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Abstract— Inverse kinematics algorithms are commonly used
in robotic systems to accomplish desired behavior, and several
methods exist to ensure the achievement of several tasks
simultaneously. The multiple task-priority inverse kinematics
framework allows tasks to be considered in a prioritized order
by projecting task velocities through the nullspaces of higher
priority tasks. This paper extends this framework to handle set-
based tasks, i.e. tasks with a range of valid values, in addition to
equality tasks, which have a specific desired value. Examples of
such tasks are joint limit and obstacle avoidance. The proposed
method is proven to ensure asymptotic convergence of the
equality task errors and the satisfaction of all high-priority
set-based tasks. Simulations results confirm the effectiveness of
the proposed approach.

I. INTRODUCTION
Robotic systems with a large number of Degrees of

Freedom (DOFs) are commonly used for industrial purposes
[1] and are becoming increasingly important within a variety
of fields, including unmanned vehicles such as underwater
[2], [3] and aerial [4] systems.

Traditionally, robotic systems are controlled in their joint
space. However, the tasks they are required to perform are
often given in the operational space, for instance given by
the desired end effector position or orientation. As such, a
variety of inverse kinematics and dynamics algorithms have
been developed to map tasks from the operational space to
the joint space and thus generate reference trajectories for
the controllers. By limiting our attention to the kinematic
level, the most common approach is to use a Jacobian-based
method [5]-[7]. In particular, the pseudo-inverse Jacobian is
defined for systems that are not square nor have full rank and
is a widely used solution to the inverse kinematics problem
[8]-[10]. Examples of various tasks and their corresponding
kinematics and Jacobian matrices for the underwater case are
given in [2].

A robotic system is said to be kinematically redundant if
it possesses more DOFs than those required to perform a
certain task [11]. In this case, the “excess” DOFs can be
utilized in order to perform several tasks using Null-Space-
Based (NSB) behavioral control, also known as multiple
task-priority inverse kinematics [12]. This framework, which
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is described in more detail in Section II, has been developed
for equality tasks. Equality tasks specify exactly one desired
value for given states of the system, for instance the position
and orientation of the end effector. However, for a general
robotic system, several goals may not be described as equal-
ity tasks, but rather as set-based tasks, which are tasks that
have a desired interval of values rather than one exact desired
value. Examples of such tasks are staying within joint limits
[13] and collision/obstacle avoidance [14]. As recognized in
[15], the multiple task-priority inverse kinematics algorithm
is not suitable to directly handle set-based tasks, and these
tasks are therefore usually transformed into more restrictive
equality constraints through potential fields or cost functions
[16], [17].

An approach to systematically include set-based tasks in
a prioritized task-regulation framework is proposed in [15]
and further improved in [18]. To handle the set-based tasks,
the algorithms in [15], [18] transform the inverse kinematics
problem into a Quadratic Programming (QP) problem, and
therefore they can not be utilized directly into the multiple
task-priority inverse kinematics algorithm. In [19], set-based
tasks are handled by resorting to proper activation and regu-
larization functions. Furthermore, no analytical framework to
prove the convergence/satisfaction of the tasks is provided. In
[20], [21] set-based tasks are considered in a prioritized order
and an algorithm is developed to ensure a smooth control
law when (de)activating a set-based task. However, during
transitions, the strict priority of the tasks is not respected.

The work in [22] and [23] aims to develop a method
to include set-based tasks directly in the NSB framework
by considering the set-based tasks within the given priority.
Here, a set-based task is considered satisfied within an
interval of valid values (for instance a joint q with angle
limits of ±90◦), and the goal is to prevent it from being
violated while simultaneously fulfilling the equality tasks of
the system. As such, a set-based task is defined as active
within a certain region close to its limit (for instance |q| ≥
85◦). This is illustrated in Figure 1. An inactive set-based
task can be ignored as the system is not close to its limits
and thereby it is not in danger of being violated. However,
when a set-based task is active, it is necessary to avoid that
the velocities required by the other tasks push it towards the
task limit. This is done by either 1) freezing the mentioned
task at its current value, or 2) actively pushing the task away
from its limit through feedback. The task is then deactivated
once the other tasks ask for velocities that would push the
set-based task away from its limit. Simulations validate the
proposed method.
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Fig. 1: Definition of main regions in set-based control for a
task with an upper and lower bound. The task is considered
active when it is within an interval ε from the limits.

The contribution of this paper is to provide an analyti-
cal framework of convergence of equality task errors and
satisfaction of set-based tasks based on the preliminary
idea given in [22] and [23] described above. The proposed
approach involves switching between several solutions, and
the resulting closed-loop dynamic system can be described as
a discontinuous differential equation. In order to investigate
the stability properties of the system, this is first rewritten
into a constrained differential inclusion and then the stability
is investigated using Lyapunov analysis [24]. Sufficient con-
ditions are provided such that the task errors of the equality
tasks converge asymptotically to zero when including set-
based tasks into the framework, and the higher-priority set-
based tasks are satisfied at all times. For lower-priority set-
based tasks, i.e. when one or more equality tasks have higher
priority, it can not be guaranteed that the set-based tasks
are not violated due to the influence of the higher-priority
tasks. Thus, set-based tasks such as avoiding joint limits
and obstacles should be made high-priority, whereas set-
based tasks that are not crucial for operation can be made
lower-priority. For compactness, the equations in this paper
describe systems with high-priority set-based tasks.

This paper is organized as follows: Section II gives a brief
description of the traditional multiple task-priority inverse
kinematics algorithm used for equality tasks. Section III
presents the new method for incorporating set-based tasks
in the NSB framework. The stability proof is presented in
Section IV, before simulation results validating the proposed
algorithm are given in Section V. Conclusions are given in
Section VI.

II. SINGULARITY-ROBUST MULTIPLE
TASK-PRIORITY INVERSE KINEMATICS

This section gives a brief presentation of the singularity-
robust multiple task-priority inverse kinematics solution, also
known as the NSB method, which is suitable for generating
a reference trajectory for a general robotic system to fulfill
equality tasks in a prioritized order. ”Singularity-robust” is
with respect to algorithmic singularities [25]. The method is
presented for completeness, and in order to define concepts
and notation that are needed to present the method proposed
in this paper. For more details, the reader is referred to [12].

A general robotic system has n DOFs. Its state is described
by the joint values qqq = [q1,q2, ...,qn]

T . It is then possible
to define tasks and task velocities in the operational space
through forward kinematics and the task Jacobian matrix:

σσσ(qqq) = fff (qqq) (1)

σ̇σσ(qqq) =
δ fff (qqq)

δqqq
q̇qq = JJJ(qqq)q̇qq. (2)

For compactness, the argument qqq of tasks, task errors,
Jacobians and null-space matrices are omitted from the equa-
tions below. JJJ is the configuration-dependent task Jacobian
matrix and q̇qq is the system joint velocities. To track a desired
continuous, differentiable trajectory σσσd(t), the corresponding
desired joint angles q̇qqd are computed using the Moore-
Penrose pseudoinverse of the Jacobian.

q̇qqd = JJJ†(σ̇σσd +ΛΛΛσ̃σσ). (3)

σ̃σσ , σσσd−σσσ is the task error and ΛΛΛ is a positive gain matrix.
This feedback approach reduces the error dynamics to

˙̃σσσ = σ̇σσd− σ̇σσ = σ̇σσd− JJJq̇qq

= σ̇σσd− JJJJJJ†(σ̇σσd +ΛΛΛσ̃σσ)

=−ΛΛΛσ̃σσ ,

(4)

if q̇qq= q̇qqd and JJJ has full rank, implying that JJJJJJ† = III. Equation
(4) describes a linear system with an exponentially stable
equilibrium point at the σ̃σσ = 000. It is worth noticing that
the assumption q̇qq = q̇qqd is common to all inverse kinematics
algorithms. For practical applications, it requires that the low
level dynamic control loop is faster than the kinematic one.

Kinematically redundant systems can execute more than a
single task using the NSB method:

q̇qqd = JJJ†(σ̇σσd +ΛΛΛσ̃σσ)+(III− JJJ†JJJ)︸ ︷︷ ︸
,NNN

q̇qqd,sec. (5)

NNN is the null-space of the original task σσσ , and filters out joint
velocities from a secondary task q̇qqd,sec that would interfere
with those of the first task. It is straightforward to show
that JJJNNN ≡ 000. As such, multiple tasks can be arranged in a
prioritized order to fulfill several goals at once. σσσ k denotes
task k and JJJk is the corresponding Jacobian of that task:

q̇qq1,d = JJJ†
1(σ̇σσ1,d +ΛΛΛ1σ̃σσ1) (6)

:

q̇qqi,d = JJJ†
i (σ̇σσ i,d +ΛΛΛiσ̃σσ i) (7)

q̇qqd = q̇qq1,d +NNN1q̇qq2,d +NNN12q̇qq3,d + ...+NNN12..i−1q̇qqi,d. (8)
Here, q̇qqk,d is the desired joint velocities for solving task k
alone. The total desired system velocity q̇qqd is then found as
the sum of the independent desired task velocities filtered
through the null-spaces of the higher-priority tasks:

JJJ12..k =

JJJ1
:

JJJk

 (9)

NNN12..k = III− JJJ†
12..kJJJ12..k (10)

In theory it is possible to include an infinite number of
tasks. However, a robotic system with finite DOFs will not
be able to fulfill all of them. Once the DOFs of the system
are ”spent” on the highest priority tasks, the null-spaces will
simply be reduced to the null-matrix and the lower-priority
tasks will not be satisfied or influence the generated system
trajectories.



III. SET-BASED TASK CONTROL

The previous section introduced the concept of multiple
task-priority inverse kinematic control for a robotic system
as a method to generate reference trajectories for the system
joints that, if fulfilled, will result in the successful achieve-
ment of several equality tasks. However, for a general robotic
system, several goals might be described by set-based tasks.
Set-based tasks can not be implemented directly using the
method in the previous section, as this algorithm depends
on the desired task velocity σ̇σσd and the task error σ̃σσ , which
are not defined when the desired task is a set rather than a
value. This section presents a method to handle scalar set-
based tasks in the multiple task-priority inverse kinematics
framework.

The method proposed in this paper only allows set-based
tasks to remain in the closed set D = [σmin +ε,σmax−ε] for
some ε > 0 (the yellow set in Figure 1). Choosing ε > 0
ensures robustness for practical applications. The proposed
algorithm considers only the system’s equality tasks as long
as the resulting solution stays within this desired set. If this
is not the case, the set-based task is frozen on the border of
D ensuring that the set-based task is not violated. The task is
then then unfrozen once the resulting solution of considering
only the equality tasks will make the system stay in D once
again.

From here on, equality tasks are denoted with number
subscripts and set-based tasks with letters, e.g. σσσ1 and σa.
Furthermore, only regulation equality tasks are considered,
that is tasks to guide the system to a stationary value (σ̇σσd ≡
0). Finally, it is assumed that the desired joint velocities
q̇qqd are tracked perfectly by the system, so q̇qq = q̇qqd. This is
a common assumption in Closed Loop Inverse Kinematics
[26].

A. One set-based task, k equality tasks

For simplicity we first consider a robotic system with n
DOFs and k equality tasks of mi DOFs for i ∈ {1, . . . ,k}.
Task i is denoted σσσ i, and σ̃σσ i , σσσ i,d−σσσ i. Furthermore, the
system has a set-based task σa ∈ R of avoiding a circular
obstacle at a constant position pppo with radius r > 0. The
task is defined as the distance between the end effector and
the obstacle center. The kinematics and Jacobian are given
in [2]:

σa =
√

(pppo− pppe)
T (pppo− pppe) (11)

σ̇a = JJJaq̇qq =− (pppo− pppe)
T

||pppo− pppe||
JJJq̇qq. (12)

Here, pppe denotes the position of the end effector and JJJ is the
corresponding position Jacobian. Consider the state-vector
zzz ∈ Rl and the closed set C, where

l = n+1+
k

∑
i=1

mi, (13)

and

zzz =

 qqq
σσσ sb

σ̃σσ eb

=



q1
:

qn
σa
σ̃σσ1
:

σ̃σσ k


(14)

C := Rn× [ε,∞)×Rl−n−1 (15)

for an ε > r and qqq ∈ D, where D = {qqq | σa(qqq) ∈ R\{0}}.
In C, the distance between the end effector and the obstacle
center is equal to or greater than ε , which in turn is greater
than the obstacle radius r. Thus, the set-based task is always
satisfied for zzz ∈ C. σσσ sb and σ̃σσ eb are vectors containing the
set-based tasks and the equality task errors of the system,
respectively.

For a system with one set-based task, two modes must be
considered:

1) Ignoring the set-based task and consider only the
equality tasks.

2) Freezing the set-based task as first priority and consider
the equality tasks as second priority.

Mode 1 is the ”default” solution, whereas mode 2 should
be activated only when it is necessary to prevent the set-based
task from being violated. Mode 1 results in the following
system:

q̇qq = JJJ†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2ΛΛΛ2σ̃σσ2 +NNN12JJJ†
3ΛΛΛ3σ̃σσ3 + ...+NNN12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k (16)

⇓
σ̇a = JJJaq̇qq = JJJa(JJJ

†
1ΛΛΛ1σ̃σσ1 + ...+NNN12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k) (17)

˙̃σσσ eb =−σ̇σσ eb =−

σ̇σσ1
σ̇σσ2
:

σ̇σσ k

=−

JJJ1
JJJ2
:

JJJk

 q̇qq

=−


JJJ1(JJJ

†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNN12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k)

JJJ2(JJJ
†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNN12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k)

:
JJJk(JJJ

†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNN12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k)



=−


ΛΛΛ1σ̃σσ1

JJJ2JJJ†
1ΛΛΛ1σ̃σσ1 + JJJ2NNN1JJJ†

2ΛΛΛ2σ̃σσ2
:

JJJkJJJ†
1ΛΛΛ1σ̃σσ1 + JJJkNNN1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+ JJJkNNN12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k



=−


ΛΛΛ1 000m1×m2 · · · 000m1×mk

JJJ2JJJ†
1ΛΛΛ1 JJJ2NNN1JJJ†

2ΛΛΛ2 · · · 000m2×mk

: :
. . . :

JJJkJJJ†
1ΛΛΛ1 JJJkNNN1JJJ†

2ΛΛΛ2 · · · JJJkNNN12..(k−1)JJJ
†
kΛΛΛk


σ̃σσ1

σ̃σσ2
:

σ̃σσ k


=−MMM1σ̃σσ eb (18)

żzz =

 JJJ†
1ΛΛΛ1σ̃σσ1 + ...+NNN12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k

JJJa(JJJ
†
1ΛΛΛ1σ̃σσ1 + ...+NNN12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k)

−MMM1σ̃σσ eb

,

 fff 11(zzz)
f12(zzz)
fff 13(zzz)

= fff 1(zzz).

(19)
The matrix MMM1 is positive definite given certain assump-

tions: when an additional task is considered, the task Ja-
cobian must be independent with respect to the Jacobian
obtained by stacking all the higher priority tasks, and a
proper choice of the gains is required (for details, see [26]).

The time evolution of zzz follows the vector field fff 1(zzz) as
long as the solution zzz stays in C. In mode 1, the set-based task
evolves freely, σ̇a = f12(zzz). If following fff 1(zzz) would result



in zzz leaving the set C, avoiding the obstacle is considered
the first priority task and mode 2 is activated. This can only
occur on the border of C, that is σa = ε , and σ̇a = f12(zzz)<
0. To avoid the obstacle, an equality task with the goal of
keeping the current distance to the obstacle is added as the
highest priority task. In this case, the desired task value σa,d
is equal to the current task value σa = ε . Thus, the task
error σ̃a = σa,d−σa ≡ 0. The system is then defined by the
following equations:

q̇qq = JJJ†
a σ̃a +NNNaJJJ†

1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†
2ΛΛΛ2σ̃σσ2 +NNNa12JJJ†

3ΛΛΛ3σ̃σσ3

+ ...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

= NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k (20)

⇓
σ̇a = JJJaq̇qq = JJJa(NNNaJJJ†

1ΛΛΛ1σ̃σσ1...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k) = 0 (21)

˙̃σσσ eb =−σ̇σσ eb =−

σ̇σσ1
σ̇σσ2
:

σ̇σσ k

=−

JJJ1
JJJ2
:

JJJk

 q̇qq

=−


JJJ1(NNNaJJJ†

1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†
2ΛΛΛ2σ̃σσ2 + ...+NNNa12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k)

JJJ2(NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k)

:
JJJk(NNNaJJJ†

1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†
2ΛΛΛ2σ̃σσ2 + ...+NNNa12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k)



=−


JJJ1NNNaJJJ†

1ΛΛΛ1σ̃σσ1

JJJ2NNNaJJJ†
1ΛΛΛ1σ̃σσ1 + JJJ2NNNa1JJJ†

2ΛΛΛ2σ̃σσ2
:

JJJkNNNaJJJ†
1ΛΛΛ1σ̃σσ1 + JJJkNNNa1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+ JJJkNNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k



=−


JJJ1NNNaJJJ†

1ΛΛΛ1 000m1×m2 · · · 000m1×mk

JJJ2NNNaJJJ†
1ΛΛΛ1 JJJ2NNNa1JJJ†

2ΛΛΛ2 · · · 000m2×mk

: :
. . . :

JJJkNNNaJJJ†
1ΛΛΛ1 JJJkNNNa1JJJ†

2ΛΛΛ2 · · · JJJkNNNa12..(k−1)JJJ
†
kΛΛΛk


σ̃σσ1

σ̃σσ2
:

σ̃σσ k


=−MMM2σ̃σσ eb (22)

żzz =

 NNNaJJJ†
1ΛΛΛ1σ̃σσ1...+NNNa12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k

JJJa(NNNaJJJ†
1ΛΛΛ1σ̃σσ1...+NNNa12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k)

−MMM2σ̃σσ eb

,

 fff 21(zzz)
0

fff 23(zzz)

= fff 2(zzz).

(23)
The matrix MMM2 can be seen as a principal submatrix of the

general matrix MMM in Equation (60) in [26], which is shown to
be positive definite given the same assumptions as for MMM1.
Thus, MMM2 is also positive definite. Furthermore, as can be
seen in (21), the solution (20) ensures that the distance to
the obstacle is kept constant (σ̇a = 0).

Let TTTC(zzz) denote the tangent cone to C at the point zzz ∈C
and define the set P as the interior of C.

TTTC(zzz) =
{

Rl zzz ∈ P
Rn× [ 0,∞ )×Rl−n−1 zzz =C\P (24)

Consider the continuous functions fff 1, fff 2 : C→Rl as defined
in (19) and (23). żzz follows the vector field fff 1(zzz) as long as
the solution zzz stays in C (mode 1). Using Lemma 5.26 [24]
on the system żzz = fff 1(zzz), we know that such a solution exists
when fff 1(xxx)∩TTTC(xxx) 6= /0 for all xxx near zzz (restricting xxx to C).
Hence, we define

S := {zzz ∈C : ∃ a neighborhood U of zzz : fff 1(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U} .
(25)

The discontinuous function fff : C→ Rl

fff (zzz) :=
{

fff 1(zzz) zzz ∈ S
fff 2(zzz) zzz ∈C\S (26)

then describes our system. The differential equation żzz = fff (zzz)
then corresponds to following fff 1 (mode 1) as long as zzz stays
in C and following fff 2 (mode 2) otherwise. In mode 2, the
set-based task is frozen, so the (n+1)th element in fff 2(zzz)≡
0. Consequently, fff 2(zzz) ∈ TTTC(zzz)∀zzz ∈C. This implies that C
is strongly forward invariant for żzz = fff 2(zzz), so zzz(t0) ∈C⇒
zzz(t) ∈C ∀ t ≥ t0.

More specifically, the set S contains the points zzz in C such
that fff 1(xxx) ∈ TTTC(xxx) for xxx in C that are near zzz. At the border
of C, σa = ε . As such, the (n+1)th element of fff 1(zzz) must
be zero or positive for zzz to stay in S. If it is not, mode 2
is activated, which freezes the distance to the obstacle at
the border of C. This remains the solution until following
fff 1(zzz) will result in σ̇a ≥ 0, i.e. the distance between the end
effector and obstacle will remain constant or increase. The
following pseudocode illustrates the system:

IF in the interior of C (sigma_a > epsilon)
q_dot = f11;

ELSE on the border of C (sigma_a == epsilon)
IF f12 >= 0 (eq. 18)

q_dot = f11;
ELSE

q_dot = f21;
END

END

B. Two set-based tasks, k equality tasks

Consider a n DOF manipulator with an upper and lower
limit q1,max and q1,min on joint 1 and q2,max and q2,min on joint
2. The manipulator is tasked with k equality tasks of mi DOFs
for i ∈ {1, . . . ,k}. Task i is denoted σσσ i, and σ̃σσ i , σσσ i,d−σσσ i.
The set-based tasks σa = q1 ∈R and σb = q2 ∈R aim to avoid
the joint limits. Consider the state-vector zzz ∈ Rl , where

l = n+2+
k

∑
i=1

mi (27)

and

zzz =

 qqq
σσσ sb

σ̃σσ eb

=



q1
:

qn
σa
σb
σ̃σσ1
:

σ̃σσ k


.

(28)

In the case of 2 set-based tasks, 22 = 4 different modes
are considered:

1) Ignoring the set-based tasks and consider only the
equality tasks

2) Freezing joint 2
3) Freezing joint 1
4) Freezing both joint 1 and 2

Similar to the previous section, mode 1 is the default
mode, whereas modes 2-4 are activated only when it is
necessary to prevent the system from violating the set-based
task limits. In mode 1, only the equality tasks are considered:

q̇qq = fff 11(qqq, σ̃σσ)

= JJJ†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2ΛΛΛ2σ̃σσ2 +NNN12JJJ†
3ΛΛΛ3σ̃σσ3 + ...+NNN12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k.

(29)



In mode 2, joint 2 is frozen at its current value, so σb,d ≡
σb and consequently, σ̃b ≡ 0. This is then the first priority
task, followed by the equality tasks.

q̇qq = fff 21(qqq, σ̃σσ)

= JJJ†
b σ̃b︸︷︷︸
≡0

+NNNbJJJ†
1ΛΛΛ1σ̃σσ1 +NNNb1JJJ†

2ΛΛΛ2σ̃σσ2 +NNNb12JJJ†
3ΛΛΛ3σ̃σσ3

+ ...+NNNb12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

= NNNbJJJ†
1ΛΛΛ1σ̃σσ1 +NNNb1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNNb12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k.

(30)

Similarly, in mode 3 joint 1 is frozen at its current value:

q̇qq = fff 31(qqq, σ̃σσ)

= JJJ†
a σ̃a︸︷︷︸
≡0

+NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

2ΛΛΛ2σ̃σσ2 +NNNa12JJJ†
3ΛΛΛ3σ̃σσ3

+ ...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

= NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

2ΛΛΛ2σ̃σσ2 + ...+NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k.

(31)

Finally, in mode 4, both joints are frozen:

q̇qq = fff 41(qqq, σ̃σσ)

= JJJ†
a σ̃a︸︷︷︸
≡0

+NNNaJJJ†
b σ̃b︸︷︷︸
≡0

+NNNabJJJ†
1ΛΛΛ1σ̃σσ1 +NNNab1JJJ†

2ΛΛΛ2σ̃σσ2 +NNNab12JJJ†
3ΛΛΛ3σ̃σσ3

+ ...+NNNab12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

= NNNabJJJ†
1ΛΛΛ1σ̃σσ1 +NNNab1JJJ†

2ΛΛΛ2σ̃σσ2 +NNNab12JJJ†
3ΛΛΛ3σ̃σσ3 + ...+NNNab12..(k−1)JJJ

†
kΛΛΛkσ̃σσ k.

(32)
It can be shown that

q̇qq = fff 11(qqq, σ̃σσ)⇒ σa = JJJa fff 11 = f12(qqq, σ̃σσ) (33)
σb = JJJb fff 11 = f13(qqq, σ̃σσ) (34)
˙̃σσσ eb =−MMM1σ̃σσ eb (35)

q̇qq = fff 21(qqq, σ̃σσ)⇒ σa = JJJa fff 21 = f22(qqq, σ̃σσ) (36)
σb = JJJb fff 21 = 0 (37)
˙̃σσσ eb =−MMM2σ̃σσ eb (38)

q̇qq = fff 31(qqq, σ̃σσ)⇒ σa = JJJa fff 31 = 0 (39)
σb = JJJb fff 31 = f33 (40)
˙̃σσσ eb =−MMM3σ̃σσ eb (41)

q̇qq = fff 41(qqq, σ̃σσ)⇒ σa = JJJa fff 41 = 0 (42)
σb = JJJb fff 41 = 0 (43)
˙̃σσσ eb =−MMM4σ̃σσ eb , (44)

where MMMi for i ∈ {1, . . . ,4} is either equal to or a principal
submatrix of the general matrix MMM in Equation (60) in [26],
which is shown to be positive definite given that the task
Jacobians are linearly independent and the gain matrices ΛΛΛ j
for j∈{1, . . . ,k} are positive definite. Therefore, the matrices
MMMi are positive definite.
Consider the sets

C1 := [q1,min + ε,q1,max− ε] (45)
C2 := [q2,min + ε,q2,max− ε] (46)

C := Rn×C1×C2×Rl−n−2 (47)
with the corresponding tangent cones

TC1(zzz) =

 [ 0,∞ ) σa = q1,min + ε

R σa ∈ (q1,min + ε,q1,max− ε)
( −∞,0 ] σa = q1,max− ε

, (48)

TC2(zzz) =

 [ 0,∞ ) σb = q2,min + ε

R σb ∈ (q2,min + ε,q2,max− ε)
( −∞,0 ] σb = q2,max− ε

, (49)

TTTC(zzz) = Rn×TC1(zzz)×TC2(zzz)×Rl−n−2 (50)

for an ε > 0. Let fff 1, fff 2, fff 3, fff 4 : C→ Rl be the continuous
vector functions

fff 1(zzz) =

 fff 11(zzz)
f12(zzz)
f13(zzz)
−MMM1σ̃σσ

 (51)

fff 2(zzz) =

 fff 21(zzz)
f22(zzz)

0
−MMM2σ̃σσ

 (52)

fff 3(zzz) =

 fff 31(zzz)
0

f33(zzz)
−MMM3σ̃σσ

 (53)

fff 4(zzz) =

 fff 41(zzz)
0
0

−MMM4σ̃σσ

 (54)

and consider the sets defined below.

S1 := {zzz ∈C : ∃ a neighborhood U of zzz : fff 1(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U} .
(55)

S2 := {zzz ∈C\S1 : ∃ a neighborhood U of zzz : fff 2(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U} .
(56)

S3 := {zzz ∈C\(S1 ∪S2) : ∃ a neighborhood U of zzz :
fff 3(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U} . (57)

S4 :=C\(S1 ∪S2 ∪S3) . (58)

S1 is the set where żzz follows the vector field fff 1 and zzz
stays in the set C. S2, S3 and S4 make up the complement of
S1 and represent the sets where żzz can follow fff 2, fff 3 and fff 4
respectively while the solution zzz stays in C. In mode 4, both
set-based tasks are frozen, thus making the (n+ 1)th and
(n+2)th elements in fff 4(zzz)≡ 0. Hence, fff 4(zzz) ∈ TTTC(zzz)∀zzz ∈
C, and C is strongly forward invariant for żzz = fff 4(zzz). The
discontinuous equation żzz = fff (zzz) with fff : C→ Rl defined as

fff (zzz) :=


fff 1(zzz) zzz ∈ S1
fff 2(zzz) zzz ∈ S2
fff 3(zzz) zzz ∈ S3
fff 4(zzz) zzz ∈ S4

(59)

then defines our system.

C. j set-based tasks, k equality tasks

Consider a n DOF robotic system tasked with k equality
tasks of mi DOFs for i∈ {1, . . . ,k} and j set-based tasks ∈R.
Denote the jth set-based task σx. Consider the state-vector
zzz ∈ Rl , where

l = n+ j+
k

∑
i=1

mi, (60)

and

zzz =

 qqq
σσσ sb
σ̃σσ eb

=



q1
:

qn
σa
:

σx
σ̃σσ1
:

σ̃σσ k


.

(61)



With j set-based tasks, it is necessary to consider the 2 j

solutions resulting from all combinations of ignoring and
freezing every set-based task. By analysis similar to the
above sections:

yoMode Description Equations
1 No set-based

tasks frozen
q̇qq = JJJ†

1ΛΛΛ1σ̃σσ1 + ...+NNN12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

⇒ ˙̃σσσ eb =−MMM1σ̃σσ eb
żzz = fff 1(zzz)

2 σa frozen q̇qq = NNNaJJJ†
1ΛΛΛ1σ̃σσ1 + ... +

NNNa12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

⇒ σ̇a = 0
˙̃σσσ eb =−MMM2σ̃σσ eb
żzz = fff 2(zzz)

3 σb frozen q̇qq = NNNbJJJ†
1ΛΛΛ1σ̃σσ1 + ... +

NNNb12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

⇒ σ̇b = 0
˙̃σσσ eb =−MMM3σ̃σσ eb
żzz = fff 3(zzz)

. . .
. . .

. . .
2 j All set-based

tasks frozen
q̇qq = NNNab..xJJJ†

1ΛΛΛ1σ̃σσ1 + ... +

NNNab..x12..(k−1)JJJ
†
kΛΛΛkσ̃σσ k

⇒ σ̇σσ sb = 000
˙̃σσσ eb =−MMM2 j σ̃σσ eb
żzz = fff 2 j (zzz)

TABLE I: System equations for the resulting 2 j modes for
j set-based tasks.

All modes have certain commonalities:

1) All active set-based tasks are frozen.
2) Inactive set-based tasks do not affect the behavior of

the system.
3) All matrices MMMi for i ∈

{
1, . . . ,2 j

}
are either equal

to or a principal submatrix to the general matrix MMM
in Equation (60) in [26]. Consequently, given linearly
independent tasks Jacobians and positive definite gain
matrices ΛΛΛ, the matrices MMMi are positive definite.

Consider the sets

C1 := [σa,min + εa,σa,max− εa] (62)
C2 := [σb,min + εb,σb,max− εb] (63)

:
C j := [σx,min + εx,σx,max− εx] (64)

C := Rn×C1×C2× ...×C j×Rl−n− j (65)

with the corresponding tangent cones

TC1(zzz) =

 [ 0,∞ ) σa = σa,min + εa
R σa ∈ (σa,min + εa,σa,max− εa)

( −∞,0 ] σa = σa,max− εa

, (66)

TC2(zzz) =

 [ 0,∞ ) σb = σb,min + εb
R σb ∈ (σb,min + εb,σb,max− εb)

( −∞,0 ] σb = σb,max− εb

, (67)

:

TC j (zzz) =

 [ 0,∞ ) σx = σx,min + εx
R σx ∈ (σx,min + εx,σx,max− εx)

( −∞,0 ] σx = σx,max− εx

, (68)

TTTC(zzz) = Rn×TC1(zzz)×TC2(zzz)× ...×TC j (zzz)×Rl−n− j. (69)

for some εi > 0 for i ∈ {1, . . . , j}.

S1 := {zzz ∈C : ∃ a neighborhood U of zzz : fff 1(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U}
(70)

S2 := {zzz ∈C\S1 : ∃ a nbhd U of zzz : fff 2(xxx) ∈ TTTC(xxx)∀xxx ∈C∩U} (71)
:

S2 j :=C\
(
S1 ∪S2 ∪S3 ∪ ...∪S2 j−1

)
. (72)

The discontinuous equation żzz= fff (zzz) with fff : C→Rl defined
as

fff (zzz) :=


fff 1(zzz) zzz ∈ S1
fff 2(zzz) zzz ∈ S2
fff 3(zzz) zzz ∈ S3

: :
fff 2 j(zzz) zzz ∈ S2 j

(73)

then defines our system.

IV. STABILITY ANALYSIS
To study the behavior of the discontinuous differential

equation (73), we look at the corresponding constrained
differential inclusion:

zzz ∈C żzz ∈ FFF(zzz) (74)

where

FFF(zzz) :=
⋂

δ>0

co fff ((zzz+δB)∩C) ∀zzz ∈C. (75)

B is a unit ball in Rdim(zzz) centered at the origin. coP denotes
the closed convex hull of the set P, in other words, the
smallest closed convex set containing P. zzz is the Krasovskii
solution of the discontinuous differential equation (73) (Def-
inition 4.2 [24]).

A. Convergence of equality tasks
The first part of the stability proof considers the conver-

gence of the system equality tasks when switching between
2 j possible modes of the system.

If V is a continuously differentiable Lyapunov function
for żzz = fff i(zzz) for all i ∈

{
1, . . . ,2 j

}
, then V is a Lyapunov

function for żzz ∈ FFF(zzz). The following equation holds as all
fff i(zzz) are continuous functions:

fff ∈ FFF(zzz)⇒ fff = λ1 fff 1(zzz)+λ2 fff 2(zzz)+ ...+λ2 j fff 2 j (zzz) (76)

for some
2 j

∑
i=1

λi = 1,λi ≥ 0. Consider the Lyapunov function

candidate for the equality task errors:

V (σ̃σσ eb) =
1
2

σ̃σσ
T
eb

σ̃σσ eb . (77)

Using (76) and the system equations given in Table I, we
find that the time derivative of V is given by

V̇ = σ̃σσ
T
eb
(λ1(−MMM1σ̃σσ eb)+λ2(−MMM2σ̃σσ eb)+ ...+λ2 j (−MMM2 j σ̃σσ eb))

=−σ̃σσ
T
eb
(λ1MMM1 +λ2MMM2 + ...+λ2 j MMM2 j )σ̃σσ eb

=−σ̃σσ
T
eb

QQQσ̃σσ eb .

(78)

The convex combination QQQ of positive definite matrices is
also positive definite. Therefore, V̇ is negative definite and
σ̃σσ eb = 000 is a globally asymptotically stable equilibrium point
in all modes. Thus, the equality task errors σ̃σσ eb asymp-
totically converge to zero when switching between modes.
Furthermore, if qqq belongs to a compact set, the equilibrium
point σ̃σσ eb = 000 is exponentially stable.



B. Satisfaction of set-based tasks and existence of solution

The second part of the stability proof considers the sat-
isfaction of the set-based tasks and the existence of a valid
solution.

We have defined a closed set C in (65) within which all set-
based tasks are satisfied at all times. As long as the system
solution zzz ∈C, the set-based tasks are not violated.

For a system with only high-priority set-based tasks, (73)
defines the system: żzz= fff 1(zzz) as long as the solution zzz stays in
C. If the system reaches the boundary of C and remaining in
mode 1 would cause zzz to leave C, another mode is activated.
If neither of the vector fields fff 1- fff 2 j−1 will result in zzz staying
in C, the chosen solution is żzz = fff 2 j(zzz), for which it has been
shown that σ̇σσ sb ≡ 000. Therefore, fff 2 j(zzz) ∈ TTTC(zzz)∀zzz ∈ C, and
C is strongly forward invariant for żzz = fff 2 j(zzz). Thus, there
will always exist a solution zzz∈C and the set-based tasks are
consequently always satisfied.

V. SIMULATION RESULTS

To illustrate the effectiveness of the proposed method, a
simple example has been implemented in Matlab for a planar
three-link manipulator. This section presents the simulations
results.

The simulated example is the case presented in Section
III-A: The manipulator has one set-based task σa, which is
to avoid a circular obstacle with center in (0,2.6) m and
radius r = 0.65 m. As described above, an ε = 0.75 m is
chosen as a lower limit for the distance between the end
effector and the obstacle center. Furthermore, the system is
given one equality task σσσ1 ∈ R3 = [xee,yee,ψee]

T to guide
the end effector to a certain position and orientation. In
this example, this position is (−2,3) m and the desired
orientation is π

2 radians. The equality task gain matrix ΛΛΛ1 = III.
The manipulator links have length 1.75 m, 1.25 m and
1.0 m, respectively. Furthermore, the manipulator has been
implemented with a saturation on the joint velocities of
10 deg

s . The simulation results are shown in Figure 2. The
system starts in mode 1, ignoring the obstacle and moving
in a straight line towards the target (Figure 2a). However,
by doing so the end effector approaches the obstacle and
soon reaches the minimum allowed distance ε to the obstacle
center (Figure 2b). Obviously, by continuing to follow the
straight line in mode 1, this distance would decrease further.
Thus, the system switches to mode 2 and freezes the distance
at σa = ε . The end effector then moves towards the desired
end effector position along the circle with center in the
obstacle and radius ε . Eventually it reaches a point where the
shortest path between the end effector and desired position
does not bring the manipulator closer to the obstacle (Figure
2c). The system then changes back to mode 1 and converges
to the desired position and orientation (Figure 2d and 3).
Figure 4 confirms that the set-based task is satisfied at all
times.

The theoretical results in this paper are further confirmed
by simulations and experiments in [27].
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Fig. 3: Equality task errors for Example 1. Both the position
and orientation errors converge to 0.
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Fig. 4: Evolution of distance between end effector and
obstacle center. The simulations confirm that the chosen task
limit of ε is not violated at any time.

VI. CONCLUSIONS

This paper has presented an approach to include set-
based tasks in the multiple task-priority inverse kinematics
framework. As a default solution, only the system equality
tasks are considered and implemented with the desired
priority by projecting the low-priority task velocities through
the nullspaces of the high-priority tasks. However, if this
solution would result in a set-based task (e.g. a joint limit)
being violated, this task is included in the task hierarchy
with a certain priority with the goal of freezing the task
at its current value. It is shown that set-based tasks given
high priority, i.e. above the highest priority equality task, are
fulfilled at all times. For lower-priority set-based tasks, this
can not be guaranteed due to the influence of the higher-
priority equality-based tasks. Due to the switching between
set-based tasks being active/inactive, the resulting closed-
loop dynamic system can be described as a discontinuous
differential equation. Using switched control systems theory
it has been proven that the equality task errors converge
asymptotically to zero when including set-based tasks into
the framework given that certain, specified conditions are
fulfilled. Furthermore, presented simulation results illustrate
the effectiveness of the proposed method.

Future work includes analyzing computational time and
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(d) Time = 40 s

Fig. 2: Simulation results Example 1: The desired position is marked as a red cross at (−2,3) m. The obstacle is the blue
circle, and the red dashed line around it marks the area within which the end effector is not allowed to ensure avoidance of
the obstacle.

finding an optimal implementation, as well as considering
some smoothing function to ensure continuous acceleration
profiles for switches between modes.
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