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Abstract—1In this paper an approach for optimal boundary
control of a parabolic partial differential equation (PDE) is
presented. The parabolic PDE is the heat equation for thermal
conduction. A technical application for this is the freezing of
fish in a vertical plate freezer. As it is a dominant phenomenon
in the process of freezing, the latent heat of fusion is included in
the model. The aim of the optimization is to freeze the interior
of a fish block below —18 °C in a predefined time horizon with
an energy consumption that is as low as possible assuming that
this corresponds to high freezing temperatures.

I. INTRODUCTION

The system studied in this paper is a model of heat
exchange phenomena, known as the heat equation. This is a
parabolic partial differential equation (PDE).

General numerical optimization and optimal control have
been studied and introduced in a great number of publi-
cations, such as [12] and [5]. In [12] an introduction to
(un—)constrained optimization and methods to solve either of
these problems are given. A detailed overview over numerical
tools for solving optimal control problems, both in discrete
and continuous time, is provided in [5].

Optimal control of PDEs has been studied in many papers,
such as [6], [7], [8] and [1]. In [6] and [7], mathematical
aspects are studied, such as rewriting the PDE into a state
space form by defining operators. In [8] a detailed overview
of theoretical principles for controlling PDEs optimally is
presented, as well as an introduction of methods to solve
them and applications for the theoretical results. In [1]
practical approaches to optimal model predictive control of
the heat equation are demonstrated.

The heat exchange phenomenon in this paper is the
freezing of a fish block in a vertical plate freezer. The fish
is headed and gutted and afterwards filled into the vertical
plate freezer (see Fig. 1 left) where it gets frozen as a block
(see Fig. 1 right). The cooling medium is liquid ammonia at
minimal 235 K, which is forced through the plate freezer by
a pump. When taking heat off the fish block, the ammonia
partly vaporizes and in a cycle process this added amount of
heat gets removed by a compression/condensation/throttling
- process. For a schematic of the cycle process see Fig. 2.

Due to the fact that fish consists of a large amount of water,
it can be assumed that certain thermodynamical phenomena
hold. If water is cooled down below its freezing point one can
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Fig. 1.
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observe that for a certain period of time the temperature will
remain constant at the freezing point. Thus when a phase
change occurs (here for water from liquid to solid state)
an additional amount of energy has to be removed from
the system. This amount of energy is the so called latent
heat of fusion. Physically, latent heat of fusion is a hidden
amount of energy that is needed to break the grid structure
of the solid phase when melting ice. Many researchers have
studied this phenomenon in numerical simulations of the heat
equation, e.g [11] introduced different schemes for adapting
the heat transfer parameters to model latent heat of fusion.
In [13] and [14] progresses in the field of modeling freezing
processes are described. A review about modeling heat and
mass transfer in frozen foods is given in [15].

The overall aim is to freeze the interior of a fish block
below —18 °C in a predefined time horizon. The freezing
process is supposed to consume as little energy as possible
assuming that this corresponds to high freezing temperatures.
This assumption leads to the definition of an optimal control
problem. To the authors best knowledge, there are no previ-
ous results presented in the literature on optimal boundary
control of freezing taking latent heat of fusion into account.



II. MODEL

For simplicity, and without loss of generality, only one
spatial dimension is considered when choosing the equation
that models the freezing process.

A. Model equations

The equation of the parabolic PDE is as follows
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where T denotes the temperature, p (T') is the density, ¢ (T)
indicates the specific heat capacity at constant pressure,
A(T) describes the thermal conductivity and Ay (T) is the
derivative of A (T') with respect to the temperature 7. The
PDE (1) is thus nonlinear.

Note that both p, ¢ and A depend on the temperature
T. There are several ways to describe this temperature
dependency. One method is to use a step-function and define
constant values above and below the freezing point, which
is the least accurate approach. Another method is to define
continuous functions representing even better approximations
to the real parameters. The latter approach is demonstrated
in [4] where it is also shown that fish can be considered as
a thermodynamical alloy of many substances, such as water,
fat, proteins, and so on. Thus, the parameters p (T), c¢(T)
and A (T) can be calculated as a sum of the parameters of
the actual substances multiplied by their mass-fraction.

To keep notation simple, two new parameters can be
introduced as
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This leads to a rewritten form of (1)
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or, with simpler notation,
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B. Latent heat of fusion

As mentioned before, the phenomenon of latent heat of
fusion has to be modeled explicitly. This can be done by
using an approach described in [11] named the apparent heat
capacity method where the parameters ¢(T) and A (T) are
defined as follows
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The index s denotes solid state and the index / denotes liquid
state, respectively. LH indicates the amount of latent heat of
fusion, AT is a temperature interval around the freezing point
temperature Ty. The size of AT influences how long it takes
until the latent heat of fusion is removed from the medium
(fish block). Therefore, in practice, this parameter can be
chosen to fit a measured freezing curve. Note that p (T) is
considered to be constant over the whole temperature range.
The chosen approach corresponds to the earlier described
definition of parameters with constant values above and be-
low the freezing point. Nevertheless, case defined functions
for the parameters (see (6) and (7)) may not necessarily be
implementable in any optimization environment. Therefore,
k(T) can be approximated by a continuous expression using
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An approximation is necessary due to the fact that the
optimization software intended to use requires a continuous
representation for k(7). The values in (8) were found by
curve-fitting to approximate the function defined in (2). A
comparison between k (T') defined in (2), (6) and (7), and its
approximation (8) can be seen in Fig. 3.

Furthermore, the parameter ky (7') has to be defined and
thus approximations for functions (6) and (7) are needed as
well. The arctan-function showed itself to be a good decision
for approximating the parameter & (7) and thus the following
approximations for the parameters ¢ (7) and A (T') have also
been found by curvefitting:
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Fig. 3. Parameter & (7) as defined in (2), (6) and (7) (blue) compared to
the approximation defined in (8) (red)

whose plot can be seen in Figure 4 compared to original
definition in (6) and

A (T) ~ 0.49+0.42 [—arctan ((T _ 1) 400,[) 4 ”] ’
Ty 2
(10)

whose plot can be seen in Figure 5 compared to original
definition in (7).
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Fig. 5. Parameter A (7) as defined in (7) (blue) compared to the
approximation defined in (10) (red)

Differentiating (10) with respect to temperature 7 gives

1667
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and thus the parameter k7 (T') defined in (3) can be calculated
with the functions defined in (9) and (11). Its plot can be seen
in Figure 6.
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Fig. 6. Parameter k7 (T) as defined in (3)

Note that for all plots of the approximated parameters the
values Ty = 272 K and AT = 0.5 K were used.

C. Boundary and initial conditions

The Dirichlet boundary conditions represent the input to
the system, meaning that they are functions of temperature
depending on time: T (¢,0) =T (¢,L) = u(t). Here L denotes
the length of the fish block and u(¢) is the input function
over time.

The initial condition is chosen to be evenly distributed
over the whole spatial variable: T (0,x) = T;p;.

D. Discretization

The model can be discretized in time and space. But again,
in the interest of simplicity, it will only be discretized in
space and not in time. This approach leads to a manageable
amount of states and leaves the time-discretization to the
optimization software. Thus a set of continuous ordinary
differential equations (ODEs) constrains the optimization
problem.

The discretization in space is done by a forward difference
approach and a center difference approach, respectively

iZT . Tht1 2T+ Ty
ax2~ Ax?
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where the time dependency of the temperature 7 is not
explicitly shown. Further Ax describes the spatial resolution,
meaning that Ax = %, where N denotes the number of cells.
Thus the running variable is defined as 1 <n <N.



After discretization and introduction of the boundary con-
ditions, (4) can be rewritten to
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meaning that a set of N coupled, nonlinear ODEs is obtained
where T € R+ and u € R*.

ITI. STABILITY

The following stability proof is inspired by [10, Ch. 2] and
is based on the PDE itself, not its discretization. The steady
state solution for the system (4) is 7 = u. An error term
is defined as w(t,x) =T (t,x) =T = T (t,x) =w(t,x)+T.
After normalizing the length L, (5) can be rewritten as
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Define a Lyapunov function candidate V as the L, spatial
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Differentiating (13) with respect to time and not explicitly
marking the dependency of k7 and k on w+T leads to
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The next step will be a case-by—case analysis investigating
stability for different values of w (¢,x). Out of (14) it can be
seen that V <0 if

—lkr|w(z, <0 (15)
k
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A. Case 1: w(t,x) >0
The first case denotes freezing, meaning that u / T is

smaller than T (z,x). This case is automatically fulfilled in
the requirement formulated in (16).

B. Case 2: w(t,x) <0

The second case describes thawing, meaning that u / T is
bigger than T (¢,x). Here the bound on u has to be regarded:
235 K < u < 255 K. This case requires a deeper study of
the term |k | whose plot can be seen in Fig. 7.
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Here the worst case scenario is described by T = 255 K
and T (¢,x) = 235 K leading to a maximal negative error
w(t,x) = —20 °C. The highest reachable temperature for this
case is the upper bound to the input and thus a maximal value

Sk = —5782.7 is obtained fulfilling (16).

Hence it is shown that inequality (15) is fulfilled for the
definitions of the parameters k7 and k, u bounded and all
possible values of w(¢,x). With this knowledge Poincaré’s
inequality (see [10, Eq. 2.30]) can be introduced to (14)
with a bound K representing the left hand side of (15) and
consequently the PDE (1) is asymptotically stable:
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0
IV. OPTIMIZATION PROBLEM

The continuous, nonlinear model (12) imposes constraints
to the optimal control problem (OCP). The spatial discretiza-
tion resolution was chosen to be N =25. With N uneven, the
exact center of the discretized space can be defined, namely
n = 13. After simulation with a constant input function
u=235K, 7is set to 6000 s. The objective function is chosen
to be a least squares tracking term (LSQ) with constant
reference values.

K
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Thus, the formulation of the OCP looks as follows

minimize /0 T Toepa) T QT — Treps) +R (u— o) d
subject to
T(O) = Tinit
Discretized model (12) with the
boundary conditions Top = Ty = u
u<u<u

Terminal constraints (see appendix)
a7

where T,.r; describes a vector containing the constant
reference temperatures for the i-th state, u,r is a scalar
representing the reference input temperature, T denotes the
time horizon for the OCP, Q is a positive definite diagonal
matrix that suits the size of (Ti — Tref_,,') containing weights
on state deviations, R is a scalar representing the weights
on input deviations, Tj,; indicates the initial temperature
and u and u are the lower and upper bounds to the input
temperature, respectively. The values for these parameters
and the terminal constraints are listed in the appendix. Note
that the temperature references 7. correspond with the
upper values for the terminal constraints 7;(7), and these
values are chosen to be largest in the core of the fish block
and become lower towards the boundary. This is done to
assure that the interior of the fish block is frozen below 255
K = —18 °C so that there is a temperature margin for the
outer layers when the fish block is being further distributed
to the storage freezer. Note further that there are no path
constraints defined for states and inputs.

A. Solving method

To solve the OCP a direct single shooting approach is
chosen, where a predefined time horizon 7 gets divided into
a fixed time grid 0 =1#y) <t < --- <t = 7 (not equidistant).
Between each of the time instances a piecewise constant
input function gets chosen and implemented into the ODEs.
Then the set of ODEs, now only depending on the states,
gets integrated by using a Runge Kutta method of order 7/8
with relative tolerance of 103 After input discretization and
numerical ODE solution, a Nonlinear Program (NLP) is ob-
tained which is solved by Sequential Quadratic Programming
(SQP). The approximation of the Hessian matrix in the SQP
solver is chosen as Gauss-Newton. The tolerance level for
the KKT conditions is set to 1072

B. Software

The optimization software ACADO provides a MATLAB
interface with automatic C++ code generation and is used
here. With ACADO, different optimal control problems can
be solved, such as offline dynamic optimization, parameter
and state estimation as well as combined online estimation
and MPC. For a deeper view of the structure and the
principles behind ACADO, please see [9], [3] and [2]. In
the latter two it is well-described how to formulate an OCP
in ACADO/MATLAB.

V. SIMULATIONS AND RESULTS

The state plots only show 77 to T3 due to the symmetry of
the system. The same input function acts similarly on both
boundaries and thus T4 = T12, Ti5 = T11, and so on.

To be able to have a reference to the obtained solution
of the OCP, a simulation with constant input u = 235 K is
shown in Fig. 8. Note the constant temperature values around
T =272 K due to the earlier described phenomenon of latent
heat of fusion.
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In Fig. 9 and 10 the solution to the OCP (17) for the
time grid vector [0:200:4000 4005 :5:6000] (421 time
instances) is presented. The vector gets chosen like this after
a series of a simulations showed that in the beginning the
lower bound on the input function is active for about 4000 s.
Then the input function changed and therefore the time grid
vector was adapted to smaller step sizes.

The increase of temperature close to the boundary is due
to the increase in the input function and despite this increase
the interior of the fish block is still frozen down due to the
cold front moving through it.

In Fig. 11 the temperature distribution at T = 6000 s is
shown over the whole spatial direction x. The peaks on the
boundaries result from the optimal solution (see overshoot
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of the input function in Fig. 10 just before 7 = 6000 s). One
can easily see that the terminal constraints are fulfilled.

VI. CONCLUSION AND FUTURE WORK

In this paper a solution to an optimal control problem
for the heat equation with phase change taking latent heat of
fusion into account has been found. The solution for the input
function (Fig. 10) is a series of step functions. A smooth
function can be found to approximate this optimal solution,
but will most likely lead to a suboptimal solution.

However, the piecewise constant input function makes this
approach not directly implementable. In future work a new
state variable limiting the slope of the input function could
be introduced to the OCP. Thus the temperature dynamics of
the ammonia could be taken into account more accurately.
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APPENDIX
TABLE I
SIMULATION PARAMETERS
L 0.1 m
LH || 280000 Tkg~!
N 25 -]
Ty 272 K
Tinit 283 K
AT 0.5 K
Ax 0.004 m
cs 2200 | Jkg KT
o 3800 Tkg TKT
u 235 K
] 255 K
p 950 kgm™>
As 1.8 Wm KT
A 0.5 WmTKT
T 6000 s
TABLE II
LSQ PARAMETERS
Y 0.1-T25005)
R 0.01
Tref1.25 [249 249 249 250 250 250 251 251
251 252252252253 252252252 251
251251 250 250 250 249 249 249] K
Uref 255 K
TABLE III

TERMINAL CONSTRAINTS

247K < T123232425 (1) < 249K
248 K < Ty 56202122 (1) <250 K
249 K < Tr89,171819 (1) < 251K
250 K < Tig.11,12,14,15.16 (7) < 252 K
251K < T13(7) < 253 K




