


Chapter 9

Conclusion

We consider solving hyperbolic systems of conservation laws with uncertain

initial values, solved using a quasi Monte Carlo method. The quasi Monte

Carlo method utilize Sobol sequences, while the underlying solver is a finite

volume solver. We implement the Sobol generator and the finite volume solver

from scratch in C++. Combining these we have a complete system for solving

these kind of problem for scalar conservation laws. For speed and efficiency we

also integrate these into ALSVID-UQ, a tool for uncertainty quantification.

We present numerical experiments in one space dimension and up to nine

stochastic dimensions. For all experiments needing uniformly sampled initial

data the error is demonstrated to scale as O(1/M), both in the mean and

variance. Using a modified Box-Muller algorithm we can also generate normally

distributed initial data. Here the results are not that robust, but is no worse

than conventional Monte Carlo. For the most advanced experiment, using a

Karhunen-Loève expansion truncated after 9 terms, we get the error scaling

as O(1/M), even though these initial values depend on normally distributed

numbers. For some of the numerical examples the conventional Monte Carlo

error behave erratically. Due to the complexity of running these high-resolution

problems on a cluster we have not yet been able to pinpoint the exact cause of

this.
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Aside from some small technical difficulties, such as sampling from the cor-

rect dimension and using the modified Box-Muller method, the quasi Monte

Carlo method using Sobol sequences can substitute conventional Monte Carlo

methods with little to no work. The quasi Monte Carlo method offers a faster

convergence, and often a lower constant error in all our experiments. Espe-

cially in cases where only uniformly distributed numbers are needed this method

shines.
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