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Abstract
We study a nonlinear partial differential equation with Lipschitz continuous coefficient
functions. Existence and uniqueness of viscosity solutions is proved by approximating with
minimizers of variational integrals. The solutions are shown to satisfy a corresponding
minimization property. Stability of solutions with respect to small perturbations of the
coefficient functions is discussed, and proved for C2-solutions.
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Sammendrag
Vi studerer en ikke-lineær partiell differensialligning med Lipschitzkontinuerlige koeff-
isientfunksjoner. Eksistens og entydighet av viskositetsløsninger bevises ved å approksimere
med minimerere av variasjonsintegraler. Det vises at løsningene har en lignende minimer-
ingsegenskap. Stabilitet av løsninger med hensyn p̊a små perturbasjoner av koeffisient-
funksjonene diskuteres, og bevises for C2-løsninger.
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1 Introduction
We study the nonlinear partial differential equation

∆∞,A u=
n∑

i,j,k,l=1

(
∂aij
∂xk

∂u

∂xi

∂u

∂xj
akl

∂u

∂xl
+ 2aik

∂u

∂xk

∂2u

∂xi∂xj
ajl

∂u

∂xl

)
= 0, (1.1)

which comes from the minimax problem

min
u

max
x∈Ω

( n∑
i,j=1

aij(x) ∂u
∂xi

(x) ∂u
∂xj

(x)
)1/2

,

among all all admissible functions u defined in a bounded domain Ω⊂Rn, having the same
boundary values. Here aij denotes given coefficient functions. The equation is related to
the infinity-Laplace equation

∆∞u=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0, (1.2)

which is seen by setting aij = δij/2 in (1.1), where δij is the Kronecker delta. Thus, the
equation represents a generalized infinity-Laplace equation, and our strategy for showing
existence and uniqueness of viscosity solutions is based on Jensen’s work in [12] on the
infinity-Laplace equation, and Juutinen’s work in [13] on more general problems. To
motivate this strategy, we give a short introduction to the infinity-Laplace equation. The
equation was derived by Aronsson in 1967, and provides the best Lipschitz extension of
given boundary values, see [1]. The concept of solutions of (1.2) is difficult. Aronsson
demonstrated that the equation does not necessarily have classical solutions. For instance,
he constructed the function

u(x1,x2) = x
4/3
1 −x4/3

2 ,

which satisfies the equation in the whole plane, but does not have second derivatives on
the axes. Furthermore, the equation does not have a weak formulation involving only the
first derivatives. The way out of these difficulties turned out to be the concept of viscosity
solutions, which was developed by Crandall, Evans, Ishii, Lions and others in the 1980’s.
The breakthrough came in 1993, when Jensen established uniqueness of viscosity solutions
by proving the comparison principle, where the main idea is to introduce two auxiliary
equations, see [12]. In the proof, viscosity solutions are constructed as limits of weak
solutions of the p-Laplace equation as p→∞, via some subsequence.

The layout of this thesis is as follows: In Section 2 we present some results which will
be used frequently throughout the text. Lebesgue spaces, Sobolev spaces, and various
compactness results are discussed, followed by fundamental properties of quadratic forms.

In Section 3 we introduce a variational integral and state the assumptions on the coef-
ficient functions. We derive the Euler-Lagrange equation and establish some fundamental
properties of the involved operators.

Section 4 is devoted to the Euler-Lagrange equation. We prove existence and unique-
ness of weak solutions, and show that these are minimizers of the variational integral.



2 1 INTRODUCTION

In Section 5 we construct the limit of weak solutions of the Euler-Lagrange equation,
and show that it satisfies a minimization property.

In Section 6 we introduce viscosity solutions and show some fundamental properties
of these. We show that the definition of viscosity solutions can be rephrased in terms of
so-called jets. Then we state Ishii’s lemma - a deep result of the theory which will play a
central part in proving uniqueness of viscosity solutions.

Modified versions of Jensen’s two auxiliary equations are presented in Section 7. We
show that viscosity solutions of these can be constructed as limits of weak solutions of
two Euler-Lagrange equations, and that the difference between these limits can be made
arbitrarily small. Furthermore, we conclude that the limit constructed in Section 5 is a
viscosity solution of (1.1).

We prove the Comparison principle in Section 8, which implies that an arbitrary
viscosity solution of (1.1) lies between the two auxiliary solutions, which in turn implies
uniqueness of viscosity solutions.

In Section 9 we perturb the coefficient functions by constants, and state the assump-
tions these has to satisfy such that there is a unique viscosity solution of the perturbed
equation. Then we show stability with respect to small perturbations for solutions in one
variable, and for C2-solutions.
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2 Preliminaries
In the following we assume that the domain Ω is an open and connected subset of Rn
with boundary ∂Ω.

2.1 Ascoli’s theorem
We start out with a version of Ascoli’s theorem.

Definition 2.1. We say that a sequence of functions uk : Ω→ R is equibounded, if

sup
x∈Ω
|uk(x)| ≤M <∞ for all k ∈ N,

and equicontinuous, if for x,y ∈ Ω,

|uk(x)−uk(y)| ≤ C|x−y|α for all k ∈ N,

where 0< α≤ 1 and C is a constant.

Theorem 2.2 (Ascoli’s theorem). Let (uk) be an equibounded and equicontinuous sequence
of functions. Then there exist a subsequence (ukj ) and a continuous function u : Ω→ R
such that ukj → u locally uniformly in Ω. If Ω is bounded, the functions can be extended
to be continuous in the closure Ω, where the convergence is uniform.

Proof. Let (qk)k∈N be an enumeration of the rational points in Ω. By assumption,
(uk(q1))k is bounded, and by the Bolzano–Weierstrass theorem1 has a subsequence, de-
noted by (u1j (q1))j converging at q1. Similary, the sequence (u1j (q2))j is bounded, so it
has a subsequence (u2j (q2))j which converges at q1 and q2. Continuing in this fashion,
extracting subsequences of subsequences, we obtain sequences (ukj (qk))j for all k ∈ N,
converging at q1, q2, . . . , qk. Then the diagonal sequence, (ujj (qk))jj , which we simply
denote by (uj(qk))j , converges at every rational point in Ω. Thus, for every ε > 0 there is
an N ∈ N such that

|uj(qk)−ui(qk)|< ε/2 for all i, j > N.

Now we show that the constructed diagonal sequence converges at each point in Ω, not
just the rational ones. Consider an arbitrary x ∈ Ω. By the density of the rational points
in Ω, given ε > 0 there is a rational point q ∈ Ω such that

2C|x− q|α < ε/2.

Then by the equicontinuity,

|uj(x)−ui(x)| ≤ |uj(x)−uj(q)|+ |uj(q)−ui(q)|+ |ui(q)−ui(x)|
≤ 2C|x− q|α+ |uj(q)−ui(q)|
< ε/2 + ε/2 = ε,

1The proof can be found in most analysis books, see e.g. [6].
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whenever i, j > N . Thus, (uj) is a Cauchy sequence, so the sequence converges pointwise
to a function denoted by u:

u(x) = lim
j→∞

uj(x).

It remains to show that the convergence is uniform. First suppose that Ω is bounded.
Then the closure Ω is compact, and we can cover it by a finite number of open balls
B(xm, r), centered at xm with diameter 2r = ε1/α, that is

Ω⊂
n⋃

m=1
B(xm, r).

Choose a rational point rm from each ball. Since there is only a finite number of these
points, given ε > 0 there is an Nε ∈ N such that

max
m
|uj(rm)−ui(rm)|< ε, for all i, j > Nε.

Consider an arbitrary x ∈ Ω, which must belong to some ball, say B(xm, r). Then

|uj(x)−ui(x)| ≤ 2C|x− rm|α+ |uj(rm)−ui(rm)|
≤ 2C(2r)α+ max

m
|uj(rm)−ui(rm)|

≤ 2Cε+ ε, for all i, j > Nε.

Notice that Nε is independent of how we chose the point x, so the convergence is uniform
in Ω. Thus, the limit function u is continuous.

If Ω is unbounded, the proof above holds for any fixed, bounded subdomain of Ω, so
the convergence is locally uniform.

The proof is based on Theorem 1 in [18].

2.2 Lebesgue spaces
Now we derive some properties of the Lebsegue spaces.

Definition 2.3. For any Lebesgue measurable function u : Ω→ R we define

||u||p,Ω =


(∫

Ω
|u(x)|pdx

)1/p
if p ∈ [1,∞)

ess supx∈Ω|u(x)| if p=∞,
(2.1)

where the essential supremum is

ess supx∈Ω|u(x)|= inf {M : u(x)≤M for a.e. x ∈ Ω} .

We say that u ∈ Lp(Ω) if ||u||p,Ω <∞. If u ∈ Lp(D) for each open set D ⊂⊂ Ω, we say
that u ∈ Lploc(Ω).2

2The notation ”⊂⊂” is explained in Definition 2.27.
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When the domain Ω is evident from the context we simply write || · ||p,Ω = || · ||p.
Observe that by the Lebesgue integral we have ||u||p,Ω = 0 if and only if u = 0 almost
everywhere in Ω, so the axiom of normed spaces is not satisfied on sets of measure zero.
To get a proper normed space we have to consider equivalence classes of functions, that
is, each equivalence class consisits of functions which coincide a.e. We say that a function
u has a version ũ, if u and ũ belong to the same equivalence class.

A fundamental property of Lp(Ω) for 1 ≤ p ≤ ∞ is that it is a Banach space with
respect to the norm defined in (2.1).

Our next result shows that the Lebesgue spaces are nested when Ω is of finite measure:

L1(Ω)⊇ L2(Ω)⊇ ·· · ⊇ Lp(Ω)⊇ Lq(Ω)⊇ ·· · ⊇ L∞(Ω), p≤ q.

First we introduce the notation

−
∫

Ω
udx= 1

µ(Ω)

∫
Ω
udx

for the average of a function u over a bounded domain Ω, where µ denotes n-dimensional
Lebesgue measure.

Proposition 2.4. If µ(Ω)<∞ and u ∈ Lq(Ω), then
(
−
∫

Ω
|u|pdx

)1/p
≤
(
−
∫

Ω
|u|qdx

)1/q
when 1≤ p≤ q. (2.2)

Proof. By Hölder’s inequality we have

||u||pp = ||1 · |u|p||1 ≤ ||1||q/(q−p)|||u|p||q/p = µ(Ω)(q−p)/q||u||pq ,

where p≥ 1. This yields inequality (2.2) if p≤ q.

In many limit procedures we rely on the fact that the norm is continuous as p→∞:

Proposition 2.5. If µ(Ω)<∞ and u ∈ L∞(Ω), then

lim
p→∞ ||u||p = ||u||∞.

Proof. Let ε > 0 and define the set

A= {x ∈ Ω : |u(x)|> ||u||∞− ε} .

Then ∫
Ω
|u|pdx≥

∫
A
|u|pdx≥ (||u||∞− ε)pµ(A),

which implies that
liminf
p→∞ ||u||p ≥ ||u||∞− ε.

On the other hand, by Proposition 2.4,

||u||p ≤ µ(Ω)1/p||u||∞,
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thus
limsup
p→∞

||u||p ≤ ||u||∞,

and the conclusion
lim
p→∞ ||u||p = ||u||∞

follows since ε > 0 was arbitrarily small.

We mention a fundamental result in the calculus of variations3.

Lemma 2.6 (Variational lemma). Suppose that u ∈ L1
loc(Ω). If∫

Ω
uφdx= 0 for all φ ∈ C∞0 (Ω),

then u= 0 a.e. in Ω.

We now turn to the dual space of Lp(Ω). An explicit characterization of bounded
linear functionals on Lp(Ω) is provided by Riesz’ representation theorem4.

Theorem 2.7 (Riesz’ representation theorem). Let 1 ≤ p < ∞ and suppose that Λ :
Lp(Ω)→R is a bounded linear functional. Then there exists a unique function v ∈ Lq(Ω),
where 1/p+ 1/q = 1, such that

Λ(u) =
∫

Ω
uvdx,

for all functions u ∈ Lp(Ω). Moreover, ||Λ||= ||v||q,Ω.

A consequence of this result is that we identify the dual space of Lp(Ω) as Lq(Ω) for
1/p+ 1/q = 1 when p ∈ [1,∞), and write Lp(Ω)′ = Lq(Ω).

Working in Banach spaces requires various concepts of convergence, and one of the
most frequently used in this text is the notion of weak convergence.

Definition 2.8. Let X be a Banach space. We say that a sequence (xn)⊂X converges
weakly to x ∈X, if for all x′ in the dual space X ′ we have

lim
n→∞x

′(xn) = x′(x),

and we write xn⇀x.

By Riesz’ representation theorem there is an explicit characterization of weak conver-
gence in Lebesgue spaces. Indeed, let 1≤ p <∞ and suppose that (un)⊂Lp(Ω) converges
weakly to u ∈ Lp(Ω), that is

lim
n→∞Λ(un) = Λ(u)

for all bounded linear functionals Λ on Lp(Ω). This is equivalent to

lim
n→∞

∫
Ω
unvdx=

∫
Ω
uvdx, (2.3)

for all v ∈ Lq(Ω) such that 1/p+ 1/q = 1.
Now we present som key properties of weak convergence.

3We refer to Theorem 3.40 in [5] for a proof.
4The proof can be found in [6], Theorem 13.1.
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Proposition 2.9. Let X be a Banach space and suppose that the sequence (xn) ⊂ X
converges weakly to x ∈X. Then the sequence is uniformly bounded:

sup
n
||xn||X ≤M <∞,

and the norm is lower semicontinuous:

||x||X ≤ liminf
n→∞ ||xn||X .

Proposition 2.10. Let 1<p<∞ and assume that the sequence (un)⊂Lp(Ω) is uniformly
bounded:

sup
n
||un||p ≤M <∞.

Then there is a subsequence (unk) and a function u ∈ Lp(Ω) such that

unk ⇀u weakly in Lp(Ω).

Proof. Let 1/p+ 1/q = 1. Since q ∈ (1,∞), Lq(Ω) is separable5. Let (vn) be a countable
collection of simple functions, which is dense in Lq(Ω). Set

Λn(vj) =
∫

Ω
vjun dx for each j ∈ N.

By Hölder’s inequality and the uniform boundedness we have

|Λn(vj)| ≤M ||vj ||q,

so the sequence (Λn(v1))n is bounded, and by the Bolzano–Weierstrass theorem, we can
extract a subsequence, denoted by (Λ1j (v1))j converging at v1. Similary, (Λ1j (v2))j is
bounded, so we can extract a subsequence, denoted by (Λ2j (v2))j converging at v1 and
v2. Continuing this procedure, we see that the diagonal sequence (Λjj (vn))jj converges at
every vn. To ease the notation we denote the constructed diagonal sequence by (Λj(vn))j .
Thus, for every ε > 0 there is an N such that

|Λj(vn)−Λi(vn)|< ε, for all i, j > N.

Fix v ∈ Lq(Ω). By density there is a simple function vn such that

||v−vn||q < ε.

It follows that

|Λj(v)−Λi(v)| ≤ |Λj(v−vn)|+ |Λi(vn−v)|+ |Λj(vn)−Λi(vn)|
≤ 2M ||v−vn||q + ε

≤ 2Mε+ ε for all i, j > N,

which shows that (Λj(v))j is a Cauchy sequence for all v ∈ Lq(Ω). We denote the limit by

Λ(v) = lim
n→∞Λn(v) for all v ∈ Lq(Ω),

5Consult for instance Theorem 18.1 in [6] for a proof.
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which defines a bounded linear functional on Lq(Ω). Then by Riesz’ representation theo-
rem there exists a unique u ∈ Lp(Ω) such that

Λ(v) =
∫

Ω
vudx for all v ∈ Lq(Ω),

thus
lim
n→∞

∫
Ω
vun dx=

∫
Ω
vudx for all v ∈ Lq(Ω),

and we conclude that un⇀u weakly in Lp(Ω).

Another concept of convergence in Banach spaces is weak-star convergence.

Definition 2.11. Let X and Y be Banach spaces such that X = Y ′. We say that a
sequence (xn)⊂X converges weak-star to x ∈X, if for all y ∈ Y we have

lim
n→∞xn(y) = x(y),

and we write xn ∗⇀x.

By Riesz’ representation theorem we find that the notions of weak convergence and
weak-star convergence coincide in Lp(Ω) when p∈ (1,∞). Furthermore, un ∗⇀u in L∞(Ω)
if and only if

lim
n→∞

∫
Ω
unvdx=

∫
Ω
uvdx for all v ∈ L1(Ω). (2.4)

We have the following analogous results of Proposition 2.9 and Proposition 2.10.

Proposition 2.12. Let X and Y be a Banach spaces such that X = Y ′. Suppose that the
sequence (xn)⊂X converges weak-star to x∈X. Then the sequence is uniformly bounded:

sup
n
||xn||X ≤M <∞,

and the norm is lower semicontinuous:

||x||X ≤ liminf
n→∞ ||xn||X .

Theorem 2.13 (Helly’s theorem). Let X and Y be Banach spaces. Suppose that X = Y ′

and that Y is separable. Assume that the sequence (xn)⊂X is uniformly bounded:

sup
n
||xn||X ≤M <∞.

Then (xn) has a weak-star convergent subsequence.

We refer to Theorem 2.13 in [11] for a proof of Helly’s theorem. The proofs of Propo-
sition 2.9 and Proposition 2.12 can be found in most functional analysis books, see e.g.
[15].
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2.3 Sobolev spaces
Now we introduce Sobolev spaces and derive some important properties of these. We
begin with some definitions. Recall that Ω is a domain in Rn.

Definition 2.14. Consider a function φ : Ω→R which belongs to C∞(Ω). We define the
support of φ as

supp(φ) = {x ∈ Ω : φ(x) 6= 0}.
If supp(φ) is bounded we define

C∞0 (Ω) = {φ ∈ C∞(Ω) : supp(φ)⊂ Ω} .

For φ ∈ C∞0 (Ω) we define φ(x) = 0 when x ∈ Rn \Ω.

We make the following definition motivated by the integration by parts formula for
continuously differentiable functions.

Definition 2.15. Let u ∈ L1
loc(Ω). If there is a function wj ∈ L1

loc(Ω) such that∫
Ω
u
∂φ

∂xj
dx=−

∫
Ω
wjφdx for all φ ∈ C∞0 (Ω),

then we say that wj is the weak partial derivative of u with respect to xj in Ω. We write
wj = ∂u

∂xj
and ∇u=

(
∂u
∂x1

, . . . , ∂u∂xn

)
, provided that the weak derivatives exist.

Definition 2.16. Let 1≤ p≤∞. We say that u∈W 1,p(Ω) if u and all its weak derivatives
∂u
∂xj

, j = 1, . . . ,n, belong to Lp(Ω).

Then

||u||1,p,Ω =


(
||u||pp,Ω + ||∇u||pp,Ω

)1/p
if p ∈ [1,∞)

||u||∞,Ω + ||∇u||∞,Ω if p=∞
(2.5)

defines a norm on W 1,p(Ω), where

||∇u||p,Ω =
(∫

Ω
|∇u(x)|pdx

)1/p
, ||∇u||∞,Ω = ess supx∈Ω|∇u(x)|.

The space W 1,p(Ω) possesses many properties similar to the space Lp(Ω), the most
fundamental being that it is a Banach space with respect to the norm defined in (2.5).

Definition 2.17. We define the following spaces for 1≤ p≤∞:

i) Let W 1,p
0 (Ω) denote the closure of C∞0 (Ω) in the space W 1,p(Ω), i.e. the closure of

C∞0 (Ω) with respect to the norm || · ||1,p,Ω.

ii) We say that u ∈W 1,p
loc (Ω) if u ∈W 1,p(D) for each open set D ⊂⊂ Ω.

We mention that if u ∈ C(Ω)∩W 1,p(Ω) and u|∂Ω = 0, then u ∈W 1,p
0 (Ω). In addition,

if u,v ∈W 1,p
0 (Ω), then max{u,v} ,min{u,v} ∈W 1,p

0 (Ω).6

6Consult for instance [9].
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Remark 2.18. The notation

∇uj ⇀∇u weakly in Lp(Ω)

means that
∂uj
∂xk

⇀
∂u

∂xk
weakly in Lp(Ω)

for each k = 1,2, . . . ,n. If

uj ⇀u, ∇uj ⇀w weakly in Lp(Ω)

for some w = (w1,w2, . . . ,wn) ∈ Rn, then w =∇u. Indeed, by (2.3) the weak convergence
means

lim
j→∞

∫
Ω
ηuj dx=

∫
Ω
ηudx,

lim
j→∞

∫
Ω
ψ
∂uj
∂xk

dx=
∫

Ω
ψwk dx

for all η,ψ ∈ Lq(Ω) such that 1/p+1/q = 1. Furthermore, since ∇uj is the weak gradient
of uj we have ∫

Ω
uj

∂φ

∂xk
dx=−

∫
Ω
φ
∂uj
∂xk

dx for all φ ∈ C∞0 (Ω).

Let φ ∈ C∞0 (Ω). Then by the above and since

φ,
∂φ

∂xk
∈ Lq(Ω)

we obtain ∫
Ω
u
∂φ

∂xk
dx= lim

j→∞

∫
Ω
uj

∂φ

∂xk
dx=− lim

j→∞

∫
Ω
φ
∂uj
∂xk

dx=−
∫

Ω
φwk dx.

Thus w =∇u.

The following variant of Morrey’s inequality is useful.

Lemma 2.19 (Morrey’s inequality). Let Ω be a bounded domain and suppose that p > n.
If u ∈W 1,p

0 (Ω), then

|u(x)−u(y)| ≤ Cp|x−y|1−n/p||∇u||p,Ω for a.e. x,y ∈ Ω,

where Cp depends on p and n, and is such that Cp→ 2n+1 as p→∞. One can redefine u
in a set of measure zero and extend it to the boundary such that u ∈ C(Ω) and u|∂Ω = 0.

Proof. We first show the inequality for functions in C∞0 (Ω). Let u∈C∞0 (Ω) and set r > 0.
Fix q,z ∈ Ω such that

|q− z|= r.

Let ξ ∈B(z,r), where B =B(z,r) is the open ball centered at z with radius r. We have

u(ξ)−u(q) =
∫ 1

0

d

dt
u(q+ t(ξ− q))dt=

∫ 1

0
〈∇u(q+ t(ξ− q)), ξ− q〉dt,
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where 〈·, ·〉 denotes the inner product on Rn. By writing

uB =−
∫
B
u(ξ)dξ,

and integrating over B with respect to ξ we find

ωnr
n(uB−u(q)) =

∫
B(z,r)

∫ 1

0
〈∇u(q+ t(ξ− q)), ξ− q〉dtdξ,

where ωn denotes the volume of the unit ball in Rn. By the Cauchy–Schwarz inequality
we obtain

ωnr
n|uB−u(q)| ≤

∫
B(z,r)

∫ 1

0
|∇u(q+ t(ξ− q))||ξ− q|dtdξ

=
∫ 1

0

∫
B(z,r)

|∇u(q+ t(ξ− q))||ξ− q|dξ dt,

where we used Tonelli’s theorem to change the order of integration. By changing the
variables to

η = q+ t(ξ− q), dη = tndξ,

we find that the new domain of integration is contained in the ball B(q,2rt). Then by
Hölder’s inequality,

ωnr
n|uB−u(q)|

≤
∫ 1

0

∫
B(z,r)

|∇u(q+ t(ξ− q))||ξ− q|dξ dt

≤
∫ 1

0
t−1−n

∫
B(q,2rt)∩Ω

|∇u(η)||η− q|dηdt

≤
∫ 1

0
t−1−n

(∫
B(q,2rt)∩Ω

|∇u(η)|p dη
)1/p(∫

B(q,2rt)∩Ω
|η− q|p/(p−1) dη

)(p−1)/p
dt

≤ ||∇u||p,Ω
∫ 1

0
t−1−n

(∫
B(q,2rt)

(2rt)p/(p−1) dη
)(p−1)/p

dt

= ||∇u||p,Ω
∫ 1

0
t−1−n 2rt(ωn(2rt)n)(p−1)/pdt

= ω(p−1)/p
n (2r)1+n(p−1)/p||∇u||p,Ω

∫ 1

0
t−n/p dt

= ω(p−1)/p
n (2r)1+n(p−1)/p||∇u||p,Ω

p

p−n
.

We evaluated the last integral by using the Monotone convergence theorem, where it was
needed that p > n. Now we have

|uB(z,r)−u(q)| ≤ 21+n(p−1)/pω−1/p
n

p

p−n
r1−n/p||∇u||p,Ω,

for z,q ∈ Ω such that |q− z|= r. Fix x,y ∈ Ω and let

z = 1
2(x+y), r = |x− z|= |y− z|= 1

2 |x−y|.
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Then
|u(x)−u(y)| ≤ |u(x)−uB(z,r)|+ |uB(z,r)−u(y)|

≤ 2 ·21+n(p−1)/pω−1/p
n

p

p−n

(1
2 |x−y|

)1−n/p
||∇u||p,Ω

= 2n+1ω−1/p
n

p

p−n
|x−y|1−n/p||∇u||p,Ω,

(2.6)

which concludes the proof when u ∈ C∞0 (Ω).
Now let u ∈ W 1,p

0 (Ω). Then there is a sequence uj ∈ C∞0 (Ω) such that uj → u in
W 1,p(Ω). We claim that there is a subsequence such that uj → u a.e. in Ω. Indeed, for
ε > 0 we have

||uj−u||pp,Ω = εp
∫

Ω

∣∣∣∣uj−uε

∣∣∣∣pdx
≥ εp

∫
{|uj−u|≥ε}

∣∣∣∣uj−uε

∣∣∣∣pdx
≥ εpµ({x ∈ Ω : |uj(x)−u(x)| ≥ ε}),

which shows that the sequence converges in measure to the function u. Then it is known
that there is a subsequence such that uj → u a.e. in Ω. The strong convergence assures
that

||uj ||p,Ω ≤ ||u||p,Ω + 1, ||∇uj ||p,Ω ≤ ||∇u||p,Ω + 1

for sufficiently large j, and by (2.6) we find

|uj(x)−uj(y)| ≤ 2n+1ω−1/p
n

p

p−n
|x−y|1−n/p(||∇u||p,Ω + 1).

Hence (uj) is equibounded and equicontinuous for large j. Then by Ascoli’s theorem
2.2 there is a further subsequence and a continuous function v ∈ C(Ω) such that uj → v
uniformly in Ω. Thus, v is a continuous version of u, and we redefine u to be v in Ω. Then

|u(x)−u(y)| ≤ |u(x)−uj(x)|+ |uj(x)−uj(y)|+ |uj(y)−u(y)|
≤ |u(x)−uj(x)|+ |uj(y)−u(y)|

+ 2n+1ω−1/p
n

p

p−n
|x−y|1−n/p(||∇uj−∇u||p,Ω + ||∇u||p,Ω).

Letting j→∞ we obtain

|u(x)−u(y)| ≤ 2n+1ω−1/p
n

p

p−n
|x−y|1−n/p||∇u||p,Ω

= Cp|x−y|1−n/p||∇u||p,Ω

where Cp is such that

Cp = 2n+1ω−1/p
n

p

p−n
→ 2n+1 as p→∞.

By redefining u in a set of measure zero we can extend it to the boundary such that
u ∈ C(Ω) and u|∂Ω = 0.
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Remark 2.20. We shall mostly encounter the situation when the domain Ω is bounded
and p > n. Then since every function in W 1,p

0 (Ω) has a continuous version, we always
assume when given such a function that it is its continuous version.

Morrey’s inequality suggests a connection between functions in W 1,p(Ω) and Hölder
continuous functions. For more details see the Rellich–Kondrachov compactness theorem
2.28 later in this section.

We note a convenient inequality.

Lemma 2.21 (Friedrichs’ inequality). Let Ω be a bounded domain. Suppose that u ∈
W 1,p

0 (Ω), where 1≤ p≤∞. Then

||u||p ≤ diam(Ω)||∇u||p.

Proof. It suffices to show the inequality for u ∈ C∞0 (Ω). We begin with the case when
1≤ p <∞. Let u ∈ C∞0 (Ω). Since Ω is bounded there are numbers ηi < ξi, i= 1,2, . . . ,n,
such that Ω⊂⊂Q, where

Q= {x= (x1,x2, . . . ,xn) ∈ Rn : ηi < xi < ξi for each 1≤ i≤ n} .

Then u ∈ C∞0 (Q). We have

u(x1,x2, . . . ,xn) = u(η1,x2, . . . ,xn) +
∫ x1

η1
ut(t,x2, . . . ,xn)dt

=
∫ x1

η1
ut(t,x2, . . . ,xn)dt,

thus by Proposition 2.4,

|u(x)| ≤
∫ x1

η1
|ut(t,x2, . . . ,xn)|dt

≤
∫ ξ1

η1
|ux1(x1,x2, . . . ,xn)|dx1

≤−
∫ ξ1

η1
|∇u(x)||ξ1−η1|dx1

≤
(
−
∫ ξ1

η1
|∇u(x)|p|ξ1−η1|pdx1

)1/p
.

This implies that
|u(x)|p ≤ |ξ1−η1|p−1

∫ ξ1

η1
|∇u(x)|pdx1.

Observe that the right-hand side only depends on (x2,x3, . . . ,xn), while the left-hand side
depends on (x1,x2, . . . ,xn). Integrating with respect to x1 we find∫ ξ1

η1
|u(x)|pdx1 ≤ |ξ1−η1|p

∫ ξ1

η1
|∇u(x)|pdx1.

Now integrate over the other variables to obtain∫
Q
|u(x)|pdx≤ |ξ1−η1|p

∫
Q
|∇u(x)|pdx,
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hence ∫
Ω
|u(x)|pdx≤ diam(Ω)p

∫
Ω
|∇u(x)|pdx,

where diam(Ω) := supx,y∈Ω |x−y|.
By the continuity of the norm in Proposition 2.5, we find that the inequality is also

valid for p=∞.

Now we clarify the relationship between the weak derivatives and the derivatives from
calculus.

Definition 2.22. We say that u : Ω→ R is differentiable at x ∈ Ω if there exists η ∈ Rn
such that

u(y) = u(x) + 〈η,y−x〉+o(|y−x|) as y→ x.

If η exists it is unique, and we denote it by ∇u(x).

So far we have denoted the weak derivatives with the same notation as the usual
derivatives from calculus. Let us verify that these actually coincide when n < p≤∞, so
that the notation is consistent.

Theorem 2.23. Let n < p ≤∞ and suppose that u ∈W 1,p
loc (Ω). Then u is differentiable

a.e. in Ω and its weak gradient equals its gradient a.e.

Proof. First we consider the case when n < p <∞. Let ∇ denote the weak gradient. We
need the following version of Lebegue’s differentiation theorem, see [7] for more details.
For a.e. x ∈ Ω we have

−
∫
B(x,r)

|∇u(z)−∇u(x)|pdz→ 0 as r→ 0.

Fix any such x and define

v(y) = u(y)−u(x)−〈∇u(x),y−x〉, y ∈ Ω.

By consulting the proof of Morrey’s inequality 2.19 we find that the inequality is applicable
to the function v in the ball B(x,r)⊂⊂ Ω. With r = |x−y| we find

|u(y)−u(x)−〈∇u(x),y−x〉|
= |v(y)−v(x)|

≤ Cpr1−n/p
(∫

B(x,r)
|∇v(z)|pdz

)1/p

= Cpr
1−n/p

(
ωnr

n−
∫
B(x,r)

|∇u(z)−∇u(x)|pdz
)1/p

= Cpω
1/p
n r

(
−
∫
B(x,r)

|∇u(z)−∇u(x)|pdz
)1/p

= o(r) = o(|x−y|),

where ωn denotes the volume of the unit ball in Rn. If p=∞, we have that W 1,∞
loc (Ω)⊂

W 1,p
loc (Ω) for any n < p <∞, so we can apply the argument above.
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We now turn our attention to Lipschitz continuity.

Definition 2.24. A function u : Ω→ R is said to be Lipschitz continuous if

|u(x)−u(y)| ≤ L|x−y| when x,y ∈ Ω,

for some constant L.

The following result provides an interesting characterization of the space W 1,∞
loc (Ω).

Theorem 2.25. A function u : Ω→ R is locally Lipschitz continuous if and only if u ∈
W 1,∞

loc (Ω).

Proof. Assume that u ∈W 1,∞
loc (Ω). Then u also belongs to W 1,p

loc (Ω) for some finite p > n.
Let ε > 0 and define the function

uε = ρε ∗u,
where ρε is Friedrichs’ mollifier. Then uε ∈ C∞(Ω) and uε → u in W 1,p

loc (Ω) as ε→ 0.
Actually, the convergence is locally uniform7. Let B be a subdomain such that B ⊂⊂ Ω.
Then we have

||∇uε||p,B ≤ ||∇u||p,B,
which implies that

sup
0<ε<δ

||∇uε||∞,B ≤ C <∞,

for sufficiently small δ > 0, where C is a constant that is independent of ε. For x,y ∈ B
we have

uε(x)−uε(y) =
∫ 1

0

d

dt
uε(y+ t(x−y))dt=

∫ 1

0
〈∇uε(y+ t(x−y)),x−y〉dt,

which leads to
|uε(x)−uε(y)| ≤ C|x−y|,

by the Cauchy–Schwarz inequality and the above. Observe that

|u(x)−u(y)| ≤ |u(x)−uε(x)|+C|x−y|+ |uε(y)−u(y)|.

Letting ε→ 0 we obtain

|u(x)−u(y)| ≤ C|x−y| x,y ∈B,

by the uniform convergence. Thus, u is locally Lipschitz continuous.
Now suppose that u is locally Lipschitz continuous. Once again we let B ⊂⊂ Ω. We

have that u ∈ L∞(B), so we only have to show that the weak first partial derivatives are
bounded. For i= 1,2, . . . ,n write

Dh
i u(x) = u(x+hei)−u(x)

h
,

D−hi u(x) = u(x)−u(x−hei)
h

,

7See Theorem 4.40 and Theorem 5.3 in [11].
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where h > 0 and ei is the ith unit vector. Since u is locally Lipschitz continuous,

sup
0<h<ε

||D−hi u||∞,B ≤M <∞,

for sufficiently small ε > 0. Since L1(B) is separable, Helly’s theorem 2.13 implies that
there is a subsequence hk→ 0 and a function wi ∈ L∞(B) such that

D−hki u
∗
⇀wi weak-star in L∞(B)

for every i= 1,2, . . . ,n. By (2.4) this is equivalent to

lim
k→∞

∫
B
ψD−hki udx=

∫
B
ψwi dx for all ψ ∈ L1(B).

We can approximate functions in L1(B) by functions in C∞0 (B) since C0(B) is dense in
L1(B).8 Let φ ∈ C∞0 (B). By the Dominated convergence theorem and the above we find∫

B
uφxi dx= lim

k→∞

∫
B
uDhk

i φdx=− lim
k→∞

∫
B
φD−hki udx=−

∫
B
φwi dx,

which holds for any φ∈C∞0 (B). This shows that uxi =wi in the sense of weak derivatives,
for i= 1,2, . . . ,n. Furthermore, by the weak-star lower semicontinuity in Proposition 2.12,

||uxi||∞,B = ||wi||∞,B ≤ liminf
k→∞

||D−hki u||∞,B <∞,

which implies that ||∇u||∞,B <∞ for any B ⊂⊂ Ω, and we conclude that u ∈W 1,∞
loc (Ω).

We immediately obtain the following important result.

Theorem 2.26 (Rademacher’s theorem). If u : Ω→ R is locally Lipschitz continuous,
then u is differentiable a.e. in Ω.

Proof. Since u is locally Lipschitz continuous, u ∈W 1,∞
loc (Ω) by Theorem 2.25. Then it

follows from Theorem 2.23 that u is differentiable a.e. in Ω.

We introduce some notation, and seize the opportunity to mention a Sobolev embed-
ding result. We refer to [9] for more details.

Definition 2.27. Let X and Y be Banach spaces. We say that X is compactly embedded
in Y , and write

X ⊂⊂ Y

if

i) there exists a linear, continuous, and injective map Ψ :X → Y ;

ii) the map Ψ(B) is precompact in Y for any bounded set B ⊂ X, that is Ψ(B) is
compact in Y .

8See for instance Lemma 4.38 in [11].



2.4 QUADRATIC FORMS AND CONVEX FUNCTIONS 17

Theorem 2.28 (Rellich–Kondrachov compactness theorem). Suppose that p > n and let
Ω be a bounded domain in Rn with a smooth boundary ∂Ω ∈ C1. Then

W 1,p(Ω)⊂⊂ Cγ(Ω),

where γ = 1− n
p .

Here Cγ(Ω) refers to the Hölder space:

Cγ(Ω) = {u ∈ C(Ω) : ||u||Cγ(Ω) <∞},

consisting of Hölder continuous functions u : Ω→ R:

|u(x)−u(y)| ≤ C|x−y|γ ,

where C is a constant and 0 < γ ≤ 1. The Hölder space is in fact a Banach space with
respect to the norm

||u||Cγ(Ω) = ||u||∞,Ω + sup
x,y∈Ω
x 6=y

|u(x)−u(y)|
|x−y|γ

. (2.7)

Notice that in the above theorem, γ = 1 when p=∞, so in that case the Hölder space
consists of Lipschitz continuous functions, which agrees with what we found in Theorem
2.25.

The proof of Morrey’s inequality 2.19 is based on Theorem 8.1 in [6], and the proof
of Theorem 2.23 follows Theorem 5 in section 5.8.3 of [7]. The proof of Theorem 2.25 is
based on Theorem 5 in section 4.2.3 of [8].

2.4 Quadratic forms and convex functions
We denote the space of all n×n real-valued symmetric matrices by Sn. For B,C ∈ Sn
the notation B ≥ C means

〈Bξ,ξ〉 ≥ 〈Cξ,ξ〉 for all ξ ∈ Rn.

In the following section we assume that A ∈ Sn is such that for constants 0< α≤ β <∞,

α|η|2 ≤ 〈Aη,η〉 ≤ β|η|2,

for all η ∈ Rn. Thus, the matrix A is positive definite:

〈Aη,η〉> 0 for all nonzero η ∈ Rn.

We begin with an inequality.

Proposition 2.29. If 2≤ p <∞, then
〈
〈Aξ,ξ〉

p−2
2 Aξ−〈Aψ,ψ〉

p−2
2 Aψ,ξ−ψ

〉
≥ 4

(√
α

2

)p
|ξ−ψ|p (2.8)

for all ξ,ψ ∈ Rn.
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Proof. Since A is symmetric it has a decomposition A = QTDQ, where D is a diagonal
matrix with the eigenvalues of A on the main diagonal, and Q is an orthogonal matrix,
that is QT = Q−1. Moreover, since A is positive definite it has a square root B = A1/2

defined as
B = A1/2 =QTD1/2Q,

where the diagonal matrix D1/2 consists of the square roots of the eigenvalues of A on the
main diagonal. The matrix B is symmetric and B2 =A. Furthermore, the square root B
is unique, see [3] for more details. We have

〈
〈Aξ,ξ〉

p−2
2 Aξ−〈Aψ,ψ〉

p−2
2 Aψ,ξ−ψ

〉
=
〈
〈B2ξ,ξ〉

p−2
2 B2ξ−〈B2ψ,ψ〉

p−2
2 B2ψ,ξ−ψ

〉
=
〈
〈BTBξ,ξ〉

p−2
2 BTBξ−〈BTBψ,ψ〉

p−2
2 BTBψ,ξ−ψ

〉
=
〈
〈Bξ,Bξ〉

p−2
2 Bξ−〈Bψ,Bψ〉

p−2
2 Bψ,Bξ−Bψ

〉
= 〈|Bξ|p−2Bξ−|Bψ|p−2Bψ,Bξ−Bψ〉
= 〈|b|p−2b−|a|p−2a,b−a〉

(2.9)

where b=Bξ and a=Bψ. We claim that

〈|b|p−2b−|a|p−2a,b−a〉 ≥ 22−p|b−a|p.

To see this first observe that

〈b,b−a〉= 1
2(|b−a|2 + |b|2−|a|2),

〈a,b−a〉=−1
2(|b−a|2 + |a|2−|b|2),

which leads to the identity

〈|b|p−2b−|a|p−2a,b−a〉= |b|
p−2 + |a|p−2

2 |b−a|2 + (|b|p−2−|a|p−2)(|b|2−|a|2)
2 .

Notice that the second term on the right-hand side is nonnegative for p ≥ 2, which is
easily seen by first letting |b| ≥ |a| and then letting |a| ≥ |b|. Thus

〈|b|p−2b−|a|p−2a,b−a〉 ≥ |b|
p−2 + |a|p−2

2 |b−a|2. (2.10)

Furthermore, by some well known inequalities we see that

|b|p−2 + |a|p−2

2 ≥ 22−p(|b|+ |a|)p−2 ≥ 22−p|b−a|p−2,

where we used that p≥ 2. The claim follows by inserting this into (2.10). Continuing to
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estimate (2.9) we find 〈
〈Aξ,ξ〉

p−2
2 Aξ−〈Aψ,ψ〉

p−2
2 Aψ,ξ−ψ

〉
= 〈|Bξ|p−2Bξ−|Bψ|p−2Bψ,Bξ−Bψ〉
≥ 22−p|Bξ−Bψ|p

= 22−p〈B(ξ−ψ),B(ξ−ψ)〉p/2

= 22−p〈A(ξ−ψ), ξ−ψ〉p/2

≥ 22−p(α|ξ−ψ|2)p/2

= 4
(√

α

2

)p
|ξ−ψ|p.

Now we introduce convex functions.

Definition 2.30. We say that a function F : Rn→ R is convex, if

F (tξ+ (1− t)η)≤ tF (ξ) + (1− t)F (η)

for all ξ,η ∈ Rn and 0≤ t≤ 1. We say that F is strictly convex, if

F (tξ+ (1− t)η)< tF (ξ) + (1− t)F (η)

whenever ξ 6= η and 0< t < 1.

A convex function F : Ω→ R is locally Lipschitz continuous, and thus differentiable
almost everywhere according to Rademacher’s theorem 2.26. Furthermore, the inequality

F (ξ)≥ F (η) + 〈∇F (η), ξ−η〉 (2.11)

holds for all ξ,η ∈ Ω.9

Lemma 2.31. The map
ξ 7→ 〈Aξ,ξ〉p/2

is strictly convex for 2≤ p <∞.

Proof. We first show that ξ 7→ 〈Aξ,ξ〉 is stricly convex. Let 0 < t < 1 and ξ 6= η. We
calculate

〈A(tξ+ (1− t)η), tξ+ (1− t)η〉
= 〈A(η+ t(ξ−η)),η+ t(ξ−η)〉
= 〈Aη,η〉+ 2t〈Aη,ξ−η〉+ t2〈A(ξ−η), ξ−η〉
< 〈Aη,η〉+ 2t〈Aη,ξ−η〉+ t〈A(ξ−η), ξ−η〉
= 〈Aη,η〉+ t〈Aη,ξ−η〉+ t〈Aξ,ξ−η〉
= t〈Aξ,ξ〉+ (1− t)〈Aη,η〉,

9Consult for instance [6] for proofs of these statements.
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where the strict inequality follows since t2 < t and A is positive definite. Now we show
that ξ 7→ 〈Aξ,ξ〉p/2 is strictly convex. Since the function

H(z) = zp/2, z ≥ 0, p≥ 2

is convex, we find by writing

z1 = 〈Aξ,ξ〉, z2 = 〈Aη,η〉

that
〈A(tξ+ (1− t)η), tξ+ (1− t)η〉p/2

< (t〈Aξ,ξ〉+ (1− t)〈Aη,η〉)p/2

=H(tz1 + (1− t)z2)
≤ tH(z1) + (1− t)H(z2)
= t〈Aξ,ξ〉p/2 + (1− t)〈Aη,η〉p/2,

where we used that ξ 7→ 〈Aξ,ξ〉 is strictly convex in the first inequality.

For the next result we assume that the symmetric n×n matrix A = A(x) = (aij(x))
consists of real-valued functions aij ∈ L∞(Ω), i, j = 1,2, . . . ,n, such that for constants
0< α≤ β <∞ we have

α|ξ|2 ≤ 〈A(x)ξ,ξ〉 ≤ β|ξ|2, (2.12)
for all ξ ∈ Rn and all x ∈ Ω. Then ξ 7→ 〈A(x)ξ,ξ〉p/2 is convex by the above, and we
now show an important consequence of this, namely the weak lower semicontinuity of the
integral

I(u) =
∫

Ω
〈A(x)∇u,∇u〉p/2dx.

Proposition 2.32. Let Ω be a bounded domain and suppose that 2≤ p <∞. If

∇uj ⇀∇u weakly in Lp(Ω),

then
I(u)≤ liminf

j→∞
I(uj).

Proof. Since ξ 7→ 〈A(x)ξ,ξ〉p/2 is convex it follows from (2.11) that

〈A(x)∇uj ,∇uj〉p/2 ≥ 〈A(x)∇u,∇u〉p/2 +p〈A(x)∇u,∇u〉
p−2

2 〈A(x)∇u,∇uj−∇u〉.

Integration leads to

I(uj) =
∫

Ω
〈A(x)∇uj ,∇uj〉p/2dx

≥
∫

Ω
〈A(x)∇u,∇u〉p/2dx

+p
∫

Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇uj−∇u〉dx

= I(u) +p
∫

Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇uj−∇u〉dx

= I(u) +p
n∑

k,l=1

∫
Ω
〈A(x)∇u,∇u〉

p−2
2 akl(x) ∂u

∂xl

(
∂uj
∂xk
− ∂u

∂xk

)
dx.

(2.13)
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Recall from (2.3) and Remark 2.18 that the weak convergence

∇uj ⇀∇u in Lp(Ω)

means that for each k = 1,2, . . . ,n,

lim
j→∞

∫
Ω
v
(
∂uj
∂xk
− ∂u

∂xk

)
dx= 0

for all v ∈ Lq(Ω) such that 1/p+ 1/q = 1. Thus, if the function

〈A(x)∇u,∇u〉
p−2

2 akl(x) ∂u
∂xl

belongs to Lq(Ω) for all k, l = 1,2, . . . ,n, then
n∑

k,l=1

∫
Ω
〈A(x)∇u,∇u〉

p−2
2 akl(x) ∂u

∂xl

(
∂uj
∂xk
− ∂u

∂xk

)
dx= 0,

and (2.13) reduces to
I(uj)≥ I(u).

This implies that
liminf
j→∞

I(uj)≥ I(u).

Hence, we only have to show that

〈A(x)∇u,∇u〉
p−2

2 akl(x) ∂u
∂xl
∈ Lq(Ω).

By (2.12) we have∣∣∣∣〈A(x)∇u,∇u〉
p−2

2 akl(x) ∂u
∂xl

∣∣∣∣≤max
q,r
||aqr||∞(β|∇u|2)

p−2
2

∣∣∣∣ ∂u∂xl
∣∣∣∣

≤ β
p−2

2 max
q,r
||aqr||∞|∇u|p−2|∇u|.

Raising to the q power we find∣∣∣∣〈A(x)∇u,∇u〉
p−2

2 akl(x) ∂u
∂xl

∣∣∣∣q ≤ (β
p−2

2 max
q,r
||aqr||∞)q|∇u|(p−2)q|∇u|q

= (β
p−2

2 max
q,r
||aqr||∞)q|∇u|p−q|∇u|q

= (β
p−2

2 max
q,r
||aqr||∞)q|∇u|p,

thus ∫
Ω

∣∣∣∣〈A(x)∇u,∇u〉
p−2

2 akl(x) ∂u
∂xl

∣∣∣∣qdx= (β
p−2

2 max
q,r
||aqr||∞)q

∫
Ω
|∇u|pdx <∞,

and we conclude that
〈A(x)∇u,∇u〉

p−2
2 akl(x) ∂u

∂xl
∈ Lq(Ω).
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3 The equation
Now we introduce the variational integral and state the assumptions on the coefficient
functions. Moreover, we derive the Euler-Lagrange equation

∆p,A u= 0

for finite values of p, and show that it can be expressed with ∆∞,A u. Then we show some
properties of ∆p,A u for 4≤ p≤∞.

3.1 Variational problem
Our starting point is the problem of minimizing the variational integral

I(v) =
∫

Ω

( n∑
i,j=1

aij(x) ∂v
∂xi

(x) ∂v
∂xj

(x)
)p/2

dx

among all admissible functions v : Ω→ R with the same boundary values g, where Ω is a
bounded domain in Rn. By introducing the n×n matrix A(x) = (aij(x)), we can write

n∑
i,j=1

aij(x) ∂v
∂xi

∂v

∂xj
= 〈A(x)∇v,∇v〉.

Although standard convention is to simply denote the matrix by A, we shall write A(x)
throughout the text to remind the reader that the elements of the matrix depend on x.
We assume the following:

1. For each fixed x ∈Ω we can assume without loss of generality that the matrix A(x)
is symmetric. Indeed, if aij 6= aji we can define âij = (aij +aji)/2, and we find

n∑
i,j=1

âij(x) ∂v
∂xi

∂v

∂xj
=

n∑
i,j=1

aij(x) ∂v
∂xi

∂v

∂xj
.

2. For constants 0< α≤ β <∞ we assume that

α|ξ|2 ≤ 〈A(x)ξ,ξ〉 ≤ β|ξ|2 (3.1)

for all x ∈ Ω and all ξ ∈ Rn. This means that for each x ∈ Ω, the matrix A(x) is positive
definite:

〈A(x)ξ,ξ〉> 0 for all nonzero vectors ξ ∈ Rn.

3. For i, j,k = 1,2, . . . ,n we assume that

∂aij
∂xk

: Ω→ R

is Lipschitz continuous with constant K:∣∣∣∣∂aij∂xk
(x)− ∂aij

∂xk
(y)
∣∣∣∣≤K|x−y|, x,y ∈ Ω.
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4. From 3. it follows that aij : Ω→ R is Lipschitz continuous:

|aij(x)−aij(y)| ≤H|x−y|, x,y ∈ Ω, (3.2)

for i, j = 1,2, . . . ,n. To see this, notice that

|aij(x)−aij(y)|=
∣∣∣∣ ∫ 1

0

d

dt
aij(y+ t(x−y))dt

∣∣∣∣
=
∣∣∣∣ ∫ 1

0
〈∇aij(y+ t(x−y)),x−y〉dt

∣∣∣∣
≤
∫ 1

0
|〈∇aij(y+ t(x−y)),x−y〉|dt

≤ |x−y|
∫ 1

0
|∇aij(y+ t(x−y))|dt

≤ ||∇aij ||∞|x−y|,

by the Cauchy–Schwarz inequality. Since the domain Ω is bounded and the derivatives are
Lipschitz continuous, ||∇aij ||∞ is bounded. Thus, we can define the Lipschitz constant
H as

H = max
i,j
||∇aij ||∞,

and (3.2) follows.

We now derive the Euler-Lagrange equation for the variational integral

I(v) =
∫

Ω
〈A(x)∇v,∇v〉p/2dx, (3.3)

for finite values of p. We seek to minimize the integral among all functions v ∈W 1,p(Ω)
such that v−g ∈W 1,p

0 (Ω). Suppose that u is a minimizer. Then the function

v = u+ tη, t ∈ R, η ∈ C∞0 (Ω)

is admissible. Since u is a minimizer and v = u+ tη = u = g on ∂Ω, the function I(t) =
I(u+ tη) has a minimum at t= 0, hence

I′(0) = 0. (3.4)

We evaluate the derivative

I′(t) = d

dt

∫
Ω
〈A(x)∇(u+ tη),∇(u+ tη)〉p/2dx

=
∫

Ω
p〈A(x)∇(u+ tη),∇(u+ tη)〉

p−2
2 〈A(x)∇(u+ tη),∇η〉dx,

where the differentiation under the integral sign is justified by the Dominated convergence
theorem. Using (3.4) we find that the first variation vanishes:∫

Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇η〉dx= 0 for all η ∈ C∞0 (Ω). (3.5)
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Integration by parts leads to∫
Ω

div(〈A(x)∇u,∇u〉
p−2

2 A(x)∇u)η dx= 0.

Since this holds for all test functions η, we have

∆p,A u := div(〈A(x)∇u(x),∇u(x)〉
p−2

2 A(x)∇u(x)) = 0

by the Variational lemma 2.6. This is the Euler-Lagrange equation for the variational
integral (3.3) for finite values of p, and we shall restrict our attention to 4≤ p <∞. If we
write this out we find

∆p,A u= 〈A(x)∇u,∇u〉
p−4

2

{
〈A(x)∇u,∇u〉div(A(x)∇u(x)) +

(
p−2

2

)
∆∞,A u

}
= 0.

The notation means

div(A(x)∇u(x)) =
n∑

i,j=1

∂aij
∂xi

∂u

∂xj
+

n∑
i,j=1

aij
∂2u

∂xi∂xj
=

n∑
i,j=1

∂aij
∂xi

∂u

∂xj
+ trace(A(D2u)),

where D2u denotes the Hessian matrix of u, and the trace of an n×n matrix B = (bij) is
defined as

trace(B) =
n∑
i=1

bii.

Furthermore

∆∞,A u :=
〈
∇x〈A(x)∇u,∇u〉+ 2(D2u)A(x)∇u,A(x)∇u

〉
=
〈
∇x〈A(x)∇u,∇u〉,A(x)∇u

〉
+ 2〈(D2u)A(x)∇u,A(x)∇u〉

=
n∑

i,j,k,l=1

(
∂aij
∂xk

∂u

∂xi

∂u

∂xj
akl

∂u

∂xl
+ 2aik

∂u

∂xk

∂2u

∂xi∂xj
ajl

∂u

∂xl

)
,

where

∇x〈A(x)ξ,ξ〉=
(
∂

∂x1
〈A(x)ξ,ξ〉, ∂

∂x2
〈A(x)ξ,ξ〉, . . . , ∂

∂xn
〈A(x)ξ,ξ〉

)
=
( n∑
i,j=1

∂aij
∂x1

(x)ξiξj ,
n∑

i,j=1

∂aij
∂x2

(x)ξiξj , . . . ,
n∑

i,j=1

∂aij
∂xn

(x)ξiξj
)
, ξ ∈ Rn.

As we shall see, the equation
∆∞,A u= 0

is in some sense the limit equation of the Euler-Lagrange equations

∆p,A u= 0 as p→∞.

Furthermore, we interpret the limit equation as the Euler-Lagrange equation for the ”vari-
ational problem”

inf
v
||〈A∇v,∇v〉1/2||∞.

These statements will be justified later in the text.
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Observation 3.1. The notation ∆p,A is suggestive. If aij equals the Kronecker delta:

aij = δij =

1 if i= j

0 if i 6= j,

then A reduces to the identity matrix I. In that case the Euler-Lagrange equation for
finite p becomes the p-Laplace equation:

∆p,I u= div(|∇u|p−2∇u) = ∆pu= 0.
In particular, if p= 2 we find the Laplace equation:

∆2,I u= ∆u= 0.
If aij = δij/2 and p=∞ we obtain the infinity-Laplace equation:

∆∞, 12I u=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= ∆∞u= 0.

Example 3.2 (Solution in one variable). In one variable the equation ∆∞,A u= 0 can be
integrated. Consider the Dirichlet problem{

∆∞,A u= a(x)a′(x)u′(x)3 + 2a(x)2u′(x)2u′′(x) = 0 in (l, r)
u(l) = L, u(r) =R,

where we assume that a and a′ is Lipschitz continuous in [l, r], and that
0< α≤ a(x)≤ β <∞ for all x ∈ [l, r].

Observe that
0 = a(x)a′(x)u′(x)3 + 2a(x)2u′(x)2u′′(x)

= a(x)a′(x)v(x)3 + 2a(x)2v(x)2v′(x), v = u′

= a(x)a′(x)v(x)3 + 2
3a(x)2 d

dx
v(x)3,

d

dx
v(x)3 = 3v(x)2v′(x)

= a(x)a′(x)w(x) + 2
3a(x)2w′(x), w = v3.

By integrating the equation

a(x)a′(x)w(x) + 2
3a(x)2w′(x) = 0

we find
w(x) = C̃a(x)−3/2

v(x) = Ca(x)−1/2

u′(x) = Ca(x)−1/2.

Integrating the last equation from l to x and using u(r) =R we obtain the solution

u(x) = L+ (R−L)

∫ x

l
a(t)−1/2dt∫ r

l
a(t)−1/2dt

.

It is considerably harder to find an explicit solution in several variables.
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3.2 Some properties
It is often convenient to write

∆p,A u(x) = Lp,A(x,∇u(x),D2u(x)), 4≤ p≤∞.

This defines a function
Lp,A : Ω×Rn×Sn→ R.

For x ∈ Ω, ξ ∈ Rn and X ∈ Sn we can now write

L∞,A(x,ξ,X) =
〈
∇x〈A(x)ξ,ξ〉+ 2XA(x)ξ,A(x)ξ

〉
and

Lp,A(x,ξ,X) = 〈A(x)ξ,ξ〉
p−4

2

{
〈A(x)ξ,ξ〉

(
n∑

i,j=1

∂aij
∂xi

(x)ξj + trace(A(x)X)
)

+
(
p−2

2

)
L∞,A(x,ξ,X)

}
, 4≤ p <∞.

A key property of the function Lp,A is the following.

Proposition 3.3. Let X,Y ∈ Sn be symmetric n×n matrices, ξ ∈ Rn, and x ∈ Ω. If
X≥ Y, then

Lp,A(x,ξ,X)≥ Lp,A(x,ξ,Y) for all 4≤ p≤∞.

Proof. We remind that the notation X≥ Y means

〈Xη,η〉 ≥ 〈Yη,η〉 for all η ∈ Rn.

If p=∞ we immediately find

L∞,A(x,ξ,X) =
〈
∇x〈A(x)ξ,ξ〉,A(x)ξ

〉
+ 2〈XA(x)ξ,A(x)ξ〉

≥
〈
∇x〈A(x)ξ,ξ〉,A(x)ξ

〉
+ 2〈YA(x)ξ,A(x)ξ〉

= L∞,A(x,ξ,Y).

If 4≤ p <∞ we obtain by the above,

Lp,A(x,ξ,X)−Lp,A(x,ξ,Y)

= 〈A(x)ξ,ξ〉
p−4

2

{
〈A(x)ξ,ξ〉

(
trace(A(x)X)− trace(A(x)Y)

)
+
(
p−2

2

)(
L∞,A(x,ξ,X)−L∞,A(x,ξ,Y)

)}
≥ 〈A(x)ξ,ξ〉

p−2
2
(
trace(A(x)X)− trace(A(x)Y)

)
.

(3.6)

Since 〈A(x)ξ,ξ〉 ≥ 0 for all ξ ∈ Rn, we only have to show that

trace(A(x)X)− trace(A(x)Y)≥ 0.
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Let A = QTDQ, where Q−1 = QT , and D = (λjδji). Here λj denotes the eigenvalues of
A and δji the Kronecker delta. We have

trace(A(x)X)− trace(A(x)Y)
= trace(A(X−Y))
= trace

(
QTDQ(X−Y)

)
= trace

(
(QTD1/2)(D1/2Q(X−Y))

)
, D1/2 = (λ1/2

j δji)

= trace
(
(D1/2Q(X−Y))(QTD1/2)

)
, trace(EF ) = trace(FE)

= trace
(
(D1/2Q)(X−Y)(D1/2Q)T

)
, D1/2 = (D1/2)T

= trace(B(X−Y)BT ), D1/2Q=B = (bij)

=
n∑

j,k,l=1
bjl(X−Y)lkbjk

=
n∑
j=1
〈(X−Y)bj , bj〉 ≥ 0, bj = (bj1, bj2, . . . , bjn),

where we used that X−Y ≥ 0 in the last inequality. Inserting this into (3.6) we finally
conclude that

Lp,A(x,ξ,X)−Lp,A(x,ξ,Y)≥ 〈A(x)ξ,ξ〉
p−2

2
(
trace(A(x)X)− trace(A(x)Y)

)
≥ 0.

Remark 3.4. We mention that the above result is the same as saying that −Lp,A is
degenerate elliptic. This is a common classification of second-order partial differential
equations.

We now restrict our attention to the function L∞,A. First we note an auxiliary esti-
mate.

Lemma 3.5. Let X ∈ Sn be a symmetric n×n matrix, ξ ∈ Rn, and x,y ∈ Ω. Then∣∣∣〈∇x〈A(x)ξ,ξ〉,A(x)ξ
〉
−
〈
∇x〈A(y)ξ,ξ〉,A(y)ξ

〉∣∣∣≤ κ|x−y||ξ|3,
where

κ= n3(Kmax
q,r
||aqr||∞+H2).

Proof. Write ξ = (ξ1, ξ2, . . . , ξn). We have∣∣∣〈∇x〈A(x)ξ,ξ〉,A(x)ξ
〉
−
〈
∇x〈A(y)ξ,ξ〉,A(y)ξ

〉∣∣∣
=
∣∣∣∣∣

n∑
i,j,k,l=1

(
∂aij
∂xk

(x)ξiξjakl(x)ξl−
∂aij
∂xk

(y)ξiξjakl(y)ξl
)∣∣∣∣∣

≤
n∑

i,j,k,l=1

∣∣∣∣∂aij∂xk
(x)akl(x)− ∂aij

∂xk
(y)akl(y)

∣∣∣∣|ξiξjξl|.
(3.7)
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By the Lipschitz continuity we find∣∣∣∣∂aij∂xk
(x)akl(x)− ∂aij

∂xk
(y)akl(y)

∣∣∣∣
=
∣∣∣∣(∂aij∂xk

(x)− ∂aij
∂xk

(y)
)
akl(x) +

(
akl(x)−akl(y)

)∂aij
∂xk

(y)
∣∣∣∣

≤
∣∣∣∣∂aij∂xk

(x)− ∂aij
∂xk

(y)
∣∣∣∣∣∣∣akl(x)

∣∣∣+ ∣∣∣akl(x)−akl(y)
∣∣∣∣∣∣∣∂aij∂xk

(y)
∣∣∣∣

≤K|x−y|max
q,r
||aqr||∞+H|x−y|max

q,r
||∇aqr||∞

= (Kmax
q,r
||aqr||∞+H2)|x−y|.

Furthermore, by applying Young’s inequality twice on |ξiξjξl|:

|ξiξjξl| ≤
|ξi|3

3 + |ξjξl|
3/2

3/2 ≤ |ξi|
3

3 + 2
3

( |ξj |3
2 + |ξl|

3

2

)
= |ξi|

3

3 + |ξj |
3

3 + |ξl|
3

3
we obtain

n∑
i,j,k,l=1

|ξiξjξl| ≤
n∑

i,j,k,l=1

( |ξi|3
3 + |ξj |

3

3 + |ξl|
3

3

)
= n3

n∑
i=1
|ξi|3. (3.8)

We claim that
n∑
i=1
|ξi|3 ≤

( n∑
i=1

ξ2
i

)3/2
.

To see this we first calculate( n∑
i=1

ξ2
i

)3
=

n∑
i=1

ξ6
i +

n∑
j=1

n∑
i=1
i6=j

ξ4
j ξ

2
i +P,

where P is a sum of nonnegative numbers, then we apply Young’s inequality such that( n∑
i=1
|ξi|3

)2
=

n∑
i=1

ξ6
i +

n∑
j=1

n∑
i=1
i6=j

|ξj |3|ξi|3

=
n∑
i=1

ξ6
i +

n∑
j=1

n∑
i=1
i6=j

(ξ2
j |ξi|)(|ξj |ξ2

i )

≤
n∑
i=1

ξ6
i + 1

2

n∑
j=1

n∑
i=1
i 6=j

ξ4
j ξ

2
i + 1

2

n∑
j=1

n∑
i=1
i6=j

ξ2
j ξ

4
i

=
n∑
i=1

ξ6
i +

n∑
j=1

n∑
i=1
i 6=j

ξ4
j ξ

2
i

≤
n∑
i=1

ξ6
i +

n∑
j=1

n∑
i=1
i6=j

ξ4
j ξ

2
i +P

=
( n∑
i=1

ξ2
i

)3
.
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Inserting this into (3.8) we now have

n∑
i,j,k,l=1

|ξiξjξl| ≤ n3
( n∑
i=1

ξ2
i

)3/2
= n3|ξ|3. (3.9)

Continuing to estimate (3.7) we obtain∣∣∣∣〈∇x〈A(x)ξ,ξ〉,A(x)ξ
〉
−
〈
∇x〈A(y)ξ,ξ〉,A(y)ξ

〉∣∣∣∣
≤

n∑
i,j,k,l=1

∣∣∣∣∂aij∂xk
(x)akl(x)− ∂aij

∂xk
(y)akl(y)

∣∣∣∣|ξiξjξl|
≤ (Kmax

q,r
||aqr||∞+H2)|x−y|

n∑
i,j,k,l=1

|ξiξjξl|

≤ n3(Kmax
q,r
||aqr||∞+H2)|x−y||ξ|3.

(3.10)

From this Lemma we immediately obtain the following continuity property of L∞,A.

Corollary 3.6. Let X,Y ∈ Sn be symmetric n×n matrices. Then the estimate

L∞,A(x,ξ,X)−L∞,A(y,ξ,Y)
≤ κ|x−y||ξ|3 + 2{〈XA(x)ξ,A(x)ξ〉−〈YA(y)ξ,A(y)ξ〉}

is valid for ξ ∈ Rn and x,y ∈ Ω.

Proof. By Lemma 3.5 we find

L∞,A(x,ξ,X)−L∞,A(y,ξ,Y)
=
〈
∇x〈A(x)ξ,ξ〉+ 2XA(x)ξ,A(x)ξ

〉
−
〈
∇x〈A(y)ξ,ξ〉+ 2YA(y)ξ,A(y)ξ

〉
=
〈
∇x〈A(x)ξ,ξ〉,A(x)ξ

〉
−
〈
∇x〈A(y)ξ,ξ〉,A(y)ξ

〉
+ 2{〈XA(x)ξ,A(x)ξ〉−〈YA(y)ξ,A(y)ξ〉}
≤
∣∣∣〈∇x〈A(x)ξ,ξ〉,A(x)ξ

〉
−
〈
∇x〈A(y)ξ,ξ〉,A(y)ξ

〉∣∣∣
+ 2{〈XA(x)ξ,A(x)ξ〉−〈YA(y)ξ,A(y)ξ〉}
≤ κ|x−y||ξ|3 + 2{〈XA(x)ξ,A(x)ξ〉−〈YA(y)ξ,A(y)ξ〉} .

(3.11)

We mention that one can obtain various estimates of

〈XA(x)ξ,A(x)ξ〉−〈YA(y)ξ,A(y)ξ〉,

but we omit these since they will not be needed later in the text.
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4 The equation for finite p

We now study existence, uniqueness and other fundamental properties of solutions of the
Dirichlet problem {

∆p,A u= 0 in Ω
u= g on ∂Ω,

for finite values of p. For the remaining part of the text we assume that

Ω is a bounded domain in Rn, p > n, p≥ 4.

In this section we also assume that
p <∞.

We remind that the equation reads

∆p,A u= div(〈A(x)∇u(x),∇u(x)〉
p−2

2 A(x)∇u(x)) = 0.

Motivated by (3.5) we make the following definition.

Definition 4.1. We say that u ∈W 1,p
loc (Ω) is a weak solution of the equation ∆p,A u = 0

in Ω, if ∫
Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇η〉dx= 0 for all η ∈ C∞0 (Ω).

We have the following fundamental result.

Proposition 4.2. Suppose that u ∈W 1,p(Ω). Then u is a minimizer of the variational
integral

I(u) =
∫

Ω
〈A(x)∇u,∇u〉p/2dx

if and only if u is a weak solution of the equation ∆p,A u= 0.

Proof. In Section 3.1 we showed in the calculations from (3.3) to (3.5) that if u is a
minimizer, then u is also a weak solution.

Now suppose that u is a weak solution, and that v is admissible, both having the
same boundary values. By Lemma 2.31, the function ξ 7→ 〈A(x)ξ,ξ〉p/2 is convex, thus by
(2.11),

〈A(x)∇v,∇v〉p/2 ≥ 〈A(x)∇u,∇u〉p/2 +p〈A(x)∇u,∇u〉
p−2

2 〈A(x)∇u,∇(v−u)〉.

Integration leads to

I(v) =
∫

Ω
〈A(x)∇v,∇v〉p/2dx

≥
∫

Ω
〈A(x)∇u,∇u〉p/2dx+p

∫
Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇(v−u)〉dx

= I(u) +p
∫

Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇(v−u)〉dx.
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Now let η = v−u. Since η belongs to W 1,p
0 (Ω), it can be approximated by functions in

C∞0 (Ω), which implies that the last integral vanishes. Hence

I(v)≥ I(u),

and we conclude that u is a minimizer.

The term variational solutions is frequently used for weak solutions/minimizers.

4.1 Existence and uniqueness
The main result of this section is the following.

Theorem 4.3. Assume that g ∈C(Ω)∩W 1,p(Ω). Then there exists a unique weak solution
u ∈ C(Ω)∩W 1,p(Ω) of the equation ∆p,A u= 0 with boundary values g.

Proof. In view of Proposition 4.2 it is enough to show that there exists a unique minimizer.
We first show that the minimizer exists by using the Direct method in the calculus of
variations, see [5] for more details. Let

I0 = inf
v
I(v),

where the infimum is taken over all v ∈ W 1,p(Ω) with boundary values g. Since g is
admissible we have

I0 ≤ I(g) =
∫

Ω
〈A(x)∇g,∇g〉p/2dx≤

∫
Ω
βp/2|∇g|pdx= βp/2||∇g||pp =:M <∞,

where we used (3.1). Moreover, since

I(v) =
∫

Ω
〈A(x)∇v,∇v〉p/2dx≥

∫
Ω
αp/2|∇v|pdx≥ 0

for all admissible v, we have
inf
v
I(v) = I0 ≥ 0.

Thus
0≤ I0 ≤M <∞,

so there is a sequence (uj) of admissible functions such that

lim
j→∞

I(uj) = I0,

and we may assume that I(uj)< I0 + 1 for all j ∈ N. Since∫
Ω
αp/2|∇uj |pdx≤ I(uj)< I0 + 1

we see that the sequence (∇uj) is uniformly bounded:

||∇uj ||p < α−1/2(I0 + 1)1/p =: C1 <∞ for all j ∈ N.
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Furthermore, since uj−g ∈W 1,p
0 (Ω) we find

||uj ||p ≤ ||uj−g||p+ ||g||p
≤ diam(Ω)||∇(uj−g)||p+ ||g||p
≤ diam(Ω)(||∇uj ||p+ ||∇g||p) + ||g||p
≤ diam(Ω)(C1 + ||∇g||p) + ||g||p
=: C2 <∞ for all j ∈ N,

by Friedrichs’ inequality 2.21. This shows that the sequence (uj) is uniformly bounded.
Then by Proposition 2.10 there exists a subsequence (ujk) and a function u ∈W 1,p(Ω)
such that

ujk ⇀u and ∇ujk ⇀∇u weakly in Lp(Ω).

Since u− g ∈W 1,p
0 (Ω) and p > n we conclude by Morrey’s inequality 2.19 that u ∈ C(Ω)

with u|∂Ω = g. By Proposition 2.32 we find

I(u)≤ liminf
k→∞

I(ujk) = I0.

On the other hand, since u is admissible we have that I(u)≥ I0. Thus I(u) = I0, and we
conclude that there exists a minimizer u ∈ C(Ω)∩W 1,p(Ω).

To establish uniqueness, we assume by contradiction that there are two minimizers u1
and u2. Then (u1 +u2)/2 is admissible, and by the strict convexity in Lemma 2.31 we
have 〈

A(x)
(∇u1 +∇u2

2

)
,
∇u1 +∇u2

2

〉p/2
<

1
2〈A(x)∇u1,∇u1〉p/2 + 1

2〈A(x)∇u2,∇u2〉p/2 when ∇u1 6=∇u2.

(4.1)

This leads to the contradiction

I(u1)≤ I
(
u1 +u2

2

)
=
∫

Ω

〈
A(x)

(∇u1 +∇u2
2

)
,
∇u1 +∇u2

2

〉p/2
dx

<
1
2

∫
Ω
〈A(x)∇u1,∇u1〉p/2dx+ 1

2

∫
Ω
〈A(x)∇u2,∇u2〉p/2dx

= 1
2I(u1) + 1

2I(u2)

= I(u1),

unless ∇u1 =∇u2 a.e. in Ω. Thus we must have u1 = u2.

4.2 Comparison principle
The following two results will be useful. We begin with the Maximum principle, which
states that the difference of two weak solutions attains its maximum on the boundary.
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Lemma 4.4 (Maximum principle). Suppose that u,v ∈ C(Ω)∩W 1,p(Ω) are two weak
solutions of ∆p,A w = 0 in Ω. Then

max
Ω

(u−v) = max
∂Ω

(u−v).

Proof. Assume by contradiction that

c= max
Ω

(u−v)>max
∂Ω

(u−v) = d.

Define the open set

G=
{
x ∈ Ω : u(x)−v(x)> c+d

2

}
.

Then G⊂⊂Ω and u= v+(c+d)/2 on ∂G. Furthermore, since u and v are weak solutions
we have

∆p,A u= 0 in G,

and

∆p,A

(
v+ c+d

2

)
= div

{〈
A(x)∇

(
v+ c+d

2

)
,∇
(
v+ c+d

2

)〉p−2
2
A(x)∇

(
v+ c+d

2

)}
= div(〈A(x)∇v,∇v〉

p−2
2 A(x)∇v) = ∆p,A v = 0 in G.

Thus, u and v+ (c+d)/2 are both weak solutions in G with the same boundary values.
Then by Theorem 4.3 we find

u= v+ c+d

2 in G.

This shows that the set G is empty, hence

u−v ≤ c+d

2 in Ω,

which leads to the contradiction

max
Ω

(u−v)≤ c+d

2 <
c+ c

2 = max
Ω

(u−v).

Thus we must have
max

Ω
(u−v) = max

∂Ω
(u−v).

Now we introduce weak supersolutions and weak subsolutions.

Definition 4.5. We say that u∈W 1,p
loc (Ω) is a weak supersolution of the equation ∆p,A u=

0 in Ω, if ∫
Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇η〉dx≥ 0,

for all nonnegative η ∈ C∞0 (Ω). For weak subsolutions the inequality is reversed.
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A weak solution is clearly both a weak supersolution and a weak subsolution. Our
next result establishes a comparison principle when n < p <∞.

Proposition 4.6 (Comparison principle). If u is a weak subsolution and v is a weak
supersolution of ∆p,A w = 0, then u≤ v a.e. in Ω.

Proof. By subtracting ∫
Ω
〈A(x)∇v,∇v〉

p−2
2 〈A(x)∇v,∇η〉dx≥ 0

from ∫
Ω
〈A(x)∇u,∇u〉

p−2
2 〈A(x)∇u,∇η〉dx≤ 0,

and inserting the function

η = (u−v)+ = max{u−v,0} ∈W 1,p
0 (Ω)

we find∫
Ω

〈
〈A(x)∇u,∇u〉

p−2
2 A(x)∇u−〈A(x)∇v,∇v〉

p−2
2 A(x)∇v,∇(u−v)+

〉
dx≤ 0.

Then by Proposition 2.29,

4
(√

α

2

)p ∫
Ω
|∇(u−v)+|pdx≤ 0,

which implies that ∇(u−v)+ = 0 a.e. in Ω, and consequently u≤ v a.e. in Ω.
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5 Limit of solutions as p→∞
In the previous section we established the existence and uniqueness of minimizers up of
the variational integral ∫

Ω
〈A(x)∇v,∇v〉p/2dx.

These are weak solutions of the corresponding Euler-Lagrange equation

∆p,A up = 0.

In this section we show that the uniform limit

lim
pj→∞

upj = u∞

exists for some subsequence pj , and that u∞ minimizes the norm

||〈A∇v,∇v〉1/2||∞

in some sense. Two important questions arise: how is u∞ related to the equation

∆∞,A v = 0,

and is it unique, or does it depend on the particular choice of subsequence pj? It turns
out that we are not able to answer these questions using only variational techniques - we
have to introduce some new tools. We postpone these issues and turn to the task at hand.
Since the weak solution up of

∆p,A up = 0
belongs to the space W 1,p(Ω), we expect that the limit

lim
p→∞up

belongs to W 1,∞(Ω). In Theorem 2.25 we found that locally the Sobolev space W 1,∞(Ω)
consists of Lipschitz continuous functions. Thus, we consider Lipschitz continuous bound-
ary values, and we begin by extending these to the whole domain. Let g : ∂Ω→ R be
Lipschitz continuous:

|g(y1)−g(y2)| ≤ L|y1−y2|, y1,y2 ∈ ∂Ω,

and suppose that w : Ω→ R has boundary values g and is Lipschitz continuous with the
same constant:

|w(x)−w(y)| ≤ L|x−y|, x,y ∈ Ω.
By some manipulations it follows that

max
y∈∂Ω

(g(y)−L|x−y|)≤ w(x)≤ max
y∈∂Ω

(g(y) +L|x−y|).

These two bounds are themselves Lipschitz continuous extensions of g as a function of
x with constant L. Extending g by for instance the upper bound, we have that g ∈
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C(Ω)∩W 1,∞(Ω), where we use the same notation for the extension. Furthermore by
Rademacher’s theorem 2.26, g is differentiable a.e. in Ω, thus

||∇g||∞,Ω ≤ L.

We remind that Ω is a bounded domain in Rn and that p > n.

Theorem 5.1. Let g ∈ C(Ω)∩W 1,∞(Ω) be Lipschitz continuous. Then there exists a
function u∞ ∈ C(Ω)∩W 1,∞(Ω) with boundary values g having the following minimizing
property in each subdomain D ⊂ Ω: if v ∈ C(D)∩W 1,∞(D) is such that v = u∞ on ∂D,
then

||〈A∇u∞,∇u∞〉1/2||∞,D ≤ ||〈A∇v,∇v〉1/2||∞,D.

The function u∞ can be obtained as the uniform limit

lim
pj→∞

upj = u∞ in Ω,

where upj is the weak solution of the equation

∆pj ,A upj = 0

with upj |∂Ω = g.

Proof. First we prove existence. We aim at using Ascoli’s theorem 2.2. From Theorem
4.3 we know that there exists a unique minimizer up ∈ C(Ω)∩W 1,p(Ω) with boundary
values g. Since up is a minimizer and g is Lipschitz continuous with constant L we have∫

Ω
αp/2|∇up|pdx≤

∫
Ω
〈A∇up,∇up〉p/2dx

≤
∫

Ω
〈A∇g,∇g〉p/2dx

≤
∫

Ω
βp/2|∇g|pdx

≤ βp/2Lpµ(Ω),

where µ is n-dimensional Lebesgue measure. Thus

||∇up||p ≤
√
β

α
Lµ(Ω)1/p. (5.1)

Furthermore, since up−g ∈W 1,p
0 (Ω) and p > n we have by Morrey’s inequality 2.19,

|up(x)−up(y)| ≤ |g(x)−g(y)|+ |(up(x)−g(x))− (up(y)−g(y))|
≤ L|x−y|+Cp|x−y|1−n/p||∇(up−g)||p
≤ L|x−y|+Cp|x−y|1−n/p(||∇up||p+ ||∇g||p)

≤ L|x−y|+Cp

(√
β

α
Lµ(Ω)1/p+Lµ(Ω)1/p

)
|x−y|1−n/p,
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where Cp is such that Cp→ 2n+1 as p→∞. By Friedrichs’ inequality 2.21 and the above
we obtain

||up||p ≤ ||up−g||p+ ||g||p
≤ diam(Ω)||∇(up−g)||p+ ||g||p
≤ diam(Ω)(||∇up||p+ ||∇g||p) + ||g||p

≤ diam(Ω)
(√

β

α
Lµ(Ω)1/p+Lµ(Ω)1/p

)
+ ||g||p.

Thus, the sequence (up) is equicontinuous and equibounded for p > n. Then by Ascoli’s
theorem there is a subsequence (upj ) and a function u∞ ∈ C(Ω) satisfying u∞|∂Ω = g,
such that

lim
pj→∞

upj = u∞ uniformly in Ω.

Now we show that u∞ ∈W 1,∞(Ω). Let pj > s > n. Proposition 2.4 and (5.1) yields

(
−
∫

Ω
|∇upj |

sdx
)1/s

≤
(
−
∫

Ω
|∇upj |

pjdx
)1/pj

≤
√
β

α
L, (5.2)

so the sequence (∇upj ) is uniformly bounded:

sup
pj
||∇upj ||s ≤

√
β

α
Lµ(Ω)1/s.

By Proposition 2.10 we conclude that

∇upj ⇀∇u∞ weakly in Ls(Ω),

for some subsequence, still denoted by the index pj . By a diagonalization procedure we
can extract a single subsequence such that

∇upj ⇀∇u∞ weakly in Ls(Ω) for all s ∈ (n,∞).

Furthermore, the weak lower semicontinuity

||∇u∞||s ≤ liminf
pj→∞

||∇upj ||s,

combined with (5.2) yields

(
−
∫

Ω
|∇u∞|sdx

)1/s
≤
√
β

α
L.

Since s was arbitrarily large, letting s→∞ we obtain

||∇u∞||∞ ≤
√
β

α
L, (5.3)

thus u∞ ∈W 1,∞(Ω). This concludes the existence.



40 5 LIMIT OF SOLUTIONS AS P →∞

Now we show the minimizing property. Let D ⊂Ω and let vpj be the weak solution of

∆pj ,A vpj = 0 in D

with vpj = u∞ on ∂D. Then vpj is minimizing:∫
D
〈A(x)∇vpj ,∇vpj 〉pj/2dx≤

∫
D
〈A(x)∇v,∇v〉pj/2dx, (5.4)

where v ∈ C(D)∩W 1,∞(D) is such that v = u∞ on ∂D. Now we show that vpj → u∞
uniformly in D. Notice that

||vpj −u∞||∞,D ≤ ||vpj −upj ||∞,D + ||upj −u∞||∞,D,

and recall that upj → u∞ uniformly in D. Since vpj and upj are weak solutions in D we
find for the first term on the right-hand side that

max
D

(vpj −upj ) = max
∂D

(vpj −upj ) = max
∂D

(u∞−upj )≤ ||u∞−upj ||∞,D,

by the Maximum principle 4.4. Doing the same for upj −vpj we obtain

max
D
|vpj −upj | ≤ ||u∞−upj ||∞,D,

and we conclude that vpj → u∞ uniformly in D. Let pj > s > n. By Proposition 2.4 and
(5.4) we have

(
−
∫
D
αs/2|∇vpj |

sdx
)1/s

≤
(
−
∫
D
〈A(x)∇vpj ,∇vpj 〉s/2dx

)1/s

≤
(
−
∫
D
〈A(x)∇vpj ,∇vpj 〉pj/2dx

)1/pj

≤
(
−
∫
D
〈A(x)∇v,∇v〉pj/2dx

)1/pj

≤ ||〈A∇v,∇v〉1/2||∞,D,

hence the sequence (∇vpj ) is uniformly bounded. By Proposition 2.10 there is a subse-
quence such that ∇vpj ⇀∇u∞ weakly in Ls(Ω), and we can extract a single subsequence
so that ∇vpj ⇀∇u∞ weakly in Ls(Ω) for all s ∈ (n,∞). By Proposition 2.32 we find

(
−
∫
D
〈A(x)∇u∞,∇u∞〉s/2dx

)1/s
≤ liminf

pj→∞

(
−
∫
D
〈A(x)∇vpj ,∇vpj 〉s/2dx

)1/s

≤ ||〈A∇v,∇v〉1/2||∞,D,

and the conclusion

||〈A∇u∞,∇u∞〉1/2||∞,D ≤ ||〈A∇v,∇v〉1/2||∞,D

follows by letting s→∞.
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6 Viscosity solutions
To motivate the following concept we begin with a result by Aronsson on the infinity-
Laplace equation

∆∞u=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0,

which in our setting corresponds to the situation

A= (aij) = (δij/2) = 1
2I, ∆∞, 12I u= ∆∞u,

where δij is the Kronecker delta and I is the identity matrix.
Second derivatives are present in the equation, thus a reasonable candidate for a class

of solutions is C2. However, Aronsson showed in [2] that for u∈C2(Ω) satisfying ∆∞u= 0
in Ω, either ∇u 6= 0 or u is constant in Ω. Hence, one can not have smoothness at the
critical points. This leads to the problem that the second derivatives do not always
exist when they are needed. Furthermore, it seems to be impossible to derive a weak
formulation involving only the first derivatives. To see this, multiply the equation with a
test function η and integrate.

We mention that one can establish uniqueness of classical solutions of the infinity-
Laplace equation without critical points. In the general case a construction by Jensen
[12] is needed, where auxiliary equations are introduced to avoid the critical points. The
absence of second derivatives requires a ”doubling of variables” argument. In this proce-
dure viscosity solutions is the appropriate setting. For the equation

∆∞,A u=
〈
∇x〈A(x)∇u,∇u〉+ 2(D2u)A(x)∇u,A(x)∇u

〉
=

n∑
i,j,k,l=1

(
∂aij
∂xk

∂u

∂xi

∂u

∂xj
akl

∂u

∂xl
+ 2aik

∂u

∂xk

∂2u

∂xi∂xj
ajl

∂u

∂xl

)
.

we shall follow this procedure.
We refer to [18] for a thorough discussion of the above.

Definition 6.1. Let n < p≤∞. We say that u ∈ C(Ω) is a viscosity supersolution of the
equation ∆p,A u= 0 in Ω, if

∆p,A φ(x0)≤ 0

whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that φ(x0) = u(x0) and φ(x) < u(x) for x ∈
Ω\{x0}, that is, φ touches u from below at x0.

We say that v ∈ C(Ω) is a viscosity subsolution of the equation ∆p,A v = 0 in Ω, if

∆p,A ψ(x0)≥ 0

whenever x0 ∈ Ω and ψ ∈ C2(Ω) are such that ψ(x0) = v(x0) and ψ(x) > v(x) for x ∈
Ω\{x0}, that is, ψ touches v from above at x0.

We call w ∈ C(Ω) a viscosity solution of the equation ∆p,A w = 0 in Ω, if it is both a
viscosity supersolution and a viscosity subsolution.
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Instead of the condition that φ touches u from below at x0, we note that an equivalent
definition for viscosity supersolutions is to require that u−φ has a strict minimum at
x0. Similary for viscosity subsolutions, we can replace the touching from above condition
by requiring that v−ψ has a strict maximum at x0. We also note that for each point
in Ω, there is a corresponding family of test functions satisfying the requirements in the
definition above. This family may be empty, and in that case there is no requirement.

Let us verify that for a function in C2(Ω), the concepts of classical solutions and
viscosity solutions agree.

Proposition 6.2. Let n< p≤∞. A function u∈C2(Ω) is a viscosity solution of ∆p,A u=
0 if and only if ∆p,A u(x) = 0 holds pointwise in Ω.

Proof. We show this for subsolutions. The proof in the case of supersolutions is similar.
We remind that for a classical subsolution u ∈ C2(Ω),

∆p,A u(x)≥ 0 for all x ∈ Ω.

First assume that u ∈ C2(Ω) is a viscosity subsolution. Consider the function

ψ(x) = u(x) + |x−x0|4,

where x0 ∈ Ω. Then ψ ∈ C2(Ω) satisfies

ψ(x0) = u(x0), ψ(x)> u(x) when x 6= x0,

so ψ is a test function as in the definition, thus

0≤∆p,A ψ(x0) = ∆p,A u(x0).

Now suppose that u ∈C2(Ω) is a classical subsolution. Let ψ ∈C2(Ω) be such that u−ψ
has a strict maximum at some point x0. Then

∇ψ(x0) =∇u(x0),
D2ψ(x0)≥D2u(x0)

by the infinitesimal calculus. Using the alternative notation

∆p,A ψ(x0) = Lp,A(x0,∇ψ(x0),D2ψ(x0)),
∆p,A u(x0) = Lp,A(x0,∇u(x0),D2u(x0))

we find by Proposition 3.3,

∆p,A ψ(x0) = Lp,A(x0,∇ψ(x0),D2ψ(x0))
= Lp,A(x0,∇u(x0),D2ψ(x0))
≥ Lp,A(x0,∇u(x0),D2u(x0))
= ∆p,A u(x0)≥ 0,

which shows that u is a viscosity subsolution.
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Now we show that weak solutions are viscosity solutions.

Lemma 6.3. Let n < p <∞. If u is a weak solution of ∆p,A u = 0, then u is also a
viscosity solution.

Proof. We show the result for supersolutions. Let u be a weak supersolution and assume
by contradiction that u is not a viscosity supersolution. Then at some point x0 ∈Ω there
is a φ ∈ C2(Ω) touching u from below at x0 such that

∆p,A φ(x0)> 0.

By continuity, there is some δ > 0 so that ∆p,A φ(x)> 0 when |x−x0|< 2δ. Thus, φ is a
classical subsolution in the ball B(x0,2δ). Now define the function

ψ(x) = φ(x) + 1
2 min
∂B(x0,δ)

(u−φ).

Observe that ψ < u on ∂B(x0, δ) and ψ(x0)> u(x0). Consider the open set

Dδ = {ψ > u}∩B(x0, δ),

and note that ψ = u on ∂Dδ. Since u is a weak supersolution and ψ is a weak subsolution
in Dδ, we have by continuity and the Comparison principle 4.6 that ψ ≤ u everywhere in
Dδ. This leads to the contradiction ψ(x0)≤ u(x0)<ψ(x0), which concludes the proof.

6.1 Equivalent definition
An equivalent definition of viscosity solutions can be formulated in terms of jets.

Definition 6.4. Let u : Ω→ R. We define the superjet J2,+u(x) at the point x ∈ Ω as
the set of all (ξ,X) ∈ Rn×Sn satisfying

u(y)≤ u(x) + 〈ξ,y−x〉+ 1
2〈X(y−x),y−x〉+o(|y−x|2) as Ω 3 y→ x.

We define the subjet J2,−u(x) at the point x∈Ω as the set of all (ξ,X)∈Rn×Sn satisfying

u(y)≥ u(x) + 〈ξ,y−x〉+ 1
2〈X(y−x),y−x〉+o(|y−x|2) as Ω 3 y→ x.

We mention that if
J2,+u(x)∩J2,−u(x) 6= ∅,

then ∇u(x) and D2u(x) exist and

J2,+u(x)∩J2,−u(x) = {(∇u(x),D2u(x))}.

The following shows that even if the jet is empty at a given point, there are always
nearby points at which the jet is nonempty.
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Proposition 6.5. If u ∈ C(Ω) and x ∈ Ω, there are points xk ∈ Ω such that

xk→ x as k→∞, J2,+u(xk) 6= ∅ when k ∈ N.

The same holds true for subjets.

Proof. Fix x∈Ω and set r > 0 such that B(x,r)⊂⊂Ω, where B(x,r) denotes the open ball
centered at x with radius r. Let k ∈N. Since u is continuous there is a point xk ∈B(x,r)
such that

max
y∈B(x,r)

(u(y)−k|y−x|2) = u(xk)−k|xk−x|2.

By setting y = x in the inequality

u(y)−k|y−x|2 ≤ u(xk)−k|xk−x|2 for all y ∈B(x,r),

we obtain
|xk−x|2 ≤

1
k

(u(xk)−u(x)).

Thus
xk→ x as k→∞.

Furthermore

u(y)≤ u(xk) +k(|y−x|2−|xk−x|2)

= u(xk) + 〈2k(xk−x),y−xk〉+
1
2〈2kI(y−xk),y−xk〉,

hence
(2k(xk−x),2kI) ∈ J2,+u(xk)

for all k ∈ N.

Definition 6.6. The closure of the superjet J2,+u(x) is the set of all (ξ,X) ∈ Rn×Sn
such that there exists a sequence

(xk,u(xk), ξk,Xk)→ (x,u(x), ξ,X) as k→∞,

where (ξk,Xk) ∈ J2,+u(xk). The closure of the subjet J2,−u(x) is defined in a similar way.

We remind that

L∞,A(x,ξ,X) =
〈
∇x〈A(x)ξ,ξ〉+ 2XA(x)ξ,A(x)ξ

〉
and

Lp,A(x,ξ,X) = 〈A(x)ξ,ξ〉
p−4

2

{
〈A(x)ξ,ξ〉

( n∑
i,j=1

∂aij
∂xi

(x)ξj + trace(A(x)X)
)

+
(
p−2

2

)
L∞,A(x,ξ,X)

}
, 4≤ p <∞,

where x ∈ Ω, ξ ∈ Rn and X ∈ Sn.
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Proposition 6.7. Let n < p≤∞. For u ∈ C(Ω) the following are equivalent:

i) u is a viscosity subsolution.

ii) If x ∈ Ω and (ξ,X) ∈ J2,+u(x), then Lp,A(x,ξ,X)≥ 0.

iii) If x ∈ Ω and (ξ,X) ∈ J2,+u(x), then Lp,A(x,ξ,X)≥ 0.

The same holds true for viscosity supersolutions, where J2,+u(x) is replaced by J2,−u(x)
and the inequalites are reversed.

We refer to Proposition 2.6 in [14] for a proof. Now we state two results which will be
play a key role in ”doubling of variables” arguments in Section 8 and 9.

Lemma 6.8. Let u,v ∈ C(Ω) and suppose that there exists a point (xj ,yj) ∈ Ω×Ω for
which the supremum

Mj = sup
(x,y)∈Ω×Ω

(
u(x)−v(y)− j2 |x−y|

2
)

is attained. Then

i) limj→∞ j|xj−yj |2 = 0.

ii) limj→∞Mj = u(x̂)− v(x̂) = supx∈Ω(u(x)− v(x)) whenever x̂ is a limit point of xj
as j→∞.

Proof. Suppose that
xj → x̂, yj → ŷ as j→∞.

Since

u(x)−v(y)− j2 |x−y|
2 ≤ u(xj)−v(yj)−

j

2 |xj−yj |
2 for all (x,y) ∈ Ω×Ω,

we find by setting x= y = yj that

|xj−yj |2 ≤
2
j

(u(xj)−u(yj)).

The right-hand side has limit equal to zero as j→∞, thus x̂= ŷ. Now we find

lim
j→∞

(u(xj)−u(yj)) = u(x̂)−u(x̂) = 0,

hence
lim
j→∞

j|xj−yj |2 = 0.

This shows i), and ii) follows directly.

The main result is a special case of what is often refered to as Ishii’s lemma or the
Theorem of sums.
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Theorem 6.9 (Ishii’s lemma). Let u,v ∈ C(Ω) and suppose that there exists an interior
point (xj ,yj) ∈ Ω×Ω for which the maximum

max
(x,y)∈Ω×Ω

(
u(x)−v(y)− j2 |x−y|

2
)

is attained. Then there exist symmetric matrices Xj ,Yj ∈ Sn such that

(j(xj−yj),Xj) ∈ J2,+u(xj),

(j(xj−yj),Yj) ∈ J2,−v(yj),

and
−3j

(
I 0
0 I

)
≤
(
Xj 0
0 −Yj

)
≤ 3j

(
I −I
−I I

)
. (6.1)

We refer to the standard text on viscosity solutions [4] for a proof of Ishii’s lemma. In
particular we have from (6.1) that

〈Xjξ,ξ〉−〈Yjη,η〉=
〈(

Xj 0
0 −Yj

)(
ξ
η

)
,

(
ξ
η

)〉

≤ 3j
〈(

I −I
−I I

)(
ξ
η

)
,

(
ξ
η

)〉
= 3j|ξ−η|2,

(6.2)

for all ξ,η ∈ Rn, so by choosing ξ = η we find that Xj ≤ Yj .
The proofs of Proposition 6.2 and Lemma 6.3 are based on Section 4 in [18], and the

proof of Proposition 6.5 is based on Proposition 2.5 in [14].
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7 Auxiliary equations
The uniqueness of viscosity solutions of the equation ∆∞,A u= 0 follows from a comparison
principle originally due to Jensen [12], who proved it for the infinity-Laplace equation.
Juutinen [13] later established the result for more general problems. The idea is to
introduce two auxiliary equations with parameter ε > 0:

max
{
ε−〈A(x)∇u+,∇u+〉1/2, ∆∞,A u+

}
= 0 Upper equation

∆∞,A u= 0 Equation
min

{
〈A(x)∇u−,∇u−〉1/2− ε, ∆∞,A u−

}
= 0 Lower equation.

The comparison principle states that the functions are ordered: u− ≤ u≤ u+ when they
have the same boundary values, where u+ is a viscosity supersolution of the Upper equa-
tion and u− is a viscosity subsolution of the Lower equation. This is the content of
Section 8. The virtue of the result comes from the fact that the difference u+−u− can
be made arbitrarily small, which we show in this section. Furthermore, we show that
the constructed limit u∞ of weak solutions upj of ∆pj ,A upj = 0 is a viscosity solution of
∆∞,A u∞ = 0.

7.1 Variational problem
We shall see that the functions u+,u− can be constructed as uniform limits

u+
p → u+, u−p → u− in Ω,

where u+
p ,u

−
p are minimizers of the variational integrals

J+(u+
p ) =

∫
Ω

(2
p
〈A(x)∇u+

p ,∇u+
p 〉p/2− εp−1u+

p

)
dx,

J−(u−p ) =
∫

Ω

(2
p
〈A(x)∇u−p ,∇u−p 〉p/2 + εp−1u−p

)
dx.

Now the Euler-Lagrange equations are

∆p,A u
+
p =−εp−1, ∆p,A u

−
p = +εp−1,

which in weak form reads∫
Ω
〈A(x)∇u+

p ,∇u+
p 〉

p−2
2 〈A(x)∇u+

p ,∇η〉dx= +εp−1
∫

Ω
ηdx,∫

Ω
〈A(x)∇u−p ,∇u−p 〉

p−2
2 〈A(x)∇u−p ,∇η〉dx=−εp−1

∫
Ω
ηdx,

for all test functions η ∈ C∞0 (Ω). As before we define functions that belong to W 1,p
loc (Ω)

and satisfy this for all test functions to be weak solutions of the Euler-Lagrange equations.
By an argument similar to the one in the proof of Proposition 4.2, we once more find that
weak solutions and minimizers are equivalent. We begin with a familiar procedure.
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Lemma 7.1. Let n < p <∞ and assume that g ∈ C(Ω)∩W 1,p(Ω). Then there exist
unique weak solutions u,w ∈ C(Ω)∩W 1,p(Ω) of the equations

∆p,A u=−εp−1, ∆p,A w = +εp−1

with u|∂Ω = w|∂Ω = g.

Proof. The proofs are similar for both equations, and we only show the existence of a
unique minimizer of the variational integral

J+(v) =
∫

Ω

(2
p
〈A(x)∇v,∇v〉p/2− εp−1v

)
dx.

As before we use the Direct method in the calculus of variations. Let

J+
0 = inf

v
J+(v),

where the infimum is taken over all v ∈W 1,p(Ω) with boundary values g ∈ C(Ω). Since g
is admissible we have

J+
0 ≤ J+(g)

=
∫

Ω

(2
p
〈A(x)∇g,∇g〉p/2− εp−1g

)
dx

≤
∫

Ω

(2
p
βp/2|∇g|p− εp−1g

)
dx,

thus
|J+

0 | ≤
2
p
βp/2

∫
Ω
|∇g|pdx+ εp−1

∫
Ω
|g|dx=:M <∞,

so there is a sequence (uj) of admissible functions such that

lim
j→∞

J+(uj) = J+
0 ,

and we can assume that J+(uj)< J+
0 + 1 for all j ∈ N. Now we show that the sequences

(uj) and (∇uj) are uniformly bounded. Since∫
Ω

(2
p
αp/2|∇uj |p− εp−1uj

)
dx≤

∫
Ω

(2
p
〈A(x)∇uj ,∇uj〉p/2− εp−1uj

)
dx

= J+(uj)< J+
0 + 1,

it follows that ∫
Ω
|∇uj |pdx≤

p

2α
−p/2

{
(J+

0 + 1) + εp−1
∫

Ω
|uj |dx

}
. (7.1)
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Let λ > 0. For the last term on the right-hand side we have the estimate∫
Ω
|uj |dx≤

∫
Ω
λ−1|uj−g|λdx+

∫
Ω
|g|dx

≤ λ−p

p

∫
Ω
|uj−g|pdx+ λq

q
µ(Ω) +

∫
Ω
|g|dx

≤ λ−p

p
diam(Ω)p

∫
Ω
|∇uj−∇g|pdx+ λq

q
µ(Ω) +

∫
Ω
|g|dx

≤ 2p−1λ
−p

p
diam(Ω)p

{∫
Ω
|∇uj |pdx+

∫
Ω
|∇g|pdx

}
+ λq

q
µ(Ω) +

∫
Ω
|g|dx,

where 1/p+ 1/q = 1. We used Young’s inequality and Friedrichs’ inequality 2.21. If we
insert this into (7.1) we find∫

Ω
|∇uj |pdx≤ α−p/2εp−12p−2λ−pdiam(Ω)p

{∫
Ω
|∇uj |pdx+

∫
Ω
|∇g|pdx

}
+ p

2α
−p/2

{
(J+

0 + 1) + εp−1λ
q

q
µ(Ω) + εp−1

∫
Ω
|g|dx

}
.

(7.2)

By setting λ such that
α−p/2εp−12p−2λ−pdiam(Ω)p = 1

2
we obtain

1
2

∫
Ω
|∇uj |pdx≤

1
2

∫
Ω
|∇g|pdx+ p

2α
−p/2

{
(J+

0 + 1) + εp−1λ
q

q
µ(Ω) + εp−1

∫
Ω
|g|dx

}
,

hence∫
Ω
|∇uj |pdx≤

∫
Ω
|∇g|pdx+pα−p/2

{
(J+

0 + 1) + εp−1λ
q

q
µ(Ω) + εp−1

∫
Ω
|g|dx

}
=:N1 <∞.

Since this holds for all j we conclude that

sup
j
||∇uj ||p ≤N1/p

1 <∞,

which shows that the sequence (∇uj) is uniformly bounded. It remains to show that (uj)
is uniformly bounded. By the above we find

||uj ||p ≤ ||uj−g||p+ ||g||p
≤ diam(Ω)||∇(uj−g)||p+ ||g||p
≤ diam(Ω)(||∇uj ||p+ ||∇g||p) + ||g||p
≤ diam(Ω)(N1/p

1 + ||∇g||p) + ||g||p
=:N2 <∞ for all j,
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where we once more used Friedrichs’ inequality 2.21. It follows that the sequence (uj) is
uniformly bounded:

sup
j
||uj ||p ≤N2 <∞.

Then by Proposition 2.10 there is a subsequence (ujk) and a function u ∈W 1,p(Ω) such
that

ujk ⇀u, ∇ujk ⇀∇u weakly in Lp(Ω).
Since u−g ∈W 1,p

0 (Ω) and p > n we have by Morrey’s inequality 2.19 that u ∈ C(Ω). By
the weak lower semicontinuity of the integral in Proposition 2.32,∫

Ω
〈A(x)∇u,∇u〉p/2dx≤ liminf

k→∞

∫
Ω
〈A(x)∇ujk ,∇ujk〉

p/2dx.

Furthermore, since the domain Ω is bounded, the constant function 1 belongs to Lq(Ω).
Thus by (2.3) we find ∫

Ω
u ·1 dx= lim

k→∞

∫
Ω
ujk ·1 dx.

From this we obtain

J+(u) =
∫

Ω

(2
p
〈A(x)∇u,∇u〉p/2− εp−1u

)
dx

=
∫

Ω

2
p
〈A(x)∇u,∇u〉p/2dx− εp−1 lim

k→∞

∫
Ω
ujkdx

≤ liminf
k→∞

∫
Ω

2
p
〈A(x)∇ujk ,∇ujk〉

p/2dx− εp−1 lim
k→∞

∫
Ω
ujkdx

= liminf
k→∞

∫
Ω

(2
p
〈A(x)∇ujk ,∇ujk〉

p/2− εp−1ujk

)
dx

= liminf
k→∞

J+(ujk) = J+
0 .

On the other hand we also have J+(u)≥ J+
0 since u is admissible. Thus J+(u) = J+

0 , and
we conclude that there exists a minimizer u ∈ C(Ω)∩W 1,p(Ω).

To establish uniqueness we proceed as in the proof of Theorem 4.3. Assume by con-
tradiction that there are two minimizers u1 and u2. Then (u1 +u2)/2 is admissible. By
the strict convexity in Lemma 2.31 we have〈

A(x)
(∇u1 +∇u2

2

)
,
∇u1 +∇u2

2

〉p/2
<

1
2〈A(x)∇u1,∇u1〉p/2 + 1

2〈A(x)∇u2,∇u2〉p/2 when ∇u1 6=∇u2.

Hence

J+(u1)≤ J+
(
u1 +u2

2

)
=
∫

Ω

{2
p

〈
A(x)

(∇u1 +∇u2
2

)
,
∇u1 +∇u2

2

〉p/2
− εp−1

(
u1 +u2

2

)}
dx

<
∫

Ω

{2
p

(1
2〈A(x)∇u1,∇u1〉p/2 + 1

2〈A(x)∇u2,∇u2〉p/2
)
− ε

p−1

2 u1−
εp−1

2 u2

}
dx

= 1
2J

+(u1) + 1
2J

+(u2) = J+(u1).
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To avoid the contradiction we must have ∇u1 = ∇u2 a.e. in Ω. Thus u1 = u2, and we
conclude that the minimizer is unique.

By an argument as in Lemma 6.3 we find that weak solutions of the Euler-Lagrange
equations

∆p,A u=−εp−1, ∆p,A w = +εp−1

also are viscosity solutions.
Lemma 7.2. Let n < p <∞. If u is a weak solution of ∆p,A u=−εp−1, then u is also a
viscosity solution, meaning that

∆p,A φ(x0)≤−εp−1

holds for a function φ ∈ C2(Ω) touching u from below at x0, and that

∆p,A ψ(x0)≥−εp−1

holds for a function ψ ∈ C2(Ω) touching u from above at x0. The same holds true for
∆p,A w = +εp−1 with −εp−1 replaced by +εp−1 in the above.

7.2 Limit procedure
Now we show that the limit of the weak solutions constructed in Lemma 7.1 exists.
Lemma 7.3. Assume that g ∈C(Ω)∩W 1,∞(Ω) is Lipschitz continuous. Then there exist
functions u+,u− ∈C(Ω)∩W 1,∞(Ω) with u+|∂Ω = u−|∂Ω = g, which are the uniform limits

lim
pj→∞

upj = u+, lim
pj→∞

wpj = u− in Ω,

where upj and wpj are weak solutions of the equations

∆pj ,A upj =−εpj−1, ∆pj ,A wpj = +εpj−1

with upj |∂Ω = wpj |∂Ω = g.
Proof. We only show the existence of the uniform limit

lim
pj→∞

upj = u+.

Let up ∈ C(Ω)∩W 1,p(Ω) be the unique minimizer of the variational integral

J+(up) =
∫

Ω

(2
p
〈A(x)∇up,∇up〉p/2− εp−1up

)
dx.

As before we aim at using Ascoli’s theorem 2.2. First we show that the sequence (up) is
equibounded. Since up is minimizing and g is admissible we have∫

Ω

(2
p
αp/2|∇up|p− εp−1up

)
dx≤

∫
Ω

(2
p
〈A(x)∇up,∇up〉p/2− εp−1up

)
dx

≤
∫

Ω

(2
p
〈A(x)∇g,∇g〉p/2− εp−1g

)
dx

≤
∫

Ω

(2
p
βp/2|∇g|p− εp−1g

)
dx.
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By rearranging we find∫
Ω
|∇up|pdx≤ α−p/2βp/2

∫
Ω
|∇g|pdx+ p

2α
−p/2εp−1

∫
Ω

(up−g)dx. (7.3)

Let λ > 0. For the last term on the right-hand side the estimate∣∣∣∣ ∫Ω
(up−g)dx

∣∣∣∣≤ ∫Ω
λ|up−g|λ−1dx

= λp

p

∫
Ω
|up−g|pdx+ λ−q

q
µ(Ω)

≤ λp

p
diam(Ω)p

∫
Ω
|∇up−∇g|pdx+ λ−q

q
µ(Ω)

≤ 2p−1λ
p

p
diam(Ω)p

{∫
Ω
|∇up|pdx+

∫
Ω
|∇g|pdx

}
+ λ−q

q
µ(Ω)

follows. We used Young’s inequality and Friedrichs’ inequality 2.21. By inserting this into
(7.3) we obtain∫

Ω
|∇up|pdx≤ α−p/2βp/2

∫
Ω
|∇g|pdx+ p

2α
−p/2εp−1λ

−q

q
µ(Ω)

+α−p/2εp−12p−2λpdiam(Ω)p
{∫

Ω
|∇up|pdx+

∫
Ω
|∇g|pdx

}
.

If we set λ such that
α−p/2εp−12p−2λpdiam(Ω)p = 1

2 ,

and divide by the measure µ(Ω) we find

1
2−
∫

Ω
|∇up|pdx≤

((
β

α

)p/2
+ 1

2

)
−
∫

Ω
|∇g|pdx+ 1

q

(diam(Ω)√
α

)q
p
(
ε√
α

)p
≤ 2max

{((
β

α

)p/2
+ 1

2

)
−
∫

Ω
|∇g|pdx, 1

q

(diam(Ω)√
α

)q
p
(
ε√
α

)p}
=: 2m.

If
m=

((
β

α

)p/2
+ 1

2

)
−
∫

Ω
|∇g|pdx

then (1
2−
∫

Ω
|∇up|pdx

)1/p
≤ 21/p

((
β

α

)p/2
+ 1

2

)1/p(
−
∫

Ω
|∇g|pdx

)1/p
,

and we find

limsup
p→∞

||∇up||p ≤
√
β

α
||∇g||∞ ≤

√
β

α
L.

On the other hand, if

m= 1
q

(diam(Ω)√
α

)q
p
(
ε√
α

)p
=
(diam(Ω)√

α

)q
(p−1)

(
ε√
α

)p
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then (
1
2−
∫

Ω
|∇up|pdx

)1/p
≤ 21/p

(diam(Ω)√
α

)1/(p−1)
(p−1)1/p

(
ε√
α

)
,

thus
limsup
p→∞

||∇up||p ≤
ε√
α
.

We see that the norm is bounded in both cases, and we denote the bound by M :

limsup
p→∞

||∇up||p ≤M <∞. (7.4)

By Friedrichs’ inequality we find

||up||p ≤ ||up−g||p+ ||g||p
≤ diam(Ω)||∇(up−g)||p+ ||g||p
≤ diam(Ω)(||∇up||p+ ||∇g||p) + ||g||p,

hence
limsup
p→∞

||up||p ≤ diam(Ω)(M +L) + ||g||∞,

which shows that the sequence (up) is equibounded for p > n. By Morrey’s inequality 2.19
and the Lipschitz continuity of g we have

|up(x)−up(y)| ≤ |(up(x)−g(x))− (up(y)−g(y))|+ |g(x)−g(y)|
≤ Cp|x−y|1−n/p||∇(up−g)||p+L|x−y|
≤ Cp|x−y|1−n/pdiam(Ω)(||∇up||p+ ||∇g||p) +L|x−y|.

Since Cp→ 2n+1 as p→∞ we obtain

limsup
p→∞

|up(x)−up(y)| ≤ 2n+1diam(Ω)(M +L)|x−y|+L|x−y|.

Thus, the sequence is equicontinuous for p > n. Then by Ascoli’s theorem 2.2 there is a
subsequence and a function u+ ∈ C(Ω) with u+|∂Ω = g, such that

lim
pj→∞

upj = u+ uniformly in Ω.

Now we show that u+ ∈W 1,∞(Ω). Let pj > s > n. By Proposition 2.4 and (7.4) we have(
−
∫

Ω
|∇upj |

sdx
)1/s

≤
(
−
∫

Ω
|∇upj |

pjdx
)1/pj

≤M, (7.5)

so the sequence (∇upj ) is uniformly bounded, and by Proposition 2.10 we conclude that

∇upj ⇀∇u
+ weakly in Ls(Ω),

for some subsequence. By a diagonalization procedure, we can extract a single subse-
quence such that

∇upj ⇀∇u
+ weakly in Ls(Ω) for all s ∈ (n,∞).



54 7 AUXILIARY EQUATIONS

By weak lower semicontinuity and (7.5) we find
(
−
∫

Ω
|∇u+|sdx

)1/s
≤ liminf

pj→∞

(
−
∫

Ω
|∇upj |

sdx
)1/s

≤M.

Since s was arbitrary large, letting s→∞ we obtain

||∇u+||∞ ≤M,

and we conclude that u+ ∈W 1,∞(Ω).

Now we show that the difference between the functions constructed in the previous
lemma can be made arbitrarily small.

Lemma 7.4. Let u+ and u− be the constructed functions in Lemma 7.3. Then

||u+−u−||∞,Ω ≤ Cε,

where the constant C depends on α and Ω.

Proof. Let g ∈ C(Ω)∩W 1,∞(Ω) be Lipschitz continuous. Suppose that u+
p ,u

−
p are the

unique weak solutions of

∆p,A u
+
p =−εp−1, ∆p,A u

−
p = +εp−1,

both with boundary values g. By the previous Lemma we have

lim
p→∞u

+
p = u+, lim

p→∞u
−
p = u− uniformly in Ω

for some subsequence, still denoted by the index p, where u+|∂Ω = u−|∂Ω = g. By sub-
tracting the weak formulation∫

Ω

〈
〈A(x)∇u−p ,∇u−p 〉

p−2
2 A(x)∇u−p ,∇η

〉
dx=−εp−1

∫
Ω
ηdx

from ∫
Ω

〈
〈A(x)∇u+

p ,∇u+
p 〉

p−2
2 A(x)∇u+

p ,∇η
〉
dx= +εp−1

∫
Ω
ηdx

and by setting η = u+
p −u−p ∈W

1,p
0 (Ω), we obtain

2εp−1
∫

Ω
(u+
p −u−p )dx

=
∫

Ω

〈
〈A(x)∇u+

p ,∇u+
p 〉

p−2
2 A(x)∇u+

p −〈A(x)∇u−p ,∇u−p 〉
p−2

2 A(x)∇u−p ,∇u+
p −∇u−p

〉
dx

≥ 4
(√

α

2

)p ∫
Ω
|∇u+

p −∇u−p |pdx,

where we used the inequality in Proposition 2.29. Rearranging and raising to the 1/p
power yields

||∇u+
p −∇u−p ||p ≤

2ε√
α

( 1
2ε

∫
Ω

(u+
p −u−p )dx

)1/p
,
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thus
lim
p→∞ ||∇u

+
p −∇u−p ||p ≤

2ε√
α
.

By Friedrichs’ inequality 2.21 we find

||u+−u−||∞ ≤ ||u+−u+
p ||∞+ ||u+

p −u−p ||∞+ ||u−p −u−||∞
≤ ||u+−u+

p ||∞+ diam(Ω) lim
p→∞ ||∇u

+
p −∇u−p ||p

+ ||u−p −u−||∞.

The bound above and the uniform convergence implies that

||u+−u−||∞ ≤
2ε√
α

diam(Ω).

7.3 Viscosity solutions
It remains to show that the constructed functions u+,u∞ and u− satisfies the Upper
equation, the Equation, and the Lower equation, respectively in the viscosity sense. The
proof relies on the following result10.

Lemma 7.5. Let uj ,u ∈ C(Ω) and suppose that uj → u uniformly in Ω. Assume that
φ ∈ C2(Ω) is such that φ(x0) = u(x0) for some x0 ∈ Ω, and that φ(x)< u(x) otherwise in
Ω. Then there are points xj ∈ Ω such that

xj → x0, uj(xj)−φ(xj) = min
Ω

(uj−φ),

for some subsequence.

Proof. Since uj−φ= (u−φ) + (uj−u) and uj → u,

inf
Ω\B(x0,r)

(uj−φ)≥ 1
2 inf

Ω\B(x0,r)
(u−φ)> 0,

for sufficiently large j, where B(x0, r) is a ball centered at x0 with small radius r > 0.
Notice that uj(x0)−φ(x0) approaches zero, so by the above we have

inf
Ω\B(x0,r)

(uj−φ)> uj(x0)−φ(x0)

when j > jr. This implies that there is a xj ∈B(x0, r) such that

min
Ω

(uj−φ) = uj(xj)−φ(xj),

when j > jr. Finally, via some subsequence we can let r→ 0.
10The proof is taken from Lemma 11 in [18].
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Theorem 7.6. Let u∞ and u+,u− be the constructed functions in Theorem 5.1 and
Lemma 7.3, respectively. Then

i) u+ is a viscosity supersolution of the Upper equation

max
{
ε−〈A(x)∇u+,∇u+〉1/2, ∆∞,A u+

}
= 0,

meaning that

ε−〈A(x0)∇φ(x0),∇φ(x0)〉1/2 ≤ 0, ∆∞,A φ(x0)≤ 0

holds for a function φ ∈ C2(Ω) touching u+ from below at x0.

ii) u∞ is a viscosity solution of the Equation

∆∞,A u∞ = 0.

iii) u− is a viscosity subsolution of the Lower equation

min
{
〈A(x)∇u−,∇u−〉1/2− ε, ∆∞,A u−

}
= 0,

meaning that

〈A(x0)∇ψ(x0),∇ψ(x0)〉1/2− ε≥ 0, ∆∞,A ψ(x0)≥ 0

holds for a function ψ ∈ C2(Ω) touching u− from above at x0.

Proof. The proofs are similar, and we only show i). Let u+
p be the weak solution of

∆p,A u
+
p =−εp−1.

By Lemma 7.2, u+
p is also a viscosity solution, and by Lemma 7.3,

lim
p→∞u

+
p = u+ uniformly in Ω

for some subsequence, which we still denote by the index p. Now suppose that φ ∈C2(Ω)
touches u+ from below at some point x0 ∈ Ω. Then by Lemma 7.5 there is a sequence
xk → x0 and a subsequence so that u+

pk
−φ attains its minimum at xk. Since u+

pk
is a

viscosity supersolution, this is equivalent to

∆pk,A φ(xk)≤−εpk−1.

Written out this becomes

〈A(xk)∇φ(xk),∇φ(xk)〉
pk−4

2

{
〈A(xk)∇φ(xk),∇φ(xk)〉div(A(xk)∇φ(xk))

+
(
pk−2

2

)
∆∞,A φ(xk)

}
≤−εpk−1.

If ε 6= 0 then
〈A(xk)∇φ(xk),∇φ(xk)〉 6= 0,
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so we can divide to obtain

2〈A(xk)∇φ(xk),∇φ(xk)〉
div(A(xk)∇φ(xk))

pk−2 + ∆∞,A φ(xk)

≤− 2ε3

pk−2

(
ε

〈A(xk)∇φ(xk),∇φ(xk)〉1/2

)pk−4
.

By continuity the left-hand side approaches ∆∞,A φ(x0) as pk→∞. If

〈A(x0)∇φ(x0),∇φ(x0)〉1/2 < ε,

we get the contradiction
∆∞,A φ(x0) =−∞,

thus
〈A(x0)∇φ(x0),∇φ(x0)〉1/2 ≥ ε.

This implies that the right-hand side of the above expression approaches zero, so we have

∆∞,A φ(x0)≤ 0.

If ε= 0 and
〈A(x0)∇φ(x0),∇φ(x0)〉= 0

there is nothing to prove. If ε= 0 and

〈A(x0)∇φ(x0),∇φ(x0)〉 6= 0

we find

2〈A(xk)∇φ(xk),∇φ(xk)〉
div

(
A(xk)∇φ(xk)

)
pk−2 + ∆∞,A φ(xk)≤ 0

for large indices k, and as pk→∞ we once more have the inequality

∆∞,A φ(x0)≤ 0.
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8 Comparison principle

As before we let u+ and u− be the constructed supersolution of the Upper equation and
subsolution of the Lower equation, respectively.

We begin with the comparison principle for viscosity subsolutions11.
Lemma 8.1. If u is a viscosity subsolution of the equation ∆∞,A u= 0 and if u≤ u+ = g
on ∂Ω, then u≤ u+ in Ω.
Proof. By adding the same constant to u+ and g, we may assume that u+ > 0 and g > 0.
Assume by contradiction that

max
Ω

(u−u+)>max
∂Ω

(u−u+).

We shall construct a strict supersolution w = f(u+) of the Upper equation such that
max

Ω
(u−w)>max

∂Ω
(u−w),

and
∆∞,A w ≤−µ < 0

in the viscosity sense. This will lead to a contradiction.
To approximate the identity we use the function

f(t) = ln(1 +B(et−1)),
where B > 1 and t > 0. Notice that

0< f(t)− t < B−1
0< f ′(t)−1<B−1

f ′′(t) =−(B−1)B−1e−tf ′(t)2.

Now set w = f(u+). A formal calculation shows that
∂w

∂xi
= f ′(u+)∂u

+

∂xi
∂2w

∂xi∂xj
= f ′′(u+)∂u

+

∂xi

∂u+

∂xj
+f ′(u+) ∂

2u+

∂xi∂xj
,

thus
∆∞,A w =

〈
∇x〈A(x)∇w,∇w〉+ 2(D2w)A(x)∇w,A(x)∇w

〉
=

n∑
i,j,k,l=1

(
∂aij
∂xk

∂w

∂xi

∂w

∂xj
akl

∂w

∂xl
+ 2aik

∂w

∂xk

∂2w

∂xi∂xj
ajl

∂w

∂xl

)

= f ′(u+)3
n∑

i,j,k,l=1

(
∂aij
∂xk

∂u+

∂xi

∂u+

∂xj
akl

∂u+

∂xl
+ 2aik

∂u+

∂xk

∂2u+

∂xi∂xj
ajl
∂u+

∂xl

)

+ 2f ′(u+)2f ′′(u+)
n∑

i,j,k,l=1
aik

∂u+

∂xi

∂u+

∂xk
ajl
∂u+

∂xj

∂u+

∂xl

= f ′(u+)3∆∞,A u+ + 2f ′(u+)2f ′′(u+)〈A(x)∇u+,∇u+〉2.

(8.1)

11The proof is based on [20].
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Multiplying the Upper equation for supersolutions

max
{
ε−〈A(x)∇u+,∇u+〉1/2, ∆∞,A u+

}
≤ 0

by f ′(u+)3 we find

∆∞,A w ≤ 2f ′(u+)2f ′′(u+)〈A(x)∇u+,∇u+〉2

=−2(B−1)B−1e−u
+
f ′(u+)4〈A(x)∇u+,∇u+〉2

≤−2ε4(B−1)B−1e−||u
+||∞ ,

where we used
f ′(u+)> 1, 〈A(x)∇u+,∇u+〉1/2 ≥ ε.

To obtain the desired construction, given ε > 0 we fix B > 1 so close to 1 that

0< w−u+ = f(u+)−u+ <B−1< δ,

where δ > 0 is so small that

max
Ω

(u−w)>max
∂Ω

(u−w). (8.2)

By setting
µ= 2ε4(B−1)B−1e−||u

+||∞

we now have
∆∞,A w ≤−µ < 0. (8.3)

The procedure was formal. In the calculations above we replace u+ by a test function
φ touching u+ from below at a point x0, and we replace w by a test function ψ = f(φ)
touching w from below at x0. Now we have

∆∞,A ψ(x0)≤−µ, 〈A(x0)∇ψ(x0),∇ψ(x0)〉1/2 ≥ ε,

whenever ψ touches w from below at x0.
In order to use Ishii’s lemma 6.9, we double the variables writing

Mν = sup
(x,y)∈Ω×Ω

(
u(x)−w(y)− ν2 |x−y|

2
)
.

The supremum is attained at some point (xν ,yν), and by compactness there is a subse-
quence such that

xν → x̂, yν → ŷ as ν→∞.
By Lemma 6.8, x̂= ŷ, and

max
Ω

(u−w) = u(x̂)−w(x̂).

Thus by (8.2), x̂ is an interior point. Furthermore, (xν ,yν) belongs to the interior for
sufficiently large indices ν. Then by Ishii’s lemma 6.9 there exist symmetric matrices
Xν ,Yν ∈ Sn such that

(ν(xν−yν),Xν) ∈ J2,+u(xν),
(ν(xν−yν),Yν) ∈ J2,−w(yν).

(8.4)

We need the following bound.
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Lemma 8.2. We have
ε√
β
≤ ν|xν−yν | ≤ Cε,

where Cε = 2B||∇u+||∞.

Proof. We first show the upper bound. We have

u(xν)−w(yν)− ν2 |xν−yν |
2 = max

(x,y)∈Ω×Ω

(
u(x)−w(y)− ν2 |x−y|

2
)

≥ u(x)−w(y)− ν2 |x−y|
2

for all (x,y) ∈ Ω×Ω. In particular, if x= y = xν we find

u(xν)−w(yν)− ν2 |xν−yν |
2 ≥ u(xν)−w(xν),

thus
ν

2 |xν−yν |
2 ≤ w(xν)−w(yν)

≤ ||∇w||∞|xν−yν |
= ||f ′(u+)∇u+||∞|xν−yν |
≤B||∇u+||∞|xν−yν |.

The upper bound
ν|xν−yν | ≤ Cε

follows, where Cε = 2B||∇u+||∞. The lower bound follows from the Upper equation for
supersolutions. By the inequality

u(xν)−w(yν)− ν2 |xν−yν |
2 ≥ u(xν)−w(y)− ν2 |xν−y|

2

we see that the test function

ψ(y) = w(yν) + ν

2 |xν−yν |
2− ν2 |xν−y|

2

touches w from below at the point y = yν , hence

ε−〈A(yν)∇ψ(yν),∇ψ(yν)〉1/2 ≤ 0.

Since
(ν(xν−yν),Yν) ∈ J2,−w(yν)

we find by Proposition 6.7,

ε≤ 〈A(yν)ν(xν−yν),ν(xν−yν)〉1/2

≤ (β|ν(xν−yν)|2)1/2

=
√
βν|xν−yν |.
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We return to (8.4). Since u is a viscosity subsolution we have
L∞,A(xν ,ν(xν−yν),Xν)≥ 0

by Proposition 6.7, and we can rewrite equation (8.3) as
L∞,A(yν ,ν(xν−yν),Yν)≤−µ.

By subtracting the last equation from the first, and applying Corollary 3.6 we obtain
µ≤ L∞,A(xν ,ν(xν−yν),Xν)−L∞,A(yν ,ν(xν−yν),Yν)
≤ κ|xν−yν ||ν(xν−yν)|3

+ 2{〈XνA(xν)ν(xν−yν),A(xν)ν(xν−yν)〉
−〈YνA(yν)ν(xν−yν),A(yν)ν(xν−yν)〉}
≤ κ|xν−yν |C3

ε

+ 2{〈XνA(xν)ν(xν−yν),A(xν)ν(xν−yν)〉
−〈YνA(yν)ν(xν−yν),A(yν)ν(xν−yν)〉},

(8.5)

where we used Lemma 8.2 in the last inequality. We need an estimate on the difference
in the brackets. We use the notation

ν(xν−yν) = (ν(xν−yν)1,ν(xν−yν)2, . . . ,ν(xν−yν)n).
By (6.2) and the Cauchy–Schwarz inequality we have

2{〈XνA(xν)ν(xν−yν),A(xν)ν(xν−yν)〉
−〈YνA(yν)ν(xν−yν),A(yν)ν(xν−yν)〉}
≤ 2 ·3ν|A(xν)ν(xν−yν)−A(yν)ν(xν−yν)|2

= 6ν|(A(xν)−A(yν))ν(xν−yν)|2

= 6ν
n∑
i=1

{ n∑
j=1

(aij(xν)−aij(yν))ν(xν−yν)j
}2

≤ 6ν
n∑
i=1

{( n∑
j=1

(aij(xν)−aij(yν))2
)1/2( n∑

k=1
ν(xν−yν)2

k

)1/2}2

= 6ν|ν(xν−yν)|2
n∑

i,j=1
(aij(xν)−aij(yν))2

≤ 6νC2
ε

n∑
i,j=1

H2|xν−yν |2

= 6n2H2C2
εν|xν−yν |2

≤ 6n2H2C3
ε |xν−yν |,

(8.6)

where we also used Lemma 8.2 and the Lipschitz continuity of aij . Inserting this into
(8.5) we find

µ≤ κ|xν−yν |C3
ε

+ 2{〈XνA(xν)ν(xν−yν),A(xν)ν(xν−yν)〉
−〈YνA(yν)ν(xν−yν),A(yν)ν(xν−yν)〉}
≤ κ|xν−yν |C3

ε + 6n2H2C3
ε |xν−yν |.

(8.7)



63

Since all the constants are bounded and |xν−yν | → 0, we conclude that the last line has
limit equal to zero as ν →∞. This leads to a contradiction because µ > 0. Thus, the
assumption was false, so we must have

u≤ u+ in Ω.

By a similar argument we find the analogous comparison for viscosity supersolutions.

Lemma 8.3. If u is a viscosity supersolution of the equation ∆∞,A u= 0 and if u−= g≤ u
on ∂Ω, then u− ≤ u in Ω.

In this case we use the inverse function f−1 of f(t) = ln(1 +B(et−1)) as an approx-
imation of the identity, which is obtained by simply replacing B by B−1 in the formula
for f . The essential properties is that f−1 is strictly convex and (f−1)′ >B−1.

From these two Lemmas we immediately have the following.

Corollary 8.4. If u ∈ C(Ω) is an arbitrary viscosity solution of the equation ∆∞,A u= 0
with u= g on ∂Ω, then u− ≤ u≤ u+ in Ω.

This result implies uniqueness, which we show below. First we state the general version
of the comparison principle12.

Theorem 8.5 (Comparison principle). Suppose that u is a viscosity subsolution and that
v is a viscosity supersolution of ∆∞,A w = 0 in Ω. If at each point z ∈ ∂Ω,

limsup
x→z

u(x)≤ liminf
x→z v(x),

and if both sides are not simultaneously ∞ or −∞, then u≤ v in Ω.

Proof. Let δ > 0 and define the set

Ωδ = {x ∈ Ω : dist(x,∂Ω)> δ} .

We claim that for every ε > 0 there is a δ > 0 such that

u < v+ ε in Ω\Ωδ.

Indeed, if such a δ does not exist, there are points xj ∈ Ω such that

xj → z ∈ ∂Ω as j→∞, u(xj)≥ v(xj) + ε for all j ∈ N.

Thus
limsup
x→z

u(x)≥ liminf
x→z v(x) + ε,

which contradicts the assumption since both sides are not simultaneously∞ or −∞. Now
construct the auxiliary solutions u+,u− in the domain Ωδ such that

u− = v+ ε= u= u+ on ∂Ωδ.

12We follow the proof of Corollary 4.31 in [13].
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Then by Lemma 8.1 and Lemma 8.3 we have

u− ≤ v+ ε, u≤ u+ in Ωδ.

Moreover, by Lemma 7.4,
u+−u− ≤ Cε

which implies that
v+ ε≥ u− ≥ u+−Cε≥ u−Cε.

Thus v ≥ u in Ωδ because ε > 0 was arbitrarily small, hence v ≥ u in Ω.

8.1 Uniqueness
We are now ready to establish the uniqueness of viscosity solutions of the equation
∆∞,A u= 0. We summarize what we have found in the following.

Theorem 8.6. Let Ω be a bounded domain in Rn. Given a Lipschitz continuous function
g ∈ C(Ω)∩W 1,∞(Ω), there exists a unique viscosity solution u ∈ C(Ω) of the equation

∆∞,A u= 0 in Ω

with boundary values g. Moreover, the function u belongs to W 1,∞(Ω) and has the follow-
ing minimizing property in each subdomain D ⊂ Ω: if v ∈ C(D)∩W 1,∞(D) is such that
v = u on ∂D, then

||〈A∇u,∇u〉1/2||∞,D ≤ ||〈A∇v,∇v〉1/2||∞,D.

Proof. To show uniqueness, suppose that there are two viscosity solutions u1 and u2, both
with boundary values g. Then by Corollary 8.4 and Lemma 7.4 we have

u− ≤ u1 ≤ u+, u− ≤ u2 ≤ u+, ||u+−u−||∞,Ω ≤ Cε,

thus
−Cε≤ u−−u+ ≤ u1−u2 ≤ u+−u− ≤ Cε.

Since ε > 0 was arbitrary small, it follows that u1 = u2.
By Theorem 7.6, every uniform limit

lim
pj→∞

upj = u in Ω,

where upj is a weak solution of ∆pj ,A upj = 0 with upj |∂Ω = g, is also a viscosity solution
of ∆∞,A u = 0, thus they are also unique. The existence and the minimization property
was settled in Theorem 5.1.

Observation 8.7. We have found that the uniform limit u of weak solutions upj of the
Euler-Lagrange equations

∆pj ,A upj = 0
is unique and satisfies the equation

∆∞,A u= 0
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in the viscosity sense. Thus, it really is the limit equation. Furthermore, since this unique
viscosity solution satisfies the minimization property

||〈A∇u,∇u〉1/2||∞,D ≤ ||〈A∇v,∇v〉1/2||∞,D,

we interpret the limit equation as the Euler-Lagrange equation for the ”variational prob-
lem”

min
u

max
x

( n∑
i,j=1

aij(x) ∂u
∂xi

(x) ∂u
∂xj

(x)
)1/2

.
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9 Stability
Having established the existence of a unique viscosity solution of the equation

∆∞,A u=
n∑

i,j,k,l=1

(
∂aij
∂xk

∂u

∂xi

∂u

∂xj
akl

∂u

∂xl
+ 2aik

∂u

∂xk

∂2u

∂xi∂xj
ajl

∂u

∂xl

)
= 0, (9.1)

where the matrix A(x) satisfies the assumptions in Section 3, we now ask the question:
if we perturbate the matrix A(x) a little bit, how much will the solution differ from the
solution of the original problem? More precisely stated, suppose that we are given an
n×n matrix A(x) = (aij(x)) satisfying the conditions:

1. A(x) is symmetric.

2. α|ξ|2 ≤ 〈A(x)ξ,ξ〉 ≤ β|ξ|2 for 0< α≤ β <∞.

3. ∂aij
∂xk

is Lipschitz continuous.

4. aij is Lipschitz continuous.

We let the permutation of A(x) be

Ã(x) = A(x) + Λ = (aij(x) + cij),

where Λ = (cij) is a symmetric n×n matrix with real-valued constant entries cij . We
immediately find that 1, 3 and 4 holds for Ã(x). In order for 2 to be satisfied, we have
to put some restrictions on the matrix Λ. Let µj , j = 1,2, . . . ,n denote the eigenvalues of
Λ. We find

〈Ã(x)ξ,ξ〉= 〈A(x)ξ,ξ〉+ 〈Λξ,ξ〉 ≥ (α+ min
j
µj)|ξ|2,

thus we require
min
j
µj >−α.

Similarly we must have
max
j
µj <∞.

Then by setting
α̃ = α+ min

j
µj , β̃ = β+ max

j
µj ,

we obtain
α̃|ξ|2 ≤ 〈Ã(x)ξ,ξ〉 ≤ β̃|ξ|2

for 0< α̃≤ β̃ <∞, so 2 is satisfied for Ã(x). Now A(x) and Ã(x) both satisfies 1-4. Then
by Theorem 8.6, given a Lipschitz continuous function g ∈ C(Ω)∩W 1,∞(Ω), there exists
a unique viscosity solution u ∈ C(Ω)∩W 1,∞(Ω) of the equation

∆∞,A u=
〈
∇x〈A(x)∇u,∇u〉+ 2(D2u)A(x)∇u,A(x)∇u

〉
=

n∑
i,j,k,l=1

(
∂aij
∂xk

∂u

∂xi

∂u

∂xj
akl

∂u

∂xl
+ 2aik

∂u

∂xk

∂2u

∂xi∂xj
ajl

∂u

∂xl

)
= 0,
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and there exists a unique viscosity solution ũ ∈ C(Ω)∩W 1,∞(Ω) of the equation

∆∞,Ã ũ=
〈
∇x〈Ã(x)∇ũ,∇ũ〉+ 2(D2ũ)Ã(x)∇ũ, Ã(x)∇ũ

〉
=
〈
∇x〈A(x)∇ũ,∇ũ〉+ 2(D2ũ)(A(x) + Λ)∇ũ,(A(x) + Λ)∇ũ

〉
=

n∑
i,j,k,l=1

(
∂aij
∂xk

∂ũ

∂xi

∂ũ

∂xj
(akl+ ckl)

∂ũ

∂xl

+ 2(aik + cik)
∂ũ

∂xk

∂2ũ

∂xi∂xj
(ajl+ cjl)

∂ũ

∂xl

)
= 0,

both with boundary values u|∂Ω = ũ|∂Ω = g. By stability we mean the following: we seek
a bound of the norm

||ũ−u||∞,Ω
that depends on constants and the elements cij of the matrix Λ, which can be made
arbitrarily small by setting cij small. The following motivates why we seek this bound.

9.1 Stability in one variable
In Example 3.2 we found the solution

u(x) = L+ (R−L)

∫ x

l
a(t)−1/2dt∫ r

l
a(t)−1/2dt

of the Dirichlet problem{
∆∞,A u= a(x)a′(x)u′(x)3 + 2a(x)2u′(x)2u′′(x) = 0 in (l, r)
u(l) = L, u(r) =R,

where a and a′ is Lipschitz continuous in [l, r], and

0< α≤ a(x)≤ β <∞ for all x ∈ [l, r].

Similarly we find the solution

ũ(x) = L+ (R−L)

∫ x

l
(a(t) + c)−1/2dt∫ r

l
(a(t) + c)−1/2dt

of the perturbated problem∆∞,Ã ũ= (a(x) + c)a′(x)ũ′(x)3 + 2(a(x) + c)2ũ′(x)2ũ′′(x) = 0 in (l, r)
ũ(l) = L, ũ(r) =R,

where
0< α̃≤ a(x) + c≤ β̃ <∞ for all x ∈ [l, r].
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It is evident that the difference

ũ(x)−u(x) = (R−L)


∫ x

l
(a(t) + c)−1/2dt∫ r

l
(a(t) + c)−1/2dt

−

∫ x

l
a(t)−1/2dt∫ r

l
a(t)−1/2dt


can be made arbitrarily small by setting c small.

9.2 Stability of C2-solutions
The problem is unresolved for viscosity solutions in several variables. To our knowledge,
the only work on stability problems related to this one is by Lindgren and Lindqvist
in [16]. They studied the stability of viscosity solutions of the infinity-Laplace equation
with variable exponent. Applying a procedure similar to the one in [16] leads to a bound
with uncontrollable terms. We suspect that this can be fixed by a clever choice of test
function in the general version of Ishii’s lemma, see Theorem 3.2 in [4]. This is a task
which is beyond the scope of this thesis. We shall instead establish the desired bound for
C2-solutions. Although we have not shown existence of C2-solutions of ∆∞,A u = 0, the
bound at least supports the belief that also viscosity solutions are stable.

We remind that the matrices

A(x) = (aij(x)), Ã(x) = A(x) + Λ = (aij(x) + cij)

satisfy the assumptions in the beginning of this section.

Theorem 9.1. Let Ω be a bounded domain in Rn. Suppose that ũ ∈ C2(Ω) is a solution
of

∆∞,Ã ũ= 0

and that u ∈ C2(Ω) is a solution of

∆∞,A u= 0

both having the same boundary values g. Then

||ũ−u||∞,Ω ≤ κ{(max
q,r
|cqr|)1/5 + (max

q,r
|cqr|)2/5},

for some constant κ.

Proof. First suppose that ũ ∈ C2(Ω) is a classical subsolution of

∆∞,Ã ũ= 0

and that u ∈ C2(Ω) is a classical supersolution of

∆∞,A u= 0,

both with boundary values g. In other words

∆∞,Ã ũ(x)≥ 0, ∆∞,A u(x)≤ 0
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holds at each point x∈Ω. Furthermore assume that u+ ∈C2(Ω) is a classical supersolution
of the Upper equation:

max
{
ε−〈A(x)∇u+,∇u+〉1/2, ∆∞,A u+

}
≤ 0

and that u− ∈ C2(Ω) is classical subsolution of the Lower equation:

min
{
〈A(x)∇u−,∇u−〉1/2− ε, ∆∞,A u−

}
≥ 0

both with boundary values g, such that

u− ≤ u≤ u+, ||u+−u−||∞ ≤ Cε.

As in the proof of Lemma 8.1, we shall construct a strict supersolution w = f(u+) of the
Upper equation:

∆∞,A w ≤−µ < 0.

We use the function

f(t) = 1
γ

ln(1 +B(eγt−1)), B > 1, γ > 0, t > 0

as an approximation of the identity. We have

0< f(t)− t < B−1
γ

0< f ′(t)−1<B−1
f ′′(t) =−γ(B−1)B−1e−γtf ′(t)2.

By adding the same constant to u+,u, ũ and g, we may assume that u+ > 0 and g > 0.
Let ε > 0 and set w = f(u+). The estimate

ũ−u= (ũ−w) + (w−u+) + (u+−u)

< (ũ−w) + B−1
γ

+Cε
(9.2)

follows. The last two terms can be made arbitrarily small by choosing B and ε, but the
first term also depends on these, so this requires some work.

Lemma 9.2. We have

max
Ω

(ũ−w)≤ C1
ε4 {max

q,r
|cqr|+ (max

q,r
|cqr|)2},

for some constant C1.

Proof. We proceed as in the proof of Lemma 8.1. In (8.1) we found

∆∞,A w = f ′(u+)3∆∞,A u+ + 2f ′(u+)2f ′′(u+)〈A(x)∇u+,∇u+〉2.
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Multiplying the Upper equation for supersolutions

max
{
ε−〈A(x)∇u+,∇u+〉1/2, ∆∞,A u+

}
≤ 0

by f ′(u+)3 we obtain

∆∞,A w ≤ 2f ′(u+)2f ′′(u+)〈A(x)∇u+,∇u+〉2

=−2γ(B−1)B−1e−γu
+
f ′(u+)4〈A(x)∇u+,∇u+〉2

≤−2ε4γ(B−1)B−1e−γ||u
+||∞ =:−µ < 0,

(9.3)

where we used
f ′(u+)> 1, 〈A(x)∇u+,∇u+〉1/2 ≥ ε.

Now let
σ = max

Ω
(ũ−w).

If the maximum is attained on the boundary, then

σ = max
∂Ω

(ũ−w) = max
∂Ω

(ũ−f(u+)) = g−f(g)< 0,

and there is nothing to prove. Assume thus that the maximum is attained at some interior
point x0 ∈ Ω:

σ = max
Ω

(ũ−w) = ũ(x0)−w(x0).

Then
∇ũ(x0) =∇w(x0)
D2ũ(x0)≤D2w(x0)

by the infinitesimal calculus. Recall the notation

Ã(x) = A(x) + Λ = (aij(x) + cij)
∆∞,A v(x) = L∞,A(x,∇v(x),D2v(x)).

At the maximum point x0 we have

0≤∆∞,Ã ũ(x0)
= L∞,Ã(x0,∇ũ(x0),D2ũ(x0))
= L∞,Ã(x0,∇w(x0),D2ũ(x0))
≤ L∞,Ã(x0,∇w(x0),D2w(x0))

= L∞,A(x0,∇w(x0),D2w(x0)) +
〈
∇x〈A(x0)∇w(x0),∇w(x0)〉,Λ∇w(x0)

〉
+ 4〈D2w(x0)A(x0)∇w(x0),Λ∇w(x0)〉+ 2〈D2w(x0)Λ∇w(x0),Λ∇w(x0)〉,

by Proposition 3.3. Moreover

−µ≥∆∞,A w(x0) = L∞,A(x0,∇w(x0),D2w(x0)).
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By subtracting the last equation from the first we obtain

µ≤
〈
∇x〈A(x0)∇w(x0),∇w(x0)〉,Λ∇w(x0)

〉
+ 4〈D2w(x0)A(x0)∇w(x0),Λ∇w(x0)〉
+ 2〈D2w(x0)Λ∇w(x0),Λ∇w(x0)〉.

(9.4)

We estimate each term on the right-hand side separately. For the first we find∣∣∣〈∇x〈A(x0)∇w(x0),∇w(x0)〉,Λ∇w(x0)
〉∣∣∣

=
∣∣∣∣ n∑
i,j,k,l=1

∂aij
∂xk

(x0) ∂w
∂xi

(x0) ∂w
∂xj

(x0)ckl
∂w

∂xl
(x0)

∣∣∣∣
≤max

q,r
|∇aqr(x0)|max

q,r
|cqr|

n∑
i,j,k,l=1

∣∣∣∣ ∂w∂xi (x0) ∂w
∂xj

(x0) ∂w
∂xl

(x0)
∣∣∣∣

≤ n3 max
q,r
|∇aqr(x0)|max

q,r
|cqr||∇w(x0)|3,

where we used (3.9). For the second term we have

|〈D2w(x0)A(x0)∇w(x0),Λ∇w(x0)〉|

=
∣∣∣∣ n∑
i,j,k,l=1

aik(x0) ∂w
∂xk

(x0) ∂2w

∂xi∂xj
(x0)cjl

∂w

∂xl
(x0)

∣∣∣∣
≤max

q,r
|aqr(x0)|max

q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣max
q,r
|cqr|

n∑
i,j,k,l=1

∣∣∣∣ ∂w∂xk (x0) ∂w
∂xl

(x0)
∣∣∣∣

≤ n3 max
q,r
|aqr(x0)|max

q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣max
q,r
|cqr||∇w(x0)|2,

by Young’s inequality. The estimate for the third term is identical with the above, except
that aik is replaced by cik in the sum, hence

|〈D2w(x0)Λ∇w(x0),Λ∇w(x0)〉|

≤ n3(max
q,r
|cqr|)2 max

q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣|∇w(x0)|2.

Inserting these three estimates into (9.4) gives

µ≤ n3
(

max
q,r
|∇aqr(x0)||∇w(x0)|3

+ 4max
q,r
|aqr(x0)|max

q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣|∇w(x0)|2
)

max
q,r
|cqr|

+ 2n3 max
q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣|∇w(x0)|2(max
q,r
|cqr|)2.

Recall that
µ= 2ε4γ(B−1)B−1e−γ||u

+||∞ .
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Set
γ = 1
||u+||∞

,

then fix B > 1 such that
B−1
γ

= σ,

where we had
σ = max

Ω
(ũ−w).

Now we have
µ= 2ε4σ

Be||u+||2∞
,

thus
σ ≤ Be||u+||2∞n3

2ε4

(
max
q,r
|∇aqr(x0)||∇w(x0)|3

+ 4max
q,r
|aqr(x0)|max

q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣|∇w(x0)|2
)

max
q,r
|cqr|

+ Be||u+||2∞n3

ε4 max
q,r

∣∣∣∣ ∂2w

∂xq∂xr
(x0)

∣∣∣∣|∇w(x0)|2(max
q,r
|cqr|)2

≤ C1
ε4 {max

q,r
|cqr|+ (max

q,r
|cqr|)2}.

where the constant C1 can be choosen to be independent of ε.

Continuing to estimate (9.2) we obtain

ũ−u≤ σ+σ+Cε

≤ 2C1
ε4 {max

q,r
|cqr|+ (max

q,r
|cqr|)2}+Cε,

by the previous lemma. If maxq,r |cqr| ≤ 1 we can find a constant C2 such that

ũ−u≤ C2
ε4 max

q,r
|cqr|+Cε.

Now we let ε > 0 be such that the right-hand side attains its minimum. Thus

ε=
(4C2
C

max
q,r
|cqr|

)1/5

by the infinitesimal calculus. Inserting this into the above yields a bound like

ũ−u≤ κ1(max
q,r
|cqr|)1/5,

for some constant κ1. Similarly, if maxq,r |cqr|> 1 we find a bound of the form

ũ−u≤ κ2(max
q,r
|cqr|)2/5,
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where κ2 is a constant. Combining the two cases we arrive at the desired bound

ũ−u≤ κ{(max
q,r
|cqr|)1/5 + (max

q,r
|cqr|)2/5},

for some new constant κ. This concludes the proof when ũ is a subsolution and u is a
supersolution.

Now suppose that ũ ∈ C2(Ω) is a classical supersolution:

∆∞,Ã ũ(x)≤ 0

and that u ∈ C2(Ω) is a classical subsolution:

∆∞,A u(x)≥ 0

both with boundary values g. We could have done the same procedure as above for u− ũ,
by using the Lower equation. Instead, observe that

u− ũ= (k− ũ)− (k−u),

where the constant k is so large that k−u > 0. We find

∆∞,Ã (k− ũ(x))≥ 0
∆∞,A (k−u(x))≤ 0,

and we have reduced the problem to the previous case. This concludes the proof.
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