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Problem Description

Hemodynamic and physiological parameters such as blood pressure, electrocardiogram (ECG),
blood flow, muscle sympathetic nerve activity, etc. can provide information about the health
status of a patient. If the patient is given intervention in terms of physical and orthostatic chal-
lenges or pharmacological manipulations, then the hemodynamic and physiological parame-
ters can change. The changes can provide important clinical information regarding the individ-
ual patient’s underlying physiologic regulation, about pathophysiological state of diseases and
their progress. As for now, there are no existing mathematical tools available in order to access
and understand this circulatory dynamics as a function of health condition, age and gender or
predict the outcome in a robust manner.

This thesis aims to study the low frequency oscillations in circulatory variables from pre- and
post cardiac surgery patients to see how these evolve as a function of time. The understanding
of biological signals behavior and therefor the behavior of the cardiovascular system helps to
characterize patients state and might represent a step toward a better care.
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Abstract

This thesis has investigated the low frequency content from the cardiovascular system. Three
different signals; heart rate variability(HRV), blood pressure(BP) and a flow signal of the blood(Laser
doppler flow, LDF) all being global variables of the cardiovascular system collected indepen-
dently of each other has been used. The low frequency content from these three different signals
has been compared for patients doing cardiac surgery. Four time segments of one hour each has
been collected, one before the surgery and three after surgery. The frequency analysis has been
done using a continuous wavelet transform. This produces three frequency spectrum’s for each
time segment, corresponding to a signal. A Poincare analysis for the HRV signal has been done
to verify some of the results. The study of the evolution of the frequency spectrum’s over the
time segments then shows two main findings.

First finding is a similar trend in the sub-bands HR, resp and partly the myo sub-band. Where
the peak frequency for all shows a similar evolution over the time segments. Also for the power
variable there is a similar trend over the time segments.

Second finding is the similar trend in the lower sub-bands neuro, eMeta and VLF. For the
mentioned sub-bands the peak value variable has all the same evolution over the time segments.
These variables also shows a statistical significant change from before the surgery to the last and
most stable segment after the surgery. The trend from the peak value also recur in the variables
from the Poincare analysis. The values from the Poincare analysis show significant decrease
from before to after surgery.

The results are produced from a limited amount of data. In order to increase the statistical
strength of the results a larger data set should be evaluated.
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Sammendrag

Denne oppgaven er et studie av det lavfrekvente innholdet fra det kardiovaskulær systemet.
Analysen har tatt utgangspunkt i tre forskjellige signaler, hjertefrekvens variasjon(HRV), blodtrykk(BP)
og et strømningssignal av blodet (Laser doppler flow,LDF). Dette gir tre globale variabler i det
kardiovaskulære systemet, målt på uavhengige måter. Det lavfrekvente innholdet i disse signa-
lene er sammenlignet for pasienter som er inne til hjerteoperasjon. Det er valgt ut 4 tidsseg-
menter for sammenligningen, et før operasjon og tre etter. Frekvensanalysen av signalene er
utført med kontinuerlig wavelet transformasjon. En Poincare analyse for HRV signalet er gjort
for å verifisere noen av resultatene. Evolusjonen av de korresponderende frekvensspektrene
over de gitte tids segment gir to hovedfunn.

Første funn er en sammenheng i utviklingen for del-båndene HR, resp og delvis myo, den
viser lignende utvikling for den sterkeste frekvensen i del-båndene (peak_frequency). Power
variabelen viser også en lignende utvikling for disse del-båndene.

Andre funn er en lignende utvikling i de lavere del-båndene, neuro, eMeta og VLF. Verdien på
den sterkeste frekvens (peak_value) i disse båndene viser samme utvikling over de fire tidsseg-
mentene. Denne variabelen viser også en statistisk signifikant endring fra før operasjon til siste
segment etter operasjon for alle signalene og de nevnte del-båndene. Utviklingen i peak_value
variablen viser seg også i variablene fra Poincare analysen. Fra Poincare analysen viser SD1 og
SD2 en signifikant nedgang fra før til etter opperajsonen.

Resultatene i denne analysen er fra en begrenset mengde data. For å bedre det statistiske
grunnlaget bør et større datasett vurderes.
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Chapter 1

Introduction

1.1 Motivation/Background

The circulatory system is controlled by complex regulation with multiple feed-back and -forward
loops over a large temporal and spatial scale. The spatial scale varies from the heart and lungs
and out to the smallest capillaries and finally cells which are dependent on the blood delivered
by the blood vessels. The temporal scale ranges from autonomic nerve potentials in microsec-
onds to circadian rhythms over several hours[9].

During homeostasis, circulatory system is not stationary but on the contrary a healthy cir-
culatory system exhibits a considerable variation at all times. When assessing global circulatory
signals, these exhibit distinct oscillatory patterns. These patterns are consequences of under-
lying complex regulations. The most prominent oscillations is the oscillations around 1Hz and
0.2-0.3Hz constituted by heart rate and the respiratory system. Less studied and less known are
the lower frequency’s below the respiratory frequency.

This study is being done in collaboration with a medical team from St.Olavs. The medical
team consists of the medical students at St.Olavs hospital Bjørn Gardsjord Lio and Fredrik Axels-
son as a their working on their "Hovedoppgave", also Kathrine Knai as a medical student on the
"Forskerlinjen" is a part of the team all which is supervised by the team founder Nils Kristian
Skjærvold, post.doc at Department of circulation and medical imaging and consultant anaes-
thesiologist at the Department of cardiothoracic anaesthesia and –intensive care medicine. The
medical team are the problem owners in this project. Some of the following points are from their
project description [9].

The medical team believes the oscillatory patterns in the circulatory system exhibited in in-
dividual patients can be used to unmask some of the patients underlying circulatory regulation
and thus their stability. A main focus in these studies are to examine changes in frequency pat-
tern over time in different variables and patient groups and further to look for synchronization
patterns between these different oscillations.

Cardiac surgery patients are as a consequence of their illness and advanced age circulatory
compromised, and an important role for the cardiothoracic anaesthesiologist is to evaluate the
patient’s stability and reserve. In this study we will look into the circulatory oscillatory pattern
of patients pre- and postoperative to gain insight into the nature of these patters and how they
change during the course of major surgical and anaesthesiological intervention. This will gain
insight into the complex regulation of the circulatory system. Understanding biological signals

1
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behavior helps to characterize patient’s state and might represent a step toward a better care.
Aim:

• To study oscillations in circulatory variables from pre- and post cardiac surgery patients to
see how these evolve as a function of time and to compare them with variables obtained
preoperative in the same patients. [9]

The study is performed in accordance with the Helsinki Declaration under patient’s approval
after institutional approval from regional authorities (REK, Regional etisk komité).

1.2 Approach

To provide the medical team with frequency analysis of the circulatory system. It was decided
to make an application to do frequency analysis which takes an input which is medical data
provided by the medical team. This medical data would be global variables from the circula-
tory system. The application would process the data and give an output, which displays the
frequency content of the data and any wanted variables for doing a quantitative analysis. The
application will be made in Matlab.

General inspection and understanding of the signal is considered important to know what
they measure and how they measure the global variables of the circulatory system. This will
give a basic idea of what to expect when doing the frequency analysis. This study will also look-
ing into what frequency analysis methods most suitable for this project, with the Fast Fourier
Transform is fast and easy while the wavelet transform is better suited for not perfect harmonic
signals. The interesting low frequency content of this thesis would be from the heart rate and
lower. This corresponds to approximately 2Hz and lower.

1.3 Previous work/Litterateur survey

Some interesting studies has previously be done on the low frequency content from different
biological signals. Stefanovska et al. has done some analysis of the low frequency differences
between a control group and a group of athletes. Looking at the low frequency differences us-
ing laser doppler flow signal. The frequency analysis has been done using wavelet transform,
and the comparison has been done using some hypothesised frequency bands and comparing
chosen values in these sub-bands. [10].

There has also been done several studies on heart rate variability(HRV). One of the more
interesting studies regarding this thesis is from Lakusic et al.[11]. The study looked into the
change in HRV after coronary artery bypass surgery. They found a decrease in complexity in
HRV after a coronary artery bypass grafting(CABG) surgery. They have then used a mix of time
and frequency variables to compare pre and post operative.

1.4 Structure of thesis

The structure of this thesis is as follows:
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Chapter 1 provides a introduction to this thesis. In chapter 2 follows a theoretical introduc-
tion to the biological signals recorded from the circulatory system and some frequency analysis
methods. This chapter will give enough theory to follow the rest of the thesis.

Chapter 3 describes the proses of making the application for frequency analysis and the
steps for doing the frequency analysis of the signals from the medical team.

The results from this thesis will be described and discussed in chapter 4 and 5. The conclu-
sion and recommendations for further work follows in chapter 6.
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Chapter 2

Background

This chapter will give a background to the subjects covered in this thesis. It will start with general
anatomy and a description of the circulatory system and hemodynamics, which is the study of
blood flow. It will then move on to a explanation of different signals used in the analysis of the
circulatory system.

Section 2.1 will cover what must be known about the circulatory system and hemodynamics
to get a basic understanding of how the signals used to monitor the circulatory system is being
produced. Section 2.2, 2.3 and 2.4 will describe the ECG, Blood pressure and Laser Doppler
Flow signals respectively. These sections will describe the signals themselves, how these signals
are obtained and their normal behavior. Section 2.6 will present some analysis methods for
biological signals. It will emphasize frequency analysis and different ways to find the frequencies
in a signal.

After reading this chapter one should be able to understand the rest of this thesis’s technical
terms and have a good understanding of the cardiovascular system.

2.1 Circulatory system

The circulatory system is a system of organs that circulates blood and thus transports nutrients
around the body[2]. This is vital for nourishing cells, helping cells fighting diseases and maintain
human homeostasis. The circulatory system could be separate in two systems, the cardiovascu-
lar system and lymphatic system. This thesis will focus about the cardiovascular system.

The cardiovascular system comprises the heart, blood vessels and the blood. 2.1.The car-
diovascular system could be divide in two "loops" with the heart in the center, the pulmonary
circulation which takes deoxygenated blood from the heart to the lungs and returns oxygenated
blood back to the heart. The other "loop" is the systemic circulation which supplies the body
with oxygen-rich blood [2].

2.1.1 Heart and Blood vessels

The heart works as a pulsating pump that supply all the parts of the body with oxygenated blood
and collects the deoxgynated it then pumps the blood to lungs be oxygenated. These two func-
tions are earlier called systemic circulation, supplying oxygen-rich blood to the body and re-
trieving it and the pulmonary circulation, that oxygenates the blood in the lungs. For each of

5
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Figure 2.1: Circulatory system, showing the arterial system in red and the venous system in blue.
from [2]
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Figure 2.2: Diagram of the human heart from [2]

these "loops" the heart has one atrium and one ventricle, this is chambers separated by valves.
This makes it a total of 4 chambers in the heart muscle.

The right atrium receives the oxygen poor blood from the superior and interior vena cava,
which collects the deoxygenated blood from the whole body. From the right atrium the blood is
passing through the transcupid valve to the right ventricle, where it its pumped to the lungs for
re-oxygenation. The left atrium receives the newly oxygenated blood from the lungs trough the
pulmonary vein passing it through mitral valve to the left ventricle. From the left ventricle the
oxygen rich blood is pumped out to the organs of the body through the aorta. Because of the
distance out in extremities of the body is greater than the distance to the lungs, the left side of
the heart is stronger than the right, especially than the left ventricle.

The aorta is the start of systemic "loop", distributing the blood to arteries which brings blood
to the organs. The arteries then split up into smaller blood vessels called arterioles these are
again split into even smaller vessels called capillaries. The cells are then using the oxygen in
there process leaving the blood deoxygenated, the oxygen poor blood is then transported back
to the heart through the veins, and the systemic "loop" is closed.

Figure 2.1 shows an illustration of the human circulatory system, including the blood vessels
and the heart. Figure 2.2 shows an simplified presentation of the anatomy of the heart.

2.1.2 Cardiac cycle

As described earlier is the cardiovascular system driven by the heart muscle as biological pump.
To get a brief understanding of the biological signals from the cardiovascular system it is im-
portant to know how the heart "pump" works. The cardiac cycle refers to a complete heartbeat
from its generation to the beginning of the next one. The frequency of the cardiac cycle or a
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Figure 2.3: Cardiac events from [3]

heartbeat is referred to as the heart rate. The cardiac cycle is divide into two states, systolic and
diastolic, but it could also be divide into five stages describing the cycle including the systolic
and diastolic [3].

The first stage, "ventricular filling" is start of the diastolic state, this is where the semilunar
valves(pulmonary valve and the aortic valve) is closed and the atrioventricular(AV) valves (mi-
tral and tricuspid valves) are open, and the heart is relaxed. The second stage, "arterial systole"
is when atrium contracts and pumps blood into the ventricle. The third stage is called the "iso-
volumic contraction",is the start of the systolic state. This is where the AV and semilunar valves
closes and ventricles start to contract. There is no change in volume in the ventricles but the
pressure increases. The fourth stage is the "ventricular ejection" the semilunar valves open and
ventricles are contracting and pumping the blood out in the pulmonary artery and the aorta.
During the last and fifth stage, "isovolumic relaxation time", the ventricle starts relaxing the and
the semilunar valves close due to the higher pressure in the aorta and pulmonary artery than
the ventricles.

To sum up the diastolic and systolic commonly refers to the diastolic and systolic stages of
the ventricles. This is systolic when the ventricle is contracting and ejecting blood and diastolic
when it is filling up.

Figure 2.3 shows the relation between pressure, volume, electrocardiogram(ECG) and heart
sounds(Phonocadiogram,PCG) over two heart beat also showing the different stages. PCG is
sound recordings typically from valves closing. The ECG signal will be described later on.

2.1.3 The heart’s electrical conduction system

A muscle contraction is initiated by an electrical impulse, an action potential[12]. As the heart is
a muscle this is true for the heart as well, but the heart muscle have other important differences
from skeletal and smooth muscles.

The cardiac muscle is different from skeletal muscles in that way that it is not controlled
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Figure 2.4: Electrical conduction in a heart from [4]

by the somatic nervous system, but by the autonomic nervous system [4]. This means it is not
something you could control, but a process that is going on automatically without your atten-
tion. The heart muscle all ways respond with maximum response, given that the electric impulse
exceeds the heart muscles excitation threshold, this is different from many other muscles where
there is a relation between the strength of the impulse and the contraction. The Cardiac muscle
also has the possibility to initiate a contraction, without any external stimulus.

The sinoatrial node(SA) commonly called the sinus node, generates the electrical impulse,
which eventually make the heart contract and makes a heartbeat[12]. When the SA node gen-
erates an impulse it instantly triggers the atrium to contract. The impulse then travels like a
pebble into a pool of water through the atria. After fully contracting the atria the signal is reach-
ing the atrioventricular node (AV). The AV node is located in the internal septum, this is what
separates the left and right atria of the heart. The atria are electrically isolated from the ven-
tricles, only connected through the AV node. After a delay for allowing the atria to completely
empty and filling the ventricles. The electrical signal is then propagating through the bundle of
His(AV bundle) and splitting into right and left bundle branch that run along the interventricu-
lar septum. This brings the electrical signal to the apex of the heart, this is where the contraction
of the ventricles starts. The electrical signal propagates through Purkinje fibres and the cardiac
muscle very rapidly, this makes the ventricles contract efficiently.

There is several places in the heart that could generate action potentials, but this is at a
slower rate than the SA node and would be overridden by the SA node normally because of the
higher frequency of SA node. This works as a safety mechanism. The normal rate of the SA node
is 60-80 beats per minute(bpm) other places that could produce action potentials in the hearts
conduction system is the AV node with 40-60 bpm. Also the bundle of His and the Purkinje fibres
could generate action potentials with 30-40 and 20-30 bpm respectively if not overridden. If any
other than the SA node is triggering a contraction this is called an ectopic beat.



10 CHAPTER 2. BACKGROUND

(a) Showing two different ways to place limb elec-
trodes, important thing is that they are placed sym-
metrically

(b) Placement of precordial
electrodes

Figure 2.5: Placement for a 12 lead ECG. A 12 lead ECG using only 10 electrodes figures from [5]

Figure 2.4 shows the hearts electrical conduction system [4].

2.2 ECG signal

Electrocardiogram(ECG) is the recording of the electrical activity of the heart [12]. The ECG
recording is very helpful as being an non invasive measurement of the heart activity. The record-
ings is done only using electrodes placed on the skin.

The recoding of ECG is done by electrodes placed on the skin, but it necessary with two
or more electrodes to have one as reference. The electrodes is divided into two groups the
limb(figure 2.5a) and precordial(figure 2.5b) electrodes these could be placed as shown in figure
2.5.

A lead in ECG could be seen as a measurement of electrical potential in a certain angle this
is what gives a signal. There are two types of leads; bipolar and unipolar leads. Bipolar leads is
the measurement of the electrical potential between two electrodes, usually between the lime
electrodes. The unipolar leads are then a measurement between an electrode and an group of
others making a common lead, usually the Wilson’s central terminal which will be described
below.

The Wilson’s central terminal Vw is produced from the three limb electrodes RA,LA and LL
this gives an average potential across the body[12], [5].

Vw = 1

3
(R A+La +LL) (2.1)

Lead I, II and III are bipolar leads, these leads are also called limb leads, this is because the
are coming from the the limb electrodes.

• Lead I, is the lead between the left arm and the right arm, with the left arm as the positive.

I = L A−R A (2.2)
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Table 2.1: Electrode names and placement for 12 lead ECG

Electrode name Electrode placement
RA Right arm
LA Left arm
RL Right leg
LL Left leg
V1 In the fourth intercostal space(between ribs 4 and 5) just to the right of the sternum
V2 In the fourth intercostal space(between ribs 4 and 5) just to the left of the sternum
V3 Between V2 and V4

V4 In the fifth intercostal space(between ribs 5 and 6) in the mid-clavicular line
V5 Horizontally even with V4 in the left anterior axillary line
V6 Horizontally even with V4 and V5 in the midaxillary line

• Lead II, is the lead between the left leg and the right arm, with the left leg as the positive.

I I = LL−R A (2.3)

• Lead III, is the lead between the left leg and the left arm, with the left leg as the positive.

I I I = LL−L A (2.4)

There is also three other leads generated from the limb electrodes, this is the augmented
limb leads, aVR, aVL and aVF. These leads is unipolar as there references is from multiple leads.

aV R = R A− 1

2
(L A+LL) = 3

2
(R A−Vw ) (2.5)

aV L = L A− 1

2
(R A+LL) = 3

2
(L A−Vw ) (2.6)

aV F = LL− 1

2
(R A+L A) = 3

2
(LL−Vw ) (2.7)

The precordial leads are generated from the precordial electrodes and they all are having
the Wilson’s central terminal as their reference(negative pole). This makes the precordial leads
unipolar.

An illustration of the limb leads and the augmented limb leads could be seen in figure 2.6.
To understand the ECG signal it is important to know what it represents. There is four main

points:

• depolarization of the heart toward the positive electrode produces a positive fluctuation.

• depolarization of the heart away from the positive electrode produces a negative fluctua-
tions.

• repolarization of the heart toward the positive electrode produces a negative fluctuations.
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Figure 2.6: Limb leads and augmented limb leads, captured from [5]

Figure 2.7: Illustration of recorded signal by an electrode, captured from [5]
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Figure 2.8: Typical ECG waveform from a healthy person, captured from [5]

• repolarization of the heart away from the negative electrode produces a positive fluctua-
tions.

The ECG complex is a very characteristic signal. The waveform from a healthy heart is shown
in figure 2.8.

Three major waves appear in the normal ECG signal, each one showing different part of
the heartbeat. The first wave is called the P wave, this shows the electric activity of atria. Then
follows the QRS complex, which is the largest wave. The QRS complex shows the electric activity
of the ventricles. The third wave is the T wave shows the hearts relaxation phase.

• The P wave represents atrial depolarization

• The QRS complex represents ventricular depolarization

• The T wave represents ventricular repolarization

In some cases a forth wave could be visible, the U wave. The U wave represents the repolar-
ization of the papillary muscles.

2.2.1 Noise sources in ECG

In the ECG signal as any other real signal it is common with some noise or artifacts. These ECG
artifacts could be divided in two groups, Physiologic noise sources and External noises. A short
list of these artifacts or sources of noise follows[12][13]:

Physiological noise sources
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Muscular activity, the muscles is as the heart triggered by electric impulses. Muscle ac-
tivity close to an electrode could damage the signal. EMG usually has frequency con-
tent in the range 50-500 Hz [12].

Movement of electrodes, If the electrodes is not properly fixed or the patient moves it
will give a motion artifact.

External noise

Power supply, in Europe this mains component is 50Hz.

Electronic noise, this is usually a high frequency component introduced by the acquisi-
tion equipment itself.

2.3 Blood Pressure

Blood pressure(BP) is the pressure exerted by the circulating blood upon the walls of blood ves-
sels [14]. The blood pressure is one of the vital signs of the body, commonly it refers to arterial
blood pressure.

The blood pressure is a direct response from the pumping action of the heart. This means
that the blood pressure will vary with the different phases of the heart beat. This gives the sys-
tolic and diastolic pressure, which is the normal way to present the blood pressure. The systolic
pressure corresponds to the pumping(systole) phase of the heart and the diastolic pressure cor-
responds to the filling(diastole) phase of the heart. The mean pressure is affected by the blood
pressure and resistance of the blood vessels.

The pressure is the cardiac output(Q) times the peripheral resistance(R). Cardiac output is
then again stroke volume(SV) times heart rate(HR). These process are complex and driven by
the autonomous nervous system to control the blood pressure [14] [3].

∆P =Q ×R

Q = SV ×HR
(2.8)

The cardiac output is the blood flow out of the heart, this is depending on how much blood
being in the heart chambers(volume) times how often this is pumped out. Average cardiac out-
put for a human is 4.0-8.0 L/min depending on the person[15].

The peripheral resistance also known as the systemic vascular resistance(SVR) is the resis-
tance that must be overcome to push blood through the circulatory system [16]. Vasconstriction,
i.e constriction in blood vessels increases SVR and opposite vasodialation increases the diam-
eter of the vessels and decreases the SVR. This is also controlled by the autonomous nervous
system and a way of controlling the blood pressure.

The recording of blood pressure is done by cannula in a chosen blood vessel, the cannula is
then connected to a infusion tubing set. This is often filled with sodium chloride. This liquid is
in contact with a diaphragm that moves in response to the transmitted pressure waveform. The
movement is then converted to an electrical signal by a transducer [17].

The invasive blood pressure technique is very robust against noise, but some equipment
need calibration to get correct values. This would though not distort the frequencies in the
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Figure 2.9: Change in frequency due to a moving source, from [6]

signal. A important thing is that the transducer have to be kept at a horizontally level with the
heart, raising or lowering the transducer relative to the patients heart will alter the signal.

2.4 Laser Doppler flowmetry

Laser doppler flowmetry(LDF) is a noninvasive technique for continuous measuring microcicr-
culatory blood flow [18]. As the names says LDF is using the the principle discovered by Chris-
tian Doppler, i.e. that sound waves from a moving source would increase in frequency as the
source moves toward the observer and decrease as the source moves away from the observer[6].

The signal is obtained by sending a monochromatic coherent laser light towards the area of
interest, the laser light is shifted in frequency when it is scattered by an moving object. This
means when the laser light are scattered of the blood cells flowing in a vessel it is shifted ac-
cording to the speed of the cells. The relatinship between the velocity and observed frequency
is shown in eq. 2.9.

∆ f = 2∆v

c
f0 (2.9)

In eq. 2.9 ∆ f = f − f0 and ∆v = vr − vs . f is received frequency and f0 is transmitted fre-
quency, vr is the velocity of the receiver relative to the medium and vs is the velocity to the
source relative to the medium. The equaition is multiplied with 2 because the incident wave is
affect as well as the wave reflected back to the probe [6].

The advantage with LDF is that you could measure the blood flow in the microcirculation.
The strength of the technique is to continuously looking at at changes in blood flow.

A problem with the LDF technique is it’s sensitivity for motion artifacts [19]. Motion artifacts
will give a huge doppler shift and gives huge spikes in the signal. This motion artifact makes it
hard collecting a long noise free signals from patients which are awake.

2.5 Heart rate and HRV

The heart rate is the rate of how often the heart beats, this is often measured in beats per
minute(bpm). The heart is controlled by the the autonomous nervous system to change as the
body’s need of oxygen changes [20] [21].
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Figure 2.10: The upper plot shows the ECG signal and how the R-R interval is extracted, the lower
plot shows the R-R intervals, from [7]

The heart rate could be extracted from several signals, by measuring the instant an event
occurs. The easiest way for measuring the heart rate is using the ECG signal and measuring
the time between one R wave and the next. This is called for the R-R interval, i.e. time interval
between two subsequent R peaks[13]. The HR is calculated from the R-R interval, by taking one
over the R-R interval the heart frequency is found as described in eq. 2.10

∆HR = 1

R −Ri nter val [sec]
(2.10)

The Heart rate variability is the signal composed of the all the R-R intervals[22]. It is an
interesting signal as it shows that the heart rate changes slightly from beat to beat, even during
similar conditions.

There are several reasons for change in HR from [21]:

1. Respiratory Sinus Arrhythmia (RSA) mediated by respiration is responsible for changes of
the heart-rate in 2-5 seconds intervals and is controlled by parasympathetic activity. The
sympathetic system is too slow to influence this frequency band

2. Blood pressure regulation contributes to HRV in 10 second rhythms

3. Changes with a periodic length above 20 seconds are mediated by the sympathetic system

4. Changes in the range of minutes and hours are influenced by the neurohumoral oscilla-
tions in the circulating blood, by circadian rhythms or rapid eye movement phases during
sleep
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2.6 Analysis methods

In this section some methods for analysis of biomedical signals will be described. Starting with
some frequency analysis methods and then describing a time domain analysis named Poincarè
analysis.

2.6.1 Frequency analysis

Any signal that varies over time has a corresponding frequency spectrum [23]. Viewing these
signals in the frequency domain certain aspects not seen in the time domain and the underlying
reasons producing the signal might be revealed.

To convert a signal from time domain to frequency domain a mathematical transform is
applied, this could be a Fourier transform. By using the inverse transform the original time
domain signal could be obtained.

The frequency spectrum could shows which frequencies that are prominent and important
for keeping the general shape of the signal. This makes the it a very useful tool for finding fre-
quencies that is not suppose to be in the signal or maybe are redundant. By knowing this it is
possible to design filters to remove these frequencies.

Fourier

The Fourier transform(FT) is used to transform a signal from time domain to frequency domain[24],
seen in equation 2.11. The FT decomposes the signal in to the frequencies that make it up us-
ing a complex sinusoid. The inverse Fourier transforms converts the signal back to time do-
main(2.12).

G(ω) =
∫ ∞

−∞
g (x) e−iωx dx

ω= 2π f
(2.11)

g (x) =
∫ ∞

−∞
G(ω) eiωx dω (2.12)

As found out by Parseval the energy is preserved in the Fourier transform[25]. This is shown
in Parsevals theorem in equation 2.13.∫ ∞

−∞

∣∣g (x)
∣∣2 d x =

∫ ∞

−∞
|G(ω)|2 dω (2.13)

Fast Fourier Transform

The Fast Fourier Transform(FFT) is a algorithm that computes the discreet Fourier transform or
the the inverse transform of a sequence[26]. As the original DFT has a complexity of O(n2), the
FFT algorithm has a complexity of O(n log(n)), where n is the data size. This gives a much faster
computation of the Fourier transform.
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Figure 2.11: Continuous wavelet, Morlet

Wavelet

A wavelet is a short wave-like oscillation that starts at zero, has some oscillation and goes back
to zero. An example of a continuous wavelet is shown in figure 2.11.

The continuous wavelet transform(CWT) differ from the Fourier transform in that way that
is using any chosen wavelet as basis function instead of the sinusoid [12]. It does not relate to
frequency in the same way. By warping the time axis "t" allows us to obtain the harmonics from
the original signal. By replacing the time axis with a multiple n of the time axis produces the n-th
harmonic. This is essentially scaling the signal. By doing this "scaling" with the basis function
or the wavelet it would produce a new version of the wavelet. A scaling of a Mother wavelet(the
original wavelet) is often called a child wavelet. The claim is that the main characteristics of
harmonic frequencies can be drawn from a more general concept called a "scale" [27]. The
interesting part is that unlike frequency that only is defined for periodic signals, a scale works
equally fine for a non periodic signal. A relation between a scale and a pseudo-frequency exist
and is shown in equation 2.14. This relation is based on the center frequency of the wavelet, Fc .
The idea is to associate a given wavelet with purly periodic signal with frequency, Fc [28]. The
frequency maximizing the FFT of the wavelet modulus is Fc .

Fa = Fc

a ×∆ (2.14)

where

• ∆ is the sampling period

• Fc is the center frequency
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• Fa is the pseudo-frequency corresponding to the scale a

The continuous wavelet transform could then be seen in the equation 2.15.

WΨ,x(a,b) = 1p|a|
∫ ∞

−∞
x(t )Ψ∗(

t −b

a
)d t , a 6= 0 (2.15)

In the continuous wavelet transform equation 2.15 theΨ(t ) is the mother wavelet function,
b is the shifting parameter and a is the scaling parameter(replacing the frequency). Ψ( t−b

a ) is the
a shifted and scaled version of the mother wavelet called often called a child wavelet. Just like
the Fourier transform the CWT also has a inverse transform for returning back to time domain.
The inverse continuous wavelet transform is seen in equation 2.16.

x(t ) = C−1
Ψ

a2

∫ ∞

−∞

∫ ∞

−∞
WΨ,x(a,b)Ψ(

t −b

a
)d a db, a 6= 0 (2.16)

In the inverse transform the C−1
Ψ is a constant depending on the choice of mother wavelet.

As choosing different mother wavelet gives an unique CWT, there is an infinite number of
transformations that all are called CWT. This makes CWT suitable for a variety of tasks.

To choose the right mother wavelet is difficult and there is no right answer, but there are two
rules of thumb[12]:

1. Complex signals need complex mother wavelets

2. The mother wavelet that resembles the general shape of the signal to be analyzed

2.6.2 Poincarè analysis

An Poincare analysis is based on a Poincare plot. The Poincare plot is a plot which is used to
quantify self similarity in a process. A Poincare plot is also known as return map. The plot is a
graph where each samples is plotted against the next. If there is a time series xt , xt+1, xt+2, . . .,
the process it ploted as (xt , xt+1), (xt+1, xt+2), (xt+2, xt+3), . . . This gives a plot that varies around
a line of identity, this is where the samples have similar value(xt = xt+1).

Poincare plots are helpfull to visually analyse the process[29]. The normal way of quantita-
tively analysing a Poincare plot is using an ellipse fitting technique. This technique entails fitting
an ellipse to the plot with the center coinciding with the center point of the process((xav g , xav g )).
The line defined as axis2 describes the slope of the longitudinal axis, while axis 1 defines the
transverse slope, which is perpendicular in direction to axis 2. Axis2 has teh same direction as
the line of identity. The length of the axis making the ellipse is defined by the standard deviation
in the direction of the axis, this gives the variables SD1 and SD2, as seen in figure 2.12. SD2 gives
the continuous long-term variability of the process. SD1 gives the sample to sample variations
of the data, this is short-term variability. It is common to use the ratio SDR = SD1/SD2 to relate
to only one variable.
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Figure 2.12: Poincare plot showing the fitted ellipse and the varaibles SD1 and SD2, figure from
[8]



Chapter 3

Methods and Implementation

This chapter will describe what’s been done in this thesis and describe how it has been done. It
will start with how the signals are collected, it will then go on to how the signals look and and
how to process them. Thereafter a description on how the application for the signal analysis was
done.

Some results will be shown and discussed for the different parts as further work is dependent
on these results.

3.1 Signal acquisition

Every patient is monitored in approximately one hour before surgery, they are then brought to
surgery and some kind of cardiac innervation is performed. After surgery the patient is moni-
tored all the time to the next morning. The first period after surgery the patient is contected to
the ventilator. The signals recorded is the ECG, invasive Blood Pressure(BP) and Laser Doppler
flow(LDF). These signals are collected by the medical studentes Bjørn Gardsjord Lio and Fredrik
Axelsson supervised by their supervisor and anesthesiologist Nils Kristian Skjærvold. A descrip-
tion of how these signals are acquired will follow.

Hardware used in the signal acquisition is from ADInstruments.

• PowerLab 16/35 DAQ

• Blood FlowMeter, LDF input

– LDF probe, MNP100XP

• BP Amp

– Disposable BP transducer, MLT0670

– Cable from transducer to BP Amp, MLAC05

• Bio Amp, used for ECG recordings

– Bio amp cable, MLA2340

21
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All the equipment is connected to the PowerLab and each signal has their own amplifier as
described in the list above. The PowerLab is connected to a computer where ADInstruments
software, LabChart has been used to view and export the signals to MatLab files. All the signals
is recorded with a sampling frequency of 400Hz. This was chosen as appropriate after testing
some different sampling frequencies as high as 1000Hz and as low as 200Hz. 400 Hz is way
higher than needed for looking at the low frequency’s in this thesis, but where chosen to keep
the original form of the signal if the recorded signal was going to be used in any other study.

3.1.1 ECG recordings

The ECG recordings are done with 3 electrodes, where one electrode is placed on each shoulder
and one at the left hip, this is the limb electrodes as described earlier. The extracted signal is
from lead II.

3.1.2 Blood pressure recordings

An anesthesiologist is inserting an arterial cannula in a artery in the wrist(usually the radial
artery). The cannula is connected to a infusion set which again is connected to the BP amplifier
from AdInstruments. To do the Blood pressure recordings in LabChart the system have to be
calibrated by opening a valve on the transducer, this calibrates the pressure against the atmo-
spheric pressure.

3.1.3 Laser Doppler Flow

The Laser Doppler Flow probe register cutaneous perfusion and could be placed any place on
the body. In this case the probe is connected to the calf of the patient. This is chosen as place
most likely to get the least noise from motion artifacts. The probe is then connected straight to
the Blood FlowMeter amplifier.

3.2 Noise analysis

To study the noise and artifacts seen in the signal, some which is know from the theory it was
made a program to investigated these noises and try to remove them in any manner.

3.2.1 ECG

As there was seen some motion artifacts and some high frequency noise when inspecting the
signals it was decided to look closer into this. An example of these noises is shown in figure 3.1,
this shows the same patient in different time segments. The high frequency’s oscillations where
not that important as the scope of the thesis was to look at the low frequency oscillations(2Hz
and lower), but was just briefly looked at.

To find the noise sources there where done some frequency analysis using FFT and spectro-
gram’s showing the time frequency relation.
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Figure 3.1: A raw ECG signal where the upper one showing a period without any motion artifact
and the two lower plots show the same motion artifact

Figure 3.2: Showing the frequency spectrum of ECG signal where the upper one showing a pe-
riod without any motion artifact and the lower plot shows with motion artifact
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Figure 3.3: Showing the time-frequency spectrum of ECG signal

By inspecting the FFT without the motion artifact it was seen that there where some high
very distinct peaks around the the frequencies 20Hz, something around 50Hz and 100Hz. The
50Hz component is known as the mains frequency. The 100 Hz component could be a har-
monic, but should then have a lower power than the 50Hz component.

After looking at a spectrogram and seeing how stationary the higher frequency noises was, it
was concluded that it most likely is coming from internal or other external sources in the room.
As mention earlier this is not that important as the the interesting thing in this thesis is the low
frequencies. It was therefor decided not to do any filtering of these frequencies. If wanted a
low-pass filter could be a applied to remove this noise[13].

The FFT of the time segment with the motion artifact shows a clear increase of frequencies
in the low frequency range compared to the FFT of the segment without the motion artifact.
It is also spread out over a great range of frequencies, this makes it harder to remove without
distorting the signal of interest.

To remove unwanted frequencies and motion artifacts there where looked at two methods;
filtering[13] and trend removal.

• Filtering, there where tested different types of filter for removing two types of noise:

– Motion artifact, looks like quick variations in baseline with an exponential decay.
This could be removed with a high-pass filter.

– High frequency noise, such as from the power supply and the acquisition hardware
itself, which could be removed with a low-pass filter.

• Trend removal, it was tried to fit a low order polynomial to a segment of motion artifact
and subtract it from the original signal.

Filtering of the signal is effective for removing specific frequencies or frequency bands from
the time signal. As the motion artifacts distorts the interesting low frequency band it was de-
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cided that it was not wise to filter the entire signal as this would also remove the interesting part
of the signal. The idea was to only filter the part in time domain that is affected by the motion
artifact. There was chosen a high pass FIR filter with start cutoff at 0.7Hz and start stoppband at
0.5Hz. This gives the result shown in figure 3.4.

The time domain results from figure 3.4 is quite good, the problem is that the frequency
domain is completely distorted in the interesting region.

An other idea was to fit a low order polynomial to the time region of the motion artifact,
subtract this polynomial from the curve and add a constant to the hopefully artifact free signal
to get it back to baseline.

By inspection it looked like a 10th order polynomial was a good fit for removing the motion
artifact.

The method of subtracting a low order polynomial fitted to the motion artifact, looks in time
domain to work well as seen in figure 3.5a. In frequency domain it has clearly also removed some
of the low frequencies, the problem is to know if this is a true representation or an adequately
good representation. Time and frequency plots of the motion artifact signal are shown in figure
3.5

Problem with these techniques are that there had to be developed an algorithm for detecting
a motion artifact and decide where to start the wanted technique for removing the artifact. Since
these techniques distorts the interesting low frequencies it is not advantageous to do this over
the entire signal. This algorithm was never started on as it was decided in collaboration with
other parties to the project that we where going to try to use only time segments mostly without
these artifacts in the further work.

3.2.2 Laser Doppler Flow

As mentioned in the theory part the laser doppler flow signal is very prone to motion artifacts.
These artifacts looks like high spikes in the signal as shown in figure 3.6. These artifacts are easy
to recognize as they are much greater than the rest of the signal. To find out how to remove these
artifacts there where done some frequency analysis as seen in figure 3.7

As seen in figure 3.7b the motion artifact is composed by many low frequency components.
This gives the same challenge as for the ECG signal,i.e. the noise and the interesting information
is in the same frequency band. This makes it difficult to remove without loosing or distorting
valuable information.

Applying a filter was tested but without success. This has the same disadvantages as all ready
discussed, as it would remove or distort the valuable low frequency information.

An idea came since the noise is so much greater than the signal it should be easy to detect
and then just replace with something appropriate.

For detecting the outliers this was done in two ways; one adaptive and one hard threshold.
The adaptive threshold algorithm was chosen as three times of the standard deviation from the
median of a 10000 samples window of the signal for every sample of the signal. If a sample was
greater than the outlier threshold it was replaced with the median of the corresponding win-
dow. The results from the adaptive threshold is shown in figure 3.8. Problem with the adaptive
threshold is that it adapts to the noise as well. This was tried to avoid by having a fairly large
window size.
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(a) Time domain

(b) Frequency domain

Figure 3.4: Top plot’s shows original signal with motion artifact, lower plots show the original
signals filtered.
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(a) Time domain

(b) Frequency domain

Figure 3.5: Top plot’s shows original signal with motion artifact, lower plots show the original
signal after removing the motion artifact using the polyfit technique.
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Figure 3.6: Upper plot shows a noisy part of a LDF signal the lower plot shows a noise free LDF
signal, , both are from the same patient with some overlap at 8-10min.

The problem with the adaptive threshold gave the idea for a much easier solution just to have
one hard threshold defined from a noise free signal segment. This threshold was chosen as four
times the standard deviation from the mean, this was to be safe not to remove more than the
noise. The outliers was then replaced with the mean from the a window of 500 samples around
the actual sample. Results from hard threshold testing could be seen in figure 3.10 and 3.11.

The problem with these outlier techniques is what to replace the outlier value with. What
ever you put in instead of the outlier value is not the correct value and will give a change in the
frequency spectrum. By looking at the spectrum’s in figure 3.12 it is clearly that is actually might
have been useful to use on of these techniques as there is possible to distinguish the known to
be pressent heart rate peak at around 1 Hz in the spectrum’s after removing the outliers. It is
also worth noticing how much more similar the spectrum after removing the outliers are to the
noise free spectrum shown in figure 3.7a.

It was decided in collaboration with other parties of the project to try to avoid these artifacts
in best possible way when choosing time segments for analysis later on. This way there would
be no introduced samples in the signal that might give false information.

3.2.3 Blood Pressure

The blood pressure signal is very robust to noise. There is a possibility of getting wrong pres-
sure values if the calibrations was not done or not done correctly. This would not affect the
frequency’s but might affect the power of the frequency’s.
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(a) FFT

(b) Continuous Wavelet analysis

Figure 3.7: Frequency analysis of the laser doppler flow signal from FFT and CWT. Top plot’s is
of the noisy LDF and bottom is of the normal LDF
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Figure 3.8: Using the LDF signal with motion artifact from figure 3.6, the black boxes shows the
outliers and the red and orange lines shows the thresholds

Figure 3.9: Using the LDF signal with motion artifact from figure 3.6,zoomed into a segment, the
black boxes shows the outliers and the red and orange lines shows the thresholds
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Figure 3.10: Using the LDF signal with motion artifact from figure 3.6, the black boxes shows the
outliers and the red and orange lines shows the thresholds

Figure 3.11: Using the LDF signal with motion artifact from figure 3.6,zoomed into a segment,
the black boxes shows the outliers and the red and orange lines shows the thresholds
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Figure 3.12: FFT of the LDF signal with motion artifact from figure 3.6, on top with the outlier
tecniques adaptive and hard threshold following

3.3 The application

To make analysis faster and easier there was made an application to do the analysis of the chosen
biomedical signals. This would make it possible for the physicians and other personnel without
technical background to easier do frequency analysis of a wanted signal.

The application was made with a graphicalusier inteface(GUI). The GUI’s where made using
Matlab’s Guide layout editor. The rest of the application was made as functions in Matlab.

It was decided to split the task into two programs. A pre program to extract time segments
and set up a file in standard format for a second program. The second program is the analysis
program and does different kinds of frequency analysis of the chosen signals.

3.3.1 Pre program

Since some of the files where extremely large(17 hours of data) there was decided to have a pre
program to extract smaller interesting time segments which would make the analysis easier and
faster. The pre program is named data_exc_GUI.m in the file folder. The pre program also
serves two other features; this is setting up the files in a standardised way and extract some
underlying signals.

The pre program extracts underlying signals as the HRV signal from the ECG and systolic
and diastolic pressure from the blood pressure signal. This is done by using a function called
findpeaks in Matlab. This finds the local peaks in a signal. Buy setting some constraints this
makes it fairly easy to detect the R peaks of the ECG signal. The constraints used for finding the
HRV is:

• Minimum distance between peaks is 200 samples. With a sampling frequency of 400Hz
this gives a minimum distance of half a second which is 120 beats in minute. Anything
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Figure 3.13: The plot shows a ECG signal with R peaks detected buy the function used in the pre
program

higher than this is not likely when patient is lying in bed.

• Minimum peak height was chosen as:

– mi nPeakHei g ht = mean(x)+1.5std

The R peak detection is shown in figure 3.13. When the R peaks are found the HRV signal is
found as the time difference between two R peaks often called an R-R interval. The HRV could
also be interpreted as a frequency, then as one over the R-R interval.

HRV (i ) = t (Ri+1)− t (Ri ) (3.1)

The systolic and diastolic blood pressure was also found using the same function, but with
some other constraints. The systolic pressure which is the peak pressure over a heart beat was
found using the constraints:

• Minimum distance 200 samples

• Minimum peak height 100 mmHg as this is in the lower range of normal systolic blood
pressure

for diastolic the blood pressure signal was simply multiplied with -1 to convert the mini-
mums to maximum. The following constraints to the findPeaks function was used:

• Minimum distance 200 samples

• Minimum peak height -100, this means that the diastolic pressure have to be less than 100
mmHg to be detected.
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Table 3.1: Standardized way of saving the files from the pre program

Variables Description
ECG ECG signal for extracted time segment
BP BP signal for extracted time segment

LDF LDF signal for extracted time segment
HRV HRV signal for extracted time segment
SYS Systolic signal for extracted time segment
DIA Diastolic signal for extracted time segment

t_min Time signal for extracted time segment
fs The sampling frequency which is equal for all signals*

Detecting these underlying signals, HRV, systolic and diastolic blood pressure depends on
finding a specific peak coming from the heartbeat. This means the signal is sampled at various
times, as previously mentioned the heart is not beating in perfect rhythm. This is solved by
interpolating the signal. The signals was then interpolated using the interp1 function in Matlab,
and using the spline method. The HRV, systolic and diastolic signals was then interpolated to
have the same number of samples as the original signal.

It is important to remember that these signals originally was sampled at heart rate which
approximately is a round 1 Hz for a resting person, even if they now have a theoretical sampling
rate at 400Hz as the other signals. This is important to remember when analyzing the frequency
spectrum that these signals only would have approximately half the heart rate as highest fre-
quency, i.e. approximately half a hertz.

If the ECG electrodes where placed the wrong way making the ECG signal inverted this pro-
gram also has an invert button for the ECG signal simply multiplying the signal with minus one.

The pre program also extracts a chosen time segment and saves the chosen time segment in
a standardised way. As the files from the LabChart program was not consistent on the way the
signals where ordered and the spelling of the signal names, the order depending on what kind of
equipment the physicians had connected first and last, or the setup in LabChart. There where a
variety from 3 signals to 5 signals where only the ECG,BP and LDF was interesting, other signal
could be a respiratory signal or just a blank signal. The pre program loads in all the signals and by
choosing the interesting signals the program only saves the interesting signals in a standardized
way. The signals are saved as a Matlab file gui_data_filname_xx_xx.mat , where filename
is the name of the file open in the program and xx_xx indicates start minute and stop minute of
the extracted segment. The standardized way of saving the files from the pre program is shown
in table 3.1.

A screen shot of the pre program with the file 160317_01pre chosen, with the R peaks de-
tected from the ECG signal and the systolic and diastolic signals detected from the blood pres-
sure signal is shown in figure 3.14. There is also chosen a time segment from minute 25 to
minute 30 from the start. By saving at this point the program would produce the standardized
file
gui_data_160317_01pre_25_30.mat.
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Figure 3.14: Screen shot of the program data_exc_GUI.m

3.3.2 Analysis program

The analysis program is the main program in this project. The program is called master_GUI.m
and is where the frequency analysis is being done. The program is a result after several scripts
testing different frequency analysis techniques.

The analysis program takes input from the standardized file from the pre program. The pro-
gram then have three plots to show any of the loaded signals ECG ,BP, LDF, HRV, SYS or DIA.
These signals are chosen by three drop down menus each corresponding to a plot window. By
default the program start showing ECG, BP and LDF as shown in figure 3.15. There is also possi-
ble to specify a range to look into by typing in chosen start minute and stop minute in the boxes
marked with Start min and Stop min and push the update plots button. Be aware that this is not
the same as using the zoom function chosen from top panel as the zoom function only zooms
into a segment, while the range selection method clips the signal at the chosen start and stop
minute. The range selection is chosen this way to be able to do frequency analysis on a specific
shorter segment of the signal. To get back to the full signal simply bush the reset button, and
the program will reset to the way it was at start up. In the top panel there is some of the nor-
mal features from a standard Matlab figures such as the already discussed zoom function’s, pan
function, and data cursor function.

The remove outliers button works in the same way as the remove outliers technique dis-
cussed in the noise removal chapter. The implemented version uses the hard threshold.

Each plot has a corresponding plot window to the right which shows the chosen frequency
analysis method. There are three different analysis buttons, this is the Fast Fourier Transform(FFT
button), continuous wavelet transform time-frequency analysis(CWT analysis button) and a
continuous wavelet transform frequency analysis(CWT mean button). These buttons and anal-
ysis methods will be described next.
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Figure 3.15: Screen shot of the program master_GUI.m at start up.

The frequency analysis is restricted by two criteria. The logic one is that the time signal have
to be the same length or longer than the longest wave wanted to detect. Second criterion is the
Nyquist frequency. The Nyquist frequency tells the highest possible frequency fmax detectable
with a given sampling frequency.

FFT button

The FFT button uses the fast fourier method. The three chosen signals shown in the plot win-
dows are used and their corresponding frequency spectrum are produced using the FFT algo-
rithm. These spectrum’s are ploted in the corresponding frequency analysis windows. The FFT’s
are produced using N=204800, with the sampling frequency of 400 Hz and by Nyquist this gives
highest possible frequency as:

fmax = fs

2
= 400H z

2
= 200H z (3.2)

This gives a frequency resolution:

fr esoluti on = fmax

N
= 200

204800
= 0.000977H z (3.3)

Analysis plots are shown with a logarithmic frequency axis and only up to 10Hz as this covers
the the interesting frequencies well.

CWT analysis button

The CWT analysis button gives a time frequency plot using the cwtft matlab function. This
function returns the continuous wavelet transform of a 1-D signal, using an FFT algorithm to



3.3. THE APPLICATION 37

Figure 3.16: Screen shot from master_GUI.m with a FFT analysis

compute the CWT.

In the wavelet analysis it is being used an analytic morlet wavelet. This is a complex wavelet,
which does not separate positive and negative peaks[30]. It was discussed and tested using dif-
ferent wavelets, but the chosen Matlab function gave restrictions in which wavelet’s to chose
from. Possible analytic wavelets in the cwtft function was morl, dog, bump and paul. The ana-
lytic morl and bump gave the results thought to be most accurate, as the these shows the clearly
known heart rate frequency around 1Hz clearest. It was decided to use the morl wavelet in the
rest of the analysis as this is a well known and used wavelet for this purpose [10].

Before starting the wavelet analysis the signal was decomposed to remove superfluous in-
formation and thus making the signal much smaller in size. This is a way of resampling and
filtering the signal. The signal was decomposed five times and reconstructed at this level using
the approximation coefficients. This gives a signal only containing the lower frequencies. A five
level decomposition gives a sampling frequency of:

f sw = f s

2lvl of decomposition
= 400

25
= 12.5H z (3.4)

This gives a theoretical detectable frequency of 6.25Hz, which is well within the interesting
frequency range of 2 Hz. The computational time of the analysis also drops drastically. The
wavelet ’db4’ was used in the wavelet decomposition, as this is known as a good wavelet for ECG
[31] [32], and seems to work fine for the other biological signals.

The scales of the wavelet was chosen from a wanted frequency range from 0.004 to 2 Hz. This
conversion is done as follows:
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Figure 3.17: CWT using different mother wavelets

a0 = 2
1

NumV oi ces

scalemi n = f loor

(
NumV oi ces ∗ log 2

(
w avecenter

f r eqmi n ×d t

))
scalemax = cei l

(
NumV oi ces ∗ l og 2

(
w avecenter

f r eqmax ×d t

))
scales = a0.(scalemi n :scalemax .×d t )

(3.5)

With NumV oi ces = 64 and w avecenter = 5
2∗π .

The CWT analysis button produces time frequency plot’s corresponding to the signals shown
in the left panels this is shown in figure 3.18

CWT mean button

The CWT mean button uses the same analysis technique as described in the previous section.
The difference is that it only show the frequency response of the chosen signal and not the time-
frequency response. This is done simply by averaging the CWT coefficients over the time, this
could be described as seeing the time-frequency plot with the time axis straight into the screen
only showing frequency and power axis. An example of the CWT mean analysis is shown in
figure 3.19.
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Figure 3.18: Screen shot from master_GUI.m with a CWT time frequency analysis

Figure 3.19: Screen shot from master_GUI.m with a CWT frequency analysis
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findPeaks button

The findPeaks button is made to compare the plots from the CWT mean analysis from different
time segments. The function extracts 3 variables from 6 different sub-band of CWT frequency
spectrum. These sub band will be described later. The three variables extracted from each sub
band is:

• Power

• Peak frequency

• Peak value

The power variable is found by taking power of the frequency signal. As shown:

P = 1

N

N∑
i=1

si g (i )2 (3.6)

This produce the average power of the frequency signal.
The peak frequency is found as the frequency corresponding to the highest local maxima

in the sub-band. The function excludes the end point and start point of the sub-band. The
peak frequency gives one frequency as out put. If the sub-band is monotonically increasing or
decreasing this means there exsits no local maxima and the peak frequency is set to zero.

The peak value is the value of the highest local maxima corresponding to the peak frequency.
Same as for the peak frequency if the sub-band is monotonically increasing or decreasing the
peak value is set to zero.

After the function completes, the peak’s in each sub-bands are marked with a red triangle
and the sub-band powers are displayed to the right of the plots. An example is shown in figure
3.20.

Save figures button

To save the analysis of the current segment worked on the Save figures button opens a dialog
window where it asks for a folder to save the current work in. It then creates a folder in the
chosen folder with the name gui_data_filename. Where filename is name of the file open in
the analysis program. The program then saves each plot window in the analysis program in a
separate Matlab figure files. The name of the files specify which signal it is, which time seg-
ment it covers and the analysis plots also shows which analysis method that was applied. The
BP_30_90.fig, contains the time domain signal of the the Blood pressure signal from minute 30 to
minute 90 and LDF_CWT_mean_45_65.fig means it is the CWT mean analysis on the LDF signal
from minute 45 to 65. If the findPeaks function has been done the Save figures also saves a .mat
file containing the variables from this function they are saved as sub_band_powers_xx_xx.mat.

3.4 Analysis set up

The analysis set up was decided in collaboration with and on request from the medical stu-
dents Bjørn and Fredrik and their supervisor Nils Kristian. They collected data from patient real



3.4. ANALYSIS SET UP 41

Figure 3.20: Screen shot from master_GUI.m with a CWT frequency analysis and findPeaks func-
tion

time approximately one hour of data before surgery and after the surgery through the night and
the next morning this gives approximately 17 hours of data after surgery. It was decided that it
was interesting to extract four one hour segments to analyse. One pre surgery and three post
surgery(post1, post2 and post3). The post surgery segments was selected by Bjørn and Fredrik.
The first post segment is before extubation, where the patient is still on the respirator, next seg-
ment Post2 is after extubation and the last segment Post3 is the next morning. Each segment
was selected with emphasis on avoiding as much noise as possible. The chosen post segments
could be seen in table 3.2.

The chosen segments was extracted and organized with the data_exc_GUI program. The
standardized files from the data_exc_GUI was then opened with the analysis program msater_GUI.
The analysis was done on the three signals HRV, BP and LDF. The analysis was done with the
CWT mean analysis. The findPeaks function button was then used to give the three variables
described earlier power, peak frequency, and peak value for each sub-band.

The CWT mean analysis was chosen, because of the good low frequency resolution, giving
a good range for the low frequencies and makes a nice representation. The wavelet analysis is
also better for non-stationary signals, such as biomedical signals [33]. A comparison of the FFT
and CWT mean methods is shown in figure 3.21

The 6 sub-bands was chosen based on the sub-bands from the article [10]. An additional
sub-band was added on request from the medical team, this is the VLF sub-band. These sub-
bands are shown in table 3.3.

The sub-bands are more or less hypothesized, the heart rate and the respiratory sub-bands
are very clear, but the lower sub-bands and their supposed origins are hypothesized.

Bracic and Stefanovska [10], who mostly looked at the LDF signal, has in this paper described
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Table 3.2: Time segments chosen for the post segments

Patient Post1 [min] Post2 [min] Post3 [min]
160317_01 30-90 120-180 945-1005
160329_02 42-102 127-187 915-975
160331_03 52-112 120-180 870-930
160406_04 110-170 180-240 660-720
160407_05 84-144 160-220 1036-1096
160413_06 80-140 160-220 868-928
160416_07 30-90 136-196 750-810
160510_08 30-90 132-192 780-840
160512_09 10-70 270-330 732-792
160524_10 56-116 148-208 720-780

Table 3.3: Frequency sub-bands

Sub bands [Hz] Supposed origin of activity Sub-band name
0.6-2 Heart activity HR

0.15-0.6 Respiratory actvity resp
0.052-0.15 Myogenic activity myo

0.021-0.052 Neurogenic activity neuro
0.0095-0.021 Metabolic activity eMeta
0.004-0.0095 unknown VLF

the first five sub bands as:

• The peak around 1Hz. This peak belongs to the heart rate. This is shown by compar-
ing a scaleogram(time-frequency plot) of the blood flow signal with a scaleogram with a
simultaneously recorded signal of the heart.

• The peak around 0.3Hz. The peak around 0.3Hz is from respiratory activity, this becomes
evident when comparing the scalogram of the blood flow with a simultaneously recording
of the respiratory activity.

• The peak around 0.1Hz. It has been hypotezised that the peak around 0.1Hz is associ-
ated with blood pressure regulation. The smooth-muscle cells in the vessel walls respond
continually to the changes in introvascular pressure, which is known as the myogenic re-
sponse. Therefore, this intrinsic rhythmic activity of the vessels, caused by the pacemaker
cells in the smooth muscles of their walls, is called myogenic activity.

• The peak around 0.04Hz. A peak a round range from 0.03 to 0.04Hz has been found in
blood pressure and HRV signals by several authors [34]. In humans, [35] demonstrated
that this peak disappeared completely after denervation, both after local and ganglionic
nerve blockade and after sympathectomy. Thus one may conclude that this rhythm results
from the neurogenic activity.
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(a) CWT mean HRV (b) FFT HRV

(c) CWT mean BP (d) FFT BP

(e) CWT mean LDF (f) FFT LDF

Figure 3.21: Comparing FFT and CWT mean method

• The peak around 0.01Hz. This peak is hypothesized that corresponds to metabolic activ-
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ity—the rhythmic regulation of vessel resistance to the blood flow initiated by concentra-
tions of metabolic substances in the blood.

This analysis set up gives a frequency spectrum for each of the three signals. Each of the
spectrum’s are then again divided into 6 sub-bands. From each sub-band there is collected 3
variables. By doing this for each of the four time segments gives:

# data_points = 10Patients×4segments×3signals×6sub-bands×3variables

# data_points = 2160
(3.7)

The data variables and plots where send back to the medical team at St.Olavs hospital, for
their medical interpretation of the data.

The variables are also compared for the four segments averaged over the patients. The vari-
ables are presented as the evolution over the four segments showing one variable from one seg-
ment and one signal.

3.4.1 Poincarè analysis

The Poincarè analysis was applied to the HRV signal, as this is a well used analysis for the HRV
signal. It is interesting to see how the data set of relatively few patients works to a well known
method and to see if there is some correlation with the frequency analysis. For comparing the
quantitative analysis method with fitting an ellipse will be used.



Chapter 4

Results

In this chapter a description and presentation of the results will be given. The results are divided
in two parts, the frequency application software and the results from frequency analysis of the
patients.

4.1 Frequency analysis application

The frequency analysis application ended up being a working application making it faster and
easier to compute the frequency spectrum of a biomedical signal. The application has the pos-
sibility of doing two different frequency analysis methods and one time frequency method. The
frequency methods are; the FFT and an averaged continuous wavelet method. The time fre-
quency method is the continuous wavelet method.

Computational time for the different methods was tested on a laptop, Lenovo x220 with Intel
i7 processor, 4 GB RAM and a SSD disk. The frequency analysis methods had a averaged com-
putational time of 13-14 seconds for the CWT method, 0.5 seconds for the FFT. This is the time it
used to compute the three different frequency spectrum’s from the three one hour long signals.
For the time frequency method this was known to have a very long computational time, it was
therefor decided to test computational time for 10 minute time segments. The computational
time averaged is 22-23 seconds, but the plots are containing a huge amount of data filling up the
memory of the computer and making it extremely slow and unresponsive.

4.2 Patient analysis

Examples of the frequency response for a patient is shown in figures 4.1 and 4.2. This shows
the frequencies of the signals HRV, BP and LDF for the patients 160317_01 and 160329_02 re-
spectively. The first row is from the pre segment, on the following rows are the segments post1,
post2 and post3. In post1 the patient still is one the ventilator. The heart rate and respiratory
frequency are very clear in the BP and LDF signals, also in HRV is respiratory frequency very
prominent. The peaks in the lower frequencies does not coincides that well. The frequency
response for all the patients are attached in the appendix B.
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Figure 4.1: CWT mean of 160317 from pre(plot 1:3), post1(plot 4:6), post2(plot 7:9) and
post3(plot 10:12)

4.2.1 Averaged evolution

The result shows the four segments pre, post1, post2 and post3 in every box plot for one signal
and one variable and one segment. The results will be shown for one sub-band at the time,
starting at the HR band and going down to the VLF band. The variable power is collected for
all the signals this gives, 10 inputs for every boxplot. For the variables peak frequency and peak
value, they are collected only if there is detected a peak in the current sub-band, as described
earlier. The number of detections will be presented in each section describing each sub-band. If
there is detected 10 peaks for a signal, there is detected a peak for all the patients in the current
sub-band.
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Figure 4.2: CWT mean of 160329 from pre(plot 1:3), post1(plot 4:6), post2(plot 7:9) and
post3(plot 10:12)

HR sub-band

As the HRV signal’s original sampling rate is the heart rate approximately around 1Hz there is no
data from the HRV signal in this sub-band, as seen in table 4.1. The HR frequency peak is always
detected in the BP signal, but for the LDF signal it varies from being detected in 9-5 patients in
the different segments.

Figure 4.3 shows a very similar data and evolution of the heart rate frequency. The peak
values shown in figure 4.4 does not have the same consistency. In figure 4.5 there is a similar
trend in the statistics from the LDF signal and BP showing an increase in power after surgery,
while dropping down for the last two segments.
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Table 4.1: Number of peaks detected for the HR sub-band

HRV BP LDF
Pre 0 10 9

Post1 0 10 8
Post2 0 10 8
Post3 0 10 5

(a) LDF (b) BP

Figure 4.3: Peak frequency’s for the HR sub-band

Resp sub-band

The respiratory sub-band from 0.6-0.15 Hz represent the respiratory activity effect on the the
cardiovascular system. This becomes very clear when studying a frequency spectrum of a respi-
ratory signal. As shown in figure 4.6 the frequency’s from the respiratory signal is clearly shown
in the band from 0.15-0.6Hz. This corresponds to 9-36 times a minute this corresponds well
with whats known to normal rate, 10-20 breaths per minute [36].

The respiratory frequency is detected in every patient and every signal in segment post1,
this is where the patients are connected to the ventilator. For the other segments the respiratory
peak is detected in more patients after surgery, and most often in the BP signal with detection
in 9 out of 10 patients in segment post2 and 10 out of 10 patients in segment post3.

As mentioned above the patients are connected to a ventilator in the first time segment after
the operation. This is very evident in the peak frequency’s as this gives much smaller variance
in the respiratory rate for the post1 segment compared to the other segments. In all the signals
a median of the peak frequency is found at 0.2Hz, this corresponds with a respiratory rate at 12
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(a) LDF (b) BP

Figure 4.4: Peak value’s for the HR sub-band

Table 4.2: Number of peaks detected for the respiratory sub-band

HRV BP LDF
Pre 2 6 3

Post1 10 10 10
Post2 5 9 3
Post3 9 10 4

times a minute. It is also a detectable trend that the rate is higher before surgery, goes down to
the ventilator machine rate goes up after extubation, this is a segment with high variance and
then goes a bit down for the last segment. The peak frequency is shown in figure 4.7.

The peak values does not show any clear trend, with a great overlap of the interquartile range.
The power variables does show a trend quite opposite of the peak frequency, this is with low
power in the first segment, increase in power in post1 and decrease in post2 and increase again
in the last segment post3. This trend is consistent with all the signals. The peak value and power
is shown in figure 4.8 and 4.9.

Myo sub-band

The myo peak is detected on average in 35% of the patients and is most frequently detected
from the HRV signal with 47.5% of the patients. This gives very little information to analyse,
and introduce a high degree of uncertainty. The number of how many times the myo peak is
detected is shown in table 4.3. As seen in table 4.3 the myo peak is not present in the blood
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(a) LDF (b) BP

Figure 4.5: Power for the HR sub-band

Table 4.3: Number of peaks detected for the myo sub-band

HRV BP LDF
Pre 6 0 4

Post1 5 2 4
Post2 5 2 2
Post3 3 4 5

pressure signal in the pre segment before surgery.
The peak frequency’s does not show any clear trends, the only interesting thing is that it is

only possible to detected a peak in the BP signal after surgery. The peak values does not show
any clear trends. For the power most of the data has a high degree of overlap of the interquartile
range. Peak frequencies, peak value and power is shown in figure 4.10, 4.11 and 4.12 respectively.

Neuro sub-band

The neuro peak is detected 78% of the time averaged over segments and signals, and most with
the HRV signal where it is detected in 82.5% of the patients. This is good data for all the segments
and signals as seen in table 4.4.

The Peak frequency variable do not show any good trend with all the data almost within the
same interquartile range. The peak values are showing a very similar trend for all the signals,
with decrease from pre to post1, increase from post1 to post2 and decrease again from post2 to
post3. Naturally the power has almost the same trend, but with much higher variance and then
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Figure 4.6: Showing frequency content from ECG,BP,LDF and respiratory signal.

Table 4.4: Number of peaks detected for the neuro sub-band

HRV BP LDF
Pre 7 8 9

Post1 10 7 8
Post2 9 8 7
Post3 7 7 7
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(a) LDF (b) BP (c) HRV

Figure 4.7: Peak frequency’s for the resp sub-band

Table 4.5: Number of peaks detected for the eMeta sub-band

HRV BP LDF
Pre 8 10 9

Post1 8 6 9
Post2 9 9 10
Post3 9 9 10

greater overlap of the interquratile range. Peak frequencies, peak value and power is shown in
figure 4.13, 4.14 and 4.15 respectively.

As seen in the respiratory sub-band there is possible to see that the power/peak value has
an opposite trend from the peak frequency. In this sub-band this is best seen between the peak-
value trend and the peak-frequency trend from the HRV signal.

eMeta sub-band

In the eMeta sub-band there is detected a peak in 88% of the patients, with most detections in
the LDF signal with 95%. A listing of the number of peak detected for each segment and signal
is shown in table 4.5.

For the eMeta sub-band there is a trend where the median of the peak frequency( figure
4.16) in the LDF and BP signal is increasing in the 3 first segments before decreasing in the last
segment, but the interquartile range is large and covering the same range, which introduces
some uncertainty. In the peak values( figure 4.17) it is seen that there is clearly higher values in
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(a) LDF (b) BP (c) HRV

Figure 4.8: Peak value’s for the resp sub-band

Table 4.6: Number of peaks detected for the VLF sub-band

HRV BP LDF
Pre 10 8 6

Post1 10 10 9
Post2 9 10 9
Post3 8 10 9

the pre segments than in the post segments after surgery. The power values ( figure 4.18) from
the LDF and HRV could show some similarity’s also when comparing to the trend of the peak
frequency.

VLF sub-band

In the VLF sub-band there is detected a peak in 90% of the patients, with most detections in
the BP signal with 95%. A listing of the number of peak detected for each segment and signal is
shown in table 4.6.

The values from the VLF does not show any clear trends. The interquartile ranges cover
mostly the same range. HRV signal peak values has a similarity to the eMeta sub-band. The
peak frequency’s, peak value and power is shown in the figures, 4.19, 4.20 and 4.21.
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(a) LDF (b) BP (c) HRV

Figure 4.9: Power for the resp sub-band

4.2.2 Peak detection

A summery of the peak detections are presented in the table 4.7. By averaging over both sub-
band and time segment it shows that the blood pressure signal has most peak detections with
an average of 7.7, then follows LDF with 6.9 detections and HRV with 6.2. This is clear since the
HRV can not detect the heart segment, by compensating for this the HRV detects on average 7.1
peaks.

4.2.3 Pre vs Post3

To see if the variables from after surgery has the same mean as after it was preformed a t test
with a significance level, "alpha" of 0.15. The result from this test is showed in table 4.8. Where
h equal 0 indicates that the t test does not reject the null hypothesis, where the null hypothesis
is that the two data samples are from populations with equal means. The p-value for the test is
shown in the p column. So if h = 1 it has been a significant change in mean in this variable from
before to after surgery. The number postfixed to variable name tells which signal the variable is
from, in this set up 1 corresponds to HRV, 2 to BP and 3 to LDF as this was the chosen signals in
the analysis application. The NaN entries in the table is a result from to little data to do the test.

4.2.4 Poincare analysis

An example of a poincare anlysis is shown in figure 4.22. It shows the analysis for each of the
time segments. This is only done for the HRV signal.
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(a) LDF (b) BP (c) HRV

Figure 4.10: Peak frequency’s for the myo sub-band

In the table 4.9 the values from the ellipse fitting technique for a quantitative analysis is
shown. The er is also been done a ttest comparing the different post segments with the pre op-
erative segment, the p-value from this test is shown in the table 4.9. The SD2 variable describes
the long term variability of the HRV signal. This is the variation between the different RR values
across the entire signal. This might be produced by trend in the signal or a low frequency os-
cillation. If there is no trend in the signal and the signal is only oscillating between two states
this would produce no long term variability and SD2 would equal zero. SD1 equals the short
term variability, more precise this represents the beat-to-beat(sample-to-sample) variability. If
there where no variations in beat-to-beat, this means a single value through the entire signal the
Pointcare plot would produce only a dot, and both SD1 and SD2 would be zero.
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(a) LDF (b) BP (c) HRV

Figure 4.11: Peak value’s for the myo sub-band

(a) LDF (b) BP (c) HRV

Figure 4.12: Power for the myo sub-band
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(a) LDF (b) BP (c) HRV

Figure 4.13: Peak frequency’s for the neuro sub-band

(a) LDF (b) BP (c) HRV

Figure 4.14: Peak value’s for the neuro sub-band
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(a) LDF (b) BP (c) HRV

Figure 4.15: Power for the neuro sub-band

(a) LDF (b) BP (c) HRV

Figure 4.16: Peak frequency’s for the eMeta sub-band
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(a) LDF (b) BP (c) HRV

Figure 4.17: Peak value’s for the eMeta sub-band

(a) LDF (b) BP (c) HRV

Figure 4.18: Power for the eMeta sub-band
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(a) LDF (b) BP (c) HRV

Figure 4.19: Peak frequency’s for the VLF sub-band

(a) LDF (b) BP (c) HRV

Figure 4.20: Peak value’s for the VLF sub-band
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(a) LDF (b) BP (c) HRV

Figure 4.21: Power for the VLF sub-band

Table 4.7: Number of peaks detected for the sub-bands

HR Resp Myo
HRV BP LDF HRV BP LDF HRV BP LDF

Pre 0 10 9 2 6 3 6 0 4
Post1 0 10 8 10 10 10 5 2 4
Post2 0 10 8 5 9 3 5 2 2
Post3 0 10 5 9 10 4 3 4 5
Avg 0 10 7.5 6.5 8.75 5 4.75 2 3.75

Neuro eMeta VLF
HRV BP LDF HRV BP LDF HRV BP LDF

Pre 7 8 9 8 10 9 10 8 6
Post1 10 7 8 8 6 9 10 10 9
Post2 9 8 7 9 9 10 9 10 9
Post3 7 7 7 9 9 10 8 10 9
Avg 8.25 7.5 7.75 8.5 8.5 9.5 9.25 9.5 8.25
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Table 4.8: T test for variables

Variable h p Variable h p
’P1 HR’ NaN NaN ’P1 neuro’ 0 0.46336
’P2 HR’ 1 0.14822 ’P2 neuro’ 0 0.20625
’P3 HR’ 0 0.15579 ’P3 neuro’ 0 0.72839

’Peak sig1 HR’ NaN NaN ’Peak sig1 neuro’ 1 0.0078831
’Peak sig2 HR’ 1 0.083472 ’Peak sig2 neuro’ 1 0.0065841
’Peak sig3 HR’ 0 0.28169 ’Peak sig3 neuro’ 1 0.032807

’Peak freq1 HR’ NaN NaN ’Peak freq1 neuro’ 0 0.99644
’Peak freq2 HR’ 1 0.018528 ’Peak freq2 neuro’ 1 0.1026
’Peak freq3 HR’ 1 0.11679 ’Peak freq3 neuro’ 0 0.55259

’P1 Resp’ 0 0.41193 ’P1 eMeta’ 0 0.4913
’P2 Resp’ 1 0.00013616 ’P2 eMeta’ 0 0.38454
’P3 Resp’ 0 0.19563 ’P3 eMeta’ 1 0.057811

’Peak sig1 Resp’ 1 0.033119 ’Peak sig1 eMeta’ 1 0.0087197
’Peak sig2 Resp’ 1 0.005038 ’Peak sig2 eMeta’ 1 0.0045271
’Peak sig3 Resp’ 0 0.86232 ’Peak sig3 eMeta’ 1 0.076648

’Peak freq1 Resp’ 0 0.46678 ’Peak freq1 eMeta’ 1 0.10575
’Peak freq2 Resp’ 1 0.083843 ’Peak freq2 eMeta’ 0 0.38227
’Peak freq3 Resp’ 0 0.19992 ’Peak freq3 eMeta’ 0 0.47046

’P1 Myo’ 1 0.11151 ’P1 VLF’ 0 0.97459
’P2 Myo’ 0 0.5771 ’P2 VLF’ 0 0.6258
’P3 Myo’ 0 0.87251 ’P3 VLF’ 0 0.23481

’Peak sig1 Myo’ 1 0.11408 ’Peak sig1 VLF’ 1 0.011091
’Peak sig2 Myo’ NaN NaN ’Peak sig2 VLF’ 1 0.015727
’Peak sig3 Myo’ 0 0.69612 ’Peak sig3 VLF’ 1 0.1111

’Peak freq1 Myo’ 0 0.31504 ’Peak freq1 VLF’ 0 0.53449
’Peak freq2 Myo’ NaN NaN ’Peak freq2 VLF’ 0 0.89165
’Peak freq3 Myo’ 0 0.44776 ’Peak freq3 VLF’ 0 0.75467

Table 4.9: Poincare analysis

Pre Post1 Post2 Post3

Value Value p-Value Value p-value Value p-Value
SD1 0.0767±0.2002 0.0280±0.0344 0.1555 0.0260±0.0144 0.1076 0.0291±0.0175 0.1295
SD2 0.1779±0.2225 0.0543±0.0401 0.0358 0.0515±0.0241 0.0215 0.0545±0.0139 0.0196
SDR 0.4920±0.2296 0.5638±0.2090 0.9009 0.5699±0.2191 0.7778 0.6672±0.3051 0.1756
The values are presented as median ± SD
The p-Values are compared to the baseline(pre segment)
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Figure 4.22: Poincare plots of 160317 from pre(top left), post1(top right), post2(bottom left) and
post3(bottom right)

(a) SD1 (b) SD2

Figure 4.23: Evolution for SD1 and SD2
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Figure 4.24: Evoultion for the ratio SD1/SD2



Chapter 5

Discussion

The discussion will mostly cover the results from the analysis of the patients data. The applica-
tion for the frequency analysis is a working application, it has some improvements which could
be done such as implement the two applications in one, other analysis methods and smarter
loading of the signals. Some discussion about the analysis set up follows in the first section,
thereafter follows the discussion around the analysis.

5.1 Application and analysis set up

As the ECG signal not was meant for the actual study, but just the source for the HRV signal, it
could have been wise to do some processing of the ECG signal. This could give a better HRV
signal as there would not be that much variations in the R peaks. This can sometimes be seen in
the HRV signals as a spike up or down depending on if the program detected a R peak to much
or to little. This was not done because of a misunderstanding, where it was believed that the
ECG signals was one of the signals of interest and not the HRV.

As seen in figure 3.12 the removal of the motion artifacts removes a lot of the low frequency
interesting content but, it also removes some of the noise. The removal of the motion artifacts
makes it possible to detect the HR frequency, this means it might have been wise to use this
method as this could revealed some more peaks and given better data.

5.2 Peak detections

The patients data is gathered from only 10 patients, this is a fairly small data set, which decreases
the confidence of the analysis. The few number of patients gets even more critical when it is not
possible to detect peaks in all the hypothesized sub-bands. This leaves two variables(peak fre-
quency and peak value) varying from 0 to 10 detections. The last variable(power) is independent
from the peak detection and gives a value for all the 10 patients.

The peak detections shows that there is detected peaks in most of the sub-band with on
average 70-80% detections for HR,Resp, Neuro, eMeta and VLF. This shows that there is some
activity in these frequency ranges. The Myo sub-band has only 20-47% detection which is very
low. This is strange as this is one of the most studied low frequency sub-bands[37],[38]. The peak
detection algorithm could be more sophisticated with a prominence criteria, this would exclude

65
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some peaks which might be noise. At the same time with this criteria it would not detect peaks
which is barley higher than the noise, which could be seen for the heart rate in the LDF signal
some times. It is believed that it detects more "correct" peaks than peaks known to be wrong,
this is of course hard to say for certain as the low frequency content is very little studied. An
idea would be to add the prominence of the peak as a variable for determining the validity of
the peak and variables corresponding to the peak.

5.3 Trend analysis

As the signals HRV, LDF and BP are obtained in different ways, this gives different kind of noise
sources. All the signals are though measuring global variables of the same system. This gives
an idea to a theory that if there is a similar trend in the different signals this must be from a
underlying physiological activity. This theory is used in defining the sub-bands, but could also
be used to see if there are some changes in the underlying physiology in different time segments.
In our case this is used to see if the cardiac surgery is giving some changes in the chosen variables
before and in the three different time segments after surgery.

5.3.1 Heart rate

The heart rate is easily detected in both LDF and BP. The peak frequency shows a clear trend
that could distinguish the different time segments. Also for the power variable it is possible
to see a trend through out the time segments. All the peak frequency variables also show a
statistical change from before surgery to the next morning. The fact that the same variable from
the different signals shows the same evolution indicates that there has been a change in the
underlying physiology.

5.3.2 Respiratory rate

The respiratory peak frequency shows a clear trend of the mean in each segment, but with high
variance. The high variance in the variables brings uncertainty to the trend. For the peak value
variable there is no clear trend, but there is shown a statistical change from pre to the post3
segment in two of the signal, the BP and HRV. These two signals have opposite trends and are
therefor considered as a random change, maybe because of to little data.

For the power variable there is a clear trend for the mean, similar to the trend of the power
variable of the HR sub-band. But the high variances makes only the BP signal give a statistical
change in power.

5.3.3 Myogenic activity

In the myo sub-band there was very few peak detections, this induces great uncertainty around
the variables dependent on the peak detection. For the peak frequency there is no common
trend in the signals, but the variables from the LDF signals has a similar trend to the respiratory
sub-band peak frequency trend. The peak value shows no clear trend but for the variables from
the HRV signal it is seen a significant change in peak value, quite similar to the change in the
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resp sub-band for the same variable and signal. For the power it is no clear trend for all the
signals, if anything there is an opposite trend in LDF and BP compared to the trend in the HR,
and resp sub-bands for the same variable.

5.3.4 Neurogenic activity

For the neurogenic activity there is no clear trend in peak frequency, but the peak value has a
very distinct trend for all the signals, all these also shows a statistical change from pre to post3.
The power variables have the same trend from the LDF and BP signals, but the variance is much
higher in this variable.

5.3.5 Metabolic activity

In the eMeta sub-band there is some different trends and similarities but, the most evident is
in the peak value variable where all the signals, shows a similar trend with a high value pre
operative a short oscillation and much lower value in post3 than pre operative, this is similarly
to the neuro sub-band. There is shown a statistical change from all the signals in the peak value
variable from before to after surgery.

The peak frequency shows some similarity between LDF and BP but the interquartile range
and the variance is large. It is interesting that the power variables from LDF and HRV has the
same evolution.

5.3.6 VLF

The VLF sub-band has only one evident trend, that is in the peak value which shows a clear
trend similar to the evolution in the Neurogenic and eMeta sub-bands. There is also a statistical
change in the peak value from before the surgery to the next morning.

5.3.7 Similarities

It is seen that the HR, resp and partly the myo sub-bands have a similar trend for the peak fre-
quency with a high value before surgery, decrease to the post1 increase to post2 and then a de-
crease in post3. The HR and resp sub-band also have a similarity in the evolution of the power,
where the trend is opposite the one in the peak frequency. This evolution is also partly seen in
the myo sub-band, especially for the LDF and BP signal. This might be to keep a cardiac output
at a steady level. Lower frequency needs higher power to push more blood from a higher stroke
volume[39]. This could be seen as a way to keep the stability of the system. The relation be-
tween the heart rate, stroke volume, blood pressure and resistance of the blood vessels are seen
in equation 2.8.

The peak value shows a very distinct trend for the lower sub-bands, neuro, eMeta and VLF,
from a high value before surgery, decrease after surgery a small increase to the post2 segment
and decrease to the last segment post3. The values changes from high before to much lower in
last segment. This change is shown as statistical significant.
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Table 5.1: Number of statistical significatn changed variables from pre to post3

HR Resp Myo Neuro eMeta VLF Tot
Statistical significant variables 4 4 2 4 5 3 22

Total variables 6 9 9 9 9 9 54
% 67 44 22 44 55 33 40

5.4 Pre vs Post3

The change from before the surgery(pre segment) to the next morning(post3 segment) shows
that 22 of the variables are from populations with different means. This means a statistical
change in 22 of the 54 variables.

It is specially seen a change in the lowest sub-band, neuro, eMeta and VLF and for the
peak_value where there is a statistically change for all the peak_value variables of these sub-
bands. This is 9 of the 22 variables that have changed statically. This means that almost 50% of
the statistically significant changes happen in 9 of the 54 variables that is 17% of the variables.
For the HRV signal all the peak_value variables has a statistical significant change.

By looking at the other variables with a statistical significant change it is seen that these are
distributed evenly on the remaining variables, with a slight lean towards the HR and resp sub-
band.

5.5 Poincarè analysis

The Poincare analysis shows a decrease in complexity for the HRV after the surgery. The quan-
titative variables from the ellipse fitting technique shows a statistically significant drop in SD1
and SD2 with a significant level of 0.15. This is specially seen in SD2 with significant p-values
lower than 0.05. This is quite similar to the results from Laitio et al. [40] and the general decrease
in complexity by Lakusic et al. [11]. For the ratio SDR it is seen an increase in the median, but
not significantly. Laitio et al. has in their paper got significance level above 0.01 and 0.001 for
SD1 and SD2, but they have a much larger data set.

The decrease in complexity is also seen for HRV in the low frequency sub-bands neuro,
eMeta and VLF peak_value variable. By comparing the boxplots for SD1 (figure 4.23a), SD2 (fig-
ure 4.23b) and the peak_value (figures 4.14, 4.17, 4.20) from the lower frequency bands it is seen
quite a similar trend. This is expected as these variables are linked. A low frequency oscillation
would increase the overall variability of the signal, which is measured by the SD2 variable. A
decrease in the low frequency would be seen in the spectrum by a lower value for this frequency,
and therefor also decrease the SD2 variable.



Chapter 6

Summary and Conclusion

This thesis has investigated the low frequency content from the cardiovascular system by using
three different signals. These signals are; heart rate variability, blood pressure and a flow sig-
nal of the blood(Laser doppler flow). All the signals are global variables of the cardiovascular
system collected in completely different manner. The low frequency content from these three
different signals has been compared for patients doing cardiac surgery. Four time segments of
one hour each has been collected, one before the surgery (pre operative segment) and three
after surgery(post operative segments,post1,post2 and post3, are seen in table 3.2). The low fre-
quency evolution over these segments has then been analysed. The frequency analysis has been
done using a continuous wavelet transform, averaging the frequencies over the time segment.
This produces three frequency spectrum’s for each time segment, one for each of the signals
heart rate variability, blood pressure and laser doppler flow. The evolution of these spectrum’s
over the time segments are then studied. A Poincare analysis for the HRV signal has been done
to verify some of the results.

6.1 Conclusion

There are two main findings in the analysis. First there is a similar trend in sub-bands HR, resp
and partly the myo sub-band, where the peak frequency for all shows a similar evolution over
the time segments. This is seen in the figures 4.3 4.7 and 4.10. Also for the power variable there
is a similar trend over the time segments. It is interesting that this trend is opposite to the peak
frequency trend. As discussed this might be to keep some kind of stability in the system. The
evolution for the power variables are seen in the figures 4.5, 4.9 and 4.12.

Second finding is the similar trend in the lower sub-bands, neuro, eMeta and VLF. For the
mentioned sub-bands the peak value variable has all the same evolution over the time seg-
ments.This is seen in the figures 4.14, 4.17 and 4.20. These variables also shows a statistical
significant change from before the surgery to the last and most stable segment after the surgery,
this is seen in the table 4.8. The trend from the peak value also recur in and is strengthen by
the variables from the Poincare analysis. The values from the Poincare analysis show significant
decrease from before to after surgery. This is similar to the findings in the study by Laitio et al.
[40] and Lakusic et al. [11].
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6.2 Recommendations for Further Work

For further work it is important to increase the amount of data. This would give a better statisti-
cal foundation.

Finding a better way of comparing time-frequency evolution without averaging either time
segments or the frequency spectrum would give a much better understanding of the smaller and
transient reactions of the cardiovascular system. It would be interesting to compare the CWT
coefficients for time-frequency. Also improving the frequency spectrum comparison without
using variables and compare the entire spectrum would be interesting. This gives a much higher
degree of freedom, than with just a few averaged variables.

By looking at frequency spectrum’s in relation to each other might also preserve the inter-
personal differences and give more accurate results. This would possibly reduce the variance in
the variables if the variables where dependent on the previous variable.

Introduction of a control group could validate the effects of the operation. It would be in-
teresting to compare if the low frequency content from a patient how has gone through heart
surgery is more similar a healthy subject.



Appendix A

Cwt mean plots

This appendix shows all the frequency plots for the patients for every signal and every time
segment. The signals are ordered as one signal per column and the time segments are one time
segment per row. this gives the set up as shown in table A.1.

Table A.1: Shows set up for the cwt mean plots

HRV BP LDF
Pre Pre HRV Pre BP Pre LDF

Post1 Post1 HRV Post1 BP Post1 LDF
Post2 Post2 HRV Post2 BP Post2 LDF
Post3 Post3 HRV Post3 BP Post3 LDF
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Figure A.1: CWT mean of 160317
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Figure A.2: CWT mean of 160329
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Figure A.3: CWT mean of 160331
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Figure A.4: CWT mean of 160406
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Figure A.5: CWT mean of 160407
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Figure A.6: CWT mean of 160413
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Figure A.7: CWT mean of 160421
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Figure A.8: CWT mean of 160510
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Figure A.9: CWT mean of 160512
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Figure A.10: CWT mean of 160524



Appendix B

Poincare plots

This appendix shows all the Poincare plots for all the patients. It is four plots for each analysed
time-segment, all four time-segments are shown in the same figure. The four plots to the upper
left is from the pre segment, upper right is from post1, down left is from post2 and down right is
from post3.

Figure B.1: Poincare plots of 160317
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Figure B.2: Poincare plots of 160329



84 APPENDIX B. POINCARE PLOTS

Figure B.3: Poincare plots of 160331
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Figure B.4: Poincare plots of 160406
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Figure B.5: Poincare plots of 160407



87

Figure B.6: Poincare plots of 160413
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Figure B.7: Poincare plots of 160421
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Figure B.8: Poincare plots of 160510
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Figure B.9: Poincare plots of 160512
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Figure B.10: Poincare plots of 160524
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Appendix C

Attached files

The following is content in the attached zip-file code:

• Functions, different Matlab functions saved as .m files.

• GUI_filer, files to run the applications

– data_exc_GUI.m, is the pre program.

– master_GUI.m, is the analysis program.

• Scripts, different scripts used through the Master thesis work.

Raw data could be found at the OneDrive folder(this folder is owned by the medical student
Bjørn Gardsjord Lio):

• https://studntnu-my.sharepoint.com/personal/bjorngar_ntnu_no/Documents/Hovedoppgave%
20V16

Analysis data and figures could be found at the OneDrive folder:

• https://studntnu-my.sharepoint.com/personal/kristils_ntnu_no/Documents/Master/
Figures_f_b
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