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Sammendrag

En av de mest suksessfulle anvendelsene av systembiologi har vært utviklingen av genom-
skala metabolske modeler (GSM). GSMer er modeler hvor alle kjente metabolske reak-
sjoner som tar sted i en celle er tatt med, og tillater in silico simulering av cellulær
oppførsel. Dette er et hurtigvoksende fagfelt hvor nye metoder og modeler stadig blir
utviklet og publisert. De mest avanserte GSM’ene inkluderer bade enzymkinetikk og
genutrykk, men så langt har dette kun vært tilgjengelig for Escherichia coli.

Denne masteroppgaven introduserer en ny metoder som utvider en tidligere publis-
ert GSM av Saccharomyces cerevisiae ved å inkorporere enzymkinetikk for å begrense
mulige metabolske tilstander. Dette ble gjort ved å forenkle tidligere utgitte metoder for
E. coli. Denne metoden kalles ”InteRnally Constrained Flux Balance Analysis” (ircFBA).
Metoder ble også utviklet for automatisk innhenting og kategorisering av kinetisk data fra
offentlig tilgjengelige databaser for å muliggjøre konstruksjonen av ircFBA-modeller for
andre GSM’er. Predikerte vekstrater produsert ved hjelp av ircFBA ble påvist til å kor-
relere godt med eksperimentelle målinger av S. cerevisiae i minimalt vekstmedium med
glukose som den eneste karbon- og energikilden.

To algoritmer ble også utviklet for å øke ytelsen til ircFBA ved å endre på kinetiske pa-
rametere. Disse var basert på to forskjellige aspekter av matematisk programmering. Den
første innfører kunstvariabler til ircFBA problemet for å simulere økt fleks i de kinetiske
parameterne. Den andre leter etter minimale endringer til de kinetiske parameterne for
å oppnå den ønskede vekstøkningen. Den andre algoritmen ble påvist til å kunne oppnå
ønskede vekstrater i aerobisk glukose-begrenset vekst ved å endre på kinetiske parameter
på til det meste 6 reaksjoner.

Motivasjonen for å utvikle disse algoritmene var for å kunne lage stamme-spesifikke
GSMer for S. cerevisiae for å kunne modellere stammer som brukes i vinproduksjon.
Begge algoritmene var i stand til å kunne endre på vekstprofilen til ircFBA, men kun den
andre algoritmen var i stand til å gjøre det på en pålitelig måte som ikke innfører globale
endringer til modellen. Metoden har dermed potensialet til å oppnå dette målet.
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Abstract

One of the most successful applications of the principles of systems biology has been the
development of genome-scale metabolic models (GSMs). GSMs are models where every
known metabolic reaction taking place in a cell is included, and allow in silico simulation
of cellular behavior. This is a rapidly expanding field where new methods and models are
constantly being developed and published. The most advanced GSMs incorporate both
enzyme kinetics and gene expression, but so far this has been limited to Escherichia coli.

This thesis introduces a method that extends a GSM of Saccharomyces cerevisiae by
incorporating enzyme kinetics to constrain the the permissible metabolic states. This was
done by simplifying existing methods developed for E. coli. This method is called In-
teRnally Constrained Flux Balance Analysis (ircFBA), and methods were also developed
for the automated retrieval and categorization of kinetic data from publicly accessible
databases to enable construction of ircFBA models for other GSMs. The growth rate
predictions produced by ircFBA were shown to correlate well with experimental mea-
surements of S. cerevisiae in minimal media with glucose as the only carbon and energy
source.

Two algorithms were developed to enhance the performance of ircFBA by altering the
kinetic parameters. These were based on two different aspects of mathematical program-
ming. The first introduces dummy variables into the ircFBA problem to simulate the effect
of altering kinetic parameters during growth rate simulation. The other searches for min-
imal changes to the kinetic parameters in order to reach a higher growth rate. The first
algorithm succeeded in closing growth gaps, but was numerically unstable and difficult
to work with. The second algorithm, however, was demonstrated to be able to close the
gap between ircFBA and experimental growth rates for aerobic glucose-limited growth by
making changes to the kinetic parameters of at most six reactions.

The motivation for developing these algorithms was to use them to create strain-
specific GSMs for S. cerevisiae in order to model strains used in wine production. Both
algorithms were demonstrated to be able to close growth rate gaps, but only the second
one could do it reliably and without making global changes to the model. This algorithm
has potential for future development to actually achieve the stated ambitions. Future work
on the algorithm is currently being planned in co-operation with professor Eivind Almaas.
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Chapter 1
Introduction

As aptly stated by François Jacob in 1974 [8]:

Every object that biology studies is a system of systems.

This view has been echoed in many biological fields such as ecology for a long time,
but has only really been in the mainstream of molecular biology since the start of the
2000s when the field of systems biology started to mature [9, 8]. This was precipitated
by the increase in availability of high-throughput data sets and the increased capacity for
sequencing full genomes. Armed with detailed information about how the components of
biological systems function and interact, systems biology integrates this with genomic data
to create detailed models of biological systems where emergent properties can be studied.

One of the most successful applicants of systems biology has been the development of
genome-scale metabolic models. These are models where every known chemical reaction
is represented in a metabolic network. This enables predicting metabolic states by looking
at the flow of metabolites across the network by simulating growth [3]. Furthermore, by
adding layers of additional complexity to these models in the form of enzyme kinetics and
gene regulation, the predictive capabilities of these models have been compounded [10].

S. cerevisiae has a key role in molecular biology, where it has been a workhorse for ge-
netics research [11], but also in industry where a myriad of more or less well-characterized
strains are used for the production of alcoholic beverages and baked goods [12]. Being able
to model industrially relevant strains of S. cerevisiae would be helpful, but since metabolic
models are only available for the lab strains, which are known to be phenotypically quite
dissimilar from from non-lab strains [13], this can be difficult to do. However, in the
cases where the metabolic states that the non-lab strain is capable of reaching is contained
within an existing metabolic model, simulating the cellular metabolism should be possi-
ble. Metabolic models typically require information about the uptake and excretion rates
of various metabolites to be able to make accurate predictions, however [14]. Metabolic
models incorporating other aspects of cellular metabolism than the metabolic network it-
self, such as enzyme kinetics, should then allow for modelling of different strains without
measuring uptake rates if the constraints are strain specific [5, 15]. Unfortunately, no such
methods are available for S. cerevisiae.
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This thesis aims to deliver on this, by taking an already published metabolic model of
S. cerevisiae and adding enzyme kinetics and mass constraints to it. Furthermore, meth-
ods for tailoring the model to new kinetic coefficients to produce more reliable growth
rate predictions are developed, with the ultimate goal of one day being able to use it to
customize the metabolic model to represent any strain where enough growth phenotyping
has been done.

2



Chapter 2
Theory

2.1 Linear programming

Linear programming (LP) is a form of mathematical programming based on optimizing
linear functions subject to linear constraints. As in the broader field of mathematical
programming, the function being optimized is known as the objective function. Linear
programming has been applied in a broad set of fields, such as economics, logistics, chem-
istry and modelling of metabolism [14, 16]. An overview of some basic concepts of linear
programming will be provided here based on Lundgren [16].

2.1.1 The Standard Form of a Linear Program

A linear programming problem is composed of three parts: an objective function, a set of
linear constraints and a set of restrictions on the sign of the variables.

The objective function is simply a linear function representing the value being opti-
mized in the linear programming problem. Linear programming allows for the objective
function to be minimized or maximized, although it is typically expressed as a minimiza-
tion problem in the standard (or canonical) form of the problem. The linear constraints can
include both equalities or inequalities, although inequalities have to be converted to equal-
ities in order to satisfy the conditions of the standard form. This can be done by adding
additional variables to the problem. The same applies for the restrictions on the sign of the
variables. Linear programming allows for both positive, negative or unrestricted signs on
the values of variables, but the standard form requires variables to be non-negative. Again,
this can be done through suitable variable transformations, or by introducing additional
variables.

In general, then, the standard form of a LP problem with n variables and m linear
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constraints can be expressed as:

min z =

n∑
j=1

cjxj (2.1)

s.t.
n∑
j=1

aijxj = bi, i = 1, ....,m (2.2)

xj ≥ 0, j = 1, ...., n (2.3)

where z is the value of the objective function, cj is the objective value coefficient for
variable xj , aij is the coefficient for variable xj in the ith constraint and bi is the right-
hand side in the ith constraint. Equation 2.1 then specifies the optimization problem, 2.2
gives the set of linear constraints, and 2.3 gives the variable sign destrictions.

Another common representation of the standard form of linear programming can be
given using matrix notation. The same general linear programming problem can be stated
as:

min z = cT x (2.4)
s.t. Ax = b (2.5)
x ≥ 0 (2.6)

A = [Ai,j ] is the coefficient matrix for the constraints in equation 2.2, b = [bi] is a m× 1
vector, x = [xi] is a n×1 vector and c = [ci] is a n×1 vector.. The constraints in equation
2.5 describe the feasible region of the LP problem, and any solution satisfying this equation
is known as a feasible solution. Conversely, any solution violating this equation is referred
to as an infeasible solution.

2.1.2 Solving LP problems
The region X = {x|

∑n
j=1 aijxj = bi, i = 1, ....,m} defined by equation 2.2 is known as

the feasible region of the problem, and can geometrically be classified as a polyhedron, or
more specifically as a polytope when X is bounded. The edges of the polytope are known
as extreme points, and the polytope itself can be defined as the set of all convex combi-
nations of its constituent extreme points. The extreme points themselves arise from the
intersections of constraints. Furthermore, due to the linearity of LP, any optimal solution
necessarily has to be located on surface of the feasible region. Linearity also ensures that
the feasible region is convex, which implies that any local optimal solution is also a global
optimal solution. This combined with the fundamental theorem of linear programming,
which guarantees that an optimal solution can be found in one of the extreme points of the
feasible region, provided that the feasible region is both bounded and non-empty, gives the
basis for several solution strategies.

Due to the fundamental theorem of linear programming a possible solution strategy
is simply to enumerate every single extreme point, evaluate the objective function value
in each of them, and choose the best solution. This, however, is an extremely inefficient
approach, and several vastly better methods are available. One of these is the simplex
method.
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The simplex method was developed by George Dantzig in 1947, and remains a popular
algorithm for solving LP problems [17]. The simplex method is an algebraic method, but
the basic idea behind it is geometric. The method works by starting at a pre-determined
extreme point (usually the origin), and moving to adjacent extreme points. For an LP prob-
lem with n variables, extreme points are defined as adjacent if they share n− 1 constraint
boundaries. Adjacent extreme points are important, as they can be used as an optimality
test. If no adjacent extreme point has a better objective function value than the extreme
point being considered, then that extreme point is a local optimal solution. Due the prob-
lem being convex, that implies that a global optimum has been found [17]. Until the
optimality test has been met, the simplex method moves along the surface of the feasible
region, jumping from extreme point to extreme point. The criteria for choosing the ad-
jacent extreme point is the direction the objective function improves the most in, which
means that as long as the objective function can be strictly improved in every iteration, the
simplex method will never visit an extreme point more than once, and the problem will be
solved in a finite number of steps.

2.1.3 Duality theory & Shadow Prices
The LP problem described by equations 2.1-2.3 or 2.4-2.6 is known as the primal problem.
Any primal problem has an associated problem, known as the dual problem. The dual
problem has several interesting properties, and is of central importance both to sensitivity
analysis and in developing new LP solution methods [16, 17].

In order to state the dual problem in its general form, it’s helpful to formulate the
primal problem in a slightly different version of the standard form than in equations 2.4-
2.6. A slightly different, but wholly legitimate, version of the standard form is formulated
as a maximization problem, with the constraints all being ≤ inequalities. This gives rise
to the general description of the dual problem:

Primal Dual

max z = cT x min w = bT v

s.t. Ax ≤ b s.t. AT v ≥ c
x ≥ 0 v ≥ 0

where w is the dual objective function, and v is an n × 1 vector where vi is the dual
variable. The dual variable vi is associated with constraint i (see equation 2.2), and in the
context of the primal problem, we have that:

vi =
dZ

dbi
(2.7)

where bi is the right-hand side of constraint i and Z is the optimal objective function
value. When discussing the primal problem, vi is usually referred to as the shadow price.
When interpreted as the derivative of the objective function, the shadow price is only valid
for a certain range of ∆bi, and the observed change in Z will always be worse than vi
would suggest the if this range is violated[17, 18]. Figure 2.1 illustrates the potential effect
changing the right-hand side in a ≤ constraint can have on a maximization LP problem.
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Figure 2.1: The effect of increasing the right-hand side of a ≤ constraint in a LP maximization
problem. The breakpoints in the line occur when the shadow price range is violated, meaning that
the increase in growth rate is less than desired.

2.1.4 Quadratic programming
While linear programming has a wide area of application, there are cases where a linear
objective function or constraints are not sufficient. The broader field of nonlinear program-
ming deals with problems of this type. A special case of nonlinear programming is known
as quadratic programming (QP), and is related to linear programming in that it has linear
constraints, but differs in having a quadratic objective function. The general QP problem
can be stated as

min z = cT x +
1

2
xTQx (2.8)

s.t. Ax = b (2.9)
x ≥ 0 (2.10)

where, as with LP, c is a n × 1 vector that contains the coefficients for the linear part of
the objective function, A is the linear constraint coefficient matrix of size m × n, b is a
m×1 vector that contains the constraint right-hand sides and x is a n×1 vector where the
entries are variable values. QP, however, expands on LP by including the Q matrix, which
is a n× n matrix. This matrix is known as the quadratic matrix[16].

As QP is a form of nonlinear programming, solving a general QP problem is much
more difficult than a corresponding LP problem. In fact, the general QP problem has
been proven to be NP-hard, meaning that there is no algorithm capable of solving it in
polynomial time [19]. There are, however, special cases that can be solved. One of these
is if the matrix Q is positive semidefinite, in which case the problem is convex. In this
special case, optimal solutions can be found within polynomial time [16, 17]. A test for Q
being positive semidefinite can be performed by checking if the inequality

xTQx ≥ 0 (2.11)

holds for every x. If it holds, the problem is convex[17].

6



2.2 Enzymes

2.2 Enzymes
Enzymes are highly specialized proteins capable of catalyzing specific chemical reactions.
As life is unsustainable without catalysis of chemical reactions [20], enzymes are critically
important to the existence of cellular life. A brief overview of the basics of Michaelis-
Menten enzyme kinetics and the classification of enzymes will be provided in this section.

2.2.1 Michaelis-Menten kinetics
The field of enzyme kinetics deals with the measurement and characterization of the reac-
tion rates of enzyme catalyzed reactions. One of the standard models of enzyme kinetics
is known as Michaelis-Menten kinetics, and has a central part in the history of biochem-
istry and has served as a standard when characterizing the kinetic properties of enzymes
[20, 21]. The following description of Michaelis-Menten kinetics is taken from Nelson &
Cox [20].

Michaelis-Menten kinetics models enzymatic reactions according to:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (2.12)

where E is the enzyme catalyzing the reaction, S is the substrate, ES is the enzyme-
substrate complex and P is the product. Here k1 is the reaction rate for the formation of
the enzyme-substrate complex, k−1 is the rate for the breakdown of the complex into its
original constituent parts and k2 is the rate of the formation of the product. This model
assumes that reverse reaction, i.e. enzyme and product combining to form the enzyme-
substrate complex, does not occur at any appreciable rate. This implies that the forma-
tion of enzyme and product is the rate limiting step. Additionally, it makes the so-called
steady-state assumption, which assumes that rate of ES formation is equal to its rate of
breakdown. Using these assumptions, the Michaelis-Menten equation can be derived:

V0 =
k2[Et][S]

Km + [S]
(2.13)

where V0 is the initial rate of product formation, [Et] is the total enzyme concentration,
i.e. [Et] = [ES] +E, and Km is the concentration of S where V0 = k2[Et]

2 . k2[Et] is also
denoted as Vmax, as it gives the maximal attainable reaction rate given the current enzyme
concentration. The Michaelis-Menten equation can also be used when the final reaction
step is not the rate limiting step, or when the number of reaction steps is higher than in
equation 2.12. A more general rate constant, kcat (also known as the turnover number), is
therefore typically used rather than k2, giving the Michaelis-Menten equation in its final
form:

V0 =
Vmax[S]

Km + [S]
(2.14)

where

Vmax = kcat[Et] (2.15)

kcat is also known as the enzyme turnover number.
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2.2.2 EC numbers

The most widespread classification system used to classify enzymes is the Enzyme Com-
mission number (EC number) system, which is based on the reaction the enzyme catalyzes.
The EC number system is a numerical system, where an enzyme is given a numeric code
with four numbers separated by periods. The first number categorizes it into its broadest
functional class, while the following numbers categorize the enzyme into increasingly nar-
rower classes [22]. The EC number classification system is extensive, and as of january
2014 5300 valid EC classes were available, with more being added regularly [23].

2.3 Genome scale metabolic models
One of the main tasks of the field of biochemistry has been the reconstruction and mapping
of cellular metabolism [20]. With the advent of the genomic era and the emergence of sys-
tems biology, it has been possible to integrate the extensive data about individual enzymes,
chemical reactions, and pathways, assembled through decades of experimental work with
genomics data [3, 24]. This has enabled the construction of genome-scale metabolic mod-
els (GSMs), which are models encompassing every known chemical reaction taking place
in a given organism [3]. GSMs are also typically annotated with the genes involved in
the reaction, and gene knockout experiments can be simulated by disabling reactions [14].
These models give a network view of metabolism, where cellular metabolism is seen as
an integrated whole rather than as consisting of isolated pathways [25]. GSMs have been
applied to solve a broad range of tasks, such as guiding metabolic engineering and aiding
in the interpretation of high-throughput data [24].

2.3.1 Model reconstruction

The first genome-scale metabolic reconstructions were primarily based on biochemical
data compiled for model organisms. As a result, most of the early published reconstruc-
tions were for commonly studied model organisms, such as Escherichia coli [3, 26]. How-
ever, by utilizing annotated genomes, it has since been possible to create metabolic recon-
structions for much less well-studied organisms [26].

The process of creating a GSM is essentially iterative. The first step is to create an
initial metabolic model based on the annotated genome, meaning that reactions are added
if regions of the genome are annotated as encoding enzymes capable of catalyzing those
reactions [26]. The second step is to improve the quality of the initial model to include
organism-specific features and to expand on the initial set of reactions. This is typically
done by integrating knowledge from other sources, such as biochemical data or organism-
specific databases [26, 3]. Reactions needed to be able to simulate growth are added
here, such as non-enzymatic reactions. Compartments are also included, where a split
between the intracellular and extracellular environment is the most basic one. In order to
support having different compartments, transport reactions have to be added [2]. Another
important part of this step is the determination of biomass composition, as this is critically
important for simulating growth [14, 2]. The third step is to convert the reconstruction to
an actual computational model. The final step is a debugging step, where the performance
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Figure 2.2: A stepwise list of the steps involved in producing a metabolic reconstruction. Figure
taken from [2].

of the computational model is evaluated by validating model behavior. Information from
this step is used to go back to step two, where missing reactions (gaps) are identified and
filled in. This can be done by identifying incomplete pathways, and filling in the missing
reaction(s). Gap-filling is one of the more challenging parts of assembling a metabolic
reconstruction, and should preferably only be done when there is some sort of evidence
that the gap actually should be filled. For example, filling in a gap in order to enable
lysine synthesis should only be done if the organism is known to be able to synthesize
lysine [2]. This basic workflow is illustrated in figure 2.2. The key here is that the second
step, refinement of reconstruction, is a circular process, where the results from the model
validation step is used to guide further manual curation [2, 26].

The Biomass Reaction

The biomass reaction is an important part of any metabolic reconstruction, and the compo-
sition of it is generally determined during the initial refinement step of the process outlined
above [26]. The biomass reaction is based on the macromolecular makeup of exponentially
growing cells. The first step is to identify the fraction of the main macromolecular groups,
i.e. DNA, RNA, lipids and protein, and then to calculate the amounts of metabolites in the
metabolic reconstruction needed to produce a unit of biomass [27, 26]. More advanced
biomass reactions can also be created by incorporating information about the amount of
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energy needed to produce the building blocks of the biomass reaction, or by adding in
micronutrients, like vitamins and cofactors [27].

2.3.2 The Stoichiometric Matrix
The core of a GSM is the stoichiometry of the organism’s metabolic machinery, which
can be expressed mathematically in several ways. As an example, consider a toy system
consisting of the following reactions:

∅ v1−→ A (2.16)

∅ v2−→ B (2.17)

A+B
v3−→ C (2.18)

C
v4−→ D (2.19)

D
v5−→ ∅ (2.20)

This toy system consists of four metabolites (A,B,C,D) and five reactions. v1, v2, v3, v4

and v5 denote the the reaction fluxes for the corresponding reaction (r1, r2, r3, r4 and
r5). In terms of a cell, equations 2.16-2.17 can be interpreted as exchange reactions for
metabolites A and B. Exchange reactions are reactions where the cell takes up metabolites
from the environments, and these can be used to define the extracellular environment a
GSM is opearting in. Meanwhile, equation 2.20 is an excretion reaction where metabolite
D is expelled into the environment. A graphical depiction of this system can be seen
in figure 2.3, where the nodes are metabolites, the edges are reactions and the border
symbolizes the division of the cell from the environment.

The stoichiometry of this system can be represented with matrix notation, where S is
a 5× 4 matrix:

S =

A B C D


r1 1 0 0 0
r2 0 1 0 0
r3 −1 −1 1 0
r4 0 0 −1 1
r5 0 0 0 −1

(2.21)

where Si,j denotes the change in concentration of metabolite j caused by reaction i per
unit of flux in reaction ri.

This matrix notation can be extended to a generalized metabolic reconstruction, where
S, the stoichiometric matrix, is a m × n matrix, where m is the number of metabolites
in the reconstruction and n is the number of reactions [3, 14]. The matrix encodes the
stoichiometry of the metabolic reconstruction, and can generally be expressed as:

Sm,n =


s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n

...
...

. . .
...

sm,1 sm,2 · · · sm,n

 (2.22)
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Figure 2.3: A graphical depiction of a toy stoichiometric matrix. The metabolites A and B are
imported with exchange reactions with reactions V1 and V2. A pathway consisting of two reactions
V3 and V4 leads accumulation of D, which is then exported out of the system with reaction V5.
Figure adapted from [3].

where Si,j is defined in the same way as in the toy example above.
With this definition of the S matrix, the physiological capabilities of the metabolic recon-
struction can be explored. In particular,

dx
dt

= Sv (2.23)

where v =
(
v1 · · · vn

)
, is the flux matrix, and x =

(
x1 · · ·xm

)
is the vector of concentra-

tion. S is then a linear transformation on v, transforming the flux vector into a vector of
time derivatives of the concentration [3].

2.4 Flux balance analysis
One of the most successful applications of GSMs has been to perform Flux Balance Anal-
ysis (FBA) [24]. FBA is a mathematical framework enabling the simulation of metabolic
phenotypes and growth [14]. The aim of FBA is to simulate exponentially growing cells,
and makes the assumption that the cell reaches a steady state where there is no net change
in any of the metabolite concentrations. This is equivalent to the time derivative of the
concentration vector being equal to the null vector, enabling the calculation of metabolic
phenotypes through linear programming:

max/min z = cT v (2.24)
Sv = 0 (2.25)

lbi ≥ vi ≤ ubi, i ∈ n (2.26)

where Sm,n is the stoichiometric matrix for the metabolic reconstruction being optimized,
c is a 1×m vector encoding the objective function coefficients, v is the flux vector, lbi and
ubi are the lower and upper bounds of flux i, and z is the value of the objective function.
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Typically the flux bounds are set to be essentially unrestricted, except for the exchange
reactions where the bounds are used to simulate the growth medium [14].

FBA typically optimizes for growth, and the objective function is therefore normally
either the biomass reaction itself or some sort of analogue [14]. The solution of an FBA
problem then gives a prediction for the growth rate (through the biomass reaction) as
well as predictions for the flow of metabolites across the metabolic network. It should be
noted, however, that the flux vector predicted by FBA is generally not unique, and there
is typically an infinite number of alternate optimal flux vectors [28]. The exact amount of
variation in an optimal flux vector varies and is dependent on the network structure and
the environmental conditions (i.e. the flux bounds) [28, 3]. As a consequence of this, the
predicted flux vector should be considered critically and not be interpreted as representing
the actual internal flux distribution of the organism being simulated [28].

2.4.1 Phenotype Phase Plane & the Line of Optimality
Computing a growth rate and an associated flux vector with FBA is trivial when the ex-
change reaction fluxes are unbounded. This does not, however, produce results that can
be validated experimentally. In order to produce physiologically meaningful growth rate
predictions, the bounds of nutrient uptake exchange reactions have to be constrained ac-
cording to experimentally measured uptake rates for the organism being modelled [3, 14].
If the organism has been allowed to adapt to the environment it’s being grown in, a high
quality FBA model can usually predict the growth rate with high accuracy [14, 24, 29, 1].

FBA can still be used to examine the metabolic capabilities of the metabolic recon-
struction when experimental measurements of uptake rates are unavailable, however. A
common method for evaluating the phenotype is by examining the phenotype phase plane
(PhPP).

PhPP analysis is a method for evaluating the effect of two separate metabolite uptake
rates on the growth rate of the model at the same time. In PhPP analysis, the fluxes
for the uptake exchange reactions for the metabolites being examined are locked to pre-
determined values by setting the lower bound equal to the upper bound. A plane is then
generated by examining the growth rate associated with each combination of uptake rates
for the two metabolites [3]. An example of a PhPP of Saccharomyces cerevisiae can
be seen in figure 2.4, where the two exchange reactions being examined are the uptake
rates for glucose and oxygen. PhPP analysis useful, as it allows for the identification of
phenotypically distinct phases. A phase is defined as an area of the PhPP where the model
predicts the same metabolite excretion profile as well as the same relative growth response
when the two uptake rates are varied. Phases can be identified by examining the ratios of
the shadow prices associated with the two constraints [3]:

α = −πx
πy

(2.27)

where πx and πy are the shadow prices associated with exchange reaction x and y respec-
tively. α can be used to interpret the PhPP, as it stays constant within a phenotypic phase.
The sign of α is also informative, as it can be used to characterize the effect the metabo-
lites being analyzed are having on the growth rate. A negative sign indicates that both
exchange reactions limit the growth rate, whereas a positive sign indicates a futile phase,
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Figure 2.4: FBA phenotype phase plane of the iTO977 metabolic reconstruction of S. cerevisiae.
Each point in the plane gives the growth rate when glucose and oxygen is fixed. The red line is the
line of optimality, and shows the area of the phenotype phase plane where the carbon source is fully
oxidized.

where one of the uptake rates limits the growth rate. A phase characterized by a positive
α exhibits wasteful metabolism, and phases like these are thought to be unstable in actual
organisms. In fact, experimental evidence suggests that organisms exhibiting this sort of
wasteful metabolism prior to adaptation to its environment tend to move away from it in
the short term adaptation[3, 30, 24] . If either πx or πy is zero, α will be either zero or
undefined. This represents a state where one of the metabolites has no effect on the growth
rate. α fails to identify infeasible phases, but these can easily be identified as regions of
the PhPP with zero growth. Finally, if x is the uptake of a carbon source, the line along
which the carbon source is fully oxidized can be seen in the PhPP as the line where, for
a given value of the carbon uptake rate, the growth rate is maximal. This is known as the
line of optimality and represents the optimal usage of the two metabolites being consid-
ered [3]. The expectation is then that, if metabolism is optimally maximized for growth,
experimental measurements of the uptake rates along with the growth rate should should
lie along the line of optimality [30]. Figure 2.5a is a plot of α for the PhPP in figure 2.4.
This illustrates that this PhPP is split into two feasible phases. The actual placement of
these phases can be seen in 2.5b. The first, P1, is characterized by a positive α, indicating
that one of the metabolites is in excess. In this case, the excess metabolite is oxygen and
the phase is characterized by a reduced growth rate due to the need to dissipate excess oxy-
gen. P2 has a negative α which indicates that the growth rate is limited by both glucose
and oxygen. N is an infeasible phase where no growth is observed. The line of optimality
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splits P1 and P2, and can also be seen in figure 2.4 as a red line in the PhPP.

Figure 2.5: A) The ratio of the shadow prices for the glucose and oxygen exchange reactions for the
yeast metabolic reconstruction iTO977. A positive value means that the shadow prices have opposite
signs, meaning that one of them is constraining the growth rate by being too high. A negative value
means that both substrates are constraining the growth. B) The boundaries for the different phases.
P1 is the futile phase, while P2 is limited by both metabolites.

2.4.2 Flux coupling analysis
The metabolic network obtained from the reconstruction can also be studied on a purely
topological level. One interesting question here is to what degree different reactions in
the network are coupled together when the steady state assumption (Sv = 0) holds. Flux
coupling analysis is a method for answer this question [31].

The aim of flux coupling analysis is to classify the topological relationship between
every pair of reactions, vi and vj , into one of four categories [31]:

1. Fully coupled: vi is fully coupled to vj if, for every valid flux through vi, there is a
fixed corresponding flux through vj and the other way around.

2. Partially coupled: vi is fully coupled to vj if a non-zero flux in vi necessitates a
non-zero flux in vj and the other way around.

3. Directionally coupled: vi is partially coupled to vj if a non-zero flux in vi necessi-
tates a non-zero flux in vj , but not the other way around.

Various software packages are available that can perform flux variability analysis [31, 32,
33]

2.5 FBA with internal constraints
Basic FBA with growth rate maximization has become the field standard for applying
metabolic reconstructions, but numerous extensions have been developed [24]. Many of
these extensions attempt to further constrain the optimal solution flux distribution beyond
what is imposed by the network structure of the metabolic reconstruction [34, 5, 35, 15].
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One approach has been to add some sort of internal constraint on the flux sum, which
has the effect of drastically shrinking the optimal flux distribution [34]. These methods
are useful for predicting growth rates without having nutrient uptake rates under some
conditions. Two intimately related methods for doing this are known as Flux Balance
Analysis with Mass Constraints (FBAwMC) [15] and MetabOlic Modeling with ENzyme
kineTics (MOMENT) [5].

2.5.1 FBAwMC
FBAwMC is a basic extension of FBA based on the assumption that the permissible flux
through a reaction is based on the abundance of the enzyme catalyzing that reaction, and
that any enzyme takes up a certain amount of volume. As the cytoplasm is crowded by a
variety of macromolecules, only a certain amount of the volume is available to enzymes.
The total volume of the cell is then used to constrain the enzyme concentrations [15, 15].
Mathematically, for a metabolic reconstruction with n reactions and where G is the set of
indices for the g enzymatic reactions, this can be done by adding g variables and adding
the following constraints to the FBA problem in equations 2.24-2.26 [15]:∑

i∈G
λiEi ≤

1

C
(2.28)

n∑
i∈G

aivi ≤ 1 (2.29)

where λi is the molecular volume of enzyme i, Ei is the concentration of enzyme i, C is
the cytoplasmic density of the organism being modelled, and ai = Cλi

bi
is the crowding

coefficient of reaction i, where bi is a kinetic parameter. Equation 2.28 constrains the total
enzyme concentration, while equation 2.29 constrains the reaction fluxes by incorporating
the molecular crowding coefficient. The flux distribution constraint does not constrain
reactions individually, but rather constrains the flux sum in aggregate.

FBAwMC has been demonstrated to be able to predict growth rates for E. coli in a
limited set of single-substrate limited media without experimental measurements of nutri-
ent uptake rates [31]. It should be noted, however, that the average value of the E. coli
crowding coefficient was used for every reaction in the model due to a dearth of accurate
measurements for E. coli enzymes [31].

2.5.2 MOMENT
As an alternative to using molecular crowding coefficients, MOMENT was developed to
incorporate kinetic data directly [5]. MOMENT takes advantage of the gene-to-reaction
mapping available in metabolic reconstructions, and constrains individual fluxes rather
than the flux distribution in aggregate. MOMENT assumes a steady state (equations 2.26-
2.25), as in an FBA or FBAwMC problem. The turnover number for a reaction i, kcat, i,
is incorporated into the model along with a variable representing the concentration of the
enzyme catalyzing the reaction, gi, by using the Vmax equation (equation 2.15). For any
enzyme catalyzed reaction i, it then adds one of the following three constraints to the
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optimization problem [5]:

vi ≤ kcatigi (2.30)
vi ≤ kcati(ga + gb) (2.31)
vi ≤ kcatimin(ga, gb) (2.32)

where kcat is the turnover number of the enzyme catalyzing the reaction. Turnover num-
bers derived from the organism being studied are used when available, otherwise the
turnover number is estimated from other organisms or by the average of all the other
turnover numbers in the model. Equation 2.30 is used when the reaction is catalyzed by the
gene product of a single gene, 2.31 when the reaction can be catalyzed by two (or more)
different gene products and 2.32 when the reaction is catalyzed by a complex consisting
of two gene products. MOMENT also allows for more complex gene-to-reaction relation-
ships, and handles this by introducing various auxiliary variables [5]. These constraints
have the same role as equation 2.29 in FBAwMC. Turnover numbers can be obtained from
databases like BRENDA [36] and SABIO-RK [37]. In order to constrain the enzyme con-
centrations, MOMENT uses a capacity constraint similar to equation 2.28:∑

i∈G
MWigi ≤ C

[gprotein
gDW

]
(2.33)

where MWi is the molecular weight of enzyme i, and C is the fraction of the total dry
weight which is composed of protein. Accurate values for the enzyme molecular masses
can be obtained from various databases, such as UniProt [38], or estimated from the gene
sequence.

MOMENT also differs from FBAwMC in its choice of objective function. Rather than
optimizing the growth rate directly, MOMENT is formulated as a nonlinear non-convex
optimization problem [5]:

max z =
vATP∑n
i=1 v

2
i

(2.34)

where vATP is the ATP yield. The logic behind this objective function is based on the
hypothesis that at optimal metabolic states, ATP production is maximized while enzyme
production is kept minimal [39]. In practice, a quadratic programming approximation of
this objective function is used when actually optimizing the model [5].

In contrast to FBAwMC, both of the two key model parameters, kcat and MW, can be
obtained from publicly accessible databases. As a consequence of this, MOMENT is able
to predict growth rates for E. coli across a much more diverse set of growth media than
FBAwMC [5].

2.6 Saccharomyces cerevisiae
Saccharomyces cerevisiae, also known as baker’s yeast, has been a workhorse for genet-
ics and biochemistry research since the early twentieth century [40], and is one of the
standard model systems for studying eukaryote molecular biology [11]. S. cerevisiae is a
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unicellular fungus that can also grow as long filaments under certain conditions [40]. It
has several properties making it an ideal model organism, such as the ability to be grown
on inexpensive media and a quick doubling time of around 90 minutes [11]. The S288C
strain of S. cerevisiae was the first eukaryote genome to be fully sequenced [41], and this
strain serves as one of the reference strains for the species. The S288C genome consists
of 12 million base pairs, across 16 haploid chromosomes.

In addition to being a model organism for scientific work, S. cerevisiae also has sig-
nificant industrial and cultural significance. This is due to its ability to perform ethanol
fermentation, which has been used to produce alcoholic beverages for over 7000 years
[40, 11]. Figure 2.6 shows an overview of the ethanol fermentation pathway. An inter-
esting aspect of S. cerevisiae metabolism is that fact that fermentation occurs even in the
presence of oxygen at high concentrations of glucose. This is known as the Crabtree effect
and is an example of respiro-fermentative metabolism, where fermentation and respiration
occur at the same time [42].

Figure 2.6: The ethanol and acetate fermentation pathway in S. cerevisiae. Although not shown on
the figure, the conversion of acetaldehyde to acetate reduces NAD(+) to NADH. Taken from [4].

2.6.1 Metabolic reconstructions of S. cerevisiae
While the number of organism with available metabolic reconstructions continues to grow,
S. cerevisiae remains one of the the only organism with metabolic reconstructions that have
gone through multiple revisions and rounds of improvement over a time scale of decades
[29]. The biggest currently available model is the consensus model, known as the Yeast
7 model, signifying it as the 7th published iteration of the S. cerevisiae consensus model
project, and consists of 916 genes, 3493 reactions and 2218 metabolites [43]. An alter-
native to the Yeast 7 model is the smaller iTO977 model, consisting of 977 genes, 1566
reactions and 1353 metabolites [1]. While the Yeast 7 model has nearly twice as many
reactions as iTO977, the majority of the difference comes from Yeast 7 having more du-
plicate reactions to accommodate the larger number of compartments. While the Yeast 7
model is more complex, it has not been demonstrated to predict growth rates more accu-
rately than iTO977 [29]. iTO977 was based on the original yeast consensus network and
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iIN800, and further curated and refined to support integration with OMICS data [1]. The
phylogeny of iTO977 can be seen in figure 2.7.

Figure 2.7: The phylogeny of the iTO977 model. iTO977 was sourced based on two previously
published models, Yeast 1.0 and iIN800. Figure taken from [1].

2.7 Hierarchical clustering
Hierarchical clustering (HC) is a form of cluster analysis, where the goal is to group objects
into clusters, preferably in a hierarchy so that more similar clusters are grouped together
[44]. The following description of HC is based on Friedman [44].

HC methods can theoretically be performed on any data set where a numerical dissim-
ilarity data points can be obtained. This is done by considering the pairwise dissimilarity
between groups of data points. The aim of HC is then to create a hierarchical repre-
sentation of the data set, where at the lowest level of the hierarchy, every data point is
represented as its own cluster, while at the highest point every data point is included in a
single cluster. This can be represented as a rooted tree, where the root is the entire data
set, the nodes are clusters and the leaf nodes are the individual data points. The pairwise
dissimilarity between clusters increases monotonically at each level compared to the one
below it. The tree can then be viewed graphically by making the height of the nodes in
a given level of the tree proportional to the pairwise dissimilarity between clusters. Plots
of this type are known as dendrograms, and are useful for interpreting the results of HC.
A dendrogram for a data set where the data points are vectors of random numbers can be
seen in figure 2.8.

This clustering can be done in either a bottom-up or top-down method. The bottom-up
method works by starting at the lowermost level, where every data point is its own cluster,
and creating the next level by merging the two clusters that are the least dissimilar. On
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2.7 Hierarchical clustering

Figure 2.8: A dendrogram for a matrix of randomly generated numbers.No real clustering pattern
can be seen.

the other hand, top-down methods are recursive and work by starting at the top and then
splitting one cluster to create the lower level. The split cluster is chosen to maximize the
between-cluster dissimilarity between the two resulting clusters.

In order to perform either top-town or bottom-up HC, some sort of cluster dissimilarity
measure is required. For two clusters G and H , the dissimilarity can be expressed as
d(H,G) where di,j is the dissimilarity measure between the two data points i and j. For
bottom-up HC, the aim is to minimize d(H,G). The three most popular methods for doing
bottom-up HC are single linkage, complete linkage and average linkage, These methods
differ by how d(H,G) is defined:

• Single linkage: d(H,G) = min
i∈H,j∈G

di,j

• Complete linkage: d(H,G) = max
i∈H,j∈G

di,j

• Average linkage: d(H,G) = 1
NGNH

∑
i∈G

∑
j∈H di,j

where NG and NH are the number of data points in G and H respectively. Single linkage
merges the clusters with the most similar pair of data points (nearest neighbor), complete
linkage merges the two clusters where the two most dissimilar data points are most similar,
while average linkage merges the two clusters that are the most similar on average. These
three methods tend to produce similar results for data sets with a high degree of natural
clustering.

The quality of the resulting dendrogram can then be evaluated with the cophenetic
correlation coefficient. This is a measure of how well the pairwise dissimilarity, di,j , is
correlated with the between-cluster dissimilarity from when clusters containing i and j
were first merged in the construction of the dendrogram. The closer this value is to 1,
the better the dendrogram maintains the original pairwise distance between the data points
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[45]. There is no pre-defined procedure for deciding on where the cut a dendrogram to
get the best clustering, but several approaches exist. The most basic approach is to simply
make a horizontal cut in the dendrogram to get an arbitrary number of clusters based on
what ”looks” right [44]. A less subjective alternative is to use an inconsistency metric. This
is a way of quantifying how high a link in a dendrogram is compared to other links at the
same level. Links scoring high on the inconsistency metric are then said to be inconsistent,
while low scoring links are consistent. The justification for this approach is that high links
form when dissimilar clusters are merged during the construction of the tree. As such,
measuring the linkage inconsistency and using it to cut the dendrogram avoids the issues
associated with just cutting based on the eyeball test [46, 47].
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Chapter 3
Methods & Software

3.1 Software

A brief overview of the different types of software used in this project will be given here.

3.1.1 Matlab

MATLAB is a proprietary programming language designed for numerical computation.
Data analysis was performed by using the MATLAB 2015b Statistics and Machine Learn-
ing Toolbox [48]. The following external MATLAB packages were used for metabolic
model simulation and analysis.

COBRA toolbox

The COnstraints Based Reconstruction and Analysis (COBRA) toolbox version 2.0.6 is
a MATLAB package for performing constraint-based analysis on metabolic reconstruc-
tions [49], was used for all growth simulations for this project. When using COBRA,
metabolic models are represented as objects where the fields are the various components
of the metabolic reconstruction. When possible, the methods developed in this project
were designed to use the existing COBRA data types to ensure compatibility with the
standard COBRA methods.

F2C2

Fast Flux Coupling Calculator (F2C2) is a COBRA toolbox-compatible MATLAB pack-
age for performing flux coupling analysis [32]. F2C2 takes the stoichiometric matrix as
input, and returns a matrix recording the flux coupling relationships as well as a list of
blocked reactions. Due to F2C2 not supporting the Gurobi solver, the GLPK solver [50]
was used instead.
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3.1.2 Gurobi

Gurobi is a proprietary mathematical programming solver [51]. Gurobi has an easily ac-
cessible MATLAB interface, and recent versions of the COBRA toolbox [49] has added
support for Gurobi. Gurobi 6.0.5 was used to solve all LP and QP problems in this project.

3.1.3 Python

All automated accession of external databases and processing of the the resulting data was
done with written scripts in Python. The version of Python used was Python 2.5 [52].

3.2 ircFBA

FBAwMC and MOMENT are both able to make predictions for the maximal growth rates
for E. coli in limited growth media with glucose as the only carbon and energy source
[5, 34], but so far this approach has not been extended to organisms other than E. coli.
Internally Constrained FBA (ircFBA) was developed to be an alternative to MOMENT [5]
and FBAwMC [15] that could be easily applied to existing metabolic reconstructions for
organisms other than E. coli. ircFBA uses the mathematical description of the MOMENT
problem as a basis, but employs linear programming to optimize for growth, simplifies the
representation of complexes and makes the further assumption that an individual enzyme
molecule can only carry flux in a single reaction. It does, however, use the same enzyme
concentration constraint as MOMENT.

Instead of defining the concentration of a complex, Gc, consisting of two enzymes, Ga
andGb, as min (Ga, Gb), ircFBA simply introducesGc as its own variable. The molecular
weight of the complex is then defined as

MWc = MWa +MWb (3.1)

where MWi is the molecular weight of enzyme i. For a reaction catalyzed by isozymes,
i.e. by either Ga or Gb, ircFBA again uses a single variable. The molecular weight corre-
sponding to this variable is then:

MWab = min (MWa,MWb). (3.2)

where MWab is the molecular weight corresponding to the new variable. If either Ga or
Gb is a complex, equation 3.1 is first applied. For a metabolic model withmmetabolites, n
reactions, p enzymatic reactions, andG is the set of indices for the enzymatic reactions, N
is the set of indices for the non-enzymatic reactions, ircFBA adds p enzyme concentration
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variables, g = [g1 · · · gG]. The full ircFBA problem can now be stated as:

max z = vbiomass (3.3)
n∑
j=1

Si,jvj = 0, i = 1, 2, ......n (3.4)

lbj ≥ vj ≤ ubj , j ∈ N (3.5)
−kcatigi ≥ vi ≤ kcatigi, i ∈ G (3.6)∑

i∈G
MWigi ≤ C

[gprotein
gDW

]
(3.7)

gi ≥ 0, i ∈ G (3.8)

where vbiomass is biomass reaction flux, S is the stoichiometric matrix, lbj and ubj are the
lower and upper bounds on vj , kcati is the turnover number for reaction i, MWi is the
molecular weight of the enzyme catalyzing reaction i, and C is the fraction of the dry
weight of the organism devoted to protein. Since every enzyme associated reaction has its
own protein concentration variable in ircFBA, the concentration of a multifunctional en-
zyme can be calculated as the sum of the variables representing it. However, these are all
independent in ircFBA, and an individual gi simply represents the concentration of enzyme
devoted to catalyze reaction i. The justification for this is equation 2.15. If the enzyme
capacity constraint (equation 3.7) limits the growth rate, any enzymatic flux value, vi, will
satisfy |vi| = kcatigi. If not, a lower gi would allow for an increase in the growth rate
by allocating more protein concentration to another enzyme. The enzymes will therefore
always be saturated. In MOMENT, however, gi represents the concentration of protein i
as a whole. A consequence of this is that a unit of concentration of enzyme can produce
a flux higher than its vmax value. The exact details of MOMENT’s implementation are
not entirely clear from the publication [5], and while the article states that an implemen-
tation is available online, the files are missing from the website. Additionally, attempts at
contacting the authors to resolve this issue were unsuccessful. It’s therefore possible that
MOMENT deals with multifunctional enzymes in ways not apparent in the article.

3.3 Assembly of an ircFBA model based on iTO977
As no FBAwMC or MOMENT models have been published for S. cerevisiae, an ircFBA
model based on the iTO977 metabolic model was assembled and implemented for simu-
lation with the COBRA toolbox. To do this, data from multiple databases were gathered
and integrated. The process for creating an ircFBA model was split into two phases. The
first phase was a data gathering phase, where EC numbers, molecular weights and turnover
numbers for the enzymatic reactions in iTO977 were obtained and processed. The second
phase involved data integration, where the actual parameter values were chosen.

3.3.1 Data gathering
ircFBA requires two sets of parameters: the molecular weights of the enzymes and turnover
numbers. Molecular weights can be obtained fairly trivially from various databases, while
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turnover number retrieval is more complicated. EC numbers are available for most enzy-
matic reactions in the iTO977 model, but a significant portion lacked any annotation of
this sort. In this section, the approaches used to obtain these parameters will be described.

Molecular Weight retrieval

The fungiDB S. cerevisiae S288C gene information table is a comprehensive data file of
functional annotation for every single known gene from this organism [53]. The gene
IDs for every gene in the iTO977 SBML file were extracted, and used to find the correct
molecular weight, in units of kDa, in the gene information table. As the molecular weights
in the fungiDB gene information table are based on experimentally determined molecular
weights of the actual gene products, these values are more accurate than if weights were
estimated based on the genome sequence.

EC number retrieval

For enzymatic reactions in the iTO977 SBML file without EC number annotation, a list of
potential EC numbers were obtained from two sources. First, the gene IDs were used to
find possible EC numbers in the fungiDB gene information table. The gene information ta-
ble contains two fields for EC numbers: manually annotated EC numbers, and EC numbers
from OrthoMCL. OrthoMCL is a method for finding orthologs for genes from eukaryote
genomes [54]. The OrthoMCL EC numbers are therefore derived on sequence similarity
to genes from other genomes that have had the EC number in question assigned. These EC
numbers are therefore less certain. The UniProt IDs for the proteins were also extracted
from the gene information table, and additional EC numbers were extracted from UniProt
[38]. The resulting list of EC numbers were then stored in a CSV file, with the OrthoMCL
EC numbers kept separate from the more reliable manually assigned EC numbers.

Turnover number retrieval

Turnover numbers were then retrieved from the BRaunschweig ENzyme DAtabase (BRENDA),
database compiling enzyme and metabolic data from the scientific literature [36]. BRENDA
was accessed programmatically through its SOAP web service with the SOAPpy Python
package [55]. A list of every EC number in the iTO977 model was extracted from the
SBML file and combined with the EC numbers from fungiDB and UniProt. SOAPpy was
used to extract every single turnover number in BRENDA associated with one of these EC
numbers. The BRENDA results were in the form of structured strings, containing not just
the turnover number itself, but additional meta data such as the source organism, the en-
zyme substrate, and information about the experimental conditions. The BRENDA results
also contain a reference to the compound database pubchem [56] in order to disambiguate
the substrate name. A data file containing all the BRENDA database hits was created and
stored locally.
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3.3.2 Data integration
To integrate the data from the data gathering stage, a method for connecting a BRENDA
database hit with a reaction in the iTO977 model had to be developed. This was done
by matching the metabolite name in the model against the enzyme substrate name. A
multi-step approach for achieving this was developed.

Compound thesaurus assembly

In order to match substrates from a BRENDA entry against a chemical species in the
iTO977 model, two metabolite thesauruses were designed.The first thesaurus served as a
list of different synonyms for the metabolites included in the iTO977 model, while the
second one gives a list of synonyms for substrates derived from BRENDA entries. Both
thesauruses were implemented as hash tables in Python, with the keys being synonyms for
a metabolite, and the value being the main identifier. The ChEBI name was chosen as the
main identifier when applicable. The basic layout of the hash table is illustrated in figure
3.1.

Figure 3.1: The structure of the compound thesaurus. The outer layer of the thesaurus have links to
the main entry. The thesaurus itself consists of synonyms for most of the compounds in the iTO977
model.

Synonyms for non-model specific metabolite in the iTO977 model were gathered from
ChEBI [57] and the KEGG COMPOUND [7] database by using the appropriate database
IDs when provided in the model’s annotation. While the majority of metabolites in the
iTO977 were annotated with IDs for compound databases, several non-model specific
metabolite lacked any sort of database reference. Database references were added to these
metabolites by looking them up manually in ChEBI or KEGG COMPOUNDS when ap-
plicable. Additionally, the cheEBI Python API was used to expanded the thesaurus by
considering the conjugate base or acid of a metabolite to be identical to the metabolite in
question. This was done by taking advantage of the cheEBI ontology, where a compound
is linked to its conjugate acid and base. Thus, the thesaurus entry for a given species was
expanded with the synonyms of any conjugate acid or base. Furthermore, every entry in
the thesaurus was standardized by removing any capitalization, parentheses, brackets and
any other special character, thus representing every species as a lowercase string consist-
ing only of letters and numbers.
A similar thesaurus was created for the substrates from every BRENDA entry. This was
done by examining the attached pubchem ID. In the cases where a KEGG or ChEBI ID
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was listed as a synonym for a substrate in its pubchem entry, the synonyms reported by
ChEBI and KEGG were added along with the other pubchem synonyms.

Figure 3.2: The workflow of matching a BRENDA database entry with a metabolite in the iTO977
model. Each BRENDA substrate points to a list of synonyms. The synonyms are searched against
the synonyms layer of the iTO977 metabolite thesaurus. When a match is found, the BRENDA
substrate is defined as being the same compound as the iTO977 metabolite.

Finally, the thesauruses were USED to connect BRENDA substrateS with metabolites
in the iTO977 model. Starting with the BRENDA substrate name thesaurus, the synonyms
for a given BRENDA entry were used to search the iTO977 metabolite thesaurus. If a
synonym for the BRENDA entry substrate appeared in the iTO977 model thesaurus, a
connection was made. If none of the BRENDA entry substrate synonyms appeared in
the iTO977 model thesaurus, a second attempt was made where instead of looking for
identical standardized names, the Levenshtein distance was computed with the Python
package python-levenshtein [58]. The Levenshtein distance between two strings is the
minimal number of changes needed to transform one string into the other [59]. When the
Levenshtein distance between a BRENDA and iTO977 metabolite synonym was exactly 1,
connections were made after manual inspection. Figure 3.2 shows how a BRENDA entry
with the substrate His was connected with the iTO977 metabolite L-histidine.

Turnover number matching

The BRENDA entries that were successfully connected to iTO977 metabolites were pro-
cessed and structured into a three layers deep hash table, referred to as the EC table from
here on out, of hash tables in Python. The bottom layer was the EC number, the middle
layer the organism, and the final layer was the substrate. The main names from the iTO977
metabolite thesaurus were used instead of the the BRENDA substrate name as the keys for
the substrate hash table. The substrate hash table then maps metabolites names to a vectors
of turnover numbers. This scheme can be seen in figure 3.3.

The metabolites involved in enzymatic reactions in the iTO977 model were extracted
from the SBML file and ordered into a two levels deep hash table. The hash table was
designed with the iTO977 reaction names as keys for the first level, with the second level
pointing to the reactants, products, reversibility status and EC numbers associated with the
reaction, as seen in figure 3.4.

A Python script was developed to assign turnover numbers to reactions based on the
following procedure:
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Figure 3.3: The structure of the EC table. Each EC number has an associated list of organisms, and
each organism has an associated list of substrates, and each substrate has a list of turnover numbers.

Figure 3.4: The representation of reactions in the reaction hash table. Each reaction has several
fields, like the EC numbers associated with it, the reactants and the products.

1. Choose an enzymatic reaction from the iTO977 model.

2. Access the first level of the EC table with all the EC numbers associated with the
reaction. Compile a list of the organisms associated with any these EC numbers.

3. For each EC number, iterate over the associated organisms in the EC table. For each
organism, iterate over the substrates and enumerate the number of unique reactants
and, if the reaction is reversible, products from the reaction matching a substrate.
We define this as the substrate matching number. If S. cerevisiae is in the organisms
list, and the the substrate matching number for this organism is greater than zero,
discard the other organisms, and use the substrate matching number from S. cere-
visiae as substrate matching number for this EC number. If not, compile a list of
all the matching substrates for all the organisms and use the length of this list as the
corresponding number.

4. If none of the EC numbers associated with the reaction produced a substrate match-
ing number greater than zero, repeat step 2 except with the OrthoMCL EC numbers
instead of the EC numbers. If this fails, skip this reaction and go to step 7.

5. If any of the EC numbers produced a substrate matching number greater than zero
for S. cerevisiae, discard the ones that did not.
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6. Determine the EC number with the greatest substrate matching number. Iterate over
the organisms (or just S. cerevisiae if the other organisms were discarded in step
2). For each organism, and each substrate matching a reactant or product (if the
reaction is reversible), add all the associated turnover numbers corresponding to
matching substrates to a list. This list is the turnover numbers list for the reaction in
question.

7. Choose a new enzymatic reaction and go back to step 2. The procedure is over
when all enzymatic reactions have been examined. Record the turnover number
lists a CSV file along with the reaction name.

3.3.3 Model formulation and implementation

The CSV file containing the turnover number lists was imported into Python, and the
turnover number for the reactions contained in the file was defined to be the largest turnover
numbers associated with the reaction. A MATLAB script assembling a COBRA toolbox
compatible ircFBA model for iTO977 can be found in appendix A. After implementation
in MATLAB, reactions where no turnover numbers were discovered in the previous step
were assigned the median of all the turnover numbers in the model.

3.4 ircFBA parameter tuning

Two distinct algorithms were developed to tune the behavior of the ircFBA model to better
fit experimental data. Both algorithms tweak the turnover numbers to enable to model to
reach a target growth rate in a pre-determined growth medium. The motivation for the
creation of these algorithms was to enable finding turnover number sets that fit different
strains of S. cerevisiae better than the initial one. As the actual value of a turnover num-
ber depends on environmental factors, and experimental characterization of enzymes is
typically done in vitro, the in vivo value is expected to be different than what is found
in the literature. Furthermore, turnover numbers derived from other organisms were used
when building the ircFBA model. As such, making small changes to the turnover numbers
should be a reasonable method for improving the quality of an ircFBA model.

Using the notation in section 3.2 and equations 3.3-3.8, we also define the target growth
rate as µT , and the growth medium as:

0 ≤ vi ≤ Vi, i ∈ E (3.9)

where E is the set of indices for the exchange reactions the growth medium is defined by
and Vi is the experimental uptake rate of the metabolite.
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3.4.1 The QP Algorithm: ircFBA performance tuning through Quadratic
Programming

By adding a linear variable, ri, to the right-hand sides of the the enzyme flux constraint:

−(kcatigi + ri) ≤ vi ≤ kcatigi + ri, i ∈ G (3.10)
ri ≥ 0, i ∈ G (3.11)
ri ≤ Hgi, i ∈ G (3.12)

whereH is an arbitrarily large number, the feasible region of the ircFBA model is reverted
back to the base FBA feasible region. Equation 3.12 ensures that ri is greater than zero
only if gi is also greater than zero, enabling kcat to be updated according to:

kcatFi = kcati +
ri
gi
, i ∈ {i ∈ G|gi > 0} (3.13)

to give a new set of kcat values that would have been able to support the FBA phenotype
produced from solving an ircFBA augmented with equations 3.10-3.12. This can be used
as the basis for a kcat-tuning algorithm by using quadratic programming.

Replace equation 3.6 and the objective function from the base ircFBA problem with

min z =
∑
i∈G

s2
i (3.14)

−(kcatigi + si) ≤ vi ≤ kcatigi + si, i ∈ G (3.15)
si ≤ kcatigi, i ∈ G (3.16)
si ≥ 0, i ∈ G (3.17)

where si is the tuning factor for enzymatic reaction i. When representing this problem with
the standard quadratic programming notation( equations 2.8-2.10) the resulting Q matrix,
containing the coefficients of the objective function, is diagonal. As any diagonal element
of Q will be either 0 or 1 in this case, equation 2.11 will always hold. This problem then
meets the conditions for convexity, and can be solved in polynomial time. If the growth
rate is specified by setting a constraint on the growth rate reaction, a minimal set of tuning
factors will be calculated supporting this growth rate. We refer to this as the augmented
ircFBA QP problem. The algorithm is then:

0. Optimize a normal ircFBA problem, with the environment set according to equa-
tion 3.9. Set µ0 to the optimal growth rate. Choose a value for M, the number of
iterations to perform. Assign θ the value 0.

1. Set vgrowth = (1− θ)µ0 + θµT , where vgrowth is the growth rate reaction.

2. Solve the augmented ircFBA QP problem.

3. Update kcati according to:

kcati = kcati +
si
gi
, i ∈ {i ∈ G|gi > 0} (3.18)
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4. Increase the value of θ by 1
M .

5. If θ > 1, the algorithm has finished. Otherwise, return to step 1.

The algorithm was implemented in MATLAB with the Gurobi QP solver.

3.4.2 The SP Algorithm: ircFBA performance tuning through Post-
Optimality Analysis

The Shadow Price (SP) algorithm was developed as a heuristic for finding a set of minimal
changes to the turnover number set in order to support the desired growth rate. Further-
more, it does not use an augmented version of ircFBA, but rather tunes the growth rate
with post-optimality analysis.

The constraint, vi ≤ kcatigi, has an associated shadow price yi.To increase the growth
rate of the ircFBA problem by ∆Z, ∆bi = ∆Z

yi
can be added to the right hand side of the

constraint. This, however, only applies if the shadow price for y1 is valid over the range
[0,∆b]. However, if ∆bi is sufficiently small, the actual change observed in the objective
function should be close to ∆Z. If gi > 0 this is equivalent to increasing kcati by ∆bi

yi
.

The ircFBA problem is then the normal problem as defined by equations 3.3-3.8, with µT
as the target growth rate, and the growth medium defined by 3.9. The algorithm can then
be formulated as:

0. Solve the ircFBA problem with the initial set of kcat values, and then a regular
FBA problem with growth as the objective and bounds on the exchange reactions
according to 3.9. Record the shadow prices for the ircFBA problem in a |G| × 2
matrix, Y, where Yi,1 and Yi,2 contain the shadow prices for the≤ and≥ constraints
respectively for the enzymatic reaction flux vi in equation 3.6. Set µ0 to be the
optimal ircFBA growth rate, and µFBA to be the FBA optimal growth rate. We
define µ1 = min{µFBA, µT }. Choose the growth rate step size according to ∆Z =
|µ0−µ1|
M . Set µOPT = µ0

1. If |µT−µOPT |
µT

≤ ε, where ε is the error tolerance, the algorithm has completed.
Otherwise, proceed to the next step.

2. Set ∆µ∗ = min{∆Z, |µT − µOPT |}

3. Determine how much the right or left-hand sides of equation 3.6 have to change to
satisfy a change in the objective function equal to ∆Z according to:

∆bi =
∆µ∗

max{|Y1,i|, |Y2,i|}
, i ∈ {i ∈ G|gi > 0} (3.19)

4. Calculate the change in kcati needed to obtain this change:

∆kcati =
∆bi
gi

, i ∈ {i ∈ G|gi > 0} (3.20)
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5. Determine the minimal ratio, t, one kcat value has to be increased by in order to
achieve a growth rate increase of ∆Z:

t = min{∆kcati
kcati

}, i ∈ {i ∈ G|gi > 0} (3.21)

6. Let i be the index corresponding to the minimal ratio, t. Update kcati according to:

kcati = kcati + ∆kcati (3.22)

7. Re-resolve the ircFBA problem, with the new kcat-value. Set µOPT to be the opti-
mal growth rate and return to step 1.

The algorithm was implemented in MATLAB using the COBRA toolbox FBA solver with
ε = 10−8.

3.4.3 Combining turnover number sets
As the current implementation of the QP and shadow price algorithms do not support solv-
ing for multiple growth mediums, or conditions, at the same time, a method was developed
to enable the ircFBA model to be fitted to multiple mediums.

Using either the SP or QP algorithm, the iTO977 ircFBA model was fitted to each
growth medium. We define kcatFi,j as the final value for turnover number kcati in con-
dition j, kcatEi as the original (empirical) kcat value and S as the set of reactions where
kcat was altered from kcatE in any of the conditions. With n growth mediums, A is
defined as a |S| × n matrix, where

Ai,j =
kcatFi,j
kcatEi

, i = 1, 2, ..., |S|, j = 1, 2, .., n (3.23)

A vector x = [x1, · · · , xn] is then defined to give a new set of turnovers:

kcati = kcatEi

n∑
j=1

Ai,jxj , i ∈ S (3.24)

xi ≥ 0, i = 1, · · · , n (3.25)

This was used to create a MATLAB function that takes x as input and calculates the corre-
sponding kcat values. As all the growth conditions used in this project were derived from
single carbon source minimal media with glucose as the only limiting metabolite, with
oxygen in excess, the growth conditions were defined by setting the exchange reaction
for oxygen uptake to be unbounded, and with the difference between the conditions only
being the glucose uptake exchange reaction upper bound. The function then optimizes
the ircFBA model using this new kcat set for the n growth conditions individually. The
following sum is returned by the the function:

W =

n∑
s=1

(
µs − µEs
µEs

)2

+

n∑
s=1

(
vo,s − vEo,s

vEo,s

)2

(3.26)

31



Chapter 3. Methods & Software

where µs is the ircFBA growth rate for condition s, µEs is the experimentally determined
growth rate for condition s, vo,2 is the ircFBA oxygen uptake rate for condition s and
vEo,s is the experimental oxygen uptake for condition s. If uptake or secretion rates for
metabolites other than glucose and oxygen had been provided in the data set, additional
terms could have been added to equation 3.26. The MATLAB nonlinear programming
function fmincon from the MATLAB optimization toolbox was used to minimizeW using
the interior-point optimization algorithm. fmincon does not guarantee global optimality,
or even convergence. If fmincon fails, other heuristics like simulated annealing or genetic
algorithms can be used. These heuristics have implementations available in the MATLAB
optimization toolbox.

3.5 Analysis of randomized kcat distributions
The growth curves and phenotype exhibited by an ircFBA model is determined both by the
underlying metabolic network as well as the kcat values and enzyme molecular weights.
By randomizing the kcat values and then optimizing the kcat set using either the QP or
SP algorithm, a broader picture of the sort of phenotypes the ircFBA model can produce
should emerge. .

Different kcat-sets were then generated by by randomly drawing a turnover from the
turnover number CSV file from section 3.3.2. After assigning each enzymatic reaction a
kcat, the ircFBA model was optimized for growth. If the random kcat set was unable to
produce non-zero growth, this random kcat was scrapped. Otherwise, it was retained.

1000 unique kcat sets were generated with this method. The shadow price algorithm
(as detailed in section 3.4.2) was used to tune the kcat values to match the optimal growth
rates to the experimental growth rate for S. cerevisiae in minimal media with both glucose
and oxygen in excess. The final kcat values for each of the 1000 sets were then recorded,
along with the flux distributions and gene concentrations for the final ircFBA problem.

The T fluxes from enzymatic reactions with a non-zero flux in at least one of the
final optimal ircFBA solutions were then ordered into a T × 1000 matrix, F, where Fi,j
is the flux for the ith observation of enzymatic reaction j. The pairwise linear correlation
matrix, C, was computed for F by using the MATLAB function corr. corr is available in the
MATLAB Statistics & Machine Learning toolbox. Ci,j is the Pearson’s linear correlation
coefficient between flux i and j, and was kept for further analysis if the associated p-value
was less than 0.01

T 2 in order to account for multiple testing.
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Chapter 4
Results & Discussion

The workflow of this project was divided into three main parts, and the main results from
each will be provided here. The first part was the development and characterization of an
ircFBA model of S. cerevisiae. The basic properties of the model parameters and its ability
to predict realistic phenotypes were investigated. The second part was the development of
two distinct algorithms using two different approaches from mathematical programming
to tune the performance of the ircFBA model by tweaking the turnover numbers (kcat).
The ability of these methods to reliably converge and efficiently solve the problem was
investigated, as well as the quality of the predictions. In the final part, the kcat set was
replaced by drawing new kcat values randomly and examining properties of the resulting
ircFBA models.

4.1 ircFBA Model Assembly & Performance
An ircFBA model was assembled and implemented in in MATLAB as detailed in section
3.3. Of the 930 gene associated enzymatic reactions in the iTO977 model, 547 were as-
signed unique turnover numbers. For reactions where multiple turnover numbers were dis-
covered in the data integration stage, the maximal turnover number was used. The median
of these 547 turnover numbers were used for the remaining reactions. A histogram, figure
4.1b, of these 547 turnovers shows a bell-shaped distribution, which was also reported for
the published E. coli MOMENT model [5]. Interestingly, if the turnover numbers are plot-
ted in rising order , the distribution of turnover numbers from the iTO977 ircFBA model
is similar to that of the E. coli MOMENT model. This can be seen in figure 4.1a. As the
largest turnover number associated with each reaction was used to set the ircFBA turnover
number, and the E. coli MOMENT model used the median, this is surprising. The rea-
son for this isn’t clear, but could simply represent a difference in the reactions contained
in both metabolic reconstructions and the actual metabolic machinery of the organisms,
as E. coli is a prokaryote and S. cerevisiae is an eukaryote. Furthermore, the MOMENT
model incorporated data from SABIO-RK, which is a manually curated database where
organism-specific turnovers can be found more reliably than in BRENDA [37].
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Figure 4.1: A) The turnover number lists sorted in rising order. Max iTO977 is the distribution
obtained by choosing the largest kcat in the kcat list for any given reaction, while median iTO977
is from choosing the median. Median E. coli is from MOMENT [5]. B) A histogram of max iTO977
on a log scale. The kcat set varies across 12 orders of magnitude, but has a bell shaped distribution.

Table 4.1: Correlations between predictions and the experimental measurements. The ircFBA
growth rate row gives the Pearson correlation coefficient with its p-value for ircFBA’s growth rate
predictions against the experimental growth rates. The other rows are interpreted in the same way.

Prediction r p-value
ircFBA growth rate 0.9830 6.18× 10−8

ircFBA O2 flux 0.4019 0.23
FBA growth rate 0.8160 0.002

FBA O2 flux 6.0824× 10−4 0.99

4.1.1 Phenotype prediction
The ircFBA model’s ability to predict growth rates in minimal media with glucose as the
only limiting metabolite was investigated by comparing the predicted growth rates with
experimental measurements derived from chemostat cultures of S. cerevisiae CEN.PK [1],
one of the main reference strains [60]. This data consists of 11 different growth rates, with
associated oxygen and carbon uptake rates, and can be found in its raw form in Appendix
B. The highest growth rate in this data set, 0.38 h−1, is the saturation growth rate for
S. Cerevisiae CEN.PK growing in fully aerobic minimal media with glucose as the only
carbon and energy source [6]. Oxygen was in excess in these experiments [1], so growth
rates were computed by setting the oxygen uptake rate to be unconstrained and the glucose
uptake rate to have the experimental uptake rate as its upper bound.

The Pearson’s Correlation Coefficient, r, was calculated for the growth and oxygen
uptake rate predictions generated both by ircFBA and FBA. These can be found in table
4.1. The ircFBA growth rate predictions correlate better with the experimental than FBA
does, with r = 0.9830 against r = 0.8160 for FBA. However, both correlate well and
have highly significant p-values. This is not the case for the oxygen uptake rate, where
both methods fail to produce significant p-values. Looking at the plots (figure 4.2) of the
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4.1 ircFBA Model Assembly & Performance

Figure 4.2: FBA (iTO977) and optimized MOMENT line of optimality plotted along with experi-
mental measurements from S. cerevisiae.

predictions along with the the experimental measurements, the reason for this is apparent.
Up to a glucose uptake rate of around 4 mmol gDW−1 h−1 the experimental values lie
along the FBA line of optimality. After this point, the experimental oxygen uptake rate
starts to drop off. The reduced oxygen uptake indicates a switch to respirofermentative
metabolism [20], meaning that glucose isn’t fully oxidized. Without an upper bound on
the oxygen uptake rate, FBA will therefore predict unrealistically high growth rates. This
can be seen in table 4.2, where r for the correlation between FBA and experimental mea-
surements for both oxygen and growth close to 1, with highly significant p-values, for
low glucose uptake rates. However, with an unbounded oxygen uptake rate, FBA predicts
that the growth rate increases linearly with the glucose uptake rate, and it therefore fails
to predict the later growth rates. ircFBA’s enzyme capacity constraint prevents this from
happening, and the growth rate starts to saturate. As a result, ircFBA’s growth predic-
tions correlate better over the whole range. It should be noted, however, that FBA predicts
growth rate with a high degree of precision if upper bounds are placed on both the glucose
and oxygen uptake rates (see appendix B).

The changes in the slope of the growth rate curve for ircFBA in figure 4.2 indicates
the metabolic network entering new phases. S. cerevisiae CEN.PK growing in glucose-
limited growth media with excess oxygen switches from full respiration over to partial
ethanol fermentation at a growth rate of 0.3 h−1 [6], which is not something the FBA
model is able to capture. The α from the ircFBA PPhP, as defined in equation 2.27, can be
seen in figure 4.3a. Here πx and πy are the glucose and oxygen exchange reaction shadow
prices respectively. In contrast to the simple FBA PPhP in figure 2.5 where only two viable
phases could be seen, ircFBA has no less than 10 distinct phases. However, they can be
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Table 4.2: Pearson correlations between predictions and the experimental measurements. Correla-
tions were not computed for the whole range of experimental values. The range was instead split
into two, and correlations were computed for each range. Low glucose uptake rate is defined as less
than 4 mmol gDW−1 h−1, while high is greater than than 4. The ircFBA growth rate row gives
the Pearson correlation coefficient with its p-value for ircFBA’s growth rate predictions against the
experimental growth rates. The other rows are interpreted in the same way.

Prediction Low glucose uptake rate High glucose uptake rate
r p-value r p-value

ircFBA growth rate 0.98 2.5× 10−5 1 0.0025
ircFBA O2 flux 0.75 0.03 0.9344 0.23
FBA growth rate 0.99 1.22× 10−7 0.98 0.11

FBA O2 flux 0.99 2.43× 10−6 -0.99 0.0711

divided into the two continuous primary phases in figure 4.3B. Here any α > 0 has been
set to equal 1, and any α < 0 has been set to -1. The α > 0 phase is a futile phase,
where oxygen is in excess. The second primary phase, where α < 0, is a little more
complicated. Rather than α < 0 indicating that both metabolites are limiting the growth,
this only applies to the left of the ircFBA line of optimality. The phase to the right must
then be characterized as having dual substrate inhibited growth, meaning that the growth
rate has saturated past this point. The experimental growth rate data set implies that the S.
cerevisiae growth rate really does saturate in this manner, with the growth rate increasing
more slowly at the highest glucose uptake rates. Maximum specific growth rate estimates
vary from 0.38 h−1 [6] to 0.41 h−1 [60] for S. cerevisiae CEN.PK, however, which is
significantly higher than the 0.25 h−1 predicted by ircFBA.

Figure 4.3: α as defined by equation 2.27 for the ircFBA model. The leftmost plot shows the raw α,
while the plot to the right only shows the sign. Ten distinct phases can be seen in the leftmost plot,
but these correspond to two main phases demarcated by the sign of α. The positive phase exhibits
futile metabolise (α ≥ 0). LOO ircFBA separates the second major phase into two parts. To the left
of LOO ircFBA, growth is limited by both glucose and oxygen. To the left, both inhibit growth.

The respiratory quotient,RQ,is defined as the ratio of carbon dioxide excretion to oxy-
gen uptake [6], and was plotted for the ircFBA model as vCO2

vO2
as a function of the growth
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rate in figure 4.4a. With glucose as the sole energy and carbon source, a RQ of 1 implies
fully respiratory metabolism with no fermentation, while a RQ above 1 indicates fermen-
tation. The plot has three main phases:

1. At low growth rates, RQ is 1, and glucose is metabolized optimally. In this phase,
ircFBA predicts a growth range along the FBA line of optimality. This phase is fully
in agreement with experimental data, although ircFBA exits it at a lower glucose
uptake rate than the actual organism does.

2. In a narrow range, the RQ is less than 1. This is a surprising phenotypic state that is
not observed experimentally during oxygenated glucose limited growth [61, 62]. In
the ircFBA model, this is caused by the excretion of pyruvate (see figure 4.4b). The
reason for this is that the more typical fermentation products, acetate and ethanol,
are derived from pyruvate through nonoxidative decarboxylation (see figure 2.6).
Unlike ethanol excretion, pyruvate excretion does not recycle the NAD(+) from gly-
colysis. NADH produced in glycolysis can hence be used for oxidative phospho-
rylation, which leads to oxygen consumption. Pyruvate excretion therefore lowers
RQ below one by increasing the oxygen uptake rate without releasing CO2. On the
other hand, NAD(+) is reduced to NADH when acetate is produced. This offsets the
gain in CO2 excretion by providing more reducing power for the electron transport
chain. Figure 4.5 shows the flux direction of key reactions in the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation. The reaction labels in 4.5 refer to the
same reactions as in figure C.1, except CIT2, SDH4 and MDH3 labeled as CIT1,
SDH31 and MDH1 instead. ATP1 is ATP production from oxidative phosphoryla-
tion, with COX1 and RIP1 being electron transport chain reactions. In the iTO977
model, the cardinal direction of the TCA cycle is with positive fluxes, except for
SDH31 where the cardinal direction is designated by a negative flux. The drop in
RQ coincides with LSC2 and KGD1 being fully turned off, which means that there
is no net flux through the traditional TCA cycle. Instead, the TCA cycle goes as nor-
mal until 2-oxogluterate is produced, but the flux then flows entirely to amino acid
synthesis pathways (see figure C.1). In order to run this partial TCA cycle, fumarate
is imported from the cytosol.

3. At higher growth rates, RQ goes above 1 and saturates at 31.7. The phase is domi-
nated by ethanol excretion, which starts at a growth rate of 0.2 h−1. At very highest
growth rates, no ATP is produced from oxidative phosphorylation. The electron
transport chain remains active, however, serving only as a mechanism to oxidize
NADH into NAD(+).

Figure 4.5 shows the the fluxes for IDH1 and SDH31 being turned off as the growth
rate crosses over 0.2 h−1.

Aside from CO2, the only excreted carbon compounds were acetate, pyruvate and
ethanol. While detailed fluxes for the acetate, pyruvate and ethanol excretion rates in the
experimental data set being used are not available, a limited amount of information can
be found in the original publications [6, 63]. The lowest growth rate ethanol was detected
for was at 0.3 h−1 where the excretion flux was non-zero but very small. It then increases
linearly until it saturates at a growth rate of 0.38 h−1 with an excretion flux of 16.2 gDW−1
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Figure 4.4: A) The respiratory quotient, RQ, as a function of the ircFBA growth rate. A RQ close
to 1 indicates near full oxidation of glucose, while a RQ over 1 is a sign of fermentation. The dip
below 1 is caused by the excretion of pyruvate. B) Excretion profile for ircFBA. Ethanol, acetate
and pyruvate are all excreted at high rates.

Figure 4.5: The sign of fluxes in the TCA cycle and electron transport chain pathway as a function
of the growth rate in an ircFBA model of S. cerevisiae. The reaction names are listed on the y-axis.
Yellow squares indicate positive flux, green squares no flux and blue squares negative flux. NADH
and FADH2 producing fluxes (IDH1, KGD1 and SDH32) are turned off at higher growth rates.

h−1. ircFBA, however, predicts a start of ethanol production at 0.2 h−1. Acetate and
ethanol excretion fluxes, however, reached peak values of 0.5 mmol gDW−1 h−1 and 0.7
mmol gDW−1 h−1 respectively. This is 15.9% and 22.2% of the peak excretion rates
predicted by ircFBA. This can be partially explained by ircFBA predicting lower growth
rates in phases off the FBA line of optimality, with fermentation commencing much earlier.
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At the saturation growth rate, the experimental RQ ratio is 8.4, which is smaller than the
peak RQ for ircFBA by a factor of 3.77.

Measurements of TCA flux values in S. cerevisiae CEN.PK growing in respirofermen-
tative conditions in minimal media, at the same pH and temperature as the data set used
in this study, have demonstrated that the net flux through the TCA cycle is negatively
correlated with both the growth and glucose uptake rates. The net flux bottomed out at
0.03 mmol gDW−1 h−1 [61], which, while still a non-zero flux, points to the reduction
of TCA fluxes predicted by ircFBA not being unreasonable. The same goes for oxidative
ATP production under the same conditions. While ethanol fermentation is the dominant
pathway for glucose metabolism at high respirofermentative growth rates, oxidative ATP
production never shuts off entirely [64]. Therefore, while predicting a switch from respira-
tion to respiro-fermentation, the ircFBA model’s ability to predict meaningful phenotypes
with its initial kcat-set is fairly limited. One of the main reasons for this is that ircFBA
underestimates growth rates significantly after diverging from the FBA line of optimality.

4.2 Fitting ircFBA model behavior to experimental mea-
surements

Two methods were developed to incorporate experimental data to tweak the ircFBA kcat
values in order to make more accurate phenotype predictions. Section 3.4 gives the deriva-
tions of these methods. Both methods work by tuning the kcat set to reach a target growth
rate.

4.2.1 Applying the QP algorithm

The QP algorithm was applied to the 9 data points in appendix B where the experimental
growth rate was higher than the ircFBA growth rates. Beyond the augmented QP con-
straints, the only added constraints were the glucose uptake rates. M , the number of QP
iterations to perform, was set to be 40. Due to equation 3.16, 40 QP iterations would allow
a maximum relative change in any kcat in the ircFBA model to be 240. Persistent numeri-
cal issues, however, caused problems as the Gurobi QP solver often stalled or claimed that
the problem was infeasible. To overcome this issue, the Gurobi feasibility tolerance was
lowered from 10−9 to 10−7. After making these changes, the algorithm started to behave
as expected.

Growth and oxygen uptake rates from the ircFBA models with kcat sets derived from
applying the QP algorithm individually to the experimental growth rates were plotted in
figures 4.6 and 4.7. Each plot shows the results of varying the glucose uptake rate in the
ircFBA model when allowing the oxygen uptake rate to be unconstrained. For example,
the leftmost plot in the top row is the result of setting a target growth rate of 0.15 h−1, with
a glucose uptake rate of 1.69 mmol gDW−1 h−1, in the QP-algorithm, and then plotting
the ircFBA growth rate as a function of the glucose uptake rate. To distinguish ircFBA
models with kcat sets obtained by running the QP algorithm on different experimental
data points, we define ircFBAµ, where µ is the target growth rate from the QP algorithm,
as the ircFBA model with this kcat set.
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Table 4.3: Pearson correlations between ircFBA predictions and the experimental measurements.
The ircFBA models were optimized with the QP algorithm. Row ircFBA0.15 gives correlations for
the the growth rate and oxygen uptake rate predictions made after fitting the base ircFBA model to
the target growth rate of 0.15. The other rows have the same interpretation.

Prediction Growth rate Oxygen uptake rate
r p-value r p-value

ircFBA0.15 0.98 2.0× 10−7 0.46 0.16
ircFBA0.20 0.97 1.0× 10−6 0.80 0.0027
ircFBA0.25 0.99 2.0× 10−9 0.98 3.7× 10−8

ircFBA0.27 0.99 1.5× 10−8 0.92 4.8× 10−5

ircFBA0.28 0.99 8.0× 10−9 0.95 6.1× 10−6

ircFBA0.31 0.99 4.0× 10−10 0.88 3.7× 10−4

ircFBA0.33 0.99 2.1× 10−9 0.96 3.0× 10−6

ircFBA0.35 0.99 1.98× 10−9 0.29 0.40
ircFBA0.38 0.99 3.33× 10−9 0.18 0.60

The growth rates in figure 4.6 behave exactly as expected, with the effect of the algo-
rithm being to raise the ircFBA model growth rate to the experimental growth rate at the
appropriate glucose uptake rate. This allows ircFBA to saturate at a higher growth rate,
and therefore match the experimental data set better than the base ircFBA model. This
is confirmed by table 4.3 where the Pearson correlation coefficients, r, along with the p-
values, can be found for the correlation between the experimental growth rates and the
ircFBA models with one of the new kcat sets. The r coefficients are 0.98 and 0.97 for
ircFBA0.15 and ircFBA0.20, and at least 0.99 for the other ircFBA models. Furthermore,
all the p-values are highly significant (p < 2.0 × 10−7). The oxygen uptake rate predic-
tions in figure 4.7 are less clear, however. Table 4.1 shows that ircFBA0.2 to ircFBA0.33

correlate well with the the experimental uptake rates (r from 0.80 to 0.96 with p-values of
3.7 × 10−4-3.7 × 10−8). With no constraints being set on the oxygen uptake rate during
the operation of the QP algorithm, mixed results are not unexpected here.

If the experimental growth rates are viewed as points in a three dimensional space,
with the dimensions being the growth rate, glucose uptake rate and oxygen uptake rate,
the euclidean distance from the experimental points to the iTO977 FBA line of optimality
(the red line in figure 2.4) can be computed. The results of this was plotted in figure 4.8a,
and gives a quantitative measure of how much the experimental data has separated from
the line of optimality. Up to a growth rate of 0.3h−1, the experimental growth rates have
a distance from the line of optimality of close to zero, and then starts to diverge linearly
as a function of growth rate. When comparing the results for the oxygen uptake rate in
table 4.3 with the distance from the line of optimality, it can be seen that the oxygen up-
take rate predictions made by ircFBA models fitted to growth rates that are far from the
line of optimality (growth rates of greater than 0.33 h−1) result in poor r coefficients and
insignificant p-values. On the other hand, the growth rates close to the line of optimality
produce r coefficients close to 1, with highly significant p-values. Figure 4.8b shows the r
coefficients plotted against the distance the corresponding experimental data point is from
the line of optimality. A negative trend can be seen, and calculating the Pearson correlation
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Figure 4.6: Growth rates for ircFBA models fitted to experimental growth rates with the QP algo-
rithm. The in the label µ was the target growth rate used by the QP algorithm for generating the
corresponding kcat set.

coefficient gives it at -0.75 with a p-value of 0.0215. As the QP algorithm simply makes
the growth rate reach a desired level in the pre-determined growth medium, the explana-
tion of this is fairly simple. When the QP algorithm was used with the growth conditions
corresponding to an experimental data points close to the FBA line of optimality, the ir-
cFBA model will have its growth rate raised to the experimental growth rate at that glucose
uptake rate. Due to this pair of parameters being close to the line of optimality, the oxygen
uptake rate will also have to be close to the line of optimality, as a higher or lower rate
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Figure 4.7: Oxygen uptake rates for ircFBA models fitted to experimental growth rates with the QP
algorithm. The in the label µ was the target growth rate used by the QP algorithm for generating the
corresponding kcat set.
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would both lead to a reduced growth rate. The resulting ircFBA problem from running the
QP algorithm will then give growth curves that separate from the FBA line of optimality
at a later stage than the base ircFBA model, and the oxygen uptake flux will correlate well
with the experimental oxygen uptake rate up until at least the point of separation.

Figure 4.8: d(exp,LOO) is defined as the distance an experimental growth rate, exp, is from the line
of optimality (LOO) in a three dimensional Euclidean space where the dimesions are the growth rate,
oxygen oxygen uptake rate and glucose uptake rate. A) After separating from the line of optimality,
the distance of the experimental data points to the line of optimalityincreases linearly. B) The oxygen
uptake rate Pearson correlation coefficient for ircFBA models plotted against the distance the target
growth rate was from the line of optimality.

The impact of the QP algorithm on the kcat sets produced was investigated by looking
at the fractions kcatF

kcatE
where kcatF is the kcat at the end of the QP algorithm, and kcatE

is the starting value. Table 4.4 summarizes this, and also shows the total number of kcat
values that the QP algorithm changed as well as the mean number of active enzymes in any
of the intermediate QP solutions. Histograms of the fraction log2(kcat

F

kcatE
) for each of the 9

experimental conditions can be found in appendix D. The motivation for the development
of the QP algorithm was to make modest changes to the kcat set, as the guiding assumption
was that the quality of the kcat set was limited by numerous factors. Table 4.4 shows that
the QP algorithm fails to achieve this. Sweeping changes are made across the board, and
more individual kcat changes are made than the average number of active genes in any of
the intermediary QP solutions. Due to the objective being optimized being a square sum of
variables, every active enzyme in a particular QP solution being altered is not a surprising
result. However, the mean kcatF

kcatE
was surprisingly high for every ircFBA model, except

for ircFBA0.15 where only minor changes had to be made to reach the QP-algorithm target
growth rate. This points to the QP algorithm essentially inflating the kcat set, and this can
be indeed seen in the histograms in figure 4.4 in appendix D. The difference between the
mean number of active genes in a QP solution and the total number of changes made is also
surprising, and suggests that kcat values are changed during intermediary QP solutions
that are not needed in future solutions.

The QP algorithm solutions were then re-examined, and for each QP solution com-
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Table 4.4: The magnitude of the changes made to the base kcat set when the QP algorithm is run.
| kcat

F

kcatE
| gives average relative change in the kcat set. |

∑
(gi > 0)| is the mean number of enzymatic

reactions active in the intermediary steps of the QP algorithm. ircFBAµ is the ircFBA model that
was fitted to a target growth rate of µ.

Prediction Number of kcat values changed |
∑

(gi > 0)| |kcat
F

kcatE
|

ircFBA0.15 282 169.6 1.0145
ircFBA0.20 285 161.4 13.9
ircFBA0.25 282 146.2 41.3
ircFBA0.27 285 147.7 41.9
ircFBA0.28 285 144.4 45.3
ircFBA0.31 284 142.5 40.75
ircFBA0.33 286 154.5 36.42
ircFBA0.35 289 157.1 35.42
ircFBA0.38 288 176.6 25.9

puted by Gurobi, a standard ircFBA problem was solved using the new kcat values. This
approach revealed that the QP problems have significant feasibility issues, as the number
of active enzymes in any QP problem was significantly lower than it should have been.
Figure 4.9 summarizes this for the 9 different growth conditions. If performing as de-
signed, the QP and LP curves should be indistinguishable. This is clearly not the case,
however, as a significant gap of around a 100 active genes or more can be seen in every
plot. Due to Gurobi’s feasibility tolerance being set to 10−7, a constraint violation of this
magnitude is permitted in the QP problem. This enables enzymatic reactions that have low
flux in an ircFBA LP solution to be carried out without any enzyme. Attempts were made
at using a lower feasibility tolerance, but this resulted in Gurobi being unable to solve the
problem in most cases. In the cases where Gurobi was able to solve the problem with
lower feasibility tolerance, the gaps between the LP and QP curves were smaller, which
can be seen in figure D.1 in appendix D. Despite the QP problems being convex, actually
solving it computationally is challenging. This appears to be because of the variation in
the kcat set, which ranges across 12 orders of magnitude. Gurobi typically deals with
differences in scale by scaling the rows and columns of the coefficient matrix, but with
massive differences in scale, numerical instability can become a problem due to finite nu-
merical precision leading to significant round errors[51], which can cause the algorithms
being used by Gurobi to fail [51]. These issues appear to be intractable, so while the
growth rate and oxygen uptake rate predictions produced by applying the QP algorithm
seem promising, the QP algorithm is too unstable and unpredictable to be useful.

4.2.2 Applying the SP algorithm

The base ircFBA model was fitted to the 9 experimental growth rates with the SP algo-
rithm in the same way as was done for the QP algorithm in section 4.2. This was done
by setting M , the number of iterations to perform, to be 1000. A high M is necessary
for the SP algorithm, as the shadow price ranges aren’t calculated or applied. Again, no
upper bounds were placed on the oxygen uptake rates. Analogous to the naming conven-
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4.2 Fitting ircFBA model behavior to experimental measurements

Figure 4.9: The number of enzyme concentration variables (gi) greater than zero during interme-
diary steps of the QP algorithm. The QP lines are the number of non-zero enzyme concentrations
within the augmented QP problem solution, while blue line is from growth rate maximization of the
normal ircFBA model with the kcat sets produced by the augmented QP problem solution.

tion developed for the QP ircFBA models, an ircFBA model with a kcat set derived from
applying the SP algorithm to a growth condition with a growth rate of µ will be referred
to as ircFBAµ. Growth rate and oxygen uptake rate plots for the ircFBA models after
optimization with the SP algorithm can be found in figures 4.10 and 4.11. Looking at
figure 4.10, the same basic behavior can be observed as in figure 4.6, but with some key
differences. Almost irrespective of the growth rate the ircFBA was generated at, the QP
ircFBA models all, with the exception of ircFBA0.15 and ircFBA0.2, either fail to saturate
within the glucose uptake rate range, or saturate at higher growth rates than the experi-
mental data set suggest it should. Conversely, the ircFBA models all saturate within the
glucose uptake range, and at consistently lower levels than the QP ircFBA models. As
table 4.5 shows, the increased saturation growth rates lead to significantly improved corre-
lations between the ircFBA models and the experimental growth rates, with r, the Pearson
correlation coefficient, being at least 0.97 for every ircFBA model. This holds true for the
oxygen uptake rate correlations as well, and every ircFBA model aside from ircFBA0.15

had a statistically significant r of at least 0.82. Phenotypically, ircFBA0.2 to ircFBA0.35

can be grouped together. They all saturate at higher oxygen uptake rates than the experi-
mental measurements would suggest, and at very similar levels. ircFBA0.38, on the other
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Table 4.5: Pearson correlations between ircFBA predictions and the experimental measurements.
The ircFBA models were optimized with the SP algorithm. Row ircFBA0.15 gives correlations for
the the growth rate and oxygen uptake rate predictions made after fitting the base ircFBA model to
the target growth rate of 0.15. The other rows have the same interpretation.

Prediction Growth rate Oxygen uptake rate
r p-value r p-value

ircFBA0.15 0.98 5.5× 10−8 0.41 0.21
ircFBA0.20 0.97 8.9× 10−8 0.82 0.0022
ircFBA0.25 0.98 2.0× 10−9 0.84 0.001
ircFBA0.27 0.98 2.9× 10−8 0.85 8.9× 10−4

ircFBA0.28 0.99 2.6× 10−8 0.86 7.3× 10−4

ircFBA0.31 0.99 1.2× 10−8 0.88 3.5× 10−4

ircFBA0.33 0.99 2.8× 10−9 0.84 0.001
ircFBA0.35 0.99 3.1× 10−9 0.82 0.0018
ircFBA0.38 0.99 3.8× 10−8 0.95 9.14× 10−6

hand, saturates at a lower oxygen uptake rate, but correlates better with the experimental
oxygen uptake rates than any of the other ircFBA models.

In effect, the SP algorithm increases the ircFBA model’s capacity for aerobic respira-
tion. The QP algorithm does this as well, but it also inflates the kcat set in general, which
makes interpreting QP algorithm kcat sets difficult. In stark contrast, the SP algorithm
only adjusted a total of six different kcat values across the 9 different growth conditions.
The ratio kcatF

kcatE
, with kcatF being the final value after running the SP algorithm and kcatE

being the initial value, for every one of these six enzymatic reactions is available in table
4.6.

In contrast to the QP algorithm where the kcat for every active enzymatic reaction was
changed, the SP algorithm limits the changes to the reactions having the biggest effect on
the growth rate. The reactions in table 4.6 fall into different categories, but three of them
are particularly informative: ATP1, RIP1 and PDC1. ATP1 is the ATP synthase com-
plex, which means that the flux through this reaction is equal to the rate of ATP production
through oxidative phosphorylation. RIP1 is a protein in the electron transport chain. When
these kcat values for these two reactions are increased, using oxidative phosphorylation
will take up less of the total available enzyme fraction and an increase in the oxygen uptake
should be seen compared to the base ircFBA model. PDC1 is the pyruvate decarboxylase
reaction, and generates acetaldehyde from pyruvate (see figure 2.6), leading to the secre-
tion of either acetate or ethanol depending on the redox state of the cell. The other three
reactions have less clear interpretations: ACO1 is a reaction in the TCA cycle, FKS1 pro-
duces 1,3-β-D-glucan which is consumed by the biomass reaction, and TDH1 is one of
the main enzymes in glycolysis. The biomass reaction requires FKS1 to carry flux for the
growth to be non-zero. ACO1 is in the TCA cycle, so an increase in the kcat can help
drive flux into the TCA cycle. As the TCA cycle generates NADH that can be used to
run oxidative phosphorylation, ACO1 can help to drive up the oxygen uptake rate, but as
demonstrated in figure 4.5, ACO1 can carry flux even when there is no flux through ATP1.

Looking at the ratios in table 4.6 and comparing it with figure 4.11 is helpful for in-

46



4.2 Fitting ircFBA model behavior to experimental measurements

Figure 4.10: Growth rates for ircFBA models fitted to experimental growth rates with the SP algo-
rithm. The in the label ircFBAµ was the target growth rate used by the SP algorithm for generating
the corresponding kcat set.

terpreting why ircFBA0.2 to ircFBA0.35 have such a high oxygen saturation level. These
all have high kcatF

kcatE
ratios for ATP1 and RIP1, which means that these ircFBA can carry

out oxidative phosphorylation with significantly less enzyme investment. On the other
hand, ircFBA0.38 has increased kcat values for five of the six reactions, but looking at
its column in table 4.6 it also appears to be the one most dissimilar from the other ir-
cFBA models. Hierarchical clustering was performed on the columns of the table using a
bottom-up approach with average linkage, and the dendrogram can be seen in figure 4.12.
The cophenetic coefficient for this dendrogram is 0.93 which suggests that this clustering
represents the data well. The column of kcat

F

kcatE
ratios from ircFBA0.38 is the last one to be

merged into a cluster. The largest source of dissimilarity is the TDH1 ratio, and decreasing
it to 1 leads to ircFBA0.38 clustering with ircFBA0.15 and ircFBA0.20 one level lower in
the dendrogram. Nonetheless, it was still the last leaf node to be merged into a cluster.
The figures in Appendix E show the effect of resetting one of these kcatF

kcatE
ratios back to

1 in the ircFBA0.38 model. While each of the kcat values contribute to the growth rate,
none affected the oxygen uptake rate enough to change the basic shape. The phenotype
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Figure 4.11: Oxygen uptake rates for ircFBA models fitted to experimental growth rates with the
SP algorithm. The in the label ircFBAµ gives the target growth rate used by the SP algorithm for
generating the corresponding kcat set.

of ircFBA0.38 is therefore not determined by any particular one of these kcat values, but
rather by the combination.

Robustness of the SP algorithm

The reliability of the SP algorithm was investigated by varying M , the number of itera-
tions performed, and by looking at the how the kcat set develops. Because the strength
of the methods ircFBA was based on is predicting growth rates in single carbon and en-
ergy source media when the carbon source is in excess [15, 34, 5], it seems natural that
ircFBA0.38 should be the best performing ircFBA model. Because of this, 0.38 h−1 was
chosen as the growth rate to fit the ircFBA model during this robustness test.

The effect of different values of M can be seen in figure 4.13. The SP algorithm was
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4.2 Fitting ircFBA model behavior to experimental measurements

Figure 4.12: Dendrogram of the kcat-ratio coefficient columns in table 4.6. Bottom-up hierchical
clustering was performed with average linkage as the between-group distance metric. The leaf nodes
are labeled after the SP target growth rate. µ0.38 is an out-group here.

applied to the base ircFBA model with M from 1 to 1000, and the final kcat
F

kcatE
ratios were

recorded in each case. This shows that at low values of M , the final kcatF

kcatE
ratios can

vary significantly, but that as M increases, each kcat converges to a stable value. This
demonstrates that M has to be careful chosen when applying the SP algorithm to avoid
ending getting the final kcat set from the region prior to convergence. Nonetheless, as
long as M is large enough, the kcat set converges and the issue can be avoided by simply
choosing a big M .

Intriguingly, figure 4.13 shows the set of reactions altered is independent of M under
these specific conditions. The SP algorithm works by finding a minimal ratio, t, at each
iteration as defined by equation 3.21. The invariance of the kcat set then suggests that no
other reactions come sufficiently close to t, even when M is small. Dividing t by ∆kcat

kcat
then gives a measure of how far a reaction in question is from being altered by the SP
algorithm in any given iteration. Figure 4.14 shows a plot of this fraction for reactions
where P = t×kcat

∆kcat was at least 0.7 in any of the 1000 iterations. This gives a depiction
of how the kcat valuess changed while the SP algorithm was running. The only other
reaction where P ever reached a level of at least 0.7 was ERG6, and if the target growth
rate had been set to be higher, then the trend suggests ERG6 kcat would eventually be
altered. This was confirmed by setting the target growth rate to 0.5 h−1 and observing that
the ERG6 kcat was indeed altered.

Unlike the QP algorithm, the Gurobi LP solver had no problems with solving the
intermediary LP problems during the SP algorithm, and no value ofM caused the problem
to fail. The algorithm even works with an M of 1, and simply compensates by making
additional iterations until the target growth rate has been reached. This in conjuncture
with the other favorable properties demonstrated in this section, underlines the superiority
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Table 4.6: The final kcat-ratios obtained by running the SP algorithm withM = 1000 independently
to reach the target growth rates from the data set in appendix A. The subscript for the column label
µ is the growth rate used as the target when running the SP algorithm. The row labels are names for
the enzymatic reactions where kcat was adjusted by the SP algorithm

kcatF

kcatE

Reaction µ015 µ0.20 µ0.25 µ0.27 µ0.28 µ0.31 µ0.33 µ0.35 µ0.38

ACO1 1.0000 1.0000 1.6143 1.6641 1.9162 2.2252 1.0000 1.0000 1.0000
ATP1 1.0168 1.9738 3.4209 3.9068 4.2364 5.0162 4.0940 3.8073 2.2553
FKS1 1.0000 1.0000 1.0858 1.2574 1.3546 1.6281 1.5902 1.6386 2.7593
PDC1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.6179
RIP1 1.0000 1.4933 2.5912 2.9428 3.1962 3.7278 2.9691 2.7357 1.6413
TDH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.2750 1.5903 4.6091

of the SP algorithm over the QP algorithm.

Figure 4.13: The final kcat
F

kcatE
ratio as a function of varying M , the number of iterations performed

to be performed by the SP algorithm. After an early period fluctuation, each kcat converges to its
final value.

4.2.3 Combining kcat sets
Using the approach laid out in section 3.4.3, a linear combination of the columns of table
4.6 minimizing the squared relative deviation of a ircFBA model from the experimental
data points was computed. In addition to the 9 columns the table, an additional column
of ones was added in order to represent the two lowest growth rates. If this column was
weighted with 1, and the others with zero, the kcat set formed by the linear sum would
then be the one from the base ircFBA model. The weights can be seen in figure 4.15.
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4.2 Fitting ircFBA model behavior to experimental measurements

Figure 4.14: A heat map of the relative proximity a reaction is from having its kcat altered during
a step of the SP algorithm. The target growth rate was the highest growth rate in the experimental
data set (Appendix B). The closer the value is to 1, the closer the reaction is to being altered. All
reactions where this relative proximity was at least 0.7 can be seen, and shows that few reactions
ever come close to

This shows that the only columns contributing to the linear combination are the ones from
ircFBA0.15 and ircFBA0.38. The growth rates and oxygen uptake rates from ircFBA0.38

had the best combination of correlations with the experimental data, which can be seen
in table 4.5. As such, ircFBA0.38 having a non-zero weight in the linear combination
is unsurprising. Figure 4.16 shows the predictions for growth and oxygen uptake rates
when using this new kcat set. The ircFBA oxygen uptake rate predictions correlate with
the experimental data with a Pearson correlation coefficient, r, of 0.98, with a p-value of
3.0 × 10−7, while the growth rate predictions correlate with r = 0.99 with a value value
of 5.4× 10−10. The algorithm has therefore succeeded in finding a combination of kcat-
ratio columns giving a better fit to the experimental data than any of the individual ircFBA
models.

In order to investigate the phenotype this kcat set predicts, the metabolite excretion
profile was plotted in figure 4.17a. For each combination of a glucose and oxygen uptake
rate, the color indicates the largest excretion product. The ircFBA line of optimality is
projected down on the floor, and gives the optimal oxygen uptake rate when the glucose
uptake rate is fixed. At the lowest growth rates, the ircFBA line of optimality lies on a nar-
row edge in the phenotype phase plane where no ethanol, pyruvate or acetate is excreted.
This region can be identified by observing that it is identical to the FBA line of optimality
in this region. A switch then occurs as pyruvate starts to be excreted, followed by acetate,
and finally ethanol. As the oxygen uptake rate is unbounded, the ethanol producing phase
should start as soon as the line of optimality separates from experimental data [6]. That
is, as soon as a breakpoint occurs in the growth rate curve. In the experimental data set
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Figure 4.15: Linear weights on the columns of table 4.6 when combining the kcat sets to minimize
the relative deviations of the ircFBA model’s predictions for growth rate and oxygen uptake from
the experimental measurements. The subscript for µ indicates the column of the table the weight
represents, with µ without a subscript being an additional column added consisting only of ones.

used to fit the ircFBA model, this should be at a growth rate of between 0.28 to 0.31 h−1.
However, figure 4.17b shows that no ethanol is produced until after a growth rate of 0.35
h−1. As was the case for the base ircFBA model, acetate and pyruvate excretion rates are
many times greater than what was reported in the article most of the experimental data was
sourced from [6, 1]. However, while the ircFBA model’s phenotype does not match the
real organism’s, the algorithm did solve the problem as it was stated. If the SP algorithm,
and the method for combining kcat sets, had been applied to a more diverse set of growth
conditions it seems reasonable to expect better results. A possible expansion of the ircFBA
model to also include transport reactions in the enzyme capacity constraint could also be
helpful.

Figure 4.16: ircFBA growth predictions based on combining the kcat sets from table 4.6. A) The
growth rate as a function of the upper bound on the glucose uptake rate. B) The oxygen uptake rate
as a function of the glucose uptake rate upper bound.
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4.3 ircFBA with randomized kcat sets

Figure 4.17: A) The major excretion product at any given combination of glucose and oxygen uptake
for the ircFBA model generated by combining the kcat columns in table 4.6. At least one of acetate,
pyruvate or ethanol was excreted in every point plane, except for the part prior the ircFBA and
FBA lines of optimality separating. B) The rate of excretion of acetate, pyruvate and ethanol in the
ircFBA model generated by combining the columns in table 4.6. The predicted ethanol production
start point, 0.36 h−1, occurs at a later stage than experimental evidence suggests [6].

4.3 ircFBA with randomized kcat sets

New kcat sets were created by randomly drawing from the kcat CSV file (see section
3.3.2). kcat sets capable of supporting growth were optimized with the SP algorithm with
M = 1000 and a target growth rate of 0.38 h−1. Upper bounds were set on both the
glucose and oxygen uptake rates following the experimental data set in Appendix B. After
the SP algorithm finished, both upper bounds were removed and the unconstrained growth
rate along with its flux distribution was recorded.

Figure 4.18 shows the final unconstrained growth rates plotted against the glucose and
oxygen uptake rates. Two groups are clearly visible in this plot: a high oxygen group
and a low oxygen group. Since the SP algorithm works by optimizing for growth with a
set of constraints, no control mechanisms are in place to control for behavior once these
constraints are lifted. With the algorithm in its current form, this is an issue that can’t be
avoided. It should be possible to formulate a different algorithm that avoids increasing
kcat values with unwanted side effects instead of just by minimizing a ratio, however.
Unfortunately, this falls outside of the scope of this project.

The flux vectors from the 1000 ircFBA solutions with different kcat sets are interest-
ing, as they allow for an examination of the sort of metabolic states attainable by ircFBA.
Figure 4.19 shows a heat map of the correlation matrix for enzymatic reactions that car-
ried flux in at least one one the these 1000 ircFBA solutions. The rows and columns of
the matrix were sorted by using bottom-up hierarchical clustering with average linkage as
the dissimilarity function and an inconsistency metric for determining the clusters. The
sparseness of this matrix reveals the great level of freedom and variation in the phenotypes
of the 1000 ircFBA models. However, certain fluxes are required for both the low and high
oxygen groups in figure 4.18 to sustain a high growth rate. The giant cluster in the middle
of figure 4.19 dominates the correlation matrix, and is full of reactions for basic metabolic
processes.
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Figure 4.18: Growth rate plotted against oxygen and glucose uptake rates for unconstrained ircFBA
models after randomizing the kcat set and optimizing with the SP algorithm. The target growth rate
was 0.38 h−1. Individual observations seem to fall into two categories: High glucose, low oxygen
or low glucose and high oxygen.

To examine the correlation matrix further, F2C2 was used to find all the flux coupling
relationships in the iTO977 metabolic network. Reactions were grouped together based on
full and partial coupling. Additionally, reactions that had coupling groups of size 1 were
pruned from both its flux coupling group and the flux correlation matrix cluster. Of the
459 enzymatic reactions in figure 4.19, 235 remained at this point. A comparison of the
coupling groups with the flux clusters can be done by using the Jaccard index [65]:

Fi ∩ Vi
Fi ∪ Vi

(4.1)

where Fi is the set of reactions coupled to reaction i, and Vi is the set of reactions clustered
with reaction i in figure 4.19. A Jaccard index of 1 means that the sets are identical, while
0 means that they are completely dissimilar. Figure 4.20a is a histogram of the Jaccard
index distribution for this comparison. The high degree of similarity between flux clusters
and coupling groups is interesting, but has a clear explanation. The flux coupling groups
are dependent only on the network structure and will therefore be carried over into the
ircFBA models as well. However, re-analyzing these results with different inconsistency
cutoffs for the flux clustering leads to some interesting findings. Figure 4.20b shows the
mean Jaccard index as a function of the inconsistency cutoff, and it remains robust over
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Figure 4.19: A heat map of the correlation matrix for the fluxes from the 459 enzymatic reactions
that were switched on in at least one of the 1000 ircFBA models.

most of the range. This suggests that the links in the dendrogram that connect flux coupled
reactions are highly consistent. This leads to the clusters retaining integrity when the
inconsistency cutoff is very low. Furthermore, since the mean Jaccard index is always
significantly different from 1, it shows that there are other ways for fluxes to cluster tightly
aside from being coupled. The variation in the phenotypes of the ircFBA models therefore
allow flux correlations that are not captured by flux coupling analysis to be discovered.

4.3.1 Correlation of the final kcat values with the original kcat set
A total of 250 reactions had their kcat values changed by the SP algorithm in at least one
of the 1000 ircFBA models. For each of the 250 reactions, all the final values from ircFBA
models where the kcat for this reaction was changed during SP algorithm optimization
were tabulated. The mean kcat for each calculated, log10 transformed and plotted against
the log10 transformed original kcat set in figure 4.21. The Pearson correlation coefficient
for these two sets of kcat was 0.37 with a p-value of 1.4 × 10−9. As these kcat values
were obtained by randomizing the kcat set and then optimizing for just one growth rate,
this was not an expected result. Whether or not this gives any sort of basis for a method
for predicting actual kcat values is unclear however, but further testing with more diverse
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Figure 4.20: A heat map of the correlation matrix for the fluxes from the 459 enzymatic reactions
that were switched on in at least one of the 1000 ircFBA models.

growth conditions could lead to an answer.

Figure 4.21: The log1 0 transformed mean of kcat, here designated as kcatF values changed by the
SP algorithm after randomization plotted against the log10 transformed original kcat set, kcatE . A
linear trend can be seen, confirmed by a Pearson coefficient of 0.37 with a p-value of 1.4× 10−9
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Conclusion

A modelling framework named ircFBA was successfully developed to allow incorporation
of kinetic data into genome-scale metabolic models. An ircFBA model for S. cerevisiae
was constructed and implemented in the COBRA toolbox in MATLAB. It was shown to
improve on FBA growth rate predictions in the absence of an upper bound on the oxygen
uptake by its growth rate saturating. Furthermore, a switch from full respiration over
to respiro-fermentation at high levels of glucose was also observed. The growth rates
predicted by ircFBA were significantly lower than experimentally observed growth rates,
however.

The algorithms developed to close the this growth rate gap showed mixed results. The
first algorithm (QP), based on quadratic programming, was able to reach the target growth
rate in most cases, but was numerically unstable and prone to failure. The second method
was based on using shadow prices from post-optimality analysis. The second algorithm
(SP) was a resounding success and was found to only need to change the kcat for a max-
imum of five reactions to close the growth rate gap to experimental growth rates. Some
of the oxygen uptake rate predictions obtained by using the second algorithm were worse
than when using the QP algorithm, but could be rectified by finding linear combinations
of turnover numbers from different growth rates. This approach was effective for fitting
an ircFBA model to a set of experimental data points, but growth rates from more varied
experimental conditions should probably be used to really see a benefit. Finally, after ran-
domizing the kcat values and re-optimizing the growth rate with the SP algorithm, it was
found that the turnover numbers predicted by ircFBA are correlated with actual turnover
numbers to a high degree of statistical significance. This suggests that the method might
actually be able to predict reaction kcat values based on the network structure. However,
more work is needed to settle this issue.

The favorable performance of the SP algorithm points to its potential applicability for
tuning ircFBA model to enable modelling of non-standard strains of S. cerevisiae.
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Appendix A
Implementing an ircFBA model
based on iTO977 for use with the
COBRA Toolbox

The script below creates an ircFBA model if the appropriate variables are defined in the
workspace.

Listing A.1: A short Matlab script that assembles the ircFBA model for the ito977 model

1 %%Model i s the iTO977 model in the COBRA model conta ine r
2 rcFBA model = model ;
3 %%rxns i s the l i s t o f enzymatic r e a c t i o n s
4 enzRxns = length ( rxns ) ;
5 [ nMets , nRxns ] = s i z e ( model . S ) ;
6 ircFBA model . c s ense ( 1 : nMets+2*enzRxns +1 ,1) = 'E' ;
7 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x = model . S ;
8
9 f o r i = 1 : enzRxns

10 key = rxns { i } ;
11 %% turnove rL i s t i s a hash t a b l e that maps r e a c t i o n names

to the turnover number
12 va l = turnove rL i s t ( key ) ;
13 rxnIndex = rxnToIndex ( rxns { i }) ; %%rxnToIndex maps the

r e a c t i o n name to the iTO977 index
14 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+i , rxnIndex ) = 1 ;
15 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+i , nRxns+i ) = −1*va l ;
16 ircFBA model . c s ense ( nMets+i ) = 'L' ;
17
18
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19 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+enzRxns+i , rxnIndex )
= 1 ;

20 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+enzRxns+i , nRxns+i ) =
va l ;

21 ircFBA model . c s ense ( nMets+enzRxns+i ) = 'G' ;
22
23 end
24 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+2*enzRxns +1 ,1) = 0 ;
25
26 f o r i = 1 : enzRxns
27 index = rxnToIndex ( rxns { i }) ;
28 i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ( nMets+2*enzRxns+1,nRxns+i )

= rxnToMedianMW( rxns { i }) /1000 ; %% rxnToMedianMW maps
r e a c t i o n names to the MW in un i t s o f Daltons .

29 end
30
31 lb = [ model . lb ; z e r o s ( enzRxns , 1 ) ] ;
32 ub = [ model . ub ; ones ( enzRxns , 1 ) ] ;
33 c = ze ro s ( nRxns+enzRxns , 1 ) ;
34 c (1559) = 1 ; %% 1559 i s the c o e f f i c i e n t o f the growth ra t e

func t i on
35 b = ze ro s ( nMets+2*enzRxns +1 ,1) ;
36 rev = [ model . rev ; z e r o s ( enzRxns , 1 ) ] ;
37 ircFBA model . S = i t o 9 7 7 s t o i c h i o m e t r i c m a t r i x ;
38 ircFBA model . lb = lb ;
39 ircFBA model . ub = ub ;
40 ircFBA model . c = c ;
41 ircFBA model . c s ense ( nMets+2*enzRxns+1) = 'L' ;
42 b( nMets+2*enzRxns+1) = 0 . 4 ; %% t h i s i s the p ro t e in f r a c t i o n

c o n s t r a i n t
43 ircFBA model . b = b ;
44 ircFBA model . rev = rev ;
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Appendix B
Uptake rates for glucose and
oxygen from minimal glucose
media

The experimental data set consists of 11 measurements of growth rate along with oxygen
and glucose uptake rates. These are listed in table B.1 and were taken from the iTO977
publication [14]. The iTO977 model predicts the growth rates with high accuracy when the
upper bounds for the oxygen and glucose uptake rates are set according to the experimental
values, which is demonstrated in figure B.1.
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Figure B.1: iTO977 FBA growth rates plotted against the experimental growth rate. The FBA model
was constrained with the experimental uptake rates for glucose and oxygen.

Table B.1: The experimental data set used to evaluate and enhance the ircFBA model. Each triad of
values comes from aerobic minimal media with glucose as the sole energy and carbon source. The
data was taken from [1]

Growth rate Glucose uptake rate Oxygen uptake rate
0.1 1.15 2.7
0.1 1.17 2.5
0.15 1.69 4
0.20 2.26 5
0.25 2.88 6.5
0.27 3.27 7.46
0.28 3.29 7.8
0.31 3.88 8
0.33 6.2 7
0.35 7.89 6.5
0.38 13.39 3

70



Appendix C
KEGG pathway maps of glycolysis
and the TCA cycle in S. cerevisiae
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Figure C.1: A pathway map of glycolysis in S. cerevisiae taken from the KEGG PATHWAY
database and formated with Keggscape [7]. Metabolites are white squares, and the green boxes
are the enzymes catalyzing the reaction.
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Figure C.2: A pathway map of the TCA cycle in S. cerevisiae taken from the KEGG PATHWAY
database and formated with Keggscape [7]. Metabolites are white squares, and the green boxes are
the enzymes catalyzing the reaction.
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Appendix D
Histograms of the relative changes
in kcat caused by the QP algorithm
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Figure D.1: log2 of the final ratio, kcatF
kcatE

, for enzyme turnover numbers that were changed when
running the QP algorithm to fit for the highest growth in the data set. Changes vary over several
orders of magnitude, with the most extreme cases representing 12 doublings.
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Figure D.2: The number of active genes in intermediary QP algorithm solutions. The LP curve is the
number of active reactions when the kcat set was updated according to the preceding QP algorithm
step. If no numerical issues were present, these curves would be identical. The large gap, even at the
lowest level of feasibility intolerance, shows that the numerical solvers used aren’t precise enough
to actually solve the QP problem effectively.
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Appendix E
The effect of reverting kcat ratios
back to its initial value

The ircFBA model obtained by running the SP algorithm on a target growth rate of 0.38
h−1 was re-examined by resetting each of the 5 kcat values that were changed by the SP
algorithm back to their initial values, one by one.
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Figure E.1: The effect of resetting individual kcats back to the their initial value for ircFBA0.38.
The leftmost plot in the upper row is the original ircFBA0.38 curve.

80



Figure E.2: The effect of resetting individual kcats back to the their initial value for ircFBA0.38.
The leftmost plot in the upper row is the original ircFBA0.38 curve.
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