
Large Scale Privacy Architecture
Implemenation and Evaluateion

Erik Reimer

Master of Science in Computer Science

Supervisor: Guttorm Sindre, IDI
Co-supervisor: Carl-Fredrik Sørensen, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

Various enterprises store information and transaction data about people who have, or have
had, customer or client relationships with them. In addition, many people today use nu-
merous online services where they disclose information like: name, email, address etc.
This information may be misused and thus hurt the person’s privacy. The data on its own
is no threat to people but through profiling, this information may become sensitive.

This project introduces an architecture and a system called IDMegler that tries to mitigate
these threats. There is an increasing need to protect data in a fast growing digitalised world.
IDMegler is a proposal for a nationwide middleware system which decouples identity
data from transaction data, and enforces integrity of certain information about people.
IDMegler also works as an insight service for users that enables people to control who
retrieves information about them. The project takes the idea of IDMegler, and through
design science, interviews, and a questionnaire, evaluates and calculates threshold values
IDMegler will need to satisfy.

The interviews and questionnaire have gathered information about transactions concern-
ing personal information and people’s lack of control over their personal data distributed
through online services and enterprises. The data collected have been the basis for the
estimation of the likely workload for the system, and of required performance in terms
of throughput and response times. The design science generates a prototype of IDMegler
through a proposed architectural design and requirement specification. Performance tests
have been performed to test the design against requirements, and to identify limitations
and bottlenecks in the architecture. The architectural design, the requirement specifica-
tion, and the performance tests have all been developed and accomplished during this
project.

Through performance tests the project identifies one bottleneck, and suggests how to re-
move this bottleneck. The remaining part of the design suggests that the architecture and
system is good enough to meet the estimated performance requirements.

i

ii

Sammendrag
Mange bedrifter lagrer informasjon og transaksjonsdata om personer som har, eller har
hatt, kundeforhold til dem. I tillegg så bruker mange personer tjenester på nettet hvor de
frivillig gir ifra seg informasjon som: navn, epost, adresse etc. Denne informasjonen kan
bli misbrukt og dermed skade en persons privatliv. Dataen i seg selv er ingen trussel for
privatlivet, men igjennom profilering kan denne dataen regnes som sensitiv.

Dette prosjektet introduserer et system kaldt IDMegler, som prøver å forhindre disse trus-
lene. I våre dager er det et økene behov etter å sikre data i en kjapt voksende digi-
taliserende verden. IDMegler er et forslag til et mellomvare system på nasjonalt nivå,
som fjerner koblingen mellom identifikasjonsdata og transaksjonsdata, og håndhever in-
tegriteten av visse typer person informasjon. IDMegler fungere også som en innsikts tjen-
este for brukere av systemet som muliggjør kontroll over hvem som henter ut informasjon
om dem. Prosjektet tar utgangspunkt i ideen til IDMegler, og igjennom design science, in-
tervjuer, og en spørreundersøkelse, evaluerer og kalkulerer prosjektet krav som IDMegler
må oppfylle.

Intervjuene og spørreundersøkelsen har samlet informasjon om transaksjoner som bruker
person informasjon og om personers manglende kontroll over sin egen distribuerte person-
lige informasjon i nett-tjenester og bedrifter. Dataen som er samlet inn har vært basisen for
å estimere den totale arbeidsmengden systemet må takle, og kravet til ytelse for mengden
transaksjoner av personinformasjon og responstiden. Ved bruk av design science genereres
en prototype av IDMegler igjennom en foreslått design av arkitektur, krav spesifikasjon, og
ytelsestester for å identifisere mulig begrensninger og flaskehalser i arkitekturen. Arkitek-
tur designet, kravspesifikasjonen, og ytelsestestene har alle blitt laget og gjennomført i
dette prosjektet.

Igjennom ytelsestestene identifiserer prosjektet en flaskehals, og kommer med forslag til
hvordan flaskehalsen kan løses. Den resterende delen av designet gir utrykk for at arkitek-
turen og systemet er bra nok til å holde de estimerte kravene til ytelse.

iii

iv

Preface

This master thesis is written as the last part of my degree of Master of Science at the Nor-
wegian University of Science and Technology (NTNU), carried out in the Department of
Computer and Information Science. The project was supervised by my main supervisor
Guttorm Sindre, and co-supervisor Carl-Fredrik Sørensen. The master thesis is a continu-
ation of a pre-project executed by me in the fall of 2015 Privacy Architecture IDMeglers
Impact [36].

v

vi

Acknowledgements
The thesis work have been conducted with guidance from Professor Guttorm Sindre and
Carl-Fredrik Sørensen at the Department of Computer and Information Science (IDI). I
would like to thank them for giving me a lot of helpful feedback and guidance during
my master thesis. I would also like to thank my family and friends for continues support
throughout the project.

vii

viii

Table of Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgements vii

Table of Contents xi

List of Tables xiii

List of Figures xvi

Abbreviations xvii

1 Introduction 1
1.1 Privacy in the Digital World . 1
1.2 Motivation . 2
1.3 Introduction of IDMegler . 3
1.4 Problem . 5
1.5 Contributions . 6
1.6 Structure . 6

2 Literature Review 9
2.1 Privacy Aspects . 9
2.2 Related Work . 11

3 Research Approach 15
3.1 Design Science Research . 16
3.2 Surveys . 17

ix

3.3 Metrics . 18
3.4 Types of data . 19

3.4.1 Qualitative data . 19
3.4.2 Quantitative Data . 19
3.4.3 Test Data . 20

3.5 Development of the Prototype System 20
3.6 Summary . 21

4 Requirement Specification and Architectural Design 23
4.1 Requirement Specification . 23
4.2 Architectural Drivers . 26

4.2.1 Functional Requirements . 26
4.2.2 Quality Attributes . 26
4.2.3 Technical Requirements . 27

4.3 Roles and Stakeholders . 28
4.4 IDMegler Designs . 30

4.4.1 Peer to Peer . 30
4.4.2 Master/Slave . 30
4.4.3 Model-View-Controller . 32

4.5 Chosen Design . 33
4.5.1 IDMegler’s Process Flow . 34
4.5.2 IKDM Component . 35
4.5.3 LRIM Component . 37

4.6 Summary . 39

5 Design and Implementation 41
5.1 Components/Services . 41

5.1.1 IKDM Server . 41
5.1.2 LRIM Server . 46
5.1.3 ”Folkeregisteret” Simulator . 52
5.1.4 Enterprise Simulator . 52

5.2 Patterns . 54
5.3 Shortcomings of the Implementation . 55
5.4 Set up . 56
5.5 Summary . 58

6 Results 59
6.1 Qualitative Data from ”SpareBank 1” 59

6.1.1 Transactions . 59
6.1.2 Performance . 60
6.1.3 General Questions . 61
6.1.4 Number of Enterprises that Uses Information About Persons. . . . 61

6.2 Quantitative Survey Data . 61
6.3 Test Data . 65

6.3.1 Calculated Threshold Values . 65
6.3.2 Tests . 66

x

6.3.3 Preformed tests . 69
6.4 Summary . 75

7 Discussion 77
7.1 Data Collection . 77
7.2 Survey . 77
7.3 System Design and Architecture . 78

7.3.1 Reflections . 78
7.3.2 Architecture . 79
7.3.3 Problems . 80
7.3.4 Implementation . 80
7.3.5 Functional Requirements . 80
7.3.6 Test and Performance . 81

7.4 Validity . 83
7.4.1 DSRM Process . 83

8 Conclusion and Future Work 85
8.1 Research Questions Conclusion . 85
8.2 Future Work . 87

References 89

Appendix 93

xi

xii

List of Tables

4.1 Pros and Cons for the Government Stakeholder 28
4.2 Pros and Cons for the Enterprise Stakeholder 29
4.3 Pros and Cons for the Citizen Stakeholder 29
4.4 Pros and Cons for the Criminal Role . 29

6.1 Data from ”SpareBank 1” Test Data and Response Time. 60
6.2 Categories of Transactions Occurrences 65
6.3 The Tests Preformed on the Set-up . 68
6.4 One Request Per Second to Many Enterprises 70
6.5 One Enterprise to Many Requests . 71
6.6 Five Enterprises To Many Requests . 72
6.7 Ten Enterprises to Many Requests . 73

xiii

xiv

List of Figures

1.1 BPMN Model of the IDMegler Process 8

3.1 Design Science Research Cycles (adapted from [25]) 16
3.2 Visualisation of the Implementation Process 21

4.1 Peer-To-Peer structure of IDMegler . 31
4.2 Master/Slave Structure of IDMegler . 32
4.3 Model View Controller Structure of IDMegler 33
4.4 Process Flow Diagram for Citizen’s Perspective 34
4.5 Process Flow Diagram for Enterprise Perspective 35
4.6 Dataflow for the IKDM Component . 37
4.7 Data Flow for the LRIM Component . 38
4.8 Sequence Diagram for the Process of Retrieving a Customer’s Information 39

5.1 Class Diagram for the IKDM Server . 43
5.2 Document Database for the RaveDB . 47
5.3 Class Diagram for the LRIM Server . 49
5.4 Enterprise Simulator GUI Interface . 54

6.1 Number of Transactions for ”SpareBank 1 SR”s External Channels 60
6.2 The population of the participants . 62
6.3 The Number of Participants and their Age Groups 62
6.4 The Different Types of Phones . 63
6.5 Education Types . 63
6.6 Average Memberships Divided by Sex. 64
6.7 Average Memberships Divided by Sex and Age Group. 64
6.8 Transaction Impact . 66
6.9 Many to One Response Time . 70
6.10 One to Many Response Time . 72
6.11 Five to Many Response Time . 73

xv

6.12 Ten to Many Response Time . 75

xvi

Abbreviations

ACID = Atomicity, Consistency, Isolation, Durability
BPMN = Business Process Model and Notation
DRM = Digital Rights Management System
DSR = Design Science Research
DSRM = Design Science Research Method
IDM = Identity Management System
IKDM = Insight Key Data Management
LBS = Location Based Service
LRIM = Log Request Information Management
PDV = Personal Data Vault
PRIME = Privacy and Identity Management for Europe
PRM = Privacy Rights Management System
P3P = Platform for Privacy Preferences
RDBMS = Relational Database Management System
SSL = Secure Socket Layer
TLS = Transport Layer Secure

xvii

xviii

Chapter 1
Introduction

Everyone is concerned about privacy. That is what people usually say if someone asks
about it. However, many people share and expose themselves on the Internet with varying
degree of knowledge about the implications. Various enterprises store information and
transaction data about people who have, or have had, customer relationships with them.
This information may be misused and thus hurt the person’s privacy. This project will
introduce an architecture and a system that will decouple identity data from transaction
data. In addition, the system gives each citizen an insight service about which enterprise
use their personal information. The suggested system is supposed to aid people to remain
in control of their own personal data.

Enterprise
This project defines the term enterprise as any type of business or organisation and any-
thing in-between.

1.1 Privacy in the Digital World

Threats
People use many services online. By using these services, people often have to give away
information about themselves. The information often disclosed include; email, address,
name, credit card etc. The problem with disclosing information is that the individual
loses control of the information, and the threat of misuse of personal data increases. The
increasing distribution of personal information increases the possibility of malicious use
and identity theft, or use of profiling to discover personal secrets or weaknesses.

Big data technology is becoming a more developed field. This enables systems to traverse
extreme amounts of data and spot patterns about people’s behaviour. The more developed
methods present a threat to privacy because it is possible to combine information and use

1

Chapter 1. Introduction

deduction to infer information not given. Barocas [8] argues for the risks big data pose
to privacy. He presents the problem that big data is able to classify a person without their
knowledge. Social media makes this possible. Cuzzocrea [20] describes different risks to
privacy because of big data technology. The risks include missing control of ownership to
personal data, the risk of combining information through interpolation and extrapolation,
and the problem of exposure in form of specifying whom a person is, based on transactions
shared on the Internet.

Security and privacy
Clarke and Roger defines privacy as [17]:

”Privacy is the interest that individuals have in sustaining a ’personal space’,
free from interference by other people and organisations”

As the quote implies, privacy is something personal and people do not want their informa-
tion to come astray.

Two terms, security and privacy, are often used in relation to keeping information se-
cure. Three other words describe information security in IT: Confidentiality, integrity, and
availability. The ability to keep things safe through confidentiality, make sure that the in-
formation is correct through integrity, and has control over peoples knowledge, and the
access people have to the information through availability.

1.2 Motivation

There exists many privacy threats. This project tries to mitigate some of the problems
or issues. In general, there is no way a person can totally control the distribution of his
(personal) information. The information belonging to the individual is shared through
Internet services and social media. And, people share information willingly. The reason
for sharing is the benefits it brings. By using online services, many everyday tasks become
easier and more efficient. All people have to do is agree upon the terms of agreement when
using a service. However, if people want to withdraw from the use of the service and get
their personal data removed/deleted, they have no simple way to do that. Storage space
is not a problem for big enterprises, and the enterprises will not delete potential valuable
data.

The current mainstream practice for enterprises is to store both identity information and
transaction data. The stored information enables others to identify transaction data related
to a person. This poses a threat to privacy. The architecture and system in this project try
to mitigate this problem.

In general, people do not want others to know about their sensitive data. According to
Norwegian law, there are two different types of personal data (information about a person):
personal data, and sensitive personal data. The definitions in the Personal Data Act1 are as
follows [1]:

1This document is ”Datatilsynet”s translation of the Norwegian law (Personvernsloven §2).

2

1.3 Introduction of IDMegler

”personal data: any information and assessments that may be linked to a
natural person ...
sensitive personal data: information relating to
a) racial or ethnic origin, or political opinions, philosophical or religious
beliefs,
b) the fact that a person has been suspected of, charged with, indicted for or
convicted of a criminal act,
c) health,
d) sex life,
e) trade-union membership.”

In a big data context, all types of personal information may become sensitive. Through
profiling, it is possible to use small amounts of data, not necessarily classified as sensi-
tive, to identify a specific person. Again, the architecture and system in this project try
to remove the traceability between the different sources of information. The work accom-
plished in this project will not solve all problems about profiling, but it will try to tackle
the aspect of directly stored personal data. Profiling by saving actions people do online,
through tracking their IP and MAC-addresses will still exist.

1.3 Introduction of IDMegler

This project is based on the suggested idea and architecture IDMegler, Sørensen [38], as
well as a continuation of a pre-project [36] done in the Fall 2015 (carried out by me).
The project did a threat analysis of the system as well as identified stakeholders, and their
concerns. Additionally, this project is based on earlier master and pre-project respectively,
Drange [21] and Fossestøl [22].

IDMegler is a middleware architecture intending to improve privacy. The system strives
to be a broker (tunnel) between Enterprises and services using personal information, and
a common database, which stores personal data (An improved version of the Norwegian
”Folkeregisteret”). The outcome of the system should bring:

• Increased integrity of information about persons

• Enable an insight service for citizens where they can check which enterprises are
accessing their personal information

• Give citizens the opportunity to refuse the enterprise access to their personal data (if
the enterprise continues to use information still after the citizen has withdrawn from
the services of the enterprise)

Areas of use
The service will work as a key chain that enterprises can use to access customer’s infor-
mation. Each enterprise gets their own ID (to authenticate who they are to IDMegler) and
an ID for each of their customers. They will need validation based on how they want to
use the personal information to get access to IDMegler. A method/process will handle the
task of accessing a customer for the first time and generate a customer-ID. This prevents

3

Chapter 1. Introduction

an enterprise of accessing information about citizens who are not their customers. The
enterprise asks for personal information (name, email, address, phone-number, social se-
curity number) through IDMegler by using their own enterprise Id and their customer ID
as keys. This enables IDMegler to use the ID’s as keys to discover who the keys link to,
and to retrieve the information the enterprise needs from an improved version of ”Folk-
eregisteret”. This also enables logging of transactions. See Figure 1.1 for a BPMN model
of the process.

A possible solution for incorporating IDMegler, might be to make people able to generate a
temporary ID through IDMegler, and use this as the only sign-up information when signing
up with an Internet service. Another approach would be to get the ID automatically using
MinID, Facebook or other identification services.

The overall motivations for this system are to:

• Reduce the usefulness of knowing a person’s social security number or any key
identifying a person thus making it more difficult to perform identity theft, tracking,
etc

• Separate the physical location of personal information and the transaction data (avoid
the links between transaction data and the person it concerns, to mitigate data leak-
age)

• Give each citizen an insight service about usage of personal information

• Increase the integrity of personal information (the integrity is increased when all
enterprises retrieve the same correct data from the same place)

• Log any service or enterprise using personal information and the amount of data the
enterprise used

For enterprises, IDMegler will operate as a lookup service and will only affect functions
and transactions that use or need customer information: Name, address, phone number,
email, and/ or social security number. IDMegler transports this information from a gov-
ernmental controlled improved version of ”Folkeregisteret” to the consumer. IDMegler
only stores the logs of the transaction performed and transports the personal information.
IDMegler never stores the personal data requested.

To summarize:

• The system authorises insight

• IDMegler exposes services that allows enterprises to access only information about
their customers

• The system permits only access to customers the enterprise deals with.

• IDMegler ensures separation of concerns between identifying information and trans-
actions

• IDMegler is a broker (tunnel) between enterprises and an improved version of ”Folk-
eregisteret”

4

1.4 Problem

IDMegler assumes that the enterprises using their services do not save the personal in-
formation in any local register. Each time an enterprise needs data about one of their
customers the enterprise will have to make a request for the information through ID-
Megler.

Scenarios of use
Many different scenarios will include the use of personal information. In fact, they roughly
categorize into the following temporal categories: Daily, weekly, monthly, yearly, and
occasionally.

Frequency Description of Scenarios

Daily Use of online banks
Use of social media

Weekly Use of online banks
Sending newsletters

Monthly
Sending pay checks
Sending Bills
Sending newsletters

Yearly Tax returns

Occasionally
EU car control
Background check
Signing up for insurance

1.4 Problem

The project will try to answer the following research questions.

RQ1: What are possible bottlenecks and limitations of IDMegler?
RQ2: What is the minimum amount of traffic a system like IDMegler should be able to
handle?
RQ3: How can the architecture be designed to cope with the workload?
RQ4: How can the architecture fulfil the functional requirements of the solution?

To answer these questions, the project designs an architecture of IDMegler, implements a
prototype of the architecture, and tests the system with regards to performance based on
the estimated threshold values the system has to operate under. These threshold values
have been estimated based on transaction data from ”SpareBank 1” (the finance sector)
and assumptions about other relevant enterprises. The data relevant to this project were
information about transaction usage and number of enterprises that handle personal in-
formation. This project has also made a survey about the average person’s number of
customer relationships.

5

Chapter 1. Introduction

1.5 Contributions

Through data gathered throughout this project, the estimated number of transactions per
second Norway will need is 4 500. The questionnaire used to classify the average person’s
control over different distributed personal information suggests that people in general have
no knowledge of all the places the information is distributed. This project specifies the
requirements, designs an architecture, and implements a prototype of the architecture. The
discoveries suggested that the architecture with a small set-up is able to handle around
1 000 transactions per second, with good response times. Due to the scalability of the
architecture, the conclusion is that the design is able to handle far more than the estimated
value. The project also classifies a bottleneck with the generation of logs and suggest
solutions for the architecture.

1.6 Structure

This report uses the following structure to explain and display how the work is done in this
project.

• Chapter 1

– Introduces the motivation for the project and describes IDMegler, and ends
with listing the research questions for this project.

• Chapter 2

– Introduces the literature and related works.

• Chapter 3

– Presents the different research methods and why this project uses the different
methods.

• Chapter 4

– Defines the requirements, identifies stakeholders and roles, and goes into detail
about the different possible designs in this project. The chapter continues by
showing the final design of the architecture implemented in this project.

• Chapter 5

– Discusses and explains the implementation of the design and architecture given
in chapter 4.

• Chapter 6

– Describes the results of the work done in this project. This include the tests
the system implemented, calculations of threshold values, data from the ques-
tionnaire, and data from the interviews.

• Chapter 7

6

1.6 Structure

– Discusses the whole project and lists the overall findings of this project. At the
end of the chapter validity is discussed.

• Chapter 8

– Concludes the project and recaps what has been discovered in regards to the
research questions. It also lists possible future works.

7

Chapter 1. Introduction

Figure 1.1: BPMN Model of the IDMegler Process

8

Chapter 2
Literature Review

A variety of articles describing the problem domain has been investigated to better un-
derstand the context of privacy architecture and privacy aspects. The primary source of
articles has been the search engine ACM digital library. The search strings used have been
”privacy architecture”, ”privacy management”,”privacy management systems”, and ”pri-
vacy information systems”. The following sections present different aspects that concern
privacy and hold interest for this project.

2.1 Privacy Aspects

Many people find the sharing of information across different services a threat to privacy.
Google is a big commercial company with many different services. Corwe et al. [19], went
through the privacy policies Google have had throughout the years. The discovery shows
that the policies have not changed drastically. In 2012, many discovered that Google’s pri-
vacy policies included sharing information among their services. Many thought that this
was something new. However, according to the article this has been part of Google’s pri-
vacy policy since 2004. The conclusion is that there are little people can do to control their
information except find alternatives or to stop using them at all. The reality is that Google
holds an extreme amount of information about people who use their services.

Guha et al. [23], suggest a possible way to mitigate the problem with privacy and use
of personal information. The approach consists of making insurances for people’s online
behaviour. The insurance should compensate economical in the case a person’s data is
misused. The main advantage according to the article would be to better mitigate data
breaches (leakage of personal information, identity thefts etc.). The article did a survey
where they asked people if they would be interested in being insured for their Internet
activities. A good number found it interesting. In addition, many where interested in
having a software run on their computer monitoring their actions on the Internet, that

9

Chapter 2. Literature Review

would suggest different behaviour when they did foolish choices, to reduce the premium
pay.

Recently, people often answer surveys on the Internet. Kandappu et al. [7], present the
problem of profiling people based on answers from different online surveys. The article
proves how simple it is to generate enough information to infer sensitive information about
a person. The solution they present is to use an application that gives the user the option
to set their own privacy setting. The survey is then filled out normally. However, when the
survey is completed and the answers sent, the info is obscured according to the persons
privacy preferences set in the application to mitigate profiling. The article’s argument is
that the best action to mitigate profiling of combining surveys, is to give the control back
to the user.

The government is interested in information about people and is continually working on
making services digital. Production of digital solutions emphasise the importance of se-
curing the management of data collection, storage, and analysis without revealing privacy.
Vaidya and Jaideep [40] discuss different tactics the government should consider when
going digital. The main advice they give is to use Platform for Privacy Preferences (P3P)
Project [3] when designing services. In addition, they argue for using good access control
to enhance trust of the system.

People use many web services. Consequently, the privacy aspect of e-commerce has re-
ceived a lot of attention. Ackerman et al. [7] present a survey where they are categorising
what a person is willing to disclose of private information. Their findings suggest that
people are reluctant to disclose credit-card information and government issued identifi-
cation. Most people have no problem sharing email address, age, or street address, but
they are a little more reluctant to disclose phone numbers. When it comes to sharing in-
formation about children, all participant’s willingness of share were reduced drastically.
Another finding is that people seem to have strong feelings concerning what the gathered
information is used for, including the trustfulness of the service.

In general, there are few things people as consumers can do regarding a service. The
choices presented are usually to either accept the privacy policies of the service or choose
to omit the service. Pettersson et al. [35], suggest a system, which hopefully will re-
establish the power of the user. By making a more extensive sign-up form when using a
system where the person specifies their privacy preferences, it will be possible to be part
of the policy-making. The article is aware of the disadvantage of the increased signing-
up time, but argues for the increased benefits of trust it will create. Another strong point
is the standardization of specifying privacy. This would make it easier for the public to
understand the policies and their implications.

To benefit from many services on the web the individual has to create multiple internet
accounts. These spread the information about people to other services. Consequently,
each service needs to prove itself trustworthy. Bonatti et al. [13] discuss the problem, and
suggests the need for a better certificate driven framework. The idea is to have certified
certificate authorities who distribute the certificates. In addition, clients need to request
certificates from the servers to validate the trustworthiness of the service. This should
happen before sending any information from the client to the server. Given the opportunity

10

2.2 Related Work

to get information about the actual service, facilitates the protection and evaluation of one’s
own privacy.

Would it not be better if a service used a minimum of information to ensure privacy?
Hansen et al. [24] imply something different. When many small services contain private
information there is no guarantee of the security. In addition, little information about a
person complicates the detection of patterns. Patterns are beneficial in order of securing
misuse of personal information. Knowing a person makes it possible to detect posers. In
other words, the important parts of developing privacy systems are to evaluate privacy out
of context, and not just based on initial thoughts to minimize information to protect the
target.

Massive amounts of people use the web and its services because of its usefulness. Mali-
cious people are among those, and the web provides no safety. Even if people do not use
services on the Internet ones privacy is not assured. As long as a person uses the Internet
he becomes subject to tracking. Acar et al. [6] present two types of tracking, which are
very hard to mitigate. The types are; canvas fingerprints and ever-cookies. Canvas finger-
prints are using built-in functionality in most browsers. These make images of a person’s
websites through the canvas method. By analysing the images, the mechanism generates
a profile about a person. Ever-cookies are cookies, which are very hard to clear. Ever-
cookies use multiple storage vectors. They are less transparent and concealed for the user.
Many big websites use ever-cookies. The findings of the article suggest that there are no
ways for regular browsers to fight against these kinds of tracking, and the only working
solution today is to use the Tor browser1.

There exist many threats to a person’s privacy. Many identity management systems (IDM)
exist. Clau et al. [18] suggest a way to evaluate IDM’s, and takes inspiration from the
PRIME approach (Privacy and identity management for Europe). To evaluate IDM’s the
article propose a simple attack classification scheme. The article suggests that there is a
need to focus on the weakest part of the IDM’s, which they classify as the release data (the
data a person sends over the Internet or otherwise instantiates) and the meta-data during
interactions. These parts make up the main attack surface of the IDM’s. In addition, there
are three other primary targets for attacking IDM’s; their statistical databases, network
anonymity, and interactivity.

2.2 Related Work

IDMegler’s focus is to increase privacy and transparency to the public. This section will
present other proposals in the same direction of IDMegler. The main difference between
IDMegler and other works is the overall scope. IDMegler aims for every aspect of a whole
nation and all of its services and enterprises, compared to the e-commerce side of the
spectre. The e-commerce has received a lot of attention without proper consideration of
the nationwide aspect.

1https://www.torproject.org/

11

https://www.torproject.org/

Chapter 2. Literature Review

A common problem when using e-commerce is, there is no guarantee of how information
about a customer is spread or dealt with. Chong et al. [15] imply the need of a protocol that
hides the customer’s purchases. The idea behind the protocol is the use of a server handling
the keys in purchasing an item. Here the customer contacts the server with identification,
and then the server manage the exchange. The transaction works without notifying the
enterprise of the item purchased by the given customer.

E-commerce also have the problem of profiling. Such et al. [39], suggest a method for
dealing with profiling. In addition, they present some of the challenges with profiling.
According to the article, profiling can result in price discrimination. This means that two
different people with different profiles may see different prices on the same product or
service based on their profile. To avoid this scenario, the article suggest using pseudonyms.
Even though they are used today, the article argues that pseudonyms are not changed fast
enough. Ideally, the pseudonyms should change during each transaction, to mitigate the
profiling aspect.

Mobile smart phones are becoming an increasingly important aspect of the everyday life.
There are few ways today to control the data that people willingly gives away using mo-
bile applications. Mun et al. [30], present personal data vaults (PDV) that are designed
to give the ownership of personal data back to the user in smart phone scenarios. The
PDV-architecture uses three different techniques: Granular ACL, Trace Audit, and a Rule
Recommender. Granular ACL restricts the value of the given information. Granular ACL
manages this by reducing the frequency, and amount of information uploaded to a service.
Trace Audit is a logging mechanism that wants to achieve the same result as IDMegler
(that is to log any service using information and the amount of data used). Rule Recom-
mender is a high-level interface for setting sharing policies.

People use social media every day. Dhia et al. [11], introduce a privacy management
system called Primates. The system is designed to improve the access control deployed
in social media. The article argues for the need of more sophisticated access controls in
social media. The Primates system makes nodes between the connections in social media,
and weighs the nodes according to trust. According to the article, this enhances people’s
ability in controlling shared information in social media.

People use many mobile devices, and this brings location-based services (LBS) into the
equation. Chow et al. [16], look at different architectures for mitigating discovery of peo-
ple’s location while still using LBS’s. In a client-server architecture, they argue for using
false requests to hide the user’s actual location. In a trusted third party system, the solution
might be to use middleware to conceal the different requests. If the number of users re-
questing locations is high enough, it will continuously hide the receiver. The disadvantage
is that the third party continuously is recognizing each individual. In a distributed sce-
nario, each user collects the request and sends them in as one individual. In a peer-to-peer
setting, the users can use close neighbours to send their request to hide who they are. The
article concludes that there are challenges to be dealt with. One of the challenges is to find
out how privacy in LBS looks from the perspective of the user. In addition there exists no
way to measure privacy in LBS. Adversary attacks are some of the areas the article finds
crucial to clarify.

12

2.2 Related Work

Basso et al. [10], suggest a privacy reference architecture to enhance privacy sensitive
services. The reference architecture is made up of four layers. The presentation layer
consists of the visual display for the service. The application layer performs the logic in the
service. The privacy layer is responsible for defining and enforcing the privacy policies.
The persistence layer saves all the data in the service. The architecture framework was
evaluated in: completeness, usability, applicability, and feasibility. The article concludes
with the benefit of defining a reference architecture to help to set up privacy in crucial
scenarios.

Bodrik et al. [12], argue that people do not want to use services online out of privacy
reasons. They suggest an architecture based on P3P, focusing on control, data purpose,
and separation of persona profiles. The architecture is made up of a collection of agents
with different tasks. Each agent accesses a set of different supporting repositories. The
different repositories store different data (privacy preferences, private data, and persona’s).
The architecture uses Audit trail and history repository for accountability. Each agent
and user can manage and control the data in the different repositories. The separation of
functionality enables easy replacement of agents. Just like P3P the suggested architecture
does not enforce privacy contracts but suggest and communicates with the server to ensure
the best option for the user. The downside is that there are no guarantees for using false
or incorrect privacy policies. To mitigate the problem, there should be a mechanism to
trace the usage of the transaction information, to ensure that the data is used as the policies
suggest.

The most related work to this report was found in the work done by Camenisch et al. [14].
Their work presented an architecture with the same functionality in mind as IDMegler. The
main difference between IDMegler and the work they present is the scope. This article only
looks at e-commerce systems. The article suggests making a middleware service which
acts as a mediator. The mediator uses access control, identity control, and an obligation
manager. The obligation manager ensures that event condition actions are performed. In
the case some data should no longer belong in the system, the obligation manager ensures
that it is removed. By operating as a middleware where the users identity is hidden, makes
it possible to create a system where anonymous transactions can exist. This system is an
embodiment of PRIME.

Another system for managing privacy is presented by Kobsa and Alfred [27]. The problem
domain discussed is the different rules in different jurisdiction where people do online
business. The work presented is an architecture they call RAIC. RAIC is a service-oriented
unit that contains an array or group of similar or identical components. The different
components contain varying degrees of privacy. When a customer buys an item with the
RAIC architecture, the system chooses the privacy components, which ensure that the
enterprise performs the transaction according to the customers geographically laws and
regulations. The architecture is able to operate in countries with both weak and strong
privacy laws.

Access control is an important part of any privacy system. Kenny and Korba [26] ar-
gue for using standard digital rights management’s systems (DRM) concept inside of pri-
vacy rights management systems (PRM). PRM takes several actions to enhance privacy.

13

Chapter 2. Literature Review

These include: only logging that information has been accessed not by whom, use content
providers that enforces role based access control, and logs the use inside of the PRM. The
main advantage according to the article is that the system would satisfy the EU’s rules and
regulations for data privacy.

Different DRM’s can preserve privacy, however Mishra and Dheerendra [29], suggest a
privacy architecture for DRM’s that will be able to preserve privacy and detect malicious
users. To ensure the privacy, the DRM utilize protected content download. The DRM
consists of two servers; the content server, and the licence server. The content server
provides the content. The licence server makes sure that the person requesting content
and the server providing content are legitimate people and servers. When downloading
content, the user can chose to use an anonymous IP-address. In addition, the license server
knows who is requesting, but not what is requested. This makes the system private. To
mitigate thieves, the system uses traitor tracing. This involves the use of a revoking list of
untrusted users. If a person or user is on the revoking list, they will not be able to retrieve
content through the DRM.

14

Chapter 3
Research Approach

The project tries to answer the following research questions.

RQ1: What are possible bottlenecks and limitations of IDMegler?
RQ2: What is the minimum amount of traffic a system like IDMegler should be able to
handle?
RQ3: How can the architecture be designed to cope with the workload?
RQ4: How can the architecture fulfil the functional requirements of the solution?

This chapter discusses and reasons about different research approaches, to answer the
research questions. This project uses the following three methods:

• Design science research (DSR) to design, analyse, and implement the system.

• Surveys find the scope of the problems. The project uses both qualitative and semi
qualitative approaches.

• Different metrics validates the implemented system.

The methods chosen for the various research questions is based on the methods ability to
prove or disprove the research questions.

The first research question (RQ1) is about the bottlenecks and limitations of IDMegler. To
identify the bottlenecks and limitations, there is a need for a system prototype. To create
a system it is natural to create an architecture and system design. The method of choice
becomes design science. In design science, through iterations, it is possible to improve the
architecture and system to categorise possible architecture and system flaws.

What is the least amount of traffic a system like IDMegler should be able to handle? (RQ2).
It is important to gather information about enterprises that uses information about people
to answer this question. Interviews and surveys are methods that could provide data to
calculate an estimate of the traffic load.

15

Chapter 3. Research Approach

How can the architecture be designed to cope with the workload? (RQ3). To answer
the research question, design science is a good method. By iterating through different
designs and possible implementations, it will be easier to validate the system. Through
performance testing, it will be possible to see if the implementation is capable of handling
the workload as defined through RQ2.

How can the architecture fulfil the functional requirements of the solution? (RQ4). To
answer RQ4, the system requirements needs to be specified, and define different metrics
based on the system requirements. This project uses design science and surveys to get an
indication to what criteria the suggested architecture should manage.

3.1 Design Science Research

Design science research (DSR) aims to create and design an artefact to later evaluate the
implementation and determine if the design holds its criteria (Baskerville [9]). The DSR
approach first researches the domain to analyse the problem, then designs the artefact
and implements it, lastly DSR analyses the implementation. This project uses the same
method.

Figure 3.1: Design Science Research Cycles (adapted from [25])

There are three different cycles in design science according to Hevner and Alan [25].
These are the relevance cycle, design cycle, and rigor cycle. The design science uses these
cycles to perform and link the different aspects of the practice together. Hevner and Alan
argues for the importance of defining the cycles when conducting design science.

The relevance cycle connects the environment with the design science research. As Hevner
and Alan state, it is important to define why the research is done. The reason behind the
research in this project is to improve the privacy and control over information about people.
The focus is on decoupling identity data from transaction data.

The rigor cycle ties the design science research to the knowledge base. This cycle is
important to confirm that the design is innovative, and to determine that it is not an im-

16

3.2 Surveys

plementation of an existing system. This project uses the literature review to search for
similar research, and to make sure that the system is innovative.

The design cycle is the foundation of DSR. This is the cycle that iterates between design
and improvement. Figure 3.1 is adapted from [25], and it shows the different cycles and
how they are related. The project applies this technique when designing the architecture
and implementing the prototype.

Peffers et al. [34] introduces the DSRM (Design science research method), and describes
six activities.

Activity 1: Problem identification and motivation
Activity 2: Define the objectives for a solution
Activity 3: Design and development
Activity 4: Demonstration
Activity 5: Evaluation
Activity 6. Communication

The activities and the implications they have on this project are discussed in Chapter
7.

Chapter 4 introduces and evaluates the design. First, the chapter shows the requirement
specification, then introduces three different architectural designs, and selects the best one
for the purpose. Chapter 5 describes the systems implementation as well as reflections
on design decisions and problems under deployment and design. Chapter 6 shows the
tests, results, and calculations for the threshold values, and Chapter 7 discusses the re-
sults.

3.2 Surveys

There are different kinds of surveys (Shull et al. [37]). The main purpose of surveys
is to collect information from a targeted set of individuals. This report uses two differ-
ent kinds of surveys. First, a qualitative survey or interview survey with ”SpareBank 1”.
The purposes of the interviews were to estimate the number of transactions with personal
information a big financial company in Norway has. ”SpareBank 1” also provided in-
formation about response time requirements. In addition, general information was asked
about what kind of technology and what ”SpareBank 1” see as the future technology for
handling personal information. The second survey was a quantitative questionnaire (with
some qualitative questions) with focus on obtaining data about people’s distribution of per-
sonal information. The survey asked about people’s number of memberships or customer
relationships with different enterprises to identify the distribution of information about
people.

The two forms of surveys used in this project according to Shull et al. [37], interviews,
and questionnaire, are both part of the inquisitive techniques. This means that they are
most efficient for gathering a general understanding of a process or concept.

17

Chapter 3. Research Approach

The interview in this project was semi structured. The participant ”SpareBank 1” received
questions in advance. The interviews were done over a series of weekly phone meetings
where the newest information regarding the provided questions were discussed.

Google schema was used to create the questionnaire. The questionnaire had 13 explicit
questions about enterprises, and one open question encouraging the participants to men-
tion all current and previous customer relationships. In addition, the questionnaire had a
section asking about general information (sex, age, grade of education, and type of smart-
phone).

Chapter 6 shows the results of the data collected.

3.3 Metrics

Metrics identify what the system should test. The main metric tested in this project was
performance. With performance tests, this project tries to find response times for the
transactions. The measured metrics in this project include longest, shorts, and average
response times. In addition to the response times, there are also metrics for the number of
transactions the system can handle.

This projects main measurement is response time based on transactions per second. The
response time is measured from sending a request until the response message is retrieved.
(3.1) is the input parameter when testing the system. The program used to test the system
then calculates the longest, shortest, and average response time over a given time. t and s
in (3.1) stand for transactions and second respectively.

t/s (3.1)

All enterprises that need to request data from IDMegler are divided into a set of categories.
A category represents enterprises with similar transaction patterns towards IDMegler. To
estimate the average number of transaction of an enterprise, the load of various types of
services are estimated separately and then added to get the total. This project uses the
following formulas to find the threshold values for the total transaction load.∑n

i=1 xi
daysInMonth · 24 · 60 · 60

(3.2)

m∑
i=1

yi · zi (3.3)

(3.2) calculates the average transactions per second from the amount of transactions hap-
pening over a month for a enterprise belonging to one category. xi represents the total
transactions throughout a month for service type i. n is the number of services.

(3.3) calculates the total transaction load from all categories of enterprises who use in-
formation about persons. yi represents the number of enterprises within i categories, and

18

3.4 Types of data

zi represents the transactions per second in the given category. m is the number of cate-
gories.

3.4 Types of data

This project uses three data types gathered form three different sources.

• Qualitative data from ”SpareBank 1”

• Partly qualitative data from the survey distributed on Facebook

• Metrics generated through test performed on the proxy system implemented

3.4.1 Qualitative data

”SpareBank 1”
A set of questions where used during the cooperation with ”SpareBank 1”, as well as
weekly phone meetings over 4 weeks to discuss what data they could provide.

”SpareBank 1” uses both internal and external channels when handling personal infor-
mation. During the communication, it became clear that they were not able to provide
information about the total number of internal transactions. This means that the data for
calculating the total amount of transactions for a big enterprise in Norway will be partly
guessing.

Some general questions were asked, during the communication with ”SpareBank 1”. The
reason for asking these questions were to get an understanding about certain aspects of
their enterprise. The questions included information about the number of insight requests
they receive per year and their use of technology, especially about NOSQL databases.

3.4.2 Quantitative Data

The main intention of the survey was to get more information about the use of different
services. The questions asked in the questioner were general questions about the number
of enterprises a person have or have had customer relationship with. The semi-qualitative
data gathered gives an indication about both the total and average number of different en-
terprises a citizen have relationship with. It also gives some information about the overall
control people have over their membership.

It is important to note that the sample of people were relative to the people who distributed
the questionnaire. The survey was shared on Facebook by the author of this master thesis
and one of the two supervisors. This means that the sample of people answering the survey
was people who either are studying themselves or highly educated.

19

Chapter 3. Research Approach

3.4.3 Test Data

Test types
There are many types of tests, often categorised into types, levels, and methods. The
methods are black box, and white box testing (Nidhra et al. [33]). The levels range from
unit testing to acceptance testing. Lastly, the levels comes in many variations, ranging
from installation, regression, to performance tests. White box tests are tests where the
tester have complete access to how the component is created under testing. This is not the
case in a black box testing scenario. This project uses white box testing as the method for
testing. The level of test is a system test, and the type of testing preformed is performance
tests (Neely et al. [31]). The reason for using performance tests is to answer the research
questions in this project. The focus is on the bottlenecks and flaws in the design as well
as the how the architecture can cope with the estimated workload (answer to research
question: RQ1, RQ3, and RQ4).

What has been tested?
The main features focused on during the testing of this project, was to identify any bot-
tlenecks or performance issues. In addition, to see if the system meets the availability
needed. The availability is difficult to test due to the time frame of the project. However,
the tests had a decent test period to indicate whether the system is dependable.

Two different scenarios tests the system. The first step is to test everything locally on
one computer to refine the design of the system. This has also been the platform used for
implementing the system, and several iterations have made it possible to enhance different
aspects (mainly performance). The second step is distributing the service to different
servers to simulate distribution. The distributed scenario is done by setting up four remote
servers.

Omissions
Security is not tested, due to the complexity it brings to the implementation and the
project’s limited time frame. Security is very important for the whole system. However,
if the system could not perform its tasks to a minimal standard in a fast and dependable
manner, there would not be a need to implement the system at all.

3.5 Development of the Prototype System

This project uses an iterative process to develop and implement the prototype system. The
system architecture was first designed, and after designing the different components the
implementation process started. The system was developed in C# and the first part of
the process was to develop suitable components that could satisfy the architecture. After
developing the components, the implementation of the slice of the system began. When
finishing the slice, the testing process started. This involved tweaking the different classes
and solution to increase the performance of the system. The iterative process is displayed
in Figure 3.2.

20

3.6 Summary

Figure 3.2: Visualisation of the Implementation Process

3.6 Summary

The chapter has shown the different methods used during this project. The project consists
of three different contributions. The first is a series of interviews with ”SpareBank 1”.
The second part is a questionnaire about the number of enterprises people have or has
a customer relationship with. The last part is using design science research to create an
architecture and implementation of a prototype version of IDMegler.

21

Chapter 3. Research Approach

22

Chapter 4
Requirement Specification and
Architectural Design

This chapter specifies the requirements of IDMegler, the architectural drivers, and shows
the different roles and stakeholders. The chapter presents three different design options of
IDMegler. These models are used to evaluate how the optimal distributed model could look
like. The best architecture according to the evaluation is chosen for further investigation
and the chapter then expands upon that model in details.

4.1 Requirement Specification

The requirement specification [32] is a guideline for expressing a system’s attributes and
what kinds of features the system needs to implement. The following section presents two
sets of requirement specifications. The first specification specifies all features IDMegler
would have to contain in a complete implementation. The second specification, specifies
the subset of requirements that this project implements. The requirements are specified to
be testable.

IDMegler system as a whole

Functional requirements

FR1: IDMegler shall be able to add new enterprises.
FR2: IDMegler shall be able to remove enterprises.
FR3: IDMegler shall be able to validate enterprises.
FR4: IDMegler shall be able to add a new customer to an existing enterprise.
FR5: IDMegler shall be able to remove a customer from an enterprise.
FR6: IDMegler shall be able to retrieve personal information about a customer.

23

Chapter 4. Requirement Specification and Architectural Design

FR7: IDMegler shall be able to accept requests about personal information from valid en-
terprises.
FR8: IDMegler shall be able to return personal information about one of their customers
to an enterprise given a valid cause for needing this info.
FR9: IDMegler shall be able to find the right person in ”Folkeregisteret” based on enter-
prise and customer ID.
FR10: IDMegler shall be able to reset the IDs on all users of the system (both enterprises
and their respective customer IDs).
FR11: IDMegler shall be able to redistribute the keys if they are deleted or otherwise are
no longer valid to the enterprise who are entitled to them.
FR12: IDMegler shall be able to display a citizen’s entire history of logged transactions.
FR13: A citizen shall be able to safely log in and out of IDMegler.
FR14: A citizen shall be able to block enterprises who he no longer have a customer rela-
tionship with or otherwise are not supposed to get personal information about the customer
according to Norwegian law.
FR15: IDMegler shall log every transaction an enterprise makes
FR16: IDMegler shall compress the logs generated to keep the valuable information but
not keep excessive amounts of logs.
FR17: The logs shall not contain any sensitive information. Every log shall use numbers to
represent the enterprise and customer, as well as numbers for placeholders for transaction
types.
FR18: IDMegler shall use role based access control to ensure that only authorized users
have access to its services.
FR19: IDMegler shall be able to retrieve and communicate with ”Folkeregisteret”.
FR20: IDMegler shall have an easy to use user interface.
FR21: IDMegler shall be able to communicate with different enterprises and get type
codes for their transactions, to better the information of the logs.
FR22: For an enterprise to retrieve data, the enterprise needs to specify what it shall be
used for.
FR23: IDMegler shall be able to identify a person based on enterprise and customer ID.

Non-functional requirements

Security

NFR1: The system shall use secure communication (HTTPS, SSL/TLS) when communi-
cating with all of its components.
NFR2: The system shall be able to repel and detect d-dos attacks.
NFR3: The system shall use mechanisms to handle common web security flaws (OWASP).

Performance

NFR4: The system shall be able to handle all requests for personal information towards
”Folkeregisteret” from all businesses in Norway.

24

4.1 Requirement Specification

NFR5: The response time for an enterprise requesting information of one of its customers
shall be less than 160 ms1.
NFR6: The system shall be able to handle at least 4 500 transactions per second.
NFR7: The system shall be able to redistribute the keys from zero keys to all of them in
less than a minute.

Availability

NFR8: The system shall be available 99.99999% of the time.
NFR9: The system needs to be operational when the keys in the system are being reset or
updated.
NFR10: The system shall have an overlap where two different sets of keys are valid until
every new key is in place to minimize any downtime.

These requirements are derived form a threat analyses of IDMegler [36], and the document
specifying the idea [38].

In all of these requirements, the word IDMegler is used as the actor. The reason for not
specifying the actors is that at this point it is not known what the roles will be. In some
scenarios, the role might only be for a specific limited set of users (like administrators of
IDMegler).

Subset of IDMegler (the requirements this project implements)

Functional requirements

FR6: IDMegler shall be able to retrieve personal information about a customer.
FR7: IDMegler shall be able to accept requests about personal information from valid en-
terprises.
FR9: IDMegler shall be able to find the right person in ”Folkeregisteret” based on enter-
prise and customer ID.
FR17: The logs shall not contain any sensitive information. Every log shall use numbers to
represent the enterprise and customer, as well as numbers for placeholders for transaction
types.
FR23: IDMegler shall be able to identify a person based on enterprise and customer
id.

Non-functional requirements

NFR5: The response time for an enterprise requesting information of one of its customers
shall be less than 160 ms.
NFR6: The system shall be able to handle at least 4 500 transactions per second.

The subset is much smaller than the full requirement specification. The reason for taking
these specific requirements compared to the others is that this subset is sufficient to create
a functioning system and test performance. As a result, the system implemented will help
to answer the research questions in this report.

1This is based on the data provided from ”SpareBank 1” which is about 25% of the average time they have
today. See chapter 6 for the data calculation

25

Chapter 4. Requirement Specification and Architectural Design

4.2 Architectural Drivers

4.2.1 Functional Requirements

There are many scenarios important to the system. The most important one for this project
is: the enterprise requests for customer information using the enterprises own identifica-
tion and a customer ID. This scenario is the most essential for testing availability, and
performance of the system. It is also the function that will be most used. The project bases
the quality attributes on this core scenario.

4.2.2 Quality Attributes

There are different parts to consider when developing a system; the internal and exter-
nal quality attributes. This project defines different quality attributes during the design
process, based on the requirements.

External

• Performance

• Availability

• Security

Internal

• Modifiability

Performance is a quality attribute important to IDMegler. In this project, the performance
quality attribute about the response time of the solution is vital. The quality attribute in-
cludes the average, longest and shortest response time. The non-functional requirement
NFR5 ”each response should be less than 160 ms”, is defined based on this quality at-
tribute. Performance also affects the usefulness of the system. In a scenario where the
response time for IDMegler increases, the usefulness of the system will decline. If the
response time becomes too high, there is a chance that the enterprises will store the infor-
mation internally and thereby misuse the intention of the application.

NFR8: ”The system should be available 99.99999% of the time,” specifies the availabil-
ity quality attribute. This system has the potential to become a vital service for many
enterprises in Norway. If that is the case, there can be hardly no downtime of the run-
ning system. Other systems will be dependent on IDMegler; therefore, availability is an
important quality attribute.

Security as a quality attribute is here because of the need for secure communication. In
addition, the system will likely be a major point of attack for any attacker who wants to
cripple Norway.

Modifiability is only important for further changes or if anyone finds it interesting enough
to expand the solution.

26

4.2 Architectural Drivers

4.2.3 Technical Requirements

This project uses C# and ASP.net [2] technology. The ASP.net helps with implementing
a fully functional REST API [28]. This has become one of the standards for developing
web services. They are easy to set up and perform well. Use of REST API’s will make it
easy to implement the communication from both the enterprise side of the system and the
citizen’s side.

When the system retrieves data from ”Folkeregisteret”, the component should cache the
information. This will reduce the number of times it needs to retrieve information about
each person form ”Folkeregisterete”, in the case where the same person is requested sev-
eral times within a limited time period.

Transactions

• Lookup

• Verify

• Send info

• Log transaction

Every form of transaction will be a lookup, which is the nature of IDMegler. The system
will not manipulate any information. Data collection and access management is its only
job. This means that the system needs to classify a series of different types of lookups
to improve the insight citizens will receive from the report function2 of IDMegler. There
are two ways to categorise the enterprises use of the customer data. One way would be to
make a standard set of usage categories every enterprise would have to follow. This will
be easy to implement in IDMegler, however it could pose a problem when deciding the
set of usage types. Another way would be to communicate with each enterprise and set
up individual categories. The downside is the amount of time the functionality will take
to maintain. Letting the enterprises define their own categories means that the categories
must be updated over time. It will then be important to develop maintainable solutions for
that purpose.

Databases
In general, there are two major different types of databases. The relational database man-
agement system (RDBMS) and NOSQL databases. The main difference is that in the
RDBMS, the database structures all the data into schemas and the same kind of infor-
mation is stored in the same area, with the same sets of values, whereas in the NOSQL
databases, the data can be stored in any way. This could be key-value pairs, documents, or
nodes (graph databases). NOSQL databases generally perform better and are highly scal-
able. One of the main disadvantages in the use of NOSQL is that not all of them implement
the ACID (Atomicity, Consistency, Isolation, and Durability) abilities. In addition, there
is a greater need for the programmer to keep the data coherent, as there are no schemas
to ensure that the same data is uniform. Usually the greater flexibility and the improved
performance have been the driving factors in increased use of NOSQL databases.

2FR12: IDMegler shall be able to display a citizen’s entire history of logged transactions.

27

Chapter 4. Requirement Specification and Architectural Design

This project uses different kinds of databases. The project uses a MySQL database to sim-
ulate ”Folkeregisteret”. Locally, for optimization, the project have chosen to use NOSQL
databases. Two different kinds of NOSQL databases have been used RavenDB [4] and
Redis [5]. RavenDB implements the ACID abilities while Redis does not.

4.3 Roles and Stakeholders

To analyse the impact of IDMegler, it is considered how the system will affect its three
main stakeholders: government, enterprises, and citizens. It is also considered how it will
affect a major misuser: criminals. The goal should be to make life easier for the three
former, but not for the latter. A person may embody more than one type of role. For
instance, a person working for the government will also be a citizen. However, in this
project a person only embodies one type of role at any given time. This project sees the
roles as embodiments of the stakeholders.

Government
This project sees on the national and counties levels of the government when presenting
this role. The government usually wants control. Control gives them the option to better
safeguard and manage the role as the decision maker of a nation. IDMegler would give
increased control in regards to the distribution of citizen’s personal information. At the
same time, a system like IDMegler poses a nationwide threat. The threat IDMegler poses
is the vulnerability the nation would be in if the system crashed. In the end, the government
would benefit from an implementation and law regulation of the system. Especially in the
role as protector and decision maker of a nation.

Table 4.1: Pros and Cons for the Government Stakeholder

Pros Cons
Better control over what is stored in the
system

Must standardize current solutions for the
new technology

Better integrity IDMegler poses a threat that is the vulner-
ability the nation would be in if the system
crashed

New standard for setting up new systems
Increased trust (confidentiality)

Enterprise
An Enterprises main purpose is to earn money or work towards a cause they believe in.
How they do this is up to them and the different laws and regulations of the jurisdiction
they operate in. In this context, there are few advantages (see table 4.2) to a system like
IDMegler. The positive sides include the increased trust a citizen will have if they use the
system, no need for maintaining the personal information, and increased integrity. The
downside is that the enterprise loses potential valuable information that they could have
used to increase their profit (Better targeting/ recommender systems).

28

4.3 Roles and Stakeholders

Table 4.2: Pros and Cons for the Enterprise Stakeholder

Pros Cons
Increased customer trust The enterprise will lose some power over

current assets when it comes to personal
information. User history and direct links
between individual costumers and trans-
actions will be lost.

Will not have to worry about the integrity
of personal information

The enterprise will need to adapt systems
to a new interface. This will vary form
company to company depending on how
much the new interface will affect the
company.

All new systems will have a standard for
interacting with personal information

Citizens
A citizen’s role is to participate and contribute to society. In general, they are the stake-
holder with the most to gain from IDMegler. Even though they are the most likely stake-
holder to gain benefits, some resistance to the introduction of a system like IDMegler
will exist. The positive side includes increased control through the insight service and
increased awareness of the distribution of personal information. The downside for this
stakeholder becomes the need to adapt to a new system, and the scepticism people initially
have.

Table 4.3: Pros and Cons for the Citizen Stakeholder

Pros Cons
Increased control A new system to adapt to
Increased privacy awareness Scepticism towards the credibility of the

system
One place to manage private data
Increased integrity

Criminals
Criminal’s main concern is to keep their crimes secret. In addition, they want to exploit
systems for own personal gain. They are not a valued role in this project. The positive
sides for the criminals include the increased control. By having greater control, it becomes
easier to hide. The downside is that identity thefts become harder to perform.

Table 4.4: Pros and Cons for the Criminal Role

Pros Cons
Increased control to hide from society Harder to perform identity thefts

29

Chapter 4. Requirement Specification and Architectural Design

Others
In addition to the general roles and stakeholders, the author of this project, the supervi-
sors of this project, and future people continuing developing this system are important
stakeholders.

4.4 IDMegler Designs

This section presents three different designs of ”IDMegler” to find the most optimal solu-
tion. The section introduces each design superficially and expands on the best one in more
detail.

4.4.1 Peer to Peer

The structure can be seen in Figure 4.1.

This structure works like a peer-to-peer network. Each component handles every function
IDMegler will have to take care of. This means that at some point during the day each
component has to synchronize every update from the other peer components. This will
ensure that IDMegler does not lose any information. However, it will delay and make it
more complicated to introduce new enterprises and customers into the system. As shown
in Figure 4.1 the design enables multiple instances of the peer-to-peer component.

Pros

• Very stable (The design stores the information in multiple locations)

• No need for backup (Backup is done automatically)

Cons

• Many attack surfaces

• Many duplications

• Lots of communication between the different components

• If one is corrupted it could potentially spread

• Adding new enterprises or customer into the system will be complicated

4.4.2 Master/Slave

The overall structure can be seen in Figure 4.2.

The idea behind this structure is to split the tasks of IDMegler into two separate com-
ponents, Insight Key Data Management component (IKDM (master)) and Log Request
Information Management component (LRIM (slave)). The architecture opens for several

30

4.4 IDMegler Designs

Figure 4.1: Peer-To-Peer structure of IDMegler

instances of the LRIM components as indicated in Figure 4.2. The IKDM component will
handle the insight service and contain all the keys and logs. The LRIM component will
manage the task of getting information from ”Folkeregisteret” to the enterprise and make
the logs. The LRIM component then sends the logs to the IKDM component where the
IKDM component stores them. The IKDM component will not have direct contact with
”Folkeregisteret”.

Pros

• Dividing of responsibility

• Easy to expand (redistribute new keys, add new costumers)

• Easy to distribute (New servers for enterprises with the extra need for quick response
time)

• Few things to back up (mainly the IKDM component)

• Shortest path possible for accessing all information

Cons

• IKDM component is a possible bottleneck

31

Chapter 4. Requirement Specification and Architectural Design

• Big attack surface

Figure 4.2: Master/Slave Structure of IDMegler

4.4.3 Model-View-Controller

The overall structure can be seen in Figure 4.3.

The idea is to have two fronts or controller components whose only role is to redirect and
manage the incoming requests. Each IDMegler component handles all features (logging,
finding the right person inside ”Folkeregisteret”, and report the logs to the users). The
UserFront takes incoming requests and retrieves all the relevant logged data from each
mini-IDMegler component. The BusinessFront handles the incoming requests for the en-
terprises and determines which mini-IDMegler component is capable of responding to the
request. When an enterprise is added, it will be added to one and only one mini-IDMegler.
Therefore, no connection exists between the mini-IDMegler’s. As shown in Figure 4.3 the
design enables multiple instances of the mini-IDMegler component.

Pros

• Few calls between servers

• Easy to expand

32

4.5 Chosen Design

• Few connections

• Only two disposed fronts (attack surfaces)

Cons

• Hard to maintain (introduction of new keys, renew keys)

• Lots of duplication (databases, information, keys)

• Only one access point for enterprises (potential bottleneck/slow access)

• Possible long response time for users (UserFront will have to retrieve lots of infor-
mation from the different components)

• Needs lots of backup to secure everything in the case of a shutdown

Figure 4.3: Model View Controller Structure of IDMegler

4.5 Chosen Design

After weighting the different designs pros and cons, the Master Slave design was deemed
to have the best qualities and attributes. The main features of this design is that it divides
the responsibilities and functions into two components. The chose design opens for several

33

Chapter 4. Requirement Specification and Architectural Design

instances of the LRIM component. This will make the system highly scalable. In addition,
by using several LRIM components it becomes possible to cache key ID’s in the individual
components, which will enhance performance. Lastly, the design is the one with the best
performance for data requests from the enterprises. If done correctly the main feature of
retrieving information for enterprises will be highly scalable. The division will make it
easier to focus on core aspects of the core functionalities. This will hopefully make the
functions of IDMegler more clear and specific.

4.5.1 IDMegler’s Process Flow

In IDMegler, there are two different users of the system. One is the citizens retrieving
information. The second one is the enterprise who wants information about a citizen.
The two following diagrams show one flow diagram for the citizen and one for the enter-
prise.

Figure 4.4: Process Flow Diagram for Citizen’s Perspective

As seen in Figure 4.4, there are primarily two different actions that a citizen will use
IDMegler for. One is to block access to data for enterprises the citizen does not want to
have access. The second one is to get an overview of which enterprises have access to
personal data, and when they have requested information, and why.

34

4.5 Chosen Design

Figure 4.5: Process Flow Diagram for Enterprise Perspective

Figure 4.5, shows the basic process of retrieving information about a customer. As can be
seen this process can terminate at different points and will make sure that only authorized
enterprises gets access to information about people.

4.5.2 IKDM Component

This component will have to handle a couple of different functions. As the IKDM com-
ponent, this is where IDMegler will permanently store all information. When IDMegler
is running, the IKDM component is responsible for proving the information the LRIM
components needs to manage their function in IDMegler. IKDM is also responsible for
providing the insight service to the citizens. This includes managing the logged trans-
actions to provide the right citizen with his transaction history. In addition, IKDM also
handles the features when a citizen blocks an enterprise for accessing his personal infor-
mation.

Structure
The IKDM component is composed of mainly two different parts. This is the IDKM server
program manageing the dataflow and the database. Figure 4.6 shows the dataflows and the
components within IDKM.

Database
The IKDM component will have a database to store all the information it needs to run ID-
Megler. This database will manage data for enterprises, relationships between enterprises

35

Chapter 4. Requirement Specification and Architectural Design

and citizens, log data, and user information. Using the database as the one hub with infor-
mation makes it the only component that needs a complete backup. All other components
in this system are replaceable and disposable. The following list, lists the different kinds
of information that the database will contain.

Information in database

• Enterprise information

ID

Data about the enterprise

• Link between enterprise and citizen

EnterpriseID

CustomerID within enterprise

CustomerID in ”Folkeregisteret”

Information about blocked enterprises

• Logs

Requests from enterprises

User logs

Administrator logs

• User info (for people to log in and out)

Dataflow
The IKDM component will only communicate externally with the LRIM components and
the citizens (most likely through a web browser). However, the flow of data will be be-
tween different components. Figure 4.6, shows the different external and internal dataflows
and how the IKDM component will handle them.

36

4.5 Chosen Design

Figure 4.6: Dataflow for the IKDM Component

4.5.3 LRIM Component

This component will have to handle the most crucial part of IDMegler, namely the ex-
traction of information from ”Folkeregistert” to the enterprise, make sure that the logs are
made, and prevent unauthorized enterprises access.

Structure
The LRIM components structure is as the IKDM component, divided into two. It contains
a database and a server program for handling its functions. Figure 4.7 shows the different
internal components. LRIM will have to communicate with ”Folkeregisteret”, IKDM, and

37

Chapter 4. Requirement Specification and Architectural Design

the enterprises. Figure 4.7 shows the dataflow, and how the different internal components
uses the data.

This components main feature is to manage the request from the enterprises, and use the
keys stored in a local temporary database to find the information that the enterprise re-
quests. The first time an enterprise requests information about a customer, the LRIM
component makes contact with the IKDM component and retrieves all the data about that
enterprise customer links (keys). This includes the enterprise link to customers, the cus-
tomer’s ID in ”Folkeregisteret”, and information about customers who have blocked the
enterprise. The enterprise is then assigned to this LRIM component until the component is
reset. The LRIM component then stores the information retrieved form the IKDM compo-
nent in a local temporary database. When the LRIM component handles the request from
the enterprise, the component creates a log of the transaction and sends it to the IKDM
component.

Figure 4.7: Data Flow for the LRIM Component

Database
Information in database (local subset copy from IKDM component database)

• EnterpriseID

• CustomerID within enterprise

38

4.6 Summary

• CustomerID in ”Folkeregisteret”

• Information about blocked enterprises

The database in the LRIM component will have links between customerIDs of the en-
terprise, customerIDs in folkeregisteret, and information if the customer has blocked the
information for the enterprise. This enables the LRIM component to retrieve information
from ”Folkeregisteret” with its local information.

Sequence Diagram
Figure 4.8 shows a sequence diagram of how the LRIM component handles a request and
returns the information to the enterprise (this sequence diagram is only valid after the
LRIM component has retrieved information form the IKDM component). The reason for
showing this particular sequence diagram is to give a better understanding of how the main
functionality in IDMegler with this architecture will work.

Figure 4.8: Sequence Diagram for the Process of Retrieving a Customer’s Information

4.6 Summary

This section introduced the architecture that this project implements, as well as some of
its advantages and disadvantages. The suggested structures main advantage is delegating

39

Chapter 4. Requirement Specification and Architectural Design

its responsibilities. By delegating the responsibilities, the architecture allows the differ-
ent components to be specialized. This ensures that the system scales easy and is more
flexible.

After discussing the different aspects of the architecture, the chapter introduced the com-
ponents in detail. The project does this by using a structural view, process flow, dataflow,
and sequence diagrams. The project shows the objectives the system must accommodate,
through the requirement specification.

The architecture is not perfect, there are trade-offs. The figures and diagrams can be
misunderstood, and the description of the system have possible improvements. Chapter
5 shows the implementation and design, and includes class diagrams to further increase
understandability of the implemented design.

40

Chapter 5
Design and Implementation

The following sections describe the choices made when implementing the architecture
and to ensure a good solution. The overall solution is developed in C# and is available for
download at https://github.com/erirei/IdMegler.

5.1 Components/Services

The implementation contains four main components. The components are: The IKDM
server, the LRIM server, the enterprise simulator, and the ”Folkeregisteret” simulator. The
enterprise simulator and the ”Folkeregisteret” simulator are helper components for simu-
lating the complete system.

5.1.1 IKDM Server

The IKDM server component’s core functionality is to:

• Store the keys for the enterprises and their customer.

• Store the logs generated using the system.

• Make logs retrievable for the different citizens.

To retrieve information about the different users (citizens) the system implements a REST
API. Early in the implementation, the solution used an SSL-stream to communicate be-
tween this component and the LRIM servers to secure the communication. However,
due to difficulties deploying the solution to the test servers, the solution dropped the
SSL/TLS connection. A document NOSQL database called RavenDB [4] stores the in-
formation.

41

https://github.com/erirei/IdMegler

Chapter 5. Design and Implementation

The main criteria considered when implementing the solution where:

• Security

• Performance

• Availability

• Modifiability

The criteria is a direct response to the quality attributes discussed in Chapter 4.2.2.

Class implementation
The IKDM server contains a set of different classes. The project is a made from .NET’s de-
fault REST API (ASP) which simplifies the REST operations. With the REST aspect there
are two classes used for retrieving logs of a specified user. The UserController class and
the LogDisplayed class. Using a controller and a model class is necessary for implement-
ing the REST functionality in ASP.Net. Further, the DocumentStoreDatabaseController
class handles the communication with the RavenDB and all actions concerning retrieval or
updating the document store. By using one class to handle the communication simplifies
the development process. The SSLServerConnection class handles all incoming messages
from the different LRIM servers and determines the right responses. KeyChainManager
and LogController are helper classes used to divide the set of tasks from the other main
classes. The division makes sure that individual classes gets different tasks. Individual
tasks simplify the code and makes it more manageable. Lastly, there is a set of database
(RavenDB) classes used to generate the models for how the document database stores the
information.

To better the understanding of the relations between the classes, the class diagram (Figure
5.1) shows how they are related.

UserController
UserController implements the APIController class that enables the program to recognize
it as a part of the REST API. It only stores one function called GetAllLogsForUser. The
function takes an integer as input and returns a list with all the logs in the form of LogDis-
played class model. The method returns an IHttpActionResult that is an asynchronous
call. DocumentStoreDatabaseController’s public method GetAllLogsForUserBySocialSe-
curityNumber retrieves the information.

DocumentStoreDatabaseController
The API controller needs this class and thus, this class uses the singleton pattern to avoid
many instantiations. The API controller class gets instantiated automatically when it re-
turns an IHttpActionResult. The singleton pattern avoids creating unnecessary many con-
nections with the document database, which improves performance. On instantiation, the
class makes a connection to the document database on localhost:8080. This enables the use
of the RavenDB server. By making the connection on instantiation, the class can store the
communication. Storing the communication, removes the need for several connections.
The class continues by implementing three main methods for storing and retrieving infor-
mation from the database: getKeysForEnterprise, addNewLog, and GetAllLogsForUser-
BySocialSecurityNumber. These are the main functionalities that the program needs, to

42

5.1 Components/Services

Figure 5.1: Class Diagram for the IKDM Server

operate with the database. Other possible solutions would be to move these functionalities
into their own classes to separate functionality. The solution does not do this because of
the small set of operations required.

The method getKeysForEnterprise takes and integer as input, representing the ID for the
enterprise and returns a list with key objects. Each key stores the social security number
and a customer ID. The class retrieves the information by getting one document from the
database. This reduces the calls to the database, which is the result of using a document-
oriented database and enhances performance.

The AddNewLog method finds the key-documents in the database where its EnterpriseID
equals the incoming logs EnterpriseID and its CustomerID equals the incoming logs Cus-
tomerID. Then the method adds the new log to its list of logs, storing the enterpriseID,
customerID, date, and type. During the implementation, several redesigns of this method
were necessary. In the first implementation, the method passed only one log as the argu-
ment, which resulted in to many queries to the database. When tested, the database could
not keep up with the requests. In the second attempt, the method takes a list of logs as the
argument. By looping over the logs, the number of updates became reduced to a single
update. However, this ex-ousted the number of allowed queries at any given time in the
database. The final solution solves the performance problem by using the load operation
in the database api, which also enforces ACID.

The GetAllLogsForUserBySocialSecurityNumber takes an integer as input and returns a
list of LogDisplayed classes. The method retrieves the user document with the matching
social security number, and retrieves all the keys referenced in the user’s document. Using
the load function in RavenDB, the database only performs one call. This increases the

43

Chapter 5. Design and Implementation

performance of the system. Alternative methods would be to fetch each key and map it to
the user, but would result in a greater workload on the database. Then by iterating through
the keys and their list of logs, LogDisplayed adds them to the return list. The method then
returns the list when the iteration is complete.

This class was rewritten because of the original document database had a limit on docu-
ments stored. The first database (SiaqoDB) were a client-side document-store. Its perfor-
mance was better and a much better fit for the purpose. This is because only one IKDM
server is active in the architecture at any given time. This resulted in rewriting all the
code in this class, and redesigning the document store to better suited the principle of
RavenDB.

SSLServerConnection
SSLServerConnection manges the SSL communication server side, and uses the helper
classes KeyChainManager, and LogManager. The SslStream class implements The SSL
communication via C#’s own functionality. The alternative would have been to implement
the SSL communication myself. During the implementation process, the project did re-
search on several other forms of communication, but none of them included SSL. When
deploying the system the servers ran into problems with the SSL authentication. To be
able to perform the test the only option was to remove the SSL.

When constructed, the class creates the KeyChainManager class and takes LogManager
as an argument in the constructor. Then proceeds by opening the certificate store and
picks the first certificate. Then it instantiates a TCP Listener on port 8800 and makes a
thread for handling incoming client sockets. When the class detects a socket, it calls the
private method ProcessClient. ProcessClient opens up a new SslStream that accepts any
certificates. When a client connects, it authenticates itself as the server. If the authenti-
cation succeeds, the class starts to listen to the incoming message. The class does this
through the method readMessage. The readMessage method takes the incoming bytes and
through a string-builder generates the message. StringBuilder is a fast and efficient way to
build strings from a character stream, and enhances performance. The string builder loops
over the decrypted chars until the client sends the message ’<EOF>’. This stops the
loop and removes the ’<EOF>’ string at the end of the message. The decipherMessage
method then retrieves the message. All the strings used to communicate uses a specific
syntax.

Incoming messages to the server from the client

• ’:’ parts the action to understand what the client want the server to do

• ’#’ distinguishes between different instances

• ’,’ splits values

Incoming messages would have the syntax: {server action}:{data}
{data} =>{instance}#{instance}#{instance}...
{instance} =>{value},{value},{value}...

Example of a string incoming to the SSLStrem could be: ’newLog:1,1,1#2,1,3#2,3,2’.

44

5.1 Components/Services

Outgoing messages from the server to the client

• ’:’ distinguishes between different instances

• ’#’ distinguishes between different data objects

• ’,’ splits values

• ’—’ separates sub data

• ’/’ distinguishes sub data values

Outgoing message form the server syntax: {Data object}#{Data object} ...
{Data object } = >{instance}:{instance} ...
{instance} = >{value},{value}...
{value} = >{sub data}/{sub value}— {sub data}/{sub value}...

The ’:’ character splits the message, and the solution uses a switch to decide what action
to take. There currently exists two different scenarios. Either the client wants to retrieve
all the keys for a given enterprise (indicated by ”getKeys” string), or add new logs to the
server (indicated by ”’newLog’ string). Since the message is string based, it becomes
natural to design a way to distinguish the different ways to respond to the client’s requests.
Other syntaxes are possible, but differ little in their behaviour.

Another way to handle the communication could be to send serialized objects. This would
be more work, and might be slower in the end because it would send more data. By using
the string-based approach, it becomes possible to make compact logs.

If the message is ”getKeys”, the class calls the method generateAndGetKeys. This invokes
keyChainController to return a string representing the keys corresponding to the enter-
priseID. The method writeMessage sends the string to the client by using writeToClient
method. This composes the message into a byte array and encodes it into UTF8. If the
incoming message is ’newLog’ the LogManager calls the method addNewLog and passes
the data part of the string as the argument. When responding or otherwise operating with
data the solution compresses it into a small string. This makes the message between both
the client and server small. This reduces the time it will take to communicate, which in
turn enhances performance. Currently this is the biggest bottleneck in the solution.

KeyChainController
The KeyChainController’s responsibility is to translate the list of Keys generated by the
DocumentStoreDatabaseController. The method getKeysForEnterprise makes this possi-
ble. This takes an integer as argument representing the enterpriseID of the enterprise that
the method wants to retrieve the keys from. First, the method retrieves the keys through the
database controller, then iterates over the keys. Using the syntax for outgoing messages
it represents all the different keys as well as which customerID has blocked different en-
terprises. The string ends with the message ’<EOF>’, which indicates the information’s
transfer is complete. Then returns the string generated.

LogController
The LogController has one main task, which is to take the string of compressed logs,

45

Chapter 5. Design and Implementation

transform it into log objects, and then pass it onto the DocumentStoreDatabaseController’s
addLog method. The syntax splits the string into the different data for the objects. First
value is type, second is enterpriseID, and the last one is customerID. Then the log itself
generate the date of creation. This means that the time of the transaction will not be 100%
accurate. This makes the string the class needs to transfer shorter, which reduces the time
it will take to send it over the Internet. An alternative could be to parse the string in the
DocumentStoreDatabaseController, but would in turn increase the amount of tasks the
class would be responsible for which is not a good design principle.

RavenDB implementation
This database is a NOSQL database that classifies as a document store. This means that
the database stores all information in separate documents. As a result, thinking in the
way of RDBMS is not possible. Each document can contain any amount of information.
However, there are no requirements of relationships between the documents. This result
in each documents design needs to be designed to give answers the majority of queries
the program is likely to preform. There exist functionality that enables referencing other
documents and this implementation uses it when necessary.

The reason for choosing the document database approach and not NOSQL is that it in
many scenarios a NOSQL database will reduces the amount of time it takes to retrieve and
store information. In addition, the database needs a lot fewer transactions between itself
and the server. Performance in NOSQL will often outshine an RDBMS’s performance. In
addition, the RavenDB implements the ACID abilities. NOSQL databases usually does not
implement ACID. However, this is important because it enhances the durability.

The database in this scenario stores three different document types. Enterprise, User, and
key. The user document has the properties: list of key references and social security
number. The enterprise document has the properties: name, ID, and list of key objects.
The Key document has the properties: ID, CustomerID, EnterpriseID, List of logs, social
security number, and list of blocked transaction types. (Se Figure 5.2). It is important to
note that the enterprise document does not contain the logs. When the program is running,
it uses the key object in the enterprise document to find the reference to the key document
with the right customerID. Therefore, the logs are stored in the key document.

5.1.2 LRIM Server

The LRIM server component’s core functionality is to:

• Provide enterprises access to information

• Log the enterprises and the type of transactions they perform

• Map keys for enterprises

• Communicate with the IKDM server and send over the logs

• Communicate with ’Folkeregister’ simulator to retrieve the actual wanted informa-
tion

46

5.1 Components/Services

Figure 5.2: Document Database for the RaveDB

47

Chapter 5. Design and Implementation

The LRIM server uses .Net’s REST API (ASP [2]) implementation to handle requests
form the enterprises. This is a quick way of handling requests from enterprises in an asyn-
chronous way, which enhances performance. For mapping the different keys to the right
enterprise, the server gets all the keys from the IKDM server by using the SSL commu-
nication. Then a NOSQL database called Redis stores the keys. This is a fast database.
However, it does not support ACID operations. Since the data in this database is not sup-
posed to be other than a lookup for the keys, it does not need these attributes. The SSL
makes sure that the information transfers between the servers is secure. The LRIM server
uses the same connection to transfer the logs when the enterprise uses the REST API.
When communicating with ’Folketregsteret’ it connects to the database using MySql’s C#
api for queering towards a MySql database.

The main criteria considered when implementing the solution were:

• Security

• Performance

• Durability (dependability)

• Modifiability

The criteria is a direct response to the quality attributes discussed in Chapter 4.2.2

Class implementation
The LRIM server contains four classes to handle retrieving information for the enterprises
and generating the logs (RequestHandler, KeyChainManager, FolkeregisteretManager,
and LogController), a class for retrieving data from a MySql database, a SslClientCon-
nection class for communicating with the IKDM server, and a controller and model class
to implement the REST API. The RequestHandler manages what to do when a request
arrives. LogController generates and sends the logs. KeyChainManager communicates
with the Redis database and finds the keys to use. FolkregisterManager uses the database
class to retrieve information from the ”Folkeregister” simulator. In addition, the solution
contains data classes to store information (RequestObj, DBData, and Customer).

To get a better understanding of the relations between the classes, the class diagram (Figure
5.3) shows how they are related.

DBManager
The DBManager is an implementation of regular MySql database operations. This class
uses the library provided by MySql to connect and query towards the database. The class
does this by taking the connection string as argument in the constructor of the class. By
storing the string, the class does not have to receive this information again. Other solu-
tions would be to pass it as the argument when performing a database operation. This
would be a good idea in a scenario where the solution would have to connect to different
databases.

To perform all the queries to the ”Folkeregister”, the class contains the method preform-
PrepeardStatementToFindPersonWithData. This takes arguments in the form of a state-
ment, a social security number, and a string representing what data to retrieve. Then by

48

5.1 Components/Services

Figure 5.3: Class Diagram for the LRIM Server

using the using statement, to be sure to release the connection after use, the method opens
a connection and makes a prepared statement query. During early implementation, the
method returned the connection, this resulted in the connection not releasing as it should
and clogged up the system. This meant that the mapping of the information would have
to take place in this class. To accommodate any kind of generic response the solution
implements a DBData class to store any kind of information. This later translates the data
into its right type. The method does this through a loop over the response data form the
queries, which adds the data to two different lists. One storing the type and the other the
information.

SSLClientConnection
SSLClientConnection uses the .NET sslStream and tcpClient classes to communicate with
the IKDM server. On creation, it opens the certificate store and stores the certificate
to send as authentication when connecting to the IKDM server. This class implements
two main functions for communicating with the IKDM server: getKeysToEnterprise and
addNewLogsToServer.

getKeysToEnterprise takes an integer representing the enterpriseID as input. It works by
first using a tcpClient and connecting with the server, then it opens a SSL stream and
by using the helper method ConnectToServer authenticates as client. It further proceeds
to encode the message sent to the IKDM server. The method does this to be able to
retrieve a message with the responding keys and find out if the citizen blocks the retrieval
of information. The method then tries to read any message from the server and passes it
into the method readMessage. This helper method is the same as the one implemented

49

Chapter 5. Design and Implementation

in the IKDM server. When the data has arrived, the method invokes the static method
AddNewEnterpriseKeyPairToRedisDB in KeyChainManager. The reason for using a static
method is to reduce the coupling between the classes.

addNewLogsToServer takes a string as argument, with the string representation of the logs,
and starts the method by generating a new TcpClient to send the server, for then to authen-
ticate the process as a sslStream. Then it writes the logs to the IKDM server.

The SSLClientConnection class uses the same principle as the SSL class in the IKDM
server. The SSL was also removed here because of during deployment the server were not
able to use the certificates generated.

FolkeregisterManager
FolkeregisterManager handles all transactions and messages between the ”Folkeregiser”
simulator. The class does this by instantiating a DBManager class with the right con-
nection string in this class’s constructor. This class main function is to create a customer
object representing the data an enterprise wants to retrieve. The class manages this by call-
ing the public method findPersonWithRequestedData. This method takes an integer as the
social security number for the citizen wanted, and a string with the data requested. This
method uses the private method findDataInDatabase that passes the same arguments and
uses the DBManager instance to call the method preformPrepeardStatementToFindPer-
sonWithData. A method called createCustomerObject gets the return data from preform-
PrepeardStatementToFindPersonWithData. Afterwards it iterates over the information and
by using the description of the fields from the data object generated from the DBManager,
the fields in the customer object appends the right data to the right variables. The method
then returns a customer object with the right information.

KeyChainManager
KeyChainManager manages the lookup for matching the enterpriseID with their respec-
tive customerID in the Redis[5] database. This class stores the FolkeregisterManager class.
The class stores it to be able to retrieve the customer object from the Redis database using
the social security number. The constructor of this class takes the class as an argument.
This class contains two main methods both about the management of the keys in the solu-
tion. The first is FindSocialSecurityNumber and the second is AddNewEnterpriseKeyPair-
ToRedisDB.

FindSocialSecurityNumber takes a request object as input. Then by using the Redis de-
fined way of connecting to a Redis database, it uses the HashGet function built into the
Redis library, to retrieve a specific hashed value, by using the field as the representation
of the customer id and the hash name is representing the enterpriseID. This returns the
social security number stored in the specific location. If it manages to retrieve the data,
the FolkeregisterManager’s method findPersonWithRequestedData gets the customer ob-
ject. During implementation of this method, there were problems with forgetting to close
the connections to the Redis database. The solution was to use Redis’s standard way of
operating with connections. By using a static lazy connection to the database.

AddNewEnterpriseKeyPairToRedisDB is a static method used for adding all keys for an
enterprise into the database. The method takes the enterpriseID and a data string repre-

50

5.1 Components/Services

senting the keys and information as arguments. By using the syntax for messaging with the
IKDM server, it separates the different objects by splitting the string at ’:’. Then it deletes
the hash in the database if it exists. The method does this to make sure that there are no
lingering keys in the database. Because the deletion and writing is super-fast this causes
little to no delay. In addition, a method will only run when updating current information
or during a reset. Then the method continues by iterating over each string representing a
key, and adds them to the Redis database.

LogController
LogController handles sending the logs to the IKDM server when the LRIM server gets
a request. This class takes both an SslClientConnection and RequestHandler class as ar-
guments in the constructor. The class saves the SslClientConnection for later use, and
uses the RequestHandler class for listening for newRequest events fired for that class. By
using events, the class handles the logging part of the server. This ensures that it only
operates when necessary and enables the use of threads to increase performance. This
class only uses the private method sendNewLogToMainServer that the newRequest event
invokes.

sendNewLogToMainServer started in the beginning to send the arguments from the event
and pass them into the SSL connection through addNewLogsToServer. However, this re-
sulted in the exhausting of the number of sockets that the server could have at any given
time under a few request per second (as low as 50 transactions per second). To fix this
problem the solution now checks the number of newly added logs. If the number is less
than 500 it adds the new log to a list. If the number exceeds 500, it makes a new copy
of the list of logs. Using the syntax for messaging the method compresses the logs into a
single string by looping over the log list. The method then sends the list to the server by
invoking SslClientConnection’s method addNewLogsToServer. The sending is done in a
separate thread to enhance performance.

CustomerController
CustomerController implements the ApiController that makes it usable as a REST api
class in the .NET module. It stores two methods GetKeys and GetCustomer. The first takes
an integer as the argument representing the enterprise’s ID. Then uses the RequestHandlers
method getKeysForEnterprise to get the keys for an enterpriseID with the correspond-
ing ID as requested. The second method GetCustomer takes both an enterpriseID and a
customerID both represented as an integer as arguments than passes them onto the Re-
questHandlers method NewRequest, which returns a customer object. The method returns
the object if it is not null. Both methods in this class returns IHttpActionResult that are
asynchronous methods. In addition, since the class implements the ApiController every
time a request occurs the solution generates a new instance of this class. This enhances
performance by running each request in their own thread.

RequestHandler
RequestHandler main purpose is to handle any incoming requests and use the other classes
to invoke the right response to the requests. Since the API calls triggers this class’s method,
it uses the singleton pattern to avoid initializing at every request. This ensures that there
is only one set of the other classes and that they only initializes them when the server

51

Chapter 5. Design and Implementation

starts. This enhances performance. This class uses the KeyChainManager class and the
SSLClientConnection class, which both are passed as arguments in the constructor. This
class also implements an event called NewRequest. This event takes a self-defined event
argument that holds a request object.

RequestHandler has two public methods, getKeysForEnterprise and NewRequest. The first
takes an integer as argument representing the enterpriseID and then calls the getKeysToEn-
terprise in the SSLClientConnection class. NewRequest takes an integer for the enterpri-
seID and customerID as arguments. Then based on the input, makes a request object.
This object is than passed as argument to the KeyChainManager class’s method FindSo-
cialSecurityNumber that returns a customer object. The method then stores the object.
If the customer object found is not null the method invokes the event NewRequest and
then passes the request object as the event argument, and at the end returns the customer
object.

Redis
This database is a NOSQL key-value store database. The database is popular and have
a fast reading and writing speed. The database has high performance and makes it easy
to store the keys. Redis involves some different structures in which to store the data, this
solution uses the hash set. It makes it possible to store the keys in each hash by using the
enterprise ID as the hash value and the customer id as the field, then the social security
number as the value. There should be no problems with the individual fields in the database
since it supports fields up to 232 field value pairs. This is also the case for the number of
hashes.

5.1.3 ”Folkeregisteret” Simulator

The project uses this component for placing the data about the citizens in another physical
location than where the servers are running. The component archives this by making a
database (RDBMS) MySql server with a table containing the fields that are relevant for
the citizens to have stored in the register.

The reason for making it as simple as having a database is that this is not the focus of the
project. So by distributing the data it will simulate some of the time it will take to get the
information from an external source. The downside is that this is not the real representation
of what the system will have to communicate with. Thus, an increased delay is possible.
However, for the sake of not wasting time, and simulate some of the time it will take the
database to retrieve a person’s information, this solution was an acceptable trade-off. In
addition, since there is no way of knowing how a future solution might look, this simple
approach will be enough.

5.1.4 Enterprise Simulator

This is a simple program made for testing purposes. The data that the program monitors
is: the amount of requests sent, if the request where successful or not, the time it takes

52

5.1 Components/Services

for a response, the time it takes to complete the test, as well as the longest, shortest, and
average response time.

The focus when making the simulator is to have as precise and robust measures as pos-
sible. In addition, the focus was to be able to simulate several enterprises at any given
time.

Class implementation
This solution uses the standard application project provided by C# in visual studio. By im-
plementing a simple GUI for setting the number of requests per second and the number of
enterprises, it enables the simulation of several enterprises sending requests scenario. The
classes implemented are a simple XAML/XAML.cs class for the GUI aspect called Main-
Window and the classes, EnterpriseSimulator, and Enterprise as well as an EventStatsArgs
class. The thought behind the set-up is to use the EnterpriseSimulator class to instanti-
ate up to several Enterprises and each Enterprise runs its own thread and performs a set
amount of requests per second, each running asynchronous. When a request gets its re-
sponse, the solution invokes an event with the data of the request. The EnterpriseSimulator
class stores the data.

An alternative way to make the simulator would be to not use the concept of simulating
several enterprises in the same program and instead use several instances of the same
program. Another approach to the request response scenario would be to not do them
asynchronous but wait for the response before instantiate a new one. This would result in
the data reflecting the largest amount of requests/ response’s possible. In addition, it would
hinder the system from crashing, but not able to specify a specific number for requests per
second.

The downside of the current solution is that the implementation of the response time is
thread-based so there is room for some errors if the system uses all of the CPU.

MainWindow
This class is the standard class used to make a GUI window (Figure 5.4) appear when
running the program. The C# WPF classes makes up the design of the GUI elements.
This class sets the data context for the xaml file to a new EnterpriseSimulator instance and
binds click-events for the start and stop buttons. The fields are: transactions per second,
and number of businesses.

EnterpriseSimulator
This class main function is to store the data. The class displays the data in the GUI, starts
and stops the simulation, and instantiate the enterprises when the simulation starts. The
class uses several property fields to display the data, and uses the method StartSimulation
to start the simulation. The method StartSimulation uses the set frequency taken from
the GUI and calculates the amount of milliseconds the enterprises have to wait between
each request. Then using the number of Enterprises, it instantiates that number of enter-
prises, subscribes to the Enterprise events ResponseOk and ResponseNotFound, and adds
the Enterprise to a list of Enterprises which the simulator uses under the simulation. Re-
sponseOk and ResponseNotFound are invoked when the events occurred and then update
the variables stored in the businessSimulator class. To stop the simulation, the program

53

Chapter 5. Design and Implementation

Figure 5.4: Enterprise Simulator GUI Interface

uses the method StopSimulation. This method iterates over the list of Enterprises and sets
the boolean controlling the loops for sending requests in the Enterprise objects. Then it
clears the Enterprise list.

Enterprise
This class performs the requests to the LRIM server. The class dose this by starting a
thread in the constructor that generates http requests to the server by a given frequency. In
the constructor the frequency, which enterpriseID to use, and the connection string to use
when sending requests are set. Then the boolean for looping over request is set to true and
the constructor creates and starts the new thread looping the requests. The thread uses the
method loopRequestCustomer that creates a new task of type RequestCustomer and then
sleeps for the time calculated from the frequency. The task RequestCustomer is a method
that stars by creating a stopwatch object and starts it, then by using the HttpClient class
in the C# library makes a new client, and then it generates a random number for finding
a customer. The client then uses the asynchronous method getAsynch that takes a url and
makes a request, for then to wait for the response. The thread stops the stopwatch when
the response arrives. Depending on the return message, the thread invokes a new event
with the data of the response, either ResponseOK or ResponseNotFound.

5.2 Patterns

During the implementation, the solution uses different patterns to ensure certain attributes.

54

5.3 Shortcomings of the Implementation

• Singleton

• Lazy initialization

• Mediator

• iterator

• Master/Slave

The singleton pattern ensures that there is only one instance of a certain object at any one
time. This makes it possible to call the methods in the object without having to couple the
instance.

The lazy initialization is a pattern used to save memory. This pattern makes sure that the
object or resource is not instantiated before the system needs it. The pattern is used by the
KeyChainManager class to find information in the Redis database.

The mediator pattern makes sure that the behaviour of different components do not differ.
The patter is useful to make sure that there is a definition on how a class should work. The
pattern is used automatically when creating interfaces.

The iterator pattern is for going through a collection of objects and manipulate them in one
session. It is a performance-enhancing pattern. This pattern is used under every time it is
necessary to traverse a list to enhance performance.

Master/Slave pattern is for performance. The master uses the slave components to perform
actions on its behalf to solve a problem. This implementation uses the pattern in the form
of the distribution of the IKDM(Master) and LRIM(Slave) components.

5.3 Shortcomings of the Implementation

In general, the solution presented is not complete. There are different aspects that the
solution does no implement, like the security aspect. This is a choice made to reduce the
task of the implementation, but can affect the testing. Testing security would be interesting
to look into as future work. The solution does not implement the authentication for each
user of the insight service; the solution also lack full support of blocking certain enterprises
for access. The project has started some of the work to make it possible, but the LRIM
server needs to implement it.

IKDM server
The IKDM server’s implementation contain some noteworthy shortcomings. The imple-
mentation removed the SSL/TLS security due to problems with the deployment of the
system to the windows servers. This means that the solution does not have any form of
security. This means that there is a possibility when testing the system that the perfor-
mance it will show is better than what it will be in a fully implemented system. Another
defect is that the socket listing on the logs from the LRIM component does not restart
when overloaded. The last thing to note with the implementation of the IKDM server is
the performance and operation of the RavenDB. The current solution works; however, it

55

Chapter 5. Design and Implementation

feels less than satisfactory. The database uses lots of memory and processing power, and
is not as quick as the author was led to believe.

LRIM server
The LRIM server’s implementation is not complete. The server provides features to make
it possible to block a enterprise, but the solution does not implement them. In addition,
the server currently only makes the same kinds of transaction types when logging a trans-
action. The server does not handle many connections at the same time and crashes if it
gets overloaded. The system should implement a pool to handle workload from different
enterprises. The Redis database works well and is a good way to store the keys. The com-
munication between the LRIM server and the IKDM server uses TCP. TCP might not be
the best solution.

”Folkeregister” simulator
The ”Folkeregister” simulator is not a main concern for the project, because it is not part of
the internal design of IDMegler. This means that it is implemented as simple as possible.
It is a single table in a MySQL database. The database is not the real thing a system like
IDMegler would have to communicate with, but it is an ok representation. The downside
is that it is possibly faster than the real ”Folkeregister” would be.

Enterprise Simulator
This program is a simple simulator and is designed to function as a simple test tool. There
are some uncertainties in the implementation. To check the response time and other data
for the request it uses the stopwatch. Because each request runs on an individual thread
there are potential for error in the data collected. Another problem with the simulation, to
get it to work when testing over a long period of time, the simulator uses only one con-
nection per enterprise. This means that under testing the simulator only have to make the
connection one time and keep it. This means that the overall time to complete a transaction
might be lower then if it made the connection each time.

5.4 Set up

The tests system contains four 2012 windows servers. Each server represents one of the
parts of ”IDMegler”.

’Folkeregister’ simulator
Facts
This part consists of a MySql database.

Issues
After installation, the connection from the local MySql workbench were unable to connect
to the remote database.

Solution
The problem was that the WMI rights on the server were not set correctly, after updating
the WMI rights the local computer were able to connect to the MySql database.

56

5.4 Set up

IKDM server
Facts
This server needed to support IIS 4.5 or higher. In addition, the server needed valid cer-
tificates located in the local machine, and the IKDM server needed to be deployed in its
entirety (database included)

Issues
The remote deployment feature in visual studio did not work. The server did not have any
certificates installed that could be used. When creating a certificate, the solution were not
able to use the test certificate. The database’s deploy feature in the implementation did
not work (the database should have a feature to create a dump-file with the content of the
database).

Solution
To deploy the program the server program was deployed locally, and transported as a
package to the server. Then using the IIS Manger and web deploy, the server was imported.
To be able to use the RavenDB, the solution became to download a fresh database and
implement a test function in the server that reapplied the test data in the database. To create
test certificates ”certmaker.exe” was downloaded, and used to create test-certificates and
place them in the local machine.

LRIM server
Facts
This server should install the solution created for the LRIM component and run the Redis
database.

Learning from the mistakes from the main server, IIS, web deploy, and windowsSDK
where all installed from the beginning. There were no other problems when deploying to
this server when the decision for removing the SSL/TLS was made.

Enterprise simulator
Facts
The enterprise simulator only needed to run a simple .exe file. This posed no issues

Troubleshooting
Major issues
Under deployment and creation of the certificate, the servers did not accept them in the
SSL/TLS connection. The error produced were: ”The credentials supplied to the package
were not recognized”.

solution
A lot of effort were made into finding a solution for the certificates not working. After
several tries (including making a certificate authority to sign the certificate and adding the
private key to the certificate), the decision was made to remove the SSL/TLS from the
solution to avoid using the certificates, because of the time limit of the project.

57

Chapter 5. Design and Implementation

5.5 Summary

This chapter have presented the implementation of the architecture, and the choices taken
during the implementation of the system. The chapter went into detail about the differ-
ent parts of the implementation and explained how they work. The chapter does this by
going into detail about the definition of the different classes. At the end, the chapter intro-
duced the different patterns the implementation use, and presented a reflection about the
shortcomings of the different components of the implementation.

58

Chapter 6
Results

This chapter presents the raw results of data gathered and generated throughout this project.
It starts by showing the data obtained from ”SpareBank 1”. The chapter proceeds to show
the data from the survey, and lastly, the data generated from the tests on the implemented
prototype of IDMegler.

6.1 Qualitative Data from ”SpareBank 1”

The following sections shows the data gathered from ”SpareBank 1”.

6.1.1 Transactions

The Figure 6.1 shows the total amount of transactions where information about people
were used, from ”SpareBank 1”s external channels during January 2016. The data pro-
vided is taken from ”SpareBank 1 SR” which makes up approximately 25% of ”SpareBank
1”. This implies that all data must be scaled up by a factor of four.

From the Figure 6.1, the total amount of transactions occurring during a month is 2987631+
2987631 + 2569320 = 8 554 582. This means that the total workload for ”SpareBank 1”
is approximately: 8.55million · 4 = 34.5 million. Calculated down to transactions per
second, the number becomes 13 (rounded up).

This is only for the external side. To estimate the amount for the internal channels this
project assumes 25% more traffic internally than externally. This assumption is based on
best guess and gut feelings. By using the number calculated and the factor of 1.25, the total
amount of transactions per seconds becomes: 13 + 13 · 1.25 = 30 (rounded up).

59

Chapter 6. Results

Figure 6.1: Number of Transactions for ”SpareBank 1 SR”s External Channels

6.1.2 Performance

”SpareBank 1” were able to provide data taken from a performance test for testing one of
their systems.

Table 6.1: Data from ”SpareBank 1” Test Data and Response Time.

Call description Number of
calls (during
72 hours)

Average (ms) 90% of the
calls respond
within (ms)

01/01 readCustomer 1,0
- Default information re-
turned

1202509 1620 3005

01/02 readCustomer 2,0 -
By public id

1202438 1808 4092

01/03 readCustomer -
Only customer informa-
tion

60116 789 1439

01/04 readCustomer -
Only postal addresses

60113 803 1472

01/05 readCustomer -
Only other addresses

60107 675 1275

As seen from the Table 6.1, the average response time is always over 675 ms. This will
be the number used when calculating the threshold values for IDMegler’s response time.
Because the data provided by ”SpareBank 1” represents the whole stack trace, IDMegler’s
treshold value must be a fraction of the number from ”SpareBank 1”.

60

6.2 Quantitative Survey Data

These performance tests numbers where generated through a test based on experience with
what ”SpareBank 1” normally have to handle. Which is 500 000 transactions each day and
peaks at 800 000. The test ”SpareBank 1” did were done with this in mind, and with 800
000 transactions each day over 72 hours, calculated down, the number becomes 600 per
minute or 10 per second.

6.1.3 General Questions

During the communication with ”SpareBank 1” some general questions were asked, which
will be summarized here.

Insight requests
Insight request are when a customer asks an enterprise about what kind of data they have
stored about them. The enterprise is legally obliged to provide the information to the
customer. The number of insight requests ”SpareBank 1 SR” receives yearly is 5-10. By
taking into consideration, that this is 25% of the ”SpareBank 1”, the number is likely
between 20-40 yearly. This number is relatively low. Unfortunately, ”SpareBank 1” could
not give any concrete feedback on how this number has changed over time. However,
given the increased interest in privacy, they expect the number to increase.

When handling an insight request ”SpareBank 1”s policy is to response as quickly as
possible, with a limit of 30 days. The people in charge of the insight requests are the
privacy-federation within the bank.

Data and technology
The company is currently not using any NOSQL databases. The standard response format
they use are XML via SOAP. This information is of interest to get an idea of the technology
used in the industry.

6.1.4 Number of Enterprises that Uses Information About Persons.

When asking ”Datatilsynet” about how many enterprises use information about persons,
they directed the project to a service1 which enables anyone to search for companies using
information about persons. As of 2016.04.10 the number of enterprises on the list was
12397.

6.2 Quantitative Survey Data

The survey has 106 participants. The focus of the survey was to get data of the number of
customer relationships people have today. Among the participants 37,7 % were female and
62,3 % male (Figure 6.3). The majority of the participants were of the age group 20-29
presenting 48,1 % of the population (Figure 6.2). The main phone type of the population

1The service is reachable at: https://melding.datatilsynet.no/melding/report search.pl

61

https://melding.datatilsynet.no/melding/report_search.pl

Chapter 6. Results

were android as seen in Figure 6.4. And the main education type were master degree
(Figure 6.5).

Figure 6.2: The population of the participants

Figure 6.3: The Number of Participants and their Age Groups

62

6.2 Quantitative Survey Data

Figure 6.4: The Different Types of Phones

Figure 6.5: Education Types

An interesting observation of the survey were the number of memberships or customer re-
lationships the participants have, which ranged from 10 - 64. The average of memberships
were 19.69. It shows that there is no big difference in number of memberships between
male and female, as shown in Figure 6.6. The same is the case for the number of customer
relationships based on sex and age as seen in Figure 6.7.

63

Chapter 6. Results

Figure 6.6: Average Memberships Divided by Sex.

Figure 6.7: Average Memberships Divided by Sex and Age Group.

What this survey concludes is that the number of memberships and customer relationships
are quiet high. This is not very surprising, but an important fact to emphasise.

64

6.3 Test Data

6.3 Test Data

6.3.1 Calculated Threshold Values

To verify whether the system is capable of handling the workload, threshold values are
calculated based on collected data.

Performance
This project calculates some threshold values, by using the data from ”SpareBank 1” and
the number of enterprises who use personal information. When it comes to performance,
there are two qualities to consider, the number of transactions the system should handle,
and the response time for the transactions. As stated earlier in this chapter (6.1.2), the
lowest average response time for the different transactions measured by ”SpareBank 1”
was 675 ms. Given that this is for the whole stack tree, the response time that the system
should be able to deliver is stipulated to 25% of 675 ms which is approximately 160
ms.

The number of transactions is calculated through extrapolation. By making three cate-
gories of enterprise usage of information about people. Each of the categories gets an
estimated amount of transactions each day. Then put percentages of the enterprises into
each category. The categories this project presents are; daily, monthly, and occasionally.
The occasionally category would estimate five transactions daily, the monthly category
would do 100 transactions daily, and lastly the daily category would use the transaction
volumes given by ”SpareBank 1” (30 transactions per second). This can all be summarized
in the table 6.2.

Table 6.2: Categories of Transactions Occurrences

Category Transactions
Daily 2 592 0002

Monthly 100
Occasionally 5

Daily
The total number of enterprises estimated was 12 397 (chapter 6.4). It is obvious that
not many enterprises will fall into the category of daily. This will typically be banks and
other major enterprises that is paid to handle information about people. Based on this
assumption the percentage of enterprises in this category will be 0.5%. The total number
of enterprises becomes approximately: 12397 · 0.005 = 100 enterprises.

Monthly
The number of monthly enterprises will likely be relatively low. This is because a majority
of enterprises chooses to use other firms to outsource the favour of sending out monthly

2This number is calculated multiplying the ”SpareBank 1” number of transactions per second (30) by the
amount of seconds in a day.

65

Chapter 6. Results

bills, paychecks etc. Based on this assumption this project estimates the percentage of
enterprises to be 1% which is approximately: 12397 · 0.01 = 200 enterprises.

Occasionally
By power of elimination, the rest of the enterprises will be occasionally. Which is 98.5 %
of the enterprises, which gives: 12397 · 0.985 = 12200 (rounded down).

Total number of transactions
This means that the total number of transactions IDMegler would at least have to manage
each day is: 100 · 2592000 + 200 · 100 + 12200 · 5 = 259281000.

The threshold value for number of transactions per second calculated for this project is: 3
000. 3 000 transactions per second is the average amount stipulated. The peak is stipulated
to be 50% more than the average. The threshold value for this project then becomes 4 500
transactions per second.

Figure 6.8: Transaction Impact

Figure 6.8 shows that the majority of the enterprises traffic is almost neglectable. The real
traffic for IDMegler comes from the enterprises in the daily category.

6.3.2 Tests

Looking at the threshold values, there are different scenarios where the servers would have
to handle different kinds of enterprises. Some servers will have to handle many different
enterprises, while others will have many transactions coming from one enterprise. This
calls for this project to test two different scenarios: One server with a lot of transactions
form one enterprise, and one server getting few requests from many enterprises.

66

6.3 Test Data

The purpose of the performance tests is to test if the system handle the stipulated amount of
transactions per second, and at the same time keep the response-time within the calculated
threshold value. Because the system does not use any form of secure channels in the
implementation, it is expected that there will be an increase in the response time for the
actual implementation of IDMegler. This is based on the assumption that complexity adds
time to perform an action, and security adds complexity.

Test scenario

67

Chapter 6. Results

Name Inputs Duration
Performance
test 1.1

Run the tests with 1 transaction per second and 10 enterprises. 10 min

Performance
test 1.2

Run the tests with 1 transaction per second and 50 enterprises. 10 min

Performance
test 1.3

Run the tests with 1 transaction per second and 100 enter-
prises.

10 min

Performance
test 1.4

Run the tests with 1 transaction per second and 200 enter-
prises.

10 min

Performance
test 1.5

Run the tests with 1 transaction per second and 500 enter-
prises.

10 min

Performance
test 2.1

Run the tests with 10 transaction per second and 1 enterprise. 10 min

Performance
test 2.2

Run the tests with 20 transaction per second and 1 enterprise. 10 min

Performance
test 2.3

Run the tests with 50 transaction per second and 1 enterprise. 10 min

Performance
test 2.4

Run the tests with 100 transaction per second and 1 enter-
prise.

10 min

Performance
test 2.5

Run the tests with 200 transaction per second and 1 enter-
prise.

10 min

Performance
test 3.1

Run the tests with 10 transaction per second and 5 enterprises. 10 min

Performance
test 4.2

Run the tests with 20 transaction per second and 5 enterprises. 10 min

Performance
test 4.3

Run the tests with 50 transaction per second and 5 enterprises. 10 min

Performance
test 4.4

Run the tests with 100 transaction per second and 5 enter-
prises.

10 min

Performance
test 4.5

Run the tests with 200 transaction per second and 5 enter-
prises.

10 min

Performance
test 5.1

Run the tests with 10 transaction per second and 10 enter-
prises.

10 min

Performance
test 5.2

Run the tests with 20 transaction per second and 10 enter-
prises.

10 min

Performance
test 5.3

Run the tests with 50 transaction per second and 10 enter-
prises.

10 min

Performance
test 5.4

Run the tests with 100 transaction per second and 10 enter-
prises.

10 min

Performance
test 5.5

Run the tests with 150 transaction per second and 10 enter-
prises.

10 min

Table 6.3: The Tests Preformed on the Set-up

68

6.3 Test Data

As can be seen from table 6.3, there are two different kinds of tests. The first scenarios
sees how well the system handles many enterprises and only one transaction per second.
This checks that the server will be able to handle many different enterprises using the
same server. The second part of the test scenarios sees how well one server handles many
transactions per second in three different cases. One where it is only one enterprise sending
the requests, one where five enterprises sends requests and lastly one where ten enterprises
sends requests.

6.3.3 Preformed tests

The tests preformed uses the following guidelines:

• All response times are measured in milliseconds.

• All of the test scenarios are done three times to make sure the data collected was
accurate.

69

Chapter 6. Results

Table 6.4: One Request Per Second to Many Enterprises

Requests/
second

#Ok # Not
found

Enterprises Average
re-
sponse
time

Longest
re-
sponse
time

Shortest
re-
sponse
time

Total
test
time

1 6000 0 10 4.6 178 1.64 10:00.0
1 6000 0 10 7.96 3014.6 1.58 10:00.0
1 6000 0 10 10.62 3033.64 1.57 10:00.0
1 30000 0 50 13.2 3043.064 1.45 10:00.0
1 30000 0 50 17.84 3029.39 1.45 10:00.0
1 30000 0 50 11.29 3026.27 1.50 10:00.0
1 60000 0 100 17.08 3150.19 1.51 10:00.0
1 60000 0 100 19.38 1025.70 1.46 10:00.0
1 60000 0 100 16.43 3038.57 1.40 10:00.0
1 119913 0 200 31.07 3038.16 1.45 10:00.0
1 120000 0 200 15.15 3031.10 1.40 10:00.0
1 119912 0 200 27.99 3020.87 1.37 10:00.0
1 299495 0 500 60.43 3020.72 1.48 10:00.0
1 299704 0 500 39.01 3024.72 1.42 10:00.0
1 299464 0 500 79.66 1325.83 1.39 10:00.0

Figure 6.9: Many to One Response Time

70

6.3 Test Data

Table 6.5: One Enterprise to Many Requests

Requests/
second

#Ok # Not
found

Enterprises Average
re-
sponse
time

Longest
re-
sponse
time

Shortest
re-
sponse
time

Total
test
time

10 5952 0 1 3.62 341.97 1.71 10:00.0
10 5953 0 1 4.01 605.67 1.63 10:00.0
10 5954 0 1 3.42 312.76 1.77 10:00.0
20 11852 0 1 4.14 931.39 1.56 10:00.0
20 11847 0 1 3.24 329.56 1.57 10:00.0
20 11853 0 1 4.21 981.53 1.57 10:00.0
50 28864 0 1 2.89 319.98 1.39 10:00.0
50 28876 0 1 2.93 316.00 1.41 10:00.0
50 28884 0 1 4.18 1152.95 1.38 10:00.0
100 55081 0 1 2.99 3019.09 1.34 10:00.0
100 54985 0 1 5.41 3040.95 1.36 10:00.0
100 54916 0 1 3.19 346.72 1.32 10:00.0
200 100748 0 1 3.6 3017.13 1.31 10:00.0
200 100674 0 1 5.15 3029.45 1.34 10:00.0
200 99104 0 1 3.92 3026.26 1.30 10:00.0

An interesting observation to notice is from testing ”1 enterprise, 20 transactions” (blue
marked lines in table 6.5) and ”1 enterprise, 50 transactions” (green marked lines in table
6.5) it appears that the average response time goes down. When testing ”1 enterprise,
50 transaction”, the IKDM server used up all of its resources (CPU and RAM) to handle
the logs sent from the LRIM server. This made the IKDM server shut down its port for
receiving logs. When testing ”1 enterprise, 50 transactions” the IKDM server did not
receive the logs and then did not have to use processing power to handle the logs, which
explains the reduction in response time. This means that the LRIM component is capable
of handling the workload but not the IKDM component.

71

Chapter 6. Results

Figure 6.10: One to Many Response Time

Table 6.6: Five Enterprises To Many Requests

Requests/
second

#Ok # Not
found

Enterprises Average
re-
sponse
time

Longest
re-
sponse
time

Shortest
re-
sponse
time

Total
test
time

10 29770 0 5 3.84 3017.92 1.38 10:00.0
10 29759 0 5 3.98 3013.76 1.36 10:00.0
10 29770 0 5 5.39 3027.73 1.36 10:00.0
20 59178 0 5 3.77 3025.88 1.36 10:00.0
20 59185 0 5 4.79 3022.29 1.33 10:00.0
20 59205 0 5 3.27 3032.42 1.37 10:00.0
50 143744 0 5 7.36 3017.47 1.35 10:00.0
50 143710 0 5 5.63 533.96 1.35 10:00.0
50 143645 0 5 5.07 3019.56 1.35 10:00.0
100 269559 0 5 14.36 3019.15 1.33 10:00.0
100 268810 0 5 27.2 1306.99 1.36 10:00.0
100 268974 0 5 28.33 1413.79 1.34 10:00.0
200 435727 0 5 68.36 1426.50 1.39 10:00.0
200 440117 0 5 167.69 3415.00 1.34 10:00.0
200 433118 0 5 376.22 7779.79 1.37 10:00.0

72

6.3 Test Data

Figure 6.11: Five to Many Response Time

Table 6.7: Ten Enterprises to Many Requests

Requests/
second

#Ok # Not
found

Enterprises Average
re-
sponse
time

Longest
re-
sponse
time

Shortest
re-
sponse
time

Total
test
time

10 59521 0 10 3.99 335.28 1.41 10:00.0
10 59511 0 10 7.97 3022.52 1.37 10:00.0
10 59537 0 10 3.88 3014.95 1.35 10:00.0
20 118166 0 10 7.29 3021.11 1.35 10:00.0
20 118052 0 10 4.87 328.44 1.36 10:00.0
20 118156 0 10 4.77 3010.83 1.32 10:00.0
50 283370 0 10 20.75 871.42 1.37 10:00.0
50 283072 0 10 17.40 3020.73 1.33 10:00.0
50 281783 0 10 29.83 3018.57 1.35 10:00.0
100 485098 0 10 111.2 2735.31 1.37 10:00.0
100 506449 0 10 62.77 3022.75 1.38 10:00.0
100 502633 0 10 91.42 4462.63 1.37 10:00.0
150 664774 0 10 23528.24 73919.63 1.42 10:00.0
150 665202 0 10 24585.29 73374.42 1.84 10:00.0
150 657479 0 10 16858.46 55531.33 2.47 10:00.0

73

Chapter 6. Results

In the latest two set-ups (”10 enterprises, 100 transactions” and ”10 enterprises, 150
transactions”) from table 6.7, it is clear that the server cannot respond properly to all of
the requests. By looking at the number of OK requests and the duration of the tests,
there seems to be an upper limit for requests the servers can handle. By looking at
the ”10 enterprises, 100 transactions” first, the amount of requests per second becomes:
485098/6000 = 81, 506449/6000 = 84, and 502633/6000 = 84. This is approximately
15% less than the request load which is 100 transaction. This is not a result of how the
tests are done; the threads generating the requests are not aborted, but simply stopped. The
remaining requests which had been sent showed up in the recorded data after the ending of
the test period of 10 minutes. The number is even worse for the ”10 enterprises, 150 trans-
actions” scenario: 664774/6000 = 111, 665202/6000 = 111, and 657479/6000 = 109.
This is a reduction of approximately 27%. The interesting part is that in the second sce-
nario the server is capable of making over 100 requests per second. However, the response
times are horrendous and far outside of any threshold values set for a satisfactory sys-
tem.

During the testing of the scenario with 10 enterprises and several requests per second, it
was first planned to send 200 requests per second form each of the 10 enterprises in the
last scenario. However, the enterprise simulator crashed after a while due to the amount
of requests generated and the server were not able to handle all of them. To get data on
higher settings this number was reduced to 150 as seen in the table 6.7. It can be said with
certainty that the system with one server handling enterprise requests cannot handle 2 000
requests per second for a very long time.

74

6.4 Summary

Figure 6.12: Ten to Many Response Time

During testing, a problem arised with the server running the IKDM-IDMegler component.
The IKDM component used too much processing power and memory so the socket used
for retrieving the logs shut down. With 4 GB of memory and 1 CPU (Intel(R) Xeon(R)
CPU E5-2650 0 @ 2.00GHz), the server was capable of handling 25 transactions per
second. After doubling the memory and CPU power, the server managed 50 transactions
per second. It becomes apparent that the server would need 30 times the CPU power and
240 GB of ram to handle the workload for the tests done in this project. This clearly implies
a bottleneck that needs to be addressed. One solution could be to raise the memory and
processing power on the server. Another approach would be to reduce the number of logs
sent from the LRIM component. By storing the logs temporary in the LRIM component,
it would be possible to compress the logs. This way the value of the logs would still be
present, but the amount of logs sent to the IKDM component would be reduced.

The tests imply that the system and architecture should be able to handle the workload.
According to the tests, one LRIM server is capable of handling around 1 000 requests per
second. If scaling up the amount of LRIM servers, there should be close to no limit to how
many requests per second the system and architecture is capable of handling.

6.4 Summary

This chapter have described the data of all tests, interviews, and surveys done in this
project. Then presented the calculations and threshold values that the system should be

75

Chapter 6. Results

able to handle, described the performed tests on the implemented system, and briefly dis-
cussed the findings.

76

Chapter 7
Discussion

This chapter discusses all results, findings, and contributions throughout the project. A
reflection and retrospective of the DSRM Process is given at the end.

7.1 Data Collection

The data collection in this project was partly successful. ”SpareBank 1” was able to give
the number of transactions from their external channels but not from their internal chan-
nels. This means that an unknown amount of transactions had to be estimated. In addition
to this, there were no data from smaller enterprises nor from other sectors than ”SpareBank
1”. The project should have contacted more enterprises of different size from various sec-
tors, to achieve a full set of data about their numbers of personal data transactions. In this
project, those numbers were estimated by assuming the other enterprises were less likely to
use information about persons. This could be a source of error in the estimation. However,
based on the performed tests, the system should be in good shape to handle a much higher
number of transactions per second then the total estimated number in this project.

7.2 Survey

Survey objective
It is important to make sure that there is a purpose to any survey. The reason for this
survey was to get an idea of the number of enterprises a person is linked to and to confirm
the assumption that people lack control over their own information. It was important to
design the survey in a way where people could give as much valid information as possible.
People should ideally answer questions, which are relevant to them to get the best results.

77

Chapter 7. Discussion

The survey tries to cover the most areas of enterprises a citizen can be linked to. However,
the variety of enterprises is so vast that the coverage has limitations.

Researcher bias
The researcher bias is a challenge. Another challenge is designing the survey with good
coverage of the problem domain. The questions asked becomes a result of the authors
own experience. This makes the questions bias towards the authors own knowledge of
enterprises. A more thorough research about possible enterprises would have increased the
quality of the questions. The survey ends in an open question encouraging the participants
to name all enterprises they remember to have, or have had, a customer relationship with,
to accommodate for the lack of knowledge about possible enterprises. However, only
24/106 people choose to answer the question with very varying amounts of detail.

Survey sample
One of my two supervisors and I shared the survey on Facebook. This makes the sample
of people relatively centred on people in the same age group and life situation as my
supervisor and me. Ideally, the sample size should have included many other types of
people, and not mainly students and people of higher academic background.

Conclusion
The survey manages to give an indication of the knowledge people have about which
enterprises they are related to. Additionally the survey is able to point out that people have
big variation in number of enterprise relationships they are aware of. The numbers range
from 12 to 61, and this is just a subsample. Of the 24 who answered the open question, 8
said that they expected the number to be much higher but were unable to remember any
other enterprises. This makes it safe to say that very few people have complete control
over the distribution of information.

7.3 System Design and Architecture

7.3.1 Reflections

Metrics
This project focused on two metrics:

• Performance (time from request to returned data)

• Requests handled per second (the amount of transactions per second the implemen-
tation can handle)

Response time is important when using IDMegler. The request time between the enterprise
and the response time from IDMegler need to be a lot lower compared to the response time
measured at the enterprise (this will be a fraction of what the enterprises likely measures
today given that IDMegler will always be part of a system chain). It needs to be a constant
factor and not operate differently based on the request load.

78

7.3 System Design and Architecture

The amount of request per second IDMegler can handle is crucial for the system to be
successful. If IDMegler is not able to handle the total workload of the entire Norwegian
nation, the system will not be beneficial. This means that the system must be able easily
to handle the peak workload stipulated for the entire nation.

REST
REST is an easy and good solution for sending requests and making web services. This
allows testing of response time from different physical locations. In addition, it is easy to
implement. There exist many frameworks to help with implementation.

Database
There are multiple scenarios where a database is important. The IKDM service needs
a temporary quick lookup table as well as the ability to cache any incoming data. By
using NOSQL databases, the read/write speed is increased immensely compared to a
RDBMS.

The IKDM service needs to store big amounts of data. This emphasises the importance
of negating any data loss, especially the key values and the logs. This makes the use of
NOSQL databases less optimal since there is a higher risk of losing data compared to a
relational database. However, by using databases like RavenDB, which implements ACID,
this no longer becomes a problem.

7.3.2 Architecture

The IDMegler architecture is described in various different diagrams and process flows
(Chapter 4.5). The overall structure first presented, gives a physical view about the distri-
bution possibilities. The process flow diagrams for the citizens and enterprises is shown
in more detail displaying the main processes of IDMegler. The dataflow diagrams give an
indication of the internal components in IDMegler. Lastly, the sequence diagram shows in
detail how a request from an enterprise will look like in an implementation of this architec-
ture. In general, the majority of the diagrams repeat the different components. This ties the
diagrams together, and it is meant to increase readability and comprehensibility.

The system design and architecture were a major part of the project. The architecture was
developed through a series of iterations. Part of the redesign was accomplished during the
implementation. In retrospective it would have been better to analyse the system design
and architecture to a greater extent before starting the implementation. The reason for the
early start of implementation was to ensure that it was possible to generate a system capa-
ble of enduring tests that would generate relevant information. During the implementation,
many problems were discovered and several changes were necessary. As problems were
discovered, it became apparent that the initial design and architecture were not capable of
addressing all of the problems.

Increased focus on the early parts of the specification and design would be crucial if the
project was to be executed again. However, it is often hard to make the right choices in the
design phase, because at that point in time you have to make crucial decisions when you
know the least about your system.

79

Chapter 7. Discussion

7.3.3 Problems

Cold start-up
There are two different ways for the system to handle the cold start: Lazy and active.

Lazy: The LRIM component only retrieves key-chain information from the IKDM com-
ponent when requested from the enterprise. The different enterprises should already be
loaded into the LRIM component.

Active: All information about all the enterprises and their respective customers should be
available when started.

A cold start poses a problem and could potentially be slow (If x numbers of servers request
hundreds of millions entries from the IKDM server). However, this was not tested in this
project, but could potentially be tested in future work.

7.3.4 Implementation

A lot of work can still be done to improve the implementation, and to add functionality to
IDMegler. During the implementation, some simple security elements were coded into the
implementation, but removed due to problems with certificates.

Further work can be done in the area of security and in adding more functionality to the
solution.

Some of the code could have been written better and there is a lack of comments in the
code. The program in itself is not hard to understand but some documentation (exceeding
Chapter 5) should be added.

7.3.5 Functional Requirements

In Chapter 4.1 the functional requirements this project should implement were specified.
The requirements were:

FR6: IDMegler shall be able to retrieve personal information about a customer.
FR7: IDMegler shall be able to accept requests about personal information from valid en-
terprises.
FR9: IDMegler shall be able to find the right person in ”Folkeregisteret” based on enter-
prise and customer ID.
FR17: The logs shall not contain any sensitive information. Every log shall use numbers to
represent the enterprise and customer, as well as numbers for placeholders for transaction
types.
FR23: IDMegler shall be able to identify a person based on enterprise and customer
id.

80

7.3 System Design and Architecture

All of the functional requirements were implemented fully except for FR7. The imple-
mentation is capable of accepting requests from enterprises, however, the project did not
implement any functionality to check if the enterprise is valid.

7.3.6 Test and Performance

Findings

• The architecture of the system is capable of handling the workload

• There is a bottleneck with the number of logs generated

• The system needs more complete tests

The architecture of the system is capable of handling the workload
The findings of the tests were that the architecture of the system was able to handle the
workload. A single LRIM server is capable of responding to 1 000 transactions per second.
The total amount estimated to the complete Norwegian marked is 4 500 transactions per
second. The average response time for a server handling 1 000 transactions per second was
around 100 ms. This was tested on a server who had 10 enterprises which each made 100
requests per second. The estimate for a big enterprise (”SpareBank 1”) was 32 requests
per second. In a scenario where a company of that size has their own server, the average
response time should in general be around 3 ms.

There is a bottleneck with the number of logs generated
The problem when testing the system was that the IKDM server was incapable to handle
the number of logs. However, this does not indicate that the LRIM server is incapable
of handling the transactions. The way the system makes and collects the logs needs a
redesign. A possible solution might be to save the logs within the LRIM servers. When
a citizen wants to look at his transaction history, the system retrieves the logs from the
various LRIM servers. A second solution could be to let the enterprises store the logs
locally, and require that they can deliver the logs on request from IDMegler. A third
possible approach could be to find a good way to compress and reduce the number of logs
at the LRIM server. This would not reduce the value of the information for the citizens,
because his interest is not in knowing all the logs in detail but a summary and explanation
of what the enterprises use their personal information for.

The system could need more conclusive tests

• The system needs a full availability test over longer periods

• The master/slave part of the system is not fully tested for scalability (only one slave
(LRIM))

• The tests scope should optimally be bigger

• The system does not implement any security and this is therefore not tested

The tests do not include any availability test. This means that even though the data from
the tests give a good indication of the capability of the architecture; the quality attribute is

81

Chapter 7. Discussion

not fully tested. The tests try to include some availability, by having a decent test period.
However, to say anything specific about the availability, the implemented prototype would
demand a test that runs at least 72 hours. The reason for not making complete availability
tests was that it is difficult to perform and takes a lot of time. Since this project had a
limited time frame, these tests were excluded from the test scope.

The project did not test the master/slave architecture with more LRIM components. The
set up for all the tests included only one LRIM (slave) component and one IKDM (master)
component. This means that there is no data for how the prototype system would behave
in an environment with more LRIM components. A test with more LRIM components
might identify the improved version of ”Folkeregister” to be a bottleneck as well. In the
scenario that Norway decides to implement and enforce IDMegler, it will likely be in the
nation’s interest to make sure that ”Folkeregisteret” can handle the full load of transaction.
As a matter of fact, this uncertainty will likely not pose a problem.

It would be interesting to address the situation were the IKDM component would handle
the logs when more than one LRIM component is sending them. The master would still
have problems with the amount of logs, but it would nonetheless be an interesting scenario
that might shed some light on possible ways to handle the bottleneck.

The system tests scope should have a larger and more realistic set of testdata. This project
did tests where every request only requested data about 10 different individuals stored in
the prototype system. In addition, all of them belonged to the same enterprise. By the
nature of how the implementation adds logs, a more thorough test would likely increase
the time it takes to add them. When adding the logs to the IKDM server (the logs are sent
in batches of 500), the server sorts the logs based on which enterprise the logs come from.
The server retrieves the document (the document holds all the information about the en-
terprise) from the NOSQL database (RavenDB) for each enterprise and write the logs into
the document. Therefore, if many logs from different enterprises arrive, more documents
need to be retrieved from the database, which will increase the time it takes to add the logs.
This would increase the need for making a smart logging system in IDMegler.

There is no security in the implemented prototype system. This project had no focus on the
security aspect of IDMegler. However, security in general, adds up to the complexity of a
system. With more complexity the performance of the system usually decreases.

The results of the test were promising. The number of transactions per second by one
LRIM server was able to handle 1 000 transactions per second and preformed with a lower
response time than the threshold calculated in Chapter 6. This is 20% of the estimated
transactions Norway would need. This implementation of IDMegler, does not consider
a scenario where an enterprise wants to retrieve a group of its customers. How to handle
such a scenario will need further discussion. How often such a feature is needed would also
have to be address. By improving the feature for handling logs and adding security to the
system, the prototype would be close to a deployable implementation of IDMegler.

82

7.4 Validity

7.4 Validity

Here the process of the project is evaluated, against the DSRM process.

7.4.1 DSRM Process

Peffers and Tuunanen [34] presents the DSRM process. This process is a way to capture
the essence of design science research. The 6 different activities will be reflected upon
here, to see whether or not this project follows the method.

Activity 1: Problem identification and motivation
The first activity is supposed to identify what the design problem is, as well as to evaluate
the idea for solving the problem. The first part of this project identifies the problem through
the motivation and explanation of IDMegler. The motivation is justified through the will
to improve the privacy and problems with profiling.

Activity 2: Define the objectives for a solution
This activity is supposed to define the benefits of the new solution and compare it to the
former design. At the start of this project, the research questions were defined. The thresh-
old values the system would have to accomplish, were developed throughout the project
by gathering information from various sources. The estimation of the threshold values was
done at the same time as the implementation, but ideally, it would have been better to do
the estimations prior to the design and development.

Activity 3: Design and development
This activity should create the artefacts and define the artefacts functions. This project
creates the artefacts in Chapter 4, and in Chapter 5, the implementation is described. This
project did not follow this strictly, given that throughout the implementation, certain re-
strictions were discovered. This lead to a redesign of some of the artefacts.

Activity 4: Demonstration
This activity is meant to be a showcase of the artefacts created. This was presented in
chapter 6. By showing how the system performs and what the system is capable of, the
key features are highlighted.

Activity 5: Evaluation
This activity evaluates the artefact. This project tests the artefact in Chapter 6 and the
results are discussed in Chapter 7.

Activity 6. Communication
This activity is supposed to communicate the weaknesses in the design and the improve-
ment potentials. This part is done in Chapter 7.

Overall, the project uses all the different activities of the DSRM process. During the
different activities there have been redesigns of the solutions and of artefacts created. Even
though the design process has been followed, in retrospect the project should follow the
principles more systematically if done again.

83

Chapter 7. Discussion

84

Chapter 8
Conclusion and Future Work

This project has worked with architecture, data collection, implementation, and testing of
a suggested system called IDMegler. The tests performed suggest that the architecture
developed through this project is satisfactory and should be able to handle the workload.
However, different test scenarios remain due to the limited time of the project and there is
a bottleneck with the number of logs that have to be solved. It would be interesting to find
out how the system handles multiple LRIM components, and how it behaves over a longer
period of time to verify the stability of the system.

8.1 Research Questions Conclusion

The four research questions defined in Chapter 1 were as follows:

RQ1: What are possible bottlenecks and limitations of IDMegler?
RQ2: What is the minimum amount of traffic a system like IDMegler should be able to
handle?
RQ3: How can the architecture be designed to cope with the workload?
RQ4: How can the architecture fulfil the functional requirements of the solution?

RQ1: What are possible bottlenecks and limitations of IDMegler? One major bottleneck
was identified during testing. The sheer amount of logs generated was too massive for the
IKDM component to handle. This was an interesting find but not a big surprise. A way
to handle this problem could be to store the logs with the different LRIM components and
then let the system retrieve the logs from the LRIM components when a citizen wants to
look at his history. A second solution could be to let the enterprises store the logs locally,
and require that they can deliver the logs on request from IDMegler. A third possible
approach could be to process the logs at the LRIM component and send a more compact
number of logs to the main component.

85

Chapter 8. Conclusion and Future Work

Security is very important for IDMegler. There is a possibility that security could be a bot-
tleneck for performance in IDMegler. When adding security to a system, the complexity
of the system is increased. Usually, complexity adds time when performing a transaction.
As a result, the time it takes to perform each request in IDMegler could increase. This
would have to be tested further to determine if this is a bottleneck.

In the discussion, it has been pointed out that performance from a national wide ”Folk-
eregister” could be a bottleneck for very high peaks of transaction volumes. Nevertheless,
in the scenario that Norway decides to implement and enforce IDMegler, it will likely
be in the nation’s interest to make sure that ”Folkeregisteret” can handle the full load of
transaction.

RQ2: What is the minimum amount of traffic a system like IDMegler should be able to
handle? A stipulated requirement for transaction traffic were calculated. This number
ended up being 4 500 transactions per second. The transaction requirement was mainly
based on the information provided by ”SpareBank 1”. In addition, a threshold based on
response time data from ”SpareBank 1” was calculated to 160 ms for IDMegler.

RQ3: How can the architecture be designed to cope with the workload? Based on the
tests preformed, the implemented architecture of IDMegler was able to accommodate the
workload. If the tests were extended to a more diverse set of scenarios, it would be possible
to conclude with more certainty. However one LRIM component were able to handle a
load of about 1 000 transactions per second with a good average response time. This
means that for all of Norway’s needs, according to the estimation, IDMegler would only
need five to six servers. An absolute architecture needs to be able to handle the security
aspect, have a good enough interface for the enterprises, a good enough user interface
for the citizens, and to be incorporated into Norwegian laws and regulations. The project
conclude based on the tests performed that the purposed architecture is capable of coping
with the workload.

RQ4: How can the architecture fulfil the functional requirements of the solution? The im-
plemented architecture were able to fulfil the subset of the functional requirements (FR6,
FR7, FR9, FR17, FR23). The implementation is only a subset of the total requirement
specification, so more work on different features should be done. It was not feasible to
implement every aspect of IDMegler in this project, but there is nothing in the architecture
that would hinder further implementation of the functional requirements. The architecture
also needs to be tested more thoroughly on the availability aspect. All of these improve-
ments are possible further works.

An important thing to discuss is, how IDMegler will affect an existing enterprise? An
enterprise would have to make adjustments in all its current systems to be able to connect
to IDMegler. The enterprise would have to isolate and identify all of its processes and find
the ones where they need to communicate with IDMegler. In addition, there will be big
costs connected to developing solutions and updating their existing processes to work with
IDMegler. All of this will take time and be expensive. This means that it is achievable but
it will be a significant decision. More information of the total cost and social and economic
benefits of IDMegler is needed to determine if this kind of system is something to invest
in.

86

8.2 Future Work

8.2 Future Work

As mentioned throughout the project there are certain areas that would be interesting to
further investigation and development. The following list shows the different possible
future works. The future works is divided into three categories; technical, political, and
development of the problem domain. The technical work could look into expanding on the
implementation and architecture to improve technical aspects. The political work could
look into how the IDMegler is received as a good investment for the society, both economic
and political. Lastly, the problem domain work could do research about the cost benefit of
implementing IDMegler at different enterprises. It would also be interesting to discover
societies need for IDMegler. Some of these future works might be better performed outside
the IT domain.

Technical

• Test the dependability quality of the implementation

• Develop and test the security aspect of the implementation (Test plan and penetration
testing)

• Work out a better way to handle the logs

• Implement more of the functionality of IDMegler and test how it will affect the
performance

• Create a good user interface for the insight service

Political

• Find out how the decision makers looks upon IDMegler

• Find out what the costs of IDMegler will be

• Categorize the social and political pros and cons of IDMegler

• What potentials has IDMegler to being a valid solution for Norway

Development of the problem domain

• Categorise different enterprises in different sectors and their use of personal infor-
mation to get an insight of their needs for data requests (transactions)

• Expand on the questionnaire to categorise further peoples distribution of personal
information and their general opinion of privacy

87

Chapter 8. Conclusion and Future Work

88

References

[1] Personal data act. https://www.datatilsynet.no/English/Regulations/
Personal-Data-Act-/, 2015. accessed 08-December-2015.

[2] Asp .net. http://www.asp.net/, 2016. accessed 02-June-2016.

[3] Platform for privacy preferences. https://www.w3.org/P3P/, 2016. accessed 05-June-
2016.

[4] RavenDB. https://ravendb.net/, 2016. accessed 01-June-2016.

[5] Redis. http://redis.io/, 2016. accessed 02-June-2016.

[6] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan,
and Claudia Diaz. The web never forgets: Persistent tracking mechanisms in the
wild. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’14, pages 674–689, New York, NY, USA, 2014. ACM.

[7] Mark S. Ackerman, Lorrie Faith Cranor, and Joseph Reagle. Privacy in e-commerce:
Examining user scenarios and privacy preferences. In Proceedings of the 1st ACM
Conference on Electronic Commerce, EC ’99, pages 1–8, New York, NY, USA, 1999.
ACM.

[8] Solon Barocas and Helen Nissenbaum. Big data’s end run around procedural privacy
protections. Commun. ACM, 57(11):31–33, October 2014.

[9] Richard Baskerville, Jan Pries-Heje, and John Venable. Soft design science method-
ology. In Proceedings of the 4th International Conference on Design Science Re-
search in Information Systems and Technology, DESRIST ’09, pages 9:1–9:11, New
York, NY, USA, 2009. ACM.

[10] Tania Basso, Regina Moraes, Mario Jino, and Marco Vieira. Requirements, design
and evaluation of a privacy reference architecture for web applications and services.
In Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC
’15, pages 1425–1432, New York, NY, USA, 2015. ACM.

89

https://www.datatilsynet.no/English/Regulations/Personal-Data-Act-/
https://www.datatilsynet.no/English/Regulations/Personal-Data-Act-/
http://www.asp.net/
https://www.w3.org/P3P/
https://ravendb.net/
http://redis.io/

[11] Imen Ben Dhia, Talel Abdessalem, and Mauro Sozio. Primates: A privacy man-
agement system for social networks. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages 2746–
2748, New York, NY, USA, 2012. ACM.

[12] Peter Bodorik and Dawn Jutla. Architecture for user-controlled e-privacy. In Pro-
ceedings of the 2003 ACM Symposium on Applied Computing, SAC ’03, pages 609–
616, New York, NY, USA, 2003. ACM.

[13] Piero Bonatti and Pierangela Samarati. Regulating service access and information
release on the web. In Proceedings of the 7th ACM Conference on Computer and
Communications Security, CCS ’00, pages 134–143, New York, NY, USA, 2000.
ACM.

[14] Jan Camenisch, abhi shelat, Dieter Sommer, Simone Fischer-Hübner, Marit Hansen,
Henry Krasemann, Gérard Lacoste, Ronald Leenes, and Jimmy Tseng. Privacy and
identity management for everyone. In Proceedings of the 2005 Workshop on Digital
Identity Management, DIM ’05, pages 20–27, New York, NY, USA, 2005. ACM.

[15] Daniel J. T. Chong and Robert H. Deng. Privacy-enhanced superdistribution of lay-
ered content with trusted access control. In Proceedings of the ACM Workshop on
Digital Rights Management, DRM ’06, pages 37–44, New York, NY, USA, 2006.
ACM.

[16] Chi-Yin Chow and Mohamed F. Mokbel. Privacy in location-based services: A sys-
tem architecture perspective. SIGSPATIAL Special, 1(2):23–27, July 2009.

[17] Roger Clarke. Whats privacy. Australian Law Reform Commission Workshop, 28,
2006. http://www.rogerclarke.com/DV/Privacy.html#Defn.

[18] Sebastian Clauβ, Dogan Kesdogan, and Tobias Kölsch. Privacy enhancing identity
management: Protection against re-identification and profiling. In Proceedings of the
2005 Workshop on Digital Identity Management, DIM ’05, pages 84–93, New York,
NY, USA, 2005. ACM.

[19] David Crowe and Wasim A. Al-Hamdani. Google privacy: Something for nothing?
In Proceedings of the 2013 on InfoSecCD ’13: Information Security Curriculum
Development Conference, InfoSecCD ’13, pages 27:27–27:32, New York, NY, USA,
2013. ACM.

[20] Alfredo Cuzzocrea. Privacy and security of big data: Current challenges and future
research perspectives. In Proceedings of the First International Workshop on Privacy
and Secuirty of Big Data, PSBD ’14, pages 45–47, New York, NY, USA, 2014. ACM.

[21] Hilde Visthoff Drange. Personvernsarkitektur. Master thesis, NTNU, 2013.

[22] Vegard Fossestøl. Personvernsarkitektur. Technical report, NTNU, 2014.

[23] Saikat Guha and Srikanth Kandula. Act for affordable data care. In Proceedings of
the 11th ACM Workshop on Hot Topics in Networks, HotNets-XI, pages 103–108,
New York, NY, USA, 2012. ACM.

90

http://www.rogerclarke.com/DV/Privacy.html#Defn

[24] M. Hansen, A. Schwartz, and A. Cooper. Privacy and identity management. IEEE
Security & Privacy, 6(2):38–45, March 2008.

[25] Alan R Hevner. A three cycle view of design science research. Scandinavian journal
of information systems, 19(2):4, 2007.

[26] Steve Kenny and Larry Korba. Applying digital rights management systems to pri-
vacy rights management. Computers & Security, 21(7):648–664, 2002.

[27] Alfred Kobsa. A component architecture for dynamically managing privacy con-
straints in personalized web-based systems. In Roger Dingledine, editor, Privacy
Enhancing Technologies, volume 2760 of Lecture Notes in Computer & Science,
pages 177–188. Springer Berlin Heidelberg, 2003.

[28] L. Li and W. Chou. Design and describe rest api without violating rest: A petri net
based approach. In Web Services (ICWS), 2011 IEEE International Conference on,
pages 508–515, July 2011.

[29] Dheerendra Mishra. An accountable privacy architecture for digital rights manage-
ment system. In Proceedings of the Sixth International Conference on Computer
and Communication Technology 2015, ICCCT ’15, pages 328–332, New York, NY,
USA, 2015. ACM.

[30] Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah Estrin,
Mark Hansen, and Ramesh Govindan. Personal data vaults: A locus of control for
personal data streams. In Proceedings of the 6th International COnference, Co-
NEXT ’10, pages 17:1–17:12, New York, NY, USA, 2010. ACM.

[31] Andy Neely, Mike Gregory, and Ken Platts. Performance measurement system de-
sign: A literature review and research agenda. International Journal of Operations
& Production Management, 15(4):80–116, 1995.

[32] Joaqun Nicols and Ambrosio Toval. On the generation of requirements specifications
from software engineering models: A systematic literature review. Information and
Software Technology, 51(9):1291 – 1307, 2009.

[33] Srinivas Nidhra and Jagruthi Dondeti. Blackbox and whitebox testing techniques-
a literature review. International Journal of Embedded Systems and Applications
(IJESA), 2(2):29–50, 2012.

[34] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
Management Information Systems, 24(3):45–77, 2007.

[35] John Sören Pettersson, Simone Fischer-Hubner, Marco Casassa Mont, and Siani
Pearson. How ordinary internet users can have a chance to influence privacy poli-
cies. In Proceedings of the 4th Nordic Conference on Human-computer Interaction:
Changing Roles, NordiCHI ’06, pages 473–476, New York, NY, USA, 2006. ACM.

[36] Erik Reimer. Privacy architecture idmeglers impact. Technical report, NTNU, 2015.

91

[37] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering, volume 93. Springer, London, 2008.

[38] Carl-Fredrik Sørensen. Id megler. Memo, 2010.

[39] J. M. Such, E. Serrano, V. Botti, and A. Garcı́a-Fornes. Strategic pseudonym change
in agent-based e-commerce. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’12, pages 1377–
1378, Richland, SC, 2012. International Foundation for Autonomous Agents and
Multiagent Systems.

[40] Jaideep Vaidya. Privacy in the context of digital government. In Proceedings of the
13th Annual International Conference on Digital Government Research, dg.o ’12,
pages 302–303, New York, NY, USA, 2012. ACM.

92

Appendix

Questionnaire Questions Appendix A

The questionnaire was written in Norwegian and included the following questions with the
following alternatives.

• Hvor mange banker har du hatt, eller har du et kundeforhold til? (0, 1, 2, 3, 4, annet)

• Hvilke forsikringsselskap bruker du, eller har brukt? (SpareBank 1 Forsikring,
Gjensidige, NAF, If, Tryg, Storebrand, annet)

• Er du medlem av noen fagforeniger? (ingen, Tekna, Nito, LO, annet)

• Er du medlem av Obos, Tobb, eller andre lignende Boligbyggelag? (ingen, Tobb,
Obos, annet)

• Hvilke sosiale medier burker du? (Twitter, Facebook, Instagram, Tumblr, Google+,
Snapchat, LinkdIn)

• Er du eller har du vært medlem av en studentsamskipnad? (Jeg er medlem, Jeg har
vært medlem, nei)

• Har du hatt korospondans med noen statlige etater? (ingen, Lånekassen, Militæret,
Nav, annet)

• Hvor mange idrettslag/treningssentre er du medlem av? (0, 1, 2, 3, 4, annet)

• Har du korrespondert med noen veldedige organisasjoner? (ingen, Leger uten grenser,
Kirkens nødhjelp, Røde kors, SOS barnebyer, Plan Norge, annet)

• Er du medlem av et trossamfunn? (ja, nei)

• Bruker du paypal? (ja, nei)

• Bruker du Vips eller mCASH? (ingen, Vips, mCASH)

• Har du benyttet deg av nettbutikker? (ingen, Finn, NettOnNett, Komplett, Ebay,
Amazon, annet)

• Finnes det andre organisasjoner du er eller har vært medlem av som har lagret in-
formasjon om deg elektronisk? Rams opp så mange som mulig, fordelt på er og har.
(fritekst)

• Kjønn (mann, kvinne)

93

• Alder (0-19, 20-29, 30-50, 50+)

• Høyeste utdanning (Videregående, Fagbrev, Bachelor, Master, Phd, annet)

• Hva slags smartphone har du? (Iphone, Android, Windows phone, jeg har ikke
smartphone)

94

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Privacy in the Digital World
	Motivation
	Introduction of IDMegler
	Problem
	Contributions
	Structure

	Literature Review
	Privacy Aspects
	Related Work

	Research Approach
	Design Science Research
	Surveys
	Metrics
	Types of data
	Qualitative data
	Quantitative Data
	Test Data

	Development of the Prototype System
	Summary

	Requirement Specification and Architectural Design
	Requirement Specification
	Architectural Drivers
	Functional Requirements
	Quality Attributes
	Technical Requirements

	Roles and Stakeholders
	IDMegler Designs
	Peer to Peer
	Master/Slave
	Model-View-Controller

	Chosen Design
	IDMegler's Process Flow
	IKDM Component
	LRIM Component

	Summary

	Design and Implementation
	Components/Services
	IKDM Server
	LRIM Server
	''Folkeregisteret'' Simulator
	Enterprise Simulator

	Patterns
	Shortcomings of the Implementation
	Set up
	Summary

	Results
	Qualitative Data from ''SpareBank 1''
	Transactions
	Performance
	General Questions
	Number of Enterprises that Uses Information About Persons.

	Quantitative Survey Data
	Test Data
	Calculated Threshold Values
	Tests
	Preformed tests

	Summary

	Discussion
	Data Collection
	Survey
	System Design and Architecture
	Reflections
	Architecture
	Problems
	Implementation
	Functional Requirements
	Test and Performance

	Validity
	DSRM Process

	Conclusion and Future Work
	Research Questions Conclusion
	Future Work

	References
	Appendix

