that the setup was working properly, Core #1 was tested with a relatively

high concentration. It was injected with a nanofluid concentration of 0,5 wt% for 3 pore

volumes, at a rate of 0,5 ml/min. An increase in ∆P was expected due to adsorption or

jamming of particles. As observed in Figure 6.6, the pressure was increasing gradually

and continuously until 3 PV was injected. This implies that the flow ability through

the core has been damaged. By rearranging Darcy’s equation, permeability can be

calculated from Equation 6.1. When keeping all other parameters than ∆P constant,

an increase in differential pressure will result in a lower liquid permeability.

kl =
QµlL

A∆P
(6.1)

Several experiments on nanofluid injection and permeability alternation were performed.

The effect of changing different parameters as concentration, rate and volume of solution

injected was examined.

6.5.2.1 Effect of Concentration

Based on the increase in differential pressure in Figure 6.6, a concentration of 0,1 wt%

was examined for Core #2. Since no pressure was recorded before nanofluid injection

on Core #1, it was decided to proceed with 3 PV at an identical rate. As seen in Figure

6.7, the same trend of gradually increasing pressure was observed.
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Figure 6.6: Differential Pressure vs. Time - Differential pressure in 10−3bar vs.

Time; Injection of 0,5 wt% nanofluid for 3 PV, Core #1.

Figure 6.7: Differential Pressure vs. Time - Differential pressure in 10−3bar vs.

Time; Injection of 0,1 wt% nanofluid for 3 pore volumes, Core #2.
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The differential pressure for brine flooding before nanofluid injection had already been

recorded. Brine flooding was continued after nanofluid injection, applying the same

rates as before injection of nanoparticle solution. Calculation for Core #2 shows

a reduction in permeability of approximately 90 %. The permeability is reduced

from around 300 mD, to below 50 mD due to flooding with nanofluid. However, by

comparison of Figure 6.6 and Figure 6.7, reducing the concentration from 0,5 wt% to

0,1 wt% give a lower increase in ∆P. In Figure 6.6 the differential pressure increases

to over 400 mbar, while in Figure 6.7 the final pressure has only increased to less than

250 mbar. Lower concentration results in lower differential pressure, and thus lower

permeability impairment. Nevertheless, the impairment for Core #2 is too high for

field application, and both concentration and injection volume were reconsidered.

Figure 6.8: Permeability Alternation Core #2 - Permeability when flooding with

brine before and after nanofluid injection at semi-log scale.

After reducing rate, injection volume and concentration further, another experiment

examining the impact of changing the concentration was performed. It was decided to

use a single rate both pre, syn and post nanoparticle flooding. In addition, a much

smaller volume of nanoparticle solution was injected, only 0,2 PV. As seen from Figure

6.9, increasing the concentration from 0,01 wt% for Core #8, to 0,05 wt% for Core #9,

clearly affects the permeability reduction. However, the permeability impairments are

only in a range of 5-15 % for both cores. These results are much more promising
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than results obtained earlier. All results show that changing the concentration is

undoubtedly an important parameter. Based on the trends in Figure 6.6 and 6.7, and

the results in Table 6.3, a lower concentration is necessary to not damage the reservoir

properties to a too large extent. All results can be seen in Table A.7 in Appendix A.5.

Figure 6.9: Permeability Alternation Core #8 & Core #9 - Permeability

impairment for two different concentrations, 0,01 wt% in Core #8 and 0,05 wt% in Core

#9.

Table 6.3: Permeability reduction after nanofluid injection, concentration changed from

0,01 wt% to 0,05 wt% for Core #8 and Core #9 respectively.

6.5.2.2 Effect of Rate

Particle retention is often affected by rate. Higher velocity in narrow areas can cause

heavier particles to accumulate and retain, or in worst case block pore throats. By

keeping all other parameters than rate constant, examination of varying rate could be

performed. Injection of nanofluid with a concentration of 0,01 wt% for 0,5 PV was
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performed on Core #3 and Core #4. The rate was set to 0,5 ml/min for Core #3, and

0,1 ml/min for Core #4. The rates before and after nanofluid injection are identical

for both cores. As seen in Table 6.4, changing the rate from 0,5 ml/min to 0,1 ml/min

affect the magnitude of reduction positively.

Table 6.4: Permeability reduction after nanofluid injection, rate reduced from 0,5 ml/min

to 0,1 ml/min for Core #3 and Core #4 respectively.

6.5.2.3 Effect of PV Injected

As already observed from Figure 6.6 and 6.7, several pore volumes increase the ∆P to

a too great extent. It was therefore desirable to examine the effect of lower injection

volumes. Core #4 and #5 were injected with 0,5 PV and 0,2 PV respectively. As seen

from Table 6.5, a lower PV does not affect the reduction in a positive way. Decrease

in injection volume results in a increase in permeability impairment.

Table 6.5: Permeability reduction after nanofluid injection, PV injected changed from

0,5 PV to 0,2 PV for Core #4 and Core #5 respectively.

Another flooding was performed examining the effect of minimizing the volume injected.

Core #6 and Core #7 was injected with a 0,01 wt% solution for 0,2 PV and
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1 PV respectively. Table 6.6 shows an increase from 4,8 % to 12,1 % in impairment

when increasing the PV injected. The results obtained for the two comparisons are

contradictory. Yet, both comparisons show permeability impairment as a result of

nanofluid injection.

Table 6.6: Permeability reduction after nanofluid injection, PV injected changed from 1

PV for Core #7 to 0,2 PV for Core #6.

6.5.2.4 Effect of Filtering

Nanoparticles have a tendency to cluster together, which can result in clusters with

a much larger size than a single nanoparticle. Blocking of pore throats can be a

consequence of these clusters, and filtering was performed to examine this potential.

Filtering of nanofluid was done through a 25 nm filter paper. Two cores were then

flooded with this solution, originally containing 0,01 wt%. As seen in Figure 6.10,

there are small differences between permeability reduction for filtered and not filtered

flooding.

It is likely that if clusters are present, those larger than 25 nm will be removed. The

process of filtering is however time-consuming, and the results obtained do not differ

much from un-filtered core flooding. Both Core #6 and Core#8 are injected with

0,2 PV and 0,01 wt% nanoparticle solution, with and without filtering respectively.

For Core #8 a permeability impairment of 5,9 % was observed, while for the filtered

case, Core #6, an impairment of 4,8 % was observed. This difference in reduction in

permeability is almost negligible, and it can be expected that it could be caused by

error margins or other mechanisms.
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Figure 6.10: Permeability Alternation for Core #6, Core #7 & Core #8 -

Permeability impairment using filtered solution vs. no filtered solution. Concentration

identical, while PV injected equal 0,2 for Core #6 & #8 and 1 for Core #7

Table 6.7: Permeability reduction for filtered solution (Core #6 & #7) and no filtered

solution (Core #8).

6.5.3 Differential Pressure after Injection of Nanofluid

When performing brine flooding post nanofluid flooding, a continuous decrease in ∆P

was observed in some cases. As seen in Figure 6.11, the differential pressure slightly

decreased with time. Figure 6.11 shows the differential pressure for Core #2, when

brine is injected with a rate of 1 ml/min. The continuous decrease in ∆P may

indicate deportation of nanoparticles. Figure 6.12 shows the differential pressure for

brine flooding after nanofluid injection for Core #5, applying three different rates,

0,5 ml/min, 1 ml/min and 2 ml/min. Core #5 was injected with a lower nanofluid

concentration than Core #2, and the tendency is therefore more difficult to observe.
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Figure 6.11: Differential Pressure Core #2 - Differential pressure readings for

Core #2 after nanoflooding.

Figure 6.12: Differential Pressure Core #5 - Differential pressure readings for

Core #5 after nanoflooding.
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6.6 SEM-analysis

The SEM analysis was performed at the Department of Materials Science and Engineering.

By taking pictures with a magnitude larger than 30.000 times, observation of nano-

particles on rock surface would be possible. This makes it achievable to substantiate

the observed reduction in permeability that took place during flooding with nano-

particles. Initially, Aerosil300 nanopowder was placed on a clean surface and positioned

inside the SEM-apparatus. Pictures of SEM-apparatus can be seen in Appendix B.3.

Since Aerosli300 nanoparticles have an average size of 7 nm, one nanoparticle would be

almost impossible to spot using this device. But nanoparticles have a tendency to

cluster together if not solved in a solution, and these could be observed. Figures 6.13

and 6.14 show that nanoparticles form clusters with a size up to 200 nm.

Figure 6.13: NanoPowder - SEM picture of Aerosil300 nanoparticles on clean surface,

magnified by 40.000.
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Figure 6.14: NanoPowder - SEM picture of Aerosil300 nanoparticles on clean surface,

magnified by 80.000.

Further, core samples where flooding with nanofluid had been performed were to be

examined. The samples were crushed, since crushing will leave a clean and pristine

surface compared to cutting, and any particle retention could be observed. A core

sample was placed inside the SEM-apparatus, Figure B.6, after being coated with a

thin carbon layer to assure conductivity.

Core #2 had been flooded with a high concentration of nanofluid, and a large increase

in differential pressure had been observed during nanoparticle flooding. It was therefore

expected that a high amount of nanoparticles could be observed on grain surfaces. As

seen in Figure 6.15, large amounts of cluster-like collections of particles are adsorbed

onto a grain surface. It is possible that these are nanoparticle clusters, which implies

that nanoparticles tend to cluster and retention within a porous media. This support

the results obtained in Section 6.5.2. It is also possible to believe that if the amount of

nanoparticles becomes too high, blocking could potentially take place.
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Core #4 was injected with a lower nanoparticle concentration than Core #2. Based

on the fact that a lower concentration resulted in less permeability impairment, less

adsorption on rock surfaces could also be expected. Figure 6.16 shows that the collection

of particles is more dispersed for Core#4, and the clusters are significantly smaller. This

supports the theory that concentrations play an important role regarding adsorption

and retention.

Figure 6.15: Nanoparticles on rock

surface after flooding of Core #2.

Figure 6.16: Nanoparticles on rock

surface after flooding of Core #4.

Examination of the state of nanoparticles before any injection makes recognition of

particles on rock surfaces easier. Knowing the form and size of clusters makes it easier

to spot and identify remaining particles. It is believed that what is observed on rock

surfaces using a scanning electron microscope are remaining particles. The clusters

observed on grains look very similar to those observed when examining the nanoparticles

in Figure 6.13 and Figure 6.14. Comparison with an untreated core sample also shows

that these clusters are not present. Figure 6.17 is taken from a core sample that has not

been flooded with nanoparticle solution. On this rock surface, no cluster-like objects

are recognizable. Comparing this image with Figure 6.18, taken from a treated sample,

a lot of these objects can be observed. It is therefore very likely that particle adsorption

onto rock surfaces inside a core sample are recognizable using a SEM-apparatus.
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Figure 6.17: SEM-picture - Clean core surface - Clean core surface with no injected

nanoparticles.

Figure 6.18: SEM-picture - Recognizable nanoparticle clusters - Recognizable

nanoparticle clusters on rock surface.

53



6. RESULTS

6.7 Establishing Irreducible Water Saturation

Establishment of irreducible water saturation was performed by flooding. Since two

flooding scenarios were to be performed, where one of the scenarios required re-saturation

of core samples, three cores had to re-establish initial water saturation. This could

lead to an unequal distribution of water inside the core sample for the two different

establishments. As seen in Figure 6.19, Core #14 and Core #15 have much higher Swi

for the second establishment, compared to the first.

Figure 6.19: Irreducible Water Saturation - Establishment of primary and secondary

Swi by sequential waterflooding.

Large disparities from one sequential water flooding to another for the same core sample

may indicate that the initial water saturation distribution is not uniform. However,

Viksund et al. performed experiments on final recovery on Berea sandstone, as percent

of original oil in place. The results showed only a minor variation in recovery with

change in initial water saturation(60). It is therefore reasonable to expect the final

recovery to approximately reach the same percentage, assumed that flooding with brine

was performed to displace oil. Still, large disparities in initial water saturation must

be taken into account when the results are evaluated. All irreducible water saturations

can be seen in Table A.8 in Appendix A.6.
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6.8 Flooding

Two scenarios were studied for flooding with nanoparticle solution for EOR purposes.

Based on experiments performed on permeability impairment, a nanofluid concentration

of 0,01 wt% was decided on. A constant rate for both brine and nanofluid flooding of 0,5

ml/min was applied. Scenario I implemented nanofluid as a tertiary recovery method.

In this scenario, brine reduced oil to residual saturation. Continued, approximately two

pore volumes of nanofluid were injected in anticipation of improving oil recovery. The

second scenario, Scenario II, used nanofluid as a secondary recovery method. Here, two

floods were performed for each core. Initially, a first flooding was executed using brine

to displace oil. After cleaning, re-saturation and re-establishment of Swi, nanofluid was

applied using same procedure to produce oil.

6.8.1 Scenario I

Three core samples were tested using nanofluid as tertiary recovery method. Core #10,

#12 and #13 were chosen for this scenario based on liquid permeability measurements.

6.8.1.1 Flooding Core #10

Core #10 was established with an irreducible water saturation of 21 %. Injection of

brine was initiated, and only oil production took place until water breakthrough, after

approximately 0,35 PV of production. Brine flooding was continued until no more oil

production was observed. At this point, the residual oil saturation was 36,61 %, and a

recovery factor of 53,68 % was achieved. A total of two pore volumes of brine had been

injected. Figure 6.20 shows recovery factor vs. pore volume produced, and is based on

numbers from Table A.9 in Appendix A.7.1.

The next step was to continue injection with nanoparticle solution, anticipating

improved recovery. Continuing with the same rate as for brine flooding, over two

PV of nanofluid was injected. After injecting around one pore volume of this solution,

some oil production was observed. This gave, as seen in Figure 6.20, a slight increase in

recovery. The recovery factor was improved by 1,58 % and the residual oil saturation

after nano flooding was reduced by 1,25 %, to 35,36 %.
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Figure 6.20: Recovery Factor vs. PV Produced Core #10 - Recovery factor vs.

pore volume produced for Core #10. Displacing oil to Sor by brine before flooding with

nanofluid.

Figure 6.21: Recovery Factor vs. PV Produced Core #12 - Recovery factor vs.

pore volume produced for Core #12. Displacing oil to Sor by brine before flooding with

nanofluid.
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6.8.1.2 Flooding Core #12

Core #12 was established with an irreducible water saturation of 26,86 %. Injection

of brine was initiated until no more oil was produced. Water breakthrough took place

after production of around 0,4 PV. When no more oil production was observed, flooding

with nanoparticle solution was conducted. At this point, a recovery factor of 64,21 %

and a residual oil saturation of 26,18 % was obtained. A total production of 2,1 PV

simultaneously with brine injection was recorded.

Nanofluid flooding was performed under identical conditions. Some oil production was

observed, but nanoparticle flooding did not mobilize large quantities of oil. Figure 6.21

shows recovery factor vs. pore volume produced for brine and nanofluid flooding. A

small increase in recovery factor, 0,92 %, was recorded. This resulted in an end point

residual oil saturation of 25,51 %. Results can be seen in Table A.12 in Appendix A.7.3.

Figure 6.22: Recovery Factor vs. PV Produced Core #13 - Recovery factor vs.

pore volume produced for Core #13. Displacing oil to Sor by brine before flooding with

nanofluid.
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6.8.1.3 Flooding Core #13

Core #13 was established with an irreducible water saturation of 22,26 %. Injection of

brine was conducted until residual oil saturation was reached. Water breakthrough was

observed after producing 0,35 PV of oil. The total recovery factor for brine flooding

ended at 59,9 %. This gave a residual oil saturation of 31,18 %. A total production of

2,1 PV was recorded.

Further, nanofluid was injected as a tertiary recovery method, similar to the previous

experiments. For this core flood, no oil was mobilized by applying the nanoparticle

solution. Figure 6.22 shows recovery factor vs. pore volume produced. As no more oil

was produced in terms of using nanofluid, the recovery factor and residual oil saturation

were in the end respectively 59,9 % and 31,18 %. Results can be seen in Table A.13 in

Appendix A.7.4.

6.8.2 Scenario II

In the second scenario, brine was primarily used to produce all mobile oil. Irreducible

water saturation was established for each core, and brine flooding was initiated to

obtain residual oil saturation. Core #11, #14 and #15 were chosen for this scenario

based on liquid permeability measurements. Secondly, new irreducible water saturation

was established for the three core samples after cleaning, and residual oil saturation

was reached by using nanofluid as displacing fluid instead of brine.

6.8.2.1 Flooding Core #11

Core #11 was first established with an irreducible water saturation of 20,8 %. Brine

flooding was initiated, and production of water was first observed after producing 0,35

PV of oil. Flooding was continued until no more oil was produced, and a recovery

factor of 54,64 % was obtained. This resulted in a residual oil saturation of 35,92 %.

A total production of 2,1 PV was recorded.
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For the second flooding, an irreducible water saturation of 18,37 % was established.

The nanoparticle solution was then injected in the same manner as brine had previously

been. Water breakthrough was observed after 0,39 PV of production. The total

recovery was finally 58,5 %, which gave a residual oil saturation of 33,9 %. Figure 6.23

shows recovery factor vs. pore volume produced for both floods. As observed, they

follow the same trend until around 0,5 PV of production. At this point, oil production

with brine as displacing fluid levels off. Finally, a difference in approximately 4 % in

recovery factor is obtained in favor of nanofluid as displacing fluid. Results can be seen

in Table A.10 and Table A.11 in Appendix A.7.2.

Figure 6.23: Recovery Factor vs. PV Produced Core #11 - Recovery factor vs.

pore volume produced for Core #11.

6.8.2.2 Flooding Core #14

Core #14 was initially established with a water saturation of 9 %. Brine flooding

resulted in a recovery factor equal to 63 %. A total of 2 PV of oil and water was

produced, and a residual oil saturation of 33,7 % was reached.
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Secondly, the core was flooded by nanofluid after re-establishment of Swi. The second

establishment of irreducible water saturation turned out to be much higher than the

first. The second establishment gave an irreducible water saturation of 26 %. Flooding

with nanoparticle solution was then commenced, and 2 PV of nanofluid was injected.

This resulted in a total production of 62,63 % of original oil in place. A residual oil

saturation of 27,7 % was obtained, which was a reduction by 6 % compared to brine

flooding. As seen in Figure 6.24, the total recovery factor for both cases ends up at

approximately 63 %. However, the reduction in Sor is significant. The results can be

seen in Table A.14 and Table A.15 in Appendix A.7.5.

Figure 6.24: Recovery Factor vs. PV Produced Core #14 - Recovery factor vs.

pore volume produced for Core #14.

6.8.2.3 Flooding Core #15

Core #15 had an initial water saturation of 11,8 %. Brine flooding was conducted, and

a recovery factor of 45,9 % was obtained. This gave a residual oil saturation equal to

47,7 %.
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Further, nanofluid was to be injected after cleaning the core, and re-establishing Swi.

Equivalent to the results obtained for Core #14, the second re-establishment gave much

higher water saturation. After displacing water by oil, 25,4 % water still remained in

the core. The differences in primary and secondary re-establishment of Swi will make

comparison of results for Core #14 and Core #15 less credible.

Next, nanofluid injection was conducted from the start, until no more oil was produced.

A recovery factor of 53,7 % was obtained, and there had been a reduction in

residual oil saturation by more than 10 % compared to brine flooding. The residual oil

saturation had been decreased from 47,7 % to 34,5 %. Figure 6.25 shows recovery

factor vs. pore volume produced when both brine and nanofluid were applied as

displacing fluids. The results can be seen in Table A.16 and Table A.17 in Appendix

A.7.6.

Figure 6.25: Recovery Factor vs. PV Produced Core #15 - Recovery factor vs.

pore volume produced for Core #15.

61



6. RESULTS

62



7

Discussion

7.1 Literature Review

There is no doubt that nanotechnology has properties exceeding conventional technology.

The high surface area to volume ratio for particles at nanometer scale enhances thermal,

chemical and mechanical properties. Applying nanotechnology in oil and gas E&P is

considered as one of the most important factors for future development and operations.

These particles can improve exploration, drilling operations, construction of platforms,

tools and drilling equipment, in addition to being a pioneer in enhanced oil recovery.

Many challenges applying nanoparticles in different areas of oil and gas E&P are

present, especially concerning EOR purposes. Sufficient laboratory experiments must

be performed before applying nanotechnology in large field scale. Knowledge of how

nanoparticles affect reservoir properties, how they propagate through a porous media,

and how they affect oil mobilization is necessary. However, many of the nanoparticles

examined are already present in the reservoir, and of natural character; this makes

implementation more acceptable when environmental issues are considered.

7.2 Results

Nanoparticles exhibit interesting properties, but stability over long time periods is

difficult to obtain, especially for high concentrations. Smaller particles showed to be

more stable in a 1 wt% solution than larger particles, which resulted in the Aerosil300

nanoparticles being chosen for all performed experiments. The stability of nanoparticle

dispersions in brine could be a challenge, but applying an ultrasonic reactor solves
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this problem at laboratory scale. Nanoparticle solutions have increasing viscosity with

increasing concentrations, as well as decreasing pH-value. Increasing viscosities can

improve displacement efficiency, but it was believed that applicable concentrations

would be too low to increase the viscosity sufficiently. The core samples applied

for all flooding experiments have porosity and permeability values ranging for typical

sandstone, and are thought to be good reservoir rocks.

7.2.1 Permeability Reduction

Experiments performed on permeability reduction applying nanoparticle solutions gave

results that in many ways were expected. A variety of concentrations, injection volumes

and rates were tested to determine the effect of nanofluid flooding through core samples.

All measurements gave negative results, in the sense that the permeability was reduced.

There are several possible phenomena when injecting particles through a porous media;

adsorption, desorption, blocking and transportation. Both adsorption onto rock surfaces

and blocking of pore throats are thoroughly presented in Chapter 4. When permeability

reduction is observed, it can be explained by one of these incidents. Figure 6.6 in

Section 6.5.2 shows how differential pressure increases when injecting a nanoparticle

solution. This is a clear indication that particles are decreasing the ability of water to

flow through a porous medium. Hydrophilic silica nanoparticles which are applied in

this thesis should render a water-wet rock even more water-wet. As presented by Ju

and Fan, if the total surfaces per unit bulk volume of the porous media are completely

covered by polysilicon nanoparticles adsorbed on pore body surfaces, permeability will

be affected by the wetting properties of PN. If a water-wet rock becomes more water-

wet, a higher percentage of water will become immobile. This will again result in less

space for free water to be transported and a higher ∆P is required to obtain the same

rate, which will result in permeability reduction. However, the Berea sandstone applied

in these experiments is already virtually completely water-wet, and this effect would

therefore be minimal. It is therefore likely that the phenomenon of pore blockage, as

mechanical entrapment and log-jamming, affects the permeability to a greater extent

than surface coating. The Aerosil 300 nanoparticles applied in these experiments have

an average particle size of 7 nm. Based on the fact that filtration through a 25 nm filter

only had a minor effect on the magnitude of reduction, in addition to pore throats sizes

being several times greater than 25 nm, mechanical entrapment is probably not an issue.
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Changing the concentration proved, however, to have a gradually increasing effect on

the impairment. A higher concentration gave a higher permeability reduction. For

high concentrations the impairment can be explained by adsorption, accumulation and

blocking of pore spaces. For low concentrations, with low injection volumes, it is

possible that a thicker water film caused by adsorption of hydrophilic NP affects the

permeability impairment to the same degree as blocking. For high concentrations, a

reduction in the range of 90 % was observed. A reduction in this range would not be

accepted for application in any oil reservoir. The results obtained show that that a

higher concentration than 0,1 wt% would most likely not be applicable.

The rate plays an important role when injecting and producing fluids from an oil

reservoir. For this study, too few experiments were performed on the effect of varying

rate. Only two comparisons applying different rates were investigated. This is not

a sufficient amount of comparisons to make a conclusion on how rate affects the

permeability impairment as a cause of nanofluid flooding. The experiments conducted

showed however a lower impairment for lower rate. According to Ju and Fan, Gruesbeck

and Collins present a theory of an existing critical velocity. Above this velocity, both

retention and entrainment will occur, while only retention will take place below the

critical velocity(34). This theory states that a higher velocity will result in higher

reduction, since entrainment will take place in addition to retention. When reducing

the rate from 0,5 ml/min to 0,1 ml/min, a reduction in impairment was observed.

There is though, no clear indication that this is a result of exceeding a critical velocity.

Nevertheless, when rate is increased, a higher amount of particles are possible to be

entrapped due to log-jamming effect. If a higher rate is kept constant over a long time

compared to a lower rate, it is reasonable to believe that the entrainment becomes

higher.

It is also important to know the effect of altering pore volume injected. As for varying

rate, too few supporting experiments were performed in this case. The results obtained

were contradicting, and neither result could be neglected. However, irrespective of

the number of test performed, each core sample has different properties, and results

will vary as a consequence of this. Therefore, it is reasonable to believe that the
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results that show an increase in impairment with increasing volume injected are correct.

There have been clear indications throughout all floods performed, that increasing

the amount of nanoparticles injected, either volume or concentration, increases the

impairment. However, none of the results obtained in the study resulted in appreciation

of permeability. This is a clear indication that nanoparticle flooding through a porous

media reduces the permeability to an extent highly dependent on varying parameters.

It is also reasonable to believe that the permeability reduction will occur with a higher

percentage closer to the inlet than the outlet. A numerical solution presented by Ju

and Fan show the permeability relation (K/Ko) as a function of dimensionless distance,

where Ko is initial permeability. The ratio decreases with increasing PV injected,

and show a gradual increase towards initial permeability with increasing dimensionless

distance(34). This means that for a higher injection volume, the permeability impairment

is larger. This numerical solution supports the result obtained for Core #6 and Core

#7, which suggest a higher reduction in permeability with increasing volume injected.

There are also possibilities that clay swelling can cause reduction in permeability.

Swelling of clay minerals within the rock structure is an important mechanism causing

formation damage. The clay content in sandstones is not large, however, it tends to

cover the surfaces of pore spaces, and swelling can cause relatively high formation

damage. The clay content in the Berea sandstones applied in all flooding experiments

consists of illite(61). According to Abbasi et al., the existence of kaolinite or illite clay

minerals in sandstone show no important swelling induced impaired permeability(62).

Reduction in permeability due to clay swelling did therefore not cause the permeability

impairments observed. Nevertheless, other formations consisting of different clay minerals

can have formation damage caused by swelling, in addition to the damage caused by

nanoparticles. It is reasonable to believe that clay swelling and nanoparticle damage

occurring simultaneously will enhance the total damage. Consequently, even though

clay swelling does not affect the permeability impairment, consciousness regarding the

problem is important.

Another observation that was of interest when performing permeability impairment

experiments, was the repetitive reduction in ∆P when injecting brine after nanoparticle

flooding. Figure 6.11 shows how ∆P gradually decreases with time when brine is
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injected. This suggests that some of the nanoparticles trapped are removed, replaced

or rearranged. Most of the trapped nanoparticles have been retained close to the inlet,

and the permeability reduction would therefore be larger at the inlet than at the outlet.

When injecting brine after nanoparticle flooding, some of the particles which are either

settled by gravity, blocking pore throats or adsorbed, will be mobilized and transported

closer to the outlet or out of the core. This can result in a lower concentration of nano-

particles inside the core due to deportation, resulting in a lower ∆P. Or, a continuous

uniform distribution throughout the core could have been obtained. This deportation

caused by continuous brine flooding following nanoparticle flooding results in a small

permeability appreciation. The appreciation is not in the same order of magnitude

as the impairment, but it indicates that some nanoparticles inside a core sample are

mobile after injection.

7.2.2 Establishment of Irreducible Water Saturation

Establishment of irreducible water saturation was as mentioned, performed by flooding.

Establishment of Swi by flooding often results in relatively high water saturation, and

porous plate method would have been a better option to obtain low saturations. Porous

plate is however time-consuming, and flooding was therefore chosen. As presented

earlier, large deviations from primary to secondary establishment was obtained. For

Core #10, #12 and #13, where nanoparticle flooding was to be implemented as tertiary

recovery method, no re-establishment of water saturation was conducted, and variation

in Swi was negligible. For Core #11, #14 and #15, two similar floods with following

comparison should take place. For two of these core samples, there were large variations

in primary and secondary establishment of irreducible water saturation. A higher

irreducible water saturation results in more immobile water inside the core. However,

Viksund et al. addressed that differences in Swi within 0-30 % have virtually no effect

on the final recovery factor when applying synthesized oil. The displacement process

is independent of the percentage of pore volume initially occupied by water, and the

residual oil saturation also prove to be almost independent of Swi up to 30 %, for Berea

sandstone(60). It is therefore reasonable to expect small variations in recovery factor

for sequential flooding, even though irreducible water saturation is varying. This makes

comparison of results possible, but inequalities must be taken into consideration when

discussing further results.
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7.2.3 Flooding experiments

The two scenarios examined have been presented previously. In advance, it was not

expected that injection of hydrophilic silica nanoparticles would mobilize large amounts

of additional oil as a tertiary recovery method. This expectation was primarily based

on similar experiments presented in the literature, such as Skauge et al., where silica

particles showed to propagate easily through a core without mobilizing oil(39).

Three core floods were performed applying nanofluid as a tertiary recovery method.

For each case, around 2 PV of a 0,01 wt% nanoparticle solution was injected after

reaching residual oil saturation. Only Core #10 and Core #12 had some additional oil

recovery, while no extra oil was mobilized for Core #13. Berea Sandstone saturated

with synthetic oil tend to approach a completely water-wet state. Even though the

total surface area per unit bulk volume is completely covered by particles that are

adsorbed, and wettability is determined by these nanoparticle properties, the system

will not be supplementary water-wet. Altering the wettability of a Berea Sandstone

saturated with synthetic oil by hydrophilic silica nanoparticles is not expected to be

the mechanism that enhances any oil production, since surface wetting most likely will

remain unchanged. It is therefore reasonable to assess the theory presented by Skauge

et al. When injecting silica particles through a core sample, smaller and narrower pores

will lead to higher velocity. In this case, silica nanoparticles are possible to accumulate,

and a log-jamming effect could take place. Skauge et al. addresses this possibility for

oil mobilization, but they also state that a certain viscosity is required to generate an

oil bank, and produce oil(39). An increase in viscosity was by Skauge et al. obtained

by polymer additives. The experiments performed in this master’s thesis did not have

any additives in the nanoparticle solution, and the required viscosity is therefore not

present. However, log-jamming will cause particles to gradually accumulate and can

block pores larger that the particle size. This happens due to the mass differences

between particles and solvent. Since the rate is kept constant through the pore system,

any blocking of pore throats may enhance the flooding in other areas. An increase in

velocity through a pore space may overcome the capillary pressure that traps the oil,

and mobilize very small amounts of additional oil.
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The second scenario that is likely to mobilize oil droplets after residual oil saturation is

obtained, is the effect of disjoining pressure. In a completely water-wet core sample, the

residual oil will be trapped on the surface of a water film by capillary forces. To mobilize

this oil, these capillary forces must be overcome. In more conventional EOR-methods,

surfactant and low salinity flooding are examples of methods to improve oil recovery

by reducing interfacial tension or alter the wetting phases respectively. When injecting

nanoparticles in solution, these particles can be structured inside a wedge film between a

water surface and an oil droplet. The particles will then execute an additional pressure

at the head of the wedge, between the oil droplet and water film as seen in Figure

4.3. As presented by Wasan et al., the excess pressure will spread onto the surface

between the liquids, and separate the two phases(54). This phenomenon could explain

the mobilization of oil that took place during tertiary flooding with nanoparticles. An

investigation performed by Sefiane et al. concluded that the spreading velocity increases

as nanoparticle fraction is increasing within a range of 0-1 %(52). This implies that

a higher concentration could cause a higher disjoining pressure, since a larger amount

of nanoparticles can structure inside the wedge film and provide the excess pressure.

This could probably result in mobilization of larger oil droplets. However, increasing

the concentration also results in more severe permeability impairment, as examined

earlier. It is not desirable to reduce the permeability to a too great extent. This makes

the combination of achievable mobilization of oil as a result of spreading of hydrophilic

nanoparticles, and permeability impairment an important topic.

Flooding scenario number two implemented nanoparticle solution as a secondary recovery

method. The expectation for applying hydrophilic silica nanoparticle in an early

phase was to possibly enhance the displacement efficiency. The results obtained were

encouraging, but inequalities in establishment of irreducible water saturation for primary

and secondary flooding made comparisons difficult. Swi for Core #11 was however

around 20 % for both floods. For this core, an improvement in total recovery of

approximately 4 % in favor of nanoparticle solution as displacing fluid was achieved.

For Core #14 and Core #15, large disparities in establishment of Swi was observed.

However, the results obtained when flooding with nanofluid are remarkable. Viksund

et al. reported that the residual oil saturation showed to be almost independent of

initial water saturation for Berea sandstones(60). This should result in no or relatively
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small variations in Sor regardless of whether initial water saturation is 10 or 20 %. The

results for Core #14 and Core #15 did however show similar, or higher recovery factor

when nanoparticle solution was applied as displacing fluid compared to brine flooding.

In addition, a decrease in residual oil saturation was evident in all three cases.

There are several possible explanations of the improvement in recovery and reduction in

residual oil saturation for the three floods. As experimental results show, the viscosity

of a nanoparticle solution increases with increasing concentration. When displacing oil

with a fluid with higher viscosity than brine, a better mobility ratio is obtained. This

results in a more “piston like” displacement, and less oil will be left behind the water

front. The fact that the concentration applied for displacement purposes was 0,01 wt%,

the increase in viscosity compared to brine is probably not high enough to improve the

displacement efficiency significantly. Applying a higher concentration than 0,01 wt%

is possible to enhance the displacement efficiency to some extent, but again, the effect

on permeability impairment must be considered. It is, nevertheless, conceivable that

nanoparticles somehow can structure as a film at the water front. This structuring

could result in an even higher viscosity at the front, and thus a better sweep efficiency

than what is obtained by brine flooding. These theories are not widely discussed in

the literature, even though they could be possible explanations. Other theories are

discussed to a much greater extent, and show to be more plausible.

The mechanisms that are more widely discussed in the literature may explain the

increase in recovery factor and the reduction in residual oil saturation. As discussed in

the first flooding scenario, nanoparticles can create an excess pressure inside the wedge

film between two phases. When nanoparticles are injected as a secondary recovery

method from the beginning, the particles may structure inside a wedge film at an

earlier stage than when injected as a tertiary recovery method. This may result in

mobilization of larger oil droplets than what is being mobilized by brine flooding, and

less oil is left behind the front. Oil droplets that are trapped by capillary forces, either

on rock surface or on a water film, can be mobilized by this excess pressure between two

phases. There can also be other factors that explain the result, which are not affected

by injection of nanoparticle solution. When obtaining dissimilar water saturations, a

different distribution in the core sample is likely to occur. This can result in different
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mobilization for an identical core for sequential flooding. Oil can be trapped in larger

pores, and water can more easily displace it. However, the results indicate that nano-

particles are likely to affect the displacement efficiency, even though oil distribution is

varying. The causes of improved recovery and reduced Sor can be several when using

hydrophilic SiO2 nanoparticles. A more extensive study is therefore required to assure

whether the oil is mobilized by alternation of surface wetting, viscosity changes, the

effect of an excess pressure between two phases, or that inequalities between sequential

floods are dominating.

7.2.4 SEM-analysis

SEM- and TEM-apparatus have been used in many studies to detect nanoparticle

retention on rock surfaces in porous media. Knowledge of adsorption and entrainment

are important to be able to understand how nanoparticles propagate through a reservoir.

Nonetheless, there are some challenges regarding picturing of rock samples using a

SEM-apparatus. Berea Sandstone is not highly conductive, and the reflections of

electrons depended on how the surface of the medium was oriented relative to the

electron source. Coating the samples with a thin carbon layer, in addition to covering

all sides except the one to be examined with aluminum foil, enhanced the conductivity.

This resulted in higher reflection frequency of electrons, and relatively good pictures

were obtained. Kanj et al. presented work done to identify usable size of nanoparticles.

In their report, ESEM-pictures show rock surfaces coated with nanoparticles(38). A

comparison with photos obtained from SEM-analysis as presented in Section 6.6, clearly

indicates similarities in the observations. This comparison supports the idea of nano-

particle adsorption on rock surfaces. Since access to the nano-laboratory was necessary

to examine the effluent by nanosight, SEM-analysis was the only visible indication of

nanoparticle retention. This observation supports the theory of nanoparticle solution

affecting the permeability when propagating through a porous media. The pictures

obtained show that a higher concentration results in a larger adsorption on grain

surfaces. Comparing the observations from SEM-analysis and the results obtained

from permeability impairment experiments, show that they are unambiguous. Particle

retention is proven to be existent, and both experiments indicate that a higher nano-

particle concentration result in higher entrainment.
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7.3 Experimental Procedure and Error Margins

Performing laboratory experiments are time-consuming and precise work. The results

are depending on numerous parameters, and small errors can end up in relatively large

deviations in the end. Therefore, evaluation and understanding of results are important.

Throughout this thesis, several deviations were observed. Deviations and error margins

will always occur, and are impossible to avoid. All manual readings will have larger

deviations than automatic readings, since they are more inaccurate. An error margin

of 1 % for porosity readings can after calculations results in a deviation in porosity

by 2,5 %. As an example, when performing flooding experiments for EOR purpose,

irreducible water saturation, residual oil saturation and recovery factor are all a function

of porosity. If porosity has an error margin of 1 %, this will result in differences for

Swi, Sor and RF varying from 1-2 %. This shows how important it is to be aware of

deviations from readings, and especially manual readings.

Another deviation that clearly took place during the experimental procedure was the

pump efficiency. When applying cylinders for different fluids, there were some clear

indications that the pump was not able to deliver a constant rate throughout the

floods. This could possibly result in differences regarding the displacement efficiency,

which again could result in variation in oil mobilization from case to case. In addition, a

pressure gauge was not applied when performing flooding for EOR purpose. A limited

amount of pressure gauges are available at the laboratory, and it was therefore not

accessible. This made it impossible to observe pressure variations when flooding with

nanoparticles for EOR purpose. However, based on the result obtained throughout the

permeability impairment experiments, it was believed that the pressure would increase

within the same range. Variations in oil mobilization can in worst case be caused by

pump effect and other error margins. It is believed that the work performed is accurate,

and that the results are not affected by deviations to a too great extent. However, too

few experiments are performed for the different cases. This makes it impossible to

make definite conclusions. The results are generally pointing in the same direction,

indicating that several experiments will support the already achieved results.
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7.4 Summary

Overall, it is clear that silica nanoparticles affect reservoir properties. There is no

doubt that permeability impairment takes place, and that it is highly dependent on

particle size, concentration, rate and PV injected. However, applying hydrophilic

silica nanoparticle for enhanced oil recovery in a water-wet Berea Sandstone did not

mobilize appreciable additional amount of oil. Applying nanoparticle solution as a

tertiary recovery method, mobilized insufficient amounts of oil. As secondary recovery

method, the nanoparticle solution reduced the residual oil saturation in all three cases,

even though higher irreducible water saturation was present initially. There is no

clear answer for the cases where additional oil is mobilized, but, the theory of dis-

joining pressure is supported. Since the particles most likely do not mobilize oil by

altering the wetting phase, their size and ability to be transported through a porous

media indicates that this is the most plausible theory. Applying small particles and

injecting with low concentration will cause a less severe damage of reservoir properties.

Small particles are also more likely to structure inside a wedge film between to liquids.

Applying as small nanoparticles as possible could therefore result in mobilization of

smaller oil droplets, and reduce the residual oil saturations even more, without

resulting in too high permeability impairment.

Regardless of the experiments performed on oil mobilization, the SEM-analysis show

that particles adhere and spread on rock surfaces. This is a clear indication that the

wetting phases can be changed due to particle adsorption. Improving oil recovery by

adding hydrophilic particles in a mixed-wet core sample is therefore plausible. If aging

of core samples had been performed, and a crude oil had been applied, an intermediate

wetness would have been obtained. Applying hydrophilic particles in a mixed-wet core

sample may alter the wettability to a water-wet state. Water-wet core samples produce

almost all mobile oil before water breakthrough. In an oil-wet or mixed-wet system,

water breakthrough occur much earlier, and most of the oil is recovered during a long

period where oil and water is produced simultaneously(63). If the surface wetting of

a reservoir could have been changed from oil-wet to water-wet early in the production

phase, this could have been of great economic interest. Time value of money states

that money today is more worth than the same amount of money later. Companies
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therefore want to earn their money as close to this date as possible, and hydrophilic

nanoparticle addition in an oil- or mixed-wet system can accelerate the production by

changing the systems wetting phase.

The experiments performed in this thesis have only addressed the effect of implementing

hydrophilic silica nanoparticles in Berea Sandstone. The experiments performed show

acceptable permeability impairments for relatively low concentrations, and interesting

results when applying SiO2 nanoparticles for oil mobilization purposes. It is necessary

to execute more experiments that support the already achieved results. With an

adequate number of measurements, one can to a greater extent be able to

conclude about the causes of impariment with greater certainty. This will give a better

understanding of the effect of hydrophilic nanoparticles in reservoir systems.
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Conclusion

Nanotechnology in the petroleum industry has gained enormous interest the recent

years, which is reflected in the amount of literature available. Nanoparticles for EOR

purposes seem gradually to become the cutting-edge technology.

Hydrophilic silica nanoparticles have through experimental work showed to propagate

through a porous media. The particles caused permeability impairment, which was

highly dependent on varying parameters, especially concentration. Both permeability

reduction experiments and SEM-analysis showed similar results, where both indicated

entrainment and adsorption onto rock surfaces. Large concentrations yielded too high

impairment, and a nanoparticle concentrations should not exceed 0,1 wt %.

The silica nanoparticles had various effects on enhancing oil recovery. The nano-

particle solution utilized did not mobilize sufficient oil when applied as a tertiary

recovery method; where it only increased recovery with 0-1 % above secondary baseline.

Interesting results were however obtained when nanoparticle solution was used as a

secondary recovery method. Here, a significant decrease in residual oil saturation

varying from 2-13 % was observed for the three floods, and an increase in recovery

factor varying from 0-8 % was obtained. The potential for hydrophilic silica nano-

particles as an EOR-agent is existing, but it is clear that a water-wet reservoirs are not

the best target area. Applying hydrophilic silica nanoparticles in a different wetting

system will possibly show a much more promising result.
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Recommendation

This master’s thesis is the first thesis carried out at the Department of Petroleum

Engineering and Applied Geophysics at NTNU, applying nanoparticles for EOR

purposes. There was little experience in the field in advance, which made a lot of

trial and error was inevitable. It is much easier in hindsight to see what should have

been done differently, and where one should have been more consistent. Based on the

experience obtained throughout this thesis, some recommendations for further work

will be presented.

A closer study of how hydrophilic silica nanoparticles alter the wettability of a rock

surface should be executed. This would give a better understanding on how it should be

implemented for EOR purposes. Several flooding experiments examining the effect of

permeability impairment should be conducted. The results obtained in this thesis show

distinct results regarding reduction in permeability, but multiple results are needed in

order to be able to conclude about the causes of impairment with greater certainty.

Establishment of Swi should for further experiments be performed using the porous

plate method. In comparison, identical Swi for sequential flooding are desirable. A lower

and more consistent Swi is more easily obtained by porous plate method. Finally, aging

of core samples using crude oil would be of great interest. As discussed earlier, obtaining

a mixed-wet system will make it possible to examine the effect of wettability alternation

when flooding with hydrophilic nanoparticles. This could enhance the recovery, and be

of economical advantage as the oil could be produced more rapidly.
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Results and Calculations
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A. RESULTS AND CALCULATIONS

A.1 Porosity

Table A.1: Core Data and Porosity Calculations
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A.2 Air Permeability

A.2 Air Permeability

Table A.2: Air Permeability Measurements and Calculations
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Table A.3: Air Permeability Measurements and Calculations
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A.2 Air Permeability

A.2.1 Klinkenberg Plot

Figure A.1: Klinkenberg plot Core #1 Figure A.2: Klinkenberg plot Core #2

Figure A.3: Klinkenberg plot Core #3 Figure A.4: Klinkenberg plot Core #4

Figure A.5: Klinkenberg plot Core #5 Figure A.6: Klinkenberg plot Core #6
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A. RESULTS AND CALCULATIONS

Figure A.7: Klinkenberg plot Core #7 Figure A.8: Klinkenberg plot Core #8

Figure A.9: Klinkenberg plot Core #9 Figure A.10: Klinkenberg plot Core #10

Figure A.11: Klinkenberg plot Core #11 Figure A.12: Klinkenberg plot Core #12
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A.2 Air Permeability

Figure A.13: Klinkenberg plot Core #13 Figure A.14: Klinkenberg plot Core #14

Figure A.15: Klinkenberg plot Core #15
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A. RESULTS AND CALCULATIONS

A.3 Nanofluid

Table A.4: Density and Viscosity Calculations for Variety of Nanofluids

Table A.5: pH and Temperature Readings for Variety of Nanofluids
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A.4 Liquid Permeability

A.4 Liquid Permeability

Table A.6: Result and Calculation for Liquid Permeability Measurements
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A. RESULTS AND CALCULATIONS

A.5 Permeability Reduction

Table A.7: Result and Calculation for Permeability Reduction Experiments with

Nanofluid
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A.6 Establishment of Irreducible Water Saturation

A.6 Establishment of Irreducible Water Saturation

Table A.8: Results from Establishment of Swi for Scenario I and Scenario II
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A. RESULTS AND CALCULATIONS

A.7 Flooding

A.7.1 Flooding Core #10

Table A.9: Results from flooding Core #10 with brine to residual oil saturation, followed

by injection of nanofluid
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A.7 Flooding

A.7.2 Flooding Core #11

Table A.10: Results from flooding Core #11 with brine to residual oil saturation

Table A.11: Results from flooding Core #11 with nanofluid to residual oil saturation
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A. RESULTS AND CALCULATIONS

A.7.3 Flooding Core #12

Table A.12: Results from flooding Core #12 with brine to residual oil saturation, followed

by injection of nanofluid
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A.7 Flooding

A.7.4 Flooding Core #13

Table A.13: Results from flooding Core #13 with brine to residual oil saturation, followed

by injection of nanofluid
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A. RESULTS AND CALCULATIONS

A.7.5 Flooding Core #14

Table A.14: Results from flooding Core #14 with brine to residual oil saturation

Table A.15: Results from flooding Core #14 with nanofluid to residual oil saturation
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A.7 Flooding

A.7.6 Flooding Core #15

Table A.16: Results from flooding Core #15 with brine to residual oil saturation

Table A.17: Results from flooding Core #15 with nanofluid to residual oil saturation
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A. RESULTS AND CALCULATIONS
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Appendix B

Equipment Pictures

B.1 Stabilization of Nanofluids

Figure B.1: Stabilization analysis of nanofluids - Stabilization analysis of three

different nanoparticles in brine prepared with 1wt% solution. From the left Elkem 999,

Aerosil130 and Aerosil300.
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B. EQUIPMENT PICTURES

B.2 Flooding System

Figure B.2: Permeability reduction apparatus - Picture of the equipment used for

permeability reduction experiments. Keller pressure gauge connected to computer

Figure B.3: Flooding apparatus - Picture of set up of flooding apparatus. Pump

connected to three out of four cylinders containing brine, oil and Aerosil300 nanofluid
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B.3 SEM-apparatus

B.3 SEM-apparatus

Figure B.4: SEM-apparatus - Picture of Zeiss Supra 55 VP low vacuum SEM used for

analyzing of core samples after flooding

Figure B.5: Nanoparticle inside SEM - Aerosil300 nanoparticle placed on solid surface

inside SEM for analyzing
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B. EQUIPMENT PICTURES

Figure B.6: Core inside SEM - A core sample placed on solid surface inside SEM for

analyzing

Figure B.7: Carbon-coater - Carbon-coater used for applying by a thin carbon layer

onto core samples to assure conductive samples
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B.3 SEM-apparatus

Figure B.8: Carbon-coater - Core sample placed inside carbon-coater
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B. EQUIPMENT PICTURES
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Appendix C

Glossary

Al2O2 = Aluminium Oxide

MgO = Magnesium Oxide

Fe2O3 = Iron Oxide

SiO2 = Silicon dioxide

A = Area, m2

oC = Unit of measurement for temperature

f = Flow efficency factor
oK = Unit of measurement for temperature

k = Absolute permeability, m2, mD

kabs = Absolute permeability, m2, mD

k0 = Initial permeability

kf = Effective permeability of a fluid

kf = Fluid seepage

krf = Relative permeability of a fluid

L = Lenght, m

mbar = Millibar, 10−3 bar

µm = Micrometer, 10−6 m

nm = Nanometer, 10−9 m

∆P = Differential Pressure, bar

Patm = Atmospheric Pressure, bar

Pc = Capillary Pressure, bar

Pm = Average Pressure, bar

P1 = Inlet Pressure, bar

P2 = Outlet Pressure, bar

PV = Pore Volume m3

q = Rate L/t,m3/s

qf = Rate of a fluid L/t,m3/s

Sor = Residual oil saturation, fraction

Sg = Gas saturation, fraction

So = Oil saturation, fraction

Sw = Water saturation, fraction

Swi = Irreducible water saturation, fraction

Vk = Reference Volume, cc

Vb = Bulk volume, cc

Vo = Volume of oil produced, cc

Vw = Volume of brine produced, cc

Vp = Pore volume, cc

V ∗ = Volume of particles entrapped

wt% = Weight percent

β = Surface Area Coefficient

γ = Share rate dvx
dy

φ = Porosity

φe = Effective porosity

φ0 = Initial porosity

Σ∆φ = Sum of variation in porosity

µ = Viscosity, Pas, cP

µf = Viscosity of a fluid, Pas, cP

ρf = Fluid density g/cm3

τ = Shear stress

sinα = Dip anngle

Abbreviations

EOR = Enhanced Oil Recovery

ESEM = Environmental Scanning Electron

Microscope

E&P = Exploration and Production

NP = Nanoparticles

PSPN = Polysilicon Nanoparticle

RF = Recovery Factor

SEM = Scanning Electron Microscopy

TEM = Transmission Electron Microscopy
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