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Abstract

Background: The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to
treatment, even for patients with similar clinical diagnosis, histology, and stage of disease. Identifying mechanisms
contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment
stratification. In this study, we have merged metabolite, protein, and gene expression data from breast cancer
patients to examine the heterogeneity at a molecular level.

Methods: The study included primary tumor samples from 228 non-treated breast cancer patients. High-resolution
magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors
metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic
clusters (Mc1, Mc2, and Mc3). The clusters were further combined with gene and protein expression data.

Results: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the
most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine
(PCho), Mc2 had the highest levels of glucose, and Mc3 had the highest levels of lactate and alanine. Integrated
pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and
glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution
of protein subtypes classified by the expression of breast cancer-related proteins. Genes related to collagens and
extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the
differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the
three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity.

Conclusions: Three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from
non-treated breast cancer patients. The clusters expressed differences in breast cancer-related protein as well as genes
related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity
combined with gene and protein expression provide new information about the heterogeneity of breast tumors and,
importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted
drugs.
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Background

Breast cancer accounts for 25 % of newly diagnosed can-
cers and 15 % of cancer deaths among women world-
wide [1]. It is a heterogeneous disease [2] with high
diversity in prognosis and response to treatment. Identi-
fication of underlying mechanisms contributing to this
heterogeneity may reveal new cancer targets and clinic-
ally relevant subgroups and has thus been the focus of
many recent studies [3-5].

Searching for genetic features causing the variation in
breast cancers, Perou et al. used gene expression ana-
lyses followed by hierarchical clustering and defined
naturally occurring molecular subtypes [4, 6]. These
subtypes are named basal-like, luminal A, luminal B,
Erb-B2+ (Her2 enriched), and normal-like, and are
found to be associated with tumor characteristics and
clinical outcome; patients with basal-like tumors having
the shortest and luminal A the longest relapse-free sur-
vival [6]. A centroid-based method called prediction
analysis of microarrays 50 (PAM50), which uses the ex-
pression of 50 genes to classify breast cancer into these
five intrinsic subtypes was later established and is now
broadly implemented [7].

Proteins are the ultimate cellular effectors of pathways
and networks within cells, tissues, and organisms. Al-
though protein levels are dependent on mRNA expres-
sion, not all mRNA will be translated into protein and
further protein levels are also influenced by protein sta-
bility. In a study by Myhre et al. only 22 of 52 quantified
breast cancer-related proteins were found to correlate
with mRNA expression levels [8] and similar low levels
of correlation have been seen in large scale studies [9, 10].
Protein expression subtypes of breast cancer could give
further understanding of underlying mechanisms causing
heterogeneity [11]. Based on the expression of 171 breast
cancer-associated proteins detected by reverse phase pro-
tein array (RPPA), six breast cancer subtypes, called RPPA
subtypes, have been defined [5]. Four of these subgroups
were in high accordance with the gene expression profiles
of the PAMS50 subtypes and named accordingly; Basal,
Her2, luminal A, and luminal A/B. In addition, two new
subgroups were defined; reactive I and reactive II, based
on expression of proteins possibly produced by the sur-
rounding microenvironment.

The chemical processes controlled by proteins involve
metabolites as intermediates or end-products. In meta-
bolomics, metabolite levels are measured to gather the
final downstream information of ongoing cellular pro-
cesses. Which processes are active at a specific time
point is strongly influenced by environmental factors like
diet and drugs as well as disease state. Well-established
metabolic differences have been observed when compar-
ing cancer cells to normal cells. Cancer cell energy pro-
duction frequently depends on increased glycolysis and
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production of lactate from glucose regardless of access
to oxygen, in contrast to normal cells which produce
pyruvate and lactate in aerobic conditions [12]. Also, to
produce macromolecules/biomass, mitochondrial me-
tabolism is reprogrammed [13]. Altered metabolism has
therefore been included as one of the emerging hall-
marks of cancer [14]. In breast cancer, metabolic differ-
ences between cancer tissue and normal adjacent tissue
have been studied by the magnetic resonance spec-
troscopy (MRS) method high-resolution magic-angle
spinning (HRMAS) MRS [15]. Using this technique,
metabolic profiles and biomarkers predicting long-
term survival for locally advanced breast cancer [16],
node involvement of patients with infiltrating ductal
carcinoma [17], and 5-year survival for ER positive
patients [18] have been identified.

Merging transcriptomics and metabolomics led to the
discovery of three luminal A subgroups with distinct
metabolic profiles and significant differences within gene
set expression in a study by Borgan et al. [19]. The aim
of the current study was to establish clusters of breast
cancer based on the metabolic expression using an ap-
proach similar to Borgan et al., but in a larger cohort of
patients including all PAM50 subgroups. This approach
reveals the main metabolic differences between untreated
breast tumors. In addition, the combination of the meta-
bolic clusters with transcriptomics and protein expression
data provide an opportunity for information gain from
each -omics technology, giving further characterization of
the defined metabolic clusters.

Methods

Patients and tissue samples

Primary breast carcinoma samples from 228 patients at
the Oslo University Hospital (Radium Hospital and
Ulleval Hospital) were collected in the time period
2006-2009 as part of the Oslo2 study. The samples were
fresh frozen after surgery and stored at —80 °C. The tu-
mors were divided into smaller pieces depending on
their size, and one of them was selected for this study.
The samples were cut into three sections where the
edges of the two outer pieces were used for histological
evaluation (including estrogen receptor (ER) status and
tumor cell percentage), and an adequate part of the mid
pieces were used for HR MAS MRS experiments to ob-
tain metabolic profiles. The remnants of all three pieces
were pooled and cut into smaller pieces with scalpel, de-
pending on the size of the tumor and divided into frac-
tions used for extraction of DNA, RNA, and protein.
Due to high lipid content, HR MAS MRS was performed
on a second piece from the same tumor for 13 of the
samples. A total of 228 samples were analyzed by MR
spectroscopy, of which 201 and 217 were analyzed for
gene expression by arrays and protein expression using
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RPPA, respectively, leaving a total of 191 samples ana-
lyzed by all three methods. Patient and tumor character-
istics are shown in Table 1.

HR MAS MRS spectra
HR MAS MRS spectra were acquired from tissue sam-
ples (mean sample weight 7.3 mg + 2.6 mg) on a Bruker
Avance III 600 MHz/54 mm US (Bruker, Biospin GmbH,
Germany) equipped with a 1H/13C MAS probe with
gradient aligned with the magic angle (Bruker, Biospin
GmbH, Germany). Spin-echo spectra were recorded using
a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence
(cpmgprld; Bruker). For experimental details and infor-
mation about data processing, see Additional file 1.
Forty-three samples were excluded from the original
sample cohort of 271 samples due to large lipid content.
The spectral region between 1.40 and 4.70 ppm was
chosen for further analysis excluding lipid peaks at
4.36-4.27, 2.88-2.70, 2.30-2.20, 2.09-1.93, and 1.67—
1.50 ppm. After removal of the lipid residuals, the spec-
tra were mean normalized by dividing each spectral vari-
able to the average spectral intensity. This is done to
account for differences in tumor cell percentage and
sample weight, as it can be assumed that most of the
lipid signals from breast samples do not originate from
cancer cells.

Protein experiments and protein expression subtyping
Protein levels were determined using reverse phase pro-
tein array (RPPA), a platform where single protein levels
can be measured across a series of samples simultan-
eously [20]. One hundred fifty primary antibodies were
used to detect breast cancer-related proteins (Additional
file 2: Table S1). For analytical details, see Additional
file 1.

The samples underwent consensus clustering with an
option for four or five groups. The best fit on consensus
clustering identified five groups, luminal, HER2, basal,
and reactive I and II subsets as defined in The Cancer
Genome Atlas Network data set [5].

mRNA expression profiling and gene expression
subtyping

Total RNA was isolated with TRIzol (Invitrogen,
Carlsbad, CA, USA). Expression of mRNA was mea-
sured using SurePrint G3 Human GE 8x60K (Aglient
Technologies) according to the manufactory’s protocol
(one-color microarray-based gene expression analysis,
low input Quick Amp Labeling, v.6.5, May 2010) and
100 ng RNA was used as input for labeling. Arrays
were log2-transformed, quantile normalized, and hos-
pital adjusted [21]. Values corresponding to probes
with identical Entrez ID were averaged to form a sin-
gle expression value per gene.
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The PAM50 subtype algorithm [7] was used to assign a
subtype label to each sample as previously described [22].

Statistical analysis

Subgrouping with cluster analysis of metabolic data
Hierarchical cluster analysis (HCA) was performed with
Euclidean distance as the distance parameter and Ward’s
method (furthest inner square distance) as the cluster-
ing distance (Statistical toolbox, Matlab R2013b, The
Mathworks, Inc., USA) on the preprocessed metabolic
spectra. Similar spectra based on the distance measures
cluster together. The dendrogram was cut to give three
clusters. To evaluate the robustness of the three HCA
clusters, partial least square discriminant analysis
(PLS-DA) model, using the cluster group for classifi-
cation was carried out and classification accuracy was
evaluated. For details, see Additional file 1.

Analysis of metabolic profiles

Metabolite assignments were performed based on litera-
ture values [23]. Relative metabolite quantification was
performed by peak integration of fixed regions corre-
sponding to the metabolite of interest. In total, the level
of 18 metabolites were calculated. Kruskal-Wallis test
was performed to compare metabolite levels between
clusters. Calculated p values were corrected for multiple
testing by The Benjamini Hochberg false discovery rate
(FDR) in Matlab, and the differences were considered
statistically significant for adjusted p <0.05.

Analysis of subtype and clinical distributions

Differences in the distributions of RPPA and PAM50
subtype as well as that of other clinical characteristics of
the tumors between the different metabolic clusters were
tested for significance using Fisher’s exact test for count
data (R 2.15.2). Calculated p values were corrected for
multiple testing by The Benjamini Hochberg FDR, and
the differences were considered statistically significant
for adjusted p < 0.05.

Analysis of gene expression data
Significance analysis of microarrays (SAM) was used to
identify differentially expressed gene between the meta-
bolic clusters [24]. SAM analysis was performed using
21851 genes from 42405 mRNA probes. The expression
analysis was performed in R 2.15.2 [25] with the cluster
group as the dependent variable and a total of 100 per-
mutations. T statistics/Wilcoxon statistics were calculated
using multiclass comparisons and two-class unpaired tests
while comparing two clusters. The differences were con-
sidered statistically significant for adjusted p < 0.01.
DAVID, an online network analysis tool [26], was used
to search for biological functions within gene sets.
DAVID was performed on the gene list over for each of



Haukaas et al. Cancer & Metabolism (2016) 4:12 Page 4 of 14
Table 1 Patient and tumor characteristics

Total Mc1 Mc2 Mc3
Number of patients 228 58 58 112

Age (years), mean (range)
Clinical classification
Histology
Ductal
Lobular
Medullary
Ductal carsinoma in situ (DCIS)
Metaplastic
Mucinous
Tubular
Mixed
Papillary
NA
Primary tumor
Tx or NA
T0
pTis
T1
T2
T3
T4
Grade
I
Il
Il
NA
Node status
NO
N1 (mi)
N1
N2
N3
NA
Receptor status
HER2+
HER2—
ER+
ER—
PR+
PR—
NA

555 (31.8-81.1)

186
21

113
93

31
93
97

133

59
14

26
192
178
40
155
63
10

580 (33.2-80.8)

31
24

20
30

51
49

39
19

586 (40.9-81.1)

N O O

28
21

10
24
21

45
42
10
36
16

52.7 (31.8-73.9)

54
48

13
49
46

63

29

12
96
87
21
80
28

NA, not available
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the class comparisons produced by SAM. Official gene
symbol was selected as gene identifier. The functional
annotation clustering report of this software reports
similar annotations together, where the member of a
cluster have similar biological meaning due to sharing of
similar gene members.

Gene set enrichment analysis (GSEA) was used to
identifying sets of genes that were enriched in the meta-
bolic clusters [27, 28]. During each cluster comparison,
genes were ranked depending on calculated absolute
signal-to-noise ratio (Eq. 1), where 4 and o are the mean
and standard deviation, respectively.

abs (M> (1)

os+0p

High absolute signal-to-noise ratio will represent genes
that are more likely to be “class markers” in the com-
parison because of high difference in expression.

The gene set C5 (gene ontology (GO) gene sets) avail-
able from the Molecular Signatures Database (MSigDB)
[29] from The Broad Institute was chosen for evaluation
of enrichment. One thousand four (of 1454) gene sets
from this data base passed the filtering of lacking any
gene from the expression data followed by minimum
and maximum size of 15 and 500 genes, respectively.
For each comparison, 1000 permutations on pheno-
types were performed and FDR cutoff was set to
25 % (recommended in the manual).

Integrated pathway analysis

To combine transcriptomics and metabolic data the
“Integrated pathway analysis” tool in MetaboAnalyst 3.0
software was used [30]. Genes with adjusted p <0.05
from SAM analysis and metabolites differently expressed
between the clusters were used as input. Pathways with
p values <0.05 were interpreted as significant.

Results

Three main metabolic clusters of breast cancer

From the spectral data of 228 breast tumors, hierarchical
clustering gave a dendrogram divided in three metabolic
clusters (Mc) (Fig. 1a) Mcl, Mc2, and Mc3. The mean
spectra of the clusters are illustrated in Fig. 1b.

The prediction of the metabolic clusters by PLS-DA
resulted in a model with two valid latent variables LVs
(Fig. 2a). The clusters Mcl and Mc2 were well separated
in the score plot of LV1 and LV2, while most Mc3 sam-
ples had low values of LV2. Classification accuracy was
found to be 91.1, 88.7, and 69.9 %, respectively, for
the three clusters. Permutation testing showed that all
three clusters had significantly different metabolic
profiles (p <0.001). The regression vectors for each of
the clusters (Fig. 2b) indicate each metabolite’s influence
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on the cluster prediction. The regression vector for Mcl
showed that high levels of glycerophosphocholine (GPC)
and phosphocholine (PCho) and low levels of lactate
(Lac), taurine (Tau), and alanine (Ala) were important for
the class prediction result. For Mc2, high levels of B-
glucose (B-Glc) were important as well as low levels of
Lac, creatine (Cr), glycine (Gly), Tau, GPC, PCho, and Ala.
Mc3 had a regression profile with low pB-Glc, GPC, and
PCho levels, and high Lac, Gly, Tau, Cr, and Ala levels.
Univariate comparison of metabolite levels (Additional file
2: Table S2) between the three clusters revealed that 15
out of 18 metabolites analyzed were found to be signifi-
cantly different (adjusted p < 0.05) between at least two of
the clusters (Table 2). A combination of metabolic cluster
labels and heatmap of metabolite fold change further illus-
trate this (Fig. 3).

Clinical parameters (tumor size, histology, grade, node
status, hormone receptor status) were analyzed for dif-
ferences in distribution among the metabolic clusters.
Only histology was found to be significantly different be-
tween the clusters (adjusted p = 0.0144), where 11 of 21
lobular tumors and all ductal carcinoma in situ (DCIS)
(n = 4) were classified as Mc2 (Table 1).

Protein expression subtype (RPPA) distribution differs
between the three metabolic clusters

The metabolic clusters were investigated for differences
in distribution of PAM50 and RPPA subtypes. While
PAM50 subtypes did not show increased frequency of
occurrence in any of the metabolic clusters, (Fig. 3¢, ad-
justed p = 0.138), RPPA distribution was significantly dif-
ferent (Fig. 3d, adjusted p = 1.43E-04) with only 9 % of
the RPPA reactive I and II samples being classified as
Mcl, and 44 % of Mc2 samples subtyped as reactive L.
The complete distribution of PAM50 and RPPA sub-
types is listed in Table 3.

SAM reveals only one metabolic cluster to have
differences in gene expression

SAM was performed to identify expression differences
between the metabolic clusters. Of the 21,851 genes,
multiclass SAM showed that 696 were differently
expressed between the metabolic clusters with adjusted
p<0.01 (Fig. 3e, Additional file 2: Table S3). Further in-
vestigation through two-class SAM revealed that Mc2
and Mc3 did not have significant differences in mRNA
expression, while they had 413 and 617 genes upregu-
lated, respectively, compared to Mcl (Additional file 2:
Tables S4 and S5, respectively). Out of these, 277 genes
were found in both comparisons and upregulated com-
pared to Mcl. DAVID software was used to investigate
the biological interactions between genes that were
found to be significantly differentially expressed between
the metabolic clusters.



Haukaas et al. Cancer & Metabolism (2016) 4:12

Page 6 of 14

Mcl

Mc2

47 45 44 41 40 38 37 35 34 32 31 29 26 24 22 19 1.7

PCho

mwmﬂmm

Mc3

Fig. 1 Metabolic subtyping of breast cancer tissue samples using HCA. a The HR MAS MRS spectra for 228 samples was clustered using Euclidean
distance and Wards linkage as similarity measure which separated the samples into three metabolic clusters (Mc); Mc1, Mc2, and Mc3. b Mean
spectra for the three metabolic clusters. 8-Glc 3-glucose, Asc ascorbate, Lac lactate, Tyr tyrosine, Cr creatine, m/ myoinositol, Gly glycine, Tau taurine,
sl scylloinositol, GPC glycerophosphocholine, PCho phosphocholine, Cho choline, Gsh glutathione, GIn glutamine, Succ succinate, Glu glutamate,
Ace acetate, Ala alanine. Grey bars indicate removed spectral regions (containing lipid peaks)

A total of 404 of the 413 significant genes from SAM
between Mc1l and Mc2 were identified by DAVID. Func-
tional Annotation Clustering resulted in 117 clusters
(Top 10 in Additional file 2: Table S6), where the clus-
ters with the highest enrichment scores were linked to
signaling, extracellular region, and cell adhesion.

A total of 653 of the 671 significant genes from SAM
between Mc1 and Mc3 were identified by DAVID. Func-
tional Annotation Clustering resulted in 236 clusters
(Top 10 in Additional file 2: Table S7), where the clus-
ters with the highest enrichment scores were linked to
extracellular matrix (ECM), cell adhesion, and basement
membrane.

Enrichment analysis shows gene expression differences to
be related to ECM activity

Since Mcl was found to have a gene expression pattern
different from both Mc2 and Mc3 and these two clusters
lacked statistically significant gene expression differ-
ences, Mcl was compared to Mc2 and Mc3 combined
in GSEA. This resulted in 146 of the gene ontology
gene sets altered in Mcl compared to Mc2 and Mc3
(Additional file 2: Table S8). Gene sets with the high-
est significance were classified with functions within
collagen, ECM, and integrin binding. None of the gene
ontology sets were significantly different when comparing

Mc2 to Mcl combined with Mc3, but 44 gene sets were
significantly enriched when comparing Mc2 to Mcl alone,
with gene ontology terms relevant to ECM dominating
the result (Additional file 2: Table S9). Eleven gene sets
were significantly altered between Mc3 and Mcl com-
bined with Mc2 (Additional file 2: Table S10) and also
here ECM-related findings were reported. One hundred
fourteen gene sets were significantly different between
Mcl and Mc3, while none were significant between Mc2
and Mc3 (results not shown).

Joint analysis of gene and metabolite expression shows
differences in metabolic pathways

Integrated pathway analysis resulted in 12 significantly
different metabolic pathways (p value <0.05) between
Mcl and Mc2 (Additional file 2: Table S11). The most
significant pathway was “tyrosine metabolism” with eight
hits of genes and metabolites, but also “D-glutamine and
D-glutamate metabolism,” “glycolysis/gluconeogenesis”
(Fig. 4a), and “glycerophospholipid metabolism” (Fig. 4b)
were among the significant pathways. Integrated path-
way analysis resulted in four significantly different meta-
bolic pathways (p value <0.05) between Mcl and Mc3
(Additional file 2: Table S12). The most significant path-
way was glycerophospholipid metabolism with nine hits,
succeeded by D-glutamine and D-glutamate metabolism.
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Fig. 2 Results from PLS-DA of metabolic clusters. a Score plot of the two first latent variables explaining 42.2 % of the X-variance and 28.2 % of
the Y-variance. (b) Regression vectors for the three metabolic clusters (Mc)

Discussion

In the present work, metabolite, protein, and gene ex-
pression data from 228 breast tumors were combined to
search for new insight into the heterogeneity of breast
cancer. MR metabolite data was used to derive naturally
occurring metabolic clusters, which were further com-
bined with data from the proteomics and transcripto-
mics levels. We identified three significantly different
metabolic clusters, Mc1, Mc2, and Mc3, with significant
differences in gene expression and protein expression
profiles, but not within PAM50 subgroups. The meta-
bolic clusters could therefore contribute with additional
information beyond the intrinsic gene sets for under-
standing breast cancer heterogeneity.

Of the three metabolic clusters, Mcl was on a separate
branch in the dendrogram indicating that the metabolic
profile of this cluster was the most different. This cluster
is defined by significantly higher levels of GPC and

PCho, two choline-containing metabolites involved in
the synthesis and degradation of phosphatidylcholine
(PtdCho), a major component of cell membranes [31].
Altered choline metabolism has been considered an
emerging hallmark for malignant transformations and
has been detected in several cancer types including
breast cancer [32]. PCho in particular has been sug-
gested a biomarker of breast cancer [33]. Both GPC and
PCho are confirmed elevated in tumor tissue compared
to adjacent non-involved tissue from breast cancer pa-
tients [17], and a higher GPC/PCho-ratio has been re-
ported in ER negative tumors [34, 35]. The latter was
also observed for our cohort (results not shown); how-
ever, there was no significant difference in ER status
between the three metabolic clusters. Thus, the high
level of GPC and PCho is not resulting from differences
in the distribution of estrogen receptor (ER) status.
Interestingly, integrated pathway analysis showed that
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Table 2 Metabolite levels for the metabolic clusters
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Mc1 (n=58) Mc2 (n=58) Mc3 (n=112) Adjusted p value Significant between

Metabolite name Mean SE Mean SE Mean SE

Beta-D-glucose 300 27.7 7.7 55.2 323 16.3 3.62E-09 Mc2 vs rest
Ascorbate 40.0 17.1 288 86 383 136 1.02E-05 Mc2 vs rest
Lactate 2595 730 2294 576 3036 76.7 4.98E-09 Mc3 vs rest
L-tyrosine 407.5 56.5 3528 82.6 405.9 624 1.22E-04 Mc2 vs rest
Glycine 187.0 80.8 1523 419 195.7 68.8 1.04E-04 Mc2 vs Mc3
Myoinositol 163.7 47.0 2177 535 196.1 543 9.44E-07 all

Taurine 3322 1227 330.2 84.0 369.3 99.3 0.017 Mc1 vs Mc3
Scylloinositol 550 16.2 94.7 186.5 62.5 321 0.138 NS
Glycerophosphocholine 2100 91.6 107.9 336 1512 484 444E-12 all
Phosphocholine 5520 131.1 2168 66.8 3272 69.9 9.59E-33 all

Choline 1352 446 1203 37.7 1329 422 0.128 NS

Creatine 149.9 64.2 93.2 337 136.0 521 141E-09 Mc2 vs rest
Glutathione 57.5 138 509 139 58.1 14.5 0011 Mc2 vs Mc3
Glutamine 1344 413 1343 30.2 1454 436 0223 NS
Succinate 580 15.7 536 106 62.2 15.7 0.003 Mc2 vs Mc3
Glutamate 2379 61.3 266.2 63.3 2775 61.2 1.95E-04 McT vs rest
Acetate 327 9.0 484 17.2 403 13.1 7.89E-08 all

Alanine 826 36.6 66.0 249 95.1 338 6.56E-07 all

The values are calculated by integrated peak areas from normalized spectra to equal total areas. Kruskal-Wallis test was performed to compare metabolite levels
between clusters, and p values were adjusted for multiple testing by The Benjamini Hochberg false discovery rate

NS not significant (adjusted p > 0.05)

glycerophospholipid metabolism was the most signifi-
cant pathway, when comparing Mc1 to Mc2. This meta-
bolic pathway had eight hits including the metabolites
GPC and PCho and genes LCAT, LPCAT2, PPAP2A,
PPAP2B, PLD1, and AGPAT4. Downregulation of the ex-
pression of these genes in Mcl indicate a less active deg-
radation of PtdCho causing an accumulation of GPC
and PCho, thus explaining the higher levels of GPC and
PCho in Mcl. Furthermore, LPCAT2 is involved in the
reaction where the GPC precursor (acyl-GPC) is con-
verted into PtdCho. Lower expression of this gene may
explain why the GPC precursor is directed to the pro-
duction of GPC instead of PtdCho. The same hits were
obtained when Mcl was compared to Mc3. In addition,
PLA2GS5, one of the enzymes degrading PtdCho to acyl-
GPC, is downregulated in Mcl compared to Mc3, further
supporting that Mc1 has an altered PtdCho metabolism.

The levels of PCho and GPC were higher in Mcl com-
pared to the two other clusters, but no significant differ-
ence in the expression of choline kinase alpha (CHKA)
could be detected in the SAM analysis. However, univar-
iate analysis confirmed that CHKA expression was sig-
nificantly higher in Mcl. This is in agreement with
previous findings revealing a positive correlation be-
tween levels of PCho and GPC and expression of CHKA
[34, 36].

For Mcl compared to Mc2 through integrated path-
way analysis, D-glutamine and D-glutamate metabolism
has only two hits, but comes out as significant because
of the small number of genes and metabolites within this
pathway. Interestingly, the gene GLS which catalyzes the
conversion of glutamine to glutamate is downregulated
in Mcl, the cluster with lowest levels of glutamate. Glu-
tamine metabolism is considered a therapeutic target as
some cancer cells exhibit high uptake and addiction to
this nonessential amino acid [37]. Since there were no
differences in glutamine levels of Mcl and Mc2, less glu-
tamate in Mcl could indicate that more glutamine is di-
rected towards other metabolic pathways necessary for
proliferation, glutathione needed for reducing power or
further that glutamate is rapidly metabolized in cells
through the TCA cycle or other mechanisms.

The distribution of protein subtypes (RPPA) was
significantly different between the metabolic clusters,
whereas no significant differences in the distribution of
PAMS50 subtypes were found. Thus, the metabolic differ-
ence between Mcl, Mc2, and Mc3 is not a result of in-
trinsic subtypes and might therefore contain additional
information for understanding breast cancer heterogen-
eity. Among the tumors clustered in Mcl, 12 % were
classified as RPPA-reactive (either I or II) while 49 %
were classified as RPPA-luminal. The reactive RPPA
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subtypes have a characteristic protein expression pattern
probably produced by the microenvironment [5], indi-
cating less microenvironmental activity within Mcl.
Mcl also had downregulation of several genes involved
in processes within the ECM of the stroma compared to
both Mc2 and Mc3. As ECM changes can drive cancer
behavior [38], these genetic differences between Mcl
and Mc2 might be of prognostic relevance. In fact, dif-
ferences in expression of ECM-related genes have been
used to stratify breast carcinomas into four groups,
where the subgroup ECMI1 have the worst prognosis
[39]. ECM classification was not performed on this co-
hort. However, 34 of 43 genes that clustered with a ten-
dency of being downregulated in ECM1 and ECM2 were
also found to be downregulated in Mcl. In addition,
only 5 of 46 genes reported to be downregulated in

ECM2 compared to ECM1 were downregulated in Mcl
(results extracted from SAM analyses, Additional file 2:
Table S6-S7). These results support the contention
that Mcl tumors have an ECM signature similar to
the reported ECM2 tumors. ECM2 did not show sig-
nificant difference in disease outcome compared to
ECM3 and ECM4, but had better prognosis than
ECM1 tumors [39].

Mc2 has a metabolic profile with significant higher
glucose level and at the same time lower levels of most
of the other metabolites compared to one or both of the
remaining clusters. High glucose level could reflect lower
glucose consumption, inferring a lower demand for energy
within these tumors. Glycolysis/gluconeogenesis came out
as a significant pathway when Mcl was compared to Mc2
during integrated pathway analysis with two metabolite
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Table 3 Distribution of PAM50 and RPPA subtype among the
metabolic clusters

Metabolic cluster

Total Mc1 Mc2 Mc3
PAM50 subtype
Luminal A 85 19 (35) 18 (43) 48 (46)
Luminal B 56 23 (42) 502 28 (27)
Basal 24 6 (11) 5(12) 13 (13)
Her2 enriched 22 5(9) 707) 10 (10)
Normal-like 14 2 (4) 7017) 5(5)
NA 27 4 15 8
Total 201 55 42 104
RPPA subtype
Reactive | 43 4 (7) 24 (44) 15 (14)
Reactive Il 36 3(5) 8 (15) 25 (23)
Basal 47 16 (29) 8 (15) 23 (21)
Her2 18 5(9) 4(7) 98
Luminal 73 27 (49) 11 (20) 35(33)
NA 1 3 3 5
Total 217 55 55 107

Values in brackets are each subtype’s percentage distribution within the
metabolic clusters
NA not available

hits and five gene hits. For the most significant metabolite,
glucose, the levels are higher in Mc2 compared to Mcl.
Glucose is the main source of energy for mammalian cells,
either through aerobic glycolysis (production of lactate
even in the presence of oxygen) or tricarboxylic acid
(TCA) cycle and oxidative phosphorylation. For normal
proliferating cells and cancer cells, which both have an in-
creased energy demand, a glycolytic switch is often ob-
served (higher glycolytic rate) [12]. The increased
glycolysis is followed by fermentation of the pyruvate to
lactate (Warburg effect), in contrast to the conversion of
acetyl CoA through the TCA cycle that occurs in normal
non-proliferating cells. Increased glucose consumption is
commonly used in tumor detection by using a glucose
analogue and positron emission tomography (PET) [40]
and has shown to correlate with poor prognosis and
tumor aggressiveness [12]. However, not all breast cancers
are detected by PET. Here, we expect lower sensitivity in
detection of Mc2 tumors due to the possible difference in
glycolytic rate. None of the genes with hits in glycolysis/
gluconeogenesis for the comparison of Mcl and Mc2
could directly explain the high glucose levels of Mc2 tu-
mors, but altered expression of the genes indicates pyru-
vate being guided towards the TCA cycle rather than
lactate production. Two of the alternative fates of pyruvate
showed significantly higher levels (alanine) or levels ap-
proaching significance (lactate, adjusted p =0.056), sup-
porting a higher glycolytic rate in Mcl and that the
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pyruvate produced is not directed to metabolism in the
TCA cycle. The significantly lower acetate levels in Mcl
compared to Mc2 could be linked to ALDHIA3 and
ALDH?2 downregulation, since the enzymatic product of
these genes catalyzes the reversible reaction where acetal-
dehyde is converted to acetate.

Both DAVID and GSEA showed that many of the
genes found to be downregulated in Mcl and conse-
quently upregulated in Mc2 were related to ECM activ-
ity. Mc2 had the highest percentage of RPPA-reactive I
with 44 % of Mc2 tumors classified as this protein sub-
type, also related to stromal changes. Together with the
metabolic finding, this implies that Mc2 tumors have
cancer cells with low proliferating rate and at the same
time ongoing changes within the ECM of the stroma.
Mc2 tumors also had a higher frequency of lobular and
ductal carcinoma in situ, indicating metabolic differences
between histological subtypes of breast cancer which
should be further investigated.

Mc3 has the highest lactate levels of all three clusters
and higher glycine level than Mc2. These metabolites
have been related to poor prognosis in ER positive pa-
tients [18], and higher levels of glycine is also associated
with poor prognosis in a study irrespective of ER status
[41]. Although the ER-positive patients are equally dis-
tributed among our reported metabolic clusters, Mc3
expressed higher levels of both of these metabolites
compared to Mc2. Moestue et al. detected differences in
the expression of genes involved in choline degradation
that could explain higher glycine concentrations in the
poor-prognosis basal-like breast cancer xenograft model
compared to luminal-like [42]. Five of the genes de-
scribed by Moestue et al. were significantly upregulated
in Mc3 compared to Mcl; AGPAT4, PPAP2B, PPAP2A,
LCAT, and PLDI. Of these, LCAT and PLDI are directly
involved in choline metabolism. LCAT catalyze the con-
version of PtdCho to acyl-GPC while PLDI catalyzes the
conversion of PtdCho to choline. Higher GPC levels, but
no difference in choline levels in Mc3 compared to Mcl
indicates that a higher amount of GPC is converted to
choline in Mc3, and further contributing to higher gly-
cine levels through choline degradation.

Mc3 shares similarities with a previously reported
metabolic subgroup of luminal A tumors with signifi-
cantly lower levels of glucose, higher levels of alanine,
and nearly significantly higher lactate levels [19]. In
Mc3, we also see a significant higher level of lactate.
Since one of the main sources of alanine is pyruvate,
which also is the source for lactate, it appears that Mc3
is a cluster with a switch in glycolytic activity.

The majority of Mc3 tumors were classified as RPPA-
luminal, similar to Mcl. In contrast to Mcl, Mc3 had
a higher percentage of RPPA-reactive II tumors,
probably linked to changes in stromal content. Also,
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gene expression wise, this was observed by signifi-
cantly different gene expressions linked to ECM activ-
ity and the gene expression profile of Mc3 was found
similar to the previously reported ECM3 or ECM4
subtypes [39].

In this study, information flow between the tran-
scriptomics, proteomics, and metabolomics levels is il-
lustrated; at the transcriptomics level, only one of the
metabolic clusters shows difference in gene expression
compared to the two others, while at the proteomics
level, there is difference between all three clusters. Com-
bining these findings, Mc1 is expected to have the worst

prognosis due to the distinct gene expression profile and
the alterations in both glycerophospholipid metabolism
and evidence of increased glycolytic rate. However, this
has to be validated when 5-year follow-up of this cohort
is available. The main metabolic characteristics, espe-
cially of Mc1 and Mc3, have been proposed as treatment
targets that could improve the therapeutic effect [43].
Cancer therapy targeting CHKA, the enzyme responsible
for PCho production from choline, causes tumor growth
arrest and apoptosis in preclinical models [44], while
treatment targeting glycolytic enzymes in combination
with chemotherapy has been shown to re-sensitize
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cancer cells that had become resistant to treatment [43].
Metabolic classification as illustrated here could therefore
be relevant for developing a more targeted treatment plan.
Importantly, the prognostic value of the clusters should be
evaluated once 5-year follow-up is available.

Conclusions

We have here identified three metabolic clusters of
breast cancer, also characterized with differences at the
proteomic and transcriptomic level. The metabolic clus-
ters are not reflecting the intrinsic genetic subtypes and
may give important additional information for under-
standing breast cancer heterogeneity. Gene enrichment
analysis revealed diverse ECM characteristics among
these clusters in accordance with RPPA-subtyping. The
approach of combining information from several -omics
levels in the same tumor shows promise in improving
the understanding of breast cancer heterogeneity poten-
tially leading to more patient specific treatment.
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