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Abstract 

Proper correlation between formation mechanical properties and acoustic data is 

essential for acquiring field rock mechanical data for analysis, and it has thereby 

a great significance to oilfield development. 

This thesis presents results from a correlation study between formation 

mechanical properties and acoustic wave velocities from a set of unpublished 

rock mechanical experiments on sandstone samples from the Norwegian shelf. 

The core samples from the Norwegian shelf were subjected to triaxial 

compression tests performed at various confining pressures with simultaneous 

measurements of acoustic velocities. Correlations between formation 

compressive strength, elastic stiffness and Poisson's ratio and compressional 

and shear transit time have been established. 

The results obtained in this study confirm that the stress level and the stress 

configuration affect the acoustic velocities, and this should be accounted for 

when using generalized empirical correlations to estimate formation strength, 

elastic stiffness and Poisson's ratio from acoustic logs in field studies. The 

empirical correlations established through this work are found to match 

reasonable well with other published relations. By acoustic logs from field 

studies, it is found that the empirical correlations overestimate the formation 

strength and the elastic stiffness. 
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Sammendrag 

Riktig korrelasjon mellom formasjon mekaniske egenskaper og akustiske data er 

viktig for å tilegne bergmekanisk data i feltet for analyse, og den har dermed stor 

betydning for oljefelt-utvikling.  

Denne avhandlingen presenterer resultater fra en korrelasjons studie mellom 

formasjon mekaniske egenskaper og akustiske hastighetene fra et sett 

upubliserte bergmekaniske eksperimenter på sandstein prøver fra norsk sokkel. 

Kjerne prøvene fra norsk sokkel ble utsatt for triaksial kompresjons tester utført 

ved ulike omslutningstrykk med samtidige målinger av akustiske hastigheter. 

Korrelasjoner mellom formasjon mekanisk styrke, elastisk stivhet og Poisson's 

forhold og kompresjons- og skjær transit tid har blitt fastslått.  

Resultatene oppnådd i denne studien bekrefter at stress nivået og stress 

konfigurasjonen påvirker de akustiske hastighetene, og dette bør gjøres rede for 

ved bruk av generaliserte empiriske korrelasjoner til å anslå formasjonsstyrke, 

elastisk stivhet og Poisson's forhold fra akustiske logger i feltstudier. De 

empiriske korrelasjonene etablert gjennom dette arbeidet er funnet å samsvare 

rimelig godt med andre publiserte relasjoner. Ved bruk av akustiske logger fra 

feltstudier ble det funnet at de empiriske korrelasjonene overestimerte 

formasjonsstyrken og den elastiske stivheten. 
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1. Introduction 

1.1 Goal of study 

The challenge is how to estimate correct formation mechanical properties by the 

use of dynamic measurements, since the conversion from dynamic 

measurements to static parameters is not straight forward. The purpose of this 

thesis is to suggest models for this.  

In addition, the aim is to compare the obtained models against log data from 

wells where plug samples already have been tested in a laboratory, and thereby 

the formation mechanical properties are known from static measurements. 

 

1.2 Methodology 

Formation mechanical properties obtained from static measurements are 

acquired from Weatherford Laboratories and Statoil. The utilized data have been 

subjected to the same type of plug preparation, followed by a standard triaxial 

compression test (TCT). Series of experimental results have been analyzed 

though series expansion performed with a set of parameters (including confining 

pressure) for each elastic parameter, this by the use of the least squares 

method. By this method, the sum of errors (i.e. difference between estimated 

and measured value), is set to be as small as possible by tuning a number of 

constants. The estimated values are plotted against the measured values to 

judge the goodness of fit. 

The confining pressure is then set equal to zero for each obtained model, and 

the resulting values are plotted as a function of compressional and shear transit 

time. The best fit through the obtained values are then found, resulting in the 

respective empirical equation for each plot. A statistical analysis is also 

performed for each model, this by the use of the open source programming 

language and software environment for statistical computing and graphics R. 

Finally, the obtained empirical equations are compared to log data from Statoil, 

this to confirm the validity of the obtained models. The results are also compared 

to a set of equations from already published literature. 
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1.3 Scope 

The utilized data set is limited to unpublished triaxial compression test data on 

core samples from the Norwegian shelf, and the validity of the results are 

thereby also limited to this area. The obtained models should therefore be used 

with care for any other data. The obtained empirical models are also limited to 

be used for sandstone samples. 

The static measurements performed on these plug samples were obtained by 

triaxial compression tests with different confining pressures, and all values are 

thereby not in itself representative for a zero confining pressure environment. 

 

1.4 Master thesis layout 

A brief introduction to the basic rock mechanical properties needed for 

geomechanical analyses in oilfield development is provided along with a short 

definition of static and dynamic measurements (Chapter 2). 

Chapter 3 gives an overview of the available data for this study, including a 

description of the method used when preparing the plug samples for the 

laboratory test and a description of the laboratory test itself. 

A number of empirical equations from literature are presented in Chapter 4, 

along with an introduction to sonic transit time. 

In Chapter 5, all calculations and their respective results are listed for all 

parameters. Also listed in this chapter are the obtained models for each 

parameter. 

Chapter 6 includes statistical analyses of the obtained models, and their 

respective empirical equations. These statistical analyses have been performed 

by the open source programming language and software environment for 

statistical computing and graphics R. 

And finally, in Chapter 7, the obtained empirical equations are compared to log 

data to confirm their validity. The empirical equations are also compared to other 

empirical relations from literature. 

Suggestions for further work, and discussion related to the obtained results are 

given in Chapter 8 and Chapter 9, respectively. 

  



Background 

3 
 

2. Background 

Geomechanics analysis has gradually become an integrated part of oilfield 

development. This includes several topics such as pre-drill wellbore stability 

analyses, utilizing seismic for pore pressure estimation and basic data 

acquisition during exploration. Before drilling a well and developing a field, the 

stability of the drill site must be estimated and further on determined to avoid 

critical issues, e.g. stuck pipe. Pore pressure estimation is also a critical 

evaluation, as it may lead to blow out or wellbore failure. These are dangerous 

hazards that not only could danger people on drill site and the environment; 

such events will also result in great economic losses. During the development 

phase, further wellbore stability issues are faced, as well as sand production risk 

analysis which also may cause great concerns in the oilfield development. And 

further on in the production phase, hydraulic fracture stimulation can be used in 

terms of production optimization, and reservoir compaction as a result of 

drainage must be addressed and analyses of stress-dependent permeability for 

infill well placement can be performed.  

 

2.1 Formation mechanical properties 

Basic rock mechanical properties must be determined or estimated for all the 

applications in the oil and gas industry mentioned above. Such properties are 

formation mechanical properties, elastic properties and plastic properties. 

Examples of formation mechanical properties are compressive and tensile 

strength. These parameters describe the maximum strength a material can 

endure before going into shear or tensile failure respectively.  

When a test sample is subjected to axially directed forces, the test sample is 

crushed or fails when its limit of compressive strength is reached. The 

unconfined compressive strength (UCS) is related to when the confining 

pressure is zero, and is usually determined by the uniaxial compressive test or 

the triaxial compressive test, where the latter require the use of the Mohr-

Coulomb theorem to determine the UCS. These tests will be given a more 

thoroughly introduction in section 3.4 and 3.3, respectively. 

When the effective tensile stress across some plane in the plug samples 

exceeds a critical limit, the material will go into tensile failure (Fjær et al. 1992). 

The tensile strength of a material is determined by the tensile test, but can also 

be given from the Brazilian test (see Appendix B.6) 
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2.2 Elastic properties 

Some materials have the ability to deform elastically, i.e. the deformation is not 

permanent and the material will go back to its original state after the applied 

force is removed. This tendency is described by a set of elastic moduli which is 

given as the slope of the stress - strain curve in the region of elastic deformation. 

There are several types of elastic moduli, given from specifications of how the 

appropriate stress (denoted σ) and strain (denoted ε) are measured, and in 

which direction they are to be measured. Young's modulus and Poisson's ratio 

will be briefly mentioned and described below.  

 

2.2.1 Young's modulus 

Young's modulus describes the stiffness of the sample (Fjær et al. 1992), which 

is the plug sample's ability to resists compression by uniaxial stress. Young's 

modulus is denoted E, and is defined as the ratio of the extensional stress to the 

extensional strain; 

 

 
zz

zz

E





 (2-1)   

 

when σxx = σyy = σxy = σxz = σyz = 0 which is given as uniaxial stress state.  

This parameter is often called the modulus of elasticity, as it is the most common 

used parameter of the elastic moduli. It is also important to state that Young's 

modulus depend of the direction it is measured, thereby resulting in that 

anisotropic materials have different Young's modulus depending on the direction 

of the force applied.  
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2.2.2 Poisson's ratio 

Poisson's ratio is a dimensionless parameter that measures the ratio of lateral 

expansion to longitudinal contraction. This is a result of the common trend of 

materials, which is that they tend to expand in the directions perpendicular to the 

direction they are compressed. Poisson's ratio is denoted ν and is given as; 

 

 
xx

zz





 

 (2-2)  

 

when σxx = σyy = σxy = σxz = σyz = 0. 

 

2.3 Plastic properties 

The plastic properties of a material describe its non-reversible deformation as a 

result of the applied force to the material. This means that when the applied 

force is removed, the material will not go back to its original state, and plastic 

deformation is thereby the opposite of elastic deformation. The transition from 

elastic to plastic behavior is described by the yield point of the material. Plastic 

properties are also used to describe and estimate the ductile behavior of a 

material, i.e. the material can endure the failure load beyond the failure point.  

It is not straight forward to estimate static stiffness based on sound 

measurements, and plasticity is an important reason for this. This is because 

plasticity may influence the stiffness measured from static measurements, since 

such measurements inflict a high degree of deformation in a given direction of 

the sample. While during measurements with sound waves, the waves inflict 

small, periodical deformations to the sample, for which plastic deformation does 

not occur, and thereby the sound waves are not affected by the plasticity of the 

given sample. 

(For examples of failure modes and interpretation of elastic parameters, see 

Appendix B.4 and B.5, respectively). 
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2.4 Static and dynamic measurements 

Formation mechanical properties, elastic properties and plastic properties are 

normally derived from static measurements on core plugs in laboratories, but 

measurements on cuttings and cavings may as well be used to derive certain 

rock mechanical properties (Nes et al. 1996, Ringstad et al. 1998). Static 

measurements are time consuming and thereby not economical beneficial and 

as a result of this, theoretical models and correlations have been derived to take 

well logs in direct use for estimating rock mechanical properties, despite the fact 

that such methods are not straight forward. Such theoretical models take into 

use the formation principal stresses (often the vertical and the 

maximum/minimum horizontal stresses) as well as the pore pressure, which are 

a result of well measurements (e.g. well hydraulic fracture tests, caliper/image 

logs and density log). 

Formation mechanical properties obtained from a single well may be applied to 

constitute a simple 1D model. But, various measurements from multiple wells 

may also be integrated through the use of geostatistics or alternatively through a 

3D numerical model. This may define a 3D geomechanical model, or a 

"Mechanical Earth Model". Such models are the basis for almost any 

geomechanical analysis. 

 

2.5 Summary 

Geomechanical analyses are important when assessing the development of an 

oilfield. Such analyses include several different topics, both during exploration, 

development phase and during the production phase. These geomechanical 

analyses are in the need of basic rock mechanical properties, including 

formation mechanical properties, elastic properties and plastic properties. Such 

static properties can be determined from both static and dynamic 

measurements. However, the conversion from dynamic measurements to static 

parameters is not straight forward. 
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3. Rock Mechanical Data 

3.1 Available data 

The data samples included in this study are sandstone samples from the 

Norwegian shelf, which have been subjected to triaxial compression tests to 

determine their peak stress (failure stress) and elastic moduli such as Young's 

modulus and Poisson's ratio. These data samples are provided by Statoil and 

the tests have been performed by Weatherford Laboratories, including the 

petrophysical measurements which determine, amongst other, the porosity and 

the bulk volume of each sample. It is also essential to mention that these 

samples have been subjected to acoustic measurements.  

This set of new, unpublished data from the Norwegian shelf will in this chapter 

be compared to already published work (presented in the article by Chang et al. 

2006). 

It should be noted that not all samples evaluated in this study are obtained from 

the same geological area, which may give way to differences in the 

petrophysical measurements. Chang et al. (2006) presented a summary of 

empirical equations, along with the data sets of several authors that have 

performed similar studies; relating unconfined compressive strength (UCS) to 

compressional transit time, Young's modulus or porosity. Lama and Vutukuri 

(1978) and Carmichael (1982) provided rock mechanical data from sedimentary 

rocks from locations all around the world. This data set reveal scatter which may 

be a result of the degree of compaction, as well as lithological and mineralogical 

effects. Kwasniewski (1989) also listed UCS and porosity data from various 

sandstones, and Wong et al. (1997) presented strength and other physical 

properties of several representative porous sandstones. From Texas, Jizba 

(1991) provided rock mechanical properties from sandstones, but despite the 

fact that this data set is obtained from one single borehole, some scatter can be 

seen (Figure 3-1 and Figure 3-2). And finally, the last data set from Bradford et 

al. (1998) comprise of laboratory test results on sandstones from the North Sea 

(Chang et al. 2006).  
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3.1.1 Compressional transit time 

In Figure 3-1 the data sets obtained from the article by Chang et al. (2006), 

which are measured under dry conditions, are plotted together with the data set 

from the Norwegian shelf, which are saturated (with synthetic formation water) 

plug samples. The compressional transit time is directly measured for all data 

sets.  

The figure show plot of measured unconfined compressive strength (UCS) 

against compressional transit time (Δtp), and a clear scatter can be observed in 

the data collected from literature, while the unpublished results from the 

Norwegian shelf show a clear trend. It can also be seen that the samples from 

the study by Bradford et al. (1998) appear to follow the same trend as the 

unpublished data, and it is given that both of these data sets are obtained from 

the same geological area, i.e. the Norwegian shelf and the North Sea. Despite 

the scatter in Figure 3-1, the trend of decreasing UCS with increasing 

compressional transit time is evident. 

 

Figure 3-1. Available data- UCS as a function of Δtp. 
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3.1.2 Young's modulus 

Unconfined compressive strength (UCS) can also be evaluated as a function of 

Young's modulus (E). In Figure 3-2, plug samples obtained from the article by 

Chang et al. (2006) are plotted together with the unpublished data from the 

Norwegian shelf, as a function of Young's modulus. It can be seen that this 

correlation reveals a clear scatter, also for the unpublished data from the 

Norwegian shelf, which revealed a clear trend in Figure 3-1 when plotted as a 

function of Δtp. Despite this scatter, it can be observed that UCS increases with 

increasing Young's modulus. 

Young's modulus has been obtained through density and velocity measurements 

for the data sets found in the article by Chang et al. (2006), while for the plug 

samples which were subjected to static measurements performed by 

Weatherford Laboratories, Young's modulus was interpreted using linear 

regression in the 40 - 60 % range of the peak axial stress (see Appendix B.5).   

 

Figure 3-2. Available data- UCS as a function of E.  
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3.1.3 Porosity 

As for Δtp and Young's modulus, UCS can also be evaluated as a function of 

porosity (φ), and thereby the degree of compaction (as porosity decreases with 

increasing compaction). In Figure 3-3, the plug samples obtained from the article 

by Chang et al. (2006) and the plug samples obtained from the Norwegian shelf, 

are plotted as a function of φ. A more evident trend is observed for the porosity 

than for Δtp and Young's modulus, as it can be seen that the UCS is decreasing 

for increasing porosity.  

It can also be seen that the unpublished data set from the Norwegian shelf 

appear to give a linear trend as a function of porosity. 

Porosity is derived from density measurements, where rock matrix and fluid 

densities are assumed, using; 

 

 
ma b

ma f

 


 




  (3-1)  

 

where φ is given in fractions, ρma denotes the matrix density which is assumed to 

be equal to 2.64 g/cm
3
 for sandstones, ρb denotes the bulk density which is 

given in g/cm
3
 as mass divided by total volume, and ρf is given as the fluid 

density, and is assumed to be 0.8 g/cm
3
 for oil. 
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Figure 3-3. Available data- UCS as a function of φ. 
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3.2 Sample preparation 

The unpublished sandstone samples from the Norwegian shelf have all been 

subjected to similar preparation by Weatherford Laboratories, by the instructions 

of Statoil. The plugs were supplied from a set of seal peals (directly drilled 

cores), where they were drilled parallel to the seal peal axis (i.e. vertically 

oriented). When drilling plugs that are to be used in rock mechanical tests, it is 

convenient to drill three plug samples at the exactly same depth. This method 

ensures homogeneous core samples, i.e. similar compaction and mineralogical 

composition, which gives the best correlation when constructing the Mohr-

Coulomb failure envelope. After drilling, the plug end-surfaces were ground 

plane and parallel according to ISRM-standard (recommended tolerance in end 

parallelism is ± 0.0254 mm (Britt Rock Mechanics Lab)) to ensure that the plugs 

are perfectly attached to the pistons, as small errors may have great significance 

to the results. Further on the plug samples were adjusted to a length of 

approximately two times the diameter, and the length and diameter of each 

sample were measured to be used for the calculations of deformation and axial 

stress. In addition to that the weight of each sample was measured; digital 

images were used to describe the failure mechanism of each plug afterwards.  

Cleaning is essential to remove any residual hydrocarbons which may affect the 

petrophysical measurements on the plugs, but the cleaning itself may also affect 

the rock mechanical measurements. This has resulted in several different trends 

regarding the question of cleaning the samples before rock mechanical testing. 

Some of the samples from the Norwegian shelf have been subjected to a 

standard soxhlet cleaning with toluene and methanol as solvents, before they 

were dried in a heat cabinet and further on the mercury (Hg) – bulk volume and 

helium (He) – porosity were measured. Other plugs were not cleaned, but 

instead subjected to circulation with paraffin oil, this to remove any possible 

residuals of the heaviest hydrocarbon compounds. This circulation is performed 

because some plugs are considered too fragile to be subjected to the standard 

cleaning procedure.  
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3.3 Triaxial compression test 

The unpublished plug samples from the Norwegian shelf have been subjected to 

standard triaxial compression tests with different confining pressures. The plug 

samples were tested at drained conditions with SFW (synthetic formation water), 

and the sandstone samples provided by Statoil are also known to have been 

tested with a pore pressure of 0.5 MPa for the most recent studies and 1.0 MPa 

for studies performed several years ago. During such studies and tests, it is also 

standard procedure to measure the pore volume, this by connecting the pore 

pressure system to a volume gauge. Further on, the plug samples are loaded up 

to a predetermined hydrostatic load value, at a loading rate of about 1.0 

MPa/minute. Then the plugs are unloaded hydrostatically to a low load value, 

before they are reloaded and subjected to hydrostatic consolidation for 30-60 

minutes. Finally the samples are axially compressed with an axial deformation 

rate of normally 10 mStrain/hour, until clear failure are observed or 20 mStrain 

axial strain is obtained. Here it is as previously mentioned convenient to have 

three different confining pressures for three plugs obtained at the same depth, 

which will give a more accurate determination of the unconfined compressive 

strength using the Mohr-Coulomb failure envelope. 

Acoustic measurements are essential to this study, as rock mechanical 

parameters are found to be a function of sonic transit time. For the unpublished 

samples from the Norwegian shelf, the acoustic velocities are measured in the 

axial direction of the sample, with either P-wave or S-wave transducers. P-wave 

transducers were common several years ago, before S-wave transducers 

became standard as it was discovered that the arrival of P-waves could also be 

seen with S-wave transducers. The arrival of the S-wave can sometimes be 

difficult to interpret, and therefore P-wave velocities are more frequently found in 

the data available and in literature generally. It is also essential that the 

signal/noise ratios are high enough to be able to interpret the wave traces to 

determine the velocities. The data included in this study for comparison, which 

are collected from literature (Chang et al. 2006), are confined to P-wave 

velocities.  

As S-waves are to a very little extent affected by liquid effects (see section 4.2), 

as opposed to P-waves, a better correlation between S-waves and rock 

mechanical parameters are expected than between P-waves and rock 

mechanical parameters. The reason for this is the considerable, and unknown, 

variation the liquid effect has to P-waves.  
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3.4 Uniaxial compression test 

The unconfined compressive strength (UCS) of a material is determined by the 

uniaxial compression test. This test has several similarities with the triaxial 

compression test (TCT), but also includes one major divagation from the TCT, 

namely zero confining pressure. 

The uniaxial compression test requires a rigid loading frame for testing, and the 

triaxial cell (see Appendix B.1) is suited, and thereby often used, for this 

purpose. 

The sample preparation for the uniaxial compression test includes cutting the 

plug samples to the specified length, and the ends are ground plane and 

parallel, as for the TCT. It is also possible to conduct uniaxial compression tests 

on different plugs drilled at different directions in a core to capture strength 

anisotropy (directional dependent) in the material. In the uniaxial compression 

test, the specimen is shortened by the load and is normally expanding laterally 

as a result of the Poisson effect (see section 2.2.2).  

In Figure 3-4, a typical result from the uniaxial compression test is showed, and 

several important concepts are defined (Fjær et al. 1992): 

          - The elastic region defines that the specimen will return to its original 

state after the stress is released.  

          - Hardening region is where the sample undergoes plastic deformation 

with increasing ability to sustain load.   

          - Softening region is where the specimen's ability to withstand stress 

decreases as deformation increases. 

For more failure modes, see Appendix B.4 

 



Rock Mechanical Data 

15 
 

 

Figure 3-4. Stress vs deformation in a uniaxial compression test. Edited from Fjær 
et al. (1992). 

 

3.5 Evaluation of data samples 

Plug samples from the Norwegian shelf have been evaluated individually by 

Weatherford Laboratories, and two of the plug samples were excluded from 

further testing during the test procedure due to different reasons: 

          - One plug has been removed due to the fact that its lithological 

description show heterogeneity on this plug in particular, while other plugs  

from the same seal peal show homogeneity. Observations on this plug after 

testing show that the measurements are most likely affected by this 

heterogeneity, and thereby the results are interpreted as not valid.  

          - The second plug in question was removed due to the reason that it 

showed a special fracture phenomenon where the radial deformation after failure 

is positive (reduction of diameter). The measured peak stress on this plug is 

significant lower than those on other plugs from the same seal peal. 

In this study, an upper limit for Poisson's ratio has not been set to 0.5, which is 

the theoretical upper limit for isotropic, linear elastic materials. Since rocks may 

behave plastically, values greater than 0.5 have been included as well. 

 



Rock Mechanical Data 

16 
 

3.6 Summary 

A set of plug samples from the Norwegian shelf provided by Statoil and tested 

by Weatherford Laboratories, along with plug samples from locations all over the 

world found in the article by Chang et al. (2006), have been subjected to triaxial 

compression tests to determine their elastic moduli. The cleaning and handling 

of the plug samples from the Norwegian shelf have been taken into 

consideration, and the unconfined compressive strength (UCS) of each sample 

has been plotted as a function of compressional transit time (Δtp), Young's 

modulus (E) and porosity (φ).  

From the available data, it is found that the overall trend is decreasing UCS with 

increasing Δtp, increasing UCS with increasing E, and decreasing UCS with 

increasing φ.  

 

3.7 Discussion 

It was also found that the unpublished data from the Norwegian shelf followed 

these overall trends, but showed a higher degree of consistency related to the 

given parameter than the data obtained from literature. This may be related to 

the fact that the unpublished data from the Norwegian shelf are much more 

restricted regarded to area than the other data collected from literature. 

However, some of the data sets collected from literature are limited to one single 

well, so the consistency of the compaction and mineralogical composition may 

also influence the results. 
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4. Static – dynamic correlations 

As mentioned earlier, rock mechanical properties can be derived from static 

measurements. This is however time consuming and thereby related to 

economic aspects, as rock samples need to be transported to a laboratory.  

The work performed in this thesis will try to establish a relation between acoustic 

properties and elastic properties and rock compressive strength for sandstone, 

based on acoustic and static measurements from plug samples provided by 

Statoil obtained from the Norwegian shelf. By comparing static and dynamic 

measurements from laboratory tests, a simple empirical model is given to 

determine Young's modulus, Poisson's ratio and unconfined compressive 

strength (UCS) from the use of sonic transit time, both compressional and shear. 

The obtained model will then be compared and discussed with already published 

relations, these from locations all around the world. 
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4.1 P-waves 

Compressional wave, longitudinal wave, primary wave and P-wave are names 

describing the same type of wave. P-wave includes a periodic compression of 

the material it travel through, and are named primary waves after the studies of 

earthquakes (Fjær et al. 1992). This periodic compression implies that the P-

wave will vibrate in the same direction as the direction the wave travel in, or 

more thoroughly explained; each component in the medium will oscillate in the 

same direction as the motion of the wave. Compressional waves can be 

illustrated by the use of a spring, as can be seen in Figure 4-1. The components 

of the medium vibrate back and forth in the direction of travel. In the 

compressions the particles are pushed together, and in the rarefactions they are 

pulled apart.  

 

Figure 4-1. Illustration of compressional wave (after www.talktalk.co.uk). 
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4.2 S-waves 

As for P-waves, there are several names for describing the second type of body 

waves, namely the transversal wave, shear wave, secondary wave or S-wave. 

S-wave includes a periodic shear of the material it travels through, and thereby 

S-waves cannot travel through fluids since they do not exhibit shear stiffness, 

i.e. S-waves are in a very little extent influenced by the liquid within the rock. For 

an S-wave the particles of the solid move in the orthogonal direction compared 

to a P-wave, as the components in the material moves perpendicular to the 

direction of the wave. Shear waves are best illustrated by the use of a rope, as 

can be seen in Figure 4-2. The particles oscillate at right angles to the direction 

of wave.  

 

Figure 4-2. Illustration of shear wave (after www.talktalk.co.uk).  
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4.3 Sonic transit time 

Sonic transit time can be divided into compressive and shear transit time, 

describing the propagation of the wave (see section 4.1 and 4.2). Transit time, in 

this relation, is given as the time it takes for a wave to travel from the source to 

the receiver, and is proportional with the given distance. Compressional and 

shear transit time is denoted Δtp and Δts respectively, and is related to 

compressional and shear wave velocity by 

 

 304878
V

t



 (4-1)  

 

where Δt is given in μs/ft and V in m/s. 

Sonic transit time is also directly related to stiffness, as is shown below; 

 

 2 2( )p p px v t       (4-2)  

 2 2( )s s sx v t       (4-3)  

 

where xp is the uniaxial compaction modulus, xs is the shear modulus, ρ is the 

density, and vp and vs are the compressional and shear velocity, respectively. 

The uniaxial compaction modulus and the shear modulus are dynamic 

stiffnesses (i.e. they are obtained from acoustic velocities and densities). For 

sedimentary rocks, the dynamic stiffnesses may differ significantly from their 

static (obtained from static stress and strain measurements) counterparts, 

although they in theory should be equal for an undrained (or dry), linear elastic 

material. This difference in static and dynamic moduli is mainly a result of two 

main features; cracks and pore fluid. In the static case, closed cracks may slide 

against each other when the strain is sufficiently high, and thereby reduce the 

stiffness of the rock. While in the dynamic case, the amplitude of the strain is 

often much lower and sliding may not be an effect. Regarding the effect of pore 

fluid, both fluid flow in pores and local flow between cracks or narrow pore 

channels, may increase the measured acoustic velocity. Despite this fact, some 

degree of correlation between dynamic and static stiffnesses is expected. 
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A link between dynamic stiffness and strength is also to be expected, since both 

strength and stiffness depend largely on the amount of solid material present in 

the rock, or – equivalently – they both depend on the porosity. However, the 

geometrical distribution of the solid material in terms of pore shape, degree of 

cementation etc. is also important, and this distribution affects stiffness and 

strength differently. Thus, some correlation between strength and sonic data, 

and between static stiffness and sonic data, is to be expected, but these 

correlations may not be very strong.  

 

4.4 Empirical equations from literature  

There are numerous empirical equations found in literature that relates 

unconfined compressive strength (UCS) to sonic transit time, elastic constants 

and porosity. The results from the study performed here will be compared and 

evaluated against some of the empirical relations found in literature, several of 

them mentioned in the article by Chang et al. (2006). 

McNally (1987) developed two separate empirical equations based on the region 

the samples were collected from. A set of data from fine grained sandstone from 

the Bowen Basin in Australia were collected. The data included both 

consolidated and unconsolidated sandstones, thereby including all porosity 

ranges. This resulted in a relation (Eq. (4-4)) that included compressional transit 

time (Δtp) for estimation of the UCS. 

 

 ( 0.036 )
1200 pt

UCS e
 

   
(4-4)  

 

where UCS is given in MPa and Δtp in μs/ft. 

A second set of data was collected from the Gulf Coast, USA. These samples 

are limited to weak and unconsolidated sandstones, and are also expressed in 

terms of Δtp; 

 

 7 31.4138 10 pUCS t    (4-5)  

 

where UCS is given in MPa and Δtp in μs/ft. 
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Raaen et al. (1996) presented an equation relating UCS to Δtp on sandstone 

samples obtained (mostly) from the North Sea. The sandstone samples were 

regarded to be of weak material, and Eq. (4-6) was initially developed to include 

the confining pressure of the test procedure. However, setting the confining 

pressure equal to zero, one obtains the given equation for UCS; 

 

 2140 2.1 0.0083p pUCS t t      (4-6)  

 

where UCS is given in MPa and Δtp in μs/ft. 

For a range of igneous, sedimentary and metamorphic rocks, Sharma and Sing 

(2008) presented a linear equation (Eq. (4-7)) that gives a correlation between 

the UCS and the P-wave velocity (Vp) for the given material. 

 

 0.0642 117.99pUCS V   (4-7)  

 

where UCS is given in MPa and Vp in m/s. 

And from the region Thuringia in Germany, Freyburg (1972) developed a linear 

empirical equation (Eq. (4-8)), relating Vp to the UCS of sandstone samples.  

 

 0.035 31.5pUCS V   (4-8)  

 

where UCS is given in MPa and Vp in m/s. 
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From the McArthur River Field at Cook Inlet, Alaska, Moos et al. (1999) 

developed an empirical equation (Eq. (4-9)) that predicted the UCS for the given 

material, depending both on the density (ρ) and the P-wave velocity. These rock 

samples from the Cook Inlet were described as coarse grained sandstones, and 

also included some conglomerates.  

 

 9 21.745 10 21pUCS V    (4-9)  

 

where UCS is given in MPa, Vp in m/s and ρ in g/cm
3
. 

Chang et al. (2006) presented as previously mentioned a summary of empirical 

equations for sandstones (as well as for shales and limestones and dolomites). 

The final two equations that will be compared to the result from this study are 

given below, and are based on sandstone samples from Australia (Eq. (4-10)) 

and the Gulf of Mexico (Eq. (4-11)) respectively. These are unpublished 

empirical relations obtained from the article by Chang et al. (2006). 

 

 11 2(1.9 10 )
42.1 pV

UCS e


   
(4-10)  

 10 2(1.14 10 )
3.87 pV

UCS e


   
(4-11)  

 

where UCS is given in MPa, Vp in m/s and ρ in g/cm
3
.  

 

In order to compare these empirical equations with each other, only depending 

on the compressional transit time (Δtp), a constant value of density (ρ) is set to 

2.3 g/cm
3
 as this is regarded as a reasonable average value for sandstone 

(Chang et al. 2006).  
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4.5 Summary 

Rock mechanical properties may be derived from both static and dynamic 

measurements, and the ability to determine elastic properties and compressive 

strength from dynamic measurements is beneficial both regarded to time and 

economics. Dynamic measurements are related to acoustic velocities and 

densities, and may differ significantly from static measurements that are related 

to stress and strain measurements, although they in theory should be equal for 

an undrained, linear elastic material.  

A set of empirical equations for sandstones, derived from locations all over the 

world, have been evaluated and will be compared against the empirical relations 

obtained in this study.  
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5. Calculations 

The plug samples available from the Norwegian shelf have been subjected to 

triaxial compression tests performed by Weatherford Laboratories. The plugs 

were tested at different confining pressures. Therefore, to be able to compare 

the test result on these plug samples, models as functions of confining pressure 

needed to be established for the various parameters. 

5.1 Data values 

The results from the triaxial compression tests performed on the samples from 

the Norwegian shelf are given in Table 1 below. These data values are given 

with permission from Statoil. 

 

Table 1. Main results of static and dynamic measurements on core samples from 
the Norwegian shelf (performed by Weatherford Laboratories). 

ID φ 
[frac.] 

ρb 
[g/cm

3
] 

ρma 
[g/cm

3
] 

σc 
[MPa] 

pp 
[MPa] 

σc,net 
[MPa] 

E 
[GPa] 

ν       
[-] 

σmax 
[MPa] 

UCS 
[MPa] 

Vp 
[m/s] 

Vs 
[m/s] 

1 0.332 2.03   3.0 1.0 2.0 9.2 0.19 40.9 34.5 3280 2090 

2 0.207 2.26   3.0 1.0 2.0 14.0 0.13 70.2 60.6 3515 2125 

3 0.228 2.22   3.0 1.0 2.0 13.5 0.22 73.9 71.0 3610 1990 

4 0.228 2.22   7.0 1.0 6.0 18.5 0.34 99.1 60.6 3630 2260 

5 0.212 2.25   7.0 1.0 6.0 15.3 0.41 88.6 71.0 3610 2255 

6 0.326 2.04   13.0 1.0 12.0 12.0 0.24 72.8 34.5 3420 2180 

7 0.126 2.38 2.66 6.0 1.0 5.0 24.8 0.19 116.9 64.6 4330   

8 0.097 2.37 2.68 6.0 1.0 5.0 33.5 0.2 130.9 78.6 4430   

9 0.079 2.43 2.63 6.0 1.0 5.0 17.2 0.19 108.8 3.9 4320   

10 0.179 2.22 2.64 6.0 1.0 5.0 4.6 0.25 46.7 19.6 3820   

11 0.178 2.45 2.73 6.0 1.0 5.0 11.1 0.39 66.8 19.4 3850   

12 0.216 2.26 2.68 6.0 1.0 5.0 5.5 0.14 39.8 16.0 3540   

13 0.086 2.52 2.67 6.0 1.0 5.0 26.1 0.21 136.3 46.0 4370   

14 0.017 2.66 2.68 6.0 1.0 5.0 18.2 0.32 75.7 43.2 4200   

15 0.066 2.54 2.69 6.0 1.0 5.0 24.0 0.29 128.1 83.9 4450   

16 0.187 2.33 2.68 6.0 1.0 5.0 5.5 0.35 45.6 17.5 3440   

17 0.203 2.23 2.66 6.0 1.0 5.0 9.8 0.16 63.0 27.0 3450   

18 0.218 2.28 2.73 6.0 1.0 5.0 8.1 0.21 42.9 14.0 3300   

19 0.163 2.41 2.75 6.0 1.0 5.0 8.7 0.28 56.1 23.8 3580   

20 0.071 2.55 2.69 6.0 1.0 5.0 10.1 0.34 69.1 28.8 4220   

21 0.126 2.37 2.66 11.0 1.0 10.0 31.8 0.2 160.6 73.1 4480   

22 0.097 2.45 2.68 11.0 1.0 10.0 32.5 0.31 150.5 111.0 4550   

23 0.079 2.48 2.63 11.0 1.0 10.0 18.6 0.34 133.4 4.9 4420   
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24 0.179 2.23 2.64 11.0 1.0 10.0 10.1 0.21 68.2 23.8 3980   

25 0.178 2.43 2.73 11.0 1.0 10.0 14.4 0.36 92.2 41.4 3970   

26 0.216 2.31 2.68 11.0 1.0 10.0 8.9 0.16 61.1 18.5 3690   

27 0.086 2.52 2.67 11.0 1.0 10.0 29.0 0.52 174.5 98.0 4490   

28 0.017 2.66 2.68 11.0 1.0 10.0 14.6 0.16 68.1 43.2 4250   

29 0.066 2.57 2.69 11.0 1.0 10.0 32.1 0.41 180.9 75.3 4630   

30 0.187 2.28 2.68 11.0 1.0 10.0 9.2 0.26 70.7 20.5 3620   

31 0.203 2.21 2.66 11.0 1.0 10.0 12.3 0.06 84.9 41.1 3630   

32   2.54   11.0 1.0 10.0 30.9 0.11 185.3 91.4 3560   

33 0.163 2.45 2.75 11.0 1.0 10.0 12.5 0.08 80.5 31.6 3760   

34 0.071 2.56 2.69 11.0 1.0 10.0 18.5 0.22 109.4 28.8 4440   

35 0.015 2.7 2.71 11.0 1.0 10.0 9.9 0.31 74.8 30.2 4350   

36 0.027 2.59   6.0 1.0 5.0 22.5 0.26 83.50 66.80 4530   

37 0.049 2.55   6.0 1.0 5.0 14.4 0.31 61.20 56.00 3700   

38 0.087 2.48   6.0 1.0 5.0 6.1 0.28 46.90 27.70 3610   

39 0.109 2.44   6.0 1.0 5.0 6.7 0.2 45.80 28.90 3240   

40 0.174 2.32   6.0 1.0 5.0 6.7 0.29 44.90 31.20 3360   

41 0.019 2.59   21.0 1.0 20.0 25.1 0.16 145.1 108.5 4810   

42 0.082 2.49   21.0 1.0 20.0 10.6 0.33 100.7 58.0 3980   

43 0.114 2.43   21.0 1.0 20.0 8.4 0.25 89.8 53.2 3520   

44 0.168 2.33   21.0 1.0 20.0 9.0 0.23 93.4 43.5 3700   

45 0.016 2.61   31.0 1.0 30.0 20.2 0.22 163.5 108.5 4860   

46 0.054 2.54   31.0 1.0 30.0 15.6 0.37 111.8   3960   

47 0.087 2.48   31.0 1.0 30.0 9.5 0.41 122.0 58.0 4090   

48 0.125 2.41   31.0 1.0 30.0 7.5 0.27 108.1 53.2 3650   

49 0.141 2.38   31.0 1.0 30.0 9.1 0.27 118.3 43.5 3830   

50 0.130 2.4   3.0 1.0 2.0 2.9 0.08 28.2 26.8 3580   

51 0.239 2.2   6.0 1.0 5.0 5.1 0.36 42.0 26.8 2980   

52 0.076 2.5   11.0 1.0 10.0 9.1 0.17 59.8 26.8 3410   

53 0.239 2.2   21.0 1.0 20.0 9.5 0.26 91.8 26.8 3340   

54 0.246 1.95 2.65 2.5 0.5 2.0 7.4 0.28 27.3 25.0 3279 1848 

55 0.246 1.95 2.65 5.5 0.5 5.0 8.9 0.11 42.3 25.0 3497 2028 

56 0.246 1.95 2.65 10.5 0.5 10.0 11.4 0.21 62.2 25.0 3610 2114 

57 0.246 1.95 2.65 20.5 0.5 20.0 11.1 0.23 86.1 25.0 3774 2237 

58 0.246 1.95 2.65 40.5 0.5 40.0 14.0 0.06 89.7 25.0 3891 2320 

59 0.33 2.08 2.67 10.5 0.5 10.0 7.4 0.28 49.3 10.9 2513 1481 

60 0.36 1.93 2.67 12.5 0.5 12.0 5.0 0.13 45.2 10.9 2660 1490 

61 0.26 2.13 2.63 12.5 0.5 12.0 8.7 0.27 73.9 20.3 3484 1894 

62 0.26 2.13 2.63 12.5 0.5 12.0 7.8 0.19 73.2 20.0 3650 2083 
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where  

φ = porosity [fraction] 
ρb = bulk density [g/cm

3
] 

ρma = matrix density [g/cm
3
] 

σc = confining pressure [MPa] 
pp = pore pressure [MPa] 

σc,net = net confining pressure [MPa] (σc – pp) 
E = Young's modulus [GPa] 
ν = Poisson's ratio [-] 

σmax = peak stress [MPa] 
UCS = estimated UCS [MPa] (from TCT and Mohr-Coulomb) 

Vp = P-wave velocity [m/s] 
Vs = S-wave velocity [m/s] 

 

5.2 Empirical model 

A number of series expansions have been performed in order to determine the 

appropriate elastic properties and compressive strength of a material as a 

function of confining pressure, density, sonic transit time and porosity. This was 

performed by a series of trials and errors, with the aim of developing a model 

that gave the least error between the modeled parameter and the resulting true 

parameter for each plug sample (see Eq. 5-4). The method of least squares 

(Miller 2006) was used to estimate the given parameters and to find the 

corresponding residuals.  

 

5.3 Unconfined compressive strength 

As unconfined compressive strength (UCS) tests are not as common as the 

standard triaxial compression tests (TCT), the Mohr-Coulomb criterion is 

frequently used to derive the UCS, as the Mohr-Coulomb criterion is based on 

the assumption that the critical shear stress is a linear function of the normal 

stress, where the intercept with the y-axis is known as the inherent shear 

strength of the material, which is closely related to the UCS of the same material 

(see Eq. (5-1)). 

 
max 0 'S      (5-1)  

 

where σmax is the critical shear stress, S0 is the inherent shear strength of the 

material, μ is the coefficient of internal friction and σ' is the normal stress acting 

over the failure plane (Fjær e al. 1992). 
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For the work performed in this study, a model based on the Mohr-Coulomb 

criterion (Eq. (5-2)) was chosen. 

 

where σmax is the peak stress, A represent the UCS, σc is the confining pressure 

and B represent the coefficient of internal friction. A and B are assumed to be 

function of porosity and the respective dynamic stiffness (see section 4.3). 

 

From the available data, e.g. porosity and dynamic stiffness, and the assumption 

that there is a connection between stiffness and strength, expressions for A and 

B were estimated. The connection between stiffness and strength may vary with 

varying porosity, and this was also taken into consideration in the expressions 

for A and B. 

 ( ) ( )

( ) ( )

A a b c x

B d e f x





    

    
 (5-3)  

 

where the porosity (φ) is given in fractions and x represents the corresponding 

dynamic stiffness (compressional (xp) or shear (xs)) given in g.cm
-3

.cm
2
.μs

-2
. 

Appropriate values for the parameters a, b, c, d, e and f were found, this by 

setting the sum of residuals (see Eq. (5-4)) between the modeled peak stress 

and the measured peak stress to be as small as possible. 

 

 
 

2

modeled measured(peak stress peak stress )  (5-4)  

 

 

Parameters (a-f) that showed minimal influence on the results were set equal to 

zero to minimize the number of free parameters. 

 
max cA B     (5-2)  
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5.3.1 P-waves 

By the use of the least squares method, the following values of the parameters  

a [MPa], b [MPa], c [-], d [-], e [-] and f [1/Pa] were found:  

 

 0

31.06

222.5

1.32

0.77

0.40

a

b

c

d

e

f



 







 

 
(5-5)  

 

Resulting in the following expressions for A [MPa] and B [-]: 

 

 31.06 222.5

1.32 0.77 0.40

p

p

A x

B x





    

    
 (5-6)  

 

where φ is given in fractions and xp = ρ(Δtp)
-2

 in g.cm
-3

.cm
2
.μs

-2
.  

 

The measured peak stress and the modeled peak stress, by the use of Eq. (5-2) 

and Eq. (5-6), are plotted in Figure 5-1. The coefficient of determination 
2

1R is 

equal to 0.6102. 
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Figure 5-1. Measured peak stress vs modeled peak stress (P-waves). 

 

Based on the calibrated strength in Eq. (5-2) and on the expressions in Eq. (5-

6), it is now possible to estimate the UCS for each plug sample. This is done by 

setting the confining pressure equal to zero and plotting the result as a function 

of compressional transit time (Δtp). The result may be seen in Figure 5-2. The 

trendline plotted in Figure 5-2 is found by the best fit of an exponential function, 

and is given as  

 

 0.035
1198.2 PtUCS e

 
   (5-7)  

 

where UCS is given in MPa and Δtp in μs/ft, with the resulting coefficient of 

determination 
2

2R  equal to 0.9133. 
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As an indication of the goodness of fit for the obtained empirical equation  

(Eq. (5-7)), the product of the coefficients of determination for the two steps 

involved is determined, giving 
2 2

1 2R R = 0.56. 

 

 

Figure 5-2. Estimated UCS vs Δtp. 
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5.3.2 S-waves 

The same procedure is used when estimating peak stress for shear waves, with 

Eq. (5-2) and the expressions for A and B in Eq. (5-3). However, separate 

values for the parameters a [MPa], b [MPa], c [-], d [-], e [-] and f [1/Pa] were 

found; 

 7.97

133.34

397.65

7.38

31.88

0

a

b

c

d

e

f

 

 



 





 (5-8)  

 

Giving;  

 7.97 133.34 397.65

7.38 31.9

sA x

B





     

   
 (5-9)  

 

where φ is given in fractions, xs = ρ(Δtp)
-2

 in g.cm
-3

.cm
2
.μs

-2
, A in MPa and B is 

unit less. 

The modeled peak stress for shear waves are plotted against measured peak 

stress in Figure 5-3, giving a fairly well estimation with a corresponding 
2

1R  of 

0.7397. The estimated UCS plotted as a function of shear transit time (Δts) is 

found in Figure 5-4, where the corresponding best fit is given as; 

 

 0.015
425.68 StUCS e

 
   (5-10)  

 

where UCS is given in MPa and Δts in μs/ft, and 
2

2R  = 0.8567.   

The product of the coefficients of determination is thereby 
2 2

1 2R R =0.63. 
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Figure 5-3. Measured peak stress vs modeled peak stress (S-waves). 

 

 

Figure 5-4. Estimated UCS vs Δts. 
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5.4 Young's modulus 

When estimating the Young's modulus (E) of a sample, it is important to take 

into consideration the confining pressure applied to the given plug sample, as 

this may have great effect on the stiffness of the sample. When estimating the 

Young's modulus for the plug samples obtained from the Norwegian shelf, a 

standard series expansion was performed. Two separate parameters were used, 

namely the confining pressure (σc) and the dynamic stiffness (x) (compressional 

(xp) or shear (xs)), and through trials and errors the appropriate model was found 

for Young's modulus; 

 

 2 2

c c cE a b x c d x e f x               (5-11)  

 

where E is given in GPa, x in g.cm
-3

.cm
2
.μs

-2
 and σc in MPa. 

 

5.4.1 P-waves 

Through the use of the least squares method, the following values for the 

parameters a [GPa], b [-], c [-], d [1/Pa], e [1/Pa] and f [1/Pa] were found: 

 

 7.21

17.68

0.129

115.28

0.0074

1.57

a

b

c

d

e

f



 







 

 (5-12)  

 

The modeled Young's modulus is plotted against the measured Young's 

modulus in Figure 5-5. The resulting coefficient of determination is 
2

1R =0.5475. 

Figure 5-6 gives the estimated Young's modulus plotted as a function of 

compressional transit time (Δtp), where σc is equal to zero and the trendline is 

given as; 
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 1.739925.85 ( 38.09)pE t      (5-13)  

 

where E is given in GPa and Δtp in μs/ft, and the resulting 
2

2R  is equal to 

0.9282, giving 
2 2

1 2R R =0.51. 

 

Figure 5-5. Measured E vs modeled E (P-waves). 

 

Figure 5-6. Estimated E at zero confining pressure vs Δtp. 
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5.4.2 S-waves 

For S-waves, the following values for the parameters a [GPa], b [-], c [-], d 

[1/Pa], e [1/Pa] and f [1/Pa] were found; 

 

 3.84

0

0

1061.29

0.0062

2.73

a

b

c

d

e

f











 

 
(5-14)  

 

The result is compared against the measured Young's modulus in Figure 5-7, 

with a coefficient of determination 
2

1R  of 0.8173. 

 

In Figure 5-8, Young's modulus, with σc = 0, is plotted as a function of shear 

transit time (Δts). The best fit (Eq. (5-15)) gives 2

2R  = 0.8901, and 
2 2

1 2R R =0.73. 

 

 0.716170.41 ( 107.35)sE t      (5-15)  

 

where E is given in GPa and Δts in μs/ft. 
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Figure 5-7. Measured E vs modeled E (S-waves). 

 

 

Figure 5-8. Estimated E at zero confining pressure vs Δts. 
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5.5 Poisson's ratio 

Finally, a model for determining the Poisson's ratio (ν) by the use of confining 

pressure (σc) and dynamic stiffness (x) were derived. As for Young's modulus, 

series expansion was performed, resulting in two separate models for dynamic 

compressional stiffness and dynamic shear stiffness, respectively.  

The obtained model for Poisson's ratio is given below; 

 

 2 2

c c ca b x c d x e f x                (5-16)  

 

where x is given in g.cm
-3

.cm
2
.μs

-2
 and σc in MPa.  

 

5.5.1 P-waves 

The given values were found for the parameters a [-], b [1/Pa], c [1/Pa], d 

[1/Pa
2
], e [1/Pa

2
] and f [1/Pa

2
] by the least squares method; 

 

 0.0089

0.8107

0.0152

0

0.0002

0.0407

a

b

c

d

e

f









 

 

 
(5-17)  

 

The plot of modeled Poisson's ratio versus measured Poisson's ratio is shown in 

Figure 5-9. As can be seen from the figure, there is no match between the 

modeled and the measured Poisson's ratio, as confirmed by the coefficient of 

determination 
2

1R  which is equal to 0.02. Due to this, a trendline for Poisson's 

ratio versus compressional transit time has not been found. 
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Figure 5-9. Measured ν vs modeled ν (P-waves). 
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5.5.2 S-waves 

The following values for a [-], b [1/Pa], c [1/Pa], d [1/Pa
2
], e [1/Pa

2
] and f [1/Pa

2
] 

for S-waves were found;  

 1.435

26.37

0.055

134.85

0.00067

0.755

a

b

c

d

e

f



 

 



 



 
(5-18)  

 

giving 
2

1R  = 0.648, and is compared to the measured Poisson's ratio in Figure 

5-10. 

 

And finally, with σc = 0, the modeled Poisson's ratio for S-waves is plotted as a 

function of shear transit time (Δts) in Figure 5-11, with 
2

2R  = 0.9721 and  

2 2

1 2R R =0.63, and the best fit given as; 

 

 5 21.397 0.0188 7 10s st t        (5-19)  

 

where Δts is given in μs/ft. 
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Figure 5-10. Measured ν vs modeled ν (S-waves). 

 

 

Figure 5-11. Estimated ν at zero confining pressure vs Δts. 
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5.6 Summary 

A set of models have been derived for peak stress, Young's modulus and 

Poisson's ratio, each as a function of confining pressure, porosity, density and 

sonic transit time, by the use of series expansion. The aim was to obtain as 

small as possible sum of residuals between the modeled value and the 

measured value, by the use of the least squares method. 

Further on the confining pressure (σc) was set equal to zero, and the modeled 

parameters were plotted as a function of compressional and shear transit time. 

The trendline, revealing the best fit, were found for each plot, as well as the 

coefficient of determination R
2
 (see Table 2). The product of the coefficients of 

determination is included as an indication of the goodness of fit, since this 

product includes both steps of the models. 

 

Table 2. Coefficients of determination R
2
 for the modeled parameters and the 

resulting models with zero confining pressure. 

Modeled 
parameters 

2

1R  
Eq. 0c   

2

2R  
Eq. 

2 2

1 2R R  

Peak stress  0.6102 (5-6) UCS 0.9133 (5-7) 0.56 

Peak stress 0.7397 (5-9) UCS 0.8567 (5-10) 0.63 

Young's 
modulus 

0.5475 (5-12) 
Young's 
modulus 

0.9282 (5-13) 0.51 

Young's 
modulus 

0.8173 (5-14) 
Young's 
modulus 

0.8901 (5-15) 0.73 

Poisson's ratio 0.02 (5-17) - - - - 

Poisson's ratio 
0.648 (5-18) 

Poisson's 
ratio 

0.9721 (5-19) 0.63 

 

5.7 Discussion 

It can be seen in Table 2 that the obtained models including shear transit time 

give a better correlation for the given parameter than the models including 

compressional transit time. As mentioned in section 3.3, this may be a result of 

the considerable effect liquids has to P-waves. 
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6. Statistical analysis 

6.1 Introduction  

A statistical analysis was performed by the use of the software language R, to 

estimate the standard deviation (Δσ) of each obtained empirical equation in 

chapter 5. This was performed to give valuable insight to the validity of each 

obtained model. By estimating the standard deviation for the zero confining 

pressure parameters, the uncertainty of the transit time is taken into 

consideration. However, the uncertainty of the first step must also be regarded, 

as this may influence the second step to a large degree. The overall procedure 

is given below, and is also linked to each multiple-frame picture (a - f) in Figure 

6-1 to Figure 6-6. 

For each given parameter, i.e. peak stress, Young's modulus and Poisson's 

ratio, the obtained model values were plotted against the measured values 

(multiple-frame picture a). The errors, i.e. the difference between the model and 

the measured value, were then plotted against the measured value, to evaluate 

if the errors were increasing or decreasing with increasing measured value 

(multiple-frame picture c). The errors were then plotted as a histogram (multiple-

frame picture e), and in a normal Q-Q plot (multiple-frame picture g). A normal 

Q-Q plot compares the observed sample quantiles with the theoretical quantiles 

of a normal distribution with an expected value of zero and a given value of 

standard deviation, and would thereby reveal a straight line if the sample 

quantiles are given by a normal distribution as well. 

Further on, the obtained values with zero confining pressure were plotted as a 

function of the respective transit time, i.e. compressional or shear transit time 

(multiple-frame picture b). In the same picture, the obtained best-fit equation was 

plotted as a red line, and a 95% confidence interval (given in blue lines) was 

found by evaluating the errors between the best-fit line and each measured 

value. The lower limit of the 95% confidence interval was then subtracted from 

the upper limit, and the result was plotted as a function of the respective transit 

time (multiple-frame picture d). And finally, the difference between the best-fitted 

line and the estimated zero confining pressure values was plotted in a histogram 

(multiple-frame picture f) with red lines showing the 95% confidence interval, and 

in a normal Q-Q plot (multiple-frame picture h). 

The utilized R codes are listed in Appendix C. 
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6.2 Peak stress 

6.2.1 P-waves 

The statistical analysis for peak stress and unconfined compressive strength 

(UCS) as a function of compressional transit time (Δtp) are plotted in Figure 6-1. 

In c), one can see that the errors, i.e. differences between modeled and 

measured peak stress values, are increasing with increasing measured peak 

stress. It can also be seen that the error is increasing in a negative manner, i.e. 

the obtained model is estimating too low values compared to the measured 

values as the peak stress is increasing. In the plotted histogram in e), a near 

normal distribution is observed, which is confirmed by the normal Q-Q plot in g).  

In b), the modeled UCS is plotted as a function of Δtp. In d) it can be seen that 

the 95% confidence interval is constant regardless of Δtp, and is thereby 

homoscedastic. The confidence interval is not narrowing or widening and this 

implies that the resulting standard deviation found is constant, and not a function 

of Δtp. The resulting histogram of the error between modeled UCS and the 

obtained best-fit line in f) show a similar trend to that of a normal distribution, 

and is confirmed by the normal Q-Q plot in h), despite the small breaks in the 

curve. 

The standard deviation 
1  was estimated to 24.77 MPa, resulting in; 

 
max 24.77cA B      (6-1)  

 

where σmax is the peak stress given in MPa, σc is the confining pressure given in 

MPa, and A and B are given in Eq. (5-6). 

For the modeled UCS, the standard deviation 2  was estimated to 8.1 MPa; 

 0.035
1198 8.1PtUCS e

 
    (6-2)  

 

where UCS is given in MPa and Δtp in μs/ft. 

It may also be convenient to summarize the two errors found, this to take into 

consideration the error in the first step (multiple-frame picture a and c) of the 

statistical analysis, as this may give a better indication of the validity of the fitted 

red line to the UCS in b). By using Eq. (6-3), which applies for summation of 

independent errors, 
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2 2

1 2( ) ( )        (6-3)  

 

it was found that the error   for UCS (for P-waves) was equal to 26.06 MPa, 

thereby resulting in a much higher uncertainty (see Eq. (6-4)). 

 
 

0.035
1198 26.06PtUCS e

 
    (6-4)  

 

where UCS is given in MPa and Δtp in μs/ft. 

 

Figure 6-1. Statistical plots - peak stress and UCS for P-waves. 
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6.2.2 S-waves 

The statistical analysis for peak stress and UCS as a function of shear transit 

time (Δts) is plotted in Figure 6-2. 

The difference between the modeled and the measured peak stress for S-waves 

in c), are not showing any clear trend with increasing measured peak stress 

value. This is also evident from the histogram in e), which shows almost no 

resemblance to a normal distribution, and the non-linear curve in the normal Q-Q 

plot in g). 

The modeled UCS is plotted as a function of Δts in b). As for P-waves, there are 

no changes in the 95% confidence interval with increasing Δts, and the resulting 

error is thereby constant. Although the histogram (f) resembles a normal 

distribution, the normal Q-Q plot (h) reveals that this is not the case (non-linear 

curve). 

The statistical analysis performed here resulted in a standard deviation 1  of 

10.76 MPa for the modeled peak stress for S-waves; 

 

 
max 10.76cA B      (6-5)  

 

where σmax is given in MPa, σc in MPa, and A and B are given in  

Eq. (5-9). 

A standard deviation 2  = 6.5 MPa was determined for the modeled UCS for 

S-waves; 

 

 0.015
426 6.5StUCS e

 
    (6-6)  

 

where UCS is given in MPa and Δts in μs/ft. 
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By the use Eq. (6-3) it was found that the uncertainty   for the modeled UCS 

for S-waves, which depend on both steps in the statistical analysis, was equal to 

12.57 MPa. 

 

 0.015
426 12.57StUCS e

 
    (6-7)  

 

where UCS is given in MPa and Δts is given in μs/ft. 

 

Figure 6-2. Statistical plots - peak stress and UCS for S-waves. 
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6.3 Young's modulus 

6.3.1 P-waves 

The statistical analysis for Young's modulus as a function of compressional 

transit time (Δtp) is given in Figure 6-3. 

In c) one can see that the difference between the modeled and the measured 

Young's modulus is increasing with increasing values for the measured Young's 

modulus. As for peak stress (for P-waves) the difference is increasing in a 

negative manner. But it can also be seen, by comparing with the plot in a), that 

the model is estimating too high values for Young's modulus for some low 

measured values. This may result in that the errors cancel each other out and 

when plotted as a histogram in e) and a normal Q-Q plot in g), the result would 

appear as a near normal distribution. From Figure 6-3 c) it can also be seen that 

the data seem to divide into two groups, and within each group there is a clear 

trend. This may be a result of different compaction and/or mineralogical 

composition, the depth-interval may also be an explanation. As these plug 

samples are collected from different depths in different wells on the Norwegian 

shelf, the latter is the most likely explanation. Such observations is an indication 

of that the derived and utilized equations are not optimal, and thereby should be 

revised. 

In d) one can see the difference between the upper and lower limit of the 95% 

confidence interval, and it is evident that this is constant and not dependent of 

Δtp. The histogram in f) show a near normal distribution trend, which is confirmed 

by the normal Q-Q plot in h).  

The obtained standard deviation 1  was found to be 5.34 GPa for the 

modeled Young's modulus (E), giving; 

 2 2 5.34p c p c p cE a b x c d x e f x                (6-8)  

 

where E is given in GPa, σc in MPa, xp is the dynamic stiffness given in  

g.cm
-3

.cm
2
.μs

-2
, and the parameters a-f are given in Eq. (5-12). 

For the modeled Young's modulus with σc = 0, the statistical analysis revealed a 

standard deviation 2  of 2.12 GPa, resulting in; 

 
  

1.73
9926 38.1 2.12PE t


     (6-9)  
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where E is given in GPa and Δtp in μs/ft. 

The standard deviation   which depends on both steps in the statistical 

analysis (Eq. (6-3)) was found to be 5.75 GPa, resulting in the following equation 

for Young's modulus for P-waves with zero confining pressure; 

 

 
1.73

9926 38.1 5.75PE t


     (6-10)  

 

where E is given in GPa and Δtp in μs/ft. 

 

Figure 6-3. Statistical plots - Young's modulus for P-waves. 
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6.3.2 S-waves 

In Figure 6-4, the performed statistical analysis for Young's modulus as a 

function of shear transit time (Δts) is given. 

As can be seen in a), the modeled Young's modulus seem to give a fairly good 

estimate of the measured Young's modulus. And in c) one can see that the 

difference between the modeled and the measured value does not appear to 

increase or decrease with increasing measured values. In the histogram (e), no 

normal distribution is observed, which is confirmed by the normal Q-Q plot in g). 

The estimated Young's modulus values for zero confining pressure are plotted 

as a function of Δts in b). And as can be seen in d), this 95% confidence interval 

is constant regarded to Δts. The histogram in f) and the normal Q-Q plot in h) do 

not indicate that of a normal distribution. 

This statistical analysis gave a standard deviation 1  of 1.56 GPa for the 

modeled Young's modulus, resulting in;  

 

 2 2 1.56s c s c s cE a b x c d x e f x                (6-11)  

 

where E is given in GPa, σc in MPa, xs is the dynamic shear stiffness given in 

g.cm
-3

.cm
2
.μs

-2
, and the parameters a-f are given in Eq. (5-14). 

A value of 1.2 GPa as standard deviation 2  was found by the statistical 

analysis for the estimated Young's modulus with zero confining pressure, 

resulting in; 

 

 
0.716

170 107.4 1.2SE t


     (6-12)  

 

where E is given in GPa and Δts in μs/ft. 
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As for the previous parameters, the standard deviations for each step in the 

statistical analysis (Eq. (6-3)) were summarized. This resulted in a possible error 

  of 1.97 GPa for Young's modulus for S-waves with zero confining pressure. 

 

 

 
0.716

170 107.4 1.97SE t


     (6-13)  

 

where E is given in GPa and Δts in μs/ft. 

 

Figure 6-4. Statistical plots - Young's modulus for S-waves. 

  



Statistical analysis 

52 
 

6.4 Poisson's ratio 

6.4.1 P-waves 

Statistical analysis for Poisson's ratio as a function of P-waves is shortened 

compared to the other performed analyses. This is due to the reason that no 

correlation between the modeled Poisson's ratio and the measured Poisson's 

ratio was found (see section 5.5.1 and Figure 6-5 a)). 

In a), the modeled Poisson's ratio and the measured Poisson's ratio is 

compared. b) plot the errors, i.e. the difference between the modeled and the 

measured Poisson's ratio, versus the measured Poisson's ratio. The histogram 

of the errors is given in c), and the normal Q-Q plot of the errors is given in d). 

In b) it may look like that the difference between the modeled and the measured 

value of Poisson's ratio is increasing in a negative manner as the measured 

value of the Poisson's ratio increases. And in c) the difference reveal a relatively 

good normal distribution trend, confirmed by the normal Q-Q plot in d). However, 

these obtained data are not reliable and should not be used. 

The short statistical analysis resulted in a standard deviation 1  of 0.114 for 

the modeled Poisson's ratio for P-waves, resulting in the following equation; 

 

 2 2 0.114p c p c p ca b x c d x e f x                 (6-14)  

 

where ν is the Poisson's ratio, σc is given in MPa, xp in g.cm
-3

.cm
2
.μs

-2
, and the 

parameters a-f are given in Eq. (5-17). 
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Figure 6-5. Statistical plots - Poisson's ratio for P-waves.  
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6.4.2 S-waves 

The final statistical analysis was performed for Poisson's ratio as a function of 

shear transit time (Δts), and the resulting plot are shown in Figure 6-6. 

In c) one can see some slight evidence of increasing errors, i.e. difference 

between modeled and measured Poisson's ratio for S-waves, with increasing 

measured values. As for previous parameters, this increase in errors is in a 

negative manner, i.e. the model is estimating too low values as the measured 

value increase. This is also confirmed by the histogram in e) and the normal Q-Q 

plot in g), as these show no normal distribution trend or no linear trend, 

respectively. 

As for the other parameters, i.e. peak stress and Young's modulus, the 95% 

confidence interval is constant and thereby not related to Δts (d).  The difference 

between the fitted line and the measured values for Poisson's ratio with zero 

confining pressure in the histogram in f) shows no normal distribution trend. This 

is also confirmed by the normal Q-Q plot in h). 

The statistical analysis resulted in a standard deviation 1  of 0.054 for the 

modeled Poisson's ratio, resulting in the following equation; 

 

 2 2 0.054c c ca b x c d x e f x                 (6-15)  

 

where ν is the Poisson's ratio, σc is given in MPa, xs in g.cm
-3

.cm
2
.μs

-2
, and the 

parameters a-f are given in Eq. (5-18). 

The standard deviation 2  for estimated Poisson's ratio at zero confining 

pressure was found to be equal to 0.022, giving;
 

 

 5 21.40 0.0188 7.1 10 0.022S St t         (6-16)  

 

where Δts is given in μs/ft. 
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And finally, the two-step dependent standard deviation   (Eq. (6-3)) for 

Poisson's ratio with zero confining pressure for S-waves was found to be equal 

to 0.058. 

 

 5 21.40 0.0188 7.1 10 0.058S St t         (6-17)  

 

where Δts is given in μs/ft. 

 

Figure 6-6. Statistical plots - Poisson's ratio for S-waves. 
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6.5 Summary  

A set of statistical analyses were performed for peak stress, Young's modulus 

and Poisson's ratio, for both P- waves and S-waves, by the use of the software 

language R. This resulted in a set of statistical errors for the empirical equations, 

found earlier in chapter 5, for the respective parameters. 

It was found that for each modeled parameter the error between the modeled 

and the measured value is increasing with increasing measured value.  

However, this trend is not as clear for the model for peak stress (S-waves) and 

Young's modulus (S-waves). The increasing error is observed to be in a 

negative manner, i.e. the given model is estimating too low values when the 

measured values increase. 

A 95% confidence interval was determined for each zero confining pressure 

parameter, and the results were the same for all six statistical analyses. The 

confidence intervals were constant, i.e. they do not dependent of their respective 

transit times.  

The confidence intervals resulted in a set of estimated standard deviations (Δσ) 

that also were constant, and not a function of their respective transit times. 

These standard deviations were summarized to ensure that the uncertainty of 

the whole correlation, i.e. both steps, was taken into account. It was found that 

the uncertainty was significantly higher when taking both steps into account. 

The error between the modeled and the measured value and the error between 

the fitted line and the modeled zero confining pressure value were plotted in a 

histogram and in a normal Q-Q plot for each parameter. This was performed to 

reveal any resemblances to a normal distribution. The overall trend showed a 

close resemblance to a normal distribution for P-wave related models. 
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Table 3. Standard deviation Δσ=√((Δσ1)2+(Δσ2)2) for the modeled parameters and 
for the resulting models with zero confining pressure. 

Modeled 
parameter 1  Eq. 0c   2  Eq.   Eq. 

Peak stress 24.77 
MPa 

(6-1) 
UCS 8.1 

MPa 
(6-2) 

26.06 
MPa 

(6-4) 

Peak stress 10.76 
MPa 

(6-5) 
UCS 6.5 

MPa 
(6-6) 

12.57 
MPa 

(6-7) 

Young's 
modulus 

5.34 
GPa 

(6-8) 
Young's 
modulus 

2.12 
GPa 

(6-9) 
5.75 
GPa 

(6-10) 

Young's 
modulus 

1.56 
GPa 

(6-11) 
Young's 
modulus 

1.2 
GPa 

(6-12) 
1.97 
GPa 

(6-13) 

Poisson's ratio 0.114 (6-14) - - - - - 

Poisson's ratio 
0.054 (6-15) 

Poisson's 
ratio 

0.022 (6-16) 0.058 (6-17) 

 

 

6.6 Discussion 

The increasing error, between the modeled and measured value, may be a 

result of the confining pressure. As the measurements have been conducted at 

different confining pressures during the triaxial compression tests, the obtained 

models may be affected by this and thereby give better approximations for lower 

values than for higher values of confining pressure. Normally the UCS reveals 

more scatter at low confining pressures, i.e. opposite of what obtained here. This 

may imply that the estimated models utilized for these unpublished data are not 

adequate enough, and such results should be used to improve the empirical 

models by the choice of functions.  

Due to the reoccurring trend of independence to the respective transit time, 

there is most likely a distinctive reason for this. Such a reason may be an error 

in the statistical analysis. 
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7. Validation of results 

To confirm the validity of the obtained empirical equations, the results have been 

compared to log data from the same wells as those the unpublished data from 

the Norwegian shelf utilized in this study were obtained from.  

In the log data provided by Statoil, the measured compressional transit time (Δtp) 

is found and utilized in the empirical equations for unconfined compressive 

strength (UCS) and Young's modulus. Since only Δtp is available from the log 

data, only the empirical equations who take Δtp into account will be evaluated. 

Poisson's ratio will not be evaluated as there has not been found a reliable 

correlation for this parameter with Δtp. 

The compressional transit time found by acoustic measurements in the 

laboratory is also plotted together with the original log data. This is to ensure that 

the depth that is measured from the logs and the depth that is given to the 

laboratory measurements is the same. This comparison is performed since the 

wireline may stretch due to the weight of the wireline and the drill track may not 

be vertical, and thereby log-depth and plug-depth do not coincide.  
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7.1 Relations from literature 

When comparing the results for UCS obtained in this study with already 

published relations (see section 4.4), it is noticed that the obtained empirical 

equation related to Δtp (Eq. (5-7)) is almost identical to the relation presented by 

McNally (1987) (Eq. (4-4)). The empirical equation found by McNally (1987) was 

based on rock from the Bowen Basin in Australia, which included all porosity 

ranges.  

In Figure 7-1, one can see the mentioned empirical equations given in literature 

plotted as a function of Δtp. Also plotted is the unpublished data set from the 

Norwegian shelf utilized in this study, and it can be seen that these falls in the 

middle of the range spanned by the published relations. The best fit for an 

exponential trendline through the data from the Norwegian shelf matches almost 

exactly, as mentioned above, the empirical correlation derived by McNally 

(1987) for a set of sandstones (sst) from Australia. (Brandås et al. 2012, see 

Appendix A). 

 

 

Figure 7-1. Estimated UCS vs Δtp from this study, compared to a set of published 
relations for sst. 
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7.2 Log data 

7.2.1 Unconfined compressive strength 

When the available plug samples provided by Statoil were subjected to 

laboratory test by Weatherford Laboratories, a triaxial compression test (TCT) 

was performed on each plug sample. Normally the UCS of a material is 

determined by the uniaxial compressive strength test (see section 3.4), but here 

the Mohr-Coulomb failure envelope (linear extrapolation) was utilized to 

determine the UCS from the TCT (see section 3.2 and 3.3). This implies that the 

value plotted in Figure 7-2 as "measured UCS" is in reality an extrapolated UCS 

value from the laboratory.  

As can be seen from Figure 7-2, the empirical equation for determining the UCS 

by the use of Δtp (Eq. (5-7)) model a higher value than what estimated from the 

laboratory tests. This over-estimation of the UCS is regarded to be 0 – 90 %. 

 

 

Figure 7-2. Measured UCS vs modeled UCS. 
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7.2.2 Young's modulus 

Young's modulus (E) is also found from the triaxial compression test (TCT) 

performed by Weatherford Laboratories. This is done by performing linear 

regression, normally in the 40-60% area of the peak stress of the given plug. A 

more thoroughly explanation can be found in Appendix B.5.  

The values plotted as "measured Young's modulus" in Figure 7-3 is therefore 

found by direct measurements on each plug samples. These values are thereby 

regarded as valid and true. As can be seen in Figure 7-3, the modeled Young's 

modulus from Δtp, obtained from Eq. (5-13), estimate higher values of Young's 

modulus than those found from laboratory measurements. 

 

 

Figure 7-3. Measured E vs modeled E. 
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7.3 Log-depth to core-depth 

The original log-values for the unpublished data from the Norwegian shelf were 

provided by Statoil, and the compressional transit time (Δtp) obtained from the 

four different logs (i.e. four different wells) are plotted as a function of depth in 

Figure 7-4 to Figure 7-7. Also plotted is the laboratory measured Δtp, with the 

confining pressure given in the legend. 

When drilling a well, the wireline may stretch due to the weight of itself. And 

when measuring the length of the wireline, the direction of the wireline must be 

taken into consideration, as the well may be drilled vertically or at a given angle. 

These are two reasons for any possible differences between the log-depth and 

the core-depth for the given plug samples from the Norwegian shelf. 

As can be seen from Figure 7-4 to Figure 7-7, the laboratory measured Δtp is 

generally higher than the log-Δtp. 
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Figure 7-4. Log-depth vs log-Δtp well 1. Measured Δtp is included. 
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Figure 7-5. Log-depth vs log-Δtp well 2. Measured Δtp is included. 
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Figure 7-6. Log-depth vs log-Δtp well 3. Measured Δtp is included. 
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Figure 7-7. Log-depth vs log-Δtp well 4. Measured Δtp is included. 
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7.4 Depth shifting 

By depth shifting, the possible stretch of the wireline and the possible non-

vertical drill-track are taken into consideration.  

In Figure 7-8 and Figure 7-9, a 1 meter (m) downwards depth-shift have been 

performed, and the resulting compressional transit time has been utilized to 

model new values for the UCS and the Young's modulus. By comparing Figure 

7-2 and Figure 7-8, there is not observed a better correlation between modeled 

and measured UCS after 1 m downwards depth-shift. It is also observed that two 

separate group seems to form in Figure 7-8, which may be a result of different 

compaction and mineralogical composition between the data from the 

Norwegian shelf. A better correlation for Young's modulus after a 1 m 

downwards depth-shift is not observed (see Figure 7-3 and Figure 7-9). 

In Figure 7-10 and Figure 7-11, a 1 m depth-shift has been performed both 

downwards and upwards. The plotted lines give the span for the upper and 

lower limit of the given parameter. Despite several increments for depth-shifting, 

where only +/- 1 m is presented in this paper, better matches for the UCS and 

Young's modulus (E) were not obtained. 

 

Figure 7-8. Measured UCS vs modeled UCS with 1m downwards depth shift of log. 
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Figure 7-9. Measured E vs modeled E with 1m downwards depth shift of log. 

 

Figure 7-10. Measured UCS vs modeled UCS with +/- 1m depth shift of log. 
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Figure 7-11. Measured E vs modeled E with +/- 1m depth shift of log. 
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7.5 Summary  

The unpublished data from the Norwegian shelf is compared to a set of empirical 

equations from literature, and it is found that the obtained results fall in the 

middle of the range spanned by the published results (Brandås et al. 2012). It is 

also found that the obtained empirical equation for UCS derived from plug 

samples obtained from the Norwegian shelf, matches almost exactly the 

empirical relation found by McNally (1987), which were derived for a set of 

sandstone samples from the Bowen Basin in Australia. 

The obtained models for unconfined compressive strength (UCS) and Young's 

modulus, for compressional transit time (Δtp), are tested against log data to find 

the validity of the results. The estimated dynamic measurements are found by 

utilizing the compressional transit time obtained from directly measured log data 

in the obtained empirical equations. The laboratory measured Δtp was plotted 

together with the log measured Δtp, and it was found that the laboratory 

measured value was generally higher than the log value.  

It is found that the model for UCS overestimate the values by 0 – 90 %, and that 

the model for Young's modulus also overestimate its values.  

To allow for any possible error from a stretch in the wireline or a non-vertical drill 

track, depth shifting was performed. Despite several depth-shifts, including +/- 1 

meter, the UCS and the Young's modulus were still overestimated by the 

modeled empirical equations.  
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7.6 Discussion  

A possible explanation for the over-estimation of the UCS is that when linear 

extrapolation is performed, the value for the friction angle (in particular for low 

confining pressure) is not correct. Another possible explanation is that the Mohr-

Coulomb failure envelope "dips" at a certain angle when the confining pressure 

approaches zero (Fjær et al. 1992). Thereby, if this "dip" is wrongly estimated, a 

too low value of the UCS is estimated. 

However, the most likely explanation for why the log-data overestimate the 

strength and the stiffness is not the one described above. The empirical 

correlations derived in this study are valid for unconfined conditions, while the 

log measured transit times are valid for a rock in a given distance from the 

borehole wall. This standard "long-spaced" sonic log thereby give a sonic transit 

time measured at confining pressure that is significantly higher than what 

needed for the empirical correlations. As can be seen in Figure 7-7, the sonic 

transit time decreases with increasing confining pressure, and this should be 

regarded when the empirical correlations are to be used for prediction of 

strength and stiffness. It should also be mentioned that a significant part of this 

dependence to confining pressure for the transit time is most likely a result of 

core damage (Fjær and Holt 1999). 
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8. Further work 

The obtained data from Statoil was limited to a set of unpublished sandstone 

plug samples from the Norwegian shelf. More data from all over the world is 

therefore highly desirable to validate and further develop the obtained empirical 

models.  

Data sets for other lithologies, e.g. carbonates and shales, are also desired to 

further develop similar models for those lithologies. 

As all static measurements in this study are obtained from triaxial compression 

tests, those values should be regarded as not valid for a zero confining pressure 

environment. Uniaxial compression tests should thereby be performed to ensure 

that all data are representative and valid. 
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9. Conclusion 

A set of unpublished sandstone samples from the Norwegian shelf is provided 

by Statoil and subjected to triaxial compression tests by Weatherford 

Laboratories.  

Empirical models have been derived for peak stress, Young's modulus and 

Poisson's ratio, each as a function of confining pressure, porosity, density and 

sonic transit time. By the use of the least squares method, the obtained sum of 

residuals between the modeled value and the measured value was made as 

small as possible in defining the fitting parameters. Empirical models for zero 

confining pressure were also obtained, as the empirical models were plotted as 

a function of compressional and shear transit time. Coefficients of determination 

R
2
 were found, and the product for both steps were included to give an indication 

of the goodness of fit. A better correlation was found between S-waves and rock 

mechanical parameter, than between P-waves and rock mechanical parameters. 

The resulting statistical errors for the empirical equations were found by the use 

of the software language R. For each modeled parameter, the error between the 

modeled and the measured value is increasing with increasing measured value. 

This trend was not as evident for the model for peak stress (S-waves) and 

Young's modulus (S-waves). A 95% confidence interval for each zero confining 

pressure parameter showed that they do not dependent of their respective 

transit times. This results in that the estimated standard deviations also are 

constant. These standard deviations were summarized to ensure that the 

uncertainty of the whole correlation, i.e. both steps, was taken into account. This 

resulted in a higher uncertainty, when regarding both steps in the analysis. 

A comparison between the strength data obtained from the unpublished plug 

samples from the Norwegian shelf and a set of empirical correlations available 

from literature showed that the unpublished data falls in the middle of the range 

spanned by the published relations. The unpublished data matched the empirical 

correlation derived by McNally (1987) best, which were derived for a set of 

sandstone samples from Australia. 

The validity of the obtained models for UCS and Young's modulus, for 

compressional transit time, were tested by the use of log data. It was found that 

the models overestimate the value for UCS and Young's modulus. A +/- 1 meter 

depth-shift were performed to compensate for any possible errors by stretch in 

the wireline or a non-vertical drill track. However, the results did not show any 

significant changes. 

 



Conclusion 

76 
 

Taking all steps in this study into account, it was found that when establishing 

empirical correlations for estimation of strength and stiffness based on log-

measurements, these correlations should be established as a result of 

laboratory measured strength or stiffness and log-measured sonic transit time. 

Such an approach will to a large degree eliminate the problem with core damage 

and confining pressure dependency. However, such an approach is not straight 

forward due to depth-shift issues.  
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A.  The Article 

 

The result of this thesis has been prepared for and presented at the 46
th
 US Rock Mechanics 

/ Geomechanics Symposium held in Chicago, IL, USA, 24-27 June 2012. 

This article, given below, has been prepared in an A4-format, and downscaling to B5 may 

therefore have led to some minor divagations compared to the original printed article. 
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ABSTRACT:  

Proper correlations between formation mechanical properties and acoustic data is essential for field 

rock mechanical analysis, and it has thereby a great significance to field operations such as hydraulic 

fracturing, wellbore stability during drilling, sand production risk evaluation, compaction studies, 

etc. This paper presents results from a correlation study between formation mechanical properties 

and acoustic wave velocities from wells in the North Sea. Correlations between formation 

compressive strength, elastic stiffness and Poisson’s number and compressional and shear transit 

times have been established. The data for this study was collected from triaxial compression tests 

performed on core plugs at various confining pressures. The results confirm that the stress level and 

stress configuration affects the acoustic velocities, and this should be accounted for when using 

generalized empirical correlations to estimate formation strength from acoustic logs in field studies. 

The results are found to match reasonably well with other published relations.  
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1.   INTRODUCTION 

Geomechanics analysis has gradually 

become an integrated part of oilfield 

development. This includes topics such as 

pre-drill wellbore stability analyses, 

utilizing seismic for pore pressure 

estimation and basic data acquisition 

during exploration, wellbore stability and 

sand production risk analysis during the 

field development phase, production 

optimization through e.g. hydraulic 

fracture stimulation, as well as reservoir 

compaction and analysis of stress-

dependent permeability for infill well 

placement during the production phase. 

For all the above applications of 

geomechanics to the oil and gas industry 

basic rock mechanics properties have to 

be determined or estimated. This includes 

formation mechanical properties such as 

compressive and tensile strength, elastic 

properties (e.g. Young’s modulus, shear 

modulus, bulk modulus/compressibility 

and Poisson’s ratio) and plastic properties. 

Such data are normally derived from static 

measurements on core plugs, but 

measurements on cuttings or cavings may 

as well be used to derive certain rock 

mechanical properties [1,2]. However, 

through theoretical models and 

correlations well logs may be used to 

estimate rock mechanical parameters. The 

formation principal stresses (often the 

vertical and the maximum/minimum 

horizontal stresses) as well as the pore 

pressure are crucial input data. These data 

are normally harvested from well 

measurements (e.g. well hydraulic fracture 

tests, caliper/image logs and density log). 

Data from one well may be applied to 

constitute a simple 1D model of the 

formation mechanical properties. The 

integration of various measurements from 

multiple wells through use of geostatistics 

or alternatively through a 3D numerical  

 

model enables the definition of a 3D 

geomechanical model or “mechanical 

earth model”. Such models are the basis 

for almost any geomechanical analysis.  

This paper is focusing on the 

determination of elastic properties and 

rock compressive strength for sandstone 

based on acoustic measurements. Based 

on laboratory measurements of static and 

dynamic properties of sandstones from 

North Sea reservoirs a simple empirical 

model is proposed for the use of sonic log 

data to determine compressive strength. 

The results are compared to published 

correlations from other areas and 

discussed. 

Sonic transit time is directly related to 

stiffness through the relations 

 

 
2

P Px t


              (1) 

 
2

S Sx t


              (2) 

 

 

where 
Px  is the uniaxial compaction 

modulus, 
Sx  is the shear modulus, ρ is the 

density, and Δtp and Δts are the 

compressional and shear transit times, 

respectively. 
Px  and 

Sx  are dynamic 

stiffnesses, which may differ significantly 

from their static counterparts for 

sedimentary rocks. However we expect to 

find some degree of correlation between 

the static and the dynamic stiffnesses. A 

link between dynamic stiffness and 

strength is also to be expected, since both 

strength and stiffness depend largely on 

the amount of solid material present in the 

rock, or – equivalently – they both depend 

on the porosity. However, the geometrical 

distribution of the solid material in terms 

of pore shape, degree of cementation etc.  
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is also important, and this distribution 

affects stiffness and strength differently. 

Thus, some correlation between strength 

and sonic data, and between static 

stiffness and sonic data, is to be expected, 

but these correlations may not be very 

strong.  

A number of empirical relations between 

strength and sonic transit time have been 

presented in the literature, like these 

established for sandstone: 

 

McNally (Australia) [3]: 

( 0.036 )1200 tUCS e         (3) 

 

McNally (USA) [3]: 

7 31.4138 10UCS t        (4) 

 

Raaen et al. (North Sea) [4]: 

2140 2.1 0.0083p pUCS t t         (5) 

 

Sharma and Sing [5] 

0.0642 117.99pUCS V         (6) 

 

Freyburg (Germany) [6] 

0.035 31.5pUCS V         (7) 

 

Moos et al. (Alaska) [7] 

9 21.745 10 21pUCS V          (8) 

 

 

 

 

Chang et al. (Australia) [8] 

11 2(1.9 10 )
42.1 pV

UCS e


         (9) 

 

Chang et al. (Mexico) [8] 

10 2(1.14 10 )
3.87 pV

UCS e


        (10) 

 

Here Δtp is given in μs/ft and UCS is 

given in MPa. The velocity VP (= 304800/ 

Δtp) is given in m/s, and ρ is given as 2.3 

g/cm
3
 [8]. Our results will be compared to 

these relations. 

 

2.  CORRELATIONS 

2.1 Available data 

The samples included in this work are 

restricted to sandstones from the 

Norwegian shelf, and were subjected to 

triaxial compression tests. Elastic moduli 

such as Young’s modulus and Poisson’s 

ratio, as well as peak stress were 

measured. Petrophysical measurements 

are also performed, including 

measurements of the porosity and bulk 

volume of the samples. Finally, the 

samples used in this study have been 

subjected to acoustic measurements.  

Acoustic measurements usually include 

both P- and S-wave velocities. However, 

interpretation of the S-wave velocity is 

sometimes difficult since the arrival of the 

wave is often clouded by a low 

signal/noise ratio. For this reason, few S-

wave velocity data are included here, and 

thereby give less correlation with 

petrophysical parameters and elastic 

moduli. 
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2.2 Sample Preparation 

The samples used in this study all have 

similar preparation. The plugs were 

supplied from sets of seal peals, and were 

drilled parallel to their axis (i.e. vertically 

oriented). It is convenient to drill three 

plugs at the same depth of the seal peal 

axis, as this ensures homogeneous core 

samples and thus gives the best correlation 

when constructing the Mohr-Coulomb 

failure envelope. The plug end-surfaces 

were then ground plane and parallel 

according to ISRM-standard, and were 

adjusted to a length of approximately two 

times the diameter. The length and 

diameter of each sample was measured to 

be used for the calculations of 

deformation and axial stress. In addition to 

that the weight of each sample was 

measured, digital images were used to 

describe the failure mechanism of each 

plug. 

Cleaning of the samples is essential to 

remove any residual hydrocarbons that 

may affect the petrophysical 

measurements on the plugs, but the 

cleaning itself may also affect the 

measurements. Due to this, there have 

been different trends regarding the 

question of cleaning the samples before 

the rock mechanical testing. Some of the 

samples used in this study have been 

subjected to a standard soxhlet cleaning 

with toluene and methanol, before they 

were dried in a heat cabinet and mercury 

(Hg) - bulk volume and helium (He) – 

porosity were measured. Other plugs have 

not been cleaned, but circulated with 

paraffin oil to remove the residuals of the 

heaviest hydrocarbon compounds. This is 

because some plugs are considered too 

fragile to be subjected to the standard 

cleaning procedure. There have not been 

observed any cleaning effect during the 

preparation of the plugs.  

 

2.3 Triaxial compression test 

This study utilizes data from samples that 

have been subjected to a standard triaxial 

compression test. All the samples 

mentioned in this study have been tested 

at drained conditions, with a pore pressure 

of 0.5 MPa for the most recent studies and 

1.0 MPa for studies performed several 

years ago. Pore volume change is also 

measured, this by connecting the pore 

pressure system to a volume gauge. 

The plugs are then loaded up to a 

predetermined hydrostatic load value, at a 

loading rate of about 1.0 MPa/minute. 

Further on the plugs are unloaded 

hydrostatically to a low load value, before 

they are reloaded and subjected to 

hydrostatic consolidation for 30-60 

minutes. Finally the samples are axially 

compressed with an axial deformation rate 

of normally 10 mStrain/hour, until clear 

failure is observed or 20 mStrain axial 

strain is obtained. 

Acoustic velocities are measured in the 

axial direction of the sample, with either 

P-wave or S-wave transducers. P-wave 

transducers were common several years 

ago, before S-wave transducers became 

standard, as it was discovered that the 

arrival of P-waves could also be seen with 

S-wave transducers. The arrival of the S-

wave acoustics is sometimes difficult to 

interpret, and therefore P-wave velocities 

are more frequently found in the data 

available. It is also essential that the 

signal/noise ratios are high enough to be 

able to interpret the wave traces to 

determine the velocities.  
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2.4 Calculations 

The dataset we have available here 

consists of tests performed at various 

confining pressures. To be able to 

compare the tests, we first establish 

models for the various parameters as 

functions of confining pressure. The 

coefficient of determination R
2
 is given for 

each plot in the figure text. 

For the peak stress 
max  we choose a 

model based on the Mohr-Coulomb 

criterion: 

 

max CA B               (11) 

 

The parameters A and B are assumed to be 

functions of the porosity φ and the 

dynamic stiffness  
2

P Px t


   

Fig. 1 shows the best fit between Eq. (11) 

and the observed peak stress, with the 

following expressions for A and B: 

 

31.1 223 PA x     (12)

1.32 0.77 0.40 PB x    (13) 

 

The porosity is given in fractions and 
Px  

is given in g cm
-3

 cm
2
 μs

-2
.  

Based on the calibrated model for the 

strength (Eqs. (11) – (13)), we may now 

estimate UCS for each of the tested 

samples. Fig. 2 shows the results plotted 

as functions of the compressional transit 

time ΔtP. The trendline plotted in the 

figure is the best fit for an exponential 

function, and is given as  

 

0.035
1198 PtUCS e

 
         (14) 



ΔtP is given in μs/ft and UCS in MPa. As 

an indication of the quality of fit for this 

empirical function, we notice that the 

product of the coefficients of 

determination for the two steps involved is 
2 2

1 2 0.56R R  .  

 

 

Fig. 1. Measured peak stress versus modeled 

peak stress estimated from porosity and 

dynamic stiffness. 2

1 0.61R  . 

 Fig. 2. Estimated unconfined compressive 

strength (UCS) versus compressional transit 

time. 2

2 0.91R  . 
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The same procedure is used for the shear 

wave data. Fig. 3 shows the best fit 

between Eq. (11) and the observed peak 

stress, with the following expressions for 

A and B: 

 

7.97 133 398 SA x   
 

   (15) 

7.38 31.9B                     (16) 

 

where  
2

S Sx t


   is the dynamic 

shear stiffness, given in g cm
-3

 cm
2
 μs

-2
.  

Fig. 4 shows the results plotted as 

functions of the shear transit time ΔtS. The 

trendline plotted in the figure is the best fit 

for an exponential function, and is given 

as  

 

0.015
426 StUCS e

 
               (17) 

 

ΔtS is given in μs/ft and UCS in MPa, and 
2 2

1 2 0.64R R  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Measured peak stress versus modeled 

peak stress estimated from porosity and 

dynamic shear stiffness. 2

1 0.74R  . 

 

 

 
Fig. 4. Estimated unconfined compressive 

strength (UCS) versus shear transit time. 
2

2 0.86R  . 
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The following model was used for 

Young's modulus as function of confining 

pressure and dynamic stiffness:  

 

2 2

7.2 17.7 0.129

      115 0.0074 1.57

P C

P C P C

E x

x x



 

  

  
    (18) 

 

Fig. 5 shows the match between the 

modeled Young's modulus at zero 

confining pressure based on Eq. (18) and 

the measured Young's modulus.  

Fig. 6 shows the estimated Young's 

modulus based on Eq. (18) as function of 

the compressional transit time ΔtP. The 

trendline plotted in the figure is given as  

 

 
1.73

9926 38.1PE t


            (19) 

 

ΔtP is given in μs/ft and E in GPa, and 
2 2

1 2 0.51R R  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Measured Young's modulus versus 

modeled Young's modulus estimated from 

porosity and dynamic stiffness.  2

1 0.55R  . 

 

 

 
Fig. 6. Estimated Young's modulus at zero 

confining pressure versus compressional 

transit time.  2

2 0.93R  . 
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The model used for Young's modulus as 

function of confining pressure and 

dynamic shear stiffness is given as:  

 

2

2

3.84 1061

0.0062 2.73

S

C S C

E x

x 

 

 
         (20) 

 

Fig. 7 shows the match between the 

modeled Young's modulus at zero 

confining pressure based on Eq. (20) and 

the measured Young's modulus.  

Fig. 8 shows the estimated Young's 

modulus based on Eq. (20) as function of 

the shear transit time ΔtS. The trendline 

plotted in the figure is given a 

 

 
0.716

170 107.4SE t


            (21  

 

ΔtS is given in μs/ft and E in GPa, and 
2 2

1 2 0.73R R  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Measured Young's modulus versus 

modeled Young's modulus estimated from 

porosity and dynamic shear stiffness.  
2

1 0.82R  . 

 

 

 
Fig. 8. Estimated Young's modulus at zero 

confining pressure versus shear transit time. 
2

2 0.89R  . 
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For Poisson's ratio as function of 

confining pressure and dynamic stiffness 

we tried among others the model:  

 

2

0.0089 0.811 0.0152

             0.0002 0.041

P C

C P C

x

x

 

 

  

 
   (22) 

 

Fig. 9 shows the match between the 

modeled Poisson's ratio at zero confining 

pressure based on Eq. (22) and the 

measured Poisson's ratio. Clearly, there is 

no match between the model and the 

measurements, as confirmed by the R
2
 

parameter. No trendline for Poisson's ratio 

versus compressional transit time was 

therefore established. 

 

 

Fig. 9. Measured Poisson's ratio versus 

modeled Poisson's ratio estimated from 

porosity and dynamic stiffness. 2

1 0.02R  .    

 

 

 

 

 

The model used for Poisson's ratio as 

function of confining pressure and 

dynamic shear stiffness is given as:  

 

2 2

1.44 26.4 0.055

       135 0.00067 0.755

S C

S C S C

x

x x

 

 

  

  
   (23) 

 

Fig. 10 shows the match between the 

modeled Poisson's ratio at zero confining 

pressure based on Eq. (23) and the 

measured Poisson's ratio.  

Fig. 11 shows the estimated Poisson's 

ratio based on Eq. (23) as function of the 

shear transit time ΔtS. The trendline 

plotted in the figure is given as 

 

5 21.40 0.0188 7.1 10S St t          

(24) 

 

ΔtS  is given in μs/ft, and 2 2

1 2 0.63R R  . 

 

Fig. 10. Measured Poisson's ratio versus 

modeled Poisson's ratio estimated from 

porosity and dynamic shear stiffness. 
2

1 0.65R  . 



The Article 

A-11 
 

 

 

Fig. 11. Estimated Poisson's ratio at zero 

confining pressure versus shear transit time. 
2

2 0.97R   . 

 

 

2.4 Evaluation of data points 

A number of two plugs have been 

removed from the original data set after 

evaluation of the rock mechanical reports 

provided by the laboratory. 

One plug has been removed due to the fact 

that the lithological description shows 

heterogeneity on this plug, while other 

plugs from the same seal peal show 

homogeneity. Observations on the plug 

after testing show that the measurements 

are most likely affected by this 

heterogeneity.  

The peak stress of another plug has been 

removed, as this plug showed a special 

fracture phenomenon where the radial 

deformation after failure is positive 

(reduction of diameter). The measured 

peak stress on this plug is significantly 

lower than those measured on plugs from 

the same seal peal.  

 

 

 

 

3.  DISCUSSION 

The results presented in Figs. 2, 4, 6, 8 

and 11, and in Eqs. (14), (17), (19), (21) 

and (24), appear to have a very high 

degree of confidence if we consider the 

good concentration of the data points 

shown in the figures. However, it is 

important to keep in mind that the data 

points shown in these figures are not the 

real measurements, but rather estimates 

based on the models used to project all 

data to the same confining pressure. The 

quality of these estimates depend on the 

match between the observations and the 

models, as shown in Figs. 1, 3, 5, 7, and 

10, hence the quality of the derived 

relations should be judged on the basis of 

both steps in the derivation. The product 

of the coefficients of determination for the 

two steps, 2 2

1 2R R , is presented as an 

indication of the quality of fit since this 

product includes both steps. The 

importance of accounting for both steps is 

particularly evident for the relation for 

Young's modulus as a function of 

compressional transit time (Eq. (19)). 

Judged only from Fig. 6  this appears to be 

a highly reliable relation  

( 2

2 0.93R  ), however the match between 

model and observation displayed by Fig. 5 

is rather poor ( 2

2 0.55R  ), hence the 

validity of Eq. (19) is in fact questionable. 

For the rest of the relations the match is 

better, and the relations can be considered 

to have a reasonable credibility. In Figs. 

11  an upper limit of 0.5 for Poisson’s 

ratio has not been set, as it is not given 

that this material is linear elastic and 

isotropic. 

Comparing the results for UCS with 

relations available in the literature, we 

notice first of all that Eq. (14) is almost 

identical to the relation (Eq. (3)) presented 

by McNally [3] for rocks from the Bowen  
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Basin (Australia). Fig. 12 shows the data 

given in Fig. 2, together with the relations 

for UCS as a function of compressional 

transit time presented in Chapter 1. Our 

data are seen to fall in the middle of the 

range spanned by the various published 

relations. 

 

 

Fig. 12. Estimated unconfined compressive 

strength versus compressional transit time 

from this study, compared to a set of published 

relations for sandstone.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  CONCLUSIONS 

A set of empirical correlations, between 

unconfined compressive strength and 

compressional- and shear transit time, 

between Young's modulus and 

compressional- and shear transit time, and 

between Poisson's ratio and 

compressional- and shear transit time, 

have been established for a set of 

sandstones from the North Sea area. The 

quality of the relations vary somewhat but 

the trends are generally as expected.  

A comparison between the strength data 

obtained in this study and a set of 

empirical correlations available in the 

literature shows that our data falls in the 

middle of the range spanned by the 

published relations. The best fit for an 

exponential trendline through our data 

matches almost exactly the empirical 

correlation derived by McNally [3] for a 

set of sandstones from Australia. 
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NOMENCLATURE 

   Bulk density [g/cm
3
] 

φ = Porosity [frac.] 

VP = Compressional velocity [m/s] 

     Compressional transit time [μs/ft]  

      Shear transit time [μs/ft] 

UCS = Unconfined compressive strength 

[MPa] 

    Confining pressure [MPa] 
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B. Laboratory equipment/methods 

 

This is a synopsis of the Laboratory Manual for Weatherford Laboratories, Norway. This 

Laboratory Manual is the work by Karl Tokle. 

This is a general description, and therefore it may contain part which may not be relevant to 

this study. 
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B.1 Triaxial cell 

The triaxial cell can take 1 1/2”-plugs and is designed by RockMech A/S (Figure B-1). The 

cell is made of stainless steel (SIS 2324). The design pressure is 70 MPa. The cell can also 

be used for permeability measurements during triaxial loading. There are openings in the 

piston and the bottom plate for circulating pore fluid. Disks of stainless steel with concentric 

grooves and holes are used to distribute the fluid flow before entering the sample. The fluid 

can be oil, formation water or weak acid (5% HCl). Gas can also be used. 

For measuring radial deformation there are 3 symmetrical (120 deg) openings in the cell wall 

where spring loaded pins "feel" the surface of the core or the core holder. 3 cylinders contain 

the transducers which measure the position of the pin (Figure B-2). The transducers are so 

called "Linear Variable Displacement Transformers" (LVDT) produced by Schaevitz, type 250 

MHR. The transducers have a nominal stroke of 0.25” (6.35 mm). Accuracy, see section B-7. 

Correction for deformations in the cell during hydrostatic loading is done automatically during 

logging. This correction has been measured by putting a 1.5” diameter steel plug in the cell, 

and gradually increasing the confining pressure to 30 MPa while logging pressure and radial 

deformation. The deformations of the steel plug are taken as negligible. At 30 MPa confining 

pressure the measured deformation was 2.3 mStrain. During hydrostatic loading the average 

radial deformation is subtracted by (2.3/30)p mStrain, where p is the confining pressure. This 

correction will not apply in the triaxial phase, since the confining pressure then is constant 

and the radial deformation is zeroed when entering the triaxial phase. 
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Figure B-1. Triaxial cell. 

 

Figure B-2. Triaxial cell with radial deformation transducer. 
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B.2 Axial load system 

A servo-hydraulic loadframe with a capacity of 300 kN is used, see Figure B-3. The servo-

hydraulic cylinder can operate either in load control or in displacement control. During 

displacement control the rate can vary from 0.0001 to 9.9 mm/s. The load frame is designed 

by RockMech A/S and produced by A/S Delprodukt. The servo-hydraulic cylinder and the 

pump-unit are supplied by Robcon OY, Finland.  

In 1998 a new digital control system was installed. This makes it possible to perform 

bumpless transfer from the load control to the deformation control. The control electronics 

was supplied by Instron, England.  

Axial deformation of the sample during testing is measured by means of an LVDT, Schaevitz 

GCA-121-250. The transducer has a nominal stroke of 0.25 inches (6.35 mm). Accuracy, see 

section B-7. The transducer is mounted on the top plate of the load frame and measures the 

displacement of the piston of the servo-hydraulic cylinder.  

Corrections for deformations in the loadframe, loadcell, servo-hydraulic piston and piston in 

the triaxial cell are done automatically during datalogging. This correction is based on the 

same procedure as for correction of radial deformation.  

Axial load is measured by a load cell manufactured by HBM, type C3H2. The nominal load is 

300 kN. Accuracy, see section B-7. 
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Figure B-3. Axial load system. 

 

B.3 Confining pressure system 

The confining pressure system is shown in Figure B-4. A radial piston pump with a capacity 

of 100 MPa and a constant flow rate of 0.5 l/min is used to obtain the predetermined 

confining pressure. The pump is manufactured by BIERI, type RP12. The system is divided 

in two parts; one high pressure, 3-70 MPa, and a low pressure, 1-30 MPa. The pressure is 

controlled by proportional valves in both parts. The valves and control electronics are 

manufactured by Wandfluh. The valves can be controlled either manually with a 

potentiometer or remotely by an analogue signal from the computer. Under computer control 

the system utilizes closed loop control and the static accuracy of the confining pressure is 

better than ±0.1 MPa.  

The confining pressure is measured with a pressure transducer manufactured by HBM, type 

P6 0-100 MPa. Accuracy, see section B-7. 
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Figure B-4. Confining pressure system. 
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B.4 Characteristics of failure modes during uniaxial and triaxial 
compressive testing 

In the following section, a brief description of the material responses of the rocks and the 

typical stress-strain curves, shown in Figure B-5, are given. 

MODE 1, Elastic – very brittle: This is a rock that is very hard and when it fails it releases a 

lot of energy that has been building up in the sample and the testing machine. The failure is 

normally very violent and it loses all load carrying capacity after the failure. In Figure B-5 is 

shown a marginal very small stress that can be carried, but in 9 out of 10 times there is no 

strength left. 

MODE 2, Elastic – moderately brittle: This is a hard rock that also will fail violently, but this 

rock will not collapse totally, but will retain some of its load carrying capacity, even after the 

failure took place. If the rock transform into an ideal plastic rock after failure this means the 

sample can continue to deform without any change in effective axial stress. 

MODE 3, Elastic–plastic (work softening): This is a mode of failure that is most often seen 

in sedimentary rocks. In this stress-strain curve there is an initial non-linear elastic part, a 

linear elastic part, a yielding part to the peak stress is reached. Then the sample reduces the 

peak stress rapidly to a residual stress. At this stage the sample will deform nearly ideally 

plastically till the experiment is stopped. In some instances the stress will start to increase 

after the drop to residual stress due to work weakening. This means that the sample most 

likely start to reduce volume due to pore collapse. 

MODE 4, Elastic–ideal plastic: This sample will show a linear elastic response until it 

reaches the Yield point. At this stage the sample starts to move like a heavy fluid, and there 

is no stress increase after this point is reached; – the sample deforms ideally plastic. 

MODE 5, Elastic–plastic (work hardening): This rock will show linear elastic response up 

to the Yield point (YP), and after the YP the sample will show increasing stress as 

deformation increases. This is a sample that undergoes pore collapse and a continuous pore 

volume reduction. If the volumetric strain is plotted versus the axial strain this will give a 

continuously increasing positive volumetric strain; i.e. the sample volume is continuously 

reduced. 
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Figure B-5. Failure modes during uniaxial and triaxial testing. 

 

Final comments to the failure modes: A typical characteristic of rocks is that that the same 

rock shows different behavior, dependent on the effective confining stress it is under. 

At low effective confining stress most samples will show a very brittle to moderately brittle 

mode of failure. If the effective confining stress is increased the sample tends towards the 

elastic–plastic mode of failure, and at high effective confining stresses the sample will show 

ideal plastic and work hardening behavior. 

This means that a rock has different behavior, dependent on the stress state it is influenced 

by. 

Therefore it is very important to determine the rock and its behavior as early as possible in 

the field development. This will indicate what stress changes can be tolerated and how the 

rock will respond to planned depletions or injection campaigns. 
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B.5 Interpretation of elastic parameters and strength data 

Elastic parameters are interpreted as shown in Figure B-6. Linear regression is used to find 

the best fit. The same range is used for the radial deformation and the same method when 

calculating Poisson’s ratio. 

 

 

Figure B-6. Interpretation of elastic parameters. 

 
Abnormal failure envelope: In order to obtain a failure envelope three or more samples are 

tested with different confining pressure. Ideally these three or more samples should have the 

same rock mechanical properties with respect to strength. The peak stress will normally 

increase with confining pressure when the samples have the same rock mechanical 

properties. 

When the amount of core material are limited (slabbed seal-peels or fragile materials) it will 

be necessary to drill vertical samples from different depth. In heterogeneous materials this 

can results in 3 or more sample with different rock mechanical properties. Figure B-7 is an 

example of 3 samples having different rock mechanical properties and the results is an 

abnormal failure envelope. In this case is it not possible to calculate the failure parameters 

(failure angle, friction angle, cohesion and uniaxial compressive strength). 

Strength data are calculated using Coulomb-theory, as shown in Figure B-8. Several straight 

lines are used, with their own range of validity. 



Interpretation of elastic parameters and strength data 

B-10 
 

 

 

Figure B-7. Abnormal strength of samples from same depth. 

 

 

Figure B-8. Interpretation of strength data. 
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The various constants are: 

 

b = C0 = uniaxial compressive strength 
m = tan

2
α 

α = failure angle 
φ = friction angle 
φ = 2 (α - 45) 

C0 = 2 Sc0 tanα 
Sc0 = cohesion 

 

The following two sections apply only when liquid permeability or compressibility have been 

measured. 
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B.6 Brazil test 

This method is based on "Suggested Methods for Determining Tensile Strength of Rock 

Materials" given by ISRM. Part 2 of this document describes an indirect method to measure 

the uniaxial tensile strength of prepared rock specimens called the Brazil test. The 

justification for the test is based on the experimental fact that most rocks in biaxial stress field 

fail in tension at their uniaxial tensile strength when one principal stress is tensile and the 

other finite principal stress is compressive with a magnitude not exceeding three times that of 

the tensile principal stress.  

The test equipment is shown in Fig. A.12 Specimens of 1.5” diameter is cut to a length of 24 

mm. The specimen are loaded at a rate about 0.2 kN/s. The force and displacement are 

recorded by the computer. From the curve of load vs. displacement the force at primary 

fracture is read. 

The tensile strength of the specimen, σt, is calculated using the following formula (Eq. (B-1)): 

 

 0.636
t

P

D t






 (B-1) 

 

Where  

P - load at failure, N 
D - diameter of the test specimen, mm 
t.  - thickness of the test specimen, mm 

t  - tensile strength, MPa 
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Figure B-9. Brazil testing equipment for measuring tensile strength. 
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B.7 Sonic velocity 

Sonic wave propagation in sedimentary rocks has become an important instrument in the 

characterization of the rock. Sonic data are logged routinely in boreholes. Extensive research 

is taking place in order to correlate sonic properties and mechanical properties of rocks. 

Methods for in-situ stress prediction based on sonic measurements have also been 

presented. With this background we have seen the need for being able to offer such 

measurements routinely. So far we have limited this to axial measurement of P-waves and S-

wave measurements. A schematic figure of the set-up is shown in Figure B-10.  

The system consists of: 

• modified piston and bottom plate in the triaxial cell 

• contact transducers, 1.0 MHz (Panametrics) 

• broadband ultrasonic pulser/receiver (Panametrics). This generates high-amplitude and 

short electric pulses to the transmitting transducer. The signal from the receiving transducer 

is amplified and sent to an oscilloscope. 

• digital storage oscilloscope (Tektronix TDS 210), 60 MHz with 1 GHz sampling frequency 

and two channels. We use a PC for storage of the full wave trains.  

An S-wave type of transducer is used. This implies that the transducer is mainly tuned for 

shear waves. In most cases the P-wave (compressional) velocity can also be interpreted.  

The client will get the wave trains on diskette, CD or by mail. Normal sampling rate is every 5 

MPa in the hydrostatic phase of the test, and every 1.0 mStrain in the triaxial phase. 

Sonic velocity can under triaxial conditions be measured on samples of 1.5" (38 mm) 

diameter. Without the triaxial cell sonic velocity can be measured on any sample diameter 

and length up to 250 mm. 
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Figure B-10. Schematic of sonic velocity measurements. 
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B.8 Accuracy 

The accuracy of the measuring equipment shown below includes an allowance for errors in 

the auxiliary equipment (measuring amplifiers, A/D-converter etc.) 

The transducers for axial and radial deformation are calibrated against a digital micrometer, 

Mitutoyo type 164-151 0-50 mm. It is calibrated by Teknologisk Institutt, avdeling 

Verkstedteknikk, Verkstedteknisk Laboratorium which is traceable to international standards. 

The transducer for axial force is calibrated by Nemko. Their load cells of 30, 100 and 1000 

kN which are traceable to international standards. 

The pressure transducers for the confining pressure and back (pore) pressure are calibrated 

using our own deadweight tester Budenberg type 3/480C which is traceable to international 

standards. The differential pressure is calibrated by A/S Fimas and is traceable to 

international standards. 

• Axial force : in the range 0-10 kN the relative accuracy is ±0.7%. In the range 10-300 kN 

the relative accuracy is ±0.35%. The resolution is 0.1 kN in the range 100–300 kN, 0.01 kN 

in the range 10–100 kN and 0.001 kN in the range 1–10 kN. 

• Confining pressure: relative accuracy better than ±0.35% in the range 7–70 MPa, biggest 

absolute deviation in the nominal range 0-70 MPa is 90 kPa, resolution 10 kPa. 

• Axial deformation: non-linearity better than ±13 micrometer, resolution 1 micrometer. 

• Radial deformation: non-linearity better than ±23 micrometer, resolution 1 micrometer. 

• Differential pressure (for liq. perm.): relative accuracy better than ±1.6%, biggest absolute 

deviation in the nominal range 0-100 kPa is 0.6 kPa, resolution 0.1 kPa 

• Differential pressure (for gas. perm.): relative accuracy better than ±1%, 

• Back (pore) pressure: relative accuracy better than ±0.35% in the range 1-50 MPa, biggest 

absolute deviation in the nominal range 0-50 MPa is 20 kPa, resolution 10 kPa 

• Liquid flowrate: relative accuracy ±1% 

• Gas flowrate: relative accuracy ±1% 
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C. R codes 

 

For the statistical analysis presented in chapter 6, the open source programming language 

and software environment for statistical computing and graphics, R, was used. 

The programming codes for all three parameters, both for P-waves and S-waves are listed 

below. 

 

 



Peak stress (P-waves) 

C-2 
 

 

C.1 Peak stress (P-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-peak.true 

model<-peak.Vp.model 

conf0<-A.Vp 

smat<-rmdata[order(rmdata[,"Dt.Vp"]),]  

x<-smat[,"Dt.Vp"] 

conf0<-smat[,"A.Vp"] 

plot(model,true,xlim=c(0,200),ylim=c(0,200),xlab="Peak stress (model)[MPa]", 

ylab="Peak stress (measured) [MPa]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-1198.2*exp(-0.035*x) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"peak.Vp.model"],smat[,"peak.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975))   

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlab=paste("\u0394","t(p) [µs/ft]"),ylab="Estimated 

UCS [MPa]") 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue") 

lines(x,linjehoy,col="blue") 
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plot(smat[-16,"peak.true"],feil,xlab="Peak stress (measured) [MPa]", 

ylab="Peak stress (model - measured)") 

plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(p) [µs/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Peak stress (mod - meas) [MPa]") 

hist(residuals,main="Histogram",xlab="Estimated UCS - fitted line") 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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C.2 Peak stress (S-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-peak.true 

model<-peak.Vs.model 

conf0<-A.Vp 

smat<-rmdata[order(rmdata[,"Dt.Vs"]),]  

x<-smat[,"Dt.Vs"] 

conf0<-smat[,"A.Vp"] 

plot(model,true,xlim=c(0,125),ylim=c(0,125),xlab="Peak stress(model) [MPa]", 

ylab="Peak stress (measured) [MPa]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-425.68*exp(-0.015*x) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"peak.Vs.model"],smat[,"peak.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975))   

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlim=c(100,220),ylim=c(0,100),xlab=paste("\u0394", 

"t(s)[µs/ft]"),ylab="Estimated UCS [MPa]") 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue") 

lines(x,linjehoy,col="blue") 
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plot(smat[1:15,"peak.true"],feil,xlab="Peak stress(measured) [MPa]", 

ylab="Peak stress (model - measured)") 

plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(s) [µs/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Peak stress(mod - meas) [MPa]") 

hist(residuals,main="Histogram",xlab="Estimated UCS - fitted line") 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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C.3 Young's modulus (P-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-E.true 

model<-E.Vp.model 

conf0<-E.Vp.model.conf.0 

smat<-rmdata[order(rmdata[,"Dt.Vp"]),]  

x<-smat[,"Dt.Vp"] 

conf0<-smat[,"E.Vp.model.conf.0"] 

plot(model,true,xlim=c(0,50),ylim=c(0,50),xlab="Young's modulus(model) 

[GPa]",ylab="Young's (measured)  [GPa]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-9925.85*((x-38.09)^(-1.73)) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"E.Vp.model"],smat[,"E.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975)) 

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlim=c(40,140),ylim=c(0,60),xlab=paste("\u0394","t(p) 

[µs/ft]"),ylab=paste ("Estimated Young's(","\u03C3","(c)=0) [GPa]")) 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue") 

lines(x,linjehoy,col="blue") 
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plot(smat[,"E.true"],feil,xlab="Young's modulus(measured) [MPa]", 

ylab="Young's(model - measured)") 

plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(p) [µs/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Young's modulus(mod - meas) [GPa]") 

hist(residuals,main="Histogram",xlab=paste("Estimated Young's modulus 

(","\u03C3","(c)=0) - fitted line")) 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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C.4 Young's modulus (S-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-E.true 

model<-E.Vs.model 

conf0<-E.Vs.model.conf.0 

smat<-rmdata[order(rmdata[,"Dt.Vs"]),]  

x<-smat[,"Dt.Vs"] 

conf0<-smat[,"E.Vs.model.conf.0"] 

plot(model,true,xlim=c(0,25),ylim=c(0,25),xlab="Young's modulus(model) 

[GPa]", ylab= "Young's (measured) [GPa]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-170.41*((x-107.35)^(-0.716)) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"E.Vs.model"],smat[,"E.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975))   

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlim=c(100,220),ylim=c(0,25),xlab=paste("\u0394", 

"t(s) [µs/ft]"), ylab=paste ("Estimated Young's(","\u03C3","(c)=0) [GPa]")) 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue")lines(x,linjehoy,col="blue") 

plot(smat[1:15,"E.true"],feil,xlab="Young's modulus (measured) [MPa]", 

ylab="Young's(model - measured)") 
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plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(s) [µs/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Young's modulus(mod - meas) [GPa]") 

hist(residuals,main="Histogram",xlab=paste("Estimated Young's modulus 

(","\u03C3","(c)=0) - fitted line")) 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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C.5 Poisson's ratio (P-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-ny.true 

model<-ny.Vp.model 

conf0<-ny.Vp.model.conf.0 

smat<-rmdata[order(rmdata[,"Dt.Vp"]),]  

x<-smat[,"Dt.Vp"] 

conf0<-smat[,"ny.Vp.model.conf.0"] 

plot(model,true,xlim=c(0,0.6),ylim=c(0,0.6),xlab="Poisson's ratio (model)  

[-]",ylab="Poisson's (measured) [-]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-97.11*((x-26.15)^(-1.46)) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"ny.Vp.model"],smat[,"ny.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975))   

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlab=paste("\u0394","t(p) [my-sec/ft]"), 

ylab=paste("Estimated Poisson's (","\u03C3", "(c)=0) [-]")) 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue") 

lines(x,linjehoy,col="blue") 
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plot(smat[,"ny.true"],feil,xlab="Poissons's ratio(measured)[-]", ylab= 

"Poisson's(model - measured)") 

plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(p) [my-sec/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Poisson's ratio(mod - meas) [-]") 

hist(residuals,main="Histogram",xlab=paste("Estimated Poisson's ratio 

(","\u03C3","(c)=0) - fitted line")) 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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C.6 Poisson's ratio (S-waves) 

function (data=rmdata)  

{ 

windows() 

par(mfrow=c(4,2)) 

true<-ny.true 

model<-ny.Vs.model 

conf0<-ny.Vs.model.conf.0 

smat<-rmdata[order(rmdata[,"Dt.Vs"]),]  

x<-smat[,"Dt.Vs"] 

conf0<-smat[,"ny.Vs.model.conf.0"] 

plot(model,true,xlim=c(0,0.6),ylim=c(0,0.6),xlab="Poisson's ratio (model)  

[-]",ylab= "Poisson's (measured) [-]") 

abline(a=0,b=1,lty="dotted",col="lightblue") 

linje<-1.4015-(0.0188*x)+(7.1*(10^(-5))*x*x) 

tips<-cbind(linje,conf0) 

tips<-as.matrix(na.omit(tips)) 

tips2<-cbind(smat[,"ny.Vs.model"],smat[,"ny.true"]) 

tips2<-as.matrix(na.omit(tips2)) 

residuals<-tips[,1]-tips[,2] 

feil<-tips2[,1]-tips2[,2] 

qstd<-quantile(residuals,c(0.025,0.975))   

linjelav<-linje+qstd[1] 

linjehoy<-linje+qstd[2] 

plot(x,conf0,col="red",xlim=c(100,220),ylim=c(0,0.6),xlab=paste("\u0394", 

"t(s)[µs/ft]"), ylab=paste ("Estimated Poisson's(","\u03C3","(c)=0) [-]")) 

lines(x,linje,col="red") 

lines(x,linjelav,col="blue") 

lines(x,linjehoy,col="blue") 
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plot(smat[1:15,"ny.true"],feil,xlab="Poisson's ratio (measured) [-]", 

ylab="Poisson's(model - measured)") 

plot(x,linjehoy-linjelav,xlab=paste("\u0394","t(s) [µs/ft]"),ylab="95% 

confidence interval") 

hist(feil,main="Histogram",xlab="Poisson's ratio(mod - meas) [-]") 

hist(residuals,main="Histogram",xlab=paste("Estimated Poisson's ratio 

(","\u03C3","(c)=0) - fitted line")) 

abline(v=qstd,col="red",lwd=2) 

qqnorm(feil) 

qqnorm(residuals) 

svar<-cbind(sd(feil),sd(residuals)) 

return(svar) 

} 
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