
Evaluate How the STEP Standard AP 242
Could Enable Knowledge Transfer
between CAD and KBE Environments
Evaluer hvordan STEP standard AP 242 kan

muliggjøre konvertering mellom CAD og KBE

Jerome Schätzle

Mechanical Engineering

Supervisor: Ole Ivar Sivertsen, IPM

Department of Engineering Design and Materials

Submission date: April 2016

Norwegian University of Science and Technology

THE NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERING DESIGN
AND MATERIALS

MASTER THESIS AUTUMN 2015
FOR

STUD.TECHN. JEROME SCHATZLE

EVALUATE HOW THE STEP STANDARD AP 242 COULD ENABLE KNOWLEDGE
TRANSFER BETWEEN CAD AND KBE ENVIRONMENTS

Evaluer hvordan STEP standard AP 242 kan muliggjare konvettering mellom CAD og
KBE

The STEP standard provides a framework for representing and exchanging product data
independently from any particular system. In the last years there have been several
Application Protocols (AP) released in which different functionalities of the standard have
been defined. The aerospace and automotive industry respectively drove the development of
specific protocols, namely AP 203 and AP 214. The new AP 242 aims at merging these two
parallel protocols and at further extending the STEP standard in order to become the
cornerstone standard of the cross-process capabilities for interoperability of core engineering
design information. The new specifications mainly address the consistent technical product
data representation, which is necessary for an effective exchange and long term archiving of
this data.

A KBE system with its object oriented paradigm offers many advantages in comparison to
the classical engineering approach with its standalone tools for CAD, FEM and all the other
parts of the engineering process. As some of these standalone tools are well established in
the industry and are often well adapted to the specific needs of the customers, it would be of
great use to integrate some of these tools into the KBE environment. A transfer format able
to store all the corresponding product knowledge and a format which is easily interpretable
by any tool would significantly lower the initial hurdle to implement a KBE system as this
could be done step by step.

This master thesis will investigate if the new AP 242 standard could be such a tool. This will
be done by looking into its capabilities to store design relevant knowledge. The focus will
thereby lay on the interface between CAD and KBE systems. One of the main capabilities
would be the translation of parameterized CAD models into KBE modules or classes. The
possibility to do this could be examined with the aid of an example STEP file.

The master assignment includes the following:

1. Conduct a literature review on the STEP standard AP 242 and evaluate its capacity
to transfer codified knowledge.

2. Learn how to program in the KBE language AML, including geometry mod.eling.

3. Investigate what translators are available for transmitting AP242 models from and
into CAD systems and who supports these translators.

4. Contact different teams developing and supporting AP242 translators and discuss
the possibilities to transfer AP242 models into AML code, especially regarding
parameterization.

5. If no translator code is available as basis for translating into the KBE language AML,
specify how an AML code could be implemented based on a subset of the features
available in the AP 242 standard.

6. As far as time allows, based on point 4 or 5 above, implement AML code to import
parameterized geometric models in AML and run test examples.

Formal requirements:

Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed
in. A template for this presentation is available on the IPM's web site under the menu
"Masteroppgave" (http://www.ntnu.no/ipm/masteroppgave). This sheet should be updated
one week before the master's thesis is submitted.

Risk assessment of experimental activities shall always be performed. Experimental work
defined in the problem description shall be planed and risk assessed up-front and within 3
weeks after receiving the problem text. Any specific experimental activities which are not
properly covered by the general risk assessment shall be particularly assessed before
performing the experimental work. Risk assessments should be signed by the supervisor
and copies shall be included in the appendix of the thesis.

The thesis should include the signed problem text, and be written as a research report with
summary both in English and Norwegian, conclusion, literature references, table of contents,
etc. During preparation of the text, the candidate should make efforts to create a well
arranged and well written report. To ease the evaluation of the thesis, it is important to cross
reference text, tables and figures. For evaluation of the work a thorough discussion of results
is appreciated.

The thesis shall be submitted electronically via DAIM, NTNU's system for Digital Archiving
and Submission of Master's theses.

Contact persons:
Ivar Marthinusen, IPM/NTNU
Christos Kalavrytinous, IPM/NTNU

-v~-
Torgeir Wefo
Head <t°ivision

{J;t~~~
Professor/Supervisor

Preface

Preface

This master’s thesis is a cooperation between the Department of Engineering Design and

Materials at the Norwegian University of Science and Technology (NTNU) in Trondheim and

the Institute for Engineering Design at the RWTH Aachen University.

I would like to thank you, Professor Ole Ivar Sivertsen for the chance to work in your group

on this interesting topic. Thank you for the guidance and the many inspiring discussions

about KBE.

Thank you, Ivar and Chris for the nice introduction into KBE, the support and the valuable

feedback.

Andrea, thank you for the incredible support over the last year.

I would like to thank Professor Jörg Feldhusen for the opportunity to write my thesis in Nor-

way and Fatmir Sulejmani for the great support despite the distance and for the instructive

discussions in the last weeks.

Much appreciated help was provided by Jochen Hänisch and Arne Tøn from Jotne1. Thank

you for the software license, the valuable feedback and the hands–on introduction into EDM.

Special thanks goes to Sharon Barber from Imagecom Inc.2 for the provision of test files and

a very instructive Skype call.

I wish to thank Datakit3 and STEP Tools4 for the provided test licences.

Thank you, Lisa for your patience, your support and your incomparable English expertise.

1http://www.jotne.com
2http://www.aspire3d.com
3http://www.datakit.com
4http://www.steptools.com

Norwegian University of Science and Technology
Department of Engineering Design and Materials iv

http://www.jotne.com
http://www.aspire3d.com
http://www.datakit.com
http://www.steptools.com

Abstract

Abstract

For a complementary use of different digital development environments, the exchange of

product data between those environments is essential. This thesis evaluates the STandard for

the Exchange of Product model data (STEP) in its potential to transfer product data between

Computer Aided Design (CAD) and Knowledge Based Engineering (KBE) environments.

The most commonly used STEP protocols mainly provide the structures to represent geo-

metric data. As the International Organization for Standardization (ISO) aims to extend the

standard with structures that can represent non–geometric data during all the phases of a

product’s life cycle, they recently published the STEP AP242 standard, which contains addi-

tional data structures that can represent construction history, parameterized and constrained

dimensions and features. These elements are used in CAD systems and provide information

about the designers’ intentions during the construction process.

With the aim to provide a basis for the evaluation of STEP’s potential in transferring such

data, this thesis extensively reviews the standard and the related literature. In order to

support the findings, an example STEP file is generated and transferred into the Adaptive

Modeling Language (AML) KBE framework. More specifically, the example file is transferred

with the help of parsers both for the EXPRESS structures defined in AP242 and for the STEP

file that contains the data model. Finally, the implementation of an appropriate interface in

AML enables the successful reconstruction of the example geometry.

Considering the literature review and the insights gained during the implementation of the

example geometry, the potential of the STEP standard to provide the data structures to

represent knowledge elements, such as construction history, can be approved. However, STEP

AP242 is not yet implemented in commercial CAD systems. Moreover, the mapping between

the EXPRESS and the AML structures incorporates some challenges. Thus, the STEP

standard enables the transfer of such elements between CAD and KBE environments mostly

theoretically.

Norwegian University of Science and Technology
Department of Engineering Design and Materials v

Contents

Contents

Assignment iii

Preface v

Abstract vi

List of figures x

List of tables xi

Nomenclature xii

1. Introduction 1

1.1. Background . 1

1.2. Motivation . 2

1.3. Objectives of the thesis . 3

1.4. Research and standardization . 4

1.5. Structure . 6

2. Theory 8

2.1. Fundamentals . 8

2.2. Product data exchange . 10

2.2.1. Translators . 11

2.2.2. Mapping . 12

2.3. Design intent . 13

2.4. ISO 10303 STEP standard . 16

2.4.1. Structure of STEP . 18

2.4.2. Part 11 – The EXPRESS language reference manual 21

2.4.3. Part 21 – Clear text encoding of the exchange structure 24

2.4.4. Part 22 – Standard data access interface 28

2.4.5. Part 55 – Procedural and hybrid representation 28

2.4.6. Part 108 – Parameterization and constraints for explicit geometric

product models . 30

2.4.7. Part 111 – Elements for the procedural modeling of solid shapes . . . 31

2.4.8. AP 203 – Configuration controlled 3D designs of mechanical parts and

assemblies . 31

Norwegian University of Science and Technology
Department of Engineering Design and Materials vi

Contents

2.4.9. AP 214 – Core data for automotive mechanical design processes . . . 31

2.4.10. AP 242 – Managed model based 3D engineering 32

2.4.11. AP 209 – Multidisciplinary analysis and design 33

2.5. Knowledge Based Engineering . 33

2.5.1. Adaptive Modeling Language . 33

3. Methodology & Implementation 36

3.1. Concept development . 36

3.2. Example STEP file . 38

3.2.1. Software tools . 38

3.2.2. EDM implementation . 40

3.3. EXPRESS structure mapping . 44

3.3.1. Software tools . 45

3.3.2. Wirth Syntax Notation converter . 46

3.3.3. EXPRESS schema parser . 48

3.3.4. AML code generation . 49

3.4. Data transfer . 52

3.4.1. STEP P21 parser . 52

3.4.2. AML population . 52

4. Results 55

5. Discussion 58

5.1. Knowledge transfer with the STEP standard 58

5.2. Implementation of a STEP translator . 61

6. Conclusion 64

7. Future work 66

Bibliography 67

A. File structure 70

B. EDM commands 71

C. Code listings 74

C.1. EDM – procedural query . 74

C.2. AML . 83

C.2.1. Main . 83

Norwegian University of Science and Technology
Department of Engineering Design and Materials vii

Contents

C.2.2. Geometric representation classes . 94

C.2.3. Feature mapping classes . 99

C.2.4. Populate transfer file . 105

C.3. Python . 109

C.3.1. WSN converter . 109

C.3.2. Schema Parser . 123

C.3.3. P21 Parser . 146

D. WSN rules EXPRESS language 164

E. Risk assessment 213

Norwegian University of Science and Technology
Department of Engineering Design and Materials viii

List of figures

List of figures

2.1. Data exchange with direct translators. 11

2.2. Data exchange using an intermediate neutral format. 12

2.3. Mapping between units of information. Adapted from Kim et al. (2008). . . . 12

2.4. Usage of 3D data exchange formats as primary format in 2010 (Prawel 2010). 17

2.5. High level structure of the STEP standard. Based on STEP Tools Software

(2010) and Loffredo (1999). 19

2.6. Initial and modular STEP architecture. Based on STEP Tools Software (2010)

and ISO TC 184/SC4 N1863 (2005). 20

3.1. Implementation overview. 37

3.2. Example geometry, generated in Siemens NX10. 40

3.3. Hierarchical structure Procedural Shape Representation Sequence 42

3.4. Hierarchical structure Bound Parameter Environment 43

3.5. Hierarchical structure of an Edge Curve in the STEP exchange file. 53

4.1. Object tree of the imported model. Geometrical representation in different

stages of the construction history. 55

4.2. Example geometry that was imported into AML. 57

A.1. File dependencies of binding pre-processing and post-processing. 70

Norwegian University of Science and Technology
Department of Engineering Design and Materials ix

List of tables

List of tables

2.1. Correlation of the terminology conventions in OOP, AML and EXPRESS . . 10

2.2. Infrastructure Parts (IS), Integrated Resources (IR) & Application Protocols

(AP) discussed in this work. 21

2.3. Quick reference mapping table (ISO 10303–21:2002). 25

2.4. Syntax of different data types in instance descriptions. 26

Norwegian University of Science and Technology
Department of Engineering Design and Materials x

Nomenclature

Nomenclature

Acronyms

3D Three–Dimensional

AAM Application Activity Model

AI Artificial Intelligence

AIC Application Interpreted Constructs

AML Adaptive Modeling Language

AP Application Protocol

API Application Programming Interface

AR Application Resources

ARM Application Reference Model

B–rep Boundary Representation

BNF Backus Normal Form

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Machining

CAx Computer Aided x

CC Conformance Class

CHAPS Construction History and ParametricS

CNC Computer Numerical Control

DoD Department of Defense

EBNF Extended Backus Normal Form

EDM EXPRESS Data Manager

ENGEN Enabling Next GENeration design

FBS Frame Based System

Norwegian University of Science and Technology
Department of Engineering Design and Materials xi

Nomenclature

FEM Finite Element Method

GR Generic Resources

GUI Graphical User Interface

IDE Integrated Development Environment

IDL Interface Definition Language

IGES Initial Graphics Exchange Specification

IR Integrated Resources

ISO International Organization for Standardization

IT Information Technology

JT Jupiter Tessellation

KB Knowledge Base

KBE Knowledge Based Engineering

LEAP Linked Engineering and mAnufacturing Platform

LISP LISt Processing

LOTAR LOng Term Archiving and Retrieval project

MS Mapping Specifications

NIST National Institute of Standards and Technology

OO Object Oriented

OOP Object Oriented Programming

PDF Portable Document Format

PDM Product Data Management

PIP PIP Installs Packages

PLY Python Lex–Yacc

PMI Product and Manufacturing Information

RBS Rule Based System

SCL STEP Class Library

SDAI Standard Data Access Interface

Norwegian University of Science and Technology
Department of Engineering Design and Materials xii

Nomenclature

STEP STandard for the Exchange of Product model data

VGL Virtual Geometry Layer

WSN Wirth Syntax Notation

XML Extensible Markup Language

Symbols

⊂ Subset of

ε Epsilon – empty string

$ US American Dollar

k kilo – one thousand

Norwegian University of Science and Technology
Department of Engineering Design and Materials xiii

1 Introduction

1. Introduction

1.1. Background

Over the last years, several digital product development environments evolved on the market.

While each of these environments has its individual strong and weak points, taken together

they meet the diverse requirements of the different phases of a product’s development process.

Therefore, the product is usually developed in multiple environments. In order to enable an

efficient cooperation between the environments, the product data has to be exchanged via

suitable interfaces (Feldhusen et al. 2013).

In the field of Computer Aided Design (CAD) systems, several exchange formats have evolved

over the years for this purpose. They are primarily designed to translate geometry models

between different systems and describe the surface boundary between the solid and non–

solid parts. This so–called Boundary representation (B–rep) is composed of faces, edges and

vertices, which are used as reference in the receiving system to recreate the geometry of the

object.

This pure geometric information is sufficient for some use cases, such as for generating Com-

puter Aided Machining (CAM) files. For several other uses however, this so–called dumb

geometry (Pratt et al. 2006) is not sufficient, because the lost information is needed in the

receiving system and has to be recreated manually. Especially the exchange history, parame-

ters, constraints and features are important to understand the intent behind the design of the

model. For this reason, when it comes to archiving or exchanging geometry without the loss

of such information, the native file format of the CAD system in use is often the only option.

In other cases however, these limitations are even required, for example if a subcontractor is

not allowed get access to this information. Stiteler (2004) states that most companies do not

require the exchange of parametric and constraint data with other companies, except in cases

of dedicated collaborative design. Nevertheless, a neutral file format that is able to store

these elements is of great interest for many companies, especially for internal use (Stiteler

2004).

The international Standard for the Exchange of Product model data (STEP) provides a

definition for such a neutral file format. As it is regularly extended with new sub–standards,

STEP covers more and more areas of a product’s life cycle. Recently, new structures were

implemented into the standard that provide the ability to map elements of design intent,

Norwegian University of Science and Technology
Department of Engineering Design and Materials 1

1 Introduction 1.2 Motivation

such as exchange history, parameters, constraints and features. However, commercial CAD

systems do not support most of these new structures yet (Barber et al. 2010).

Another approach to product development is Knowledge Based Engineering (KBE). KBE

systems provide methods for capturing knowledge rules and create multidisciplinary models

based on these rules. This includes not only the design process, but the entire product and

process development cycle. KBE combines approaches from Object Oriented Programming

(OOP), Artificial Intelligence (AI) and CAD, facilitating customized or variant design au-

tomation solutions (Chapman et al. 1999 and La Rocca 2012). KBE applications are built

with so–called KBE platforms. These applications are dedicated programs to solve specific

problems, such as the modeling of a hardware product or the manipulation of other types of

data (La Rocca 2012). Some KBE frameworks are implemented into CAD systems, such as

Knowledge Fusion in Siemens NX, and some are standalone systems, such as the Adaptive

Modeling Language (AML) by TechnoSoft. KBE systems are usually based on programming

languages that support the object oriented paradigm. La Rocca (2012) refers to the com-

mon roots of Artificial Intelligence (AI) research and KBE to explain that most of the KBE

languages are derived from or based on one of the first programming languages Lisp. The

programming language used in this thesis is AML, which was originally written in Common

Lisp and subsequently recoded in a proprietary language with a similar syntax (La Rocca

2012).

1.2. Motivation

KBE systems provide the flexibility to store geometric, as well as non–geometric product data.

With this ideally complete description of a product, all phases of the product’s life cycle can

be supported with a specific data set based on a central data model. The geometric modeling

with a traditional CAD system however can offer some advantages, especially when the focus

does not lie on complex system definitions with a lot of non–geometric data, but on the

design of a product whose appearance is more important than the technical implementation.

The direct interaction with the graphical representation during the modeling process in CAD

environments helps to develop the design or the technical implementation of products. In

order to describe a geometry based on rules, the engineer first has to visualize it. Fish et

al. (1990) state that the mind’s ability to visualize an object is greatly supported by visual

feedback, such as sketches or digital images.

Opinions are divided on which of these approaches is better, but La Rocca (2012) points out

that a discussion about the advantages of the KBE programming approach compared to the

Norwegian University of Science and Technology
Department of Engineering Design and Materials 2

1 Introduction 1.3 Objectives of the thesis

interactive operation of a CAD system is fundamentally misdirected. Instead, the author

recommends acknowledging the convenience based on different applications and exploiting

the synergy between the two methods.

Since CAD was and still is one of the most commonly used digital tools in product devel-

opment, the data bases of most companies are full of old digital product designs, which are

stored in native file formats. This forces the companies to maintain licensed versions of the

appropriate software for the period they want to be able to access the files. Naturally, that

is also one of the reasons why CAD vendors are reluctant to implement some of the STEP

structures, as they benefit from the customer’s dependency on their software. A system inde-

pendent format that can transfer all information defined in the source system would ensure

that the models can be stored and accessed over time without any loss of information. At the

same time, companies aiming to introduce a KBE or a new CAD environment would notably

benefit from a method to transfer their old designs into the new environment.

The potential financial savings ascribable to such an exchange format are difficult to estimate,

as there are many short and long term processes involved. Stiteler (2004) however conducted a

business case with several companies to evaluate the potential of a new method of exchanging

CAD information that maps construction history, parametric relationships and constraints

of the delivering system. Stiteler (2004) was able to translate test models with a success rate

of 67%, from which 47% were translated with complete accuracy and 20% required minor

rework. Thus, the project verified that it is possible to exchange CAD models which contain

at least some parts of the design intent using the STEP standard. One of the companies

participating in the project claims that a complete implementation of such a method would

save over 400k $ for one of their CAD migration projects alone.

1.3. Objectives of the thesis

In order to enable a synergy between CAD and KBE environments, the main task is to estab-

lish the exchange of geometric models together with the elements of design intent between

those environments. One important method in that context is the transfer of geometry with

the help of the STEP exchange format. Most KBE environments already have interfaces for

the import of STEP files, but these interfaces only support geometric data, such as points,

edges and surfaces. Similarly, the implementation of non–geometric data into the STEP ex-

port interfaces of CAD systems are very limited. This is due to the CAD vendors, who need

some time to implement the newest STEP data structures, after their release as an extension

of the STEP ISO standard. These extensions are packaged in so–called Application Protocols

Norwegian University of Science and Technology
Department of Engineering Design and Materials 3

1 Introduction 1.4 Research and standardization

(AP) and aim to provide data structures for specific fields, like AP203 for the aerospace and

AP214 for the automotive industry. These two APs are the most widely supported protocols

and were merged into the new AP242. With the second edition of AP203, new structures

were introduced that potentially enable the transfer of design intent.

Hence, one of the main questions investigated in this thesis is, whether it is possible to transfer

elements of design intent, such as construction history, parameters, constraints and features

with the STEP standard. The objective of the thesis is to provide an overview of the structure

of the STEP format and to point out, which of the parts contain the structures necessary to

map the elements of design intent. With this information, the aim is to import STEP files

into the KBE framework AML. Based on the transfer of an example geometry that contains

some of the discussed elements of design intent the feasibility of such an implementation is

evaluated. The scope of this work therefore includes to investigate the level of implementation

of the STEP modules into the most common CAD systems, such as SolidWorks, CATIA,

Siemens NX or Pro/ENGINEER (Prawel 2010). It is envisaged to generate the example

geometry with one of those CAD systems or an external tool that is able to generate STEP

files. For this reason, it is planned to contact different vendors of STEP related software

to assess the suitability of their tools. Based on the insight gained by investigating these

questions, the final aim of the thesis is to evaluate the question, if and how the STEP

standard AP242 enables knowledge transfer between CAD and KBE environments.

1.4. State of research and standardization

Over the years, several standards have been developed that exchange various aspects of

product model data among heterogeneous CAD systems. Among these, the STEP format

has become the most promising standard for representing and exchanging product data, su-

perseding various national and international standards. It has been endorsed by leading

organizations in aerospace, automotive and shipbuilding industry as well as the US Depart-

ment of Defense (DoD), such as Boeing, Lockheed Martin, IBM, Rockwell and NASA (Stiteler

2004). Moreover, the DoD announced that they consider STEP as their exchange standard

of choice. (Reynolds 2002, as cited in Stiteler 2004).

Until recently, the common product data exchange formats mainly focused on the exchange

of pure geometrical data. Therefore, several projects over the last years aimed to enhance

the exchange methods according to the new requirements described in the previous sections.

Some of the projects that aimed or still aim to develop methods to exchange more than pure

geometric models are summarized in the following section.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 4

1 Introduction 1.4 Research and standardization

One of the first projects in this field was ENGEN (ENabling Next GENeration design). The

project used a representation model based on the STEP methodology and mainly focused on

the transfer of geometric constraints in 2D sketches (Kim et al. 2008).

Based on the work of ENGEN, the Construction History and ParametricS (CHAPS) project

aimed at providing an initial business case for smart CAD exchange using the at the time

emerging second edition of AP203 (ISO 10303–203:2005). For this purpose, they developed

their own translators, which provides a new method of exchanging CAD information including

construction history, parametric relationships and constraints defined in the source system

(Stiteler 2004). The method is based on the Application Programming Interfaces (API) of the

sending and the receiving system. Via the API, the model structure is read from the sending

system and subsequently mapped to a neutral exchange format, which is based on STEP

AP203 Ed2. From this exchange file, the authors rebuild the model in the receiving system as

a native file by accessing the system’s API. As mentioned in section 1.2, they succeeded in the

attempt to exchange different example models between several CAD systems. The involved

organizations all expressed the immense potential of such a transfer method (Stiteler 2004).

Originally, the project was devised as a two–phase project, initially targeting construction

history only. While parametric and constraint information was added later, the publication

of these parts was prevented due to technical issues. The development progress was regularly

reported in the CAx Implementer forum1, which is a joint testing effort between the two

organizations PDES Inc2 and ProSTEP iViP3. In general, the objective of the forum is to

accelerate CAx translator development. For that purpose, it provides common test activities

for the CAD domain by merging similar platforms of the two organizations.

One of the partners in the CHAPS project, Theorem Solutions4, developed the CHAPS

translators. They continued developing commercial versions of these translators (Stiteler

2004) and nowadays provide various data translation products. Their flagship application is

the CADverter, which allows the direct translation between major CAD systems as well as

standard based formats, such as STEP.

Another approach to exchange procedural model data is to use the journal or trail files

created by CAD systems, which contain records of every action executed in the system. A

team from Korea Advanced Institute of Science and Technology has developed a non–STEP

neutral format with a layered ontology that maps the structure of CAD features (Seo et al.

2005). All information is translated from these journal files into a neutral format. Moreover,

1https://www.cax-if.org, last accessed: 2016-03-26
2https://www.pdesinc.org, last accessed: 2016-03-26
3http://www.prostep.org/nc/en.html, last accessed: 2016-03-26
4http://www.theorem.com, last accessed:2016-03-26

Norwegian University of Science and Technology
Department of Engineering Design and Materials 5

https://www.cax-if.org
https://www.pdesinc.org
http://www.prostep.org/nc/en.html
http://www.theorem.com

1 Introduction 1.5 Structure

the team was involved in the development of ISO 10303–112:2006, which allows the exchange

of construction history representations of 2D profiles or sketches (Kim et al. 2008).

Pratt et al. (2006), Kim et al. (2008) and Kim et al. (2011) report on prototype translators

that are able to use the new STEP resources mentioned in section 1.1. According to them,

the standardized exchange of CAD models containing design intent information is possible

and has been successfully demonstrated. Another conclusion from these sources is that the

development of translators for such exchange files is more complex than for previous versions

of the standard, since the functions in the CAD systems cannot be mapped to each other

one–to–one.

Barber et al. (2010) present an interpretation of the schema definitions of these new STEP

structures and show their approach to map construction history and features between CAD

systems. The authors describe test files that were generated with their software and conclude

that the new data structures in AP203 Ed2 provide a way to store design intent using

constructional operations and thus facilitate the exchange of feature based CAD models.

The international LOng Term Archiving and Retrieval (LOTAR) project is hosted by PDES

and ProSTEP. Their objective is to provide a solution for long term archiving and retrieval

of digital data, such as 3D CAD and other product data. LOTAR uses STEP AP203 and

AP214 for this purpose, as it is the most advanced open format in their view.5

In the context of KBE, Lützenberger et al. (2012) investigate methods for knowledge ac-

quisition and codification. Their work is part of the LinkedDesign project, which aims at

developing the Linked Engineering and mAnufacturing Platform (LEAP). LEAP federates

all product life cycle information that is relevant to drive engineering and manufacturing

processes.6 One question Lützenberger et al. (2012) investigate in their work is, whether the

STEP standard can be used to codify information in a KBE environment on the one hand

and to exchange data between CAx and KBE environments on the other hand. The authors

especially refer to the new STEP structures introduced with the newest APs, because of their

ability to transfer elements of design intent. They see potential in the STEP standard for

these use cases and state that the standard should be tested further regarding that question.

1.5. Structure

Chapter 2 contains a summary of the STEP standard and its parts that are related to the

capture and exchange of design intent. Additionally, the basics of KBE and other methods

5http://www.lotar-international.org/home.html, last accessed: 2016-04-05
6http://www.linkeddesign.eu, last accessed: 2016-03-26

Norwegian University of Science and Technology
Department of Engineering Design and Materials 6

http://www.lotar-international.org/home.html
http://www.linkeddesign.eu

1 Introduction 1.5 Structure

used in the thesis are outlined. In chapter 3, the methodology used to implement the different

parts of the transfer process from CAD to KBE is described. Moreover, the used software

tools and their setups are explained to establish a basis for the description of the imple-

mentation itself. The results are summarized in chapter 4 and discussed in chapter 5. The

discussion aims at answering the questions posed in chapter 1. The conclusion in chapter 6

summarizes the outcome of the thesis regarding the knowledge transfer between CAD and

KBE environments. Chapter 7 contains suggestions on possible next steps to further inves-

tigate the possibilities of knowledge transfer between KBE and CAD environments. Finally,

long listings of source code and supporting material are collected in the appendix.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 7

2 Theory

2. Theory

This chapter covers the fundamental introductions into different fields, on which the investi-

gations in this thesis are based on. In order to be able to discuss ideas and structures from

these different fields in an unambiguous way a common naming convention has to be defined,

as each of these fields has developed its own terminology over the years. Therefore, the first

section of this chapter introduces various paradigms from different fields and points out the

differences in their terminology. The subsequent sections go more into detail in each of the

fields.

2.1. Fundamentals

The fields on which this thesis mainly is based on are Object Oriented Programming, Knowl-

edge Based Engineering and more specifically one of its frameworks Adaptive Modeling Lan-

guage (AML), and the EXPRESS language that is used to define STEP structures. Thus,

this section introduces each of these fields together with its naming conventions and concludes

with the naming convention used in this thesis.

Object Oriented Programming

Object Oriented Programming is based on the idea to represent real world objects with ob-

ject constructs that codify the properties of these objects and their relationship between

each other. These object types are specified in class definitions that serve as a template

to create such an object. These classes contain so-called attributes that describe the prop-

erties of a specific type of object. In order to manipulate these attributes, classes can be

associated with methods that specify manipulation procedures. A fundamental principle of

OOP is inheritance, which means that classes can inherit from each other, namely their

attributes and their methods. This relation is referred to as a superclass – subclass relation.

In order to materialize these classes into actual objects, they are instantiated. The resulting

instance or object is a unique version of the corresponding class with specific values assigned

to its attributes. Some classes are not intended to be instantiated, but rather to provide a

common set of methods for other classes which these can inherit. They are referred to as

abstract classes. However, the definition of these methods in the corresponding subclasses

can be redefined specifically for this subclass. The methods are therefore overloaded with a

Norwegian University of Science and Technology
Department of Engineering Design and Materials 8

2 Theory 2.1 Fundamentals

new definition and the functionality of such methods is context depended. Another impor-

tant principle of OOP is the so–called abstraction. It is used to emphasize what a class is

or does rather than how it is defined internally. In this way the complexity of large class

hierarchies can be managed and the important ideas or properties of a system stand out.

Classes and therefore their instances can be connected to other objects. Depending on their

characteristics, these connections are referred to as association, aggregation and composition.

Associations represent a semantically weak relationship between otherwise unrelated objects.

The objects have their own life time and there is no specific owner. Aggregations and com-

positions are specializations of associations. Aggregations are relations between two or more

objects in which the objects have their own life time, like it is the case in associations, but the

ownership is specified. Compositions in turn are a specialized form and therefore a subset of

an aggregation (composition ⊂ aggregation ⊂ association), where the owned objects do not

have an own life time, i.e. their existence depends on the parent object. As these definitions

cover the scope of this work, other principles of OOP are not further discussed here. Next,

the methodology Knowledge Based Engineering is introduced. KBE uses OOP principles and

therefore provides similar functionalities.

Knowledge Based Engineering (AML)

KBE is a methodology for the capture and re–use of product and process engineering knowl-

edge. The objective is to reduce the time and the costs of product development, which is

primarily achieved through automation of repetitive design tasks while capturing, retaining

and re–using design knowledge (La Rocca 2012).

The Adaptive Modeling Language (AML) is a framework for implementing KBE systems. It

is based on Lisp, which is the first OOP language. Despite the common roots, the terminology

differs in some points. As KBE and AML are introduced in more detail in section 2.5, the

focus in this section lies on the terminological differences compared to OOP.

Similar to OOP, AML applications are based on the definition of class hierarchies. The main

difference in the terminology is that attributes are called properties. Another peculiarity is

the definition of a subobject list in the class. The list elements can either reference existing

objects or create new instances of classes inside the list. These object – subobject relations

are comparable to aggregations and compositions, which are described in the last section.

While functions define procedures for the general use in any class, methods are specifically

defined for a class and are called together with an instance of this class. An example for such

a method is an operation that calculates the volume of a specific object.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 9

2 Theory 2.2 Product data exchange

EXPRESS language

The EXPRESS language is defined in the STEP standard (ISO 10303–11:2004) and is used

to specify the information requirements of the other parts of the standard. The definition

of the language is covered in detail in section 2.4.2, whereas its terminology is compared to

OOP and AML in this section.

EXPRESS can represent class hierarchies with the help of entities. Inheritance is imple-

mented with supertype – subtype relations in contrast to superclass – subclass relations in

OOP. Not all of the principles of an OOP are implemented in EXPRESS, but the rest of the

used terminology is quite similar to the one in OOP and AML.

Terminology

The terminology used in the scope of this work depends on the context. The commonly used

notations in each field are used in the same way in this thesis. An overview of the differences

that were pointed out in the previous sections is shown in table 2.1.

OOP AML EXPRESS

Class Class Entity data type
Superclass Superclass Supertype
Subclass Subclass Subtype
Attribute Property Attribute
Method Method –
Function Function Function

Table 2.1.: Correlation of the terminology conventions in OOP, AML and EXPRESS

The following sections cover the transfer of data between different systems in general and

the transfer of product data that contains information about the intention of the designer

in particular. Subsequently, the STEP standard is reviewed and evaluated in regard to its

abilities to transfer such data. In order to do that, the structure of the standard is explained

and the parts that are relevant for the scope of this thesis are summarized. Finally, KBE

and AML are introduces more thoroughly to provide the basis for the following chapters.

2.2. Product data exchange

As mentioned in chapter 1, every phase of a product’s life cycle is supported or enabled by

different software tools. Especially the engineering tasks rely heavily on digital development

Norwegian University of Science and Technology
Department of Engineering Design and Materials 10

2 Theory 2.2 Product data exchange

environments. These environments define and describe the product in their own proprietary

or standardized data formats. For a data transfer between multiple such environments, they

either must provide interfaces to the relevant formats themselves or external tools must

provide this functionality.

2.2.1. Translators

There are two main approaches to translate data between multiple systems or formats. The

first approach is to define a translator for each pair of systems in both directions. As a

result, the number of necessary translators grows quadratically (n(n − 1)) with the number

of systems n, as shown in Figure 2.1.

System A System B

System C

Figure 2.1.: Data exchange with direct translators.

When many systems are involved, it can be favorable to introduce a neutral exchange format,

as pictured in Figure 2.2. For each system, one translator for writing the neutral file format

and one translator for reading from the file format have to be provided. In this case, the

number of necessary translators grows linearly (2n) with the number of systems n. Direct

translators are very susceptible to changes in the software systems they support. If the

functionalities of one system change, all direct translators to the other systems involved have

to be adapted. In contrast, when using a neutral file format, only the interface to the neutral

file format needs to be adapted when the software is changed. Furthermore, vendors of one

company do not have to interact with competitors to develop the direct translators, which

usually requires the disclosure of proprietary code. The disadvantage of a neutral file format

is the initial effort necessary to develop the definition of the format and the democratic

processes involved (Owen 1993). This often leads to retrospective formats – by the time the

standard is published, new functionalities are already available in CAE systems for which

there is no provision in the standard (Owen 1993).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 11

2 Theory 2.2 Product data exchange

System A
neutral

file format
System B

Figure 2.2.: Data exchange using an intermediate neutral format.

In order to translate from a system’s proprietary data structure to an exchange file, the units

of information – in the case of CAE mostly units of construction (Kim et al. 2008) – have to

be mapped to structures defined in the exchange format.

2.2.2. Mapping

The mapping of data structures can be ambiguous due to semantic differences in the systems.

Depending on the granularity of the system’s representation, multiple units of information

have to be mapped to a single data structure in the exchange format or vice versa. These

cases are illustrated in figure 2.3 and can be referred to as aggregation and decomposition

of data elements (Kim et al. 2008). The combination of these types is the complex mapping

that is usually necessary in real systems. An example for such units of information are so–

called features in CAD systems. They contain a sequence of standardized or frequently used

construction commands and encapsulate them into reusable units, such as an extrusion or a

pattern. At the same time, these units can represent elements on a lower or a higher level,

such as a cartesian point or a whole product.

Direct Aggregation Decomposition Complex

Figure 2.3.: Mapping between units of information. Adapted from Kim et al. (2008).

Different approaches to represent the data structure can pose another problem. CAD sys-

tems for instance encapsulate auxiliary parameters, such as explicit constraints in the data

structures of the corresponding sketch or of another feature. In contrast to that, the STEP

standard defines constraints part–oriented, i.e. the constraints can appear everywhere in

Norwegian University of Science and Technology
Department of Engineering Design and Materials 12

2 Theory 2.3 Design intent

the exchange file and are only linked to the parameter they constrain with the help of an

additional construct(Pratt et al. 2006).

Likewise, CAD system features frequently do not map directly to STEP features, because

the latter represent compromises that give an approximate compatibility with a wide range

of CAD systems (Kim et al. 2008). As a consequence, systems have to provide mechanisms

to handle that ambiguity.

In the scope of this work, the units of information from which the intentions of the designer

can be derived are of special interest. The next section points out such units and specifies

the terminology of design intent.

2.3. Design intent

During the design process of a part or product, a designer makes a lot of design decisions

depending on different factors, such as functionality, geometric restrictions, cost issues, ex-

perience of the designer, appearance or interfaces to other parts. A lot of these decisions are

made based on tacit knowledge and are therefore not comprehensible or accessible for other

designers. Capturing these decisions during the design process is important for an efficient

development process and to be able to profit from previous work. Especially in the domain

of KBE the capturing of knowledge is a key factor, as it has to be codified in the form of

knowledge elements.

The total of information that enables the reconstruction of the intended design goal is collec-

tively referred to as design intent. Pratt et al. (2006) distinguish between design intent and

design rationale. In essence, they define design intent as the way the facilities provided by

the CAD system are used and design rationale as the motivation of the designer to choose

a particular methodology. They conclude that the STEP format aims to exchange design

intent and not design rationale.

CAD Systems mainly generate and store data directly related to the geometry of the model.

However, more and more functionalities are offered nowadays to store data not only relevant

for the design process, but also for other phases of the product life cycle, such as manufactur-

ing or marketing. Nevertheless, some of the data structures defined by the STEP standard,

which would enable the transfer of a more complete data model, are not yet implemented in

the CAD systems.

In the following sections, the most important elements of design intent , such as construction

history, parameterized and constraint dimensions and features, and the methods to transfer

them with the STEP format are examined.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 13

2 Theory 2.3 Design intent

Construction history

In CAD, there are two approaches to product modeling. One approach is the procedural

approach, where the model description is a sequence of instructions which modify the model

step by step. This way, the model embodies a history of the construction process and each

state can be accessed afterwards. This approach is referred to as implicit approach in the

following. The second approach is the explicit approach, where the construction history

is not captured, but instead records of explicit geometrical details are stored at discrete

moments in time during the design process. One example for this approach is the boundary

representation, with which it is possible to restore the exact final geometry and any snapshot

taken during the process, but this representation does not contain any information about

the steps leading to the geometry changes (Pratt 1997). Such models cannot be efficiently

edited and the model often has to be constructed again from scratch, when changes have

to be performed. Therefore, the construction history is one of the most essential aspects of

design intent (Pratt et al. 2006). Other important elements of design intent are parameters

in the model, which represent values that are intended to be varied, and constraints, which

define relationships that must be preserved in any change.

However, even if the construction history is transmitted to the receiving system, the inter-

pretation of it may be difficult. One reason for this is that the design history usually lacks

information about why the designer decided to use specific design methodologies, i.e. the de-

sign rationale is missing (Pratt et al. 2006). This is further discussed in section 2.4.5, which

covers part 55 of the STEP standard with the title Procedural and hybrid representation.

Parameters

Parameters represent dimensions that may be changed in a part model to generate different

versions of a part or to define mathematical relations between attributes. They can also refer

to other parameters and thereby define relation structures. Parameters without independent

existence in the part model are referred to as implicit parameters, such as a parameter that

defines the length of an edge, while parameters with their own independent definition in the

model are called explicit parameters (Pratt et al. 2006). Explicit parameters can for example

be used to specify auxiliary dimensional relations in 2D sketches or features.

Constraints

Constraints provide the possibility to limit the degrees of freedom of certain relations be-

tween elements of a model that are required to be maintained if the model is modified. These

Norwegian University of Science and Technology
Department of Engineering Design and Materials 14

2 Theory 2.3 Design intent

conditions can for example specify the spacial relations of parts relative to each or the di-

mensional relations in a part or a sketch. Examples for common constraints are parallelism

or tangency conditions. The remaining degrees of freedom allow a linear modification of the

unconstrained dimensions. As soon as the sketch, the feature or the part is fully constraint,

it can no longer be modified. Similarly to the classification of parameters, constraints have

implicit and explicit forms. Implicit constraints are automatically generated by the system

during standard operations, for example during the creation of a rectangular in a sketch,

where two of the implicit constraints are the parallelism of the edges and the 90◦ angle of

the corners. Explicit constraints by contrast, are explicitly defined elements that reference to

other elements and that constrain them to satisfy specified relationships (Pratt et al. 2006).

Structures for the representation of parameters and constraints are specified in Part 108 of

STEP. They are discussed in section 2.4.6.

Features

Design features in CAD systems are basically predefined sequences of CAD–operations for

regularly used or standardized geometrical manipulations, such as chamfers, holes and pat-

terns. Part 108 of STEP with the title Elements for the procedural modeling of solid shapes

provides representations for such design features. The implementation of these structures is

described in section 2.4.7.

With these elements of design intent in mind, the STEP standard is investigated in the

following sections. First, the fundamentals of the STEP standard, such as the definition of

the EXPRESS language and the ways to implement the standard, are summarized to allow a

well–founded discussion about the specific parts of the standard. Subsequently, the parts that

allow a representation of the elements mentioned in this section are summarized. Based on

that, the specific implementation of these structures is explained with the help of examples.

The aim of the following section therefore is to provide a reference for the implementation of

the elements of design intent described in section 3.2.2. Additionally, it is the basis for the

discussion in chapter 5 about the abilities of the STEP standard to transfer such element.

It should be mentioned that the parts of the standard that are discussed in next section are

only a small subset of the standard’s parts and are selected according to the requirements in

the scope of this work.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 15

2 Theory 2.4 ISO 10303 STEP standard

2.4. ISO 10303 STEP standard

ISO 10303 STEP is an international standard for the computer–interpretable representation

and the exchange of product data. It is informally known as STEP (STandard for the

Exchange of Product model data). The aim of the project is to develop an engineering

product data exchange standard that is capable of describing product data throughout the

life cycle of a product, independently from any particular system. This makes the standard

suitable not only for neutral file exchange, but also as a basis for product databases and

archiving (ISO 10303–1:1994). Hence, the scope is much broader than that of other exchange

formats, such as the Initial Graphics Exchange Specification (IGES), which has been one

of the most widely used formats for the last 20 years, but was developed primarily for the

exchange of pure geometric data. After the initial release of ISO 10303 in 1994, the interest

in further developing IGES declined and the last version was published in 1996 (Pratt 2001).

In order to allow regular extensions, STEP is designed as multi–part standard. Many parts

are complete and published as standards today, while more are under development. The main

design goals of the STEP standard are listed below: (Owen 1993 and ISO 10303–1:1994)

• Completeness: The standard should allow a complete representation of a product for

exchange and archiving purposes.

• Extensibility: STEP should provide a framework to include extensions.

• Minimal redundancy: The standard should only provide one way of representing a

particular data structure.

According to Pratt (2001), the development of STEP is one of the largest efforts ever un-

dertaken by the International Organization for Standardization (ISO). It is a multi–national

project with contributions from industry, academia and governmental institutions. Even

though until now only small parts of STEP are implemented and used, the standard is in-

creasingly recognized by industry as an effective means of exchanging product–related data

between different CAD systems or between CAD and downstream application systems, such

as a Finite Element Method (FEM) application (Pratt 2001).

As described in section 2.2, the product data generated during the different stages of a

product’s life cycle is stored in many different systems and usually has to be exchanged

inside a company or between different organizations. ISO 10303 aims to cover a wide variety

of product types that require specific data structures, such as electronic, electro–mechanical,

mechanical, sheet metal or fiber composite products. At the same time, all life cycle stages,

such as design, analysis, planning or manufacturing, are intended to be covered (Pratt 2001).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 16

2 Theory 2.4 ISO 10303 STEP standard

STEP

22%

SolidWorks

18%

IGES
15%

DWG

10%

CATIA V5

7%

Parasolid

7%

Autodesk

7%
Pro/ENGINEER

5% Siemens NX

5%
Others

4%

Figure 2.4.: Usage of 3D data exchange formats as primary format in 2010 (Prawel 2010).

This way, a single standard can cover all domains of product data, instead of many national

and international standards, which evolved over the years and overlap in their functionalities.

In 2010, Prawel (2010) surveyed CAD users from different industries and concludes that STEP

is the leading 3D exchange format with 22% of the respondents choosing it as their primary

3D data exchange format. Having conducted similar surveys the preceding years, the author

states that this continues a multi–year trend of increasing popularity of STEP and ascribes

this to the long–term data archival strategies driven by different groups, such as LOTAR.

Another finding of the survey is that more companies are sharing manufacturing data and

feature and history data than ever before.

In the following sections, the structure of STEP is described and the parts that are relevant

for this work are summarized. These summaries are far from complete and only serve as a

general overview of the extensively documented sub–standards of ISO 10303.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 17

2 Theory 2.4 ISO 10303 STEP standard

2.4.1. Structure of STEP

ISO 10303 is divided into six series of parts with specific functionalities. Each series may

consist of one or more parts. The numbering scheme of the series is defined in ISO 10303–

1:1994 as follows:

• Description methods #11 – #19

• Implementation methods #21 – #29

• Conformance testing methodology and framework #31 – #39

• Integrated resources

– Generic resources #41 – #99

– Application resources #101 – #199

• Application protocols #201 – #1199

• Abstract test suites #1201 – #2199

corresponding to the associated application protocols #201 – #1199

These series can be grouped into two main categories, as shown in figure 2.5. The first

three series (#11 – #39) form the infrastructure for the file format. They define the storage,

exchange and testing of data structures. The remaining series define the actual data structures

of the different parts of the standard.

The step architecture is depicted in figure 2.6. The Application Protocols (AP) specify models

that satisfy the scope and the information requirements for industry–specific applications.

Each AP defines an Application Activity Model (AAM) which describes the activities in

the life cycle of a product. The product information requirements for these activities are

defined in the Application Reference Model (ARM). The Mapping Specifications (MS) map

the ARM into the common set of Integrated Resources (IR), which consist of Application

Resources (AR) and Generic Resources (GR). The Generic Resources are independent of

applications and can reference each other. The Application Resources can reference the

Generic Resources and can add additional resource constructs specifically for a group of

similar applications, but cannot reference other Application Resources. (ISO 10303–1:1994)

The result of the mapping is an Application Interpreted Model (AIM), consisting of a formal

EXPRESS information model that captures everything in the Application Reference Model

and ties it to a library of pre–defined resources (Loffredo 1999). Therefore, the APs define

specific subsets of the Integrated Resources that vendors can implement into their systems.

This prevents compatibility problems that would occur, if every vendor defined its own subset.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 18

2 Theory 2.4 ISO 10303 STEP standard

Infrastructure

Description Methods
#11 EXPRESS

#12 EXPRESS-I

Implementation Methods
#21 Physical File

#22 SDAI Operations
#23 SDAI C++

...

Conformance Testing
#31 General Concepts

#32 Test Lab Reqs.
#33 Abstract Test Suites

...

Information Models

Application Protocols
#203 Config Ctl. Design

#209 Multid. Analysis & Des.
#214 Automotive. Mech. Des.
#242 Man. Model B. 3D Eng.

...

Generic Resources
#55 Proc. & Hybrid Repr.

...

Application Resources
#108 Param. & Constr.

#111 Proc. Mod. of Solid Sh.
#112 Proc. Repr. 2D Models

...

Figure 2.5.: High level structure of the STEP standard. Based on STEP Tools Software
(2010) and Loffredo (1999).

In the initial ISO architecture, the Application Interpreted Constructs (AIC) play a major role

in terms of the reuse of defined resources. The AICs define collections of common definitions

that can be shared between different APs. This reduces the number of pages in the AP

documents and assures consistency among APs that refer to the same AICs. Examples

for AICs are ISO 10303–501:2000 Edge–based wireframe or ISO 10303–514:1999 Advanced

boundary representation.

Soon, the architecture was redefined to simplify the extension of the standard. This new

modular STEP architecture is also pictured in figure 2.6. The modular approach extends

the AIC concept of the initial ISO 10303 architecture by including the relevant portions of

the AP’s Application Reference Model (ARM) into the Application Modules (AM) (SCRA

2006). This well–documented grouping of requirements into reusable modules significantly

simplifies the development of APs.

Many of the APs have reached international standard status and are ready to be implemented

into software systems. The CAD/CAM vendors however only implement some subsets of the

APs due to the high costs for implementation. For every AP, associated Conformance Classes

(CC) define subsets that can be implemented within the same application domain without

the need to implement all aspects of the AP. The most widely implemented APs in CAD

software are AP203 and AP214, which overlap in some of their CCs. (SCRA 2006)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 19

2 Theory 2.4 ISO 10303 STEP standard

Modular STEP Architecture

AP

CC: AM list AAM

ARM

MS

MIM

ARM

MS

MIM

ARM

MS

MIM

AR

GR

Normative Reference to AM

AMs

IRs

Initial STEP Architecture

AP

AAM

CC

ARM

MS

AIM

AIC

AR

GR

AAM Application Activity Model
CC Conformance Class
AM Application Module
AP Application Protocol
ARM Application Reference Model
MS Mapping Specification

AIM Application Interpreted Model
AIC Application Interpreted Construct
GR Generic Resource
AR Application Resource
IR Integrated Resource
MIM Module Interpreted Model

Figure 2.6.: Initial and modular STEP architecture. Based on STEP Tools Software (2010)
and ISO TC 184/SC4 N1863 (2005).

Table 2.2 shows an overview of the STEP parts relevant for the transfer of design intent,

which are further specified in the following sections.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 20

2 Theory 2.4 ISO 10303 STEP standard

Part Year Title

Part 1 1994 Overview and fundamental principles

IS

Part 11 1994 The EXPRESS language reference manual
Part 21 1994 Clear text encoding of the exchange structure
Part 22 1998 Standard data access interface

IR

Part 55 2005 Procedural and hybrid representation
Part 108 2005 Parameterization and constraints for explicit geometric

product models
Part 111 2007 Elements for the procedural modeling of solid shapes

A
P

AP 203 1994 Configuration controlled 3D designs
–Edition 2 2011

AP 214 2001 Core data for automotive mechanical design processes
–Edition 3 2010

AP 242 2014 Managed model based 3D engineering
–Edition 2 planned

AP 209 2001 Composite and metallic structural analysis
–Edition 2 2014 Multidisciplinary analysis and design (renamed)

Table 2.2.: Infrastructure Parts (IS), Integrated Resources (IR) & Application Protocols (AP)
discussed in this work.

2.4.2. Part 11 – The EXPRESS language reference manual

In part 11 of the STEP standard, the EXPRESS language is defined. EXPRESS is used to

specify the information requirements of other parts of the standard. The main requirements

for the language is that it is readable by humans and parsable by computers. The language

consists of elements that allow an unambiguous data definition and a specification of con-

straints on the defined data (ISO 10303–11:2004). These elements are called entities and are

defined with the help of attributes, which can be a data type or a reference to another entity.

The language syntax is defined in ISO 10303–11:2004 with notation rules. The notation is

called Wirth Syntax Notation (WSN) and can be defined by using its own notations rules,

as shown in listing 2.1.

As shown below for some of the rules defined in ISO 10303–11:2004, WSN notation rules can

be visualized with so–called railroad diagrams. The rule for explicit attributes explicit -

attr for example contains one repetition and one option, which are visualized with different

kinds of loops in the railroad diagram. This visual representation significantly simplifies the

comprehension of the syntax, especially for complex and deeply nested rules.1 The complete

set of WSN rules defined in ISO 10303–11:2004 is visualized with these railroad diagrams

in appendix D. With these rules, the EXPRESS schemas can be parsed and interpreted in

1Additionally, the elements of a rule are linked to their own defining rule in the PDF, in order to be able to

jump from one rule to another. This is a great help during the development of a parser for this grammar.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 21

2 Theory 2.4 ISO 10303 STEP standard

syntax = { production } .
production = identifier ’=’ expression ’.’ .
expression = term { ’|’ term } .
term = factor { factor }
factor = identifier | literal | group | option | repetition .
identifier = character { character } .
literal = ’’’’ character { character } ’’’’ .
group = ’(’ expression ’)’ .
option = ’[’ expression ’]’ .
repetition = ’{’ expression ’}’ .

Listing 2.1: Notational conventions and WSN defined in itself (ISO 10303–11:2004).

different programming languages. The programming language Python offers some well doc-

umented parser libraries, which is why the parsers in the scope of this work are implemented

in Python, as described in section 3.3.1.

215 explicit attr = attribute decl { ’,’ attribute decl } ’:’ [OPTIONAL] parame-
ter type ’;’ .

attribute_decl
,attribute_decl

:

OPTIONAL

parameter_type ;

explicit_attr

177 attribute decl = attribute id | redeclared attribute .

attribute_id

redeclared_attribute

attribute_decl

266 parameter type = generalized types | named types | simple types .

generalized_types

named_types

simple_types

parameter_type

Norwegian University of Science and Technology
Department of Engineering Design and Materials 22

2 Theory 2.4 ISO 10303 STEP standard

EXPRESS uses some keywords, such as ENTITY, END ENTITY or SUPERTYPE, which are

referred to as literals. They are written in capital letters to simplify their interpretation

for parser programs. The full set of reserved keywords and operator words, such as OR and

ANDOR are defined in the grammar rules 1 to 122 listed in appendix D.

In general, an EXPRESS schema consists of a header and the definitions of CONSTANTS,

TYPES, ENTITIES, RULES and FUNCTIONS. The entities define elements with attributes

and possible inheritance relations to other entities. The attributes in turn can reference an-

other entity or a specific data type. Some of these attributes are internally derived from other

attributes. The expression used to compute these derived attributes is either defined directly

in the entity declaration or in a function declarations. EXPRESS has several predefined data

types, which are listed below:

• NUMBER

– REAL

– INTEGER

– BINARY

• LOGICAL

• BOOLEAN

• STRING

• AGGREGATION

– ARRAY

– LIST

– BAG

– SET

• SELECT

• ENUMERATION

Those datatypes can be used to define custom types in an EXPRESS schema. A new data

type could for example be a LIST of SELECT–groups of specific entities. Additionally, the

entities can use the functions, which are defined in the schema.

As part of ISO 10303–11, EXPRESS–G is defined as the graphical representation of the

EXPRESS lexical model. It can visualize EXPRESS rules and is intended for human com-

munication.

The next two sections cover two of the implementation methods of STEP. First, the physical

STEP file and second, the SDAI. The information models described in the subsequent sections

are defined using the EXPRESS language. They are stored in the form of so–called EXPRESS

schemas, which can be used to populate data models according to the schema’s definitions.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 23

2 Theory 2.4 ISO 10303 STEP standard

2.4.3. Part 21 – Clear text encoding of the exchange structure

As one of the possible implementation methods, part 21 of ISO 10303 defines the physical

exchange file in which the data models can be stored. The files are often called p21–File or

physical file and have the file ending .stp or .step. They are ASCII encoded with typically

one instance per line, which makes them easily readable. Since the objects in the p21–File

are defined according to a specific EXPRESS schema, they can only be interpreted together

with the according AP schema (SCRA 2006).

STEP files have a header section and one or more data sections. The header section contains

general information about the file, the author and the EXPRESS schemas used in the data

sections. The data sections contain the instances of the entities that are to be transferred.

Mapping of EXPRESS entity data types

For each instance of an entity in the STEP file, the attributes and other information defined

in the STEP schema must be mapped to the STEP file. Table 2.3 shows a quick reference

of the mapping rules from an EXPRESS schema to a physical file. Some of the EXPRESS

elements are not directly mapped to the STEP file, but have to be implemented in the target

system instead, such as the derived attributes. The rules on how they are derived are defined

in the entity definition and do not have to be transferred with the STEP file. Table 2.4 shows

how the different data types are mapped to the STEP file. A string for example is indicated

by a starting and an ending apostrophe.

When an EXPRESS entity data type is instantiated in the exchange structure, it is mapped

as a so–called ENTITY INSTANCE. As defined in ISO 10303–11:2004, these instances are

subdivided into SIMPLE ENTITY INSTANCES on the one hand and COMPLEX ENTITY -

INSTANCES on the other hand. While the entities that are not defined as subtypes of other

entities are always mapped as SIMPLE ENTITY INSTANCE in the exchange structure, the

entities that are defined as subtypes of other entities are only mapped as SIMPLE ENTITY -

INSTANCE if they are leaf entities. This means that they have no subtype entities or their

subtype entities are not in their evaluated set (see ISO 10303–11:2004). Conversely, when

these conditions are not met, the entities are externally mapped as COMPLEX ENTITY IN-

STANCE. The internal mapping of the SIMPLE ENTITY INSTANCES follows a set of rules

to determine the order in which the inherited and explicit attributes appear in the exchange

structure. All inherited attributes appear sequentially prior to the own explicit attributes

of an entity. The inherited attributes of one supertype entity are ordered according to their

appearance in the supertype entity itself. If this supertype entity in turn inherits attributes

Norwegian University of Science and Technology
Department of Engineering Design and Materials 24

2 Theory 2.4 ISO 10303 STEP standard

EXPRESS element Mapped onto:

ARRAY list
BAG list
BOOLEAN boolean
BINARY binary
CONSTANT NO INSTANTIATION
DERIVED ATTRIBUTE NO INSTANTIATION
ENTITY entity instance
ENTITY AS ATTRIBUTE entity instance name
ENUMERATION enumeration
FUNCTION NO INSTANTION
INTEGER integer
INVERSE NO INSTANTION
LIST list
LOGICAL enumeration
NUMBER real
PROCEDURE NO INSTANTION
REAL real
REMARKS NO INSTANTION
RULE NO INSTANTION
SCHEMA NO INSTANTION
SELECT See ISO 10303–21:2002, 11.1.8
SET list
STRING string
TYPE See ISO 10303–21:2002, 11.1.6
UNIQUE RULES NO INSTANTION
WHERE RULES NO INSTANTION

Table 2.3.: Quick reference mapping table (ISO 10303–21:2002).

from its supertype entities, they appear prior to the ones from the original supertype entity.

If multiple supertype entities are defined, the order of their attributes is defined by the order

in which they are called in the SUBTYPE OF expression of the initial entity. If supertypes

are referenced multiple times, all but the first one are ignored. (ISO 10303–21:2002)

The instance description of a simple entity starts with the instance id, followed by an equal

sign and the entity name. The subsequent list is an enumeration of the attribute values in

the correct order. In order to illustrate how these attribute values can be mapped onto the

appropriate attributes defined in the entity definition, the mapping from a STEP schema to

a STEP file is shown in the following example.

The example EXPRESS schema in listing 2.2 is taken from ISO 10303–21:2002 and shows

subtype/supertype relations between some example entities. In listing 2.3, these entities are

populated in the data section of a p21–File. Entity aa and bb are abstract supertypes and

Norwegian University of Science and Technology
Department of Engineering Design and Materials 25

2 Theory 2.4 ISO 10303 STEP standard

Attribute value Example

#� Entity reference #1, #01, #123
.�. Enumeration value .T., .REAL.
(�) Structured data type (list) (1.0, 2.0), (’str1’, ’str2’)
$ Empty optional attribute (#1, $)
’�’ String ’str1’
∗ Redeclared, derived attribute, value

is processed internally
(#1, ∗)

Table 2.4.: Syntax of different data types in instance descriptions.

therefore do not map to the exchange structure (A & C). The entity xx inherits from

bb, which in turn inherits from aa. Thus, the instance of xx in the data section has four

attributes. The order of the attributes is determined as described before: first the inherited

attributes and then the attributes defined in the entity itself. This means that the attribute

attrib a maps to the data section in the first slot of the instance of xx as an inherited

attribute. It refers to an instance of zz – in this case the instance #1 (B). The attributes

of bb attrib b1 and attrib b2 also map to instance #4 in the second and third slot.

They refer to the two instances of yy #2 and #3 (D & E). Attribute attrib x refers to

its value 4.0 (F).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 26

2 Theory 2.4 ISO 10303 STEP standard

1 ENTITY aa ABSTRACT SUPERTYPE OF (ONEOF(bb,cc));
2 attrib_a : zz;
3 END_ENTITY;
4

5 ENTITY bb SUBTYPE OF (aa)
6 ABSTRACT SUPERTYPE OF (ONEOF(xx));
7 attrib_bl : yy;
8 attrib_b2 : yy;
9 END_ENTITY;

10

11 ENTITY cc SUBTYPE OF (aa);
12 attrib_c : REAL;
13 END_ENTITY;
14

15 ENTITY xx SUBTYPE OF (bb);
16 attrib_x: REAL;
17 END_ENTITY;
18

19 ENTITY zz;
20 attrib_z : STRING;
21 END_ENTITY;
22

23 ENTITY yy;
24 attrib_l : REAL;
25 attrib_2 : REAL;
26 attrib_3 : REAL;
27 END_ENTITY

A
B

C
D
E

F

Listing 2.2: Example of a simple subtype/supertype relationship. Entity definition in
EXPRESS. (ISO 10303–21:2002)

1 #1 = ZZ(’ZATTR’);
2 #2 = YY(1.0, 2.0, 0.0);
3 #3 = YY(2.0, 2.0, 0.0);
4 #4 = XX(#1, #2, #3, 4.0);
5

6

7 B D E F

Listing 2.3: Sample entity instance of the entity data type xx in the data section. (ISO
10303–21:2002)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 27

2 Theory 2.4 ISO 10303 STEP standard

2.4.4. Part 22 – Standard data access interface

As an alternative to the physical STEP file, the Standard Data Access Interface (SDAI) is an

implementation method for data structures defined in EXPRESS. It specifies the operations

available to an application for the purpose of acquiring and manipulating the data structures.

The definition in ISO 10303–22:1998 is independent of any computing language or system.

The SDAI specifies the requirements of a programming interface for the generation and

manipulation of instances of EXPRESS entities. Together with EXPRESS, the SDAI specifies

a data access interface that is independent of the underlying storage technology (ISO 10303–

22:1998).

The definitions for particular languages are called bindings and are defined in Part 23, 24

and 27 of the standard for C, C++ and Java. SDAI bindings are either early–bound or late–

bound. An early binding defines access functions for a specific EXPRESS schema. These

access functions are generated once by an EXPRESS compiler. For each of the declarations

in the EXPRESS schema a corresponding class is generated in the target language. One

major advantage of early bindings is that the compiler can do extensive type checking on the

application and can detect conflicts at compile time (Loffredo 1999). Late bindings on the

other hand have a fixed set of functions that do not change with the schema. A late binding

generally uses compiled representation of the EXPRESS schema, called the data dictionary.

The data dictionary is accessed and manipulated with queries. The advantage of late bindings

compared to early bindings is higher simplicity due to less initial work. One disadvantages

compared to late bindings is the lack of compile–time type checking (Loffredo 1999).

As discussed before, the following sections contain Integrated Resources, which define sets of

constructs to represent different kinds of data. In this way, the Integrated Resources provide

a common set of resource constructs which can be used by the APs, as described in the

subsequent sections.

2.4.5. Part 55 – Procedural and hybrid representation

ISO 10303–55:2005 with the title Procedural and hybrid representation provides mechanisms

for the representation of the history of operations used to generate the model. The construc-

tional operations themselves are represented by entity data types defined in other parts of

ISO 10303, for example the entity extruded face solid in ISO 10303–42. Procedural

models store information on how the model will behave when edited in the target system

(ISO 10303–55:2005). As discussed in section 2.3, the history of constructional operations

Norwegian University of Science and Technology
Department of Engineering Design and Materials 28

2 Theory 2.4 ISO 10303 STEP standard

embodies an important part of design intent information, especially in combination with

parameters.

The common STEP files nowadays mostly transfer the geometry model as an explicit rep-

resentation of the shape without any procedural information. For the implementation of a

procedural representation, Pratt et al. (2006) describe a hybrid shape representation. The

procedural representation is the primary representation containing all the operations needed

to reconstruct the model, while the secondary representation holds the explicit geometrical

information for the final stage of the model. The explicit data structure is usually built from

low level elements which must be transmitted together with the model in order to specify

it completely. The secondary model can be used in the receiving system to test the validity

of the reconstruction, or to resolve ambiguities in the case of several valid solutions (Pratt

et al. 2006). The operations defined in the primary procedural model all map to instances of

geometric representation item or topological representation item. The

secondary explicit model will be one of the explicit forms of shape representation. Ex-

plicit elements are distinguished from procedural elements simply by the fact that they do

not participate in instances of a procedural shape representation sequence (ISO

10303–55:2005).

73 #63= EXTRUDED_FACE_SOLID(’Extruded Cube’,#56,#58,40.);

82 #76= SOLID_WITH_FLAT_BOTTOM_ROUND_HOLE(’Through Hole

↪→ ’,’’,#63,#75,*,1,(10.),(40.),0.);

97 #97= SOLID_WITH_SINGLE_OFFSET_CHAMFER(’Chamfer’,$,#76,(#92),5.);

98 #99= PROCEDURAL_SHAPE_REPRESENTATION_SEQUENCE($,(#63,#76,#97),$,$);

99 #101= PROCEDURAL_SHAPE_REPRESENTATION($,(#99),$);

100 #103= SHAPE_DEFINITION_REPRESENTATION($,#101);

Listing 2.4: Definition of a procedural shape representation sequence. (File:

example ap242.stp)

In listing 2.4, the procedural shape representation sequence includes three pro-

cedural models, which represent steps in the construction history of the model. The first

step is an extrusion, followed by a hole feature and a chamfer. This enables the receiving

system to recreate these steps, in the order they appear in the procedural shape -

representation sequence, to construct the geometric model.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 29

2 Theory 2.4 ISO 10303 STEP standard

2.4.6. Part 108 – Parameterization and constraints for explicit geometric
product models

Part 108 of the standard specifies constructs to represent model parameters and constraints.

This is done by defining additional entities that assign these parameter or constraint values to

other transferred geometric elements. This enables the receiving system to reconstruct some

of the behavior of the model that was defined in the source system. One example for this

added design intent is the variant management in a model family whose members vary in one

or more parameterized dimensions. Ideally, the complete implementation in both systems

enables the target system to edit the model just like it would be possible in the source system

(ISO 10303–108:2005).

Variables can be represented by instances of the entity variational parameter which

consists of the bound variational parameter and the unbound variational pa-

rameter entity.2 A bound parameter is associated with an attribute of another entity

instance, whose value represents the current value of the parameter. This association is

defined with the help of the entity instance attribute reference, which has the

name of the parameter and the instance, to which the parameter belongs, as attributes. By

contrast, an unbound model parameter is not directly associated with any other attribute, but

could for example be useful for the definition of mathematical relations (ISO 10303–108:2005).

1 #290 = AXIS2_PLACEMENT_3D(...);

2 #300 = BLOCK(’BLOCK1’, #290, 4.0, 6.0, 8.0);

3 #310 = INSTANCE_ATTRIBUTE_REFERENCE (’GEOMETRIC_MODEL_SCHEMA.BLOCK.X’,

↪→ #300);

4 #320 = FINITE_REAL_INTERVAL(2.0, .CLOSED., 10.0, .CLOSED.);

5 #330 = BOUND_MODEL_PARAMETER (’XPARAM’, #320, *, ’BLOCK X-DIMENSION’,

↪→ *);

6 #340 = BOUND_PARAMETER_ENVIRONMENT(#310, #330);

Listing 2.5: Parameter binding to an instance attribute. (example from ISO 10303–

108:2005)

In Listing 2.5, the definition of a bound variational parameter is shown exemplarily.

The entity #340 provides the link between the specified instance attribute #310 and the

parameter #330, which is bound to it. #320 defines the domain of the parameter. The

entity finite real interval is defined in ISO 10303–50.

2variational was formerly named model, but was redefined in ISO 10303–108:2005 due to name conflicts.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 30

2 Theory 2.4 ISO 10303 STEP standard

2.4.7. Part 111 – Elements for the procedural modeling of solid shapes

Part 111 of the standard specifies elements for the procedural modeling of solid shapes. These

elements provide the capability to exchange feature–based CAD models on the basis of the

procedural shape representation discussed before. The procedural model can also

include entities defined in ISO 10303–42, especially for boolean operations, but the entities

defined in this part of the standard are specifically defined in a way to facilitate the exchange

of models with a representation of their constructional history (ISO 10303–111:2007).

ISO 10303–111 defines a single schema, the solid shape element schema, which defines

a set of geometric elements, e.g. extrusions, chamfers or blendings.

The following four sections cover the different APs that are relevant in the scope of this work.

The first two, AP203 and AP214 are the basis for AP242 which in turn is extended by AP209.

As described in section 2.4.1, the APs are specific subsets of the Integrated Resources.

2.4.8. AP 203 – Configuration controlled 3D designs of mechanical parts and
assemblies

This part of ISO 10303 specifies the configuration controlled 3D design of mechanical parts

and assemblies and was mainly driven by the aerospace and defense industry. It provides

structures to exchange wireframe, surface and boundary representation (B–rep) solid models,

together with the administrative data for the whole design life cycle. Until 2011 it did

not provide any definitions for all the other life cycle phases, but in the second version of

the Application Protocol, the data structures for the exchange of construction history were

implemented. It is the most widely used part of ISO 10303 (Kim et al. 2008).

2.4.9. AP 214 – Core data for automotive mechanical design processes

The aim of AP214 is to provide the structure to exchange information between applications

which support the development process of a vehicle. It was mainly driven by the automotive

industry. Most of the AP214 translators have only implemented Conformance Classes cc1

and cc2 (out of 20 Conformance Classes) that are very similar to the AP203 geometry and

topology definitions (SCRA 2006).

As these two standards overlap in many of their contents, it was decided in 2009, to merge

them into AP 242 (Feeney et al. 2015).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 31

2 Theory 2.4 ISO 10303 STEP standard

2.4.10. AP 242 – Managed model based 3D engineering

AP242 is a major new Application Protocol, as it combines and replaces the following APs

while being upward compatible:

• AP 201: Explicit draughting. (2D drawing geometry related to a product)

• AP 202: Associative draughting. (2D/3D drawing with association, but no product

structure)

• AP 203: Configuration controlled 3D designs of mechanical parts and assemblies.

• AP 204: Mechanical design using boundary representation.

• AP 214: Core data for automotive mechanical design processes.

STEP AP 242 Ed1 therefore provides all the functionalities covered by the most commonly

implemented and used APs 203 Ed2 and 214 Ed3 (Feeney et al. 2015). It additionally defines

new structures for:

• 3D parametric & geometric constraints design

• Geometric dimensioning and tolerancing

• Business Object Model

• Tessellation

• Kinematics

Regarding the ability to transfer design intent, AP242 therefore includes the structures for the

representation of parameters and constraints in addition to the structures for construction

history that were introduced in AP203 (ISO 10303 Whitepaper Ed1 2009). The business

object model for AP242 is specified in ISO 10303–3001 and consists of Business Objects

(BO) representing major concepts and information requirements of Managed model–based

3D engineering (ISO 10303–242:2014). The BO model is defined in an EXPRESS schema and

alternatively in a XML (Extensible Markup Language) schema. According to Vettermann

(2015), the XML version of the BO model is the designated backbone for data exchange in the

manufacturing industry, where the capability to exchange PDM data in the XML format is

a key factor. The Jupiter Tessellation (JT) format would cover the graphical visualization in

this scenario, as these two formats complement each other (Vettermann 2015). The XML BO

model also enables the advanced external referencing structures for kinematics in assemblies,

composite parts and tessellated data (Fischer 2015). AP242 has only one Conformance Class

Norwegian University of Science and Technology
Department of Engineering Design and Materials 32

2 Theory 2.5 Knowledge Based Engineering

with the title managed model based 3d engineering cc1, thus it only can be implemented

with all the functionalities at once.

The development of AP242 is hosted by PDES and ProSTEP and tested on the CAx Im-

plementer forum, see section 1.4 for more information about these organizations. AP242

Ed2 will incorporate more tolerancing standards, support for electrical wire harness, additive

processes and some more extensions (Feeney et al. 2014).

2.4.11. AP 209 – Multidisciplinary analysis and design

The modular edition of AP209 is an explicit extension of AP242. AP209 Ed2 thus provides

the same functionalities as AP242 and additional structures to express engineering analysis

and simulation data.

2.5. Knowledge Based Engineering

La Rocca (2012) describes two different types of KB systems, the Rule Based Systems (RBS)

and the Frame Based Systems (FBS). In RBSs the knowledge is expressed as set of IF–

THEN rules, while FBSs are based on classes and offer Object Oriented (OO) features,

such as abstraction and inheritance. La Rocca (2012) distinguishes between class–frames

and instance–frames in FBS. The class–frames contain the class definitions with so–called

property slots, which can point to other frames. Classes can be related to superclasses, from

which they inherit the property slots and other elements. Instance–frames in turn are unique

specifications of class–frames, defined through the assignment of a specific value set to the

slots of the class–frame.

KBE systems are specialized KB systems that are able to handle the specific needs of the

engineering design domain. These mainly are the manipulation of geometry and the data

processing for analysis applications (La Rocca 2012).

As mentioned in chapter 1, one of these KBE frameworks is AML. In the next section the

basic structure of a KBE project in AML is described.

2.5.1. Adaptive Modeling Language

As AML is based on the concept of OOP, applications are defined with the help of class

structures. These classes are organized in one or more source files, which can be compiled by

Norwegian University of Science and Technology
Department of Engineering Design and Materials 33

2 Theory 2.5 Knowledge Based Engineering

the system. Based on this compiled system, the user can create models with instances of the

defined classes.

On the basis of the example class definition shown in listing 2.6, a short overview of AML

is given in this section. This is just a very brief introduction, for more information, refer to

TechnoSoft (2010). As AML is based on Lisp, all definitions are in the form of nested lists

starting with an opening parenthesis (and ending with a closing parenthesis). The first

element of a list is the operator, which calls for example a method, such as define-class

or a mathematical operation, such as +. The following list elements are the operands, which

are fed as arguments to the method or operation. (+ 1 2) for example generates the output

3.

1 (in-package :aml)
2

3 (define-class example-class-1
4 :inherit-from (
5 object
6)
7 :properties (
8 ;; user defined slots
9 property-1 1.0

10 ;; computed slots
11 property-2 (* 0.5 ˆproperty-1)
12)
13 :subobjects (
14 (subobject-1 :class ’example-class-2
15 property-1 (list 42.0 1.0 0.0)
16)
17)
18)

Listing 2.6: Class definition in AML.

The (in-package :aml) at the beginning tells the compiler to use the :aml package,

which contains predefined classes, functions and methods. The :inherit-from statement

in the class definition defines the superclasses from which the class inherits the property

and method definitions. The object class is the highest level pre–defined class that should

be instantiated by the user. In the :properties statement, the properties of the class

are defined with a property name followed by the formula defining the value of this property.

These property slots can be divided into user defined and computed slot, depending on if they

are defined by the user or processed internally, depending on the values of other properties.

The :subobjects statement defines the subobjects of which the object is composed of.

A table for example could be defined with four legs and a table top as subobjects. Words

Norwegian University of Science and Technology
Department of Engineering Design and Materials 34

2 Theory 2.5 Knowledge Based Engineering

with a colon : at the beginning symbolize keywords. Keywords are followed by arguments

that can be passed to the functions or methods. They have a default value, so they do not

necessarily have to be specified in the function or method call. Functions and methods define

constructs that take arguments as input and process them internally to generate an output.

Methods are defined for specific classes while functions can be called from all classes in the

same namespace (in this case :aml). An example function definition is shown in listing 2.7.

The function call (quadratic-formula 1 3 2) would return (-1.0 -2.0). The let

environment offers the possibility to declare local variables.

1 (defun quadratic-formula (a b c)
2 (let (
3 (radical (- (expt b 2) (* 4 a c)))
4 (denominator (* 2 a))
5 (numerator-plus (+ (- b) (sqrt radical)))
6 (numerator-minus (- (- b) (sqrt radical)))
7)
8 (list
9 (/ numerator-plus denominator)

10 (/ numerator-minus denominator))
11)
12)

Listing 2.7: Function definition in AML.

The Integrated Development Environment (IDE) for AML is a customized version of XEmacs,3

which is a fork of the Emacs editor. These editors are highly extensible far beyond the scope

of other text editors. These extensions are programmed in the Lisp dialect Emacs Lisp and

provide the user with the possibility to customize the editor with own commands or to auto-

mate repetitive work. The AML XEmacs editor for example provides the functions to start

the compiling process or to automatically adjust the indents of large amounts of code.

The geometrical output of the models is presented in the AML main modeling form, as can be

seen in chapter 4. The content of the form itself is also programmed in AML. It is therefore

possible to define a specific user interface that displays the necessary data and provides an

interface to interact with the data model.

The theoretical background of this chapter is the basis for the next chapter that covers the

methodologies used to implement the objectives that are defined in chapter 1. Especially the

review of the STEP standard serves as a guideline for the implementation, as it provides the

methods for the main implementation steps in a condensed manner.

3http://www.xemacs.org, last accessed: 2016-04-05

Norwegian University of Science and Technology
Department of Engineering Design and Materials 35

http://www.xemacs.org

3 Methodology & Implementation

3. Methodology & Implementation

This chapter covers the concept development on how to implement the objectives defined

in chapter 1. Additionally, it includes short descriptions of the software tools used for this

implementation. Their basic setup is described to ensure replicability. Some tools were

evaluated but not used for the implementation. They are mentioned nevertheless for overview

purposes.

3.1. Concept development

As presented in chapter 1, the goal of this thesis is to evaluate if and how it is possible to

transfer design intent between CAD and KBE systems with the help of the STEP standard.

In order to be able to evaluate this question, the aim is to transfer an example model. For

this purpose three steps have to be accomplished either with the help of existing software

solutions or with proprietary developments.

1. It has to be determined which CAD software or translator tool already supports the

new STEP structures in question. With the help of this software or tool an appro-

priate example geometry has to be defined and exported into a STEP exchange file.

This geometry has to include at least some of the representation structures that

contain design intent.

2. The structures defined in the AP242 schema have to be mapped to AML structures.

This enables the AML environment to build a data model according to the relations

defined in the STEP schema.

3. The data stored in the physical STEP file has to be populated into the AML appli-

cation. Each entity instance taht is listed in the STEP file correlates to an instanti-

ation of a class defined in step two.

The final implementation of these three steps is depicted in figure 3.1. The according sec-

tions however first cover the different software tools that potentially provide the required

functionality and then finish with the actual implementation. The file structure together

with a visualization of the dependencies is shown in figure A.1.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 36

3 Methodology & Implementation 3.1 Concept development

3.2 Example STEP fileAP203 Schema (mim lf)

ENTITY line
SUBTYPE OF (curve);
pnt : cart_point;
dir : vector;

END_ENTITY;

procedural query.qex

NEW PERSISTENT fb_1;
fb_1.name :=

’Face B.’;
fb_1.bound :=

el_1;

EXPRESS Data Manager

database

model
with instances

of entities

example ap203.stp

#1 = CARTESIAN_POINT
(’CP1’,(0.,0.,0.));

#13= LINE
(’Line1’,#1,#12);

CAD (NX10)

geometry
design intent?

3.4 Data transfer

example ap242.stp

#61= VAR_PARAMETER
(’extr_depth’,#60,
’Height of Cube’);

p21 parser.py

tokens = (’ISO’,...)
class Lexer():

...
class Parser():

...

populate.py

def convert_to_aml:
...

for entity in
P21_result:
...

AML classes AP242 classes

model

main.aml

(define-class step-
import
...)

(defun populate
...)

geom repr classes.aml

(define-class
aml_point_object
:inherit-from (

point-object)
...)

populate.aml

(setf (gethash ’#61
populate_hash)
’("var_parameter"
(list "extr_depth"
...)))

feature classes.aml

(define-class
xaml_flat_bottom_
round_hole_feature
...)

3.3 EXPRESS structure mapping

ISO 10303-11 WSN

0 ABS = ’abs’
...

123 bit = ’0’ | ’1’

wsn converter.py

tokens = (’=’,"|")
class Lexer():

...
class Parser():

...

AP242 Schema (mim lf)

ENTITY var_parameter
descr : text;
cur_value : value;
END_ENTITY;

schema parser.py

tokens= (’ENTITITY’)
class Lexer():

...
class Parser():

...

write aml.py

aml_class_mapping =
{
’cartesian_point’ :
’aml_point_object’
}

preparing steps

Example file generation

EXP – AML mapping

Data model transfer

Figure 3.1.: Implementation overview.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 37

3 Methodology & Implementation 3.2 Example STEP file

3.2. Example STEP file

In the course of the research about the implementation status of AP242 specific features into

commercial products, it became clear that the relevant features for the exchange of design

intent are not yet included into released CAD software. Some CAD vendors claim to sup-

port some AP242 functionalities, but those mainly are the ones already defined in AP203

and AP214, such as boundary representation, geometric validation properties (e.g. volume

and surface area) or supplemental geometry (e.g. points, axes and planes) (Coronado et al.

2014). There are some sources which summarize the different implementation levels of the

specific AP242 parts, but they concentrate on the structures for 3D Tessellated Geometry,

XML representation and Product and Manufacturing Information (PMI) (AFNet 2015). The

CAx Implementor Forum1 lists the implementation coverage of ten different applications for

over 100 sub–features of AP242, although not including the features for the representation

of the elements of design intent. Similarly, the CAD vendors themselves offer some informa-

tion about the implementation level of the respective AP, but these information are mostly

for advertising purposes and therefore not very detailed. This information nonetheless con-

firms the impression described above. The structures for the representation of construction

history, parameters, constraints and features are not implemented into today’s CAD environ-

ments. Likewise, it could not be determined if and when CAD vendors plan to include these

structures.

This only leaves lower level applications with EXPRESS parsers as option for the generation

of the needed example files. As a result of their ability to map structures that are defined in

EXPRESS schemas to corresponding structures in their database, these applications are not

limited to specific APs.

3.2.1. Software tools

STEP Class Library – STEPcode

The STEP Class Library (SCL) was developed by the National Institute of Standards and

Technology (NIST) in the early days of the STEP standard. It was renamed in 2012 to STEP-

code2. The project is a collection of open source libraries and tools around the technologies

of ISO 10303. This collection of tools includes EXPRESS schema parsers with bindings pro-

vided in C, C++ and Python and a library that allows STEP Part 21 files to be read and

written.

1https://www.cax-if.org/vendor_info.php?file_id=8, last accessed: 2016-03-25
2http://stepcode.org, last accessed: 2016-03-20

Norwegian University of Science and Technology
Department of Engineering Design and Materials 38

https://www.cax-if.org/vendor_info.php?file_id=8
http://stepcode.org

3 Methodology & Implementation 3.2 Example STEP file

The source files are written in C++ and the ap203min example provided in the project files3

was built with cmake in order to test the tool.

The population of entities is realized with an implementation of the SDAI. Due to the rela-

tively low level access to the data model, even the definition of a single cartesian point needs

a lot of additional code, as seen in the ap203min example. Thus, other tools with a higher

level of abstraction were examined to generate the custom test files.

The Python binding4 is not yet complete, but parts of the code serve as basis for the imple-

mentation of the STEP Part 21 parser described in section 3.4.1.

JSDAI

JSDAI5 is an open source implementation of the SDAI in Java. The tool can parse EXPRESS

schemas and map the entities to JAVA classes. For the same reason as mentioned in the

previous section, the tool was not further examined.

STEP Tools

STEP Tools, Inc.6 provides several libraries and tools for the development of STEP related

applications. These tools are packaged into the ST–Developer software that supports STEP

AP203, AP214 and AP242. The software provides a common library of these APs in the

form of C++ classes. Thus, the tool provides all means to generate custom AP242 files,

but the process of populating even easy geometries is rather elaborate. The example C++

project, which populates the data model with different boxes, was successfully built in Visual

Studio 2015.7 The library of C++ classes is called ROSE (Rensselaer Object System for

Engineering) library and contains, besides the classes that hold the EXPRESS–defined data,

support classes that help to index the data or to read and write it to the storage model.

Express Data Manager

The EXPRESS Data Manager (EDM) is a software solution from the company Jotne EPM

Technology8 that provides a framework to connect different software applications with the

3https://github.com/stepcode/stepcode, last accessed: 2016-03-20
4https://github.com/stepcode/stepcode/wiki/python-generator, last accessed: 2016-03-20
5http://www.jsdai.net, last accessed: 2016-03-20
6http://www.steptools.com, last accessed: 2016-03-20
7http://www.steptools.com/support/stdev_docs/stpcad/demos/geometry.html, last ac-

cessed: 2016-03-20
8http://www.epmtech.jotne.com, last accessed: 2016-03-25

Norwegian University of Science and Technology
Department of Engineering Design and Materials 39

https://github.com/stepcode/stepcode
https://github.com/stepcode/stepcode/wiki/python-generator
http://www.jsdai.net
http://www.steptools.com
http://www.steptools.com/support/stdev_docs/stpcad/demos/geometry.html
http://www.epmtech.jotne.com

3 Methodology & Implementation 3.2 Example STEP file

help of a shared database environment. Furthermore, this is achieved by providing interfaces

to different programming languages and file formats, such as the STEP format. EDM’s

proprietary storage technology is called EDMdatabase and is designed to store and process

all information defined in EXPRESS schemas and populations thereof.

Applications can be connected to the database with the help of the EDMinterface. It pro-

vides a SDAI C binding as well as a proprietary C binding. However, the EDM can also be

controlled with a Graphical User Interface (GUI), which is the way the database manipula-

tions were performed in the scope of this work. Modifications, such as the population with

new entities or the change of attribute values, are defined in so–called query schemas. These

schemas are written in an EDM specific language, whose syntax is similar to the EXPRESS

syntax. In the following section, an example of a query function in such a schema is shown

in order to illustrate the implementation of the example geometry in EDM.

This approach allows to focus on the population of the data structure, as EDM takes care

of the SDAI calls in the background. Therefore, the query functions are very abstract and

require only a small amount of code to populate the entities.

3.2.2. EDM implementation

As described in section 2.4.5, the envisaged way to implement an implicit procedural repre-

sentation is to combine it with the explicit representation of the geometry. In the scope of

this minimal implementation however, only the procedural representation is transferred.

Figure 3.2.: Example geometry, generated in Siemens NX10.

The chosen example geometry shown in figure 3.2 consists of an extrusion with a through

hole and a chamfer. It is based on one of the geometries used in Barber et al. (2010).

With this part, the transfer of construction history, features and potentially parameters and

constraints can be demonstrated. As described in the previous section, the population of

the data model with entities is accomplished with the definition of an EDM query schema.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 40

3 Methodology & Implementation 3.2 Example STEP file

An example of such a query is shown in Listing 3.1. In the LOCAL environment, the local

variables that are used in the query function are defined, in this case cp 1 from the type

CARTESIAN POINT. The NEW PERSISTANT command writes the cp 1 instance to the data

model and the following commands assign values to the corresponding attribute slots. The

values of the attributes can either be another entity instance or a generic data type, such as

string. The complete query code is given in listing C.1.

1 QUERY_FUNCTION procedural_repr : STRING;
2

3 LOCAL
4 cp_1 : CARTESIAN_POINT;
5 END_LOCAL;
6

7 NEW PERSISTENT cp_1;
8 cp_1.name := ’Cartesian Point 1’;
9 cp_1.coordinates := [0,0,0];

10

11 END_QUERY_FUNCTION;

Listing 3.1: Population of a CARTESIAN POINT.

The implementation of structures that contain construction history and parameters are de-

scribed in the following sections. As discussed in section 2.4.5, these structures are specifi-

cally designed to represent similar structures in CAD systems. The construction history for

instance is represented by an instance of the Procedural Shape Representation -

Sequence. All entity instances that are referenced by this sequence are part of the primary

(also referred to as procedural or implicit) model, in contrast to the instances that define the

secondary (explicit) model. In order to minimize the development effort, only the procedural

model is used in this case. The main part of the additional effort for the implementation of

the explicit model would not occur in the population of the data model but in the thereby

necessary implementation of complex entities in the EXPRESS to AML mapping, described

in section 3.3. Subsequently to the description of the population of the construction history,

the implementation of the parameters is described. For the intended parameterization of one

of the dimensions in the example geometry, the Bound Parameter Environment pro-

vides the necessary structures. The parameter is bound, as it is not independently present

in the data model like an unbound parameter, but directly related to an attribute.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 41

3 Methodology & Implementation 3.2 Example STEP file

Construction history

The construction history is implemented with the help of the Procedural Shape Re-

presentation Sequence described in section 2.4.5. The resulting hierarchy is shown in

figure 3.3. The first construction step is the extrusion represented by the entity Extruded -

Face Solid with a branch of sub entities that define it. Next, the hole feature refers to

the extruded solid as base object and adds the entities that define the hole. Finally, the

chamfer is applied on the solid that already contains the hole. This way, each stage of the

construction history is stored and accessible.

Procedural Shape Representation Sequence

Extruded Face Solid

Solid With Conical-
Bottom Round Hole

Solid With Single-
Offset Chamfer

...

...

...

Figure 3.3.: Hierarchical structure of a Procedural Shape Representation Se-
quence.

Parameters

As described in section 2.4.6, parameters are not directly stored in the instance whose at-

tribute is parameterized, but as an additional instance of a Bound Model Parameter.

This parameter and the targeted object instance are connected with the help of a Bound -

Parameter Environment, as seen in figure 3.4. In the case of this minimal example,

the height of the extrusion is parameterized. However, this parameterization does not only

influence the extrusion feature, but also the Cartesian Point that defines the starting

point for the hole feature or the position of the chamfered edge. Ideally, this dependency is

Norwegian University of Science and Technology
Department of Engineering Design and Materials 42

3 Methodology & Implementation 3.2 Example STEP file

apparent from the way the elements are defined. The starting point of the hole for exam-

ple could be defined relative to the plane in which the upper surface of the extruded cube

lies in. In CAD systems, this reference usually is established with the help of one or more

auxiliary planes or coordinate systems. Even though the same relations could be modeled

with the help of the structures provided by AP242, the hole and the chamfer in the example

geometry are not defined relative to the extruded part in order to keep the definition as sim-

ple as possible. In this special case, it is beneficial that the parameterized dimension is not

directly stored in the attribute of the extrusion instance, as the parameter now can be con-

nected to any attribute with the help of the mentioned Bound Parameter Environment.

The supposedly easier solution would be to reference the parameter directly from within the

attribute. One reason why it is not implemented like this in the standard, could be the

compatibility to interfaces that do not support the interpretation of the parameter. With the

Bound Parameter Environment, the model can be processed without the parameters

and is still valid, while the parameters can be added later if they are supported. Thus, for

all the depended attributes in the example geometry, a Bound Parameter Environment

is defined that assigns the parameter with the name Extrusion Height to each of these

attributes. The Instance Attribute Reference refers to the instance that owns the

corresponding attribute. This reference contains the schema that defines the corresponding

entity, the entity name itself and the attribute name. In the case of the extrusion, that adds

up to GEOMETRIC MODEL SCHEMA.EXTRUDED FACE SOLID.DEPTH. If the attribute has

multiple dimensions, the index of the dimension is appended in square brackets.

Bound Parameter Environment

Instance Attribute-
Reference

Reference Object

Bound Model-
Parameter

Finite Real Interval

Figure 3.4.: Hierarchical structure of a Bound Parameter Environment.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 43

3 Methodology & Implementation 3.3 EXPRESS structure mapping

Data population

The first step in the EDM is to create a database with the following commands in the GUI.

The other commands described in this section are depicted with the corresponding settings

in appendix B).

Database

Create/Open

Create

Directory Path: \...

Database: DB1

Password: Db1#123

Next, the EXPRESS schema that describes the AP242 Module Interpreted Model in its long

form (mim lf.exp) is loaded into the database. The database is now able to store data

structures according to the AP242 definitions.

After creating a data model in the database, this data model can be populated with the

query schema. The model can either be empty or already populated with entity instances

from a STEP import for example. As the entity bound variational parameter has

two attributes with the name label inherited from different supertype entities, the value of

one of the attributes is unaffected by the query command and is edited manually in the GUI.

Finally, the populated data model can be exported as STEP or XML file.

3.3. EXPRESS structure mapping

The representation structures defined in the EXPRESS schema of specific AP have to be

mapped to the appropriate structures in the receiving system in order to enable the import of

data structures that are defined according to this EXPRESS schema. In the case of AML, this

representation is accomplished by defining a class for each entity in the schema. This class

ideally maps all the information available in the entity definition, such as super–/subtype

relations or attributes. As described in section 2.4.2, it is possible to store much more

information in EXPRESS schemas, such as functions, types and constants, but these are

omitted in the scope of this work, since this first minimal implementation only aims to

provide a proof–of–concept application.

The generation of the AML classes is automated with a parser and is described in section 3.3.3.

Since the STEP file parser, which is described in section 3.4.1, is based on a Python parser

Norwegian University of Science and Technology
Department of Engineering Design and Materials 44

3 Methodology & Implementation 3.3 EXPRESS structure mapping

from the STEPtools project, the parser for the AML class mapping is implemented with a

Python parser as well.

3.3.1. Software tools

Python Lex–Yacc Compiler

The Python tool PLY (Python Lex–Yacc) is used for several tasks in this work.9,10 PLY is a

Python implementation of the C tools Lex and Yacc. Both tools together form a so–called

compiler. A compiler is a computer program that transforms source code from one program-

ming language into another. A common use case is the translation from human readable

high–level programming languages into executable machine code. Another application is the

translation between different language families. Compilers are often separated into two parts.

The first part analyses the structure of the source program and the second part transfers this

structure into the target language. The analyzer part itself can be separated in a lexical

analyzer, which is called Lex in the case of PLY, and a parser, which is called Yacc. The

lexical analyzer splits the source code into discrete pieces, according to so–called token rules.

These token rules are defined with the help of a sequence of characters that define a search

pattern, which in turn are referred to as regular expressions. If this search pattern applies

to a sequence of characters, a token is generated and the sequence of characters is stored in

it as token value. The result is a sequence of tokens that is fed into the parser. The parser

tries to match them to predefined grammatical rules, which are called productions. After

this grammatical analysis, the syntax can be translated into another language.

For the tasks in this thesis, PLY is rather used as a converter than as a compiler since it

is not used to compile source code from one language to another but to generate code from

different data structures.

Adaptive Modeling Language

Multiple AML source files can be compiled into a so–called AML system by defining a

system.def file in the system’s folder that contains a list of these source files. The system

setup used for in the scope of this thesis is shown in listing 3.2.

The path of the system and other path variables can be defined in the logical.pth file in

the installation folder of AML in order to be able to compile the system with a relative path

call. The path definitions for this project are shown in listing 3.3.

9https://www.python.org/, used python version: 2.7
10PLY can be installed via pip or directly with the containing setup.py (run $ python setup.py install)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 45

3 Methodology & Implementation 3.3 EXPRESS structure mapping

1 (define-system :main-system
2 :require-systems ()
3 :require-libs ()
4 :files ’(
5 "geometric_representation_classes.aml"
6 "feature_classes.aml"
7 "populate.aml"
8 "main.aml"
9)

10)

Listing 3.2: Definition of the :main-system.

1 :thesis C:\...\thesis\
2 :main-system :thesis 01_binding\out\systems\main-system\
3 :class-path :thesis 01_binding\out\classes\

Listing 3.3: Path variables defined in logical.pth.

The class hierarchy in the AP242 schema is highly branched and contains over 1700 entities.

As the corresponding classes in AML have to be compiled in the right order, the classes

load their necessary parent classes on the fly, so that these are compiled prior to themselves.

Another advantage of this approach is that only the classes that are used are compiled. This

is accomplished by creating one file per class and by adding the following function call for each

parent class at the beginning of the class files: (load_class "parent_class_name").

The load class function is defined in listing 3.4.

21 (defun load_class (class_name)

22 (if (subclassp (make-symbol class_name) ’object)

23 "Class already loaded"

24 (load (logical-path :class-path (concatenate class_name ".aml")))

25)

26)

Listing 3.4: Function to load classes on demand. (File: main.aml)

3.3.2. Wirth Syntax Notation converter

The lexical and grammatical rules for EXPRESS schemas are defined in ISO 10303–11:2004.

These 345 rules are defined in the Wirth Syntax Notation and are displayed in appendix D

as railroad syntax diagrams. WSN is a notation technique for context–free grammars that

can be used to describe the syntax of a computer language. As the used Python parser PLY

Norwegian University of Science and Technology
Department of Engineering Design and Materials 46

3 Methodology & Implementation 3.3 EXPRESS structure mapping

cannot interpret WSN notations, they have to be transformed into the Backus Normal Form

(BNF), which is a related notation form, with the following transformation rules.

• Convert every repetition {C} to a new production X

A = B {C} → A = B X

X = ε | X C

• Convert every option [C] to a new production X

A = B [C] → A = B X

X = ε | C

• Convert every group (C) to a new production X

A = B (C) → A = B X

X = C

The WSN converter therefore parses the WSN rules, subsequently transforms them into

BNF rules and finally formats them into a new parser code (schema parser.py). Some

of the WSN rules are shown exemplarily in listing 3.5. The generated grammar is directly

compilable, but the definition of the data that should be transferred to the next rule must

be done manually. Some of the rules are split into multiple separate rules and the output for

the rules is defined for the different occurring cases, as discussed in section 3.3.3.

3 0 ABS = ’abs’ .

4 1 ABSTRACT = ’abstract’ .

5 2 ACOS = ’acos’ .

126 123 bit = ’0’ | ’1’ .

127 124 digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

128 125 digits = digit { digit } .

129 126 encoded_character = octet octet octet octet .

130 127 hex_digit = digit | ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

131 128 letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’

↪→ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u

↪→ ’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ .

132 129 lparen_then_not_lparen_star = ’(’ { ’(’ } not_lparen_star {

↪→ not_lparen_star } .

218 215 explicit_attr = attribute_decl { ’,’ attribute_decl } ’:’ [

↪→ OPTIONAL] parameter_type ’;’ .

299 296 schema_decl = SCHEMA schema_id [schema_version_id] ’;’

↪→ schema_body END_SCHEMA ’;’ .

327 324 syntax = schema_decl { schema_decl } .

Listing 3.5: WSN rules defined in ISO 10303–11:2004. (File: iso–10303–11–2004.bnf)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 47

3 Methodology & Implementation 3.3 EXPRESS structure mapping

3.3.3. EXPRESS schema parser

The EXPRESS schema parser converts the entities that are defined in the AP242 EXPRESS

schema into AML classes. The lexing and parsing rules were generated in the preparation

step described in the previous section. ISO 10303–11:2004 defines that an implementation

of an EXPRESS language parser shall be able to parse any formal specification written in

EXPRESS and shall be said to conform to a particular checking level if it can apply all checks

required by the level (and any level below that) to a formal specification written in EXPRESS.

The implemented parser was not checked for any conformance level, but as the parser is

derived from the rules defined in the standard itself, the lexical and grammatical analysis

part should conform to the standard. The transfer to AML code however is incomplete, as

only some of the defined structures were taken into account. The relevant data is mapped to

a class model defined in the parser, as seen in listing 3.6.

85 # p_schema_body : p_stack_45 p_constant_decl p_stack_46 # p_stack_45:

↪→ p_interface_specification # p_stack_46: declarations

86 class Schema_body:

87 def __init__(self, interface_specification , declarations):

88 self.interface_specification = interface_specification

89 self.declarations = declarations

90

91 #p_schema_decl : SCHEMA p_schema_id p_schema_version_id ’;’

↪→ p_schema_body END_SCHEMA

92 class Schema_decl:

93 def __init__(self, schema_id, schema_version_id, schema_body):

94 self.schema_id = schema_id

95 self.schema_version_id = schema_version_id

96 self.schema_body = schema_body

97

98 #p_syntax : p_schema_decl

99 class Syntax:

100 def __init__(self, schema_decl):

101 self.schema_decl = schema_decl

102 # ...

Listing 3.6: Extract of the class model representing the EXPRESS Structure. (File:

schema parser.py)

The class model simplifies the handling of the data in the next step, which is the AML

class generation defined in the file write aml.py. The classes can be instantiated by the

production rules with the corresponding attributes, like seen in listing 3.7.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 48

3 Methodology & Implementation 3.3 EXPRESS structure mapping

188 def p_syntax(self, p):

189 """ p_syntax : p_schema_decl

190 | p_syntax p_schema_decl """

191 if len(p) == 3:

192 p[0] = p[1] + p[2]

193 elif len(p) == 2:

194 p[0] = Syntax(p[1])

195 else:

196 print ’Indexerror in p_syntax with len(p):’

197 print len(p)

Listing 3.7: Root production of the EXPRESS grammar. (File: schema parser.py)

The syntax production is the root production of the grammar and its content is returned by

the parser as result. The content of the tokens that are matched by the other productions can

be processed with specific rules and is subsequently passed to the next highest production

until it reaches the root production. The grammar however has some unused branches,

namely the productions related to remarks (tail remark, embedded remark, etc.). As

they have no connection to the root rule, they are not reachable. This leads to a warning

during the compilation of the parser but it does not effect the other productions.

3.3.4. AML code generation

The output from the parser described in the previous section is an AML file for each class

corresponding to a specific entity. To simplify the use of these classes, the inherited attributes

and the information about where they come from are included as a comment. As mentioned

before, the necessary parent classes are loaded at the beginning of each class file.

23 (in-package :aml)

24

25 (load_class "ap242_swept_face_solid")

26

27 (define-class ap242_extruded_face_solid

28 :inherit-from (

29 ap242_swept_face_solid

30 aml_extrusion_object

31)

32 :properties (

33 index (list

34 ’name

Norwegian University of Science and Technology
Department of Engineering Design and Materials 49

3 Methodology & Implementation 3.3 EXPRESS structure mapping

35 ’swept_face

36 ’extruded_direction

37 ’depth

38)

48 extruded_direction ’direction

49 depth ’positive_length_measure

50)

51 :subobjects (

52

53)

54)

Listing 3.8: Translated extruded face solid class. (File: ap242 extruded face solid.aml)

The class names are modified with a prefix to clarify that they are derived from AP242 entities.

To simplify the geometric representation in AML, the classes are mapped to similar native

AML classes from which they inherit the Virtual Geometry Layer functions (TechnoSoft

2010). This leads to some problems, because the class structure in STEP is much more

subdivided than in AML. Therefore, a mapping class for each of these connections is defined

to clarify where the class can get the attribute values to provide the generic AML classes

with the necessary data for the geometrical representation. One example for this different

class structure is the extrusion object shown in listing 3.8, where the necessary data has

to be collected from different child entities. The mapping class aml extrusion object

provides the necessary connections and is implemented as parent class into the corresponding

ap242 class. As shown in listing 3.9, this is done automatically by listing the classes that are to

be mapped in the Python code that generates the AML classes. The mapping classes however

have to be defined manually. The disadvantages of this approach and possible alternatives

are discussed in chapter 5.

18 aml_entity_suffix = ’’

19 aml_type_suffix = ’’

20 aml_entity_prefix = ’ap242_’

21 aml_type_prefix = ’ap242_’

22 system_name = ’main-system’ # defined in logical.pth in AML path

23 class_path = ’class-path’ # defined in logical.pth in AML path

24

25 aml_class_mapping = {

26 ’cartesian_point’ : ’aml_point_object’,

27 #’vector’ : ’vector-class’,

28 #’line’ : ’line-object’,

Norwegian University of Science and Technology
Department of Engineering Design and Materials 50

3 Methodology & Implementation 3.3 EXPRESS structure mapping

29 ’edge_curve’ : ’aml_line_object’,

30 ’edge_loop’ : ’aml_sewn_object’,

31 ’face_bound’ : ’aml_bounded_object’,

32 ’extruded_face_solid’ : ’aml_extrusion_object’,

33 ’solid_with_flat_bottom_round_hole’ : ’

↪→ xaml_flat_bottom_round_hole_feature’,

34 ’axis2_placement_3d’ : ’aml_coordinate_system_class’,

35 ’solid_with_single_offset_chamfer’ : ’xaml_single_offset_feature’,

36 ’bound_parameter_environment’ : ’xaml_parameter’

37 }

Listing 3.9: Mapping between AP242 classes and AML geometric objects. (File:

schema write aml.py)

The mapping is only implemented for the classes that are used in the example geometry.

That means that other entities can be populated into the AML object tree, but without ge-

ometric representation. The implemented mapping classes are defined in the geometric -

representation classes.aml file. Similarly, the representation of the CAD features,

namely the extrusion, hole and chamfer feature are implemented with specific AML classes

defined in feature classes.aml. Some of the features are straight forward to imple-

ment, as AML provides similar feature classes, such as for the extrusion or the hole, but

some are more complex such as the chamfer. According to ISO 10303–111:2007, chamfers

are created with the help of two curves with an offset from the original edge along the two

adjacent surfaces. A ruled surface is then created between these curves and is used as new

chamfer surface. However, these adjacent surfaces are not specified in the exchange file, as

they can be the result of another feature such as an extrusion. Thus, the AML class for

the chamfer feature has to find these surfaces and their spatial orientation in order to de-

fine the offset curves. This is possible with the low–level :vgl (Virtual Geometry Layer)

functions (TechnoSoft 2010, Appendix C: VGL Functions), which are not documented very

extensively. For the chamfer for example, the faces of the object can be returned with the

function (vgl::k-sub-geoms (the geom) 2). Subsequently, the faces that include the

corresponding edge have to be determined. Next, the edge has to be displaced along these

surfaces and a new surface has to be created. Due to difficulties with these functions, the

chamfer feature is only partially implemented, which means that the import does not work

with every possible chamfer.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 51

3 Methodology & Implementation 3.4 Data transfer

3.4. Data transfer

The last step is to transfer the data in the physical STEP file into the AML data model. Since

the software used in this step is the same as in the second step, their setup is not repeated

here.

3.4.1. STEP P21 parser

Once again, the interpretation of the data is accomplished with a PLY parser. This parser

however is partly based on the STEP P21 parser provided by the SCL/STEPcode project

mentioned in section 3.2.1. The parser reads the STEP file and generates a transfer file

that subsequently is implemented into the AML environment. This transfer file contains a

Lisp data structure with the instances that are defined in the STEP file together with their

attribute slot values.

3.4.2. AML population

The interpretation of the transfer file is accomplished with a set of AML classes and functions

defined in main.aml. Each instance that is defined in the transfer file is processed and

populated into the data model. Their attribute slots are assigned to the right property with

the help of the index property defined in the class. The first slot is assigned to the first

member of this index list and so forth. The rules applied to determine the order of the list

members are described in section 2.4.3.

The entity instances defined in the STEP file form a hierarchical structure with possibly

multiple root instances. In the case of the example geometry, the multiple roots result from

the Bound Parameter Environments described in section 2.4.6, as they have no parent

object. Child objects are populated as subobjects into their parent object, they hence have to

be populated prior to their parent classes. But at the same time, the inheritance relations are

defined in the top–down direction in the STEP file, so the population has to start at the roots.

In order to resolve this contradiction, a recursive function is defined. This population function

starts at the roots and recursively calls itself for the population of possible child instances

until it reaches a leaf instance. This leaf instance is then populated and the function calls

can finish one after the other and climb back to the root entity.

The data structure in STEP files can not only fork in the top–down direction, but also merge,

i.e. instances can be referred to from multiple parent instances. These relations are mapped

in AML as subobject relations. AML however does not support the assignment of the same

Norwegian University of Science and Technology
Department of Engineering Design and Materials 52

3 Methodology & Implementation 3.4 Data transfer

Edge Curve

Line Vertex Point Vertex Point

Vector

Direction

Cartesian Point Cartesian Point

Figure 3.5.: Hierarchical structure of an Edge Curve in the STEP exchange file.

subobject to multiple parent objects. This means that each time the class tree merges, the

following branch is duplicated. An example for this merging in the top–down direction is

shown in figure 3.5. An Edge Curve is built from two Vertex Points and a connect-

ing Line in between them. The Vertex Points each refer to a Cartesian Point and

the Line is defined by one of these Cartesian Points and a Vector. Therefore, the

Cartesian Point is used by two other objects and is duplicated in AML in order to be rep-

resented in both parent objects. In the case of the Procedural Shape Representation

described in section 3.2.2, whole branches are duplicated to represent the different stages of

construction history.

After the population of the data structure, the parameterization has to be implemented. The

information about which attributes have to be parameterized is stored in the Bound Para-

meter Environments. These objects are therefore processed one after another in order to

change the formula of the corresponding properties. As some of the objects are duplicated, as

mentioned before, they all have to be changed accordingly. One of the functions enabling this

process is shown in listing 3.10. The split-reference function splits an Instance -

Attribute Reference, such as GEOMETRIC MODEL SCHEMA.CARTESIAN POINT.CO-

ORDINATES[2] into the schema, entity name, property and a possible index. These are then

used to access the specific attribute in order to implement the dependency to the parameter.

The other functions and classes enabling the parameterization are listed in appendix C.2.1.

139 ;; example input: GEOMETRIC_MODEL_SCHEMA.CARTESIAN_POINT.COORDINATES[2]

140 (defun split-reference (string)

141 (setf sub_list ’())

142 (setf sub_string string)

143 (setf rest_string string)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 53

3 Methodology & Implementation 3.4 Data transfer

144 (loop for point_sep from 1 to (count #\. string)

145 do (let (

146 (substr (subseq rest_string 0 (position #\. rest_string)))

147 (reststr (subseq rest_string (+ (position #\. rest_string)

↪→ 1) (length rest_string)))

148)

149 (progn

150 (setf sub_string substr)

151 (setf rest_string reststr)

152 (setf sub_list (append sub_list (list sub_string)))

153)

154)

155)

156 ;; Check for index -- e.g. coordinates[1]

157 (if (= 1 (count #\[rest_string))

158 (progn

159 (print rest_string)

160 (setf sub_string (subseq rest_string 0 (position #\[

↪→ rest_string)))

161 (setf rest_string (subseq rest_string (+ (position #\[

↪→ rest_string) 1) (- (length rest_string) 1)))

162 (setf sub_list (append sub_list (list sub_string)))

163)

164)

165 (setf sub_list (append sub_list (list rest_string)))

166 (print sub_list)

167)

Listing 3.10: Function to split a reference path into schema, entity, property and index.

(File: main.aml)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 54

4 Results

4. Results

The purpose of transferring the example geometry defined in section 3.2 was to evaluate,

whether it is possible to transfer knowledge in the form of design intent between CAD and

KBE environments with the help of the AP242 STEP format. In section 3.1, three steps were

defined that are needed to accomplish this exemplary transfer. The first step – the acquisition

or generation of an appropriate example file – was implemented with the help of the EDM

software from Jotne. For the second step – the mapping of the EXPRESS structures defined

in AP242 to AML classes – a converter was developed with the compiler tool PLY. The

mapping is not complete yet, the 1727 entities together with their inheritance structure and

attributes were however successfully converted into AML classes. For the third step – the

actual data transfer into AML – some additional classes and functions had to be developed

in AML. Especially the geometrical representation had to be implemented manually, as it

is system specific and neither defined in the EXPRESS schema nor in the STEP exchange

file. This manual implementation was performed with the help of native AML classes that

contain similar geometries. As parts of the geometrical representation, the features were also

implemented with a mapping to native AML classes.

Figure 4.1.: Object tree of the imported model. Geometrical representation in different stages
of the construction history.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 55

4 Results

The object tree of the resulting model is depicted in figure 4.1, where the graphical represen-

tations on the right show the different stages of the construction history. Figure 4.2 shows

the parameterization of the Extrusion Depth. The parameter value is accessible in the

root object ap242-import and controls all connected attributes.

In conclusion, the transfer of elements of design intent was successful. Furthermore, a possi-

ble approach to implement the import of STEP data structures, which extends the current

scope of purely geometrical information, was shown. Nevertheless, during the process of im-

plementing a transfer chain from the geometry model to the STEP exchange file and into

AML, certain limitations emerge. These limitations are mostly related to the CAD and AML

environments or have a political or economic origin. The STEP standard itself provides the

structures to represent most of the data that is produced during a product’s life cycle. Still,

it is not easy to implement interfaces to these structures in existing applications. These and

other aspects are further discussed in chapter 5.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 56

4
R

esu
lts

property depth is dependent
on parameter Extrusion Depth

parameter change
value

refresh
model

refresh
graphics

Extrusion Depth
40.0mm

Extrusion Depth
20.0mm

Figure 4.2.: Example geometry imported into AML. The parameter Extrusion Depth is stored as attribute in the root-object
ap242-import and can be changed in the work area. The second graphical representation shows an overlay of the
same model with a different value of the parameter Extrusion Depth.

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
5
7

5 Discussion

5. Discussion

One key question of this thesis is, whether the STEP format can enable the knowledge transfer

between CAD and KBE environments. The proof–of–concept translation of an example

geometry illustrated that it is in fact possible to transfer product knowledge in the form of

STEP files into the KBE framework AML. The targeted scope of knowledge – the intentions

of the designer – however represents all design decisions along with the underlying processes

leading to them, which raises the more specific question, whether these design intentions can

be structurally represented with the STEP standard, which is considerably more difficult

to investigate. Thus, the investigations that are described in section 2.4 with the aim to

determine the capabilities of STEP to transfer such knowledge are focused on the elements

that are commonly referred to as the design intent in CAD models. In particular, elements,

such as construction history, parameterized and constrained dimensions and features were

examined. The following section offers a more detailed discussion on the current state of

the implementation of these elements in STEP. Moreover, the following section includes an

attempt to answer the questions posed above. The chapter concludes with the insights gained

during the development of the STEP translator and the experiences with its implementation

into AML

5.1. Knowledge transfer with the STEP standard

In section 1.4, the states of research and standardization in the field of product data ex-

change are reviewed. One important conclusion of this chapter is that the STEP standard

is commonly viewed as the most capable neutral file format, when it comes to the transfer

and storage of product data. The standard already covers large parts of the data structures

that are generated during a product’s life cycle. Moreover, the projects discussed in sec-

tion 1.4 as well as the investigations of this thesis show that the STEP standard provides

the necessary structures to represent the elements of design intent mentioned above. These

structures cover a considerable amount of today’s typical data structures in this area, such

as the features in CAD software, but still have to prove their applicability in larger scale real

world applications. The development of the standard is pursued with the effort of several

international associations and project groups who are focused on the extension of the stan-

dard’s capabilities. Due to its modular architecture, the standard can be gradually extended

and can therefore react to changing requirements.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 58

5 Discussion 5.1 Knowledge transfer with the STEP standard

However, there are different reasons, why the standard cannot provide a universal exchange

format that covers all the possible data structures used in any platform and why the vendors

of CAE software do not necessarily implement all parts of the standard.

First, the development of the standard is aimed at mapping the structures of existing systems,

such as CAD tools. These tools from different vendors gradually evolved over the years and

although their data structures resemble each other, they are not completely congruent. One

example for such differences are the features in CAD systems. The most common features,

such as holes, chamfers or blendings can be found in most of the CAD systems, but possibly

with a different set of sub–features, such as the tapered hole feature in Siemens NX 10, which

is not available in PTC Creo Parametric 3.0. Thus, the STEP standard has to define a set

of structures that covers ideally all implementations, but at the same time must adhere to

one of its main design goals – minimal redundancy. Therefore, the standard has to find a

balance between the unification of features and the support of existing structures. This in

turn means that the vendors possibly have to adapt their structures to be able to translate

them with the standard.

Second, vendors that are established on the market benefit from the lack of a neutral file

format that can transfer data models without loss between systems from different vendors.

Once a company uses one particular system, the barrier is high for a change to another

system, as this would cause immense costs and the loss of data (Stiteler 2004).

Third, it is expensive for the vendors to extend the capabilities of their STEP interfaces.

This means that the implementation of additional Application Protocols or Conformance

Classes is demand–driven and the vendors must see a financial benefit in putting effort into

the development of their translators.

And fourth, the validation of the conformance of the implemented interfaces is a general

challenge with exchange formats. As discussed in section 2.4.1, the STEP standard provides

conformance tests to validate implementations of the standard. However, a successful confor-

mance test does not guarantee interoperability with other systems (ISO 10303–31:1994). One

reason for this is that the systems handle the received data differently on binary level, such

as different precision in the representation of real numbers or different geometric modeling

kernels. Therefore, implementations of the STEP standard, such as EXPRESS parsers or

STEP translators, have to be classified into different conformance levels and have to provide

information about the internal data handling (see appendices E in ISO 10303–11:2004 and

ISO 10303–21:2002). Despite the fact that complete conformance between different imple-

mentations cannot be proved without a complete insight into the corresponding systems, the

Norwegian University of Science and Technology
Department of Engineering Design and Materials 59

5 Discussion 5.1 Knowledge transfer with the STEP standard

conformance tests increase the probability that these implementations are able to interoperate

(ISO 10303–31:1994).

The investigations in section 3.2 confirm these points and show that AP242 is not yet sup-

ported in the latest CAD systems. Some vendors claim to work on an implementation of

the AP242 structures, but they offer no specific information about the parts that enable the

transfer of design intent, namely part 55, part 108, part 111 and part 112, as specified in sec-

tion 2.4. This lack of implementation of certain STEP parts leads to alternative approaches

in the use of the STEP format as intermediate exchange format. As described in section 1.4,

most of the projects that use capabilities of the STEP standard that are not yet implemented

in the corresponding software access the native data model of that software with the help of

an API or with journal files. With direct access to each step of the construction process, they

can create their own STEP files with a translator tool. Thus, they are independent from the

implementation level of the system’s translators. However, this approach requires that the

vendors provide the necessary interfaces.

It is difficult to predict whether and when AP242 will be supported by commercial CAE

products, since many parties with different interests are involved. As discussed in this section,

the software vendors will only implement the standard when large commercial users require

them to validate their STEP translators to the new standard. Since the STEP format is

nowadays the most widely used 3D exchange format between different CAE platforms (based

on the development of the past years, as seen in Prawel (2010)), most of the platforms support

parts of it – in most cases AP203 and AP214. As AP242 merges and extends these two most

widely used STEP APs, it will play a decisive role in the future of the format. STEP AP242

only has one Conformance Class, the managed model based 3d engineering cc1.

Therefore, an implementation of AP242 has to support all structures defined in the AP in

order to comply with the standard. Thus, despite the fact that the modules discussed in this

thesis are currently not the main motivation for the CAD vendors for the implementation of

AP242, their implementation together with the other modules of the standard seems possible.

In conclusion, the STEP standard in general and STEP AP242 in particular enable the

representation – and therefore at least theoretically the transfer – of knowledge elements,

such as construction history, parameterized and constrained dimensions and features. At the

moment however, most of these capabilities of the STEP format are not used by commercial

products. Thus, the transfer of such data structures is not limited by the standard itself, but

rather by the lack of its implementation in the corresponding systems.

The implementation of an import tool that supports these structures in the KBE framework

AML is feasible, as shown in this work with the transfer of an example geometry. In any case,

Norwegian University of Science and Technology
Department of Engineering Design and Materials 60

5 Discussion 5.2 Implementation of a STEP translator

a complete implementation is a great development effort. The reasons for that are specified

in the next section.

5.2. Implementation of a STEP translator

The STEP import functionality into AML is implemented in two levels. First, the structures

that are defined in the standard’s schema are converted into an AML class structure. With

this library of classes, AML can represent the objects defined in the STEP exchange file.

Second, the exchange file is parsed for the objects contained in the file, and a set of AML

classes and functions populate the objects into the AML data model. This section contains

a discussion of the implementation of both levels and an outlook on what remains to be

implemented.

The first level, the mapping of EXPRESS structures into AML, is accomplished with a Python

parser, as addressed in section 3.3.3. An EXPRESS schema contains declarations of the types

CONSTANT, TYPE, ENTITY, RULE and FUNCTION. The central data structure is defined by

the entities, which represent the object structures in the sending or receiving systems. The

other structures are used by the entity declarations to specify these entities, as described in

section 2.4.2. The parser implemented in the scope of this work can read EXPRESS files that

are defined according to the syntax rules in ISO 10303–11:2004. However, the code generating

part of the parser only processes the entity structures and not the other declarations. That

means that the entities are mapped into AML classes, but are limited when it comes to data

types, derived properties, restricting rules and other attributes defined in the EXPRESS

schema. Nevertheless, the mapping is sufficient to represent the data structure defined in

the exchange file in AML, since all entities (in the case of AP242: 1727 entities) can be

instantiated with the appropriate properties.

In order to enable the import of the STEP files into AML, several classes and functions are

defined that provide the necessary functionalities. The most fundamental functionality is

the population of the data structures defined in the exchange format, which is described in

section 3.4.

Another important functionality, which is system–specific and therefore not defined in the

STEP exchange file or the EXPRESS schema, is the graphical representation of the geometry

model. This is accomplished with a mapping of the translated AP242 classes to similar native

AML classes that provide a pre–defined graphical representation. As the structures in AML

and STEP are considerably different, this approach is limited. Thus, for a complete imple-

mentation, the low level :vgl functions have to be used to define a graphical representation

Norwegian University of Science and Technology
Department of Engineering Design and Materials 61

5 Discussion 5.2 Implementation of a STEP translator

for each of the AP242 classes that represent geometry. Similarly, these functions are used by

the pre–defined AML classes, such as the box-object, to generate the graphical output.

Furthermore, the features have to be recreated in AML. Similar to the graphical representa-

tion, this is implemented with the help of pre–defined AML classes, such as the difference-

object for the hole feature. The chamfer feature in the example geometry shows that this

approach is also limited, as the pre–defined AML classes cannot cover all the structures

that can be represented with STEP. Hence, for a complete implementation, the definition of

custom mapping classes is unavoidable.

The implementation of parameterized properties is covered in section 3.3.4 and is accom-

plished by processing the Bound Parameter Environments and by subsequently chang-

ing the formulas of the properties accordingly. Constraints can be implemented in a similar

way.

The remaining element of design intent – the construction history – is intrinsically present

in the object structure defined in the Procedural Shape Representation Sequence

and therefore does not need a specific mapping to AML other than via its structure.

Despite the implementation of the described functionalities, the object tree structure in the

AML environment, as presented in chapter 4, is different to the one in a CAD environment.

The current implementation of the STEP importer functions map the complete model struc-

ture in the STEP file as object – sub–object relations into the AML object tree. As a result,

not only the elements that are represented in CAD model trees, such as features and the

construction history, are present in the tree structure, but also other elements, which are

usually encapsulated in construction elements in CAD systems, such as cartesian points in

sketches. This can however be adapted by moving the sub–objects that should not appear in

the object tree into the property declaration of the corresponding class.

The successful implementation of a subset of the structures provided by AP242, illustrates –

even though this subset is only a small part of the complete implementation – that a (mostly)

complete implementation of the STEP AP242 structures is in fact possible and only a matter

of effort. Once the corresponding mapping classes for the graphical representation, the CAD

features and the other STEP structures are implemented, the import of physical STEP files

is fully automated.

In order to fully exploit the synergy between CAD and KBE environments, as mentioned in

section 1.2, the other direction of the knowledge transfer has to be implemented as well. In

the case of AML that means that the AML classes have to be mapped to the corresponding

EXPRESS entities. As discussed before, this mapping is not implementable one–to–one as

the structures differ too much. Especially considering that it is possible to define any custom

Norwegian University of Science and Technology
Department of Engineering Design and Materials 62

5 Discussion 5.2 Implementation of a STEP translator

class structure in AML, a complete representation of these structures in STEP is not feasible.

Still, the classes that build on known elements, such as the classes that were mapped from

AP242, could be exported. This could be interesting for several scenarios, such as the initial

definition of a complex system in AML and the final modeling of the geometrical details in

a CAD system. Furthermore, the STEP standard could provide the structures to represent

codified knowledge for the KBE knowledge acquisition process discussed in section 1.4.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 63

6 Conclusion

6. Conclusion

Based on a detailed review of the STEP standard and the related literature, this thesis eval-

uates the standard’s potential in regard to the transfer of elements of design intent between

CAD and KBE environments. In order to substantiate the theoretical findings and to provide

a proof–of–concept, an example geometry is defined and transferred from a STEP file into

the KBE framework AML.

The specifications of the STEP standard, in particular of STEP AP242, demonstrate that the

format enables the transfer of data structures that contain information about the intention

behind certain design decisions. In the context of CAD systems, the construction history,

parameterized and constrained dimensions and features mainly represent such information.

A transfer of these elements between two systems can enable the modification of the model

according to the intentions of the designer also in the receiving system. In the case of KBE

and CAD environments, this can enable a complementary development process, in which the

advantages of both environments can be exploited. For a successful transfer between those

systems however, a suitable transfer file is not enough. In addition, the import and export

interfaces of the standard have to be provided by the systems themselves.

The level of implementation of the STEP Application Protocols in CAD systems is very lim-

ited for several reasons. The current implementations are focused on the exchange of purely

geometrical data, but according to some of the biggest CAD vendors and the associations

that coordinate the development efforts of the standard, AP242 will be implemented in the

next years. Similarly, KBE frameworks, such as AML, only provide interfaces for the import

and export of STEP files that contain purely geometrical data. Nevertheless, since AML is

highly customizable, the implementation of an interface that supports other data structures

is only a matter of effort.

For an interface that supports a STEP schema, such as AP242, both, the class structure in

the form of an EXPRESS schema and the data structure in the form of STEP files, have

to be translated into the AML environment. Via the implementation of this interface and

the translation of an example file, this thesis elucidates the feasibility and at the same time

the challenges of such an approach. The challenges are mainly related to the graphical

representation and the mapping of features in AML. Moreover, general challenges that are

issued, when non–congruent structures have to be mapped to each other, complicate the

implementation.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 64

6 Conclusion

In summary, STEP AP242 provides the structures to represent knowledge elements that

contain design intent and therefore also enables the transfer of such knowledge elements

between CAD and KBE environments. Still, the data transfer between the two systems is

limited by the implementation of their STEP interfaces. Additionally, the complete transfer

of data models is only possible, if the data structures in both systems can be mapped to

the neutral exchange structures without loss of information. This in turn is only possible, if

the vendors commit themselves to only using structures that can be mapped to the neutral

exchange file.

The final chapter contains suggestions for potential next steps to further investigate the pos-

sibilities of knowledge transfer between KBE and CAD environments including possibilities

that exceeded the scope of this work and ones that build on the findings of this work.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 65

7 Future work

7. Future work

The implementation of the translator in this thesis is reasonably simplified, such that the

typically very extensive development efforts of a STEP binding are reduced. The main

shortcut in each implementation step is the implementation of only those elements that are

necessary to translate the example geometry and the disregard of the rest. This section

discusses the different steps and their shortcomings to provide starting points for further

developments.

First, generating the example STEP file with the EDM from Jotne by using query schemas

was an effective way to produce a single geometry. However, this is not a very universal

approach. In order to exploit the full capacity of EDM, the database should be accessed with

one of the bindings. Additionally, the possibilities of a direct binding between EDM and

AML should be explored.

Next, the PLY parser that reads the EXPRESS schemas is complete regarding the grammat-

ical interpretation of the EXPRESS structures. The part that generates the AML code how-

ever only uses the entity declarations and ignores the rest. Therefore, TYPES, CONSTANTS,

RULES and FUNCTIONS are not mapped to AML classes. Hence, a strategy has to be de-

veloped on how to implement these declarations into AML. In order to use the TYPES for

example, type checking has to be implemented. Together with the RULES, the DERIVED

ATTRIBUTES can be implemented.

The STEP file parser is able to read the STEP files and to store the entities in an AML file.

While the resulting transfer file can be processed with an AML function, it only supports the

population of simple entity types. Therefore, in order to be able to import other files than the

one created with the EDM, the implementation of complex entity types is an essential next

step. Other functionalities that still have to be implemented are CONSTRAINTS, FUNCTIONS,

RULES, DERIVED ATTRIBUTES and more. Instead of using the native AML geometrical

object classes to implement the graphical representation, the :vgl functions should be used

to define a representation of each of the mapped AML classes that contains geometry.

Finally, the converters could be written in C in order to implement their compiled code

into AML. This would enable the direct import from within AML, without the need to run

external programs.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 66

Bibliography

Bibliography

AFNet (2015). AFNeT STEP AP242 Benchmark: Test report for the STEP AP242 Bench-

mark #1: Short Report (cited on p. 38).

Barber, Sharon L. et al. (2010). “Experience in Development of Translators for AP203 Edition

2 Construction History”. In: Computer-Aided Design and Applications 7.4, pp. 565–578.

issn: 1686-4360 (cited on pp. 2, 6, 40).

Chapman, C. and M. Pinfold (1999). “Design engineering—a need to rethink the solution

using knowledge based engineering”. In: Knowledge-Based Systems 12.5-6, pp. 257–267.

issn: 09507051 (cited on p. 2).

Coronado and Jose (2014). STEP standard support in Creo: AP 242 implementation in

Creo. url: http://www.asd-ssg.org/c/document_library/get_file?

uuid=f11b5a3a-5594-4f79-90be-384f452ac94f&groupId=11317 (visited on

09/15/2015) (cited on p. 38).

Feeney, Allison Barnard and Thomas Hedberg (2014). STEP: Standard for the Exchange of

Product model data. MBE Summit 2014. url: http://www.nist.gov/el/msid/

upload/16_aBarnardFeeney.pdf (visited on 09/15/2015) (cited on p. 33).

Feeney, Allison Barnard, Simon P. Frechette, and Vijay Srinivasan (2015). “A Portrait of

an ISO STEP Tolerancing Standard as an Enabler of Smart Manufacturing Systems”.

In: Journal of Computing and Information Science in Engineering 15.2, p. 21005. issn:

1530-9827 (cited on pp. 31, 32).

Feldhusen, Jörg et al., eds. (2013). Pahl/Beitz Konstruktionslehre. Berlin: Springer Vieweg.

isbn: 978-3-642-29568-3 (cited on p. 1).

Fischer, Bryan R. (2015). “A Step Up: A Neutral File Format Brings More Information into

Play”. In: Mechanical Engineering-CIME March (cited on p. 32).

Fish, Jonathan and Stephen Scrivener (1990). “Amplifying the Mind’s Eye: Sketching and

Visual Cognition”. In: Leonardo 23.1, p. 117. issn: 0024094X (cited on p. 2).

ISO 10303. 21:2002: Clear text encoding of the exchange structure. In: ISO 10303 - Product

data representation and exchange. 21:2002 (cited on pp. 25, 27, 59).

ISO 10303. 203:2005: Configuration controlled 3D designs: Ed.2. In: ISO 10303 - Product

data representation and exchange. 203:2005 (cited on p. 5).

ISO 10303. 31:1994: Conformance testing methodology and framework: General concepts. In:

ISO 10303 - Product data representation and exchange. 31:1994 (cited on pp. 59, 60).

ISO 10303. 111:2007: Elements for the procedural modelling of solid shapes. In: ISO 10303 -

Product data representation and exchange. 111:2007 (cited on pp. 31, 51).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 67

http://www.asd-ssg.org/c/document_library/get_file?uuid=f11b5a3a-5594-4f79-90be-384f452ac94f&groupId=11317
http://www.asd-ssg.org/c/document_library/get_file?uuid=f11b5a3a-5594-4f79-90be-384f452ac94f&groupId=11317
http://www.nist.gov/el/msid/upload/16_aBarnardFeeney.pdf
http://www.nist.gov/el/msid/upload/16_aBarnardFeeney.pdf

Bibliography

ISO 10303. 242:2014: Managed model based 3D engineering. In: ISO 10303 - Product data

representation and exchange. 242:2014 (cited on p. 32).

ISO 10303. 112:2006: Modelling commands for the exchange of procedurally represented 2D

CAD models. In: ISO 10303 - Product data representation and exchange. 112:2006 (cited

on p. 6).

ISO 10303. 1:1994: Overview and fundamental principles. In: ISO 10303 - Product data rep-

resentation and exchange. 1:1994 (cited on pp. 16, 18).

ISO 10303. 108:2005: Parameterization and constraints for explicit geometric product models.

In: ISO 10303 - Product data representation and exchange. 108:2005 (cited on p. 30).

ISO 10303. 108:2005: Parameterization and constraints for explicit geometric product models:

Cor.1. In: ISO 10303 - Product data representation and exchange. 108:2005 (cited on

p. 30).

ISO 10303. 55:2005: Procedural and hybrid representation. In: ISO 10303 - Product data

representation and exchange. 55:2005 (cited on pp. 28, 29).

ISO 10303. 22:1998: Standard data access interface. In: ISO 10303 - Product data represen-

tation and exchange. 22:1998 (cited on p. 28).

ISO 10303. 11:2004: The EXPRESS language reference manual. In: ISO 10303 - Product data

representation and exchange. 11:2004 (cited on pp. 10, 21, 22, 24, 46–48, 59, 61, 112, 122,

164).

ISO 10303 (2009). Whitepaper AP242 ED1 (cited on p. 32).

ISO TC 184/SC4 N1863 (2005). Guidelines for the content of application protocols that use

application modules (cited on p. 20).

Kim, Byung Chul et al. (2011). “A method to exchange procedurally represented 2D CAD

model data using ISO 10303 STEP”. In: Computer-Aided Design 43.12, pp. 1717–1728.

issn: 00104485 (cited on p. 6).

Kim, Junhwan et al. (2008). “Standardized data exchange of CAD models with design intent”.

In: Computer-Aided Design 40.7, pp. 760–777. issn: 00104485 (cited on pp. 5, 6, 12, 13,

31).

La Rocca, Gianfranco (2012). “Knowledge based engineering: Between AI and CAD. Review

of a language based technology to support engineering design”. In: Advanced Engineering

Informatics 26.2, pp. 159–179. issn: 14740346 (cited on pp. 2, 9, 33).

Loffredo, David (1999). Fundamentals of STEP Implementation (cited on pp. 18, 19, 28).

Lützenberger, Johannes et al. (2012). Linked Knowledge in Manufacturing, Engineering and

Design for Next-Generation Production (cited on p. 6).

Owen, Jon (1993). STEP - An introduction. Product data engineering. Winchester: Informa-

tion Geometers. isbn: 1874728046 (cited on pp. 11, 16).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 68

Bibliography

Pratt, Michael J. (1997). “Extension of STEP for the Representation of Parametric and

Variational Models”. In: CAD Systems Development, pp. 237–250 (cited on p. 14).

Pratt, Michael J. (2001). “Introduction to ISO 10303—the STEP Standard for Product Data

Exchange”. In: Journal of Computing and Information Science in Engineering 1.1, p. 102.

issn: 1530-9827 (cited on p. 16).

Pratt, Michael J. and Junhwan Kim (2006). “Experience in the Exchange of Procedural Shape

Models using ISO 10303 (STEP)”. In: (cited on pp. 1, 6, 13–15, 29).

Prawel, David (2010). Collaboration & Interoperability Market Report 2010 (cited on pp. 4,

17, 60).

Reynolds, Richard (2002). Strategy for Product Data throughout the Life Cycle: Memorandum

for the Air Force, Navy, and Army Acquisition (cited on p. 4).

SCRA (2006). “STEP APPLICATION HANDBOOK: ISO 10303: VERSION 3”. In: (cited

on pp. 19, 24, 31).

Seo, Tae-Sul et al. (2005). “Sharing CAD models based on feature ontology of commands

history”. In: International Journal of CAD/CAM Vol 5, No 1 (cited on p. 5).

STEP Tools Software (2010). ST-Developer Tools Reference Manual. Ed. by STEPtools (cited

on pp. 19, 20).

Stiteler, Mike (2004). CHAPS Program Final Report: Improving affordability through intelli-

gent CAD data exchange (cited on pp. 1, 3–5, 59).

TechnoSoft (2010). AML 5.0B5 Reference Manual (cited on pp. 34, 50, 51).

Vettermann, Steven (2015). ProSTEP iViP Webinar: STEP AP242 - A report from practice

(cited on p. 32).

Norwegian University of Science and Technology
Department of Engineering Design and Materials 69

A File structure

A. File structure

parsed by

used

by

generates

populates

parsed by

/

00 shared data

mim lf.exp

01 binding

data

iso-10303-11--2004.bnf

5 templ files ...

doc

out

classes

1727 files ...

systems

main-system

sources

feature classes.aml

geometric r(...).aml

main.aml

populate.aml

system.def

types

370 files ...

pre parser graph.csv

pre parser output.py

src

pre lexer.py

pre parser.py

pre parsetab.py

README.txt

schema lexer.py

schema parser.py

schema parsetab.py

schema write aml.py

/

02 p21 file

data

database

45 files ...

example ap203.stp

doc

password database.txt

output

example ap242.stp

src

changed query script.cmd

log.dia

procedural query.qex

03 data transfer

data

doc

out

src

p21 lexer.py

p21 parser.py

p21 populate.py

parsetab.py

README.txt

used by

generates edited

manually

used by

used by

loaded into

EDMS

used by

used by

generates

Figure A.1.: File dependencies of binding , p21 file and data transfer .
schema write aml.py generates AML classes out of a STEP schema,
procedural query.qex populates the EDM model with AP242 entities,
p21 populate.py parses p21 STEP files and generates AML output.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 70

B EDM commands

B. EDM commands

The following EDM commands represent the commands in the EDM GUI, which are described

in section 3.2.2.

Database

Create/Open

Create/Open

Directory Path: \...

Database: DB1

Password: Db1#123

The following command loads an EXPRESS schema into EDM.

Schemata

Define Schema

Define Schema

File name: mim lf.exp

Schema to store: ap242 ... mim lf

A data model has to be created in order to populate it.

Data

Create

Model

Create Model

Repository: DataRepository

Schema: ap242 ... mim lf

Model: model name

Norwegian University of Science and Technology
Department of Engineering Design and Materials 71

B EDM commands

Data

Open/Close

Model

Open/Close Model

Repository: DataRepository

Model: model name

Access Mode: sdaiRW

A query schema can be loaded into EDM with this command. In order to define a query

schema, the data models have to be closed.

Schemata

Query Schema

Define Schema

Define Schema

File name: ...\proc query.qex

Diagnostic file: \...

Subsequently, the query schema can be executed on the data model.

Data

Query

Execute Query

Execute Query

Repository: DataRepository

Model: model name

Query Schema: ...

Query: ...

The data model is exported as STEP file with the following command.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 72

B EDM commands

Data

Export Model

Export Model

Repository: DataRepository

Model: model name

STEP file: \...

The following command deletes the content of a data model.

Data

Delete

Model Contents

Delete Model Contents

Repository: DataRepository

Model: model name

Norwegian University of Science and Technology
Department of Engineering Design and Materials 73

C Code listings

C. Code listings

C.1. EDM – procedural query

2 QUERY_SCHEMA AP242_entity_output FOR

↪→ AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF;

3

4 GLOBAL

5 DECLARE inst INSTANCE OF

↪→ AP242_MANAGED_MODEL_BASED_3D_ENGINEERING_MIM_LF;

6 END_GLOBAL;

18

19 FUNCTION fct_normalize (vec : LIST[3:3] OF REAL) : LIST[3:3] OF REAL;

20 LOCAL

21 vec_norm : LIST[3:3] OF REAL;

22 vec_abs : positive_length_measure;

23 vec_abs_quad : positive_length_measure := 0;

24 END_LOCAL;

25 REPEAT i:= LOINDEX(vec) TO HIINDEX(vec);

26 vec_abs_quad += vec[i] * vec[i];

27 END_REPEAT;

28 vec_abs := SQRT(vec_abs_quad);

29 REPEAT i:= LOINDEX(vec) TO HIINDEX(vec);

30 vec_norm[i] := vec[i] / vec_abs;

31 END_REPEAT;

32 return(vec_norm);

33 END_FUNCTION;

36 FUNCTION fct_edge_curve (pnt_start, pnt_end : CARTESIAN_POINT; suffix :

↪→ STRING) : EDGE_CURVE;

37 LOCAL

38 --cp_start, cp_end : CARTESIAN_POINT;

39 d_1 : DIRECTION;

40 v_1 : VECTOR;

41 l_1 : LINE;

42 vp_start, vp_end : VERTEX_POINT;

43 ec_1 : EDGE_CURVE;

44

45 END_LOCAL;

46

Norwegian University of Science and Technology
Department of Engineering Design and Materials 74

C Code listings

47 NEW PERSISTENT d_1;

48 d_1.name := ’Edge Curve Direction ’ + suffix;

49 REPEAT i:= LOINDEX(pnt_end.coordinates) TO HIINDEX(pnt_end.

↪→ coordinates);

50 d_1.direction_ratios[i] := pnt_end.coordinates[i] - pnt_start.

↪→ coordinates[i];

51 END_REPEAT;

52 d_1.direction_ratios := fct_normalize(d_1.direction_ratios);

53

54 NEW PERSISTENT v_1;

55 v_1.name := ’Edge Curve Vector ’ + suffix;

56 v_1.orientation := d_1;

57 v_1.magnitude := 1;

58

59 NEW PERSISTENT l_1;

60 l_1.name := ’Line ’ + suffix;

61 l_1.pnt := pnt_start;

62 l_1.dir := v_1;

63

64 NEW PERSISTENT vp_start;

65 vp_start.name := ’Vertex Point Start ’ + suffix;

66 vp_start.vertex_geometry := pnt_start;

67

68 NEW PERSISTENT vp_end;

69 vp_end.name := ’Vertex Point End ’ + suffix;

70 vp_end.vertex_geometry := pnt_end;

71

72 NEW PERSISTENT ec_1;

73 ec_1.name := ’Edge Curve ’ + suffix;

74 ec_1.edge_start := vp_start;

75 ec_1.edge_end := vp_end;

76 ec_1.edge_geometry := l_1;

77 ec_1.same_sense := TRUE;

78

79 RETURN(ec_1);

80

81 END_FUNCTION; -- fct_edge_curve

85 QUERY_FUNCTION procedural_repr : STRING;

86

87 LOCAL

88

Norwegian University of Science and Technology
Department of Engineering Design and Materials 75

C Code listings

89 ------ edges ------

90 ec_1, ec_2, ec_3, ec_4 : EDGE_CURVE;

91 cp_1, cp_2, cp_3, cp_4 : CARTESIAN_POINT;

92

93 ------ rectangle ------

94 oe_1, oe_2, oe_3, oe_4 : ORIENTED_EDGE;

95 el_1 : EDGE_LOOP;

96 fb_1 : FACE_BOUND;

97 d_1, d_2 : DIRECTION;

98 cp_plane : CARTESIAN_POINT;

99 ap3_1 : AXIS2_PLACEMENT_3D;

100 p_1 : PLANE;

101 fs_1 : FACE_SURFACE;

102

103 ------ extrude ------

104 d_extr : DIRECTION;

105 bvp_extr_depth : BOUND_VARIATIONAL_PARAMETER;

106 bvp_current : positive_length_measure := 40;

107 fri_extr : FINITE_REAL_INTERVAL;

108 iar_extr : INSTANCE_ATTRIBUTE_REFERENCE; -- bvp_extr_depth

109 bpe_extr : BOUND_PARAMETER_ENVIRONMENT;

110 efs_1 : EXTRUDED_FACE_SOLID;

111

112 ------ hole ------

113 iar_hole : INSTANCE_ATTRIBUTE_REFERENCE; -- bvp_extr_depth

114 bpe_hole : BOUND_PARAMETER_ENVIRONMENT;

115 iar_cp : INSTANCE_ATTRIBUTE_REFERENCE; -- bvp_extr_depth

116 bpe_cp : BOUND_PARAMETER_ENVIRONMENT;

117 d_hole, d_hole_ref : DIRECTION;

118 cp_hole : CARTESIAN_POINT;

119 ap3_hole : AXIS2_PLACEMENT_3D;

120 swfbrh : SOLID_WITH_FLAT_BOTTOM_ROUND_HOLE;

121

122 ------ chamfer ------

123 iar_chamfer_cp1, iar_chamfer_cp2 : INSTANCE_ATTRIBUTE_REFERENCE; --

↪→ bvp_extr_depth

124 bpe_chamfer_cp1, bpe_chamfer_cp2 : BOUND_PARAMETER_ENVIRONMENT;

125 cp_edge_1, cp_edge_2 : CARTESIAN_POINT;

126 ec_chamfer : EDGE_CURVE;

127 swsoc : SOLID_WITH_SINGLE_OFFSET_CHAMFER;

128

Norwegian University of Science and Technology
Department of Engineering Design and Materials 76

C Code listings

129 ------ representation ------

130 psrs : PROCEDURAL_SHAPE_REPRESENTATION_SEQUENCE;

131 psr : PROCEDURAL_SHAPE_REPRESENTATION;

132 sdr : SHAPE_DEFINITION_REPRESENTATION;

133

134 END_LOCAL;

135 ------ edges ------

136 NEW PERSISTENT cp_1;

137 cp_1.name := ’Cartesian Point 1’;

138 cp_1.coordinates := [0,0,0];

139

140 NEW PERSISTENT cp_2;

141 cp_2.name := ’Cartesian Point 2’;

142 cp_2.coordinates := [50,0,0];

143

144 NEW PERSISTENT cp_3;

145 cp_3.name := ’Cartesian Point 3’;

146 cp_3.coordinates := [50,50,0];

147

148 NEW PERSISTENT cp_4;

149 cp_4.name := ’Cartesian Point 4’;

150 cp_4.coordinates := [0,50,0];

151

152 ec_1 := fct_edge_curve(cp_1, cp_2, ’(Edge1)’);

153 ec_2 := fct_edge_curve(cp_2, cp_3, ’(Edge2)’);

154 ec_3 := fct_edge_curve(cp_3, cp_4, ’(Edge3)’);

155 ec_4 := fct_edge_curve(cp_4, cp_1, ’(Edge4)’);

156

157 ------ rectangle ------

158 NEW PERSISTENT oe_1;

159 NEW PERSISTENT oe_2;

160 NEW PERSISTENT oe_3;

161 NEW PERSISTENT oe_4;

162 oe_1.name := ’Oriented Edge 1’;

163 oe_2.name := ’Oriented Edge 2’;

164 oe_3.name := ’Oriented Edge 3’;

165 oe_4.name := ’Oriented Edge 4’;

166 oe_1.edge_element := ec_1;

167 oe_2.edge_element := ec_2;

168 oe_3.edge_element := ec_3;

169 oe_4.edge_element := ec_4;

Norwegian University of Science and Technology
Department of Engineering Design and Materials 77

C Code listings

170 oe_1.orientation := FALSE;

171 oe_2.orientation := FALSE;

172 oe_3.orientation := FALSE;

173 oe_4.orientation := FALSE;

174

175 NEW PERSISTENT el_1;

176 el_1.name := ’Edge Loop 1’;

177 el_1.edge_list := [oe_1, oe_2, oe_3, oe_4];

178

179 NEW PERSISTENT fb_1;

180 fb_1.name := ’Face Bound 1’;

181 fb_1.bound := el_1;

182 fb_1.orientation := FALSE;

183

184 NEW PERSISTENT d_1;

185 NEW PERSISTENT d_2;

186 d_1.name := ’Plane Perpendicular Direction’;

187 d_2.name := ’Plane Reference Direction’;

188 d_1.direction_ratios := [0, 0, 1]; -- perpendicular axis to plane

189 d_2.direction_ratios := [1, 0, 0]; -- optional second axis

190

191 NEW PERSISTENT cp_plane;

192 cp_plane.name := ’Plane Reference Point’;

193 cp_plane.coordinates := [0, 0, 0];

194

195 NEW PERSISTENT ap3_1;

196 ap3_1.name := ’Plane Placement’;

197 ap3_1.location := cp_plane;

198 ap3_1.axis := d_1;

199 ap3_1.ref_direction := d_2;

200

201 NEW PERSISTENT p_1;

202 p_1.name := ’Base Plane’;

203 p_1.position := ap3_1;

204

205 NEW PERSISTENT fs_1;

206 fs_1.name := ’Base Face Surface’;

207 fs_1.bounds := [fb_1];

208 fs_1.face_geometry := p_1;

209 fs_1.same_sense := FALSE;

210

Norwegian University of Science and Technology
Department of Engineering Design and Materials 78

C Code listings

211 ------ extrude ------

212 NEW PERSISTENT d_extr;

213 d_extr.name := ’Extrusion Direction’;

214 d_extr.direction_ratios := [0, 0, 1];

215

216 NEW PERSISTENT fri_extr; -- FINITE_REAL_INTERVAL

217 fri_extr.min := 0;

218 fri_extr.min_closure := CLOSED;

219 fri_extr.max := 50;

220 fri_extr.max_closure := CLOSED;

221

222 NEW PERSISTENT bvp_extr_depth; -- BOUND_VARIATIONAL_PARAMETER

223 bvp_extr_depth.name := ’extrusion_depth’;

224 bvp_extr_depth.values_space := fri_extr;

225 bvp_extr_depth.parameter_description := ’Defines the Height of the

↪→ Cube’;

226 -- bvp_extr_depth.name := ’Extrusion Depth’; maths_variable.name

↪→ changed manually in EDMS

227 -- bvp_extr_depth.parameter_current_value := 23;

228

229 NEW PERSISTENT efs_1; -- EXTRUDED_FACE_SOLID

230 efs_1.name := ’Extruded Cube’;

231 efs_1.swept_face := fs_1;

232 efs_1.extruded_direction := d_extr;

233 efs_1.depth := bvp_current; -- parameter_current_value;

234

235 NEW PERSISTENT iar_extr; -- INSTANCE_ATTRIBUTE_REFERENCE

236 iar_extr.attribute_name := ’GEOMETRIC_MODEL_SCHEMA.

↪→ EXTRUDED_FACE_SOLID.DEPTH’;

237 iar_extr.owning_instance := efs_1;

238

239 NEW PERSISTENT bpe_extr; -- BOUND_PARAMETER_ENVIRONMENT

240 bpe_extr.syntactic_representation := bvp_extr_depth;

241 bpe_extr.semantics := iar_extr;

242

243 ------ hole ------

244 NEW PERSISTENT cp_hole; -- CARTESIAN_POINT

245 cp_hole.name := ’Hole Center Point’;

246 cp_hole.coordinates := [25, 25, bvp_current];

247

248 NEW PERSISTENT iar_hole; -- INSTANCE_ATTRIBUTE_REFERENCE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 79

C Code listings

249 iar_hole.attribute_name := ’GEOMETRIC_MODEL_SCHEMA.CARTESIAN_POINT.

↪→ COORDINATES[2]’;

250 iar_hole.owning_instance := cp_hole;

251

252 NEW PERSISTENT bpe_hole; -- BOUND_PARAMETER_ENVIRONMENT

253 bpe_hole.syntactic_representation := bvp_extr_depth;

254 bpe_hole.semantics := iar_hole;

255

256 NEW PERSISTENT d_hole; -- DIRECTION

257 d_hole.name := ’Hole Direction’;

258 d_hole.direction_ratios := [0, 0, -1];

259

260 NEW PERSISTENT d_hole_ref; -- DIRECTION

261 d_hole_ref.name := ’Hole Reference Direction’;

262 d_hole_ref.direction_ratios := [1, 0, 0];

263

264 NEW PERSISTENT ap3_hole; -- AXIS2_PLACEMENT_3D

265 ap3_hole.name := ’Hole Placement’;

266 ap3_hole.location := cp_hole;

267 ap3_hole.axis := d_hole;

268 ap3_hole.ref_direction := d_hole_ref;

269

270 NEW PERSISTENT swfbrh; -- SOLID_WITH_FLAT_BOTTOM_ROUND_HOLE

271 swfbrh.name := ’Through Hole’;

272 swfbrh.rationale := ’’;

273 swfbrh.base_solid := efs_1;

274 swfbrh.placing := ap3_hole;

275 -- derived: swfbrh.depth

276 swfbrh.segments := 1; -- for stepped holes

277 swfbrh.segment_radii := [10];

278 swfbrh.segment_depths := [bvp_current];

279 swfbrh.fillet_radius := 0;

280

281 NEW PERSISTENT iar_cp; -- INSTANCE_ATTRIBUTE_REFERENCE

282 iar_cp.attribute_name := ’GEOMETRIC_MODEL_SCHEMA.

↪→ SOLID_WITH_FLAT_BOTTOM_ROUND_HOLE.SEGMENT_DEPTHS[0]’;

283 iar_cp.owning_instance := swfbrh;

284

285 NEW PERSISTENT bpe_cp; -- BOUND_PARAMETER_ENVIRONMENT

286 bpe_cp.syntactic_representation := bvp_extr_depth;

287 bpe_cp.semantics := iar_cp;

Norwegian University of Science and Technology
Department of Engineering Design and Materials 80

C Code listings

288

289 ------ chamfer ------

290 NEW PERSISTENT cp_edge_1;

291 cp_edge_1.name := ’Start Point Chamfer’;

292 cp_edge_1.coordinates := [50,0,bvp_current];

293

294 NEW PERSISTENT cp_edge_2;

295 cp_edge_2.name := ’End Point Chamfer’;

296 cp_edge_2.coordinates := [50,50,bvp_current];

297

298 ec_chamfer := fct_edge_curve(cp_edge_1, cp_edge_2, ’(Chamfer)’);

299

300 NEW PERSISTENT iar_chamfer_cp1; -- INSTANCE_ATTRIBUTE_REFERENCE

301 iar_chamfer_cp1.attribute_name := ’GEOMETRIC_MODEL_SCHEMA.

↪→ CARTESIAN_POINT.COORDINATES[2]’;

302 iar_chamfer_cp1.owning_instance := cp_edge_1;

303

304 NEW PERSISTENT bpe_chamfer_cp1; -- BOUND_PARAMETER_ENVIRONMENT

305 bpe_chamfer_cp1.syntactic_representation := bvp_extr_depth;

306 bpe_chamfer_cp1.semantics := iar_chamfer_cp1;

307

308 NEW PERSISTENT iar_chamfer_cp2; -- INSTANCE_ATTRIBUTE_REFERENCE

309 iar_chamfer_cp2.attribute_name := ’GEOMETRIC_MODEL_SCHEMA.

↪→ CARTESIAN_POINT.COORDINATES[2]’;

310 iar_chamfer_cp2.owning_instance := cp_edge_2;

311

312 NEW PERSISTENT bpe_chamfer_cp2; -- BOUND_PARAMETER_ENVIRONMENT

313 bpe_chamfer_cp2.syntactic_representation := bvp_extr_depth;

314 bpe_chamfer_cp2.semantics := iar_chamfer_cp2;

315

316 NEW PERSISTENT swsoc;

317 swsoc.name := ’Chamfer’;

318 -- swsoc.rationale := ’’;

319 swsoc.base_solid := swfbrh;

320 swsoc.blended_edges := [ec_chamfer];

321 swsoc.offset_distance := 5;

322

323 ------ representation ------

324

325 NEW PERSISTENT psrs;

326 -- psrs.name := ’Sequence’;

Norwegian University of Science and Technology
Department of Engineering Design and Materials 81

C Code listings

327 psrs.elements := [efs_1, swfbrh, swsoc];

328 -- psrs.suppressed_items := ;

329 -- psrs.rationale := ’rationale_text’;

330

331 NEW PERSISTENT psr;

332 -- psr.name ;= ’’;

333 psr.items := [psrs];

334 -- psr.representation_items := ; -- @TODO

335

336 NEW PERSISTENT sdr;

337 -- sdr.definition := ; -- @TODO

338 sdr.used_representation := psr;

339

340 RETURN(’SHAPE_DEFINITION_REPRESENTATION complete and populated’);

341

342 END_QUERY_FUNCTION;

373 END_QUERY_SCHEMA;

Listing C.1: EDM query schema that populates the data model. (File:

procedural query.qex)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 82

C
C

o
d
e

listin
g
s

C.2. AML

C.2.1. Main

1 ;; listing_start root_class "Definition of the root-class for the import."

2 (in-package :aml)

3

4 (define-class ap242-import

5 :inherit-from (

6 object

7)

8 :properties (

9)

10 :subobjects (

11)

12)

13

14 (define-method property-names-to-inspect ap242-import ()

15 (remove ’added-objects (properties (the)))

16)

17

18 ;; listing_end root_class

19

20 ;; listing_start load_class "Function to load classes on demand."

21 (defun load_class (class_name)

22 (if (subclassp (make-symbol class_name) ’object)

23 "Class already loaded"

24 (load (logical-path :class-path (concatenate class_name ".aml")))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
3

C
C

o
d
e

listin
g
s

25)

26)

27 ;; listing_end load_class

28

29 ;;; (defvar entity_hash (make-hash-table))

30

31 ;; listing_start populate "Function to walk iteratively through the hierarchy and populate the entities."

32 (defun populate (ref type_name params parent)

33 (load_class (concatenate "ap242_" type_name))

34 (let (

35 (name (make-symbol (concatenate type_name (string ref))))

36 (class (make-symbol (concatenate "ap242_" type_name)))

37 (instance (add-object parent name class))

38 (index_list (the index (:from instance)))

39)

40 (progn

41 (loop

42 for attribute in index_list

43 for count from 1 do

44 (progn

45 (let (

46 (attr attribute)

47)

48 (progn

49 (change-value (the-list (list attr) :from instance) (nth (- count 1) (eval params)));;NEW

50 ;; Check if element is list

51 (if (and (listp (nth (- count 1) (eval params)))

52 (nth (- count 1) (eval params)));; excludes nil

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
4

C
C

o
d
e

listin
g
s

53 ;;If

54 (progn

55 (let (

56 (elem_list (nth (- count 1) (eval params)))

57)

58 (progn

59 ;;(print "nested list...")

60 (loop for elem in elem_list do

61

62 ;; Check if element is reference (#...)

63 ;;******************************* Could be solved without repetiton with recursion

↪→ ...

64 (progn;;(print elem)

65 (if (symbolp elem)

66

67 ;;If

68 (progn

69 (if (eq (subseq (symbol-name elem) 0 1) "#")

70 (progn

71 (populate elem;; ref

72 (nth 0 (gethash elem populate_hash));; type-name

73 (nth 1 (gethash elem populate_hash));; (child) params

74 ;;(the-list (list name) :from parent);; parent

75 instance;; parent

76)

77)

78)

79)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
5

C
C

o
d
e

listin
g
s

80)

81)

82 ;;*******************************

83)

84)

85)

86)

87 ;;Else

88 (progn

89 ;; Check if element is reference (#...)

90 ;;*******************************

91 (if (and (symbolp (nth (- count 1) (eval params)))

92 (nth (- count 1) (eval params));; excludes nill

93 (not (eq (nth (- count 1) (eval params)) t)));; excludes t

94 ;;If

95 (progn

96 (if (eq (subseq (symbol-name (nth (- count 1) (eval params))) 0 1) "#")

97 ;;If (no Else)

98 (progn

99 ;;(print (nth 1 (gethash (nth (- count 1) (eval params)) populate_hash)));;

↪→ -> child params

100 (populate (nth (- count 1) (eval params));; ref

101 (nth 0 (gethash (nth (- count 1) (eval params)) populate_hash));;

↪→ type-name

102 (nth 1 (gethash (nth (- count 1) (eval params)) populate_hash));; (

↪→ child) params

103 ;;(the-list (list name) :from parent);; parent

104 instance;; parent

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
6

C
C

o
d
e

listin
g
s

105)

106 (change-value (the-list (list attr) :from instance)

107 (make-symbol (concatenate

108 (string (nth 0 (gethash (nth (- count 1) (eval

↪→ params)) populate_hash)))

109 (string (nth (- count 1) (eval params)))

110))

111)

112)

113)

114)

115)

116 ;;*******************************

117

118)

119)

120)

121)

122)

123);; loop

124)

125)

126)

127 ;; listing_end populate

128

129 ;; listing_start populate_root "Initial call of the populate function with the root entities."

130 (defun populate_root (root_entity)

131 (populate root_entity

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
7

C
C

o
d
e

listin
g
s

132 (first (gethash root_entity populate_hash))

133 (nth 1 (gethash root_entity populate_hash))

134 (the))

135)

136 ;; listing_end populate_root

137

138 ;; listing_start split-at-point "{Function to split a reference path into schema, entity, property and

↪→ index.}"

139 ;; example input: GEOMETRIC_MODEL_SCHEMA.CARTESIAN_POINT.COORDINATES[2]

140 (defun split-reference (string)

141 (setf sub_list ’())

142 (setf sub_string string)

143 (setf rest_string string)

144 (loop for point_sep from 1 to (count #\. string)

145 do (let (

146 (substr (subseq rest_string 0 (position #\. rest_string)))

147 (reststr (subseq rest_string (+ (position #\. rest_string) 1) (length rest_string)))

148)

149 (progn

150 (setf sub_string substr)

151 (setf rest_string reststr)

152 (setf sub_list (append sub_list (list sub_string)))

153)

154)

155)

156 ;; Check for index -- e.g. coordinates[1]

157 (if (= 1 (count #\[rest_string))

158 (progn

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
8

C
C

o
d
e

listin
g
s

159 (print rest_string)

160 (setf sub_string (subseq rest_string 0 (position #\[rest_string)))

161 (setf rest_string (subseq rest_string (+ (position #\[rest_string) 1) (- (length rest_string)

↪→ 1)))

162 (setf sub_list (append sub_list (list sub_string)))

163)

164)

165 (setf sub_list (append sub_list (list rest_string)))

166 (print sub_list)

167)

168 ;; listing_end split-at-point

169

170 ;; listing_start substitute-nth "Function to substitute nth element of a list."

171 (defun substitute-nth (val n list)

172 (loop for i from 0 for j in list collect (if (= i n) val j)))

173 ;; listing_end substitute-nth

174

175 (defun replace_substr (new old string)

176 (let (

177 (pos (search old string))

178 (len (length old))

179 (prefix (subseq string 0 pos))

180 (suffix (subseq string (+ pos len) (length string)))

181)

182 (progn

183 ;;(print prefix)

184 ;;(print suffix)

185 (concatenate prefix new suffix)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
8
9

C
C

o
d
e

listin
g
s

186)

187)

188)

189

190 (defun add_list_string (string)

191 (let (

192 (prefix "(list ")

193 (rest (subseq string 1 (length string)))

194)

195 (progn

196 ;;(print prefix)

197 ;;(print rest)

198 (concatenate prefix rest)

199)

200)

201)

202

203 (defvar new_formula ’nil)

204

205 (defun add-params-to-root ()

206

207 (loop for param in (children (the) :class ’ap242_bound_parameter_environment) do

208 (let (

209 (owning_inst (the-list ’(owning_inst) :from param))

210 (attr_ref (children param :class ’ap242_instance_attribute_reference))

211 (param_target (make-symbol (first (select-object

212 :test ’(object-instance (the) ’parameter_target)

213 :from param ;(the-list (list param) :from (the))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
0

C
C

o
d
e

listin
g
s

214 :eval ’(the parameter_target))))

215)

216 (param_target_index (first (select-object

217 :test ’(object-instance (the) ’parameter_target_index)

218 :from param ;(the-list (list param) :from (the))

219 :eval ’(the parameter_target_index)))

220)

221 (param_name (make-symbol (first (select-object

222 :test ’(object-instance (the) ’parameter_description)

223 :from param ;(the-list (list param) :from (the))

224 :eval ’(the name))))

225)

226 (param_value (if param_target_index

227 (nth (read-from-string param_target_index)

228 (the-list (list owning_inst param_target) :from (first attr_ref)))

229 (the-list (list owning_inst param_target) :from (first attr_ref))

230)

231)

232)

233

234 (progn

235 ;(print (the cartesian_point#75 (:from attr_ref)))

236 (print owning_inst)

237 (print (first attr_ref))

238 (print (type-of (first attr_ref)))

239 (print param_name)

240 (print param_target)

241 (print param_target_index)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
1

C
C

o
d
e

listin
g
s

242 (print param_value)

243

244 (add-property (the ap242-import) param_name param_value)

245 (if param_target_index

246 ;;(list 25.0 25.0

247 ;;(the extrusion_depth (:from (the ap242-import))))

248 (setf new_formula

249 (read-from-string

250 (add_list_string

251 (replace_substr (string param_name)

252 "xxx"

253 (format nil "˜S"

254 (substitute-nth ’(the xxx (:from (the ap242-import)))

255 (read-from-string param_target_index)

256 (the-list (list owning_inst param_target) :from (

↪→ first attr_ref))

257)))))

258)

259 (setf new_formula (read-from-string

260 (replace_substr (string param_name)

261 "xxx"

262 (format nil "˜S"

263 ’(the xxx (:from (the ap242-import)))

264

265)))

266)

267)

268

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
2

C
C

o
d
e

listin
g
s

269 ;(if param_target_index

270 (loop for node in (select-object :from (the)) do

271 (progn

272 (if (equal (object-name node) owning_inst)

273 (progn

274 ;;(print "HEUREKA!")

275 ;;(print (equal (object-name node) owning_inst))

276 (change-formula (the-list (list param_target) :from node) new_formula)

277)

278)

279)

280)

281)

282

283)

284)

285)

286

287

288

289 ;;(remove-object-from-display (current-object))

290 (delete-all-models t)

291 (create-model ’ap242-import)

292 (select-model ’ap242-import)

293 ;;(print (first root_entities))

294

295

296 (loop for root in root_entities do

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
3

C
C

o
d
e

listin
g
s

297 (progn

298 (populate_root root)

299)

300)

301

302 (add-params-to-root)

303

304 ;;(populate_root (first root_entities))

305

306

307 (draw (the))

308 (shade (the) ’facet)

309 (add-light :name ’light1 :color ’white :x 0.2 :y 0.6 :z 0.4)

310 (select-model ’name-generator)

311 ;;(render ’boundaryshaded)

312 ;;(remove-object-from-display (the box-object))

313 (regen)

Listing C.2: AML function that populates the data model and other helper functions. (File: main.aml)

C.2.2. Geometric representation classes

1 (in-package :aml)

2

3 (define-class aml_point_object

4 :inherit-from (

5 point-object

6)

7 :properties (

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
4

C
C

o
d
e

listin
g
s

8 ;; coordinates already defined in cartesian-point

9 coordinates (nth 0 (remove-duplicates

10 (select-object

11 :test ’(object-instance (the) ’coordinates)

12 :from (the superior)

13 :eval ’(the coordinates))))

14)

15 :subobjects (

16)

17)

18

19 (define-class aml_line_object

20 :inherit-from (

21 line-object

22)

23 :properties (

24 point1 (nth 0 (remove-duplicates

25 (select-object

26 :test ’(object-instance (the) ’coordinates)

27 :from (the superior)

28 :eval ’(the coordinates))))

29 point2 (nth 1 (remove-duplicates

30 (select-object

31 :test ’(object-instance (the) ’coordinates)

32 :from (the superior)

33 :eval ’(the coordinates))))

34)

35 :subobjects (

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
5

C
C

o
d
e

listin
g
s

36)

37)

38

39 (define-class aml_sewn_object

40 :inherit-from (

41 sewn-object

42)

43 :properties (

44 object_list (remove-duplicates (select-object

45 :class ’bounded-object

46 :from (the superior)))

47 ;;; object-list (remove-duplicates (select-object

48 ;;; :class ’line-object

49 ;;; :from (the superior)))

50)

51 :subobjects (

52)

53)

54

55 (define-class aml_bounded_object

56 :inherit-from (

57 bounded-object

58)

59 :properties (

60 object-list (remove-duplicates (select-object

61 :class ’line-object

62 :from (the superior)))

63 dimension (default 2)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
6

C
C

o
d
e

listin
g
s

64)

65 :subobjects (

66)

67)

68

69

70 (define-class aml_extrusion_object

71 :inherit-from (

72 extrusion-object

73 tagging-object

74)

75 :properties (

76 tag-dimensions ’(2)

77 sub-geoms-indices-list ’((0 1 2 3))

78 swept-object (first (remove-duplicates (select-object

79 :class ’bounded-object

80 :from (the superior))))

81 vector (the direction_ratios (:from (nth 0 (select-object

82 :class ’ap242_direction

83 :from (the superior)

84 :test ’(equal (object-name (the)) (the

↪→ superior extruded_direction))))))

85 distance ˆdepth

86 capped? t

87)

88 :subobjects (

89)

90)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
7

C
C

o
d
e

listin
g
s

91

92 (define-class aml_coordinate_system_class

93 :inherit-from (

94 coordinate-system-class

95)

96 :properties (

97 origin (nth 0 (remove-duplicates

98 (select-object

99 :test ’(object-instance (the) ’coordinates)

100 :from (the superior)

101 :eval ’(the coordinates))))

102 vector-i (nth 0 (remove-duplicates

103 (select-object

104 :test ’(object-instance (the) ’direction_ratios)

105 :from (the superior)

106 :eval ’(the direction_ratios))))

107 vector-j (nth 1 (remove-duplicates

108 (select-object

109 :test ’(object-instance (the) ’direction_ratios)

110 :from (the superior)

111 :eval ’(the direction_ratios))))

112)

113 :subobjects (

114

115)

116)

Listing C.3: AML geometric mapping classes. (File: geometric representation classes.aml)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
8

C
C

o
d
e

listin
g
s

C.2.3. Feature mapping classes

1 (in-package :aml)

2

3 (define-class xaml_parameter

4 :inherit-from (

5 object

6)

7 :properties (

8 owning_inst (nth 0 (remove-duplicates

9 (select-object

10 :test ’(object-instance (the) ’owning_instance)

11 :from (the superior)

12 :eval ’(the owning_instance))))

13 parameter_data (find_parameter_location (the superior))

14 parameter_name (first ˆparameter_data)

15 parameter_target (nth 1 ˆparameter_data)

16 parameter_target_index (nth 2 ˆparameter_data)

17

18)

19 :subobjects (

20)

21)

22

23

24

25 (define-method find_parameter_location xaml_parameter ()

26 (let

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
9
9

C
C

o
d
e

listin
g
s

27 (

28 (pos ’nil)

29 (name ’nil)

30 (attr ’nil)

31 (index ’nil)

32 (hierarchy_list

33 (split-reference

34 (nth 0

35 (remove-duplicates (select-object

36 :test ’(object-instance (the) ’attribute_name)

37 :from (the)

38 :eval ’(the attribute_name)))

39)

40)

41)

42)

43 (progn

44 (setq pos

45 (position

46 (string-upcase

47 (subseq (string (the owning_inst)) 0 (position #\# (string (the owning_inst)))))

48 hierarchy_list

49)

50)

51

52 (setq name (subseq (string (the owning_inst)) 0 (position #\# (string (the owning_inst)))))

53 (setq attr (nth (+ pos 1) hierarchy_list))

54 (setq index (nth (+ pos 2) hierarchy_list))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
0

C
C

o
d
e

listin
g
s

55

56)

57

58 (list name attr index)

59)

60

61)

62

63

64 (define-method assign_variable xaml_parameter ()

65 (let

66 (

67 (instance (the superior owning_inst))

68 ;;(first (children (the superior) :test ’(equal (object-name (the)) (the superior owning_inst)))))

69)

70

71 (print instance)

72 (print ˆparameter_name)

73 ;;(add-property (instance) ˆparameter_name ’((the table-width) (the tabledepth)))

74

75)

76)

77

78 (define-class xaml_flat_bottom_round_hole_feature

79 :inherit-from (

80 difference-object

81)

82 :properties (

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
1

C
C

o
d
e

listin
g
s

83 object-list (list

84 (first (children (the superior)

85 :test ’(equal (object-name (the)) (the superior base_solid))

↪→))

86 (the hole))

87)

88 :subobjects (;; @TODO: multiple holes for stepped holes (multiple segments)

89 (hole :class ’cylinder-object

90 height (first ˆˆsegment_depths)

91 diameter (first ˆˆsegment_radii)

92 solid? t

93 display? nil

94 reference-coordinate-system (nth 0 (children (the superior superior)

95 :class ’coordinate-system-class))

96 orientation (list

97 (translate (list 0.0 0.0 (half ˆheight)))

98 (rotate 90 ’(0 1 0)))

99)

100)

101)

102

103 (define-class xaml_single_offset_feature

104 :inherit-from (

105 difference-object

106)

107 :properties (

108

109 object-list (list

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
2

C
C

o
d
e

listin
g
s

110 (first (children (the superior)

111 :test ’(equal (object-name (the)) (the superior base_solid))

↪→))

112 ;;(the box1)

113 (the chamfer))

114

115 offset ˆoffset_distance

116

117 edge (the-list (list

118 (concatenate (first (gethash (first (the superior blended_edges))

↪→ populate_hash))

119 (string (first (the superior blended_edges)))))

120 :from (the superior))

121

122 d1 ’(-5.0 0.0 0.0);; @TODO: automate

123 d2 ’(0.0 0.0 -5.0);; @TODO: automate

124

125 (l_1 :class ’line-object

126 point1 (vertex-of-object (first (children (the superior superior) :class ’line-object)

↪→) 1)

127 point2 (add-vectors ˆpoint1 ˆˆd1)

128)

129 (l_2 :class ’line-object

130 point1 (vertex-of-object (first (children (the superior superior) :class ’line-object)

↪→) 1)

131 point2 (add-vectors ˆpoint1 ˆˆd2)

132)

133 (l_dia :class ’line-object

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
3

C
C

o
d
e

listin
g
s

134 point1 (the superior superior l_1 point2)

135 point2 (the superior superior l_2 point2)

136)

137)

138 :subobjects (

139 (profile :class ’bounded-object

140 object-list (list

141 ˆˆl_1

142 ˆˆl_2

143 ˆˆl_dia

144)

145 dimension 2

146)

147

148 (chamfer :class ’tangential-sweep-object

149 ;;; path-object (nth 0 (children (the superior superior) :class ’line-object))

150 swept-object ˆˆprofile

151 (path-object :class ’line-object;; @TODO: Sweep along line-object only works when

↪→ point1 = (0 0 0) !?!

152 point1 ’(0 0 0)

153 point2 (subtract-vectors (the point1 (:from (nth 0 (children (the

↪→ superior superior superior) :class ’line-object))))

154 (the point2 (:from (nth 0 (children (the

↪→ superior superior superior) :class ’line-

↪→ object))))

155);; @TODO: Direction?

156)

157)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
4

C
C

o
d
e

listin
g
s

158)

159)

Listing C.4: AML feature mapping classes. (File: feature classes.aml)

C.2.4. Populate transfer file

1 (in-package :aml)

2

3 (setf root_entities (list ’#65 ’#96 ’#103 ’#80 ’#94 ’#70))

4

5 (defvar populate_hash (make-hash-table :test ’equal))

6 (setf (gethash ’#1 populate_hash) ’("cartesian_point" (list "Cartesian Point 1" (list 0.0 0.0 0.0))))

7 (setf (gethash ’#3 populate_hash) ’("cartesian_point" (list "Cartesian Point 2" (list 50.0 0.0 0.0))))

8 (setf (gethash ’#5 populate_hash) ’("cartesian_point" (list "Cartesian Point 3" (list 50.0 50.0 0.0))))

9 (setf (gethash ’#7 populate_hash) ’("cartesian_point" (list "Cartesian Point 4" (list 0.0 50.0 0.0))))

10 (setf (gethash ’#9 populate_hash) ’("direction" (list "Edge Curve Direction (Edge1)" (list 1.0 0.0 0.0)

↪→)))

11 (setf (gethash ’#12 populate_hash) ’("vector" (list "Edge Curve Vector (Edge1)" ’#9 1.0)))

12 (setf (gethash ’#13 populate_hash) ’("line" (list "Line (Edge1)" ’#1 ’#12)))

13 (setf (gethash ’#14 populate_hash) ’("vertex_point" (list "Vertex Point Start (Edge1)" ’#1)))

14 (setf (gethash ’#15 populate_hash) ’("vertex_point" (list "Vertex Point End (Edge1)" ’#3)))

15 (setf (gethash ’#16 populate_hash) ’("edge_curve" (list "Edge Curve (Edge1)" ’#14 ’#15 ’#13 ’t)))

16 (setf (gethash ’#17 populate_hash) ’("direction" (list "Edge Curve Direction (Edge2)" (list 0.0 1.0 0.0)

↪→)))

17 (setf (gethash ’#20 populate_hash) ’("vector" (list "Edge Curve Vector (Edge2)" ’#17 1.0)))

18 (setf (gethash ’#21 populate_hash) ’("line" (list "Line (Edge2)" ’#3 ’#20)))

19 (setf (gethash ’#22 populate_hash) ’("vertex_point" (list "Vertex Point Start (Edge2)" ’#3)))

20 (setf (gethash ’#23 populate_hash) ’("vertex_point" (list "Vertex Point End (Edge2)" ’#5)))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
5

C
C

o
d
e

listin
g
s

21 (setf (gethash ’#24 populate_hash) ’("edge_curve" (list "Edge Curve (Edge2)" ’#22 ’#23 ’#21 ’t)))

22 (setf (gethash ’#25 populate_hash) ’("direction" (list "Edge Curve Direction (Edge3)" (list -1.0 0.0 0.0

↪→))))

23 (setf (gethash ’#28 populate_hash) ’("vector" (list "Edge Curve Vector (Edge3)" ’#25 1.0)))

24 (setf (gethash ’#29 populate_hash) ’("line" (list "Line (Edge3)" ’#5 ’#28)))

25 (setf (gethash ’#30 populate_hash) ’("vertex_point" (list "Vertex Point Start (Edge3)" ’#5)))

26 (setf (gethash ’#31 populate_hash) ’("vertex_point" (list "Vertex Point End (Edge3)" ’#7)))

27 (setf (gethash ’#32 populate_hash) ’("edge_curve" (list "Edge Curve (Edge3)" ’#30 ’#31 ’#29 ’t)))

28 (setf (gethash ’#33 populate_hash) ’("direction" (list "Edge Curve Direction (Edge4)" (list 0.0 -1.0 0.0

↪→))))

29 (setf (gethash ’#36 populate_hash) ’("vector" (list "Edge Curve Vector (Edge4)" ’#33 1.0)))

30 (setf (gethash ’#37 populate_hash) ’("line" (list "Line (Edge4)" ’#7 ’#36)))

31 (setf (gethash ’#38 populate_hash) ’("vertex_point" (list "Vertex Point Start (Edge4)" ’#7)))

32 (setf (gethash ’#39 populate_hash) ’("vertex_point" (list "Vertex Point End (Edge4)" ’#1)))

33 (setf (gethash ’#40 populate_hash) ’("edge_curve" (list "Edge Curve (Edge4)" ’#38 ’#39 ’#37 ’t)))

34 (setf (gethash ’#41 populate_hash) ’("oriented_edge" (list "Oriented Edge 1" "*" "*" ’#16 nil)))

35 (setf (gethash ’#42 populate_hash) ’("oriented_edge" (list "Oriented Edge 2" "*" "*" ’#24 nil)))

36 (setf (gethash ’#43 populate_hash) ’("oriented_edge" (list "Oriented Edge 3" "*" "*" ’#32 nil)))

37 (setf (gethash ’#44 populate_hash) ’("oriented_edge" (list "Oriented Edge 4" "*" "*" ’#40 nil)))

38 (setf (gethash ’#45 populate_hash) ’("edge_loop" (list "Edge Loop 1" (list ’#41 ’#42 ’#43 ’#44))))

39 (setf (gethash ’#47 populate_hash) ’("face_bound" (list "Face Bound 1" ’#45 nil)))

40 (setf (gethash ’#48 populate_hash) ’("direction" (list "Plane Perpendicular Direction" (list 0.0 0.0 1.0

↪→))))

41 (setf (gethash ’#49 populate_hash) ’("direction" (list "Plane Reference Direction" (list 1.0 0.0 0.0)))

↪→)

42 (setf (gethash ’#52 populate_hash) ’("cartesian_point" (list "Plane Reference Point" (list 0.0 0.0 0.0)

↪→)))

43 (setf (gethash ’#54 populate_hash) ’("axis2_placement_3d" (list "Plane Placement" ’#52 ’#48 ’#49)))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
6

C
C

o
d
e

listin
g
s

44 (setf (gethash ’#55 populate_hash) ’("plane" (list "Base Plane" ’#54)))

45 (setf (gethash ’#56 populate_hash) ’("face_surface" (list "Base Face Surface" (list ’#47) ’#55 nil)))

46 (setf (gethash ’#58 populate_hash) ’("direction" (list "Extrusion Direction" (list 0.0 0.0 1.0))))

47 (setf (gethash ’#60 populate_hash) ’("finite_real_interval" (list 0.0 ".CLOSED." 50.0 ".CLOSED.")))

48 (setf (gethash ’#61 populate_hash) ’("bound_variational_parameter" (list "extrusion_depth" ’#60 "

↪→ extrusion_depth" "Defines the Height of the Cube" "*")))

49 (setf (gethash ’#63 populate_hash) ’("extruded_face_solid" (list "Extruded Cube" ’#56 ’#58 40.0)))

50 (setf (gethash ’#64 populate_hash) ’("instance_attribute_reference" (list "GEOMETRIC_MODEL_SCHEMA.

↪→ EXTRUDED_FACE_SOLID.DEPTH" ’#63)))

51 (setf (gethash ’#65 populate_hash) ’("bound_parameter_environment" (list ’#61 ’#64)))

52 (setf (gethash ’#67 populate_hash) ’("cartesian_point" (list "Hole Center Point" (list 25.0 25.0 40.0))

↪→))

53 (setf (gethash ’#69 populate_hash) ’("instance_attribute_reference" (list "GEOMETRIC_MODEL_SCHEMA.

↪→ CARTESIAN_POINT.COORDINATES[2]" ’#67)))

54 (setf (gethash ’#70 populate_hash) ’("bound_parameter_environment" (list ’#61 ’#69)))

55 (setf (gethash ’#71 populate_hash) ’("direction" (list "Hole Direction" (list 0.0 0.0 -1.0))))

56 (setf (gethash ’#73 populate_hash) ’("direction" (list "Hole Reference Direction" (list 1.0 0.0 0.0))))

57 (setf (gethash ’#75 populate_hash) ’("axis2_placement_3d" (list "Hole Placement" ’#67 ’#71 ’#73)))

58 (setf (gethash ’#76 populate_hash) ’("solid_with_flat_bottom_round_hole" (list "Through Hole" "" ’#63

↪→ ’#75 "*" 1 (list 10.0) (list 40.0) 0.0)))

59 (setf (gethash ’#79 populate_hash) ’("instance_attribute_reference" (list "GEOMETRIC_MODEL_SCHEMA.

↪→ SOLID_WITH_FLAT_BOTTOM_ROUND_HOLE.SEGMENT_DEPTHS[0]" ’#76)))

60 (setf (gethash ’#80 populate_hash) ’("bound_parameter_environment" (list ’#61 ’#79)))

61 (setf (gethash ’#81 populate_hash) ’("cartesian_point" (list "Start Point Chamfer" (list 50.0 0.0 40.0)

↪→)))

62 (setf (gethash ’#83 populate_hash) ’("cartesian_point" (list "End Point Chamfer" (list 50.0 50.0 40.0))

↪→))

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
7

C
C

o
d
e

listin
g
s

63 (setf (gethash ’#85 populate_hash) ’("direction" (list "Edge Curve Direction (Chamfer)" (list 0.0 1.0 0.0

↪→))))

64 (setf (gethash ’#88 populate_hash) ’("vector" (list "Edge Curve Vector (Chamfer)" ’#85 1.0)))

65 (setf (gethash ’#89 populate_hash) ’("line" (list "Line (Chamfer)" ’#81 ’#88)))

66 (setf (gethash ’#90 populate_hash) ’("vertex_point" (list "Vertex Point Start (Chamfer)" ’#81)))

67 (setf (gethash ’#91 populate_hash) ’("vertex_point" (list "Vertex Point End (Chamfer)" ’#83)))

68 (setf (gethash ’#92 populate_hash) ’("edge_curve" (list "Edge Curve (Chamfer)" ’#90 ’#91 ’#89 ’t)))

69 (setf (gethash ’#93 populate_hash) ’("instance_attribute_reference" (list "GEOMETRIC_MODEL_SCHEMA.

↪→ CARTESIAN_POINT.COORDINATES[2]" ’#81)))

70 (setf (gethash ’#94 populate_hash) ’("bound_parameter_environment" (list ’#61 ’#93)))

71 (setf (gethash ’#95 populate_hash) ’("instance_attribute_reference" (list "GEOMETRIC_MODEL_SCHEMA.

↪→ CARTESIAN_POINT.COORDINATES[2]" ’#83)))

72 (setf (gethash ’#96 populate_hash) ’("bound_parameter_environment" (list ’#61 ’#95)))

73 (setf (gethash ’#97 populate_hash) ’("solid_with_single_offset_chamfer" (list "Chamfer" nil ’#76 (list

↪→ ’#92) 5.0)))

74 (setf (gethash ’#99 populate_hash) ’("procedural_shape_representation_sequence" (list nil (list ’#63 ’#76

↪→ ’#97) nil nil)))

75 (setf (gethash ’#101 populate_hash) ’("procedural_shape_representation" (list nil (list ’#99) nil)))

76 (setf (gethash ’#103 populate_hash) ’("shape_definition_representation" (list nil ’#101)))

Listing C.5: Transfer file with an hash table containing the instances from the STEP file. (File: populate.aml)

N
o
rw

eg
ia

n
U

n
iv

ersity
o
f

S
cien

ce
a
n
d

T
ech

n
o
lo

g
y

D
ep

a
rtm

en
t

o
f

E
n
g
in

eerin
g

D
esig

n
a
n
d

M
a
teria

ls
1
0
8

C Code listings

C.3. Python

As the source code of the three developed parsers is too long to be listed here, only extracts

are shown.

C.3.1. WSN converter

pre lexer.py

11 import logging

12 import ply.lex as lex

13 from ply.lex import LexError

14 import ply.yacc as yacc

15 from os import path # for relative path calls

16 import datetime

17 import re

18 import csv

19

20 special_literal_dict = {

21 ’<*’: ’LT_AST’,

22 ’--’ : ’MIN_MIN’,

23 ’**’ : ’AST_AST’,

24 ’<=’ : ’LT_EQ’,

25 ’>=’ : ’GT_EQ’,

26 ’<>’ : ’LT_GT’,

27 ’:<>:’ : ’COL_LT_GT_COL’,

28 ’:=:’ : ’COL_EQ_COL’,

29 "’’" : ’APO_APO’,

30 ’:=’ : ’COL_EQ’,

31 ’(*’ : ’LP_AST’,

32 ’*)’ : ’AST_RP’,

33 ’||’ : ’VB_VB’,

34 r’\a’ : ’UNICODE_SET’, # ONE OF !"#$%&’()*+,-./0123456789:;<=>?

↪→ @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqrstuvwxyz

↪→ {|}˜ - ignored, as anly in TAIL_REMARKS which don’t occur in

↪→ AP242

35 r’\s’ : ’SPACE’, # \s SPACE -

36 r’\q’ : ’APO’, # "’"

37 r’\n’ : ’NEWLINE’, # \n

38 r’\x8’ : ’X8’, # \b BACKSPACE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 109

C Code listings

39 r’\x9’ : ’X9’, # \t TAB

40 r’\xA’ : ’XA’, # \n NEWLINE

41 r’\xB’ : ’XB’, # \v VERTICAL_TAB

42 r’\xC’ : ’XC’, # \f FEED

43 r’\xD’ : ’XD’, # \r RETURN

44 r"’’’" : ’APO’,

45 r"’’’’" : ’APO_APO’,

46 }

47

48

49 input_file = ’../data/iso-10303-11--2004.bnf’ #_shortened

50

51 logger = logging.getLogger(__name__)

68 ##

69 ### TOKENS

70 ##

71 tokens = (

72 ’ISO’,

73 ’INDEX’,

74 ’TOKEN’,

75 ’STRING’,

76 ’NAME’,

77 ’EXPR’,

78 ’ESCAPE’,

79 ’SPECIAL_LITERAL’,

80)

81

82 ##

83 ### Lexer

84 ##

85

86 class Lexer(object):

87 tokens = tokens

88

89 def __init__(self, debug=0, optimize=0, **kwargs):

90 self.lexer = lex.lex(module=self, debug=debug, optimize=

↪→ optimize, debuglog=logger, errorlog=logger, **kwargs)

91 self.input_length = 0

92 self.reset()

93

94 def input(self, s):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 110

C Code listings

95 self.lexer.input(s)

96 self.input_length += len(s)

97

98 def reset(self):

99 self.lexer.lineno = 1

100

101 def token(self):

102 try:

103 return next(self.lexer)

104 except StopIteration:

105 return None

106

107 def t_ISO(self, t):

108 r’iso-10303-11:2004’

109 return t

110

111 def t_ESCAPE(self, t):

112 r’\\(x.|s|q|a)’

113 return t

114

115 def t_SPECIAL_LITERAL(self, t):

116 r"’[<>*-=:(’’)\(\)]{1,3}’"

117 return t

169 ##

170 # Simple Model

171 ##

172

173 class File:

174 def __init__(self, iso, *tokens): #*tokens: list of tokens, **

↪→ dictionary

175 self.iso = iso

176 self.tokens = list(*tokens)

177

178 class ISO:

179 def __init__(self, iso):

180 self.iso_string = iso

181

182 class Token:

183 def __init__(self, token, regex):

184 self.token = token

185 self.regex = regex

Norwegian University of Science and Technology
Department of Engineering Design and Materials 111

C Code listings

186

187 class Production:

188 def __init__(self, prod, rule):

189 self.production_name = prod

190 self.production_rule = rule

191

192 token_dict = {}

193 prod_dict = {}

194 repetition_dict = {}

195 new_terminal_group_dict = {}

Listing C.6: Lexer for the WSN rules defined in ISO 10303–11:2004. (File:

pre lexer.py)

pre parser.py

11 from pre_lexer import *

12 from os import path # for relative path calls

13 import datetime

14 import re

15 import csv

16

17 input_file = ’../data/iso-10303-11--2004.bnf’ #_shortened

18

19 ##

20 ### LEXER Test

21 ##

22

23 lexer = Lexer()

24 #lexer.build()

25 #lexer.token_count = 0 # Set the initial count

26

27 # Give the lexer some input

28 f = open(input_file,’r’)

29 data = ""

30 while 1:

31 line = f.readline()

32 if not line:break

33 data += line

34 f.close()

35 data = "’<*’"

36 print data

Norwegian University of Science and Technology
Department of Engineering Design and Materials 112

C Code listings

37 lexer.input(data)

38

39 # Tokenize

40 while True:

41 tok = lexer.token()

42 if not tok:

43 break # No more input

44 print(tok)

45

46 print ’LEXER Test done.’

47

48 ##

49 ### Parser

50 ##

51 class Parser(object):

52 tokens = tokens

53

54

55 def __init__(self, lexer=None, debug=0):

56 self.lexer = lexer if lexer else Lexer()

57 self.add_group_count = 0

58 self.add_stack_count = 0

59

60 try: self.tokens = lexer.tokens

61 except AttributeError: pass

62

63 self.parser = yacc.yacc(module=self, debug=debug, debuglog=

↪→ logger, errorlog=logger, tabmodule=’pre_parsetab’)

64 self.reset()

65

66 def parse(self, data, **kwargs):

67 self.lexer.reset()

68 self.lexer.input(data)

69

70 if ’debug’ in kwargs:

71 result = self.parser.parse(lexer=self.lexer, debug=logger,

72 ** dict((k, v) for k, v in

↪→ kwargs.iteritems() if k

↪→ != ’debug’))

73 else:

74 result = self.parser.parse(lexer=self.lexer, **kwargs)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 113

C Code listings

75 return result

76

77 def reset(self):

78 self.refs = {}

79 self.is_in_exchange_structure = False

80

81 def p_file(self, p):

82 ’’’p_file : p_iso p_token_list p_production_list’’’

83 p[0] = File(p[1], p[2])

84

85 def p_iso(self, p): # ISO Part

86 ’’’p_iso : ’;’ ’;’ ISO’’’

87 p[0] = ISO(p[3])

88

89 def p_token(self, p):

90 ’’’p_token : INDEX TOKEN ’=’ p_AND_string ’.’ ’’’

91 token_dict[p[2]] = p[4]

92 p[0] = Token(p[2], p[4])

93

94 def p_token_list(self, p):

95 ’’’p_token_list : p_token

96 | p_token_list p_token’’’

97 try: p[0] = p[1] + [p[2]]

98 except IndexError: p[0] = [p[1]]

99

100 def p_empty(self, p):

101 ’’’empty :’’’

102 pass

103

104 def p_production(self, p):

105 ’’’p_production : INDEX p_AND_string ’=’ p_AND_string ’.’

106 | INDEX p_AND_string ’=’ p_OR_list ’.’ ’’’

107 prod_dict[p[2]] = p[4]

108 p[0] = Production(p[2], p[4])

109

110 def p_production_list (self, p):

111 ’’’p_production_list : p_production

112 | p_production_list p_production’’’

113 ## for i in p:

114 ## print i

115 try: p[0] = p[1] + [p[2]]

Norwegian University of Science and Technology
Department of Engineering Design and Materials 114

C Code listings

116 except IndexError: p[0] = [p[1]]

117

118 def p_name_to_string(self, p): # makes it much easier, distinguish

↪→ later

119 ’’’p_string : STRING

120 | NAME

121 | EXPR

122 | TOKEN

123 | ESCAPE

124 | SPECIAL_LITERAL’’’

125

126 #print p[1]

127 p[0] = p[1]

128 for spec in special_literal_dict:

129 if spec in p[1]:# and p[1] != "’’’" and p[1] != "’’’’" :

130 #arg = re.sub[r’"’,’’,p[1]]

131 #print arg

132 try:

133 p[0] = special_literal_dict[p[1]]

134 print p[1] + ’ --> ’ +special_literal_dict[p[1]]

135 except KeyError:

136 p[0] = special_literal_dict[p[1][1:-1]]

137 print p[1] + ’ --> ’ +special_literal_dict[p

↪→ [1][1:-1]]

138

139 ### AND/OR Syntax:

140 def p_AND_string(self, p):

141 ’’’p_AND_string : p_string

142 | p_AND_string p_string ’’’ # ?

143 try: p[0] = p[1] + ’ ’ + p[2]

144 except IndexError: p[0] = p[1]

145

146 # AND & AND

147 def p_AND_and_AND(self, p):

148 ’’’p_AND_string : p_AND_string p_AND_string ’’’ # ?

149 p[0] = p[1] + ’ ’ + p[2]

150

151 # OR & AND

152 def p_OR_and_AND(self, p):

153 ’’’p_OR_list : p_OR_list p_AND_string’’’

154 p_temp = []

Norwegian University of Science and Technology
Department of Engineering Design and Materials 115

C Code listings

155 for elem in p[1]:

156 p_temp = p_temp +[str(elem) + ’ ’ + p[2]]

157 p[0] = p_temp

158

159 # AND & OR

160 def p_AND_and_OR(self, p):

161 ’’’p_OR_list : p_AND_string p_OR_list’’’

162 p_temp = []

163 for elem in p[2]:

164 p_temp = p_temp +[p[1] + ’ ’ + str(elem)]

165 p[0] = p_temp

166

167 # OR & OR

168 def p_OR_and_OR(self, p):

169 ’’’p_OR_list : p_OR_list p_OR_list’’’

170 p_temp = []

171 for elem1 in p[1]:

172 for elem2 in p[2]:

173 p_temp = p_temp +[str(elem1) + ’ ’ + str(elem2)]

174 p[0] = p_temp

175

176 # AND | AND

177 def p_AND_or_AND(self, p):

178 ’’’p_OR_list : p_AND_string ’|’ p_AND_string’’’

179 p[0] = [p[1]] + [p[3]]

180

181 # OR | AND

182 def p_OR_or_AND(self, p):

183 ’’’p_OR_list : p_OR_list ’|’ p_AND_string’’’

184 p[0] = p[1] + [p[3]]

185

186 # AND | OR

187 def p_AND_or_OR(self, p):

188 ’’’p_OR_list : p_AND_string ’|’ p_OR_list’’’

189 p[0] = [p[1]] + p[3]

190

191 # OR | OR

192 def p_OR_or_OR(self, p):

193 ’’’p_OR_list : p_OR_list ’|’ p_OR_list’’’

194 p[0] = p[1] + p[3]

195

Norwegian University of Science and Technology
Department of Engineering Design and Materials 116

C Code listings

196 ### EBNF -> BNF

197 def p_AND_repetition(self, p): # Extended Backus Naur Form {...}

↪→ Repetition zero or more times

198 ’’’p_OR_list : ’{’ p_AND_string ’}’ ’’’

199 repetition_dict[’stack_’ + str(self.add_stack_count)] = [str(p

↪→ [2]) + ’ ’ + str([]), ’stack_’ + str(self.

↪→ add_stack_count) + ’ ’ + str(p[2])]

200 p[0] = [[]] + [’stack_’ + str(self.add_stack_count)]

201 self.add_stack_count += 1

202

203 def p_OR_repetition(self, p): # Extended Backus Naur Form {...}

↪→ Repetition zero or more times

204 ’’’p_OR_list : ’{’ p_OR_list ’}’ ’’’ ### p_OR_list | (

↪→ p_OR_list + [[]])

205 p_temp = []

206 for elem in p[2]:

207 p_temp = p_temp +[str(elem) + ’ ’ + ’stack_’ + str(self.

↪→ add_stack_count)]

208 p_temp = p_temp +[str(elem)]

209 repetition_dict[’stack_’ + str(self.add_stack_count)] = p_temp

210 p[0] = [[]] + [’stack_’ + str(self.add_stack_count)]

211 self.add_stack_count += 1

242 ##

243 ### Data

244 ##

245

246 logging.basicConfig()

247 logger.setLevel(logging.DEBUG)

248

249 parser = Parser()

250 parser.reset()

251

252 # Read file and feed to parser

253 p = input_file

254 with open(p, ’rU’) as f:

255 s = f.read()

256 try:

257 result = parser.parse(s)#, debug=1)

258 print result

259 ## for obj in gc.get_objects():

260 ## if isinstance(obj, P21File):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 117

C Code listings

261 ## print obj

262 except SystemExit:

263 pass

264

265 def write_to_file(name, cont):

266 f = open(path.relpath("../out/" + name), ’w’)

267 f.write(cont)

268 f.close()

269 print ’File written...’

270

271 #look for predefined repetitions (digits...) and write repetitions into

↪→ prod_dict

272 for rep in repetition_dict:

273 dupl = False

274 for prod in prod_dict:

280 if sorted(re.findall(’[ˆ \[\]\’\"]+’, str(prod_dict[prod]))) ==

↪→ sorted(re.findall(’[ˆ \[\]\’\"]+’, str(repetition_dict[

↪→ rep]))):

281 dupl = True #’[\w]+’

282 print str(rep + ’ (’ + repetition_dict[rep][1].split()[1])

↪→ + ’) is a duplicate of ’ + prod + ’ - skipped.’

283 # format prod

284 ## print repetition_dict[rep][1].split()[1]

285 ## print str(prod)

286 ## print rep

287 prod_dict[prod] = [repetition_dict[rep][1].split()[1] + ’ ’

↪→ + str([]), str(prod) + ’ ’ + repetition_dict[rep

↪→][1].split()[1]]

288 if dupl == False:

289 #prod_dict[str(repetition_dict[rep])] = [rep + ’ ’ + str([]),

↪→ str(repetition_dict[rep]) + ’ ’ + rep]

290 prod_dict[rep] = repetition_dict[rep]

291

292 for group in new_terminal_group_dict:

293 prod_dict[group] = new_terminal_group_dict[group]

298 ##

299 ### Write to file

300 ##

301

302 # External text files

303 with open("../data/templ_main_header.txt","r") as f:

Norwegian University of Science and Technology
Department of Engineering Design and Materials 118

C Code listings

304 templ_main_header = f.read()

305 with open("../data/templ_lexer_header.txt","r") as f:

306 templ_lexer_header = f.read()

307 with open("../data/templ_lexer_test.txt","r") as f:

308 templ_lexer_test = f.read()

309 with open("../data/templ_additional_token_rules.txt","r") as f:

310 templ_additional_token_rules = f.read()

311 with open("../data/templ_productions_header.txt","r") as f:

312 templ_productions_header = f.read()

313

314 # Generated text

315 token_list = ’\n’

316 token_rules = ’’

317 prod_rules = ’\n\n’

318

319 # Token list & rules

320 for token in token_dict:

321 token_list += ’\t\’’ + str(token) + ’\’,\n’

322 token_rules += ’\tt_’ + token + ’ = ’ + str(token_dict[token]).

↪→ upper() + ’\n’

323

324 # Delete empty [] in strings (necessary, because of {...}-repetitions

325 # Replace [] with ’’ in lists

326 # Add prefix p_ in references to known productions

327 def clean_and_prefix(prod_rule):

328

329 def add_prefix_AND_string(string):

330 temp_string = ’’

331 string = re.sub(’\[\]\s’, ’’, string)

332 string = re.sub(’\s\[\]’, ’’, string)

333 string = re.sub(’\[\]’, ’’, string)

334 for split in string.split():

335 #print ’AND - split: ’ + split

336 if ’p_’ + split in prod_dict:

337 temp_string += ’p_’ + split + ’ ’

338 #print ’AND - temp: ’ + temp_string

339 else:

340 temp_string += split + ’ ’

341 #print ’AND - temp: ’ + temp_string

342 return temp_string[:-1] # cut last ’ ’

343

Norwegian University of Science and Technology
Department of Engineering Design and Materials 119

C Code listings

344 def add_prefix(list_or_string):

345 if type(list_or_string).__name__ == ’str’:

346 list_or_string = add_prefix_AND_string(list_or_string)

347 return list_or_string

348 else:

349 or_list = list_or_string

350

351 elem_index = 0

352 for elem in or_list:

353 #print ’OR - elem: ’ + str(elem)

354 #print type(elem).__name__

355 if type(elem).__name__ == ’str’:

356 #print ’OR - go to AND: ’ + elem

357 #print ’Index: ’ + str(elem_index)

358 or_list[elem_index] = add_prefix_AND_string(elem)

359 elem_index +=1

360 elif type(elem).__name__ == ’list’: # never goes in

↪→ here :)

361 print elem

362 if elem == []:

363 or_list[elem_index] = ’’ # replace [] with ’’

364 print elem + ’ transformend into: ’ + or_list[

↪→ elem_index]

365 else:

366 or_list[elem_index] = add_prefix_AND_string(

↪→ elem)

367 else:

368 print ’add_prefix for type: ’ + type(elem).__name__

↪→ + ’ not defined!’

369 # print ’or_list: ’ + str(or_list)

370 return or_list

371

372 return add_prefix(prod_rule)

373

374 prod_edges = []

375

376 prod_list = []

377 for prod in prod_dict:

378 prod_list += [prod]

379

380 for prod_elem in prod_list:

Norwegian University of Science and Technology
Department of Engineering Design and Materials 120

C Code listings

381 p_prod = ’p_’ + prod_elem

382 prod_dict[p_prod] = prod_dict.pop(prod_elem)

383

384 # Generate production rules

385 for prod in prod_dict:

386 prod_dict[prod] = clean_and_prefix(prod_dict[prod])

387 if type(prod_dict[prod]).__name__ == ’str’:

388 # write edges to csv file for visualisation in yEd

389 ## print ’____________________’

390 ## print prod

391 ## print prod_dict[prod]

392 for ref in prod_dict[prod].split():

393 prod_edges += [[prod, prod_dict[prod], ref, ’production’]]

394 prod_rules += ’\tdef ’ + prod + ’(self, p):\n\t\t’ + ’\"\"\" ’

↪→ + prod + ’ : ’ + prod_dict[prod] + ’ \"\"\"\n\t\tp[0] =

↪→ p[1] #Standard - CHANGE!? \n\n’

395 elif type(prod_dict[prod]).__name__ == ’list’:

396 # print str(prod_dict[prod])

397 # write edges to csv file for visualisation in yEd

398 for list_elem in prod_dict[prod]:

399 for ref in list_elem.split():

400 prod_edges += [[prod, prod_dict[prod], ref, ’production

↪→ ’]]

401 prod_rules += ’\tdef ’ + prod + ’(self, p):\n\t\t’ + ’\"\"\" ’

↪→ + prod + ’ : ’ + prod_dict[prod][0]

402 first = True

403 for item in prod_dict[prod]:

404 if not first:

405 prod_rules += ’\n\t\t\t\t| ’ + item

406 first = False

407 if ’stack’ in prod:

408 prod_rules += ’ \"\"\"\n\t\t’ + \

409 ’’’try: p[0] = p[1] + ’ ’ + p[2]

410 except IndexError: p[0] = p[1] #Standard - CHANGE!?

411 ’’’ + ’\n’

412 else:

413 prod_rules += ’ \"\"\"\n\t\tp[0] = p[1] #Standard - CHANGE

↪→ !? \n\n’

414 else:

415 print ’Procedure for type ’ + type(prod_dict[prod]).__name__ +

↪→ ’ is not defined!’

Norwegian University of Science and Technology
Department of Engineering Design and Materials 121

C Code listings

416

417

418 with open(’../out/pre_parser_graph.csv’, ’wb’) as myfile:

419 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)

420 for elem in prod_edges:

421 wr.writerow(elem)

422

423 # Add all together

424 file_text = templ_main_header + \

425 token_list + \

426 templ_lexer_header + \

427 token_rules + \

428 templ_additional_token_rules + \

429 templ_lexer_test + \

430 templ_productions_header + \

431 prod_rules

432

433 # Write to file

434 write_to_file(’pre_parser_output.py’, file_text)

Listing C.7: Parser for the WSN rules defined in ISO 10303–11:2004. Generates the

schema lexer.py file. (File: pre parser.py)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 122

C Code listings

C.3.2. Schema Parser

schema lexer.py

24 import logging

25 import ply.lex as lex

26 from ply.lex import LexError

27 import ply.yacc as yacc

28

29 logger = logging.getLogger(__name__)

30

31 # ensure Python 2.6 compatibility

32 if not hasattr(logging, ’NullHandler’):

33 class NullHandler(logging.Handler):

34 def handle(self, record):

35 pass

36 def emit(self, record):

37 pass

38 def createLock(self):

39 self.lock = None

40

41 setattr(logging, ’NullHandler’, NullHandler)

42

43 logger.addHandler(logging.NullHandler())

44

45

46 ## listing_start tokens "Tokens defined in ISO 10303-11."

47 ##

48 ### Tokens

49 ##

50

51 #Tokend defined in 10303-11

52 tokens = (

53 ’FORMAT’,

54 ’GENERIC’,

55 ’ENTITY’,

56 ’EXP’,

57 ’TRUE’,

58 ’BY’,

59 ’END_REPEAT’,

60 ’LOG2’,

Norwegian University of Science and Technology
Department of Engineering Design and Materials 123

C Code listings

194 ’UNICODE_SET’,

195 ’SPACE’,

196 ’X8’, # \x8 # only used in simple_string_literal

197 ’X9’, # \x9

198 #’XA’, # \xA

199 ’XB’, # \xB

200 ’XC’, # \xC

201 ’XD’, # \xD

202 #special characters

203 ’BS’, # ’\’

204)

205 ## listing_end tokens

206

207 ## listing_start token_rules "Token Rules defined in ISO 10303-11."

208 ##

209 ### Lexer (Token Rules)

210 ##

211

212 class Lexer(object):

213 tokens = tokens

214 states = (

215 (’preamble’,’exclusive’),

216)

227 def __init__(self, debug=0, optimize=0, header_limit=4096, **kwargs

↪→):

228 self.lexer = lex.lex(module=self, debug=debug, optimize=

↪→ optimize, debuglog=logger, errorlog=logger, **kwargs)

229 self.input_length = 0

230 self.header_limit = header_limit

231 self.reset()

232

233 def input(self, s):

234 self.lexer.input(s)

235 self.input_length += len(s)

236

237 def reset(self):

238 self.lexer.lineno = 1

239 self.lexer.begin(’preamble’)

240 print ’preamble state’

241

242 def token(self):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 124

C Code listings

243 try:

244 return next(self.lexer)

245 except StopIteration:

246 return None

247

248 def t_preamble_SCHEMA(self, t):

249 r’SCHEMA’

250 t.lexer.begin(’INITIAL’)

251 print ’initial state’

252 return t

253

254 def t_preamble_error(self, t):

255 t.lexer.skip(1)

256

257 t_FORMAT = ’FORMAT’

258 t_GENERIC = ’GENERIC’

259 t_ENTITY = ’ENTITY’

260 t_EXP = ’EXP’

261 t_TRUE = ’TRUE’

262 t_BY = ’BY’

408 #special characters

409 t_BS = r’\\’

410

411 # ’ literal?

412 literals = ’abcdefghijklmnopqrstuvwxyz’ + \

413 ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ + \

414 ’0123456789’ + \

415 ’()’ + \

416 ’"’ + \

417 "!#$%&+,-./:;<=>?@[\]ˆ_{|}˜" + \

418 ’*’

428 def t_preamble_COMMENT(self, t): # _ALL_ doesn’t work!?

429 r’\(*[ˆ*]**\)’

430 return t

431

432 def t_COMMENT(self, t):

433 r’\(*[ˆ*]**\)’

434 return t

435

436 def t_ALL_newline(self, t):

437 r’\n+’

Norwegian University of Science and Technology
Department of Engineering Design and Materials 125

C Code listings

438 t.lexer.lineno += len(t.value)

439

440 # Ignored characters (whitespace)

441 ## t_ignore = ’ \t’

442 def t_SPACETAB(self,t):

443 r’[\t]+’

444 #print "Space(s) and/or tab(s)"

445 ## def t_SPACETAB(self,t):

446 ## r’[]{2,}|[\t]+’

447 ## print "Spaces and/or tab(s)"

448

449 # Error handling rule

450 def t_error(self, t):

451 print("Illegal character ’%s’" % t.value[0])

452 t.lexer.skip(1)

453

454 #literals = ’()=;,*$.|{}[]%’

455

456 def test(self,data):

457 self.lexer.input(data)

458 while True:

459 tok = self.lexer.token()

460 if not tok:

461 break

462 print(tok)

Listing C.8: EXPRESS schema lexer. (File: schema lexer.py)

schema parser.py

1 from schema_lexer import *

2 from os import path # for relative path calls

3 import re

4 import pdb

5

6 input_file = ’../../00_shared_data/mim_lf.exp’

7

8

9 ##

10 ### LEXER Test

11 ##

12 def lexer_test():

Norwegian University of Science and Technology
Department of Engineering Design and Materials 126

C Code listings

13 lexer = Lexer()

14 #lexer.build()

15 #lexer.token_count = 0 # Set the initial count

16

17 # Give the lexer some input

18 f = open(input_file,’r’)

19 data = ""

20 while 1:

21 line = f.readline()

22 if not line:break

23 data += line

24 f.close()

25 #data= ’UNICODE_empty’

26 lexer.input(data)

27

28 # Tokenize

29 while True:

30 tok = lexer.token()

31 if not tok:

32 break # No more input

33 print(tok)

34

35 print ’LEXER Test done.’

36

37

38 ##

39 # Simple Model

40 ##

41

42 #p_type_decl : TYPE p_type_id ’=’ p_underlying_type ’;’ p_where_clause

↪→ END_TYPE ’;’

43 class Type_decl:

44 def __init__(self, type_id, underlying_type, where_clause):

45 self.type_id = type_id

46 self.underlying_type = underlying_type

47 self.where_clause = where_clause

48

49 #p_explicit_attr : p_attribute_decl ’:’ OPTIONAL p_parameter_type ’;’

50 class Explicit_attr:

51 def __init__(self, attribute_decl, OPTIONAL, parameter_type):

52 self.attribute_decl = attribute_decl

Norwegian University of Science and Technology
Department of Engineering Design and Materials 127

C Code listings

53 self.OPTIONAL = OPTIONAL

54 self.parameter_type = parameter_type

55

56 #p_subsuper : p_supertype_constraint p_subtype_declaration

57 class Subsuper:

58 def __init__(self, supertype_constraint, subtype_declaration):

59 self.supertype_constraint = supertype_constraint

60 self.subtype_declaration = subtype_declaration

61

62

63 # ENTITY p_entity_id p_subsuper ’;’

64 class Entity_head:

65 def __init__(self, entity_id, subsuper):

66 self.entity_id = entity_id

67 self.subsuper = subsuper

68

69 # p_stack_25 p_derive_clause p_inverse_clause p_unique_clause

↪→ p_where_clause

70 class Entity_body:

71 def __init__(self, explicit_attr, derive_clause, inverse_clause,

↪→ unique_clause, where_clause):

72 self.explicit_attr = explicit_attr

73 self.derive_clause = derive_clause

74 self.inverse_clause = inverse_clause

75 self.unique_clause = unique_clause

76 self.where_clause = where_clause

77

78 # p_entity_head p_entity_body END_ENTITY ’;’

79 class Entity_decl:

80 def __init__(self, entity_head, entity_body):

81 self.entity_head = entity_head

82 self.entity_body = entity_body

83

84 ## listing_start class_model "Extract of the class model representing

↪→ the EXPRESS Structure."

85 # p_schema_body : p_stack_45 p_constant_decl p_stack_46 # p_stack_45:

↪→ p_interface_specification # p_stack_46: declarations

86 class Schema_body:

87 def __init__(self, interface_specification , declarations):

88 self.interface_specification = interface_specification

89 self.declarations = declarations

Norwegian University of Science and Technology
Department of Engineering Design and Materials 128

C Code listings

90

91 #p_schema_decl : SCHEMA p_schema_id p_schema_version_id ’;’

↪→ p_schema_body END_SCHEMA

92 class Schema_decl:

93 def __init__(self, schema_id, schema_version_id, schema_body):

94 self.schema_id = schema_id

95 self.schema_version_id = schema_version_id

96 self.schema_body = schema_body

97

98 #p_syntax : p_schema_decl

99 class Syntax:

100 def __init__(self, schema_decl):

101 self.schema_decl = schema_decl

102 # ...

103 ## listing_end class_model

104

105 ##

106 ### Productions

107 ##

108

109 class Parser(object):

110 tokens = tokens

111

112 def __init__(self, lexer=None, debug=0):

113 self.lexer = lexer if lexer else Lexer()

114

115 try: self.tokens = lexer.tokens

116 except AttributeError: pass

117

118 self.parser = yacc.yacc(module=self, debug=debug, debuglog=

↪→ logger, errorlog=logger, tabmodule=’schema_parsetab’)

119 self.reset()

120

121 def parse(self, data, **kwargs):

122 self.lexer.reset()

123 self.lexer.input(data)

124

125 if ’debug’ in kwargs:

126 result = self.parser.parse(lexer=self.lexer, debug=logger,

↪→ ** dict((k, v) for k, v in kwargs.iteritems() if k

↪→ != ’debug’))

Norwegian University of Science and Technology
Department of Engineering Design and Materials 129

C Code listings

127 else:

128 result = self.parser.parse(lexer=self.lexer, **kwargs)

129 return result

130

131 def reset(self):

132 self.refs = {}

133 self.is_in_exchange_structure = False

134

135 def p_result(self, p):

136 """ p_result : p_syntax """

137 p[0] = p[1]

188 def p_syntax(self, p):

189 """ p_syntax : p_schema_decl

190 | p_syntax p_schema_decl """

191 if len(p) == 3:

192 p[0] = p[1] + p[2]

193 elif len(p) == 2:

194 p[0] = Syntax(p[1])

195 else:

196 print ’Indexerror in p_syntax with len(p):’

197 print len(p)

583 def p_entity_body_1234_5(self, p): #p_stack_25: p_explicit_attr

584 """ p_entity_body : p_stack_25 p_derive_clause p_inverse_clause

↪→ p_unique_clause p_where_clause

585 | p_stack_25 p_derive_clause p_inverse_clause

↪→ p_unique_clause """

586 if len(p) == 6:

587 p[0] = Entity_body(p[1], p[2], p[3], p[4], p[5])

588 elif len(p) == 5:

589 p[0] = Entity_body(p[1], p[2], p[3], p[4], [])

590 else:

591 print ’Indexerror in p_entity_body with len(p):’

592 print len(p)

593

594 def p_entity_body_123_4(self, p): #p_stack_25: p_explicit_attr

595 """ p_entity_body : p_stack_25 p_derive_clause p_inverse_clause

↪→ p_where_clause

596 | p_stack_25 p_derive_clause p_inverse_clause

↪→ """

597 if len(p) == 5:

598 p[0] = Entity_body(p[1], p[2], p[3], p[4], [])

Norwegian University of Science and Technology
Department of Engineering Design and Materials 130

C Code listings

599 elif len(p) == 4:

600 p[0] = Entity_body(p[1], p[2], p[3], [], [])

601 else:

602 print ’Indexerror in p_entity_body with len(p):’

603 print len(p)

604

605 def p_entity_body_124_5(self, p): #p_stack_25: p_explicit_attr

606 """ p_entity_body : p_stack_25 p_derive_clause p_unique_clause

↪→ p_where_clause

607 | p_stack_25 p_derive_clause p_unique_clause

↪→ """

608 if len(p) == 5:

609 p[0] = Entity_body(p[1], p[2], [], p[3], p[4])

610 elif len(p) == 4:

611 p[0] = Entity_body(p[1], p[2], [], p[3], [])

612 else:

613 print ’Indexerror in p_entity_body with len(p):’

614 print len(p)

615

616 def p_entity_body_12_5(self, p): #p_stack_25: p_explicit_attr

617 """ p_entity_body : p_stack_25 p_derive_clause p_where_clause

618 | p_stack_25 p_derive_clause """

619 if len(p) == 4:

620 p[0] = Entity_body(p[1], p[2], [], [], p[3])

621 elif len(p) == 3:

622 p[0] = Entity_body(p[1], p[2], [], [], [])

623 else:

624 print ’Indexerror in p_entity_body with len(p):’

625 print len(p)

626

627 def p_entity_body_134_5(self, p): #p_stack_25: p_explicit_attr

628 """ p_entity_body : p_stack_25 p_inverse_clause p_unique_clause

↪→ p_where_clause

629 | p_stack_25 p_inverse_clause p_unique_clause

↪→ """

630 if len(p) == 5:

631 p[0] = Entity_body(p[1], [], p[2], p[3], p[4])

632 elif len(p) == 4:

633 p[0] = Entity_body(p[1], [], p[2], p[3], [])

634 else:

635 print ’Indexerror in p_entity_body with len(p):’

Norwegian University of Science and Technology
Department of Engineering Design and Materials 131

C Code listings

636 print len(p)

637

638 def p_entity_body_13_5(self, p): #p_stack_25: p_explicit_attr

639 """ p_entity_body : p_stack_25 p_inverse_clause p_where_clause

640 | p_stack_25 p_inverse_clause """

641 if len(p) == 4:

642 p[0] = Entity_body(p[1], [], p[2], [], p[3])

643 elif len(p) == 3:

644 p[0] = Entity_body(p[1], [], p[2], [], [])

645 else:

646 print ’Indexerror in p_entity_body with len(p):’

647 print len(p)

648

649 def p_entity_body_14_5(self, p): #p_stack_25: p_explicit_attr

650 """ p_entity_body : p_stack_25 p_unique_clause p_where_clause

651 | p_stack_25 p_unique_clause """

652 if len(p) == 4:

653 p[0] = Entity_body(p[1], [], [], p[2], p[3])

654 elif len(p) == 3:

655 p[0] = Entity_body(p[1], [], [], p[2], [])

656 else:

657 print ’Indexerror in p_entity_body with len(p):’

658 print len(p)

659

660 def p_entity_body_1_5(self, p): #p_stack_25: p_explicit_attr

661 """ p_entity_body : p_stack_25 p_where_clause

662 | p_stack_25 """

663 if len(p) == 3:

664 p[0] = Entity_body(p[1], [], [], [], p[2])

665 elif len(p) == 2:

666 p[0] = Entity_body(p[1], [], [], [], [])

667 else:

668 print ’Indexerror in p_entity_body with len(p):’

669 print len(p)

670

671 def p_entity_body_234_5(self, p):

672 """ p_entity_body : p_derive_clause p_inverse_clause

↪→ p_unique_clause p_where_clause

673 | p_derive_clause p_inverse_clause

↪→ p_unique_clause """

674 if len(p) == 5:

Norwegian University of Science and Technology
Department of Engineering Design and Materials 132

C Code listings

675 p[0] = Entity_body([], p[1], p[2], p[3], p[4])

676 elif len(p) == 4:

677 p[0] = Entity_body([], p[1], p[2], p[3], [])

678 else:

679 print ’Indexerror in p_entity_body with len(p):’

680 print len(p)

681

682 def p_entity_body_23_4(self, p):

683 """ p_entity_body : p_derive_clause p_inverse_clause

↪→ p_where_clause

684 | p_derive_clause p_inverse_clause """

685 if len(p) == 4:

686 p[0] = Entity_body([], p[1], p[2], p[3], [])

687 elif len(p) == 3:

688 p[0] = Entity_body([], p[1], p[2], [], [])

689 else:

690 print ’Indexerror in p_entity_body with len(p):’

691 print len(p)

692

693 def p_entity_body_24_5(self, p):

694 """ p_entity_body : p_derive_clause p_unique_clause

↪→ p_where_clause

695 | p_derive_clause p_unique_clause """

696 if len(p) == 4:

697 p[0] = Entity_body([], p[1], [], p[2], p[3])

698 elif len(p) == 3:

699 p[0] = Entity_body([], p[1], [], p[2], [])

700 else:

701 print ’Indexerror in p_entity_body with len(p):’

702 print len(p)

703

704 def p_entity_body_2_5(self, p):

705 """ p_entity_body : p_derive_clause p_where_clause

706 | p_derive_clause """

707 if len(p) == 3:

708 p[0] = Entity_body([], p[1], [], [], p[2])

709 elif len(p) == 2:

710 p[0] = Entity_body([], p[1], [], [], [])

711 else:

712 print ’Indexerror in p_entity_body with len(p):’

713 print len(p)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 133

C Code listings

714

715 def p_entity_body_34_5(self, p):

716 """ p_entity_body : p_inverse_clause p_unique_clause

↪→ p_where_clause

717 | p_inverse_clause p_unique_clause """

718 if len(p) == 4:

719 p[0] = Entity_body([], [], p[1], p[2], p[3])

720 elif len(p) == 3:

721 p[0] = Entity_body([], [], p[1], p[2], [])

722 else:

723 print ’Indexerror in p_entity_body with len(p):’

724 print len(p)

725

726 def p_entity_body_3_5(self, p):

727 """ p_entity_body : p_inverse_clause p_where_clause

728 | p_inverse_clause """

729 if len(p) == 3:

730 p[0] = Entity_body([], [], p[1], [], p[2])

731 elif len(p) == 2:

732 p[0] = Entity_body([], [], p[1], [], [])

733 else:

734 print ’Indexerror in p_entity_body with len(p):’

735 print len(p)

736

737 def p_entity_body_4_5(self, p):

738 """ p_entity_body : p_unique_clause p_where_clause

739 | p_unique_clause """

740 if len(p) == 3:

741 p[0] = Entity_body([], [], [], p[1], p[2])

742 elif len(p) == 2:

743 p[0] = Entity_body([], [], [], p[1], [])

744 else:

745 print ’Indexerror in p_entity_body with len(p):’

746 print len(p)

747

748 def p_entity_body__5(self, p):

749 """ p_entity_body : p_where_clause

750 | """

751 if len(p) == 2:

752 p[0] = Entity_body([], [], [], [], p[1])

753 elif len(p) == 1:

Norwegian University of Science and Technology
Department of Engineering Design and Materials 134

C Code listings

754 p[0] = Entity_body([], [], [], [], [])

755 else:

756 print ’Indexerror in p_entity_body with len(p):’

757 print len(p)

1007 def p_schema_body_int_spec(self, p): # p_stack_45:

↪→ p_interface_specification # p_stack_46: declarations

1008 """ p_schema_body : p_stack_45 p_constant_decl p_stack_46

1009 | p_stack_45 p_stack_46

1010 | p_stack_45 p_constant_decl

1011 | p_stack_45 """

1012 if len(p) == 4:

1013 p[0] = Schema_body(p[1], p[2] + p[3])

1014 elif len(p) == 3:

1015 p[0] = Schema_body(p[1], p[2])

1016 elif len(p) == 2:

1017 p[0] = Schema_body(p[1], [])

1018 else:

1019 print ’Indexerror in p_schema_body_int_spec with len(p):’

1020 print len(p)

1021

1022 def p_schema_body(self, p):

1023 """ p_schema_body : p_constant_decl p_stack_46

1024 | p_stack_46

1025 | p_constant_decl

1026 | """

1027 if len(p) == 3:

1028 p[0] = Schema_body([], [p[1]] + p[2])

1029 elif len(p) == 2:

1030 p[0] = Schema_body([], p[1])

1031 elif len(p) == 1:

1032 p[0] = Schema_body([], [])

1033 else:

1034 print ’Indexerror in p_schema_body with len(p):’

1035 print len(p)

2383 def p_subsuper_supertype(self, p):

2384 """ p_subsuper : p_supertype_constraint p_subtype_declaration

2385 | p_supertype_constraint """

2386 if len(p) == 3:

2387 p[0] = Subsuper(p[1], p[2])

2388 elif len(p) == 2:

2389 p[0] = Subsuper(p[1], [])

Norwegian University of Science and Technology
Department of Engineering Design and Materials 135

C Code listings

2390 else:

2391 print ’Indexerror in p_subsuper_supertype with len(p):’

2392 print len(p)

2393

2394 def p_subsuper(self, p):

2395 """ p_subsuper : p_subtype_declaration

2396 | """

2397 if len(p) == 2:

2398 p[0] = Subsuper([], p[1])

2399 elif len(p) == 1:

2400 p[0] = Subsuper([], [])

2401 else:

2402 print ’Indexerror in p_subsuper with len(p):’

2403 print len(p)

2833 ##

2834 ### Run Parser

2835 ##

2836

2837 paragraph_dict = {}

2838

2839 def parser_test(debug = False):

2840

2841

2842 paragraph = ’’

2843 first = True

2844

2845 logging.basicConfig()

2846 logger.setLevel(logging.DEBUG)

2847

2848 parser = Parser()

2849 parser.reset()

2850

2851 # Read file and feed to parser

2852 p = input_file

2853 with open(p, ’rU’) as f:

2854 s = ’’

2855 line_nr = 0

2856 while True:

2857 line_nr += 1

2858 line = f.readline()

2859 if not line:break

Norwegian University of Science and Technology
Department of Engineering Design and Materials 136

C Code listings

2860

2861 s += line

2862

2863 # Generate paragraph_dict with original code snippets for

↪→ AML code generation

2864 if (

2865 line.lstrip().startswith(’ENTITY ’) or

2866 line.lstrip().startswith(’TYPE ’) or

2867 line.lstrip().startswith(’CONSTANT’) or

2868 line.lstrip().startswith(’FUNCTION ’) or

2869 line.lstrip().startswith(’RULE ’)

2870):

2871 first_line = line

2872 #print first_line

2873 first = False

2874 paragraph = ’’

2875

2876 paragraph += ’;; ’ + line

2877

2878 if (

2879 line.lstrip().startswith(’END_ENTITY’) or

2880 line.lstrip().startswith(’END_TYPE’) or

2881 line.lstrip().startswith(’END_CONSTANT’) or

2882 line.lstrip().startswith(’END_FUNCTION’) or

2883 line.lstrip().startswith(’END_RULE’)

2884):

2885 #print line

2886 try:

2887 paragraph_dict[first_line.split()[0] + ’ ’ +

↪→ first_line.split()[1].replace(’;’,’’)] =

↪→ paragraph

2888 except IndexError: pass

2889 first = True

2890 paragraph = ’’

2891

2892 try:

2893 if debug == ’debug’:

2894 result = parser.parse(s, debug=1) #debug=1

2895 else:

2896 result = parser.parse(s)

2897 print result

Norwegian University of Science and Technology
Department of Engineering Design and Materials 137

C Code listings

2898 return result

2899 ## for obj in gc.get_objects():

2900 ## if isinstance(obj, P21File):

2901 ## print obj

2902 except SystemExit:

2903 pass

2904

2905

2906

2907 result = parser_test()#’debug’)

Listing C.9: EXPRESS schema parser. (File: schema parser.py)

schema write aml.py

1 from schema_parser import *

2 import datetime

3

4 timestamp = datetime.datetime.now().strftime(’%Y/%m/%d %H:%M:%S’)

5 aml_header = ’;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;\n’ + \

6 ’;;\n’ +\

7 ’;; ’ + timestamp + ’ jschaetzle\n’ + \

8 ’;;\n’ + \

9 ’;; This AML class was created by parsing the following

↪→ EXPRESS Schema: \n’ + \

10 ’;; ISO/TS 10303-442 AP242 managed model based 3d

↪→ engineering - EXPRESS MIM Long form Schema v

↪→ 1.36\n’ + \

11 ’;;\n’ + \

12 ’;; The original CONSTANT/TYPE/ENTITY/RULE/FUNCTION

↪→ looks like this:\n’ + \

13 ’;;\n’ + \

14 ’;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;\n’ + \

15 ’;;\n’

16

17 ## listing_start aml_mapping "Mapping between AP242 classes and AML

↪→ geometric objects."

18 aml_entity_suffix = ’’

19 aml_type_suffix = ’’

20 aml_entity_prefix = ’ap242_’

21 aml_type_prefix = ’ap242_’

22 system_name = ’main-system’ # defined in logical.pth in AML path

Norwegian University of Science and Technology
Department of Engineering Design and Materials 138

C Code listings

23 class_path = ’class-path’ # defined in logical.pth in AML path

24

25 aml_class_mapping = {

26 ’cartesian_point’ : ’aml_point_object’,

27 #’vector’ : ’vector-class’,

28 #’line’ : ’line-object’,

29 ’edge_curve’ : ’aml_line_object’,

30 ’edge_loop’ : ’aml_sewn_object’,

31 ’face_bound’ : ’aml_bounded_object’,

32 ’extruded_face_solid’ : ’aml_extrusion_object’,

33 ’solid_with_flat_bottom_round_hole’ : ’

↪→ xaml_flat_bottom_round_hole_feature’,

34 ’axis2_placement_3d’ : ’aml_coordinate_system_class’,

35 ’solid_with_single_offset_chamfer’ : ’xaml_single_offset_feature’,

36 ’bound_parameter_environment’ : ’xaml_parameter’

37 }

38 ## listing_end aml_mapping

39

40 ##

41 ### Create Dictionary "Database" for entities (inheritance...)

42 ##

43

44 entity_supertype_dict = {}

45 entity_subtype_dict = {}

46 entity_attributes_dict = {}

47 entity_dependencies_dict = {}

48 entity_inherited_attributes_dict = {}

49

50

51 for decl in result.schema_decl.schema_body.declarations:

52 if decl.__class__.__name__ == ’Entity_decl’:

53 ### Supertype of

54 entity_supertype_dict[decl.entity_head.entity_id] = decl.

↪→ entity_head.subsuper.supertype_constraint # ?

55 ### Subtype of

56 entity_subtype_dict[decl.entity_head.entity_id] = decl.

↪→ entity_head.subsuper.subtype_declaration

57 if decl.entity_head.subsuper.subtype_declaration == []:

58 entity_subtype_dict[decl.entity_head.entity_id] = [’object’

↪→]

59 ### Attributes

Norwegian University of Science and Technology
Department of Engineering Design and Materials 139

C Code listings

60 #attribute = ’’

61 attribute_dict = {’__index__’ : []}

62 for attr in decl.entity_body.explicit_attr:

63 attribute_dict[’__index__’] += [attr.attribute_decl]

64 attribute_dict[attr.attribute_decl] = attr.parameter_type #

↪→ List or Dictionary?

65 #attribute_stack += [attribute]

66 entity_attributes_dict[decl.entity_head.entity_id] =

↪→ attribute_dict # List of Lists/Dics

67

68 ### Dependencies

69 def get_dependencies(ap242_class):

70 #print ’ap242_class: ’ + ap242_class

71

72 def get_ancestors(child_class, ancestors = []):

73 #print ’child_class: ’ + child_class

74 #print ’ancestors: ’ + str(ancestors)

75 parents = entity_subtype_dict[child_class]

76 #print ’parents: ’ + str(parents)

77 for parent in parents:

78 #print ’parent: ’ + parent

79

80 if parent not in ancestors:

81 ancestors += [parent]

82 if parent != ’object’:

83 ancestors = get_ancestors(parent, ancestors)

84 return ancestors

85

86 ancestors = get_ancestors(ap242_class)

87

88 dependencies = ancestors #TODO

89 return dependencies

90

91 def get_inherited_attributes(child_entity, attributes = {}, parent_list

↪→ = []):

92 parents = entity_subtype_dict[child_entity]

93 for parent in reversed(parents):

94 if parent is not ’object’ and parent not in parent_list:

95 attributes[’__index__’] += [parent]

96 attributes[parent] = {}

Norwegian University of Science and Technology
Department of Engineering Design and Materials 140

C Code listings

97 attributes[parent][’__index__’] = entity_attributes_dict[

↪→ parent][’__index__’]

98 for i in entity_attributes_dict[parent][’__index__’]:

99 attributes[parent][i] = entity_attributes_dict[parent][

↪→ i]

100 attributes = get_inherited_attributes(parent, attributes,

↪→ parent_list)

101 parent_list += [parent]

102 return attributes

103

104 for entity in entity_subtype_dict:

105 entity_dependencies_dict[entity] = get_dependencies(entity)

106 entity_inherited_attributes_dict[entity] = get_inherited_attributes

↪→ (entity, {’__index__’ : []}, [])

107

108

109 ##

110 ### Write to AML

111 ##

112

113 type_dict = {}

114

115 entity_counter = 0

116

117 def write_aml_file(class_name, cont, out_folder):

118 "Writes class to ./classes/class_name.aml"

119 f = open(path.relpath("../out/" + out_folder + class_name + ’.aml’)

↪→ , ’w’)

120 f.write(cont)

121 f.close()

122 #print ’Class: "’ + class_name + ’" written to AML class.’

123 return ’done’

124

125 ### Entity content

126 # Go through supertype nested list:

127 supertype = ’’

128 def rec_list(supertype_list, pos = ’start’, sup = ’’):

129 supertype = sup

130 if type(supertype_list).__name__ == ’list’:

131 supertype += ’(list\n’

132 for i, elem in enumerate(supertype_list):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 141

C Code listings

133 #print i

134 #print len(supertype_list) - 1

135 if i == len(supertype_list) - 1: # last element

136 #print ’Goto rec_list with last: ’ + str(elem)

137 supertype = rec_list(elem, ’last’, sup = supertype)

138 else:

139 #print ’Goto rec_list with: ’ + str(elem)

140 supertype = rec_list(elem, sup = supertype)

141 if pos == ’last’: supertype += ’)\n’

142

143 elif type(supertype_list).__name__ == ’str’:

144 elem = supertype_list

145 if elem == ’ONEOF’:

146 supertype += ’ ;; ONEOF\n’

147 elif elem == ’AND’:

148 supertype += ’ ;; AND\n’

149 elif elem == ’ANDOR’:

150 supertype += ’ ;; ANDOR\n’

151 else:

152 supertype += ’\’’ + aml_entity_prefix + elem +

↪→ aml_entity_suffix + ’\n’

153 #print ’Error: unknown string: ’ + elem

154

155 if pos == ’last’: # last element

156 supertype += ’)\n’

157 return supertype

158

159 else: print ’Error: rec_list() not defined for type: ’ + type(

↪→ supertype_list).__name__

160 return supertype

161 #print supertype

162

163 ##

164

165 for entity in entity_supertype_dict: # all entities

166 # Subtypes

167 subtypes = ’’

168 load_classes = ’’

169 for subtype in entity_subtype_dict[entity]:

170 if subtype == ’object’:

171 subtypes += subtype + ’\n’

Norwegian University of Science and Technology
Department of Engineering Design and Materials 142

C Code listings

172 else:

173 subtypes += aml_entity_prefix + subtype + aml_entity_suffix

↪→ + ’\n’

174 load_classes += ’(load_class ’ + \

175 ’ "’ + aml_entity_prefix + subtype +

↪→ aml_entity_suffix + ’")\n’

176 if entity in aml_class_mapping:

177 subtypes += aml_class_mapping[entity] + ’\n’

178

179 # Index of Instantiable Subobjects & Inheritance History

180 index = ’index (list\n’

181 index_list = []

182 inh_history = ’’

183 for inh_class in entity_inherited_attributes_dict[entity][’

↪→ __index__’]:

184 inh_history += ’;; inherited from ’ + inh_class + ’:\n’

185 class_index_list = []

186 for inh_attr in entity_inherited_attributes_dict[entity][

↪→ inh_class][’__index__’]:

187 attr_type = entity_inherited_attributes_dict[entity][

↪→ inh_class][inh_attr]

188 if True: #inh_attr not in index_list:

189 class_index_list += [inh_attr]

190 if type(attr_type).__name__ == ’str’:

191 inh_history += ’;;-> ’ + inh_attr + ’ \’’ + attr_type +

↪→ ’\n’

192 elif type(attr_type).__name__ == ’list’:

193 inh_history += ’;;-> ’ + inh_attr + ’ \’’ + attr_type

↪→ [0]

194 inh_history += ’ ;; ’ + attr_type[1] + ’ ’ + str(

↪→ attr_type[2]) + ’\n’

195 else:

196 print ’undefined type in definition of inherited

↪→ attributes: ’ + \

197 type(attr_type).__name__

198 index_list = class_index_list + index_list

199 for attr in entity_attributes_dict[entity][’__index__’]:

200 if True: #attr not in index_list:

201 index_list += [attr]

202 for elem in index_list:

203 index += ’\’’ + elem + ’\n’

Norwegian University of Science and Technology
Department of Engineering Design and Materials 143

C Code listings

204 index += ’)\n’

205

206 # Explicit attributes

207 attribute_string = ’’

208 attribute_stack_string = ’’

209 for attr in entity_attributes_dict[entity][’__index__’]:

210 attr_type = entity_attributes_dict[entity][attr]

211 if type(attr_type).__name__ == ’str’:

212 attribute_string = attr + ’ \’’ + attr_type + ’\n’

213 elif type(attr_type).__name__ == ’list’:

214 attribute_string = attr + ’ \’’ + attr_type[0] + ’ ;; ’ +

↪→ attr_type[1] + ’ ’ + str(attr_type[2]) + ’\n’

215 else:

216 print ’undefined type in definition of explicit attributes:

↪→ ’ + \

217 type(attr).__name__

218 attribute_stack_string += attribute_string

219

220 # Derived Attributes

221 # @TODO

222

223 # Supertype

224 if entity_supertype_dict[entity] != []:

225 supertype = rec_list(entity_supertype_dict[entity])

226 #print supertype

227 supertype = ’supertype (\n’ + \

228 supertype + \

229 ’)\n’

230 else: supertype = ’’

231

232 aml_entity = load_classes + \

233 ’\n’ + \

234 ’(define-class ’ + aml_entity_prefix + entity +

↪→ aml_entity_suffix + ’\n’ + \

235 ’:inherit-from (\n’ + \

236 subtypes + \

237 ’)\n’ + \

238 ’:properties (\n’ + \

239 index + \

240 ’;; SUPERTYPE ;;\n’ + \

241 supertype + \

Norwegian University of Science and Technology
Department of Engineering Design and Materials 144

C Code listings

242 ’;; INHERITED ATTRIBUTES ;;\n’ + \

243 inh_history + \

244 ’;; EXPLICIT ATTRIBUTES ;;\n’ + \

245 attribute_stack_string + \

246 ’)\n’ + \

247 ’:subobjects (\n’ + \

248 ’’ + ’\n’ + \

249 ’)\n’ + \

250 ’)\n’

251 # aml_entity = ’’

252

253 entity_counter += 1

254 write_aml_file(aml_entity_prefix + entity + aml_entity_suffix,

↪→ aml_header + \

255 paragraph_dict[’ENTITY ’ + entity] + \

256 ’;;\n’ + \

258 ’\n’ + \

300 ’\n’ + \

301 ’(in-package :aml)\n’ + \

302 ’\n’ + \

303 aml_type, ’types/’)

304

305 print str(entity_counter) + ’ entities written to AML.’ #@TODO: Add

↪→ counter for number of entities

Listing C.10: Script that writes the EXPRESS entities from the parser to AML classes.

(File: schema write aml.py)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 145

C Code listings

C.3.3. P21 Parser

p21 lexer.py

4 # STEP Part 21 Parser

5 #

6 # Copyright (c) 2011, Thomas Paviot (tpaviot@gmail.com)

7 # Copyright (c) 2014, Christopher HORLER (cshorler@googlemail.com)

8 #

9 # All rights reserved.

10 #

11 # This file is part of the StepClassLibrary (SCL).

12 #

13 # Redistribution and use in source and binary forms, with or without

14 # modification, are permitted provided that the following conditions

↪→ are met:

15 #

16 # Redistributions of source code must retain the above copyright

↪→ notice,

17 # this list of conditions and the following disclaimer.

18 #

19 # Redistributions in binary form must reproduce the above copyright

↪→ notice,

20 # this list of conditions and the following disclaimer in the

↪→ documentation

21 # and/or other materials provided with the distribution.

22 #

23 # Neither the name of the <ORGANIZATION> nor the names of its

↪→ contributors may

24 # be used to endorse or promote products derived from this software

↪→ without

25 # specific prior written permission.

26

27 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "

↪→ AS IS"

28 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

↪→ THE

29 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

↪→ PURPOSE

30 # ARE DISCLAIMED.

Norwegian University of Science and Technology
Department of Engineering Design and Materials 146

C Code listings

31 # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

↪→ ANY

32 # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

↪→ DAMAGES

33 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

↪→ SERVICES;

34 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

↪→ CAUSED AND

35 # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

↪→ TORT

36 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

↪→ OF

37 # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

38

39 import logging

40 import ply.lex as lex

41 import ply.yacc as yacc

42 from ply.lex import LexError

43 import os.path#

44

45

46 logger = logging.getLogger(__name__)

47

48 # ensure Python 2.6 compatibility

49 if not hasattr(logging, ’NullHandler’):

50 class NullHandler(logging.Handler):

51 def handle(self, record):

52 pass

53 def emit(self, record):

54 pass

55 def createLock(self):

56 self.lock = None

57

58 setattr(logging, ’NullHandler’, NullHandler)

59

60 logger.addHandler(logging.NullHandler())

61

62 ##

63 # Common Code for Lexer / Parser

64 ##

Norwegian University of Science and Technology
Department of Engineering Design and Materials 147

C Code listings

65 base_tokens = [’INTEGER’, ’REAL’, ’USER_DEFINED_KEYWORD’, ’

↪→ STANDARD_KEYWORD’, ’STRING’, ’BINARY’,

66 ’ENTITY_INSTANCE_NAME’, ’ENUMERATION’, ’PART21_END’, ’

↪→ PART21_START’, ’HEADER_SEC’,

67 ’ENDSEC’, ’DATA’]

68

69 ##

70 # Lexer

71 ##

72 class P21_Lexer(object):

73 tokens = list(base_tokens)

74 states = ((’slurp’, ’exclusive’),)

75

76 def __init__(self, debug=0, optimize=0, compatibility_mode=False,

↪→ header_limit=4096):

77 self.base_tokens = list(base_tokens)

78 self.schema_dict = {}

79 self.active_schema = {}

80 self.input_length = 0

81 self.compatibility_mode = compatibility_mode

82 self.header_limit = header_limit

83 self.lexer = lex.lex(module=self, debug=debug, debuglog=logger,

↪→ optimize=optimize,

84 errorlog=logger)

85 self.reset()

86

87 def __getattr__(self, name):

88 if name == ’lineno’:

89 return self.lexer.lineno

90 elif name == ’lexpos’:

91 return self.lexer.lexpos

92 else:

93 raise AttributeError

94

95 def input(self, s):

96 self.lexer.input(s)

97 self.input_length += len(s)

98

99 def reset(self):

100 self.lexer.lineno = 1

101 self.lexer.begin(’slurp’)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 148

C Code listings

102

103 def token(self):

104 try:

105 return next(self.lexer)

106 except StopIteration:

107 return None

108

109 def activate_schema(self, schema_name):

110 if schema_name in self.schema_dict:

111 self.active_schema = self.schema_dict[schema_name]

112 else:

113 raise ValueError(’schema not registered’)

114

115 def register_schema(self, schema_name, entities):

116 if schema_name in self.schema_dict:

117 raise ValueError(’schema already registered’)

118

119 for k in entities:

120 if k in self.base_tokens: raise ValueError(’schema cannot

↪→ override base_tokens’)

121

122 if isinstance(entities, list):

123 entities = dict((k, k) for k in entities)

124

125 self.schema_dict[schema_name] = entities

126

127 def t_slurp_PART21_START(self, t):

128 r’ISO-10303-21;’

129 t.lexer.begin(’INITIAL’)

130 return t

131

132 def t_slurp_error(self, t):

133 offset = t.value.find(’\nISO-10303-21;’, 0, self.header_limit)

134 if offset == -1 and self.header_limit < len(t.value): # not

↪→ found within header_limit

135 raise LexError("Scanning error. try increasing lexer

↪→ header_limit parameter",

136 "{0}...".format(t.value[0:20]))

137 elif offset == -1: # not found before EOF

138 t.lexer.lexpos = self.input_length

139 else: # found ISO-10303-21;

Norwegian University of Science and Technology
Department of Engineering Design and Materials 149

C Code listings

140 offset += 1 # also skip the \n

141 t.lexer.lineno += t.value[0:offset].count(’\n’)

142 t.lexer.skip(offset)

143

144 # Comment (ignored)

145 def t_COMMENT(self, t):

146 r’/*(.|\n)*?*/’

147 t.lexer.lineno += t.value.count(’\n’)

148

149 def t_PART21_END(self, t):

150 r’END-ISO-10303-21;’

151 t.lexer.begin(’slurp’)

152 return t

153

154 def t_HEADER_SEC(self, t):

155 r’HEADER;’

156 return t

157

158 def t_ENDSEC(self, t):

159 r’ENDSEC;’

160 return t

161

162 # Keywords

163 def t_STANDARD_KEYWORD(self, t):

164 r’(?:!|)[A-Za-z_][0-9A-Za-z_]*’

165 if self.compatibility_mode:

166 t.value = t.value.upper()

167 elif not t.value.isupper():

168 raise LexError(’Scanning error. Mixed/lower case keyword

↪→ detected, please use compatibility_mode=True’, t.

↪→ value)

169

170 if t.value in self.base_tokens:

171 t.type = t.value

172 elif t.value in self.active_schema:

173 t.type = self.active_schema[t.value]

174 elif t.value.startswith(’!’):

175 t.type = ’USER_DEFINED_KEYWORD’

176 return t

177

178 def t_newline(self, t):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 150

C Code listings

179 r’\n+’

180 t.lexer.lineno += len(t.value)

181

182 # Simple Data Types

183 def t_REAL(self, t):

184 r’[+-]*[0-9][0-9]*\.[0-9]*(?:E[+-]*[0-9][0-9]*)?’

185 t.value = float(t.value)

186 return t

187

188 def t_INTEGER(self, t):

189 r’[+-]*[0-9][0-9]*’

190 t.value = int(t.value)

191 return t

192

193 def t_STRING(self, t):

194 r"’(?:[][!\"*$%&.#+,\-()?/:;<=>@{}|ˆ‘˜0-9a-zA-Z_\\]|’’)*’"

195 t.value = t.value[1:-1]

196 return t

197

198 def t_BINARY(self, t):

199 r’"[0-3][0-9A-F]*"’

200 try:

201 t.value = int(t.value[2:-1], base=16)

202 except ValueError:

203 t.value = None

204 return t

205

206 t_ENTITY_INSTANCE_NAME = r’\#[0-9]+’

207 t_ENUMERATION = r’\.[A-Z_][A-Z0-9_]*\.’

208

209 # Punctuation

210 literals = ’()=;,*$’

211

212 t_ANY_ignore = ’ \t’

213

214

215 ##

216 # Simple Model

217 ##

218 class P21File:

219 def __init__(self, header, *sections):

Norwegian University of Science and Technology
Department of Engineering Design and Materials 151

C Code listings

220 self.header = header

221 self.sections = list(*sections)

222

223 class P21Header:

224 def __init__(self, file_description, file_name, file_schema):

225 self.file_description = file_description

226 self.file_name = file_name

227 self.file_schema = file_schema

228 self.extra_headers = []

229

230 class HeaderEntity:

231 def __init__(self, type_name, *params):

232 self.type_name = type_name

233 self.params = list(params) if params else []

234

235 class Section:

236 def __init__(self, entities):

237 self.entities = entities

238

239 class SimpleEntity:

240 def __init__(self, ref, type_name, *params):

241 self.ref = ref

242 self.type_name = type_name

243 self.params = list(params) if params else []

244

245 class ComplexEntity:

246 def __init__(self, ref, *params):

247 self.ref = ref

248 self.params = list(params) if params else []

249

250 class TypedParameter:

251 def __init__(self, type_name, *params):

252 self.type_name = type_name

253 self.params = list(params) if params else None

Listing C.11: STEP file lexer.1(File: p21 lexer.py)

1Based on https://github.com/stepcode/stepcode/wiki/python-generator, last accessed:

2016-03-20

Norwegian University of Science and Technology
Department of Engineering Design and Materials 152

https://github.com/stepcode/stepcode/wiki/python-generator

C Code listings

p21 parser.py

39 from p21_lexer import *

40 import os.path#

41

42

43 P21_input_file = ’../../02_p21_file/output/example_ap242.stp’

74 ##

75 # Simple Model

76 ##

77 class P21File:

78 def __init__(self, header, *sections):

79 self.header = header

80 self.sections = list(*sections)

81

82 class P21Header:

83 def __init__(self, file_description, file_name, file_schema):

84 self.file_description = file_description

85 self.file_name = file_name

86 self.file_schema = file_schema

87 self.extra_headers = []

88

89 class HeaderEntity:

90 def __init__(self, type_name, *params):

91 self.type_name = type_name

92 self.params = list(params) if params else []

93

94 class Section:

95 def __init__(self, entities):

96 self.entities = entities

97

98 class SimpleEntity:

99 def __init__(self, ref, type_name, *params):

100 self.ref = ref

101 self.type_name = type_name

102 self.params = list(params) if params else []

103

104 class ComplexEntity:

105 def __init__(self, ref, *params):

106 self.ref = ref

107 self.params = list(params) if params else []

Norwegian University of Science and Technology
Department of Engineering Design and Materials 153

C Code listings

108

109 class TypedParameter:

110 def __init__(self, type_name, *params):

111 self.type_name = type_name

112 self.params = list(params) if params else None

113

114 ##

115 # Parser

116 ##

117 class P21_Parser(object):

118 tokens = list(base_tokens)

119 start = ’exchange_file’

120

121 def __init__(self, lexer=None, debug=0):

122 self.lexer = lexer if lexer else P21_Lexer()

123

124 try: self.tokens = lexer.tokens

125 except AttributeError: pass

126

127 self.parser = yacc.yacc(module=self, debug=debug, debuglog=

↪→ logger, errorlog=logger)

128 self.reset()

129

130 def parse(self, p21_data, **kwargs):

131 #TODO: will probably need to change this function if the lexer

↪→ is ever to support t_eof

132 self.lexer.reset()

133 self.lexer.input(p21_data)

134

135 if ’debug’ in kwargs:

136 result = self.parser.parse(lexer=self.lexer, debug=logger,

137 ** dict((k, v) for k, v in

↪→ kwargs.iteritems() if k

↪→ != ’debug’))

138 else:

139 result = self.parser.parse(lexer=self.lexer, **kwargs)

140 return result

141

142 def reset(self):

143 self.refs = {}

144 self.is_in_exchange_structure = False

Norwegian University of Science and Technology
Department of Engineering Design and Materials 154

C Code listings

145

146 def p_exchange_file(self, p):

147 """exchange_file : check_p21_start_token header_section

↪→ data_section_list check_p21_end_token"""

148 p[0] = P21File(p[2], p[3])

149

150 def p_check_start_token(self, p):

151 """check_p21_start_token : PART21_START"""

152 self.is_in_exchange_structure = True

153 p[0] = p[1]

154

155 def p_check_end_token(self, p):

156 """check_p21_end_token : PART21_END"""

157 self.is_in_exchange_structure = False

158 p[0] = p[1]

159

160 # TODO: Specialise the first 3 header entities

161 def p_header_section(self, p):

162 """header_section : HEADER_SEC header_entity header_entity

↪→ header_entity ENDSEC"""

163 p[0] = P21Header(p[2], p[3], p[4])

164

165 def p_header_section_with_entity_list(self, p):

166 """header_section : HEADER_SEC header_entity header_entity

↪→ header_entity header_entity_list ENDSEC"""

167 p[0] = P21Header(p[2], p[3], p[4])

168 p[0].extra_headers.extend(p[5])

169

170 def p_header_entity(self, p):

171 """header_entity : keyword ’(’ parameter_list ’)’ ’;’"""

172 p[0] = HeaderEntity(p[1], p[3])

173

174 def p_check_entity_instance_name(self, p):

175 """check_entity_instance_name : ENTITY_INSTANCE_NAME"""

176 if p[1] in self.refs:

177 logger.error(’Line: {0}, SyntaxError - Duplicate Entity

↪→ Instance Name: {1}’.format(p.lineno(1), p[1]))

178 raise SyntaxError

179 else:

180 self.refs[p[1]] = None

181 p[0] = p[1]

Norwegian University of Science and Technology
Department of Engineering Design and Materials 155

C Code listings

182

183 def p_simple_entity_instance(self, p):

184 """simple_entity_instance : check_entity_instance_name ’=’

↪→ simple_record ’;’"""

185 p[0] = SimpleEntity(p[1], *p[3])

186

187 def p_entity_instance_error(self, p):

188 """simple_entity_instance : error ’=’ simple_record ’;’

189 complex_entity_instance : error ’=’ subsuper_record ’;’"""

190 pass

191

192 def p_complex_entity_instance(self, p):

193 """complex_entity_instance : check_entity_instance_name ’=’

↪→ subsuper_record ’;’"""

194 #p[0] = ComplexEntity(p[1], p[3]) # @Todo: Ignored for now,

↪→ throws errors in populate.aml

195

196 def p_subsuper_record(self, p):

197 """subsuper_record : ’(’ simple_record_list ’)’"""

198 p[0] = [TypedParameter(*x) for x in p[2]]

199

200 def p_data_section_list(self, p):

201 """data_section_list : data_section_list data_section

202 | data_section"""

203 try: p[0] = p[1] + [p[2],]

204 except IndexError: p[0] = [p[1],]

205

206 def p_header_entity_list(self, p):

207 """header_entity_list : header_entity_list header_entity

208 | header_entity"""

209 try: p[0] = p[1] + [p[2],]

210 except IndexError: p[0] = [p[1],]

211

212 def p_parameter_list(self, p):

213 """parameter_list : parameter_list ’,’ parameter

214 | parameter"""

215 try: p[0] = p[1] + [p[3],]

216 except IndexError: p[0] = [p[1],]

217

218 def p_keyword(self, p):

219 """keyword : USER_DEFINED_KEYWORD

Norwegian University of Science and Technology
Department of Engineering Design and Materials 156

C Code listings

220 | STANDARD_KEYWORD"""

221 p[0] = p[1]

222

223 def p_parameter_simple(self, p):

224 """parameter : STRING

225 | INTEGER

226 | REAL

227 | ENTITY_INSTANCE_NAME

228 | ENUMERATION

229 | BINARY

230 | ’*’

231 | ’$’

232 | typed_parameter

233 | list_parameter"""

234 p[0] = p[1]

235

236 def p_list_parameter(self, p):

237 """list_parameter : ’(’ parameter_list ’)’"""

238 p[0] = p[2]

239

240 def p_typed_parameter(self, p):

241 """typed_parameter : keyword ’(’ parameter ’)’"""

242 p[0] = TypedParameter(p[1], p[3])

243

244 def p_parameter_empty_list(self, p):

245 """parameter : ’(’ ’)’"""

246 p[0] = []

247

248 def p_data_start(self, p):

249 """data_start : DATA ’(’ parameter_list ’)’ ’;’"""

250 pass

251

252 def p_data_start_empty(self, p):

253 """data_start : DATA ’(’ ’)’ ’;’

254 | DATA ’;’"""

255 pass

256

257 def p_data_section(self, p):

258 """data_section : data_start entity_instance_list ENDSEC"""

259 p[0] = Section(p[2])

260

Norwegian University of Science and Technology
Department of Engineering Design and Materials 157

C Code listings

261 def p_entity_instance_list(self, p):

262 """entity_instance_list : entity_instance_list entity_instance

263 | entity_instance"""

264 try: p[0] = p[1] + [p[2],]

265 except IndexError: p[0] = [p[1],]

266

267 def p_entity_instance_list_empty(self, p):

268 """entity_instance_list : empty"""

269 p[0] = []

270

271 def p_entity_instance(self, p):

272 """entity_instance : simple_entity_instance

273 | complex_entity_instance"""

274 p[0] = p[1]

275

276

277 def p_simple_record_empty(self, p):

278 """simple_record : keyword ’(’ ’)’"""

279 p[0] = (p[1], [])

280

281 def p_simple_record_with_params(self, p):

282 """simple_record : keyword ’(’ parameter_list ’)’"""

283 p[0] = (p[1], p[3])

284

285 def p_simple_record_list(self, p):

286 """simple_record_list : simple_record_list simple_record

287 | simple_record"""

288 try: p[0] = p[1] + [p[2],]

289 except IndexError: p[0] = [p[1],]

290

291 def p_empty(self, p):

292 """empty :"""

293 pass

294

295

296 def test_debug():

297 import os.path

298 import gc #

299

300 logging.basicConfig()

301 logger.setLevel(logging.DEBUG)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 158

C Code listings

302

303 parser = P21_Parser()

304 parser.reset()

305

306 logger.info("***** parser debug *****")

307

308 p = input_file

309 with open(p, ’rU’) as f:

310 s = f.read()

311 try:

312 print ’P21Object instanciated’

313 result = parser.parse(s)#, debug=1)

314 print result

315 print result.header

316 except SystemExit:

317 pass

318

319 logger.info("***** finished *****")

320

321 def test():

322 import os, os.path, itertools, codecs

323

324

325 logging.basicConfig()

326 logger.setLevel(logging.INFO)

327

328 parser = P21_Parser()

329 compat_list = []

330

331 def parse_check(p):

332 logger.info("processing {0}".format(p))

333 parser.reset()

334 with open(p, ’rU’) as f:

335 iso_wrapper = codecs.EncodedFile(f, ’iso-8859-1’)

336 s = iso_wrapper.read()

337 parser.parse(s)

338

339 logger.info("***** standard test *****")

340 for d, _, files in os.walk(os.path.expanduser(’˜\Documents\\02_Work

↪→ \\01_NTNU\\01_Masterthesis\\05_STEP\\01_STEPcode’)): #change

↪→ path!

Norwegian University of Science and Technology
Department of Engineering Design and Materials 159

C Code listings

341 for f in itertools.ifilter(lambda x: x.endswith(’.stp’), files)

↪→ :

342 p = os.path.join(d, f)

343 try:

344 parse_check(p)

345 except LexError:

346 logger.exception(’Lexer issue, adding {0} to

↪→ compatibility test list’.format(os.path.basename

↪→ (p)))

347 compat_list.append(p)

348

349 lexer = P21_Lexer(compatibility_mode=True)

350 parser = P21_Parser(lexer=lexer)

351

352 logger.info("***** compatibility test *****")

353 for p in compat_list:

354 parse_check(p)

355

356 logger.info("***** finished *****")

Listing C.12: STEP file parser.2(File: p21 parser.py)

p21 populate.py

1 from p21_parser import *

2 #from write_aml import *

3

4 logging.basicConfig()

5 logger.setLevel(logging.DEBUG)

6

7 parser = P21_Parser()

8 parser.reset()

9

10 P21_input_file = ’../../02_p21_file/out/example_ap242.stp’

11

12 p = P21_input_file

13 with open(p, ’rU’) as f:

14 s = f.read()

15 try:

2Based on https://github.com/stepcode/stepcode/wiki/python-generator, last accessed:

2016-03-20

Norwegian University of Science and Technology
Department of Engineering Design and Materials 160

https://github.com/stepcode/stepcode/wiki/python-generator

C Code listings

16 P21_result = parser.parse(s)#, debug=1)

17 print P21_result

18 print P21_result.header.file_name

19 except SystemExit:

20 pass

21

22 logger.info("***** finished *****")

23

24

25 reference_dict = {}

26 referenced_by_dict = {}

27 aml_populate = ’’

28 populate_hash_table = ’populate_hash’

29

30 def convert_to_aml(input, aml_populate):

31

32 def convert_string(str, aml_populate):

33 if str.startswith(’#’):

34 aml_populate += ’\’’ + str + ’ ’

35 elif str == ’$’:

36 aml_populate += ’nil ’

37 elif str == ’.T.’:

38 aml_populate += ’\’t ’

39 elif str == ’.F.’:

40 aml_populate += ’nil ’

41 else:

42 aml_populate += ’"’ + str + ’" ’

43 return aml_populate

44

45 if type(input).__name__ == ’str’:

46 aml_populate = convert_string(input, aml_populate)

47 elif type(input).__name__ == ’list’:

48 aml_populate += ’(list ’

49 for elem in param:

50 if type(elem).__name__ == ’str’:

51 aml_populate = convert_string(elem, aml_populate)

52 elif type(elem).__name__ == ’list’:

53 aml_populate = convert_to_aml(elem, aml_populate)

54 elif type(elem).__name__ == ’float’:

55 aml_populate += str(elem) + ’ ’

56 elif type(elem).__name__ == ’int’:

Norwegian University of Science and Technology
Department of Engineering Design and Materials 161

C Code listings

57 aml_populate += str(elem) + ’ ’

58 else:

59 print ’unknown type: ’ + type(elem).__name__

60 aml_populate += ’) ’

61 elif type(input).__name__ == ’float’:

62 aml_populate += str(input) + ’ ’

63 elif type(input).__name__ == ’int’:

64 aml_populate += str(input) + ’ ’

65 else:

66 print ’unknown type: ’ + type(input).__name__

67 return aml_populate

68

69 for entity in P21_result.sections[0].entities:

70 print entity.ref

71 referenced_by_dict[entity.ref] = []

72

73

74 for i, entity in enumerate(P21_result.sections[0].entities):

75

76 aml_populate += ’(setf (gethash \’’ + entity.ref + ’ ’ +

↪→ populate_hash_table + \

77 ’) \’("’ + entity.type_name.lower() + ’" (list ’

78

79 reference_dict[entity.ref] = []

80

81 # write references into dict

82 for param in entity.params[0]:

83 aml_populate = convert_to_aml(param, aml_populate)

84 if type(param).__name__ == ’str’:

85 if param.startswith(’#’):

86 reference_dict[entity.ref] += [param]

87 referenced_by_dict[param] += [entity.ref]

88 if type(param).__name__ == ’list’:

89 for elem in param:

90 if type(elem).__name__ == ’str’:

91 if elem.startswith(’#’):

92 reference_dict[entity.ref] += [elem]

93 referenced_by_dict[elem] += [entity.ref]

94

95 print reference_dict[entity.ref]

96

Norwegian University of Science and Technology
Department of Engineering Design and Materials 162

C Code listings

97 aml_populate += ’)))\n’

98

99

100 def find_roots():

101 roots = []

102 for entity in referenced_by_dict:

103 if referenced_by_dict[entity] == []:

104 roots += [entity]

105 return roots

106

107 roots = find_roots()

108

109 def write_file(path, cont):

110 with open("../../01_binding/out/systems/main-system/sources/" +

↪→ path, ’w’) as f:

111 f.write(cont)

112

113 root_list = ’’

114 for root in roots:

115 root_list += ’\’’ + root + ’ ’

116 root_list = root_list[:-1]

117

118 #(defvar root_entities (list """ + root_list + """))

119 aml_header = """(in-package :aml)

120

121 (setf root_entities (list """ + root_list + """))

122

123 (defvar populate_hash (make-hash-table :test ’equal))

124 """

125

126 write_file(’populate.aml’, aml_header + aml_populate)

Listing C.13: Python script that generates the transfer AML file. (File:

p21 populate.py)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 163

D WSN rules EXPRESS language

D. WSN rules EXPRESS language

The railroad diagramms of the EXPRESS language WSN (similar to EBNF) rules that are

defined in ISO 10303–11:2004 are generated with the EBNF2PS tool by Franklin Chen.1

1 $ ebnf2ps -verbose -titleFont Palatino-BoldItalic -ntFont Palatino-Bold

↪→ -ntBoxColor RoyalBlue -tFont Courier -tColor White -tBg

↪→ RoyalBlue -fatLineWidth 50 +simplify 10303-11.bnf ’.*’

Listing D.1: ebnf2ps tool executed on Linux.

The Encapsulated Postscript (.eps) files are converted to PDF files (listing D.2) and a

LATEX file that includes all the PDFs is generated with the help of the Python script shown

in listing D.3. The production rules are linked to each other to enable a fast traversing of

the rules in the PDF version of the thesis.

1 forfiles /m *.eps /C "cmd /c echo @file @fname.pdf"

2 forfiles /m *.eps /C "cmd /c epstopdf @file --outfile=@fname.pdf"

Listing D.2: Batch conversion from eps to pdf file.

1 import os

2 import re

6 tex = ’’

7 prod_dict = {}

8

9 def write_tex(tex, line):

10 tex_line = line.replace(’\\’, ’\\textbackslash ’).replace(’_’, ’_’

↪→).replace(’$’, ’\$’).replace(’%’, ’\%’)

11 tex_line = tex_line.replace(’|’, ’\\textbar\\enspace’).replace(’#’,

↪→ ’\#’).replace(’&’, ’\&’)

12 tex_line = tex_line.replace(’{’, ’\\{’).replace(’}’, ’\\}’)

13 tex_line = tex_line.replace(’˜’, ’\\textasciitilde’).replace(’ˆ’, ’

↪→ \\textasciicircum’)

14 tex_line = tex_line.replace(’=’, ’$=$’).replace(’<’, ’$<$’).replace

↪→ (’>’, ’$>$’).replace(’$$’, ’’)

15

16 for word in tex_line.split():

17 done = [tex_line.split()[1],]

1https://github.com/FranklinChen/Ebnf2ps, last accessed: 2016-04-02

Norwegian University of Science and Technology
Department of Engineering Design and Materials 164

D WSN rules EXPRESS language

18 if re.sub(r’\\’,r’’,word) in prod_dict and word not in done:

19 done += [word]

20 tex_line = tex_line.replace(’ ’ + word + ’ ’, ’ \hyperref[

↪→ fig:ebnf_’ + re.sub(r’\\’,r’’,word) + ’]{\\textbf{’

↪→ + word + ’}} ’)

21

22 # change SUBTYPE_CONSTRAINT and TOTAL_OVER manually to CAPS_XXX,

↪→ because windows is not case sensitive and these two are

↪→ defined as token and as production...

23 if line.split()[1] == ’SUBTYPE_CONSTRAINT’:

24 pdf_name = ’CAPS_SUBTYPE_CONSTRAINT’

25 elif line.split()[1] == ’TOTAL_OVER’:

26 pdf_name = ’CAPS_TOTAL_OVER’

27 else:

28 pdf_name = line.split()[1]

29

30 tex += """\\begin{figure}[H]

31 \centering

32 \label{fig:ebnf_""" + line.split()[1] + """}

33 \captionsetup{justification=justified,singlelinecheck=false}

34 \caption*{""" + tex_line[:-1] + """}

35 \includegraphics[scale=1, trim=-10 0 0 15, clip]{src/pic/

↪→ railroad_diagrams/pdf/""" + pdf_name +""".pdf}

36 \end{figure}

37

38 \vspace{-8mm}

39 \hrulefill

40 \vspace{-5mm}

41

42 """

43 return tex

44

45

46 f = open(’iso_10303_11.bnf’,’r’)

47 while 1:

48 line = f.readline()

49 if not line:break

50 prod_dict[line.split()[1]] = line.split()[0]

51 f.close()

52

53 f = open(’iso_10303_11.bnf’,’r’)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 165

D WSN rules EXPRESS language

54 while 1:

55 line = f.readline()

56 if not line:break

57 tex = write_tex(tex, line)

58 f.close()

59

60 f = open(’railroad_diagram.tex’, ’w’)

61 f.write(tex)

62 f.close()

63

64

65 ##for pdf in os.listdir("./pdf/"):

66 ## if pdf.endswith(".pdf"):

67 ## print(pdf)

Listing D.3: Python script that generates the TeX file with all the railroad diagrams. The

productions are linked together with hyperrefs. (File: railroad2tex.py)

Norwegian University of Science and Technology
Department of Engineering Design and Materials 166

D WSN rules EXPRESS language

0 ABS = ’abs’ .

abs

ABS

1 ABSTRACT = ’abstract’ .

abstract

ABSTRACT

2 ACOS = ’acos’ .

acos

ACOS

3 AGGREGATE = ’aggregate’ .

aggregate

AGGREGATE

4 ALIAS = ’alias’ .

alias

ALIAS

5 AND = ’and’ .

and

AND

6 ANDOR = ’andor’ .

andor

ANDOR

7 ARRAY = ’array’ .

array

ARRAY

8 AS = ’as’ .

as

AS

9 ASIN = ’asin’ .

asin

ASIN

Norwegian University of Science and Technology
Department of Engineering Design and Materials 167

D WSN rules EXPRESS language

10 ATAN = ’atan’ .

atan

ATAN

11 BAG = ’bag’ .

bag

BAG

12 BASED ON = ’based on’ .

based_on

BASED_ON

13 BEGIN = ’begin’ .

begin

BEGIN

14 BINARY = ’binary’ .

binary

BINARY

15 BLENGTH = ’blength’ .

blength

BLENGTH

16 BOOLEAN = ’boolean’ .

boolean

BOOLEAN

17 BY = ’by’ .

by

BY

18 CASE = ’case’ .

case

CASE

19 CONSTANT = ’constant’ .

constant

CONSTANT

Norwegian University of Science and Technology
Department of Engineering Design and Materials 168

D WSN rules EXPRESS language

20 CONST E = ’const e’ .

const_e

CONST_E

21 COS = ’cos’ .

cos

COS

22 DERIVE = ’derive’ .

derive

DERIVE

23 DIV = ’div’ .

div

DIV

24 ELSE = ’else’ .

else

ELSE

25 END = ’end’ .

end

END

26 END ALIAS = ’end alias’ .

end_alias

END_ALIAS

27 END CASE = ’end case’ .

end_case

END_CASE

28 END CONSTANT = ’end constant’ .

end_constant

END_CONSTANT

29 END ENTITY = ’end entity’ .

end_entity

END_ENTITY

Norwegian University of Science and Technology
Department of Engineering Design and Materials 169

D WSN rules EXPRESS language

30 END FUNCTION = ’end function’ .

end_function

END_FUNCTION

31 END IF = ’end if’ .

end_if

END_IF

32 END LOCAL = ’end local’ .

end_local

END_LOCAL

33 END PROCEDURE = ’end procedure’ .

end_procedure

END_PROCEDURE

34 END REPEAT = ’end repeat’ .

end_repeat

END_REPEAT

35 END RULE = ’end rule’ .

end_rule

END_RULE

36 END SCHEMA = ’end schema’ .

end_schema

END_SCHEMA

37 END SUBTYPE CONSTRAINT = ’end subtype constraint’ .

end_subtype_constraint

END_SUBTYPE_CONSTRAINT

38 END TYPE = ’end type’ .

end_type

END_TYPE

39 ENTITY = ’entity’ .

entity

ENTITY

Norwegian University of Science and Technology
Department of Engineering Design and Materials 170

D WSN rules EXPRESS language

40 ENUMERATION = ’enumeration’ .

enumeration

ENUMERATION

41 ESCAPE = ’escape’ .

escape

ESCAPE

42 EXISTS = ’exists’ .

exists

EXISTS

43 EXTENSIBLE = ’extensible’ .

extensible

EXTENSIBLE

44 EXP = ’exp’ .

exp

EXP

45 FALSE = ’false’ .

false

FALSE

46 FIXED = ’fixed’ .

fixed

FIXED

47 FOR = ’for’ .

for

FOR

48 FORMAT = ’format’ .

format

FORMAT

49 FROM = ’from’ .

from

FROM

Norwegian University of Science and Technology
Department of Engineering Design and Materials 171

D WSN rules EXPRESS language

50 FUNCTION = ’function’ .

function

FUNCTION

51 GENERIC = ’generic’ .

generic

GENERIC

52 GENERIC ENTITY = ’generic entity’ .

generic_entity

GENERIC_ENTITY

53 HIBOUND = ’hibound’ .

hibound

HIBOUND

54 HIINDEX = ’hiindex’ .

hiindex

HIINDEX

55 IF = ’if’ .

if

IF

56 IN = ’in’ .

in

IN

57 INSERT = ’insert’ .

insert

INSERT

58 INTEGER = ’integer’ .

integer

INTEGER

59 INVERSE = ’inverse’ .

inverse

INVERSE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 172

D WSN rules EXPRESS language

60 LENGTH = ’length’ .

length

LENGTH

61 LIKE = ’like’ .

like

LIKE

62 LIST = ’list’ .

list

LIST

63 LOBOUND = ’lobound’ .

lobound

LOBOUND

64 LOCAL = ’local’ .

local

LOCAL

65 LOG = ’log’ .

log

LOG

66 LOG10 = ’log10’ .

log10

LOG10

67 LOG2 = ’log2’ .

log2

LOG2

68 LOGICAL = ’logical’ .

logical

LOGICAL

69 LOINDEX = ’loindex’ .

loindex

LOINDEX

Norwegian University of Science and Technology
Department of Engineering Design and Materials 173

D WSN rules EXPRESS language

70 MOD = ’mod’ .

mod

MOD

71 NOT = ’not’ .

not

NOT

72 NUMBER = ’number’ .

number

NUMBER

73 NVL = ’nvl’ .

nvl

NVL

74 ODD = ’odd’ .

odd

ODD

75 OF = ’of’ .

of

OF

76 ONEOF = ’oneof’ .

oneof

ONEOF

77 OPTIONAL = ’optional’ .

optional

OPTIONAL

78 OR = ’or’ .

or

OR

79 OTHERWISE = ’otherwise’ .

otherwise

OTHERWISE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 174

D WSN rules EXPRESS language

80 PI = ’pi’ .

pi

PI

81 PROCEDURE = ’procedure’ .

procedure

PROCEDURE

82 QUERY = ’query’ .

query

QUERY

83 REAL = ’real’ .

real

REAL

84 REFERENCE = ’reference’ .

reference

REFERENCE

85 REMOVE = ’remove’ .

remove

REMOVE

86 RENAMED = ’renamed’ .

renamed

RENAMED

87 REPEAT = ’repeat’ .

repeat

REPEAT

88 RETURN = ’return’ .

return

RETURN

89 ROLESOF = ’rolesof’ .

rolesof

ROLESOF

Norwegian University of Science and Technology
Department of Engineering Design and Materials 175

D WSN rules EXPRESS language

90 RULE = ’rule’ .

rule

RULE

91 SCHEMA = ’schema’ .

schema

SCHEMA

92 SELECT = ’select’ .

select

SELECT

93 SELF = ’self’ .

self

SELF

94 SET = ’set’ .

set

SET

95 SIN = ’sin’ .

sin

SIN

96 SIZEOF = ’sizeof’ .

sizeof

SIZEOF

97 SKIP = ’skip’ .

skip

SKIP

98 SQRT = ’sqrt’ .

sqrt

SQRT

99 STRING = ’string’ .

string

STRING

Norwegian University of Science and Technology
Department of Engineering Design and Materials 176

D WSN rules EXPRESS language

100 SUBTYPE = ’subtype’ .

subtype

SUBTYPE

101 SUBTYPE CONSTRAINT = ’subtype constraint’ .

subtype_constraint

SUBTYPE_CONSTRAINT

102 SUPERTYPE = ’supertype’ .

supertype

SUPERTYPE

103 TAN = ’tan’ .

tan

TAN

104 THEN = ’then’ .

then

THEN

105 TO = ’to’ .

to

TO

106 TOTAL OVER = ’total over’ .

total_over

TOTAL_OVER

107 TRUE = ’true’ .

true

TRUE

108 TYPE = ’type’ .

type

TYPE

109 TYPEOF = ’typeof’ .

typeof

TYPEOF

Norwegian University of Science and Technology
Department of Engineering Design and Materials 177

D WSN rules EXPRESS language

110 UNIQUE = ’unique’ .

unique

UNIQUE

111 UNKNOWN = ’unknown’ .

unknown

UNKNOWN

112 UNTIL = ’until’ .

until

UNTIL

113 USE = ’use’ .

use

USE

114 USEDIN = ’usedin’ .

usedin

USEDIN

115 VALUE = ’value’ .

value

VALUE

116 VALUE IN = ’value in’ .

value_in

VALUE_IN

117 VALUE UNIQUE = ’value unique’ .

value_unique

VALUE_UNIQUE

118 VAR = ’var’ .

var

VAR

119 WHERE = ’where’ .

where

WHERE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 178

D WSN rules EXPRESS language

120 WHILE = ’while’ .

while

WHILE

121 WITH = ’with’ .

with

WITH

122 XOR = ’xor’ .

xor

XOR

123 bit = ’0’ | ’1’ .

0

1

bit

124 digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

0

1

2

3

4

5

6

7

8

9

digit

125 digits = digit { digit } .

digit

digit

digits

Norwegian University of Science and Technology
Department of Engineering Design and Materials 179

D WSN rules EXPRESS language

126 encoded character = octet octet octet octet .

octet octet octet octet

encoded_character

127 hex digit = digit | ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

digit

a

b

c

d

e

f

hex_digit

128 letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’
| ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ .

a

b

c

d

e

f

g

h

i

j

k

l

m

letter

n

o

p

q

r

s

t

u

v

w

x

y

z

Norwegian University of Science and Technology
Department of Engineering Design and Materials 180

D WSN rules EXPRESS language

129 lparen then not lparen star = ’(’ { ’(’ } not lparen star { not lparen star } .

(
(

not_lparen_star

not_lparen_star

lparen_then_not_lparen_star

130 not lparen star = not paren star | ’)’ .

not_paren_star

)

not_lparen_star

131 not paren star = letter | digit | not paren star special .

letter

digit

not_paren_star_special

not_paren_star

132 not paren star quote special = ’ !’ | ’”’ | ’#’ | ’$’ | ’%’ | ’&’ | ’+’ | ’,’ | ’-’ | ’.’ | ’/’
| ’:’ | ’;’ | ’<’ | ’=’ | ’>’ | ’?’ | ’@’ | ’[’ | ’\’ | ’]’ | ’ˆ’ | ’ ’ | ”’ | ’{’ | ’| ’ | ’}’ | ’˜’ .

!

"

#

$

%

&

+

,

–

.

/

:

;

<

not_paren_star_quote_special

=

>

?

@

[

\

]

^

_

’

{

|

}

~

Norwegian University of Science and Technology
Department of Engineering Design and Materials 181

D WSN rules EXPRESS language

133 not paren star special = not paren star quote special | ”” .

not_paren_star_quote_special

’’

not_paren_star_special

134 not quote = not paren star quote special | letter | digit | ’(’ | ’)’ | ’*’ .

not_paren_star_quote_special

letter

digit

(

)

*

not_quote

135 not rparen star = not paren star | ’(’ .

not_paren_star

(

not_rparen_star

136 octet = hex digit hex digit .

hex_digit hex_digit

octet

137 special = not paren star quote special | ’(’ | ’)’ | ’*’ | ”” .

not_paren_star_quote_special

(

)

*

’’

special

138 not rparen star then rparen = not rparen star { not rparen star } ’)’ { ’)’ } .

not_rparen_star

not_rparen_star

)
)

not_rparen_star_then_rparen

Norwegian University of Science and Technology
Department of Engineering Design and Materials 182

D WSN rules EXPRESS language

139 binary literal = ’%’ bit { bit } .

% bit

bit

binary_literal

140 encoded string literal = ’”’ encoded character { encoded character } ’”’ .

 encoded_character { encoded_character }

encoded_string_literal

141 integer literal = digits .

digits

integer_literal

142 real literal = integer literal | (digits ’.’ [digits] [’e’ [sign] digits]) .

integer_literal

digits .

digits e

sign

digits

real_literal

143 simple id = letter { letter | digit | ’ ’ } .

letter

letter

digit

_

simple_id

Norwegian University of Science and Technology
Department of Engineering Design and Materials 183

D WSN rules EXPRESS language

144 simple string literal = \q { (\q \q) | not quote | \s | \x8 | \x9 | \xA | \xB | \xC
| \xD } \q .

q

qq

not_quote

s

x8

x9

xA

xB

xC

xD
q

simple_string_literal

145 embedded remark = ’(*’ [remark tag] { (not paren star { not paren star
}) | lparen then not lparen star | (’*’ { ’*’ }) | not rparen star then rparen
| embedded remark } ’*)’ .

(*

remark_tag

not_paren_star

not_paren_star

lparen_then_not_lparen_star

*
*

not_rparen_star_then_rparen

embedded_remark

*)

embedded_remark

146 remark = embedded remark | tail remark .

embedded_remark

tail_remark

remark

147 remark tag = ’”’ remark ref { ’.’ remark ref } ’”’ .

 remark_ref { . remark_ref }

remark_tag

Norwegian University of Science and Technology
Department of Engineering Design and Materials 184

D WSN rules EXPRESS language

148 remark ref = attribute ref | constant ref | entity ref | enumeration ref
| function ref | parameter ref | procedure ref | rule label ref | rule ref
| schema ref | subtype constraint ref | type label ref | type ref | variable ref
.

attribute_ref

constant_ref

entity_ref

enumeration_ref

function_ref

parameter_ref

procedure_ref

rule_label_ref

rule_ref

schema_ref

subtype_constraint_ref

type_label_ref

type_ref

variable_ref

remark_ref

149 tail remark = ’–’ [remark tag] { \a | \s | \x8 | \x9 | \xA | \xB | \xC | \xD } \n .

––

remark_tag

a

s

x8

x9

xA

xB

xC

xD
n

tail_remark

150 attribute ref = attribute id .

attribute_id

attribute_ref

Norwegian University of Science and Technology
Department of Engineering Design and Materials 185

D WSN rules EXPRESS language

151 constant ref = constant id .

constant_id

constant_ref

152 entity ref = entity id .

entity_id

entity_ref

153 enumeration ref = enumeration id .

enumeration_id

enumeration_ref

154 function ref = function id .

function_id

function_ref

155 parameter ref = parameter id .

parameter_id

parameter_ref

156 procedure ref = procedure id .

procedure_id

procedure_ref

157 rule label ref = rule label id .

rule_label_id

rule_label_ref

158 rule ref = rule id .

rule_id

rule_ref

159 schema ref = schema id .

schema_id

schema_ref

160 subtype constraint ref = subtype constraint id .

subtype_constraint_id

subtype_constraint_ref

Norwegian University of Science and Technology
Department of Engineering Design and Materials 186

D WSN rules EXPRESS language

161 type label ref = type label id .

type_label_id

type_label_ref

162 type ref = type id .

type_id

type_ref

163 variable ref = variable id .

variable_id

variable_ref

164 abstract entity declaration = ABSTRACT .

ABSTRACT

abstract_entity_declaration

165 abstract supertype = ABSTRACT SUPERTYPE ’;’ .

ABSTRACT SUPERTYPE ;

abstract_supertype

166 abstract supertype declaration = ABSTRACT SUPERTYPE [sub-
type constraint] .

ABSTRACT SUPERTYPE

subtype_constraint

abstract_supertype_declaration

167 actual parameter list = ’(’ parameter { ’,’ parameter } ’)’ .

(parameter

,parameter

)

actual_parameter_list

168 add like op = ’+’ | ’-’ | OR | XOR .

+

–

OR

XOR

add_like_op

Norwegian University of Science and Technology
Department of Engineering Design and Materials 187

D WSN rules EXPRESS language

169 aggregate initializer = ’[’ [element { ’,’ element }] ’]’ .

[

element

,element

]

aggregate_initializer

170 aggregate source = simple expression .

simple_expression

aggregate_source

171 aggregate type = AGGREGATE [’:’ type label] OF parameter type .

AGGREGATE

: type_label

OF parameter_type

aggregate_type

172 aggregation types = array type | bag type | list type | set type .

array_type

bag_type

list_type

set_type

aggregation_types

173 algorithm head = { declaration } [constant decl] [local decl] .

declaration constant_decl local_decl

algorithm_head

174 alias stmt = ALIAS variable id FOR general ref { qualifier } ’;’ stmt { stmt }
END ALIAS ’;’ .

ALIAS variable_id FOR general_ref

qualifier

alias_stmt

; stmt

stmt

END_ALIAS ;

175 array type = ARRAY bound spec OF [OPTIONAL] [UNIQUE] instan-
tiable type .

ARRAY bound_spec OF

OPTIONAL UNIQUE

instantiable_type

array_type

Norwegian University of Science and Technology
Department of Engineering Design and Materials 188

D WSN rules EXPRESS language

176 assignment stmt = general ref { qualifier } ’:=’ expression ’;’ .

general_ref

qualifier

:= expression ;

assignment_stmt

177 attribute decl = attribute id | redeclared attribute .

attribute_id

redeclared_attribute

attribute_decl

178 attribute id = simple id .

simple_id

attribute_id

179 attribute qualifier = ’.’ attribute ref .

. attribute_ref

attribute_qualifier

180 bag type = BAG [bound spec] OF instantiable type .

BAG

bound_spec

OF instantiable_type

bag_type

181 binary type = BINARY [width spec] .

BINARY

width_spec

binary_type

182 boolean type = BOOLEAN .

BOOLEAN

boolean_type

183 bound 1 = numeric expression .

numeric_expression

bound_1

184 bound 2 = numeric expression .

numeric_expression

bound_2

Norwegian University of Science and Technology
Department of Engineering Design and Materials 189

D WSN rules EXPRESS language

185 bound spec = ’[’ bound 1 ’:’ bound 2 ’]’ .

[bound_1 : bound_2]

bound_spec

186 built in constant = CONST E | PI | SELF | ’?’ .

CONST_E

PI

SELF

?

built_in_constant

187 built in function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS
| EXISTS | EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND
| LOINDEX | LOG | LOG2 | LOG10 | NVL | ODD | ROLESOF | SIN
| SIZEOF | SQRT | TAN | TYPEOF | USEDIN | VALUE | VALUE IN
| VALUE UNIQUE .

ABS

ACOS

ASIN

ATAN

BLENGTH

COS

EXISTS

EXP

FORMAT

HIBOUND

HIINDEX

LENGTH

LOBOUND

LOINDEX

LOG

built_in_function

LOG2

LOG10

NVL

ODD

ROLESOF

SIN

SIZEOF

SQRT

TAN

TYPEOF

USEDIN

VALUE

VALUE_IN

VALUE_UNIQUE

LOG2

LOG10

NVL

ODD

ROLESOF

SIN

SIZEOF

SQRT

TAN

TYPEOF

USEDIN

VALUE

VALUE_IN

VALUE_UNIQUE

Norwegian University of Science and Technology
Department of Engineering Design and Materials 190

D WSN rules EXPRESS language

188 built in procedure = INSERT | REMOVE .

INSERT

REMOVE

built_in_procedure

189 case action = case label { ’,’ case label } ’:’ stmt .

case_label

,case_label

: stmt

case_action

190 case label = expression .

expression

case_label

191 case stmt = CASE selector OF { case action } [OTHERWISE ’:’ stmt]
END CASE ’;’ .

CASE selector OF

case_action OTHERWISE : stmt

END_CASE ;

case_stmt

192 compound stmt = BEGIN stmt { stmt } END ’;’ .

BEGIN stmt

stmt

END ;

compound_stmt

193 concrete types = aggregation types | simple types | type ref .

aggregation_types

simple_types

type_ref

concrete_types

194 constant body = constant id ’:’ instantiable type ’:=’ expression ’;’ .

constant_id : instantiable_type := expression ;

constant_body

195 constant decl = CONSTANT constant body { constant body }
END CONSTANT ’;’ .

CONSTANT constant_body

constant_body

END_CONSTANT ;

constant_decl

Norwegian University of Science and Technology
Department of Engineering Design and Materials 191

D WSN rules EXPRESS language

196 constant factor = built in constant | constant ref .

built_in_constant

constant_ref

constant_factor

197 constant id = simple id .

simple_id

constant_id

198 constructed types = enumeration type | select type .

enumeration_type

select_type

constructed_types

199 declaration = entity decl | function decl | procedure decl
| subtype constraint decl | type decl .

entity_decl

function_decl

procedure_decl

subtype_constraint_decl

type_decl

declaration

200 derived attr = attribute decl ’:’ parameter type ’:=’ expression ’;’ .

attribute_decl : parameter_type := expression ;

derived_attr

201 derive clause = DERIVE derived attr { derived attr } .

DERIVE derived_attr

derived_attr

derive_clause

202 domain rule = [rule label id ’:’] expression .

rule_label_id :
expression

domain_rule

Norwegian University of Science and Technology
Department of Engineering Design and Materials 192

D WSN rules EXPRESS language

203 element = expression [’:’ repetition] .

expression

: repetition

element

204 entity body = { explicit attr } [derive clause] [inverse clause] [unique clause
] [where clause] .

explicit_attr derive_clause inverse_clause

unique_clause where_clause

entity_body

205 entity constructor = entity ref ’(’ [expression { ’,’ expression }] ’)’ .

entity_ref (

expression

,expression

)

entity_constructor

206 entity decl = entity head entity body END ENTITY ’;’ .

entity_head entity_body END_ENTITY ;

entity_decl

207 entity head = ENTITY entity id subsuper ’;’ .

ENTITY entity_id subsuper ;

entity_head

208 entity id = simple id .

simple_id

entity_id

209 enumeration extension = BASED ON type ref [WITH enumeration items] .

BASED_ON type_ref

WITH enumeration_items

enumeration_extension

210 enumeration id = simple id .

simple_id

enumeration_id

Norwegian University of Science and Technology
Department of Engineering Design and Materials 193

D WSN rules EXPRESS language

211 enumeration items = ’(’ enumeration id { ’,’ enumeration id } ’)’ .

(enumeration_id

,enumeration_id

)

enumeration_items

212 enumeration reference = [type ref ’.’] enumeration ref .

type_ref .
enumeration_ref

enumeration_reference

213 enumeration type = [EXTENSIBLE] ENUMERATION [(OF enumera-
tion items) | enumeration extension] .

EXTENSIBLE

ENUMERATION

OF enumeration_items

enumeration_extension

enumeration_type

214 escape stmt = ESCAPE ’;’ .

ESCAPE ;

escape_stmt

215 explicit attr = attribute decl { ’,’ attribute decl } ’:’ [OPTIONAL] parame-
ter type ’;’ .

attribute_decl
,attribute_decl

:

OPTIONAL

parameter_type ;

explicit_attr

216 expression = simple expression [rel op extended simple expression] .

simple_expression

rel_op_extended simple_expression

expression

217 factor = simple factor [’**’ simple factor] .

simple_factor

** simple_factor

factor

Norwegian University of Science and Technology
Department of Engineering Design and Materials 194

D WSN rules EXPRESS language

218 formal parameter = parameter id { ’,’ parameter id } ’:’ parameter type .

parameter_id

,parameter_id

: parameter_type

formal_parameter

219 function call = (built in function | function ref) [actual parameter list] .

built_in_function

function_ref

actual_parameter_list

function_call

220 function decl = function head algorithm head stmt { stmt } END FUNCTION
’;’ .

function_head algorithm_head stmt

stmt

END_FUNCTION ;

function_decl

221 function head = FUNCTION function id [’(’ formal parameter { ’;’ for-
mal parameter } ’)’] ’:’ parameter type ’;’ .

FUNCTION function_id

(formal_parameter
;formal_parameter

)

:

parameter_type ;

function_head

222 function id = simple id .

simple_id

function_id

223 generalized types = aggregate type | general aggregation types
| generic entity type | generic type .

aggregate_type

general_aggregation_types

generic_entity_type

generic_type

generalized_types

Norwegian University of Science and Technology
Department of Engineering Design and Materials 195

D WSN rules EXPRESS language

224 general aggregation types = general array type | general bag type
| general list type | general set type .

general_array_type

general_bag_type

general_list_type

general_set_type

general_aggregation_types

225 general array type = ARRAY [bound spec] OF [OPTIONAL] [UNIQUE]
parameter type .

ARRAY

bound_spec

OF

OPTIONAL UNIQUE

parameter_type

general_array_type

226 general bag type = BAG [bound spec] OF parameter type .

BAG

bound_spec

OF parameter_type

general_bag_type

227 general list type = LIST [bound spec] OF [UNIQUE] parameter type .

LIST

bound_spec

OF

UNIQUE

parameter_type

general_list_type

228 general ref = parameter ref | variable ref .

parameter_ref

variable_ref

general_ref

229 general set type = SET [bound spec] OF parameter type .

SET

bound_spec

OF parameter_type

general_set_type

230 generic entity type = GENERIC ENTITY [’:’ type label] .

GENERIC_ENTITY

: type_label

generic_entity_type

Norwegian University of Science and Technology
Department of Engineering Design and Materials 196

D WSN rules EXPRESS language

231 generic type = GENERIC [’:’ type label] .

GENERIC

: type_label

generic_type

232 group qualifier = ’\’ entity ref .

\ entity_ref

group_qualifier

233 if stmt = IF logical expression THEN stmt { stmt } [ELSE stmt { stmt }]
END IF ’;’ .

IF logical_expression THEN stmt

stmt ELSE stmt

stmt

END_IF ;

if_stmt

234 increment = numeric expression .

numeric_expression

increment

235 increment control = variable id ’:=’ bound 1 TO bound 2 [BY increment] .

variable_id := bound_1 TO bound_2

BY increment

increment_control

236 index = numeric expression .

numeric_expression

index

237 index 1 = index .

index

index_1

238 index 2 = index .

index

index_2

Norwegian University of Science and Technology
Department of Engineering Design and Materials 197

D WSN rules EXPRESS language

239 index qualifier = ’[’ index 1 [’:’ index 2] ’]’ .

[index_1

: index_2

]

index_qualifier

240 instantiable type = concrete types | entity ref .

concrete_types

entity_ref

instantiable_type

241 integer type = INTEGER .

INTEGER

integer_type

242 interface specification = reference clause | use clause .

reference_clause

use_clause

interface_specification

243 interval = ’{’ interval low interval op interval item interval op interval high
’}’ .

{ interval_low interval_op interval_item interval_op interval_high }

interval

244 interval high = simple expression .

simple_expression

interval_high

245 interval item = simple expression .

simple_expression

interval_item

246 interval low = simple expression .

simple_expression

interval_low

247 interval op = ’<’ | ’<=’ .

<

<=

interval_op

Norwegian University of Science and Technology
Department of Engineering Design and Materials 198

D WSN rules EXPRESS language

248 inverse attr = attribute decl ’:’ [(SET | BAG) [bound spec] OF] entity ref
FOR [entity ref ’.’] attribute ref ’;’ .

attribute_decl :

SET

BAG

bound_spec

OF

entity_ref FOR

entity_ref .

attribute_ref ;

inverse_attr

249 inverse clause = INVERSE inverse attr { inverse attr } .

INVERSE inverse_attr

inverse_attr

inverse_clause

250 list type = LIST [bound spec] OF [UNIQUE] instantiable type .

LIST

bound_spec

OF

UNIQUE

instantiable_type

list_type

251 literal = binary literal | logical literal | real literal | string literal .

binary_literal

logical_literal

real_literal

string_literal

literal

252 local decl = LOCAL local variable { local variable } END LOCAL ’;’ .

LOCAL local_variable

local_variable

END_LOCAL ;

local_decl

253 local variable = variable id { ’,’ variable id } ’:’ parameter type [’:=’ expression
] ’;’ .

variable_id
,variable_id

:

parameter_type
:= expression

;

local_variable

Norwegian University of Science and Technology
Department of Engineering Design and Materials 199

D WSN rules EXPRESS language

254 logical expression = expression .

expression

logical_expression

255 logical literal = FALSE | TRUE | UNKNOWN .

FALSE

TRUE

UNKNOWN

logical_literal

256 logical type = LOGICAL .

LOGICAL

logical_type

257 multiplication like op = ’*’ | ’/’ | DIV | MOD | AND | ’| | ’ .

*

/

DIV

MOD

AND

||

multiplication_like_op

258 named types = entity ref | type ref .

entity_ref

type_ref

named_types

259 named type or rename = named types [AS (entity id | type id)] .

named_types

AS
entity_id

type_id

named_type_or_rename

260 null stmt = ’;’ .

;

null_stmt

Norwegian University of Science and Technology
Department of Engineering Design and Materials 200

D WSN rules EXPRESS language

261 number type = NUMBER .

NUMBER

number_type

262 numeric expression = simple expression .

simple_expression

numeric_expression

263 one of = ONEOF ’(’ supertype expression { ’,’ supertype expression } ’)’ .

ONEOF (supertype_expression

,supertype_expression

)

one_of

264 parameter = expression .

expression

parameter

265 parameter id = simple id .

simple_id

parameter_id

266 parameter type = generalized types | named types | simple types .

generalized_types

named_types

simple_types

parameter_type

267 population = entity ref .

entity_ref

population

268 precision spec = numeric expression .

numeric_expression

precision_spec

269 primary = literal | (qualifiable factor { qualifier }) .

literal

qualifiable_factor

qualifier

primary

Norwegian University of Science and Technology
Department of Engineering Design and Materials 201

D WSN rules EXPRESS language

270 procedure call stmt = (built in procedure | procedure ref) [ac-
tual parameter list] ’;’ .

built_in_procedure

procedure_ref

actual_parameter_list

;

procedure_call_stmt

271 procedure decl = procedure head algorithm head { stmt }
END PROCEDURE ’;’ .

procedure_head algorithm_head

stmt

END_PROCEDURE ;

procedure_decl

272 procedure head = PROCEDURE procedure id [’(’ [VAR] formal parameter
{ ’;’ [VAR] formal parameter } ’)’] ’;’ .

PROCEDURE procedure_id

(

VAR

formal_parameter
;

VAR

formal_parameter

)

;

procedure_head

273 procedure id = simple id .

simple_id

procedure_id

274 qualifiable factor = attribute ref | constant factor | function call | general ref
| population .

attribute_ref

constant_factor

function_call

general_ref

population

qualifiable_factor

275 qualified attribute = SELF group qualifier attribute qualifier .

SELF group_qualifier attribute_qualifier

qualified_attribute

Norwegian University of Science and Technology
Department of Engineering Design and Materials 202

D WSN rules EXPRESS language

276 qualifier = attribute qualifier | group qualifier | index qualifier .

attribute_qualifier

group_qualifier

index_qualifier

qualifier

277 query expression = QUERY ’(’ variable id ’<*’ aggregate source ’| ’ logi-
cal expression ’)’ .

QUERY (variable_id <* aggregate_source | logical_expression)

query_expression

278 real type = REAL [’(’ precision spec ’)’] .

REAL

(precision_spec)

real_type

279 redeclared attribute = qualified attribute [RENAMED attribute id] .

qualified_attribute

RENAMED attribute_id

redeclared_attribute

280 referenced attribute = attribute ref | qualified attribute .

attribute_ref

qualified_attribute

referenced_attribute

281 reference clause = REFERENCE FROM schema ref [’(’ resource or rename {
’,’ resource or rename } ’)’] ’;’ .

REFERENCE FROM schema_ref

(resource_or_rename
,resource_or_rename

)

;

reference_clause

Norwegian University of Science and Technology
Department of Engineering Design and Materials 203

D WSN rules EXPRESS language

282 rel op = ’<’ | ’>’ | ’<=’ | ’>=’ | ’<>’ | ’=’ | ’:<>:’ | ’:=:’ .

<

>

<=

>=

<>

=

:<>:

:=:

rel_op

283 rel op extended = rel op | IN | LIKE .

rel_op

IN

LIKE

rel_op_extended

284 rename id = constant id | entity id | function id | procedure id | type id .

constant_id

entity_id

function_id

procedure_id

type_id

rename_id

285 repeat control = [increment control] [while control] [until control] .

increment_control while_control until_control

repeat_control

286 repeat stmt = REPEAT repeat control ’;’ stmt { stmt } END REPEAT ’;’ .

REPEAT repeat_control ; stmt

stmt

END_REPEAT ;

repeat_stmt

287 repetition = numeric expression .

numeric_expression

repetition

Norwegian University of Science and Technology
Department of Engineering Design and Materials 204

D WSN rules EXPRESS language

288 resource or rename = resource ref [AS rename id] .

resource_ref

AS rename_id

resource_or_rename

289 resource ref = constant ref | entity ref | function ref | procedure ref
| type ref .

constant_ref

entity_ref

function_ref

procedure_ref

type_ref

resource_ref

290 return stmt = RETURN [’(’ expression ’)’] ’;’ .

RETURN

(expression)
;

return_stmt

291 rule decl = rule head algorithm head { stmt } where clause END RULE ’;’ .

rule_head algorithm_head

stmt

where_clause END_RULE ;

rule_decl

292 rule head = RULE rule id FOR ’(’ entity ref { ’,’ entity ref } ’)’ ’;’ .

RULE rule_id FOR (entity_ref

,entity_ref

) ;

rule_head

293 rule id = simple id .

simple_id

rule_id

294 rule label id = simple id .

simple_id

rule_label_id

Norwegian University of Science and Technology
Department of Engineering Design and Materials 205

D WSN rules EXPRESS language

295 schema body = { interface specification } [constant decl] { declaration
| rule decl } .

interface_specification constant_decl

declaration

rule_decl

schema_body

296 schema decl = SCHEMA schema id [schema version id] ’;’ schema body
END SCHEMA ’;’ .

SCHEMA schema_id

schema_version_id

; schema_body END_SCHEMA ;

schema_decl

297 schema id = simple id .

simple_id

schema_id

298 schema version id = string literal .

string_literal

schema_version_id

299 selector = expression .

expression

selector

300 select extension = BASED ON type ref [WITH select list] .

BASED_ON type_ref

WITH select_list

select_extension

301 select list = ’(’ named types { ’,’ named types } ’)’ .

(named_types

,named_types

)

select_list

Norwegian University of Science and Technology
Department of Engineering Design and Materials 206

D WSN rules EXPRESS language

302 select type = [EXTENSIBLE [GENERIC ENTITY]] SELECT [select list
| select extension] .

EXTENSIBLE

GENERIC_ENTITY

SELECT

select_list

select_extension

select_type

303 set type = SET [bound spec] OF instantiable type .

SET

bound_spec

OF instantiable_type

set_type

304 sign = ’+’ | ’-’ .

+

–

sign

305 simple expression = term { add like op term } .

term

add_like_opterm

simple_expression

306 simple factor = aggregate initializer | entity constructor
| enumeration reference | interval | query expression | ([unary op] (’(’
expression ’)’ | primary)) .

aggregate_initializer

entity_constructor

enumeration_reference

interval

query_expression

unary_op (expression)

primary

simple_factor

Norwegian University of Science and Technology
Department of Engineering Design and Materials 207

D WSN rules EXPRESS language

307 simple types = binary type | boolean type | integer type | logical type
| number type | real type | string type .

binary_type

boolean_type

integer_type

logical_type

number_type

real_type

string_type

simple_types

308 skip stmt = SKIP ’;’ .

SKIP ;

skip_stmt

309 stmt = alias stmt | assignment stmt | case stmt | compound stmt
| escape stmt | if stmt | null stmt | procedure call stmt | repeat stmt
| return stmt | skip stmt .

alias_stmt

assignment_stmt

case_stmt

compound_stmt

escape_stmt

if_stmt

null_stmt

procedure_call_stmt

repeat_stmt

return_stmt

skip_stmt

stmt

310 string literal = simple string literal | encoded string literal .

simple_string_literal

encoded_string_literal

string_literal

Norwegian University of Science and Technology
Department of Engineering Design and Materials 208

D WSN rules EXPRESS language

311 string type = STRING [width spec] .

STRING

width_spec

string_type

312 subsuper = [supertype constraint] [subtype declaration] .

supertype_constraint subtype_declaration

subsuper

313 subtype constraint = OF ’(’ supertype expression ’)’ .

OF (supertype_expression)

subtype_constraint

314 subtype constraint body = [abstract supertype] [total over] [super-
type expression ’;’] .

abstract_supertype total_over supertype_expression ;

subtype_constraint_body

315 subtype constraint decl = subtype constraint head subtype constraint body
END SUBTYPE CONSTRAINT ’;’ .

subtype_constraint_head subtype_constraint_body

subtype_constraint_decl

END_SUBTYPE_CONSTRAINT ;

316 subtype constraint head = SUBTYPE CONSTRAINT subtype constraint id
FOR entity ref ’;’ .

SUBTYPE_CONSTRAINT subtype_constraint_id FOR entity_ref ;

subtype_constraint_head

317 subtype constraint id = simple id .

simple_id

subtype_constraint_id

318 subtype declaration = SUBTYPE OF ’(’ entity ref { ’,’ entity ref } ’)’ .

SUBTYPE OF (entity_ref

,entity_ref

)

subtype_declaration

Norwegian University of Science and Technology
Department of Engineering Design and Materials 209

D WSN rules EXPRESS language

319 supertype constraint = abstract entity declaration
| abstract supertype declaration | supertype rule .

abstract_entity_declaration

abstract_supertype_declaration

supertype_rule

supertype_constraint

320 supertype expression = supertype factor { ANDOR supertype factor } .

supertype_factor

ANDORsupertype_factor

supertype_expression

321 supertype factor = supertype term { AND supertype term } .

supertype_term

ANDsupertype_term

supertype_factor

322 supertype rule = SUPERTYPE subtype constraint .

SUPERTYPE subtype_constraint

supertype_rule

323 supertype term = entity ref | one of | ’(’ supertype expression ’)’ .

entity_ref

one_of

(supertype_expression)

supertype_term

324 syntax = schema decl { schema decl } .

schema_decl

schema_decl

syntax

325 term = factor { multiplication like op factor } .

factor

multiplication_like_opfactor

term

326 total over = TOTAL OVER ’(’ entity ref { ’,’ entity ref } ’)’ ’;’ .

TOTAL_OVER (entity_ref

,entity_ref

) ;

total_over

Norwegian University of Science and Technology
Department of Engineering Design and Materials 210

D WSN rules EXPRESS language

327 type decl = TYPE type id ’=’ underlying type ’;’ [where clause] END TYPE
’;’ .

where_clause

END_TYPE ;

type_decl

TYPE type_id = underlying_type ;

328 type id = simple id .

simple_id

type_id

329 type label = type label id | type label ref .

type_label_id

type_label_ref

type_label

330 type label id = simple id .

simple_id

type_label_id

331 unary op = ’+’ | ’-’ | NOT .

+

–

NOT

unary_op

332 underlying type = concrete types | constructed types .

concrete_types

constructed_types

underlying_type

333 unique clause = UNIQUE unique rule ’;’ { unique rule ’;’ } .

UNIQUE unique_rule ;

unique_rule;

unique_clause

Norwegian University of Science and Technology
Department of Engineering Design and Materials 211

D WSN rules EXPRESS language

334 unique rule = [rule label id ’:’] referenced attribute { ’,’ referenced attribute
} .

rule_label_id :
referenced_attribute

,referenced_attribute

unique_rule

335 until control = UNTIL logical expression .

UNTIL logical_expression

until_control

336 use clause = USE FROM schema ref [’(’ named type or rename { ’,’
named type or rename } ’)’] ’;’ .

USE FROM schema_ref

use_clause

(named_type_or_rename
,named_type_or_rename

)

;

337 variable id = simple id .

simple_id

variable_id

338 where clause = WHERE domain rule ’;’ { domain rule ’;’ } .

WHERE domain_rule ;

domain_rule;

where_clause

339 while control = WHILE logical expression .

WHILE logical_expression

while_control

340 width = numeric expression .

numeric_expression

width

341 width spec = ’(’ width ’)’ [FIXED] .

(width)

FIXED

width_spec

Norwegian University of Science and Technology
Department of Engineering Design and Materials 212

NTNU

m
Prepared by Number Date

Risk assessment
HSE section HMSRV2603E 02.11.2015 I

HSE/KS

Approved by
The Rector

Unit: (Department) /

Line manager: / () rq.ei· r WeLo
Participants in the identification process (including their function):

Date: 02.11.2015

Short description of the main activity/main process: Master project for student Jerome Schatzle. EVALUATE HOW THE
STEP STANDARD AP 242 COULD ENABWNOWLEDGE TRANSFER BETWEEN CAD AND KBE ENVIRONMENTS. a ,c;> ~ J - . . . ~ /'I _jJ.

.
Activity from the Potential Likelihood: Consequence: Risk Comments/status
identification process undesirable Likelihood Human Environm Economy/ Value Suggested measures
form incident/strain (1-5) (A-E) ent material (human)

l(A-E) (A-E)

Purely theoretical work, does not contain any activities that involve risks.

Likelihood, e.g.:
1. Minimal
2. Low
3. Medium
4. High
5. Very high

Consequence, e.g.:
A. Safe
B. Relatively safe
C. Dangerous
D. Critical
E. Very critical

Risk value (each one to be estimated separately):
Human = Likelihood x Human Consequence
Environmental = Likelihood x Environmental consequence
Financial/material= Likelihood x Consequence for Economy/materiel

	Assignment
	Preface
	Abstract
	List of figures
	List of tables
	Nomenclature
	Introduction
	Background
	Motivation
	Objectives of the thesis
	Research and standardization
	Structure

	Theory
	Fundamentals
	Product data exchange
	Translators
	Mapping

	Design intent
	ISO 10303 STEP standard
	Structure of STEP
	Part 11 – The EXPRESS language reference manual
	Part 21 – Clear text encoding of the exchange structure
	Part 22 – Standard data access interface
	Part 55 – Procedural and hybrid representation
	Part 108 – Parameterization and constraints for explicit geometric product models
	Part 111 – Elements for the procedural modeling of solid shapes
	AP 203 – Configuration controlled 3D designs of mechanical parts and assemblies
	AP 214 – Core data for automotive mechanical design processes
	AP 242 – Managed model based 3D engineering
	AP 209 – Multidisciplinary analysis and design

	Knowledge Based Engineering
	Adaptive Modeling Language

	Methodology & Implementation
	Concept development
	Example STEP file
	Software tools
	EDM implementation

	EXPRESS structure mapping
	Software tools
	Wirth Syntax Notation converter
	EXPRESS schema parser
	AML code generation

	Data transfer
	STEP P21 parser
	AML population

	Results
	Discussion
	Knowledge transfer with the STEP standard
	Implementation of a STEP translator

	Conclusion
	Future work
	Bibliography
	File structure
	EDM commands
	Code listings
	EDM – procedural query
	AML
	Main
	Geometric representation classes
	Feature mapping classes
	Populate transfer file

	Python
	WSN converter
	Schema Parser
	P21 Parser

	WSN rules EXPRESS language
	Risk assessment

