
Porøsitetstrender estimert fra sonic og
seismiske p-bølge hastighetsdata.

Vegard Flatøy

Petroleumsfag

Hovedveiledar: Kenneth Duffaut, IPT

Institutt for petroleumsteknologi og anvendt geofysikk

Innlevert: juni 2016

Noregs teknisk-naturvitskaplege universitet



 



Problembeskrivelse

Utvikler model og metodikk for å estimere porøsitetstrender fra sonic og
seismiske p-bølge hastighetsdata. Modellen er baser p̊a en en konstruksjon
av øvre og nedre grenser for elastisk moduli som en funksjon av leireinnhold
og porøsitet.
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Summary

We offer a new bounds based model and methodology to estimate low fre-
quency porosity trends from velocity data with the opportunity to include
lithological information via a clay content parameter, to improve estimations.
Our approach is based on the construction of upper and lower bounds for
the elastic moduli of an assumed binary lithology consisting of shale and
sand with brine filled porosity. The upper and lower bounds are a func-
tions of porosity and clay content and can for a given pair of velocity and
clay content values yield porosity estimation and upper and lower porosity
bounds. We apply our model on three data sets gathered at the Smørbukk,
Sleipner and Snøhvit fields. Estimations of porosity are performed both with-
out prior lithological information and with lithological information. A clear
improvement of porosity estimations was found when including lithological
information. Our proposed model and methodology is also applied to seismi-
cally derived velocities gathered at Snøhvit and Sleipner, yielding estimated
porosity and estimated upper and lower porosity bounds for the entire 2D
velocity sections.
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Sammendrag

Vi utvikler med dette arbeidet en ny model og metodikk for å estimere
lavfrekvente porøsitetstrender fra hastighets data med en mulighet for å
forbedre estimert porøsitet ved å inkludere en litologisk parameter for leireinnhold.
V̊ar fremgangsmåte er basert p̊a konstruksjonen av øvre og nedre grenser
for den elastiske modulus av en antatt binær litologi, best̊aende av skifer og
sand med saltvann som porevæske. De øvre og nedre grensene er en funksjon
av porøsitet og leireinnhold og vil for en gitt hastighet og et gitt leireinnhold
kunne gi et estimat av porøsitet i tillegg til øvre og nedre grenser for porøsitet.
Vi anvender modellen v̊ar p̊a tre datasett hentet fra Smørbukk, Sleipner og
Snøhvit. Porøsitets-estimering blir utført b̊ade uten og med litologisk infor-
masjon. Vi ser en klar forbedring i estimeringer av porøsitet n̊ar litologisk
informasjon inkluderes. Vi anvender ogs̊a modellen p̊a seismiske hastigheter
hentet fra Snøhvit og Sleipner som gir estimert porøsitet og øvre og nedre
grenser for porøsitet for hele 2D seismiske hastighetsseksjoner.
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1 Introduction

Porosity prediction based on velocity and especially sonic-log velocities has
been subject to investigation ever since the beginning of oil exploration and
production.

In both exploration and production of hydrocarbons it is essential to
accurately determine geologic reservoir parameters such as porosity and per-
meability as these impact exploration and production potential in terms of
value and efficiency. In order to achieve this, trying to link petrophysical
properties with velocity has proven to be a cost effective but simultaneously
challenging strategy.

Porosity is arguably one of the most difficult properties to estimate due to
is complex nature and its non-unique relation to elastic rock properties. The
elastic properties of rocks are a product of a wide range of factors such as
mineralogy, burial history, pore-space topology, diagenesis, stress and many
more, making it difficult to invert directly to porosity.

Figure 1: Thin-section illustrating the complex grain composition and geome-
tries that make up porosity. This geometric complexity and the wide range
of phenomena governing velocity; cementation, consolidation, pore pressure,
makes it difficult to infer information on porosity from velocity alone. The
depicted thin-section is a medium-grained quartz arenite from Fruholmen
formation [Porten, 2012]. 2% quartz cement, 30% porosity.

Wave propagation in porous media has been described by many theo-
retical models [Gassman and Smit, 1951, Biot, 1956, Geertsma and Smit,
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1961, Kuster and Toksöz, 1974]. Common for the theoretical models are
their numerous assumptions, approximations and parameters incorporated
to describe the elastic properties of a rock. This makes them poorly suited
for prediction or inversion. In reality we have sparse data; seismic experi-
ments offering an estimation of velocities or wells located often hundreds if
not thousands of meters apart. With such small amounts and small variation
of input data, the complexity of a theoretical model is rendered useless.

Empirical models, such as such as [Wyllie et al., 1956, Raymer et al.,
1980, Tosaya and Nur, 1982, Kowallis et al., 1984, Han et al., 1986], offer
another widely researched approach, based on simple empirical relations.
Empirical models relate the elastic properties of a rock to porosity using
fewer parameters than their theoretical counterpart. Empirical models in
turn assume much more idealistic models than what is the rock-physical
reality and are often dependent on local correctional factors or functions.

Regardless of the widespread use and research of the aforementioned re-
lations, their inability to account for scattering in velocity-porosity data,
especially in the unconsolidated domain, still makes them uncertain when
used for predictive purposes.

There have been many contributions on estimating porosity based on
seismic velocities in the literature. Such as geostatistical approach proposed
by Doyen [1988] , Dvorkin and Nur [1996] using cementation theory, linear
trends found by Vernik and Nur [1992], stochastic rock-physics modelling
proposed by Bachrach [2006] and the method of Berryman et al. [2002],
based on density and the Lame elastic parameter λ. The mentioned works
are only a few out of many and meant to give you an impression of the wide
variety of approaches taken to estimate porosity based on seismic velocity.

We introduce a new approach where our aim is to capture porosity trends
based solely on velocity data. We justify our aim by emphasizing the fact
that in seismic experiments, velocity is the main carrier of information and
we argue that the advantage of simplicity when considering only velocity,
outweighs potential ambiguities in the estimation. With regards to ambigu-
ities we mitigate these by introducing an estimation of porosity bounds on
top of the porosity estimation.

We assume a binary sand/shale-system in order to construct a velocity-
porosity transform that provides us with an estimated porosity and a set of
bounds for possible porosities. In our model we only require velocity data in
order to carry out the estimation and an a priori lithological prediction in the
form of a clay content-parameter to improve the accuracy of the estimation.

As mentioned the estimated bounds will handle ambiguity by functioning
as a measure of uncertainty in our porosity estimation as well as give us
information on the maximum and minimum possible porosities.
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Our approach is based on the construction of upper and lower bounds
for the elastic moduli of a binary lithology consisting only of shale and sand,
with brine filled porosity. The upper and lower bounds are a function of
porosity and clay content and can for a given pair of velocity and clay content
values, yield upper and lower porosity bounds. We achieve this by modelling
the elastic bounds of “pure sand” at the low end of the Vcl-domain and
compressional velocity in shale at the high end of the Vcl-domain before we
linearly interpolate between the two end-models.

From here, we will refer to our “pure sand”-model at the low end of the
Vcl-domain as our “Sand model” and our model for compressional velocity
in shale at the high end of the Vcl-domain as our “Shale model”. We will
proceed to describe the theoretical basis for our model, how we use it to
construct our model and the methodology we use to apply it. We will test
our model and methodology on different types of velocity data; wireline sonic
logs and seismically derived velocity data from both imaging analysis and full
waveform inversion.
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2 Theory

In order to construct our model we need a solid theoretical foundation which
is accordance with our assumptions of a binary system of shale and sand.
In the following section we introduce a bounds model describing the elastic
moduli of a composite material [Hashin and Shtrikman, 1963] which is the
basis for the sand model. We present an elastic moduli to porosity model for
shale [Vernik and Kachanov, 2010], based on a Vcl factor. Lastly we introduce
you to an approach to estimating the expected elastic moduli within a set of
bounds [Hill, 1952], which will be of use when deriving a porosity estimation
from our bounds model.

2.1 Sand Model

For our sand model we have chosen the Hashin and Shtrikman [1963] bounds-
model. It is based on the concept that in order to predict the elastic moduli
of a porous rock you can obtain upper and lower bounds by only specifying
the volume fraction and the elastic moduli of each of the phases.

Being the narrowest possible bounds this is seen as the best bounds model
for an isotropic linear elastic rock, without specifying anything about pore
or grain geometries[Mavko et al., 2009, chap 4].

Constant: unit Quartz water

G [GPa] 44.0 0
K [GPa] 37.0 2.2
M = K + 4

3
G [GPa] 95.7 2.2

ρ [g/cm3] 2.65 1.03

Figure 2: Table of elastic properties of quartz and water.

These bounds are seen as robust as they are free of assumptions and ap-
proximations and provide us with a valuable set of laws when studying mixed
materials and interpolating their sorting and cementing trends as well as con-
sistently describing suspensions and fluid mixtures which becomes important
at critical porosity.

The Hashin-Shtrikman bounds for bulk and shear moduli respectively, for
a mixture of two materials are defined as

KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4
3
G1)−1

(1)
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GHS± = G1 +
f2

(G2 −G1)−1 + 2f1(K1 + 2G1)/
(
5G1(K1 + 4

3
G1)

)−1 (2)

where the subscripts 1 or two indicates if it is an elastic modulus of
constituent 1 or 2. K indicate the bulk modulus, G is the shear modulus and
f is the volumetric fraction of the given phase. Equation (1) and Equation
(2) give upper bounds when the elastic moduli of the stiffest constituent is
given subscript 1 and lower bounds when the softest constituent is given
subscript 1.

As previously mentioned, in our model we assume a binary rock comprised
of sand and shale, and in the sand-domain of our model we assume our system
to only consist of quartz and brine. It is in this case we use Equation (1) and
Equation (2) with quartz and brine as the two constituents. Their properties
are given in Figure (2) and the resulting sand bounds are shown in Figure
(3) and Figure (4).
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Figure 3: The red lines indicate the upper and lower bounds for the effective
bulk modulus of a mixture of sand and brine, described by Equation (1). In
this case the porosity will be the volumetric fraction of brine.
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Figure 4: The red lines indicate the upper and lower bounds for the effective
shear modulus of a mixture of sand and brine, described by equation (2). In
this case the porosity will be the volumetric fraction of brine. Because the
shear modulus of water is always zero we have to interpolate between zero
and the upper bound in order for the velocity bounds in Figure (8) to meet
at φ = 0.

2.1.1 Validity and Assumptions

In this work we assume a fully brine saturated binary rock system composed
of only sand and shale. Therefore in our sand model constructed by Hashin
and Shtrikman [1963] bounds we only have two constituents, on our case
quartz and water. The bounds described in Section (2.1) assume that both
the rock and each constituent are isotropic and linear elastic.
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2.2 Shale Model

After considering different models, the one proposed by Vernik and Kachanov
[2010] proved to be most fitting as it relies on Vcl instead of focusing on shape
factors, pore aspect ratio [Keys and Xu, 2002] and other parameters which
are difficult to generalize and relate to velocities at seismic resolution.

Vernik and Kachanov [2010] created this empirical model based on two
requirements which very much align with our own ambitions. (1) “based
on first principles and contain only observable parameters such as porosity
and clay content”, (2) “should be immune from geographic peculiarities, i.e.,
applicable worldwide”.

The anisotropic elastic constant for compressional wave velocity in the
bedding normal direction is described by the following equations.

c33 = c33m(1 − φ)k (3)

c33m =
(Vcl.ma

c33clay
+

1 − Vcl.ma

Mqrtz

)−1
(4)

k = 5.2 − 1.3Vcl (5)

Where Mqrtz is the P-wave modulus of quartz, c33m and c33clay are the
constants of the anisotropic solid matrix and its 100% clay equivalent re-
spectively.

Note that we differentiate between Vcl.ma in equation (4) and Vcl in (5),
where Vcl.ma is the ration of clay content in the matrix and Vcl is the ratio of
clay content of the total rock volume. Both parameters are governed by the
following equations

Vcl + Vqz + φ = 1 (6)

Vcl.ma + Vqz.ma = 1 (7)

which lead to the relation

Vcl = Vcl.ma(1 − φ) (8)

The resulting shale model is plotted in Figure (5).
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Figure 5: The anisotropic elastic constant for compressional wave velocity in
the bedding normal direction, described by Equation (3)
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2.2.1 Validity and Assumptions

As mentioned in Vernik and Kachanov [2010] this model limits itself to non-
organic shales. Because non-organic shales have high capillary pressure they
are nearly always fully water saturated and we avoid the need of fluid sub-
stitution.

In addition to this it is important to emphasize that this model is describes
the elastic constant in beddingnormal direction.

As mentioned before we differentiate between Vcl and Vcl.ma, which is not
the case in Vernik and Kachanov [2010]. In Figure (6) we find the difference
between the equations in Vernik and Kachanov [2010] and what we argue to
be a minimal improvement. The difference is not large but worth noting.

Figure 6: Difference between using Vcl.ma vs Vcl in Equation (4). Black dashed
line is using Vcl, the blue line is using Vcl.ma
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2.3 Hill Average

Hill [1952] first introduced the the idea of estimating rock properties by aver-
aging elastic bounds when they first proposed the average of the Voigt upper
bound [Voigt, 1889] and the Reuss lower bound [Reuss, 1929], also known as
Voigt-Reuss-Hill average. In this work we chose to use the arithmetic average
of the Hashin-Shtrikman bounds as a means to estimate the expected poros-
ity for a given velocity. We will simply call this the Hill average, described
by Equation (9) [Mavko et al., 2009].

MHill =
MHS+ +MHS−

2
(9)

where MHS+ and MHS− are respectively the upper and lower bound for
the elastic moduli, derived from Equation (1) and Equation (2).
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3 The Model

In order to predict porosity from velocity data we first transform our sand
and shale models to the velocity domain using Equation (10) and Equation
(11) respectively, where K and G are the bound models for bulk and shear
moduli, described in Section (2.1). c33 is the shale model for elastic modulus,
described in Section (2.2).

Vsand =

√√√√ K + 4
3
·G

(1 − φ)ρqz + φ · ρw
(10)

Vshale =

√
c33

(1 − φ) · ρqz + φ · ρw
(11)

Wireline sonic measurements have shown that in close to bedding normal
direction velocities in non-organic shales show a stable and somewhat non-
linear relation to porosity in the 0 - 40% porosity range[Vernik and Kachanov,
2010]. Above this porosity range the grains are usually no longer cemented
in a matrix structure but rather loosely suspended in the pore fluid. In
this regime we approximate the velocities in our shale model by assuming
it cannot have velocities lower than water velocity, illustrated in Figure (8).
We do not need the same constraint for our sand model as it is a product of
water properties and we see the lower bound in Figure (8) approach water
velocity as porosity increases.

In our work we assume a minimum quartz content of Vqz.ma = 20% re-
gardless of porosity and clay content. This means a maximum clay content of
Vcl.ma = 80% in Equation (4) when constructing our shale model. We argue
that this assumption is reasonable in order to have our model correspond to
reality where shales normally contain some amount of quartz and are rarely
comprised of pure clay.

In order to further constrain our model to predict realistic porosities we
take into account the maximum allowed physical porosity which occurs with
cubic packing. The maximum possible porosity occurs when we have cubic
packing of perfect spheres which gives a maximum porosity of φ = 0.476
[Mavko et al., 2009, Table 5.1.1]. Grains are rarely spherical in reality which
would cause us to believe that the maximum porosity is in fact lower than
φ = 0.48. Nevertheless we implement an upper porosity limit of φ = 0.48
in our model to retain certainty that we in fact have a true upper limit
for porosity. Sand and shale velocity models constrained by the mentioned
assumptions are illustrated in Figure (8).

It is important to note that the Hill-average in Figure (8) is not the
arithmetic average of the sand model velocity bounds. It is in fact the Hill-
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average of the sand model elastic bounds from Figure (3) and Figure (4)
converted to velocity using Equation (10).

Figure 7: The model as a function of clay content, porosity and velocity.
Along the “open end” of the model, where Vcl = 0, we have the sand model
from Figure(8). Along the rear end of the model we have the shale velocity
model also shown in Figure (8). In accordance to Equation (8), the shale
model is implemented along Vcl.ma = 80%2 which corresponds to the di-
agonal in Figure (9). The three dimensional surfaces comprising the model
are constructed by linearly interpolating from the sand models upper bound,
lower bound and their Hill-average, to the shale model.

280% because of our assumption of maximum 80% matrix clay content, described later
in the text.
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Figure 8: The red lines indicates the upper and lower velocity limits of our
sand model where Vcl = 0%. The dark blue line indicates the model shale
model where Vcl.ma = 80%. The dashed black line shows our shale velocity
model if it did not adhere to water velocity in the unconsolidated regime.
The cyan coloured line indicates the Hill-average of the bulk and shear limits
converted to velocity using Equation (10). The Hill-average velocity lies
closer to the upper limit because it is not an arithmetic average of the velocity
limits but the Hill-average of the elastic bounds, converted to velocity.
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When constructing our full three-dimensional model we implement our
sand model along Vcl = 0% and our shale model along Vcl.ma = 80% (i.e the
red sand bounds and the Hill-average in Figure (8) along the porosity axis
in Figure (9) and the shale velocity model, blue line in Figure (8), along
the diagonal in Figure (9)). In accordance with Equation (8) we implement
our shale model along the diagonal because it is along this line we have a
constant maximum clay content Vcl.ma = 80% and decreasing Vcl as porosity
increases.

Figure 9: The model from Figure (7) seen in the (Vcl, φ)-plane (i.e Figure
(7) seen from “above”). With our mentioned assumptions of a maximum
porosity of 0.48 and a minimum quartz content of Vqz.ma = 20%, we assume
that there cannot exist (porosity, clay volume) -values outside the illustrated
domain. The red line indicates the porosity along which we in Figure (10)
illustrate our linear interpolation from sand model to shale model.
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In order to construct the surfaces comprising our three-dimensional model,
we perform a linear interpolation from the sand model placed along Vcl = 0,
to shale model along Vcl.ma = 80%. The interpolation is performed for each
φ-value; from the upper bound, lower bound and Hill-average in our sand-
model, to the corresponding φ-value of the shale velocity model, illustrated
in Figure (10). This will result in the surfaces described and illustrated in
Figure (7) at the beginning of this section.

Figure 10: The linear interpolation performed to construct our three-
dimensional model, shown for a cross section of our model along φ = 25%.
We have three points located at; upper bound, lower bound and Hill-average
in our sand model, at φ = 25%. From these three points we linearly interpo-
late to the one point located at φ = 25% in our shale model.

In Figure (10) we see an example of how assuming Vcl.ma = 80% causes
our shale model at φ = 25% to be located at Vcl = 60%. This fulfils Equation
(8) where in this case we have Vcl = 80% · (1 − 0.25) = 60%.
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4 Methodology

When applying our model for porosity estimation we follow a simple two-step
methodology for each velocity value. Whether it is a sonic-log, a 2D velocity
section or a 3D velocity cube, the procedure is the same.

1. Insert velocity value in order to extract two dimensional “porosity-clay
content”-model for the given velocity value.

2. Apply a priori lithological Vcl prediction to arrive at estimated porosity
and porosity bounds.

4.1 Derive “porosity-clay content”-model for a given
velocity value

With a velocity value obtained from any type of data, we derive a two-
dimensional “porosity-clay content”-model which is valid for this particular
velocity by finding the lines of intersection between a plane along the given
velocity value and our model, illustrated in Figure (11).
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Figure 11: Our model plotted with an intersecting velocity plane, plotted in
red along Vint = 3km/s. The lines of intersection can be seen projected onto
the “Porosity-Clay Volume”-plane, where they form a new two-dimensional
model for this exact velocity, also illustrated in Figure (12). Our new 2D-
model can be seen as a limitation on all possible combinations of clay content
and porosity that can produce a a given velocity value, in this case Vint =
3km/s.
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We then proceed to project these lines of intersection onto the (porosity,
clay content)-plane in order to arrive at our “porosity-clay content”-model
which is valid for the given velocity value. An example is illustrated in Figure
(12) for a velocity of 3 [km/s].

Figure 12: “porosity-clay content”-model for a velocity of 3 [km/s] obtained
by projecting the lines of intersection between our three dimensional model
and a plane along the given velocity, onto the (porosity, clay content)-plane.
The thick red line to the right is from the intersection between the Vint =
3km/s-velocity plane and the upper bounds of our three-dimensional model,
the thick red line to the left is from the intersection with the lower bound
and the thin red line in the middle is from the intersection with the Hill-
average-surface.

Our new two-dimensional model provides us with a set bounds for all
possible combinations of clay content and porosity that can produce the
given velocity. It is important to understand that we assume nothing about
the clay and quartz content of the matrix as we only have knowledge of this
at our end-models for sand and shale velocity. In our interpolation approach
we only assume that the elastic behaviour of a composite system will trend
linearly with increasing clay content, from a “pure sand” case to a “pure
shale” case.

The intersection with the Hill-average surface, indicated by the thin red
line in Figure (12), represents our estimation of the relation between clay
content and porosity for a given velocity.
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We can now easily imagine how keeping clay content constant and vary-
ing velocity would produce a variation of porosity estimations for a corre-
sponding variation in velocity. This particular property is one of the major
strengths of our model as this allows us to capture porosity trends with a
simple lithological estimate of constant clay content. In other words; with
nothing more than velocity data you are able to estimate porosity trends. In
the case of improved lithological knowledge (e.g. Vcl estimate from GR-log
or core samples) we are able to improve the estimation.

In Figure (12) we see that a decrease in clay content while velocity is
kept constant will give an increased in porosity estimation. This is natural
as clay has a lower compressional velocity than quartz and with decreasing
clay content we have an increase in quartz content and thus porosity must
increase in order to keep velocity constant.
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4.2 Apply apriori lithological Vcl estimate

After having obtained a “porosity-clay content”-model for a given velocity,
we apply an a priori lithological Vcl-prediction. By finding the intersection
between a Vcl-prediction and our “porosity-clay content”-model we derive a
porosity estimate and upper and lower porosity-bounds for the given velocity
value.

The estimated porosity is derived from the intersection of our Vcl estimate
and the middle line in Figure (13) which originates from the Hill-average of
the upper and lower bounds.

Figure 13: Our “porosity-clay content”-model for a given velocity of 3
[km/s]. With an a priori prediction of Vcl = 50% we derive the porosity
bounds φmin=0.0527 and φmax=0.1892 and and and estimated porosity of
φestimated=0.1435 when Vint = 3km/s.
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In order test our model and methodology we have obtained three different
types of velocity data; velocity from sonic-log, seismically derived Normal-
Moveout velocities and seismically derived velocities from full waveform in-
version (FWI).

As our aim has been to construct a model with the ability to estimate
low frequency porosity trends without any prior lithological information this
will be the main focus when applying our model.

In the case of wireline sonic-log data we test our model using a simple
guess of Vcl = 50%, which corresponds to “no prior lithological information”.
From there we continue to asses the ability of our model to improve the esti-
mation of the porosity trend when given additional lithological information.
In all of the wells we have acquired data from we have also obtain gammray-
log (GR) data, which will form the basis for our “additional lithological
information”.

We provide a Vcl-prediction based on the available GR-logs, using Equa-
tion (12) [Rider and Kennedy, 2011]. In order to predict clay content based
on GR-log we first chose what we perceive to be the sand line, which corre-
sponds to our choice for GRmin, and what we perceive to be the shale line,
which corresponds to our choice of GRmax. A simplified illustration of this
is shown in Figure (14).

Vcl =
GRlog −GRmin

GRmax −GRmin

(12)

where GRlog is the value of the GR-log, GRmin is the picked value for the
sand line and GRmax is the picked value for the shale line.
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Figure 14: Gammaray-log[Rider and Kennedy, 2011] illustrating how we
choose the course sand line and the shale line, corresponding to GRmin

and GRmax respectively, when using Equation (12) to predict clay content.
We see from Equation (12) that clay content will approach Vcl = 0% as GRlog

approaches the sand line and Vcl = 100% as GRlog approaches the shale line.
Lithologies corresponding to the different values of the GR-log is illustrated
on the right.
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For all the wells we have also gained access to density-log data. For
comparative purposes we assume the porosity derived from the density-log
to be true porosity.

Throughout our testing we plot porosity predicted from wireline density-
logs alongside our estimation of porosity and its corresponding bounds. Poros-
ity prediction based on density-log is derived from Equation (13)[Rider and
Kennedy, 2011]. An example of this is illustrated in Figure (15) along with
an example of clay content prediction based on GR-log.

φ =
ρma − ρb
ρma − ρfl

(13)

where ρma is the matrix density, ρfl is the pore fluid density and ρb is the
density value from the density-log. In our calculations we use ρma = 2.65
[g/cm3] and ρfl = 1.03 [g/cm3].
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Figure 15: An example illustrating the prediction of porosity based on
density-log values and the prediction of clay content based on GR-log val-
ues using Equation (13) and Equation (12), respectively. For this example
Smørbukk well 6506/12-1 was used. Work on the same well is further il-
lustrated in the Results section. Here we have used different GRmax/GRmin

-values for different depth intervals. GRmax/GRmin values are listed in Figure
(21).
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5 Data Set

We test our model and methodology by applying it on data relating to three
different locations on the Norwegian Continental Shelf, listed in Figure (5).
From all of the three areas we have obtained wireline-data from in the form
of sonic-logs and GR-logs, corresponding to the two types of data-input we
utilize in our model; velocity and lithological data.

For each of the three areas we have also obtained density-log data. As
mentioned at the end of Section (4.2) the density-log will we used to derive
what we assume to be true porosity. We aim determine the quality of our own
model’s porosity estimation by comparing it to this density derived porosity.

Area Field Well Seismically derived Velocity

Norwegian Sea Smørbukk 6506/12-1 N/A
North Sea Sleipner 15/9-13 FWI
Barents Sea Snøhvit 7121/4-1 Normal-Moveout Velocity

Figure 16: Table showing the areas and corresponding fields and well number.
The type of seismically derived velocity data for each area is listed to the
right.

5.1 Norwegian Sea

From the Norwegian Sea area we have obtained data gathered at the the
Smørbukk field. We have wireline velocity, density and gamma-ray data
from well 6506/12-1. A comparative analysis of seismically derived data for
this area is not available in this work.
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5.2 North Sea

From the North Sea area we have obtained data gathered at the Sleipner field.
We have wireline velocity, density and gamma-ray data from well 15/9-13.
We have also obtain a three-dimensional velocity cube derived from from Full
Waveform Inversion (FWI), covering an area containing well 15/9-13.

nx: 220 dx: 12.5m
ny: 660 dy: 12.5m
nz: 229 dz: 6.25m

Figure 17: Number of samples in Sleipner FWI velocity-cube and its spatial
sampling.

Well 15/9-13 is located inside the FWI cube at UTM location:

UTM-x 437653.70
UTM-y 6470978.02

Figure 18: UTM location of well: 15/9-13

The FWI velocity cube was provided by Børge Arntsen. Further research
and the work behind it can be read in Raknes et al. [2015].
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5.3 Barents Sea

From the Barents Sea area we have obtained data gathered at the Snøhvit
field. We have wireline velocity, density and gamma-ray data from well
7121/4-1 and a 2D interval velocity section intersecting the well location.
The 2D interval velocity section is derived from Normal-Moveout velocity
analysis [Dix, 1955]. The 2D section velocity data is given as a function of
travelime. In order to relate the seismic data to well data we chose to convert
travel-time data to depth using Equation (14).

zi =
n∑

i=1

∆tiVP.inti
2

(14)

nx: 178 dx:
nt: 96 dt: 0.05s

Figure 19: Number of samples in Snøhvit 2D interval velocity section and its
spatial and time sampling.
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6 Results

We have estimated the porosity and its bounds by applying our model and
methodology. For all of the data sets relating to the fields listed in Section
(5). We wish to investigate our model’s ability to estimate the low frequency
porosity trend with solely velocity as input. We do this by applying a simple
assumption of constant clay content where Vcl = 50% for all depths.

Further we asses the improvement of our model’s estimation by including
improved lithological information in the form of a clay content curve based
on the GR-log as described at the end of Section (4.2).
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6.1 The Smørbukk Field, Well 6506/12-1

6.1.1 Constant Vcl = 50%

Figure 20: Left: Vp-log derived from the sonic-log. Middle: Red curves
are estimated upper and lower porosity bounds along with estimated poros-
ity in black, using our model. The blue curve is porosity estimated from
the density-log as described in Section (4.2). Right: Curve indicating our
assumption of constant clay content for all depths. Zero depth represents
mean sea level.
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6.1.2 Variable Clay Content

Depth interval GR max GR min

0 - 2000m 25 100
2000m - 3800m 25 75
3800m - 5000m 25 180

Figure 21: Table showing GRmin and GRmax values to predict Vcl in
Smørbukk well 6506/12-1
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Figure 22: Left: Vp-log derived from sonic-log. Middle: Red curves are
estimated upper and lower porosity bounds along with estimated porosity
in black, using our model. The blue curve is porosity estimated from the
density-log as described in Section (4.2). Right: Clay content curve estimated
from GR-log, also described in Section (4.2). Zero depth represents mean sea
level.
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Figure 23: Estimated porosity values plotted against porosity predicted from
density-log. Top: Porosity values estimated by our model with an simple
prediction of constant Vcl = 50% (black curve in Figure (20)). Bottom:
Porosity values estimated using our model with Vcl prediction based on GR-
log (black curve in Figure (22)).
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6.2 The Sleipner Field, Well 15/9-13

6.2.1 Constant Vcl = 50%

Figure 24: First: Caliper-log where we see indications of caving at multiple
depth sections. Second: Vp velocity from sonic log. Third: Red curves are
estimated upper and lower porosity bounds along with estimated porosity
in black, derived from our model and method. The blue curve is porosity
predicted from density-log described in Section (4.2). Fourth: Clay content
curve indicating our assumption of constant clay content for all depths. Zero
depth represents mean sea level.
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6.2.2 Variable Clay Content

Depth interval GR max GR min
entire depth 10 170

Figure 25: Table showing GRmin and GRmax values to predict Vcl in Sleipner
well 15/9-13.
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Figure 26: First: Caliper-log where we see indications of caving at multiple
depth sections. Second: Vp velocity from sonic log. Third: Red curves are
estimated upper and lower porosity bounds along with estimated porosity
in black, derived from our model and method. The blue curve is porosity
predicted from density-log described in Section (4.2). Fourth: Clay content
curve predicted from GR-log also described in Section (4.2). Zero depth
represents mean sea level.
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Figure 27: Estimated porosity values plotted against porosity predicted from
density-log. Top: Porosity values estimated by our model with an simple
prediction of constant Vcl = 50% (black curve in Figure (24)). Bottom:
Porosity values estimated using our model with Vcl prediction based on GR-
log (black curve in Figure (26)).
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6.2.3 Profile from Velocity Cube

Figure 28: Left: Caliper-log where we see indications of caving. Middle:
Vp velocity from sonic log along with 1D velocity profile plotted in black,
extracted from 2D FWI velocity section in Figure (29), at well location.
Right: Red curves are estimated upper and lower porosity bounds based on
1D velocity profile from 2D velocity section, along with estimated porosity in
black, derived from our method. The blue curve is porosity predicted from
density-log using Equation (13), described in Section (4.2). The black dashed
curve is porosity estimated using our method on the sonic log (i.e. the black
curve in Figure (24)). Estimations based on constant Vcl=50%.
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6.2.4 2D Porosity Profiles

Figure 29: Inline 2D interval velocity section, crossing well (15/9-13), marked
by the red line. Obtained from Full Waveform Analysis done by Raknes et al.
[2015].

Figure 30: Estimated porosity calculated for the entire 2D-section in Figure
(29). This corresponds to the estimated porosity in Figure (24). Estimations
based on constant Vcl=50%.
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Figure 31: Lower porosity bound calculated for the entire 2D-section in Fig-
ure (29). This corresponds to the lower porosity bound in Figure (24). Esti-
mations based on constant Vcl=50%.

Figure 32: Upper porosity bound calculated for the entire 2D-section in
Figure (29). This corresponds to the upper porosity bound in Figure (24).
Estimations based on constant Vcl=50%.

2D porosity sections in Figures (30-32) are plotted for the same range of
porosity values in order to compare the three resulting sections.
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6.3 The Snøhvit Field, Well 7121/4-1

Checkshot data from well 7121/4-1 indicates slightly too high sonic-log ve-
locities and too low seismic velocities.

Figure 33: Inline 2D velocity section crossing well 7121/4-1 marked by the
red line. Obtained from normal-moveout velocity analysis using Dix [1955].

In order to correct the well log velocities we integrate the log using Equa-
tion (15) to arrive at synthetic travel time values. We perform a simple
correction by scaling the Vp-log by a factor of 0.975 in order to fit the travel
time versus depth values from the sonic-log to the checkshot values, illus-
trated in Figure (34).

tn =
n∑

i=1

∆ti =
n∑

i=1

2∆zi
Vp.inti

(15)
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Figure 34: Checkshot values marked in red. The dashed curve is depth versus
travel time values derived by integrating interval velocities from sonic-log
using Equation (15). The dashed curve indicates slightly too high velocities
from sonic-log, which caused us to perform a simple checkshot calibration
by scaling the Vp-log by a factor of 0.975, arriving at the black curve which
aligns with the checkshot values.
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6.3.1 Constant Vcl = 50%

Figure 35: Left: Vp velocity from sonic log. Middle: Red curves are es-
timated upper and lower porosity bounds along with estimated porosity in
black, derived using our model. The blue curve is porosity predicted from the
density-log using Equation (13) described in Section (4.2). Right: Clay con-
tent curve illustrating our assumption of constant clay content for all depths.
Zero depth represents mean sea level.
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6.3.2 Variable Clay Content

Depth interval GR max GR min
entire depth 7 125

Figure 36: Table showing GRmin and GRmax values to predict Vcl in Snøhvit
well 7121/4-1.
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Figure 37: Left: Vp velocity from sonic log. Middle: Red curves are esti-
mated upper and lower porosity bounds along with estimated porosity in
black, derived using our model. The blue curve is porosity predicted from
the density-log using Equation (13) described in Section (4.2). Right: Clay
content curve predicted from GR-log also described in Section (4.2). Zero
depth represents mean sea level.
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Figure 38: Estimated porosity values plotted against porosity predicted from
density-log. Top: Porosity values estimated by our model with an simple
prediction of constant Vcl = 50% (black curve in Figure (35)). Bottom:
Porosity values estimated using our model with Vcl prediction based on GR-
log (black curve in Figure (37)).
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6.3.3 Profile from Velocity Cube

In order to correct the interval seismic velocities extracted along a line in a
3D velocity volume, we use Equation (16) with δ = −0.028 which provides
us with a reasonable fit to the the travel time versus depth values from the
checkshot, illustrated in Figure (34).

VP0i =
VP.NMOi

(1 − 2δ)
1
2

(16)

Figure 39: Checkshot values marked in red. The dashed curve is travel time
values versus depth for the interval velocities extracted from the 2D NMO
velocity section, at well location. The dashed curves indicates slightly too
low velocities from in the NMO velocity secion, which caused us to perform
a checkshot calibration using Equation (16) with δ = −0.028, arriving at the
black curve which aligns with the checkshot values.
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Figure 40: Left: The black curve is Vp-velocity extracted from 2D NMO
interval velocity section in Figure (33) at well location. The blue curve is Vp-
velocity from sonic-log. Middle: Estimated upper and lower porosity bounds
along with estimated porosity, estimated from black curve in left plot. Right:
Estimated upper and lower porosity bounds along with expected porosity,
estimated from sonic-log curve in left plot. In both cases plotted with blue
curve, porosity from density-log for comparison. Both estimations based on
constant Vcl = 50%. The red stars marked in the velocity plot are inverval
velocity values calculated from the checkshot traveltime and depth values in
Figure (34).
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6.3.4 2D Porosity Profiles

Figure 41: Estimated porosity porosity calculated for the entire 2D-section
in Figure (33). This corresponds to the estimated porosity in Figure (35).
Estimations based on constant Vcl=50%.
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Figure 42: Lower porosity bound calculated for the entire 2D-section in Fig-
ure (33). This corresponds to the lower porosity bound in Figure (35). Esti-
mations based on constant Vcl=50%.

Figure 43: Upper porosity bound calculated for the entire 2D-section in
Figure (33). This corresponds to the upper porosity bound in Figure (35).
Estimations based on constant Vcl=50%.
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7 Discussion

The principle aim of our study has been develop a simple modelling frame-
work that estimates low frequent porosity trends in cases with sparse data.
In other words we are interested in background porosity and not the exact
porosity estimation in exact layers of interest.

The strength of our approach is the minimal need of p-wave velocity to
perform estimations and the opportunity to improve estimations by including
lithological information in the form of a clay content prediction.

We have applied our model to data sets gathered from three areas across
the Norwegian Continental shelf; the Norwegian Sea , the North Sea and the
Barents Sea. Our results clearly illustrates our models ability to estimate
porosity trends in all three areas and our models ability to improve porosity
estimations when improved lithological information is included.

The improvement of porosity estimations when using Vcl based on GR-log
as lithological input, are illustrated in Figures (23, 27, 38). Estimated poros-
ity values are closer to density derived porosity when lithological information
is included, in all three cases. As well as improving porosity estimations, the
improved lithological information gives us a increased sense of uncertainty
in our porosity estimation by looking at the variation of the width of our
porosity bounds.

Results derived from wireline velocity data indicate a tendency in our
model to overestimate porosity when compared to density derived porosity.
Overestimation of porosity may arise when clay content is under-predicted.
As mentioned in Section (4.2) and illustrated in Figure (12), lower clay con-
tent will increase the porosity estimate. Our choice to use Hill-average in
order to estimate porosity may also cause overestimations which I will dis-
cuss in relation to the Hashin-Strikman bounds.

If clay content is over-predicted we get the opposite effect; an underesti-
mation of porosity. We believe this to be the case for the estimations per-
formed on Snøhvit in Figure (35), where estimated porosity and its bounds
indicate a slightly lower porosity trend for shallow depths than that indicated
in the density-porosity. This may be caused by a constant clay content of
Vcl = 50% being an over-prediction.

A decrease in clay content will result higher porosity estimations and
wider bounds. Wider bounds indicate a higher degree of ambiguity in our
estimation, i.e. a wider range of porosities that could produce the given
velocity value. This is illustrated when estimating porosity for the Snøhvit
well in Figure (37). With a Vcl estimate based on GR-log we arrive at much
wider porosity bounds. This shows an innate property of our model whereby
lower clay content increases the uncertainty of our porosity estimation and
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widens the bounds of possible porosities.
It is important to take notice that and under/over -prediction of clay

content may arise from a wrongful choice of GRmax/GRmin-values when es-
timating Vcl based on GR-log, as illustrated at the end of Section (4.2).

When considering the uncertainties in our porosity estimation it is critical
to consider the uncertainties in our velocity data as it is the basis of our
estimation. In seismic data the pressure waves are not propagating in vertical
direction and are thus much more affected by potential positive anisotropy
causing the velocities to appear higher as velocity increase when propagating
in non-vertical directions. Keep in mind that seismically derived velocities is
often derived to produce seismic images rather than the be used to estimate
rock physical properties [Dutta, 2002].

Uncertainties in our porosity estimations may also relate to the validity of
our assumptions. As we assume a binary rock system consisting of sand and
shale only, which we know not to be the exact case in reality, we expect this
assumption to be broken in many of our estimations. This may explain some
of the deviations from the density-porosity curve in our results. The same can
be said of our assumption of a minimum quartz content of Vqz.ma = 20% which
may not be the case for some lithologies. And as we mentioned before; an over
prediction of clay content will lead to underestimated porosity and under-
prediction of clay content to overestimation of porosity. Despite our certainty
that at some depths in our estimations these assumptions are broken, we are
able to capture low frequency porosity trends to a satisfying degree. This
emphasizes the agility of our model.

Regarding the Hashin-Strikman bounds described in Section (2.1), the
upper bound can be seen as a “cementation-bound” where the grains are com-
pletely cemented and the lower bound can bee seen as a “suspension-bound”
where the grains would be suspended in brine. This naturally explains why
the lower bound approaches water velocity for higher porosities. It is worth
noting that experimental studies have shown that at high porosities recorded
velocity values will lie closer to the suspension bounds and at low porosities
the velocity values will lie closer to the cementation bound. This makes the
Hill-average, which is composed of the arithmetic average of bounds for bulk
modulus and bounds for shear modulus, an inaccurate estimation of porosity
at high and low range porosities Other possibilities for porosity estimation
within the estimated bounds should be subject to further investigation.
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8 Conclusion

A new composite model to estimate porosity from velocity data is derived
by modelling elastic properties of sand using Hashin-strikman bounds, mod-
elling elastic properties of shale using Vernik and interpolating between the
two models. We have proven its ability to capture low frequent porosity
trends in both wireline sonic data and seismically derived velocity data when
comparing to what we assume to be true velocity derived from the density-
log.

By including improved lithological information in the form an a Vcl pre-
diction based on GR-log, we were able to improve the accuracy of the esti-
mated porosity and its bounds. By including lithological information we can
also look at the width of the estimated porosity bounds as a measure of the
uncertainty of our estimated porosity.

By limiting our model to only take velocity and clay content as input,
we are able to use the same model and methodology for a wide range of
data sources. This allows our model to be used in both an exploration and
a production setting.
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