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Abstract

This thesis present the theory of Lagrange polynomials and the implementation of a

Lagrange interpolation method. We also study spline theory and the implementation

of splines intended on geometric representation and interpolation methods. Last but

not least we explore and implement a one-dimensional numerical collocation method

for solving differential equations numerically, using splines. Along the way we discuss

and analyze some of the main issues related to splines, interpolation and collocation.
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Sammendrag

Denne masteroppgaven presenterer teorien rundt Lagrange-polynomer og implemen-

tasjonen av Lagrange-interpolasjon. Vi studerer også teorien rundt spline-funksjoner

og implementasjonen av splines tilknyttet interpolasjon, samt representasjon av ge-

ometriske objekter. Sist men ikke minst så utforsker vi og implementerer en endi-

mensjonal kollokasjonsmetode for å løse differensialligninger numerisk, ved bruk av

splines. Underveis vil vi diskutere og analysere kjente problemstillinger tilknyttet splines,

interpolasjon og kollokasjon.
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2 CONTENTS



Nomenclature

BVP Boundary Value Problem.

CAD Computer Aided Design.

FEA Finite Element Analysis.

IGA Isogeometric Analysis.

P Space of polynomials.

R Space of real numbers.

p, q Polynomial degrees.

n,m Degrees of freedom.

h Length of a grid interval.

i , j ,k, l Index variables.

Lk Lagrange basis function.

Hα(x) One dimensional step function.

Hα(x, y) Two dimensional step function.
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4 CONTENTS

Ω̂ Parameter space.

ξ,η Coordinates in parameter space.

Ω Physical space.

x, y Coordinates in physical space.

F Geometrical map.

S(ξ,η) Spline surface map.

C (ξ) Spline curve map.

xL(ξ) One dimensional linear map.

Ξ,H Knot vectors.

ξi ,η j Elements of knot vectors.

M j ,q (η) B-spline basis function.

Ni ,p (ξ) B-spline basis function.

Sp,Ξ Spline space.

Sq,H Spline space.

ξ̂i , η̂ j Interpolation points.

τ̂i Collocation points.

uh(x) Numerical solution.

u(x) Exact solution.

L,G Linear differential operators.



Chapter 1

Introduction

Spline basis functions have been a mainstay of Computer Aided Design (CAD) for many

years due to their flexibility and precision. [21] and [8] has done great work in uniting

the field of CAD and the field of Finite Element Analysis (FEA). They introduced the con-

sept of Isogeometric Analysis (IGA) and brought splines into analysis, an area to which

their unique properties are also ideally suited.

The collocation method is a numerical method for solving partial differential equa-

tions. The numerical solutions in this method are built from basis functions such as

Lagrange or Chebyshev polynomials, or standard Finite Element basis functions. [17]

has explored the collocation method using Radial Basis Functions (RBF). [13] initiated

research on Isogeometric Collocation methods where the solution space was built on

spline basis functions.

This thesis aims towards exploring the world of splines. We look at methods of repre-

senting geometrical objects using these functions. We also explore interpolation meth-

ods and collocation methods, in particular by seeking solutions that are built from

spline basis functions.

5



6 CHAPTER 1. INTRODUCTION



Chapter 2

Polynomial Interpolation

Polynomial interpolation involves finding a polynomial that agrees exactly with some

information that we have about a real-valued function f of a single variable x. This

information may be in the form of values f (x0), . . . , f (xp ) of the function f evaluated at

some finite set of p +1 points x0, . . . , xp on the real line.

2.1 Interpolation using the Vandermonde Matrix

Given that p is a non-negative integer, let Pp denote the set of all polynomials of degree

less than or equal to p defined over the set R of real numbers. A polynomial rp (x) can

be written in its general form as

rp (x) = ap xp +ap−1xp−1 + . . .+a2x2 +a1x +a0. (2.1)

One can obtain a polynomial rp (x) passing through the points (xi , yi ) ∈R2 for i = 0,1, . . . , p

by solving the equations rp (xi ) = yi for i = 0,1, . . . , p. The linear system of equations to

be solved is

ap xp
i +ap−1xp−1

i + . . .+a2x2
i +a1xi +a0 = yi ∀ i = 0,1, . . . , p. (2.2)

7



8 CHAPTER 2. POLYNOMIAL INTERPOLATION

The coefficients ai ∈R, i = 0,1, . . . , p are the unknowns, and the coefficient matrix

V =



1 x0 x2
0 . . . xp

0

1 x1 x2
1 . . . xp

1

1 x2 x2
2 . . . xp

2
...

...
...

. . .
...

1 xp x2
p . . . xp

p


, (2.3)

is known as the Vandermonde matrix. The solution is then sought in the Monomial

basis
{
1, x, x2, . . . , xp

}
.

Theorem 1. Suppose that xi , i = 0,1, . . . , p are distinct real numbers and yi ,

i = 0,1, . . . , p are real numbers. Then there exists a unique polynomial rp (x) ∈ Pp such

that rp (xi ) = yi for all i = 0,1, . . . , p.

Proof. The proof consists of showing that the corresponding Vandermonde matrix has

a non-zero determinant and hence is nonsingular, implying that rp exists and is unique.

See the Unisolvence Theorem [1, p. 31-32] or [2, p. 2-3] for complete proofs.

This method is the most basic procedure of finding an interpolating polynomial.

However, the method is numerically unstable for large p, while it also is very costly to

solve a dense (p +1)× (p +1) linear system.
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2.2 Lagrange Interpolation

The Lagrange interpolation method is an alternative way to define rp without having to

solve computationally expensive systems of equations.

Definition 1. Lagrange interpolation polynomial. Let p ≥ 0. Given the real-valued

function f , defined and continuous on a closed real interval [a,b], and the distinct inter-

polation points xi ∈ [a,b], i = 0, . . . , p, the polynomial rp defined by

rp (x) =
p∑

k=0
Lk (x) f (xk ) (2.4)

Lk (x) =
p∏

i=0
i 6=k

x −xi

xk −xi
(2.5)

is the Lagrange interpolation polynomial of degree p with interpolation points

xi , i = 0, . . . , p, for the function f .

It is proved by [3, p. 181-182] that the Lagrange interpolation polynomial (2.4) is

the unique polynomial satisfying theorem (1). Therefore, we can conclude that the La-

grange basis
{
L0,L1,L2, . . . ,Lp

}
and the Monomial basis both span the same space of

polynomials Pp , and the two methods will obtain the same interpolating polynomial.

The relationship between the Lagrange basis and the Monomial basis are further inves-

tigated by [4].

From (2.5) it follows that all Lagrange basis functions are constructed such that

Lk (xi ) =


1, if i = k,

0, if i 6= k,
(2.6)

for all i ,k = 0,1, . . . , p.

Example 1. The Lagrange basis functions Lk (x),k = 0, . . . ,4 are shown in figure 2.1. One

can verify the conditions (2.6) on all points marked by black dots.
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Figure 2.1: The Lagrange basis {L0,L1,L2,L3,L4} defined in equation (2.5) is plotted for
x ∈ [0,1] using interpolation points x = {0,0.25,0.5,0.75,1}.

Example 2. f (x) = sin(2πx) is interpolated for x ∈ [0,1]. The uniform grid space

h = 0.25 is such that xi = i ·h for i = 0, . . . ,4. Hence, the interpolation points are given as

(xi , f (xi )) for i = 0, . . . ,4. The interpolating Lagrange polynomial r4 is therefore a linear

combination of the Lagrange basis functions shown in figure 2.1. The exact function f (x)

and the interpolating function r4 can be seen in figure 2.2.

Figure 2.2: Polynomial interpolation of f (x) = sin(2πx) for x ∈ [0,1]. We have used
equally spaced interpolation points. The interpolating Lagrange polynomial is of de-
gree p = 4.
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2.3 Runge’s Phenomenon

In general we expect that the Lagrange interpolation polynomial becomes more accu-

rate as the polynomial degree p increases. But this is not the case for all functions.

Example 3. In figure 2.3 we have interpolated the discontinuous step function Ha(x)

defined by

Ha(x) =


1 if x < a,

1
2 if x = a,

0 if x > a,

(2.7)

for a = 0.5. The interpolation points are chosen to be uniformly distributed along the

x-axis. This has been done for different polynomial degrees p = 6,8,10,12 and as we can

see in figure 2.3, the interpolating polynomials tend to blow up as p increases.

This is an example of what is referred to as the Runge’s Phenomenon. It was first dis-

covered by interpolating the function f (x) = 1/(1+ x2) on x ∈ [−5,5] using equidistant

interpolation points [5]. The latter example is further discussed in [3, 186-187] and the

complex analysis of the problem, explaining its diverging properties, is discussed in [6].
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Figure 2.3: Lagrange interpolation for the discontinuous step function. The continu-
ous curves are the associated Lagrange interpolation polynomials rp for p = 6,8,10,12
using equally spaced interpolation points. This phenomena, where the approximated
function blow up for large p, is called Runge’s Phenomenon.
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Example 4. H0.5(x) is now interpolated for polynomial degrees p = 6,8,10,12 on a non-

uniform set of interpolation points xi , namely the points defined by

xi = arctan(2π(x̃i −0.5))

2arctan(π)
+0.5, (2.8)

where x̃i , i = 1, . . . , p are the p uniform distributed points on the interval [0,1]. As we can

see in figure 2.4 the interpolating polynomials rp now converge as p increases.
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Figure 2.4: Lagrange interpolation for the discontinous step function. The function is
interpolated by Lagrange polynomials of degree p = 6,8,10,12 using the points defined
by (2.8) as interpolation points.

The non-uniform points (2.8) are more densely distributed towards the ends of the

domain, the same area as we observe the largest errors in figure (2.3). These exam-

ples motivates further investigation of interpolation points, and this will be discussed

in later chapters.



Chapter 3

Spline Theory

The Lagrange interpolation polynomial is global in nature, meaning that the approxi-

mated function is defined by the same analytical expression on the whole interval. An

alternative and more flexible way to interpolate data is to divide the interval into sev-

eral subintervals and look for piecewise polynomial approximations of a lower degree.

Such piecewise polynomials are called splines and the endpoints of the subintervals are

called knots. Splines are built from B-splines (basis splines) so a discussion of these

functions, and their properties, is a natural starting point. But first we introduce the

knot vector.

3.1 Knot Vectors

A knot vector in one dimension is a non-decreasing set of coordinates, written

Ξ = [ξ1,ξ2, . . . ,ξn+p+1] where ξi ∈ R is the i th knot, p is the polynomial order, n is the

number of basis functions defined on our domain and i is the knot index

i = 1,2, . . . ,n+p+1. The knot vector is used to describe element boundaries. When con-

structing the B-spline basis we define separate polynomials on each element [ξi ,ξi+1].

Knot vectors may be uniform if the knots are equally spaced, or non-uniform if the

knots are unequally spaced, for example in presence of a repeated knot value. If a knot

is repeated m times in the knot vector, we say that the knot has multiplicity m. Knots

13
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of multiplicity one, two or three are also called simple, double and triple knots. A knot

vector is said to be open if its first and last knot values has multiplicity p +1. If in addi-

tion no knot value occurs with a higher multiplicity then p +1, then the knot vector is

said to be p +1-regular.

3.2 B-splines

Definition 2. B-spline basis function. Given a knot vectorΞ= [ξ1,ξ2, . . . ,ξn+p+1], where

ξi ∈ R is the i th knot, i is the knot index, p is the polynomial order and n is the number

of basis functions used to construct the basis. The B-spline basis functions are defined

recursively starting with piecewise constants (p = 0):

Ni ,0(ξ) =


1 if ξi ≤ ξ< ξi+1,

0 otherwise.
(3.1)

For p = 1,2,3, . . ., they are defined by

Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ). (3.2)

A characteristic feature of B-splines is their smoothness properties. The multiplicity

mi of knot value ξi has important implication on smoothness. In general, basis func-

tions of order p has p −mi continuous derivatives across knot ξi , as stated by [7, p.

26-27]. The first and last value of open knot vectors are repeated p +1 times, meaning

that B-splines constructed from open knot vectors are discontinuous (C−1-continuous)

at the endpoints of the domain.
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Example 5. In figure 3.1 we have demonstrated the continuity property of the B-splines

using 3r d degree basis functions. The B-splines are discontinuous at the endpoints, since

we used an open knot vector. The B-splines have the maximum level of continuity, i.e.

C 2-continuity, across the simple knot value ξ = 1. The knot values ξ = 2 and ξ = 3 are

repeated two and three times, respectively. Therefore, the basis functions across these

knots are only C 1- and C 0-continuous, respectively. A knot vector of length 14 implies a

number of basis functions n = 14−p −1 = 10, which are ordered from left to right using

the index j . Hence, in figure 3.1 we look at the set of basis functions
{

N j ,3(ξ)
}10

j=1.

Figure 3.1: Cubic B-spline basis functions calculated from the knot vector
Ξ = [0,0,0,0,1,2,2,3,3,3,4,4,4,4]. Some knot values are repeated, and the continuity
properties of each B-spline basis function are depending on the multiplicity of each
knot.

In general, if there is one basis function N j ,p (ξ) for some j ∈ {1, . . . ,n} such that

N j ,p (ξi ) = 1 for some i = l , where l ∈ {
1, . . . ,n +p +1

}
and N j ,p (ξi ) = 0 for all other

i ∈ {
1, . . . ,n +p +1

}
, then we can say that the basis

{
N j ,p (ξ)

}n
j=1 is interpolatory at ξi ,

and it is the function N j ,p (ξ) which interpolates at ξi . That is, if one basis function has

value 1 at ξi and all other basis functions are zero at ξi , then the basis is interpolatory

on ξi . This property will prove to be helpful in collocation methods when imposing

boundary conditions.
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3.3 Derivatives of B-splines

The derivatives of B-spline functions are efficiently represented in terms of B-spline

lower order bases. For a given polynomial order p and knot vector Ξ, the k th derivative

of the i th basis function is given by

d k

d kξ
Ni ,p (ξ) = p !

(p −k)!

k∑
j=0

αk, j Ni+ j ,p−k (ξ), (3.3)

with

α0,0 = 1,

αk,0 =
αk−1,0

ξi+p−k+1 −ξi
,

αk, j =
αk−1, j −αk−1,k−1

ξi+p+ j−k+1 −ξi+ j
j = 1, . . . ,k −1,

αk,k = −αk−1,k−1

ξi+p+1 −ξi+k
.

Some of the denominators of these coefficients can be zero in presence of repeated

knots. The coefficients is defined to be zero when this happens.

Example 6. The continuity property can also be interpreted in terms of the number of

continuous derivatives across repeated knots. Figure 3.2, 3.3 and 3.4 shows a 3r d order

B-spline and its k th derivatives for k = 1, . . . ,3. In each figure we can observe that the

basis function N4,3(ξ) has p −m continuous derivatives across the knot ξ = 2, where the

multiplicity m is different in each figure.
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(a) The basis function N4,3(ξ).

(b) The first derivative of N4,3(ξ).

(c) The second derivative of N4,3(ξ).

(d) The third derivative of N4,3(ξ).

Figure 3.2: The B-spline N4,3(ξ) and its derivatives for the open knot vector
Ξ= [0,0,0,0,1,2,3,4,4,4,4]. Each interior knot has multiplicity one and hence the basis
function N4,3(ξ) has p −1 = 2 continuous derivatives.
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(a) The basis function N4,3(ξ).

(b) The first derivative of N4,3(ξ).

(c) The second derivative of N4,3(ξ).

(d) The third derivative of N4,3(ξ).

Figure 3.3: The B-spline N4,3(ξ) and its derivatives for the open knot vector
Ξ= [0,0,0,0,1,2,2,3,4,4,4,4]. The knot value ξ= 2 is repeated two times, hence N4,3(ξ)
have one continuous derivative across the repeated knot.
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(a) The basis function N4,3(ξ).

(b) The first derivative of N4,3(ξ).

(c) The second derivative of N4,3(ξ).

(d) The third derivative of N4,3(ξ).

Figure 3.4: The B-spline N4,3(ξ) and its derivatives for the open knot vector
Ξ = [0,0,0,0,1,2,2,2,3,4,4,4,4]. The knot value ξ = 2 is repeated three times, hence
N4,3(ξ) have zero continuous derivatives across the repeated knot.
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3.4 Properties of B-splines

We have already mentioned some important properties of B-splines, but there are sev-

eral other important ones. The following lemma sums up some of the most basic prop-

erties found in [8] and [7].

Lemma 1. Let p be a non-negative polynomial degree and letΞ= (ξ j ) be a knot sequence.

The B-splines on Ξ have the following properties:

1. Each basis function is pointwise non-negative over the entire domain,

i.e. Ni ,p (ξ) ≥ 0 ∀ ξ.

2. The basis constitutes a partition of unity, i.e.
∑n

i=1 Ni ,p (ξ) = 1 ∀ ξ, given that the

knot vector is p +1-regular.

3. A p th order B-spline has p −m continuous derivatives across the knot with

multiplicity m.

4. The support of a B-spline of order p is always p + 1 knot spans, meaning that a

basis function Ni ,p (ξ) only has non-zero values in the interval [ξi ,ξi+p+1].

5. Each B-spline function shares support (overlaps with) with 2p +1 B-splines,

including itself.

6. The j th B-spline N j ,p depends only on the knots ξ j ,ξ j+1, . . . ,ξ j+p+1.



Chapter 4

Spline Geometry

The next topic is to present how linear combinations of B-splines can be applied to cre-

ate different spline geometries, such as spline functions, spline curves and spline sur-

faces.

We can visualize spline geometries in two different coordinate systems, in what we call

the parameter space on the one hand, and the physical space on the other. The pa-

rameter space in two dimensions is the rectangular space spanned by the coordinates

ξ and η. The physical space is spanned by the usual coordinates x and y , and is what

often represents the real world. An object in the physical space is a representation of

the true geometry which is approximated by splines. The physical space is denoted Ω.

In this thesis we only consider structured grids. However, one can be very creative with

the physical space, and the objects living here can be quite complex. The parameter

space is denoted by Ω̂. This space has more order to it, at least visually. The grid in Ω̂

is defined by the tensor product of the knot vectors Ξ and H, so the parameter space

domain is Ω̂ = [ξ1,ξn+p+1]× [η1,ηm+q+1]. The extent of this space is therefore limited

by the non-decreasing values of the knot vectors.

21
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We recognize that the parameter space and the physical space have the same topol-

ogy, and that the one is merely a continuous deformation of the other, using trans-

formations such as stretching and bending. Objects in the parameter space can be

mapped into physical space by a geometrical map, and we denote it by F : Ω̂→Ω. Any

object in parameter space has to be kind of trivial. A curve is simply a straight line, and a

surface is simply a flat rectangle. It is easier to do calculations and analysis in parameter

space because of its trivial structure. The geometrical map helps us transform the result

into physical space. These tools can help us to do analysis on complex geometries, for

example to solve boundary value problems (BVP). An illustration of the two spaces can

be seen in figure 4.1.

Figure 4.1: Parameter space Ω̂ (left) and physical space Ω (right) and the geometrical
map F : Ω̂→Ω between them.
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4.1 Spline Curves

Spline curves are linear combinations of B-splines. First we define the space where

these curves live, namely the spline space.

Definition 3. Spline space. Let Ξ = (ξ j )n+p+1
j=1 be a non-decreasing sequence of real

numbers, i.e. a knot vector for a total of n B-splines. Also let d ≥ 1 be an integer. The

linear space of all linear combinations of these B-splines defined by

Sp,Ξ = span
{

N1,p (ξ), . . . , Nn,p (ξ)
}

=
{

n∑
j=1

c j N j ,p (ξ)|c j ∈Rd for 1 ≤ j ≤ n

}
.

(4.1)

is called the spline space Sp,Ξ.

The building blocks of the spline curve is the elements of the spline space, which is

the set of B-splines. One can create different curves by choosing different coefficients

in the linear combination. Sometimes we represent splines where the coefficients c j

are scalars on the real line. We then call the spline a spline function.

Definition 4. Spline function. An element f (ξ) = ∑n
j=1 c j N j ,p (ξ) of the spline space

Sp,Ξ, where c j ∈ R for j = 1, . . . ,n, is called a spline function, or just a spline, of degree

p with knots Ξ. The real numbers (c j )n
j=1 are the B-spline coefficients of f (ξ).

We can also represent spline curves in the d-dimensional space Rd by taking a lin-

ear combination of B-spline basis functions using points ci ∈ Rd as coefficients. The

coefficients ci are called control points.

Definition 5. Spline curve. Given n basis functions Ni ,p (ξ) for i = 1, . . . ,n and control

points ci ∈Rd for i = 1, . . . ,n, an element of the spline space Sp,Ξ

C (ξ) =
n∑

i=1
Ni ,p (ξ)ci (4.2)

is a spline curve, or parametric spline curve.

The smoothness of the spline curve follow from that of the B-spline, as stated in [7,

p. 73-74], i.e. the spline curve has p −m continuous derivatives at the knot with mul-
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tiplicity m, as described in section 3.2. So a quadratic spline curve will only be contin-

uous at a double knot, whereas it will be continuous and have a continuous derivative

at a single knot. The ability to control the smoothness of a spline curve can have im-

portant practical application. For example if it is necessary to represent a sharp corner

with a C 0-continuous curve, this can be done by letting the knot appear p times at that

corner, see figure 4.2.

The spline curve representation is rather flexible for approximating geometries. In spline

literature it is often the control points which are adjusted if the spline curve needs to

change. Repeated knots are also used to control smoothness, as already discussed. An-

other way to adjust a spline curve is to change a knot value in the knot vector. Since we

already know that a knot vector has to be a non-decreasing set of numbers

ξi ∈ [ξi−1,ξi+1], we can only change ξi in its permitted interval. This method is not that

common. However, it is a flexibility feature that is worth knowing about. An example is

shown in figure 4.2.

Example 7. The example curves shown in figure 4.2 are built from quadratic basis func-

tions. The control points are given as

c =
1 2 4 4 6 8 4 2

2 1 1 3 3 5 6 4

 , (4.3)

for d = 2. Piecewise linear interpolation of the control points gives the control polygon.

Curve (a) is built from the knot vector Ξa = [0,0,0,1,2,3,3.2,3.2,5,5,5] and curve (b) is

built from the knot vector Ξb = [0,0,0,1,2,3,4.8,4.8,5,5,5]. Both knot vectors are open,

so the curves are interpolatory at the first and last end points. The curves are also interpo-

latory at the sixth control points due to the repeated knot value. Everywhere else they are

C p−1 = C 1-continuous. The repeated knot value are slightly different for the two curves

and therefore we can see that the image of the repeated knot value in Ξb lies to the left of

the repeated knot value in Ξa , so the curves passing through the repeated knot does not

overlap each other.
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Figure 4.2: B-spline curve for the control points c (4.3) using second order B-splines.
We have used two knot vectorsΞa andΞb . The curves have reduced smoothness due to
the repeated knots, and are slightly different since the repeated knots does not have the
same value. The knots, which define a mesh by partitioning the curve into elements,
are marked by blue circles and dots.
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There are alternative methods for representing geometry using spline functions.

The Variation Diminishing Spline Approximation is one of them.

Definition 6. The Variation Diminishing Spline Approximation Let f be a given con-

tinuous function on the interval [a,b], let p be a given positive integer, and let

Ξ = [ξ1,ξ2, . . . ,ξn+p+1] be a p +1-regular knot vector with boundary knots ξp+1 = a and

ξn+1 = b. The spline given by

(V f )(x) =
n∑

j=1
f (ξ∗j )N j ,p (x), (4.4)

where ξ∗j = (ξ j+1+. . .+ξ j+p )/p are the knot averages, is called the Variation Diminishing

Spline (VDS) approximation of degree p to f on the knot vector Ξ.

VDS is a subgroup of the previous considered B-spline function. The difference is

that now the control points are defined to be the function f sampled and evaluated at

knot averages. It is also a generalization of piecewise linear interpolation and it has a

nice shape preserving behavior called the variation diminishing property.

4.2 Spline Surfaces

The tensor product structure is essential when it comes to defining two dimensional

spline geometries. We will see that the two dimensional spline space is a tensor product

of two one dimensional spline spaces. Two dimensional B-splines are tensor products

of one dimensional B-splines, and spline surfaces are tensor products of spline curves.

First we need to establish the linear independence of the B-splines in Sp,Ξ. The fol-

lowing theorem use that the p+1-regular knot vector is a subgroup of the more general

p +1-extended knot vector [7, p. 66].
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Theorem 2. Suppose that Ξ is a p +1-extended knot vector. Then the B-splines in Sp,Ξ

are linearly independent on the interval [ξp+1,ξn+1).

Proof. The proof consists of showing that the linear system
∑n

j=1 c j N j ,p (ξ) = 0 only ad-

mits the trivial solution c j = 0 ∀ j . For the complete proof, see [7, p. 66].

Definition 7. Tensor product spline space. Given spline orders p and q, and knot vec-

tors Ξ = [ξ1,ξ2, . . . ,ξn+p+1] and H = [η1,η2, . . . ,ηm+q+1], the tensor product of the two

spline spaces Sp,Ξ and Sq,H is defined to be the space

Sp,Ξ
⊗

Sq,H = span
{

N1,p (ξ), . . . , Nn,p (ξ)
}⊗

span
{

M1,q (η), . . . , Mm,q (η)
}

(4.5)

where Ni ,p (ξ) is the univariate B-spline basis functions of order p corresponding to the

knot vector Ξ, and M j ,q (η) is the univariate B-spline basis function of order q corre-

sponding to the knot vector H.

The space Sp,Ξ
⊗
Sq,H is spanned by the functions

{
Ni ,p (ξ)M j ,q (η)

}n,m
i , j=1. Since

these functions are linearly independent the space has dimension nm.

(a) Bilinear. (b) Biquadratic.

Figure 4.3: Two-dimensional basis functions. Figure 4.3a is a bilinear basis function,
meaning that both spline degrees p = q = 1. It is constructed by the tensor product
N2,1(ξ)M2,1(η) built on the open knot vectors Ξ=H= [0,0,1,2,2] in ξ- and η-direction,
respectively.
Figure 4.3b is a biquadratic basis function, meaning that both spline degrees p = q = 2.
It is constructed by the tensor product N2,2(ξ)M3,2(η) built on the open knot vectors
Ξ=H= [0,0,0,1,2,3,3,3] in ξ- and η-direction, respectively.
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In lemma 1 we learned that the support of a B-spline Ni ,p (ξ) is the interval [ξi ,ξi+p+1].

In two dimensions we get that the support of Ni ,p (ξ)M j ,q (η) is the rectangular inter-

val [ξi ,ξi+p+1]× [η j ,η j+q+1]. The support of the bivariate basis function N2,1(ξ)M2,1(η)

is therefore [0,2] × [0,2] in figure 4.3a, and the support of N2,2(ξ)M3,2(η) is therefore

[0,2]× [0,3] in figure 4.3b.

Definition 8. Spline surface. Given a control net (ci j ), i = 1,2, . . . ,n, j = 1,2, . . . ,m, poly-

nomial orders p and q, and knot vectors Ξ= [ξ1,ξ2, . . . ,ξn+p+1] and

H= [η1,η2, . . . ,ηm+q+1], a bivariate spline, or spline surface, is defined by the geometrical

map S : Ω̂→Ω

S(ξ,η) =
n∑

i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η)ci j . (4.6)

The surface S(ξ,η) is an element in the tensor product spline space Sp,Ξ
⊗
Sq,H.

4.3 More on Geometry

The one dimensional parameter space is partitioned into elements by the knots. The

two dimensional analogue is the knot lines. Knot lines in physical space are the image

of knot lines in parameter space.

Every knot line in the parameter space ξ-direction is perpendicular on all other knot

lines in the parameter space η-direction. A realization of the spline geometry is made

by mapping each element from the parameter space into the physical space by making

use of the equation (4.6).

The control net (ci j )n,m
i , j=1 is what governs the surface in physical space. Each point

ci j ∈ R3 in the control net has x-,y- and z-components. We recognize (xi j , yi j , zi j )T

as the components of control point ci j . Lets collect all x-components in the matrix

X = (xi j )n,m
i , j=1, where xi j ∈ R is a scalar. Now do the same for the y- and z-components

to get the matrices Y and Z. Each component has to undergo the transformation of
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equation (4.6), i.e.

S(ξ,η) =


x(ξ,η)

y(ξ,η)

z(ξ,η)

=
n∑

i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η)


xi j

yi j

zi j

 , (4.7)

which can be written conveniently in a matrix-vector form as

x(ξ,η) = NT X M

y(ξ,η) = NT Y M

z(ξ,η) = NT Z M

(4.8)

where

N =


N1,p (ξ)

...

Nn,p (ξ)

 and M =


M1,q (η)

...

Mm,q (η)

 (4.9)

are the vectors holding all B-splines in the basis. When the z-components z(ξ,η) of the

surface is plotted in the coordinates of x(ξ,η) and y(ξ,η) in physical space we can see

the realization of the spline surface defined by the control net.

Example 8. A biquadratic spline surface, seen in figure 4.4, is built on the open knot vec-

torsΞ= [0,0,0,0.5,1,1,1] and H= [0,0,0,1,1,1]. A control net is defined in table 4.1. The

surface, along with its black knot lines, is mapped from parameter space into physical

space using the equations (4.8). The bivariate basis function
{

N2,2(ξ)M2,2(η)
}

is plotted

in parameter space and physical space, as shown in figure 4.5.
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Figure 4.4: Parameter space (left) and Physical space (right). The knots and the knot
lines, when mapped into physical space, is what partition the surface into elements.

Figure 4.5: Parameter space (left) and Physical space (right). The bivariate basis func-
tion

{
N2,2(ξ)M2,2(η)

}
is mapped from the parameter space (left) into the physical space

(right).

Example 9. Spline surfaces can also have control points where the z-components are

non-zero. In figure 4.6, the function f (x, y) = (1−x)y2+x sin(πx) is sampled on the points

x ∈ {0.4,0.475,0.55,0.625,0.7} and y ∈ {0.5,0.575,0.65,0.725,0.8} to create a control net

(figure 4.6b). The surface (figure 4.6a) is build on the knot vectors

Ξ=H= [0,0,0,1,2,3,3,3] using quadratic polynomials p = q = 2.
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(a) Two-dimensional spline surface.

(b) The corresponding control polygon.

Figure 4.6: The control polygon in figure 4.6b is a net of sampled points from a real-
valued function f (x, y), while the surface in 4.6a is the biquadratic tensor product
spline surface approximating the control polygon.
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Table 4.1: Control points ci j for the surface in figure 4.4 and 4.5. Only (x, y)-coordinates
are shown. All z-components of the control points are defined to be zero, and are there-
fore excluded from the table.

i j ci j

1 1 (0,0)
1 2 (-1,0)
1 3 (-2,0)
2 1 (0,1)
2 2 (-1,2)
2 3 (-2,2)
3 1 (1,1.5)
3 2 (1,4)
3 3 (1,5)
4 1 (3,1.5)
4 2 (3,4)
4 3 (3,5)

When constructing surfaces, it is interesting to notice that, the knot vectors used are

invariant under translation and scaling. For example, if we build the surface in figure

4.6 on the translated knot vectors Ξ=H = [1,1,1,2,3,4,4,4], or the scaled knot vectors

Ξ=H= [0,0,0,2,4,6,6,6], it will result in an equivalent surface when plotted in physical

space. This property is called translation invariance and is discussed in [7, p.42-43].

4.3.1 A Linear Map

A linear map xL : Ω̂→Ω is given by the linear function

xL(ξ) = Aξ+B. (4.10)

Lets say the parameter space is Ω̂= [
â, b̂

]
and the physical space is Ω= [a,b]. The two

conditions x(â) = a and x(b̂) = b helps us determine A and B so that

xL(ξ) = b −a

b̂ − â
ξ+ ab̂ − âb

b̂ − â
, (4.11)
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and hence the linear map is governed by the control points {xi }n
i=1 which are the solu-

tion of the linear system

xL(ξ) =
n∑

i=1
Ni ,p (ξ) xi . (4.12)

Most figures in this chapter, and the next chapter, have used control points with equidis-

tant spacing in physical space. This will not result in a linear map, and is the result that

the reader will observe that the spacing between the coordinates of knot lines and knot

points is not equidistant, as for example in figure 4.6. A linear map, and the nonlinear

map used in chapter (4) and (5), is plotted in 4.7.

Figure 4.7: An illustration of a linear map xL(ξ) : [0,1] → [1,5] and a nonlinear map
xN (ξ) : [0,1] → [1,5] between the spaces.
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Figure 4.8: This heart is made of quadratic splines in ξ direction and linear splines in η

direction. The surface is defined by 9 ·3 control points in R3. We have used open knot
vectors defining a rectangular domain where the surface lives in parameter space. The
control points and the basis functions defines a geometrical map into physical space
transforming the rectangular surface into a heart using only continuous bending and
stretching. Ξ has a repeated knot value to make a C 0 continuity in ξ direction. The
image of this is the middle top part of the heart. On all other interior knot lines we have
C 1 continuity. The middle bottom part is clamped together simply by defining the first
and last control points to meet at the same points.



Chapter 5

Spline Interpolation

So far we have mainly considered spline approximations defined by a given set of con-

trol points. However, they do not pass through the control points. Now we want to

explore methods where the spline approximation is exact at a given set of interpola-

tion points. We first develop a one dimensional method and then move on to cover two

dimensions.

5.1 1D General Spline Interpolation

Splines are piecewise polynomials, as we already know. The degree of a Lagrange in-

terpolating polynomial will increase proportional to the number of control points be-

ing interpolated. For splines it is different. Here we need to increase the number of

piecewise polynomials proportional to the number of control points. Higher degree

polynomials tend to oscillate a lot, and this is the case for the Lagrange interpolating

polynomials, since they are global in nature. As a result of this we get large errors in our

approximation. The advantage of splines is that it is often enough to use quadratic or

cubic polynomials locally, on each interval. Hence we can avoid the large oscillations

and the large errors in our approximation. Even though cubic splines are undoubtedly

the most common, there is an advantage of having methods available for all spline de-

grees, so that is what we want to develop.

35
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We want a method that creates a spline passing through all control points, or inter-

polation points. Given interpolation points (ξ̂i ,ui ), i = 1, . . . ,n we then consider the

problem of finding a spline function g such that

g (ξ̂i ) = ui , i = 1, . . . ,n. (5.1)

Usually there is some sort of unknown field u(x) on the physical domain, such as a

distribution of temperature, or a magnetic field. The response variable ui = u(x̂i ) rep-

resent one distinct measurement of this field, where x̂i in physical space is the image of

the interpolation point ξ̂i in parameter space. Since there is some analogous function

û(ξ) in Ω̂ such that u(x(ξ)) = û(ξ), we can directly transfer the function values on inter-

polation points ui = u(x̂i ) = û(ξ̂i ) for all i = 1, . . . ,n. The resulting spline function from

(5.1) is an approximation of the unknown field, i.e. g (ξ) ≈ u(x(ξ)).

There can be various goals we would want to achieve, depending on the specific in-

terpolation problem, and we would like to use the most suitable spline tools for the

situation. If quadratic splines are chosen we will be able to get a smooth representation

of the first derivative of the spline. If cubic splines are chosen we can get a smooth sec-

ond derivative. If we want the third degree derivative to be continuous then the degree

must be higher than three, and so on. For the sake of robustness, we want to develop

a method which can handle all these situations. We therefore consider the following

interpolation problem

Definition 9. 1D spline interpolation problem. Let there be given data (ξ̂i ,ui )n
i=1 and a

spline space Sp,Ξ whose knot vector Ξ= (ξi )n+p+1
i=1 is open and non-decreasing such that

ξi+p+1 > ξi , for i = 1, . . . ,n. Find a spline g in Sp,Ξ such that

g (ξ̂i ) =
n∑

j=1
c j N j ,p (ξ̂i ) = ui for i = 1, . . . ,n. (5.2)
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The equations in (5.2) form a system of n equations in n unknowns. In matrix form

these equations can be written

NT c =


N1,p (ξ̂1) . . . Nn,p (ξ̂1)

...
. . .

...

N1,p (ξ̂n) . . . Nn,p (ξ̂n)




c1

...

cn

=


u1

...

un

= u. (5.3)

The matrix N is often referred to as the B-spline collocation matrix. Since Ni ,p (ξ) is non-

zero only in its region of support [ξi ,ξi+p+1], the matrix N will in general be sparse. The

collocation matrix possesses the property of being totally positive which is defined in

the following

Definition 10. Totally positive matrices. A matrix A in Rn×m is said to be totally pos-

itive if all its square submatrices have non-negative determinant. More formally, let

i = (i1, i2, . . . , il ) and j = ( j1, j2, . . . , jl ) be two integer sequences such that

1 ≤ i1 < i2 ≤ ·· · < il ≤ m, (5.4)

1 ≤ i1 < i2 ≤ ·· · < il ≤ n, (5.5)

and let A(i, j) denote the submatrix of A with entries (aip , jq )l
p,q=1. Then A is totally positive

if det(A(i, j)) ≥ 0 for all sequences i and j on the form (5.4) and (5.5), for all l such that

1 ≤ l ≤ min{m,n}.

For the system of equations (5.3) to have a unique solution, it is necessary and suf-

ficient that N is non-singular. The next theorem follows from the fact that N is totally

positive, and it tells us exactly when the matrix is non-singular.
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Theorem 3. Let Sp,Ξ be a given spline space, and let ξ̂1 < ξ̂2 < . . . < ξ̂n be n distinct

numbers. The collocation matrix N with entries (N j ,p (ξ̂i ))n
i , j=1 is non-singular if and

only if its diagonal elements is positive, i.e.

Ni ,p (ξ̂i ) > 0 for i = 1, . . . ,n. (5.6)

Proof. See the proof in [7, p.131-132,208]

The condition that the diagonal elements of N should be non-zero can be written

ξi < ξ̂i < ξi+p+1 for i = 1, . . . ,n (5.7)

provided we allow that ξ̂i = ξi if ξi = ·· · = ξi+p . For an open knot vector this means

that the outermost interpolation points is allowed to lay strictly on the domain bound-

ary. Condition (5.7) goes under the name Schoenberg-Whitney nesting conditions. It

describes that the interpolation points ξ̂i for i = 1, . . . ,n are required to be placed in

the region where the corresponding basis function Ni ,p (ξ) is non-zero, for a solution to

exist. That is the region of p +1 knot spans, as we remember from item 4 in lemma 1.

Figure 5.1: The step function H0.5(x) is sampled on the physical image of n = 12 uni-
formly distributed interpolation points in the parameter space Ω̂= [0,1]. These points
are interpolated by a quadratic spline which is built on the uniform and open knot vec-
tor Ξ. The solution is plotted in the physical spaceΩ= [1,5].
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5.2 2D General Spline Interpolation

We now consider the two dimensional analogy of the one dimensional spline interpo-

lation. Given a net of interpolation points (ξ̂i , η̂ j )n,m
i , j=1 and the values of an unknown

function f = f (x, y) at the interpolation points in physical space, we want to find a ten-

sor product spline surface such that

g (ξ̂i , η̂ j ) = fi j for i = 1, . . . ,n for j = 1, . . . ,m, (5.8)

where we have used the notation fi j = f (x̂i , ŷ j ) and that (x̂i , ŷ j ) is the interpolation

point (ξ̂i , η̂ j ) mapped to physical space. We define the two dimensional interpolation

problem in the following.

Definition 11. 2D spline interpolation problem. Let there be given data (ξ̂i , η̂ j , fi j )n,m
i , j=1

and a spline spaceSp,Ξ
⊗
Sq,H whose knot vectorsΞ= (ξi )n+p+1

i=1 and H= (η j )m+q+1
j=1 are

open and non-decreasing. Find a spline g ∈Sp,Ξ
⊗
Sq,H such that

g (ξ̂i , η̂ j ) =
n∑

k=1

m∑
l=1

ckl Nk,p (ξ̂i )Ml ,q (η̂ j ) = fi j , (5.9)

for i = 1, . . . ,n and j = 1, . . . ,m.

We define the collocation matrices N ∈Rn×n and M ∈Rm×m by

N =


N1,p (ξ̂1) . . . N1,p (ξ̂n)

...
. . .

...

Nn,p (ξ̂1) . . . Nn,p (ξ̂n)

 , M =


M1,q (η̂1) . . . M1,q (η̂m)

...
. . .

...

Mm,q (η̂1) . . . Mm,q (η̂m)

 . (5.10)

If N and M are non-singular then there is a unique tensor product spline

g ∈ Sp,Ξ
⊗
Sq,H such that the interpolation conditions (5.8) holds. It is convenient to

denote the coefficient matrix C = (ckl )n,m
k,l=1 and to express (5.9) in the matrix notation

NT C M = F. (5.11)
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where F = ( fi j )n,m
i , j=1. The matrix C can now be computed in the following steps

Define D ≡ CM. (5.12)

Solve NT D = F for the unknown D. (5.13)

Solve D = C M ⇔ MT G = DT for the unknown G = CT. (5.14)

Transpose C = GT. (5.15)

This splits the computation into two univariate interpolation problems. It involves solv-

ing two banded linear systems with several right hand sides, and two transpose opera-

tions.

Figure 5.2 shows an example where the two dimensional step function

Ha(x, y) =


1 if (x < a and y < a) or (x > a and y > a),

1
2 if x = a or y = a,

0 if (x > a and y < a) or (x < a and y > a).

(5.16)

for a = 0.5 is interpolated by a tensor spline surface.

5.3 Interpolation Points

It has been clear from the discussion in section 2.3 that the choice of interpolation

points can be crucial, at least for Lagrange interpolation. We now want to show that

this is the case for spline interpolation as well.

Example 10. The step function H0.5(x) is sampled on the physical image of 12 uniformly

distributed interpolation points in the parameter space Ω̂ = [0,1]. These points are in-

terpolated by a quadratic spline. Three different cases, using three different knot vectors,

are being considered. The solutions is plotted in the physical space Ω = [1,5]. In each

sub-figure we have plotted the spline basis and interpolation points on the left hand side,

and the numerical solution of the interpolating spline on the right hand side. The knot
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Figure 5.2: The step function H0.5(x, y) defined in (5.16) is sampled on the physical im-
age of n = m = 12 uniformly distributed interpolation points in each direction in the
parameter space Ω̂ = [0,1]× [0,1], creating a total of 122 interpolation points. These
are interpolated by a biquadratic spline which is built on the uniform and open knot
vectors Ξ and H. The solution is plotted in the physical spaceΩ= [0,1]× [0,1].

vectors used are defined by

Ξ1 = [0,0,0, .1, .2, .3, .4, .5, .6, .7, .8, .9,1,1,1], (5.17)

Ξ2 = [0,0,0, .1, .2, .25, .3, .5, .7, .75, .8, .9,1,1,1], (5.18)

Ξ3 = [0,0,0, .1, .2, .25, .3, .65, .7, .75, .8, .9,1,1,1]. (5.19)

The solution in Figure 5.3b is the same as in Figure 5.1. Figure 5.3d and 5.3d is the exact

same problem except for some changes made in the knot vectors used. The basis func-

tions, and hence the interpolating spline, change according to the knot vectors. WhenΞ3

is used condition (5.7) in theorem 3 is violated, so there is no solution available in this

case. The basis function plots are color-coded to illustrate that each interpolation points

has its corresponding basis function. The middle yellow point is not under the non-zero

part of its basis function, causing the collocation matrix to have one zero diagonal entry,

and hence become singular.
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(a) Basis in Ω̂ using Ξ1. (b) Solution inΩ using Ξ1.

(c) Basis in Ω̂ using Ξ2. (d) Solution inΩ using Ξ2.

(e) Basis in Ω̂ using Ξ3. (f) No existing solution using Ξ3.

Figure 5.3: The step function is sampled on n = 12 uniformly distributed points, and
interpolated by quadratic splines. Different knot vectors are used in each case. The knot
vector used in the bottom figure violates the Schoenberg-Whitney nesting conditions,
as explained in example 10.
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The image of the so-called Greville abscissae is a different selection of interpolation

points. We want to consider these points as an alternative to uniform points, and see if

they can give better results for interpolation problems.

Definition 12. Greville Abscissae For a given knot vector Ξ= [ξ1, . . . ,ξn+p+1] the associ-

ated n points are calculated from

ξ̂i =
ξi+1 +ξi+2 + . . .+ξi+p

p
, (5.20)

where p is the polynomial degree.

To illustrate the difference between Greville points and uniform points, we have

plotted them in figure 5.4.

Figure 5.4: Interpolation points in the domain Ω̄ = [0,1] for n = 6,8,10,12. Uniformly
distributed points are marked by blue circles and Greville abscissae are marked by red
dots.

When applying (5.20) on an open knot vector, the two outermost interpolation points

is placed at the domain boundary. For p even, the interior interpolation points are lo-

cated exactly in the center of an element in parameter space, i.e. the average of two

neighboring knots. This is the reason the Greville abscissae also goes under the name

knot averages. For p odd, the interior points are located exactly at the knots in parame-

ter space. This can however not be observed in either case in figure 5.3 and 5.5. This is

because we have plotted in physical space and used a non-linear map between spaces.



44 CHAPTER 5. SPLINE INTERPOLATION

(a) Basis in Ω̂ using Ξ1. (b) Solution inΩ using Ξ1.

(c) Basis in Ω̂ using Ξ2. (d) Solution inΩ using Ξ2.

(e) Basis in Ω̂ using Ξ3. (f) Solution inΩ using Ξ3.

Figure 5.5: The step function is sampled on the Greville abscissae for n = 12 points, and
interpolated by quadratic splines. Different knot vectors are used in each case.

Example 11. Example 10 are recreated using Greville points, while everything else is un-

changed. We can observe descent solutions in all three cases, see Figure 5.5. The color

coded plots for basis functions and interpolation points can be used to observe that the

conditions (5.7) are fulfilled in each case.



Chapter 6

Isogeometric Analysis

In this chapter we bring the splines into the setting of analysis, an arena to which their

unique properties are also ideally suited. The concept of Isogeometric Analysis, or IGA,

is that the basis used to exactly model the geometry will also serve as the basis for the

solution space of the numerical method. However, the B-spline basis also possesses

many properties that are quite desirable when approximating solution fields indepen-

dently of any geometrical consideration. The concept of IGA is today advancing in the

field of Finite Element Analysis. Within the framework of IGA, collocation methods have

been recently proposed as an interesting strong form alternative to standard Galerkin

approaches, characterized by a significantly reduced computational cost, but still guar-

anteeing higher order convergence rates. We will develop collocation methods in this

chapter. We will continue to build on the ideas from the spline theory, and we will use

B-splines to construct the solution spaces.

45
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6.1 Collocation methods

Collocation is used to approximate a solution to a boundary value problem. The ap-

proximate solution and the exact solution for the differential equation is equal at a set

of discrete points called the collocation points, and is an approximation in between.

The collocation points are located in the domain Ω and some conditions are given at

the boundary ∂Ω of the domain.

Definition 13. Boundary Value Problem (BVP).

The goal is to find a solution u : Ω→R to the strong form of the BVP


Lu = f in Ω

Gu = g on ∂Ω

(6.1)

where the functions f : Ω → R and g : ∂Ω → R are given, L is a linear differential

operator, and G is a vector operator.

The boundary conditions given in definition 13 can be either Dirichlet where the

function value of u is given at the boundary, or Neumann conditions where the gradi-

ent of the function is given at the boundary. We will encounter both in later examples.

To solve this problem by the collocation method, two sets of sample collocation points

need to be considered, namely the sets
{

xi nt
i

}
, i = 1, . . . ,ni nt in the interior of Ω and{

xbnd
i

}
, i = 1, . . . ,nbnd on ∂Ω, where ni nt ans nbnd are the number of collocation points

chosen in the interior and on the boundary, respectively. The collocation solution uh is

required to satisfy


L

[
uh(xi nt

i )
] = f (xi nt

i ) inΩ, for i = 1, . . . ,ni nt ,

G
[
uh(xbnd

i )
] = g (xbnd

i ) on ∂Ω, for i = 1, . . . ,nbnd .
(6.2)
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Example 12. From interpolation to collocation.

It is interesting to notice that interpolation is actually a special case of collocation. The

collocation problem (6.2) for L = G = I is simply an interpolation problem. The opera-

tor I is the differential operator which takes a real function and maps it to itself. Interpo-

lation can therefore be thought of as a special case of collocation. Or in the opposite way,

collocation can be thought of as the interpolation of L.

6.2 1D Collocation method

To solve a BVP such as (6.1) in one dimension by a collocation method, a set of colloca-

tion points {τ̂i }n
i=1 needs to be introduced. The points are defined to be non-decreasing

in the domain Ω̂= [â, b̂] such that

â = τ̂1 < τ̂2 < . . . < τ̂n−1 < τ̂n = b̂, (6.3)

where â and b̂ are real scalars. The set of ni nt = n−2 interior collocation points is {τ̂i }n−1
i=2

and the nbnd = 2 boundary collocation points are τ̂1 = â and τ̂n = b̂. The collocation

solution uh(ξ), required to satisfy (6.2), is built as linear combinations of B-splines, i.e.

uh(ξ) =
n∑

i=1
di Ni ,p (ξ). (6.4)

The one dimensional physical space is given by Ω = [a,b] ⊂ R. Any function in Ω can

be directly mapped to Ω̂, meaning that for example uh(ξ) = uh(x(ξ)). This stands in

contrast to coordinates that must undergo the geometrical transformation F : Ω̂→Ω

when mapped between spaces.
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We may now restate (6.2) as a general problem formulation for the 1D case.

Definition 14. 1D Collocation Problem.

A set of collocation points is given in the parameter space Ω̂ = [â, b̂] ⊂ R such that â =
τ̂1 < τ̂2 < . . . < τ̂n−1 < τ̂n = b̂. The collocation solution uh(ξ) ∈Sp,Ξ is required to satisfy


L

[
uh(τ̂ j )

] = f (τ̂ j ) in Ω, for j = 2, . . . ,n −1,

G
[
uh(τ̂ j )

] = g (τ̂ j ) on ∂Ω, for i = 1 and i = n.
(6.5)

The differential operator L is not yet defined. However, we can easily apply it to

(6.4) in the following way

L [uh(ξ)] =
n∑

i=1
diL

[
Ni ,p (ξ)

]
, (6.6)

since the coefficients di ∀ i are scalars. The interpolatory nature of our basis makes

it convenient to build the boundary directly into the solution space, and directly into

uh(ξ) by the means of a lifting function. This process is referred to as a strong imposition

of the boundary conditions. We assume to have a given lifting function gh ∈Sp,Ξ such

that gh |∂Ω = g and a function vh ∈Sp,Ξ such that vh |∂Ω = 0. To fulfill these conditions,

we will in practice always choose gh(ξ) such that

gh(ξ) =
n∑

i=1
gi Ni ,p (ξ) = g1N1,p (ξ)+ gn Nn,p (ξ), (6.7)

where the coefficients g2 = . . . = gn−1 = 0 have no effect on the boundary, and vh(ξ) such

that

vh(ξ) =
n−1∑
i=2

di Ni ,p (ξ), (6.8)

where d1 = dn = 0. Finally, recalling (6.4) we can describe the solution uh(ξ) as the sum

uh(ξ) = vh(ξ)+ gh(ξ) =
n−1∑
i=2

di Ni ,p (ξ)+ g1N1,p (ξ)+ gn Nn,p (ξ), (6.9)

and we have in fact obtained to build the boundary into the solution. Now going back
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to the differential operator; for a given p, we can take advantage of linearity to obtain

the following relation

L
[
uh(τ̂ j )

]= n−1∑
i=2

diL
[
Ni ,p

(
τ̂ j

)]+ g1L
[
N1,p

(
τ̂ j

)]+ gnL
[
Nn,p

(
τ̂ j

)]
. (6.10)

which we recognize as the left hand side of the equation (6.5). By introducing the right

hand side of (6.5), this yields the following general 1D collocation scheme

n−1∑
i=2

diLi , j + g1L1, j + gnLn, j = f j for j = 2, . . . ,n −1, (6.11)

where we have denoted Li j =L
[
Ni ,p

(
τ̂ j

)]
and f j = f

(
τ̂ j

)
.

This becomes a (n −2)× (n −2) linear system written in matrix form as

LT d = f − g1 b1 − gn bn, (6.12)

where the stiffness matrix L ∈R(n−2)×(n−2) is given as

L =


L2,2 · · · L2,n−1

...
. . .

...

Ln−1,2 · · · Ln−1,n−1

 , (6.13)

the unknown displacement vector d ∈Rn−2 and load vector f ∈Rn−2 is given as

d =


d2

...

dn−1

 and f =


f2

...

fn−1

 , (6.14)

and the left and right boundary vectors b1 ∈Rn−2 and bn ∈Rn−2 are given as

b1 =


L1,2

...

L1,n−1

 and bn =


Ln,2

...

Ln,n−1

 . (6.15)
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What remains is to determine the coefficients g1 and gn and solve the linear system

using some sort of linear system solver. The coefficients g1 and gn in the lifting function

is in fact dependent on whether we deal with a dirichlet or a neumann boundary, so we

discuss the two cases in the next two sections.

6.2.1 Dirichlet boundary

The 1D problem with dirichlet boundary on both sides is described by the special case

G = I , 
L [uh(τ̂i )] = f (τ̂i ) in Ω, for i = 2, . . . ,n −1,

uh(a) = ua and uh(b) = ub ,
(6.16)

where ua ,ub ∈ R. Due to the partition of unity property, and that the B-spline basis is

interpolatory on the boundary, it is straight forward to impose the dirichlet boundary

by doing the following evaluation

uh(a) = g1N1,p (â) = g1 = ua , (6.17)

uh(b) = gn Nn,p (b̂) = gn = ub . (6.18)

So the coefficients g1 and gn are actually equal to the boundary values them self. All

other B-splines are zero at the boundaries. Since g1 and gn are independent of any

unknown values they move over to the right hand side of the linear system we are about

to obtain. By inserting (6.17) and (6.18) into the general scheme (6.11) and collecting

terms, we get a scheme designed for solving (6.16)

n−1∑
i=2

di Li , j = f j −uaL1, j −ubLn, j for j = 2, . . . ,n −1. (6.19)

The linear system written in matrix form is given as

LT d = f − ua b1 − ub bn, (6.20)
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where L, d, f, b1 and bn are unchanged and given in (6.13), (6.14) and (6.15). Solving for

d and inserting it into (6.9) together with g1 = ua and gn = ub yields the spline solving

problem (6.16).

Example 13. Homogeneous Dirichlet boundary.

It is convenient to notice that the system

LT d = f (6.21)

will solve a test problem for a given linear differential operatorL and load vector f , where

the solution satisfies a homogeneous Dirichlet boundary, i.e. the solution is zero on the

boundary.

6.2.2 Neumann boundary

The 1D problem for Neumann boundary on both sides is the special case where the first

derivative G = d/d x of the solution should be equal to some scalar coefficient, when

evaluated on the boundary. The problem is given as


L [uh(τ̂i )] = f (τ̂i ) in Ω, for i = 2, . . . ,n −1,

u′
h(a) = ca and u′

h(b) = cb ,
(6.22)

where ca and cb are known scalars. We want to be able to evaluate u′
h(ξ) on the bound-

ary, so we apply relation (6.10) using L= d/d x to get

d

d x
uh(ξ) = u′

h(ξ) =
n−1∑
i=2

di N ′
i ,p (ξ)+ g1N ′

1,p (ξ)+ gn N ′
n,p (ξ). (6.23)
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When imposing the Neumann boundary conditions directly into the solution space

it is necessary to use the result in the following theorem.

Theorem 4. Given a parameter space Ω̂ = [â, b̂] ⊂ R. On the set of B-spline basis func-

tions
{

Ni ,p (ξ)
}n

i=1 only N1,p (ξ) and N2,p (ξ) are non-zero when evaluated at the boundary

ξ = â, and only Nn−1,p (ξ) and Nn,p (ξ) are non-zero when evaluated at the boundary

ξ= b̂.

Proof. The proof can be done directly by applying Cox-de Boor recursion formula (3.2).

We can now write out the evaluation in (6.23)

u′
h(a) = g1N ′

1,p (â)+d2N ′
2,p (â) = ca , (6.24)

u′
h(b) = dn−1N ′

n−1,p (b̂)+ gn N ′
n,p (b̂) = cb , (6.25)

where only the two outermost B-splines are non-zero. We remember that uh(â) = uh(a)

since x(â) = a when using a linear map such as (4.11). Solving for the boundary coeffi-

cients g1 and gn , we see that

g1 =
ca −d2N ′

2,p (â)

N ′
1,p (â)

and gn =
cb −dn−1N ′

n−1,p (b̂)

N ′
n,p (b̂)

. (6.26)

The coefficients are now dependent on the two unknown values d2 and dn−1. We choose

to denote the constant coefficients

Ca =
N ′

2,p (â)

N ′
1,p (â)

and Cb =
N ′

n−1,p (b̂)

N ′
n,p (b̂)

, (6.27)

so that (6.26) becomes

g1 = ca

N ′
1,p (â)

−d2Ca and gn = cb

N ′
n,p (b̂)

−dn−1Cb . (6.28)

The independent terms of (6.28) will be moved to the right side of the linear system

we are about to obtain, and the dependent terms will be moved to the left hand side.
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Therefore, by inserting (6.28) into the general scheme (6.11) and collecting terms, we

get a scheme designed for solving (6.22)

d2
[
L2, j −CaL1, j

]+n−2∑
i=3

diLi , j +dn−1
[
Ln−1, j −CbLn, j

]
= f j − ca

N ′
1,p (â)

L1, j − cb

N ′
n,p (b̂)

Ln, j for j = 2, . . . ,n −1.
(6.29)

Written on matrix form, this linear system becomes

(
LT − Ca B1 − Cb Bn

)
d = f − ca

N ′
1,p (â)

b1 − cb

N ′
n,p (b̂)

bn, (6.30)

where L, d, f, b1 and bn are unchanged and given in (6.13), (6.14) and (6.15). The left

hand side matrices B1 ∈R(n−2)×(n−2) and Bn ∈R(n−2)×(n−2) are given as

B1 = [ b1 | 0 | · · · | 0 | 0 ] , (6.31)

Bn = [ 0 | 0 | · · · | 0 | bn ] , (6.32)

where 0 is the column vector in Rn−2 containing only zeros. Lastly, we need to solve for

d and construct the resulting spline function to obtain a solution to the 1D neumann

problem.

6.2.3 Mixed boundary

In general, the 1D collocation method we have developed can be used to solve all lin-

ear ordinary differential equations. In addition, the method has been made adaptive in

such a way that is is easy to define Dirichlet and Neumann boundaries, both left and

right. Of course, there can be some pitfalls. Some we have discovered and most prob-

ably some we have not discovered. There will also be restrictions on what will work

and what will not work. Even though, we will do some numerical tests in chapter 8 on

test problems and try to determine some rules to follow alongside each problem, and

hopefully also in general. We will also see what we can obtain in terms of correctness

and convergence rates on our test examples. But for now, we want to illustrate how to



54 CHAPTER 6. ISOGEOMETRIC ANALYSIS

solve a test problem with mixed boundary.

Example 14. Test problem with mixed boundary.

We solve the 1D Poisson problem L= d 2/d x2 with Dirichlet condition on the left bound-

ary and Neumann condition on the right boundary


u′′ = f in Ω= [0,1],

u(0) = ua and u′(1) = cb ,
(6.33)

with some source function f yielding the exact solution u. The approximate solution uh

is given by (6.9) in terms of the B-spline coefficients d which are obtained by solving the

system

(LT −Cb Bn)d = f−ua b1 − cb

N ′
n,p (b̂)

bn. (6.34)

where the entries of L are Li , j = N ′′
i ,p (τ̂ j ).

6.3 A Change of Basis

It is clear that the differential operator L is given as a differentiation with respect to

the coordinate x in physical space. Therefore, it is necessary to perform a change of

basis when applying this operator to a given spline function. We consider the two cases

where L= d/d x and L= d 2/d x2. The first derivative of some arbitrary function k(ξ) is

kx = ξx kξ = (xξ)−1kξ. (6.35)

The second derivative is given as

kxx = (kx )x = ξxx kξ + ξx kξx = ξxx kξ+ξx (kξ)x

= ξxx kξ + ξx (kξξ)ξx = ξxx kξ + (ξx )2(kξξ)

= − xξξ
(xξ)3 kξ + 1

(xξ)2 (kξξ) = −xξξ(xξ)−3kξ + (xξ)−2(kξξ).

(6.36)
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The usual subscript notation for derivatives is assumed to be known by the reader. In

these calculations we have used the chain rule and the product rule for derivatives,

together with

ξx = (xξ)−1, (6.37)

ξxx = (ξx )x =
(

1

xξ

)
x

=− 1

(xξ)2 (xξ)x =− 1

(xξ)2 xξξξx =− xξξ
(xξ)3 . (6.38)

By applying equation (6.35) we can for example calculate equation (6.23), and by ap-

plying (6.36) we can calculate the entries of the stiffness matrix L in example 14. Both

of these have been used in the implementation of the 1D collocation solver. The spline

functions we use in the collocation method is always a linear combination of B-splines.

The clue here is to use the change of basis procedure to express the derivatives of func-

tions in terms of ξ, since we can use the implementation of the B-spline derivative for-

mula from (3.3) to determine them.

6.4 Collocation points

The choice of collocation points is in general difficult. We know that the Schoenberg-

Whitney nesting conditions (5.7) are necessary, at least for interpolation. But we do

not know if they are sufficient for collocation. We know however that some choices of

collocation points will violate these conditions for large n, while other points will not.

If they do not, do we achieve convergence? Either way, in this section we will present

some different set of points used in literature on the field.

6.4.1 Uniform points

Uniformly distributed points are the most basic type of collocation points. They are

equidistant on the domain Ω̂= [â, b̂] and defined by

τ̂i = (i −1)h + â for i = 1, . . . ,n, (6.39)

where h = (b̂ − â)/(n −1).
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6.4.2 Greville Abscissae

The image of the Greville abscissae was initially introduced by [9] and have been widely

adopted as the default choice for collocation points in the IGA collocation literature.

We have already introduced them in chapter 5, but we restate them here. For a given

knot vector Ξ= [ξ1, . . . ,ξn+p+1] the associated n Greville points in parameter space are

calculated from

τ̂i =
ξi+1 +ξi+2 + . . .+ξi+p

p
for i = 1, . . . ,n, (6.40)

where p is the polynomial degree.

6.4.3 Knot Maxima

Another promising possibility is to locate the collocation points on the parameter val-

ues at which a B-spline function achieves its maximum. The formal definition is

τ̂i = argmax
ξi<ξ<ξi+p+1

Ni ,p (ξ) =
{
ξ ∈ [ξi ,ξi+p+1] | d

dξ
Ni ,p (ξ) = 0

}
, (6.41)

for i = 1, . . . ,n. These points were initially introduced by [10].

6.4.4 Gauss-Legendre

These points are associated with the Gauss-Legendre quadrature rule used in numerical

integration. They are in fact defined to be the roots of the orthogonal Legendre polyno-

mials, and can be found by iterative methods such as the Newton-Raphson method. A

fast and accurate method for computing the roots is proposed by [11].

6.4.5 Superconvergent points

Another interesting possibility was, as recently as in late 2014, proposed by [12]. These

points are derived from superconvergent theory and exploits some efficient conver-

gence properties.
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(a) B-spline basis for n = 12 and p = 3 with Greville points and knot maxima.

(b) B-spline basis 1st derivative for n = 12 and p = 3 with Greville points and knot maxima.

(c) B-spline basis 2nd derivative for n = 12 and p = 3 with Greville points and knot maxima.

Figure 6.1: An illustration of Greville (small red diamonds) and knot maxima (large blue
diamonds) collocation points. The first and last collocation points can be ignored in
computation of the collocation methods since they correspond to the lifting function.
Both choices of collocation points lies under the support of basis functions.
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6.5 Error Analysis

In the following, we will use the usual notation for function norms and seminorms,

namely for the L∞-norm, and W ∞,1-, W ∞,2-seminorms, L2-norm and H 1-, H 2-seminorms.

Given a problem with an exact solution u and a numerical solution uh , the norms are

defined as

|| u −uh ||L∞ = max | u −uh |, (6.42)

| u −uh |W 1,∞ = max | u′−u′
h |L∞ , (6.43)

| u −uh |W 2,∞ = max | u′′−u′′
h |L∞ , (6.44)

|| u −uh ||2L2 =
∫
Ω
| u −uh |2, (6.45)

| u −uh |2H 1 =
∫
Ω
| u′−u′

h |2, (6.46)

| u −uh |2H 2 =
∫
Ω
| u′′−u′′

h |2, (6.47)

where u′ and uh are the usual derivatives with respect to x. The number defined by

|| u −uh ||L∞

|| u ||L∞
. (6.48)

is the relative error of the L∞ norm. A similar definition holds for the other norm and

seminorms also.

We now restrict our attention to one dimensional collocation methods, and to the case

of a second order differential equation. It has proved by [13] that if collocation points

are chosen suitably the collocation method converges with optimal theoretical rate,

which is of order p for L∞ and W 1,∞, and of order p − 1 for W 1,∞. That the colloca-

tion points are chosen suitably means that they are chosen according to theorem 3.2

in [13]. The Greville points meets these criteria, and hence shows optimal convergence

as shown by [13]. The superconvergent points also exploit optimal convergence rate, at

least for 1st derivative norms, as shown by [12].



6.5. ERROR ANALYSIS 59

The Greville abscissae is considered to be the best choice for many problems, and for

interpolation problems they are proved to be stable up to degree p = 3. Even though,

there are numerical examples of instability for degrees higher than 19. These examples

are provided by [14] and are calculated on particular non-uniform meshes where the

lengths of each consecutive knot span forms a geometric sequence. The only choice of

collocation points which is proved to be stable for any mesh and degree is the one pro-

posed by Demko [15]. These points are referred to as Demko abscissae and [13] provide

numerical results where they converge with optimal rates for given problems.
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Chapter 7

Implementation

In this chapter we present some smart choices to make when programming numeri-

cal methods in general, and some choices to consider when programming spline and

collocation methods. There are a few observations one can make in order to do com-

putation cheaper in terms of time and floating point operations, or just to make the

assembly processes simpler. We will also give a general, but shallow, recipe on how to

implement a B-spline code and collocation method. Since all functions and are repre-

sented in a discrete sense in programming, using vectors and matrices, we will discuss

the finite realization of some matrices and geometrical mappings.
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7.1 Splines

In good programming practice it can be convenient to verify the conditions in lemma

1 are fulfilled when implementing programs utilizing B-splines. The conditions from

theorem 3 that ensures unique solutions in interpolation can also be convenient to ver-

ify. However, software such as Matlab will give warnings if the interpolation matrices

are close to being singular.

We remember that at most p +1 entries on each row of the interpolation matrix NI are

non-zero. Those entries are consecutive. This gives the matrix a band structure which

can be exploited in linear solvers such as the Gaussian elimination method, amongst

others. For interpolation problems the backslash operator in Matlab is sufficient.

7.1.1 Evaluation of Basis Functions

B-spline basis functions is in general evaluated in parameter space. Independent of the

knot vector used, each basis function in the set
{

Ni ,p (ξ)
}n

i=1 is non-zero on p +1 knot

spans, according to property 4 in lemma 1. So, it is redundant to evaluate the function

Ni ,p (ξ j ) if ξ j ∉ [ξi ,ξi+p+1]. Instead, one can make use of the spline theory and prede-

termine it to be zero.

The recursive formula for the B-splines, described in equation (3.1) and (3.2), is to be

evaluated quite a few times during any collocation solution algorithm. It is therefore

essential that it is possible to evaluate them in an efficient way. It is possible to evaluate

(3.1) and (3.2) as it stands, that is by creating a recursive algorithm by taking i , p,Ξ,ξ j

as input values, and returning Ni ,p (ξ j ) simply by calling itself recursively. However,

this will not be an efficient implementation. When running through the recursive algo-

rithm, there will be functions with the exact same parameters being evaluated several

times. By using dynamic programming one can make an algorithm that runs in poly-

nomial time, instead of exponential time, as described in [27, p.57-60].
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7.1.2 The B-spline Basis Matrix

It is convenient to collect the set of basis functions
{

Ni ,p (ξ)
}n

i=1 in a vector

[
N1,p (ξ), N1,p (ξ), . . . , Nn,p (ξ)

]T , (7.1)

where each element is a continuous function. In programming however, we have to

store function values evaluated on a distinct set of points as a vector. We have already

discussed how the spline curve 4.2 and the spline surface 4.6 can be expressed as a lin-

ear mapping using matrix notation, and we will now continue that discussion.

In the following we present the three matrix types; interpolation matrix, knot matrix

and visualization matrix. The distinction between the three is the set of points in pa-

rameter space where the basis functions are evaluated at. We use these matrices in the

geometrical map to transform curves, surfaces, interpolation points, knot points and

knot lines into physical space. Table 7.1 contains an overview of these transformations.

We only consider two dimensions here, but the principles are easy transferable to one

dimension and higher dimensions.

Table 7.1: Different geometrical maps for tensor spline surfaces are presented in this
table. The (x, y, z)-coordinates of the control points in physical space are collected in
the matrices X, Y and Z. The control points and the basis matrices NI, NK and NV is what
governs the geometrical map.

X Y Z

Interpolation points NT
I X MI NT

I Y MI NT
I Z MI

Knot points NT
K X MK NT

K Y MK NT
K Z MK

Knot lines x-direction NT
V X MK NT

V Y MK NT
V Z MK

Knot lines y-direction NT
K X MV NT

K Y MV NT
K Z MV

The whole surface NT
V X MV NT

V Y MV NT
V Z MV
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Interpolation matrix

The interpolation matrices NI ∈ Rn×n and MI ∈ Rm×m consist of basis functions evalu-

ated on the interpolation points in parameter space
{
ξ̂i

}n
i=1 and

{
η̂i

}m
i=1.

NI =


N1,p (ξ̂1) . . . N1,p (ξ̂n)

...
. . .

...

Nn,p (ξ̂1) . . . Nn,p (ξ̂n)

 , MI =


M1,q (η̂1) . . . M1,q (η̂m)

...
. . .

...

Mm,q (η̂1) . . . Mm,q (η̂m)

 (7.2)

Knot matrix

The knot matrices NK ∈Rn×(n+p+1) and MK ∈Rm×(m+q+1) consist of basis functions eval-

uated on the knot points in parameter space {ξi }
n+p+1
i=1 and

{
ηi

}m+q+1
i=1 .

NK =


N1,p (ξ1) . . . N1,p (ξn+p+1)

...
. . .

...

Nn,p (ξ1) . . . Nn,p (ξn+p+1)

 , MK =


M1,q (η1) . . . M1,q (ηm+q+1)

...
. . .

...

Mm,q (η1) . . . Mm,q (ηm+q+1)

 . (7.3)

Visualization matrix

For plotting and visualization of surfaces, the basis matrices needs to be evaluated at a

large number nV of points uniformly distributed in the interval [ξi ,ξi+p+1], such that

ξ ∈ {
u1, . . . ,unV

}
and η ∈ {

v1, . . . , vnV

}
. We denote the visualization matrices as

NV ∈Rn×nV and MV ∈Rm×nV and define them as

NV =


N1,p (u1) . . . N1,p (unV )

...
. . .

...

Nn,p (u1) . . . Nn,p (unV )

 , MV =


M1,q (v1) . . . M1,q (vnV )

...
. . .

...

Mm,q (v1) . . . Mm,q (vnV )

 . (7.4)
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7.2 Collocation

In chapter 5 we introduced the matrix N as the collocation matrix. In (7.2) we intro-

duced the matrix NI to be the interpolation matrix. In fact we see that N = NI. As we

have already discussed, interpolation is a collocation method for the identity operator,

and hence interpolation is a special case of collocation. From this, it becomes clear that

a stiffness matrix L ∈Rn×n , with entries
{
Li , j

}n
i , j=1, is in fact a more general type of col-

location matrix, and that L = N if L= I .

When implementing numerical methods, it is important to exploit the sparsity of ma-

trices. From interpolation we know that the matrix N is sparse and has a bandwidth

of only p + 1, since each basis function is only non-zero on so many knot spans. The

matrix N consists of B-splines evaluated at collocation points and the matrix L matrix

will, for most problems, consist of some derivative of the B-spline function evaluated at

collocation points. Since we know that the derivative of a zero function is zero, we know

for certain that the collocation matrix L is always sparse and has at most a bandwidth

of p +1 for one dimensional problems. This can of course vary between problem, but

it can be valuable to figure this out before hand to save computation costs both in the

assembly process, and in the linear system solver.

Figure 7.1a shows the matrix structure of the stiffness matrix obtained when solving

the one dimensional Poisson problem with homogeneous Dirichlet boundary using the

collocation scheme from equation (6.21) for n = 32. Figure 7.1b shows the matrix struc-

ture from the same problem, but now with Neumann conditions on the right hand side

boundary.
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(a) Dirichlet boundary for n = 32.
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(b) Neumann boundary for n = 32.

Figure 7.1: Sparse matrix structure for the stiffness matrix obtained from one dimen-
sional collocation methods. The number of non zero elements, marked by blue points,
are 88 and 102.

7.3 A general recipe

A numerical spline approximation method consists of two main steps.

1. Determine the spline degrees p, q and knot vectors Ξ,H.

2. Determine B-spline coefficients Z from given data according to some formula.

For tensor product spline surfaces in two dimensions, calculated by equation 4.6, the

coefficients Z is pre-defined, and they were introduced as control points. The same

holds for spline curves in one dimension. For the Variation diminishing spline approxi-

mation, the control points are also pre-determined, but are now a function value at the

knot averages. However, for general spline interpolation the coefficients are the solu-

tion of a linear set of equations 5.15. Collocation methods also requires a linear system

to be solved for finding the coefficients, but the assembly process used to construct the

linear system is different from the interpolation case.



Chapter 8

Numerical Experiments

The first goal for this chapter is to test and verify the implementation of our 1D colloca-

tion solver. We consider two test problems taken from [13] and provide solution plots

for each of them. The problems consist of a second order differential equation with a

mix of Dirichlet and Neumann bondary conditions. The second goal of this chapter is

to test the convergence rates discussed in section 6.5, at least for the Greville points. We

will also test an alternative choice of collocation points, namely the knot maxima, and

look at how they perform in comparison with Greville points.

The following properties are used for all experiments in this chapter:

• Open and uniform knot vectors

• The parameter space Ω̂ = [0,1]

• The physical spaceΩ = [0,1]

• Linear map xL : Ω̂→Ω as described in (4.11)
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8.1 1D source problem with Dirichlet

The first test example we study is the following source problem


−u′′+u′+u = f (x), ∀x ∈ (0,1)

u(0) = u(1) = 0,
(8.1)

where the source function is f (x) = (1+4π2)sin(2πx)+2πcos(2πx). This problem ad-

mits the exact solution

u = sin(2πx). (8.2)

This problem is solved by the collocation scheme for homogeneous Dirichlet problems

described in equation (6.20). The linear differential operator is now defined by

L=− d 2

d x2 + d

d x
+ I (8.3)

and hence the stiffness matrix L has the entries

Li j =− d 2

d x2 Ni ,p
(
τ̂ j

)+ d

d x
Ni ,p

(
τ̂ j

)+Ni ,p
(
τ̂ j

)
. (8.4)

We have solved this problem on the Greville abscissae for n = 4,8,16 using quadratic

splines. The resulting plots are shown in figure 8.1. The plots to the left show the solu-

tions while the plots to the right show the collocation conditions

L(uh(τ j )) = f (τ j ) for i = 2, . . . ,n −1, (8.5)

where the collocation points τ j are the image of collocation points in physical space.

These conditions, together with the boundary conditions, are fulfilled in each case. We

can see that L(uh(ξ)) is a piecewise linear function. It is linear on each knot span, and

discontinuous at each knot. This is due to the fact that we use splines of degree p = 2.

Since p is even one can also notice how the collocation points are placed in the center

of the knot spans.
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(a) Solutions for n = 4. (b) L(uh (τ j )) = f (τ j ) for n = 4.

(c) Solutions for n = 8. (d) L(uh (τ j )) = f (τ j ) for n = 8.

(e) Solutions for n = 16. (f) L(uh (τ j )) = f (τ j ) for n = 16.

Figure 8.1: 1D source problem with Dirichlet boundary conditions solved using 1D col-
location method, Greville collocation points and quadratic splines.
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8.2 1D source problem with Dirichlet-Neumann

The next test example is also a source problem. We now have a different source func-

tion and a Neumann condition on the right hand side, hence a different solution. The

problem is given as 
−u′′+u′+u = f (x), ∀x ∈ (0,1)

u(0) = u′(1) = 0,
(8.6)

where the source function is f (x) = (1+ 4π2)cos(2πx)− 2πsin(2πx)− 1. The problem

admits the exact solution

u = cos(2πx)−1. (8.7)

This problem is now solved by the mixed boundary collocation scheme

(LT −Cb Bn)d = f−ua b1 − cb

N ′
n,p (b̂)

bn, (8.8)

where ua = cb = 0. The linear operator L, and hence the stiffness matrix L is unchanged

from the Dirichlet case.

The plots in figure 8.2 shows solutions of the problem for n = 4,8,16 using qubic splines.

The collocation conditions (8.5) are fulfilled on the interior in each case, as seen in the

right hand side plots. The Neumann boundary also seems to be fulfilled since the so-

lution tends towards zero when ξ→ 1. The solution is not a good fit for n = 4 but it

converges towards the exact solution as n becomes larger. In this case, L(uh(ξ)) is a

linear function on each element with C 0-continuity at knot points due to the fact that

p = 3. One can also notice that most collocation points are place placed at the knots,

because of the odd spline degree.
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(a) Solutions for n = 4. (b) L(uh (τ j )) = f (τ j ) for n = 4.

(c) Solutions for n = 8. (d) L(uh (τ j )) = f (τ j ) for n = 8.

(e) Solutions for n = 16. (f) L(uh (τ j )) = f (τ j ) for n = 16.

Figure 8.2: The 1D source problem with Dirichlet-Neumann boundary conditions
solved using 1D collocation method, Greville collocation points and qubic splines.
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8.3 Results on Convergence

We are now moving forward to test convergence rates. The two test examples are now

being tested systematically. We solve for different spline degrees p and different num-

ber of basis functions n and compare the numerical solutions uh to the analytical so-

lutions u using the L∞-norm (6.42) and the seminorms W 1,∞ (6.43) and W 2,∞ (6.44).

We choose to use these norms since they are the ones used by [13], and we have not in-

cluded results for p = 2, since this case is not covered by the convergence theory given

in [13].

First up is to show an example of something that does not work. That is in fact the uni-

formly distributed collocation points (6.39), the most trivial and naive choice. These

points are used when solving (8.4) and the results can be seen in figure 8.3. We can ob-

serve that all spline degrees p > 3 diverge for increasing n. However, the cubic splines

p = 3 actually converge with a linear rate. The reason for this is unclear, but we refer to

[13] if an answer is sought.

The two last figures present convergence results for the two test problems using both

Greville points and knot maxima. The source problem with Dirichlet boundary can be

seen in figure 8.4, and the source problem with Dirichlet-Neumann boundary can be

seen in figure 8.5.

The plots confirms that in the first two norms an order of convergence p is attained

for even degrees, while an order p −1 is attained for odd degrees. In the second norm

and order of convergence p −1 is attained for all degrees.

We would like the reader to compare the plots in this thesis with the plots in [13]. There

are some differences in the convergence plots we would like to discuss. The first is that

the convergence rate in our plots starts to decrease for large n, at least for the degrees

p = 6 and p = 7. It almost seems like the error hits a minimum and then starts to in-

crease from there. It appears that this minimum value corresponds to a relatively low
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(a) Uniform L∞. (b) Uniform L∞.

(c) Uniform W 1,∞. (d) Uniform W 1,∞.

(e) Uniform W 2,∞. (f) Uniform W 2,∞.

Figure 8.3: The 1D source problem with Dirichlet boundary conditions, using uniform
collocation points. Relative error in different norms for different p and n. In general
these points do not converge, but they do for p = 3.
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relative error, around the order of 10−10 to 10−12. We know that machine precision is

accurate up to 10−16, so it does not seem likely to justify the results based on floating

points errors either. As any other good scientist, we cannot leave out the possibility of

a bug in our code. Of course one would hope that is not the case, and we would like to

present other options first.

It is hard to determine exactly why the convergence plots are in the way they are, but it

can be valuable to discuss the differences between our collocation method, and the col-

location method in [13] and try to present some possible explanations in that sense. The

first is that they use Non-Uniform Rational B-Splines (NURBS) as opposed to us who

use only uniform and non-rational B-splines. A second thing is that [13] only present

the plots for n ∈ [32,128]. There might be some reason why they did this, but I don’t

know. However, if our plots was given in the same interval, for the first two norms, they

would also seem to be better. This is not the case for the last norm. Either way, we have

chosen to include finer grids (larger n) in our plots to see a clearer trend in convergence.

The knot maxima convergence results are shown in the right hand sides. It seems like

they perform with the same order of convergence as the Greville points, but a slight dif-

ference in the magnitude of errors is observed for certain degrees. When implementing

knot maxima we did this in a brute force sense, by searching for the max value in the

vector containing the values of the B-spline. The B-splines were evaluated at 1000 ele-

ments in the interval [0,1]. Each knot maxima point can therefore potentially by off by

an order of 10−3. This can help to explain why the convergence rate is kind of unsteady

for the knot maxima, as can be seen in figure 8.4b for p = 4 and p = 5 for example. An

alternative method for finding knot maxima would be to solve equation (6.41) exactly

and define the points thereafter. That would perhaps have given smoother convergence

results. What is good about our code is that at least the derivatives of solutions are cal-

culated analytically, so the derivative seminorms and the L∞-norm should be equally

reliable.
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(a) Greville L∞. (b) Knot maxima L∞.

(c) Greville W 1,∞. (d) Knot maxima W 1,∞.

(e) Greville W 2,∞. (f) Knot maxima W 2,∞.

Figure 8.4: 1D source problem with Dirichlet boundary conditions, using Greville ab-
scissae and knot maxima as collocation points. Relative error in different norms for
different p and n.
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(a) Greville L∞. (b) Knot maxima L∞.

(c) Greville W 1,∞. (d) Knot maxima W 1,∞.

(e) Greville W 2,∞. (f) Knot maxima W 2,∞.

Figure 8.5: 1D source problem with Dirichlet-Neumann boundary conditions, using
Greville abscissae and knot maxima as collocation points. Relative error in different
norms for different p and n.
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Discussion and Conclusion

Our main focus for the convergence results was at collocation points. So what have we

figured out in terms of what works and what does not work? For interpolation problems

it is clear that the Schoenberg-Whitney nesting conditions are the number one rule to

follow when choosing interpolation points. It seems like the Schoenberg-Whitney nest-

ing conditions are also good guidelines for choosing collocation points in collocation

methods. When we look at the numerical results, it is evident that there is a correlation

between points that works well in interpolations and points that work well in colloca-

tion. [13] have provided more reliable results on this topic.

The Greville abscissae was by far the most promising choice of collocation points. An

interesting and promising choice was however the knot maxima, giving good conver-

gence rates for the test problems.
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The following list sums up the most important achievements in this thesis:

• We have studied and implemented spline methods that are able to approximate

and represent complex and flexible geometries built from curves and surfaces in

three dimensional space.

• We have studied and implemented spline interpolation methods that can con-

nect data points in two and three dimensions by curves and surfaces, respectively.

• We have developed and implemented a one dimensional spline collocation method

that can potentially solve all linear ordinary differential equations, with Dirichlet

or Neumann boundary.

• We have tested the collocation method for various collocation points and pre-

sented numerical evidence that some collocation points achieve optimal conver-

gence rates.

• All methods are made adaptive and easy to use in the sense that the user has the

option to vary spline degrees, the richness of the spline basis, the linear mapping

used, the knot vectors used, and the geometry in physical space to where the

numerical solution is mapped and presented.
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