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Summary

Extremum-seeking control is an adaptive-control methodology that optimizes
the steady-state performance of dynamical plants by automated tuning of plant
parameters based on measurements. The main advantage of extremum-seeking
control compared to many other optimization techniques is that no plant model,
or just a relatively simple plant model, is used. This makes extremum-seeking
control suitable to optimize the performance of complex systems, for which an
accurate model is unavailable, and systems that are subject to unknown distur-
bances. Due the low requirements about the knowledge of the plant, extremum-
seeking control can be applied to many engineering domains. Because the vast
majority of the performance-related information about the plant is obtained by
measurement, the optimization speed of extremum-seeking control is generally
lower than the optimization speed of model-based methods. For model-based
methods, the information about the plant’s dynamic and steady-state behavior
is contained in the plant model and is therefore readily available.

In this work, we study extremum-seeking control methods that do not require
a plant model. These methods are often referred to as black-box methods. We
mainly focus on extremum-seeking methods that rely on added perturbations to
optimize the steady-state performance of a plant. For certain classes of plants,
large-amplitude high-frequency perturbations can be applied to speed up the con-
vergence of the optimization process. However, large-amplitude high-frequency
perturbations may be undesirable or inadmissible in practice due to actuator
limitations, a high control effort, and an increased wear of components. There-
fore, we aim to enhance the convergence rate of black-box extremum-seeking
methods that use small-amplitude low-frequency perturbations.

Extremum-seeking control aims to find the extremum (that is, the minimum
or maximum) of the objective function that represents the steady-state relation
between the plant parameters and the plant performance, where the extremum
correspond to the optimal steady-state performance. Classical perturbation-
based extremum-seeking control methods rely on added perturbations to the
plant-parameter values to estimate the gradient of the objective function by corre-
lating the perturbations and the corresponding response in the plant-performance
signal. This gradient estimate is subsequently used to steer the plant parameters
to the extremum of the objective function using a gradient-descent or gradient-
ascent approach. Hence, the obtained convergence rate is dependent on the
accuracy of the gradient estimate. As classic methods use the perturbations of
the plant-parameter signals to estimate the gradient of the objective function,
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an accurate gradient estimate is obtained if the perturbation-related content
in the plant-parameter signals is high. We point out in this work that, for
small-amplitude low-frequency perturbations, the perturbation-related content
in the plant-parameter signals is low and a more accurate gradient estimate and
a faster convergence may be achieved by using the entire plant-parameter signals
(and not only the perturbation signals) to estimate the gradient of the objective
function. This is confirmed by simulation. Moreover, the gradient estimate may
be further enhanced by the use of curvature information of the objective function,
if available. A continuous-time extremum-seeking controller is presented that
uses the entire plant-parameter signals to estimate the gradient of the objective
function and allows us to incorporate curvature information of the objective
function. In addition, an equivalent discrete-time extremum-seeking controller
is presented to optimize the steady-state plant performance in a sampled-data
setting.

Perturbations are used to provide sufficient excitation to estimate the gra-
dient (and sometimes higher-order derivatives) of the objective function. One
of the drawbacks of added perturbations is that the plant parameters do not
converge to their performance-optimizing values. Instead, they converge to a
region of the optimum. Perturbations can be omitted for certain classes of plants.
Extremum-seeking control methods that rely on the plant-parameter signals to
provide sufficient excitation without any form of added excitation are referred
to as self driving. Although there exist examples in the literature for which self-
driving extremum-seeking control is applied to achieve an optimal steady-state
performance, so far, no conditions have been stated under which convergence to
the true optimum can be guaranteed. Here, we prove that there exist conditions
on the plant and the self-driving extremum-seeking controller under which the
plant parameters are certain to converge to their performance-optimizing values.

Self-driving extremum-seeking control has its limitations in terms of applica-
bility. Instead of omitting the perturbations, one may gradually reduce the level
of the perturbations to zero as time goes to infinity to arrive at the optimal
steady-state performance. Several methods to regulate the amplitude of the
added perturbations have been proposed in the literature to obtain asymptotic
convergence to the optimum. Commonly local convergence is proved, often for
a limited class of plants. In this work, we prove that global asymptotic con-
vergence of the plant parameters to their performance-optimizing values can be
guaranteed for general nonlinear plants under certain assumptions. The key to
this result is that not only the amplitude but also the frequencies of the perturba-
tions, as well as other tuning parameters of the controller, decay to zero as time
goes to infinity. Remarkably, the time-varying tuning parameters can be chosen
such that global asymptotic convergence is achieved for all plants that satisfy the
assumptions, thereby guaranteeing stability of the resulting closed-loop system
of plant and controller regardless of tuning.

In a case study, we show that extremum-seeking control can be applied to

ii



optimize the injection current of an active power filter for system-wide harmonic
mitigation in electrical grids. The used extremum-seeking control method can
be parallelized under certain design assumptions in order to increase the con-
vergence speed of the method. A case study of a two-bus electrical grid with
distributed generators displays an improved performance of the used extremum-
seeking control method compared to a local-filtering approach under constant
load conditions of the electrical grid, while the performance with respect to a
model-based system-wide filtering method is comparable. The case study also
shows that the used extremum-seeking control method is slower to respond to
changes in load conditions than the local and the model-based system-wide fil-
tering methods. The extremum-seeking control method can be implemented on
top of existing approaches to combine the fast transient response of conventional
harmonic-mitigation methods with the optimizing capabilities of extremum-
seeking control.
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Chapter 1

Introduction

1.1 Introduction to extremum-seeking control

Extremum-seeking control is an adaptive control methodology. The aim of
extremum-seeking control is to optimize the steady-state performance of a given
plant. A cost function is designed to quantify the plant performance as a
function of tunable plant parameters and measurable performance indicators such
that the steady-state performance of the plant can be expressed as a constant
number for each set of constant plant-parameter values. Loosely speaking, any
tunable parameter that influences the plant performance is a plant parameter
(such as controller setpoints, controller parameters and actuator inputs) and
any measurable signal that contains information about the plant performance
is a performance indicator. By designing the cost function as such, the relation
between constant plant-parameter values and the steady-state plant performance
can be represented by a static function, which we refer to as the objective function.
The optimal steady-state plant performance corresponds to a global extremum
(that is, a minimum or maximum) of the objective function. Similarly, a local
extremum of the objective function indicates local optimality of the stead-state
performance of the plant.

If the objective function is known explicitly, the global or local extremum of
the objective function can be computed with the help of numerical methods; see
Boyd and Vandenberghe (2004); Horst and Pardalos (1994); Nocedal and Wright
(1999) and many others. Explicit knowledge of the objective function requires
that the steady-state relation between the plant parameters and the performance
indicators is known. In the context of extremum-seeking, however, the steady-
state relation between the plant parameters and the performance indicators is
often unknown or only partly known due to insufficient knowledge about the
plant. An analytic expression of the objective function is therefore not available,
which precludes the use of numerical methods. Extremum-seeking control utilizes
measurements of the performance indicators instead of explicit knowledge to
find the local or global extremum of the objective function. The measurements
may differ from the steady-state values of the performance indicators in two
ways. First, the measured values are not equal to the steady-state values due
to transients. Second, the measurements are affected by measurement noise.
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Chapter 1 Introduction

PlantPlant
parameters

Cost
function

Performance-indicator
measurements

Extended plant

Measured
plant performance

Figure 1.1: Closed-loop system of plant and extremum-seeking controller.

We refer to the output of the cost function as the measured plant performance
if the plant parameters and the measurements of the performance indicators
are used as input to the cost function. Because the measurements and the
steady-state values of the performance indicators deviate, the measured plant
performance varies from the objective function value. Hence, the function value
of the objective function cannot be evaluated exactly using the measured plant
performance. Extremum-seeking control searches for (or seeks) an extremum of
the objective function despite the fact that the objective function is unknown,
and that its value cannot be evaluated exactly via measurement.

Black-box extremum-seeking methods

A general approach in the field of extremum-seeking control is to consider the
plant and the cost function as one extended plant with the plant parameters as
input and the measured plant performance as output; see Figure 1.1. Assuming
that the measured plant performance remains close to the steady-state perfor-
mance of the plant, the value of the objective function can be approximated
by the measured plant performance. Therefore, derivative-based optimization
methods can be applied to search for a local extremum of the objective function
if the required derivatives are estimated using the measured plant performance
(Ghaffari et al., 2012; Moase et al., 2010; Nešić et al., 2010, 2012; Teel and
Popović, 2001). Alternatively, the non-derivative-based optimization methods
in Khong et al. (2013a,b); Nešić et al. (2013b) can be applied to obtain an ap-
proximation of a global (and not only local) extremum of the objective function.
However, these derivative-free methods are more computationally demanding
as all measurements need to be stored and processed at each iteration step.
The derivative-based and non-derivative-based extremum-seeking methods men-
tioned above do not require explicit knowledge about the plant. Therefore, they
are sometimes referred to as “‘black-box” methods (Adetola and Guay, 2011;
Dalvi and Guay, 2009; Esmaeilzadeh Azar et al., 2011) or “model-free” methods
(Becker et al., 2007; Cochran et al., 2009; Dixon and Frew, 2007).

In order not to excite the dynamics of the plant and to ensure that the mea-
sured plant performance remains close to the steady-state performance of the
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1.1 Introduction to extremum-seeking control

plant, the plant parameters are required to be slowly time varying with respect
to the plant dynamics. This limits the rate of information about the objec-
tive function and its derivatives that can be extracted from the measured plant
performance. Because all necessary information about the objective function is
obtained via the measured plant performance, the converge of black-box methods
is generally slow.

Gray-box extremum-seeking methods

A priori knowledge about the plant can be incorporated to increase the con-
vergence rate of the optimization process. In its simplest form, a static model
of the extended plant can be obtained from a parametrization of the objective
function if the general shape of the objective function is known. By estimating
the values of the parameters of the model and computing the derivatives of
the model with respect to the plant parameters, derivative-based optimization
methods can be applied to search for a local extremum of the objective func-
tion (Mohammadi et al., 2014; Nešić et al., 2012). Similarly, simultaneous state
estimation and parameter identification can be used to find the performance-
optimizing plant-parameter values if a parametrized model of the plant dynamics
is available (Nešić et al., 2013a). If the extended plant can be approximated
by a Hammerstein model, the parameters of the Hammerstein model can be
estimated using a least-squares approach, after which the optimal steady-state
plant performance can be computed from the model (Bamberger and Isermann,
1978; Fabri et al., 2015; Golden and Ydstie, 1989). A similar approach is used
in (Wittenmark and Evans, 2002) for Wiener-type plants. Extremum-seeking
methods that use a parametrized model of the extended plant are referred to
as “gray-box” methods (Mohammadi et al., 2014; Nešić et al., 2013a) or “model-
based” extremum-seeking methods (Michalowsky and Ebenbauer, 2015; Sharafi
et al., 2015; Sternby, 1980).

Other extremum-seeking methods

Although the majority of the proposed extremum-seeking methods can be clas-
sified as a black-box method or a gray-box method, there are extremum-seeking
methods that do not fall under these categories. These methods often address a
different type of extremum-seeking problem where the state of the plant is to be
regulated to the unknown extremum of an objective function. In Cougnon et al.
(2011); DeHaan and Guay (2005); Guay and Zhang (2003), input-affine plants
with unknown parameters are considered. An extremum-seeking-control method
is proposed to estimate the plant parameters and to regulate the state of the
plant to the extremum of the objective function using the parameter estimates,
where the objective function is a function of the state and the unknown param-
eters of the plant. Zhang and Ordóñez (2007, 2012) consider a class of known
nonlinear plants. The objective function is an unknown static function of the
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Chapter 1 Introduction

state of the plant. Under the assumption that the plant is feedback linearizable,
a controller is designed to regulate the state to any desired value. The extremum
of the objective function is identified with the help of non-derivative-based opti-
mization methods, for example the derivative-free trust-region methods in Conn
et al. (1997, 2009); Powell (2002).

Cost function design

The objective function is generally considered to be time invariant. However,
extremum seeking control can also be applied to track slowly time-varying ex-
trema (Brunton et al., 2010; Krstić, 2000; Zhang et al., 2007b). Nonetheless, it
is often essential to define the cost function such that the resulting steady-state
performance of the plant is constant for any set of constant plant parameters. If
the steady-state response of the performance indicators is constant, the use of a
static cost function results in a constant steady-state plant performance, as re-
quired. For time-varying steady-state performance-indicator responses, this does
not hold, however. If the steady-state response of the performance indicators is
periodic with a known period, a cost function that evaluates the performance
of the plant over one or multiple periods of the steady-state response of the
performance indicators can be employed to obtain a constant steady-state plant
performance (Guay et al., 2007; Haring et al., 2013; Höffner et al., 2007; Hun-
nekens et al., 2015). If the period of the steady-state response is unknown,
exponential filters can be utilized to extract the desired characteristic from the
steady-state response to quantify the performance of the plant (Antonello et al.,
2009; Kim et al., 2009; Wang and Krstić, 2000). The use of exponential filters
results in a quasiconstant steady-state plant performance, which deteriorates
the optimization accuracy of the extremum-seeking controller, however. For the
special case that the state of the plant is resettable, the transient response of the
plant can be optimized by defining the cost function such that the performance
of the plant is evaluated over a finite time window (Frihauf et al., 2013; Khong
et al., 2016; Killingsworth and Krstić, 2006).

Constraints

Extremum-seeking control problems are often formulated as unconstrained op-
timization problems. Inequality constraints on the plant parameters can be
handled by augmenting the cost function with penalty functions; see for example
(DeHaan and Guay, 2005; Guay et al., 2015). Alternatively, anti-windup (Ye and
Hu, 2013; Tan et al., 2013) or projection (Frihauf et al., 2012; Guay and Zhang,
2003; Mills and Krstić, 2014) can be applied to enforce inequality constraints on
the plant parameters. Constraints on the state of the plant and the performance
indicators can generally not be imposed because the state is unknown and the
influence of the plant parameters on the performance indicators is not known a
priori.
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1.1 Introduction to extremum-seeking control

Planning and scheduling

Optimization

Control

Plant
Measurements

Setpoints

Cost function,
constraints

Input

Figure 1.2: Three-layer control structure. Adapted from Jäschke and Skogestad (2011).

Hierarchical control structure

A frequently made assumption in the field of extremum-seeking control is that
the plant is inherently stable or stabilized by a low-level controller (Krstić and
Wang, 2000; Tan et al., 2006). Extremum-seeking control does not stabilize
an unstable plant in general. Exceptions are the vibrational extremum-seeking
methods in Moase and Manzie (2012b); Scheinker and Krstić (2013); Zhang
et al. (2007b) for example; see Section 1.1.1. A controller with a hierarchical
control structure may be employed to stabilize an unstable plant and optimize
its performance (Findeisen et al., 1980; Jäschke and Skogestad, 2011; Skogestad,
2004). Jäschke and Skogestad (2011) propose a three-layer control structure
for plants in the process industry; see Figure 1.2. The three layers operate on
different time scales. Each layer generates an input for the layer below.

• The top layer is the planning and scheduling layer. Its purpose is to
quantify the performance of the plant by specifying the cost function and
to impose constraints to avoid undesirable or infeasible conditions. The
cost function and the constraints may be updated while the plant is under
operation to address changing demands. The slowest time scale is assigned
to this layer to have sufficient time to reoptimize the plant performance
after each update while maintaining stability.

• The optimization layer is below the planning and scheduling layer. Open-
loop optimization methods can be applied to find performance-optimal
setpoints for the control layer if an accurate model of the plant is available.
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Chapter 1 Introduction

If the cost function and the constraints are known in advance, the optimal
setpoints can be precomputed offline, which allows for a fast implementa-
tion. However, it is often preferable to apply online optimization methods
that incorporate plant measurements (including extremum-seeking control)
to handle unmodeled disturbances. The implementation of online optimiza-
tion methods can be complicated and may involve data estimation and
reconciliation, steady-state detection, and solving a large-scale nonlinear
optimization problem (Jäschke and Skogestad, 2011).

• The bottom layer is the control layer, which consists of PID controllers
or other stabilizing feedback controllers. The control layer generates the
inputs to the actuators of the plant. The time scale of the control layer is
faster than the time scale of the optimization layer to have sufficient time
to stabilize the plant at the setpoint values provided by the optimization
layer.

In the context of extremum-seeking control, the setpoints for the controllers in
the control layer are the plant parameters and the plant measurements are the
performance indicators. The planning and scheduling layer can be discarded from
the control structure if the cost functions and the constraints do not change.
Similarly, it is not always necessary to include a control layer if the plant is
inherently stable. Nonetheless, a low-level control layer may be desirable to be
able to cope with fast disturbances. Examples of control structures that consist
of a high-level extremum-seeking controller and a low-level control layer can be
found in Bratcu et al. (2008); Dixon and Frew (2009); van der Meulen et al.
(2012). For large-scale plants, it may be necessary to reduce the number of
plant parameters that are tuned by extremum-seeking control. Methods based
on plant-parameter sensitivity can be applied to determine which (combinations
of) plant parameters are most suitable to use, similar to Alstad and Skogestad
(2007); Alstad et al. (2009).

1.1.1 Historical overview of extremum-seeking control

Dating back to the work by Leblanc (1922), extremum-seeking control is one of
the first forms of adaptive control. Leblanc (1922) applied a perturbation-based
extremum-seeking method to maximize the power that is transferred from an
overhead electrical transmission line to a tram car. Extremum-seeking control
first got considerable attention in the USSR in the 1940s (Kazakevich, 1944).
Interest in extremum-seeking control in the Western world stared after the ap-
pearance of the survey paper by Draper and Li (1951) on extremum-seeking
control for internal combustion engines. Extremum-seeking control went by
many different names in the 1950s and the 1960s, such as “optimalizing control”
(Draper and Li, 1951; Tsien and Serdengecti, 1955), “hill-climbing regulation”
(Roberts, 1965), “extremum control” (Morosanov, 1957; Kazakevich, 1961) and
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1.1 Introduction to extremum-seeking control

Linear dynamics
Static nonlinearity

α1s
m + . . .+ αm+1

sn + β1sn−1 + . . .+ βn

(a) Hammerstein model

Linear dynamics
Static nonlinearity

γ1s
p + . . .+ γp+1

sq + δ1sq−1 + . . .+ δq

Linear dynamics

α1s
m + . . .+ αm+1

sn + β1sn−1 + . . .+ βn

(b) Wiener-Hammerstein model

Figure 1.3: Hammerstein and Wiener-Hammerstein models

“automatic optimization” (Meerkov, 1967a,b, 1968) to name a few. Researchers
faced the difficulty of mathematically formulating a model that is general enough
to describe a large class of plants, while at the same time detailed enough to allow
calculations to be done. Common practice was either to neglect plant dynamics
and use a static nonlinear plant model Blackman (1962); Ostrovskii (1957), to
mimic the plant dynamics by adding a fixed delay to the static nonlinear model
(Frey et al., 1966), or to model the plant as a combination of linear dynamics
and a static nonlinearity, resulting in Hammerstein models (a static nonlinearity
followed by linear dynamics) (Eveleigh, 1967; Hamza, 1966; Kazakevich, 1961;
Jacobs and Shering, 1968) or Wiener-Hammerstein models (linear dynamics fol-
lowed by a static nonlinearity and again linear dynamics) (Pervozvanskii, 1960;
Serdengecti, 1956); see Figure 1.3. Many different extremum-seeking methods
were developed. Several authors considered perturbation methods to optimize
the steady-state performance of the plant (Eveleigh, 1967; Kisiel and Rippin,
1965; Meerkov, 1967a), similar to Leblanc (1922). By adding perturbations to
the plant-parameter signals and correlating the measured plant-performance sig-
nal with the same perturbations, an estimate of the gradient of the objective
function can be obtained. The gradient estimate can subsequently be used to
find the extremum of the objective function. In Blackman (1962); Frait and
Eckman (1962), a gradient estimate is obtained by correlating the signals of
the measured plant performance and the plant parameter, without adding a
perturbation. Other extremum-seeking methods do not rely on an estimate of
the gradient of the objective function. Instead, the plant-parameter values are
driven in a predefined search direction in a continuous or step-wise manner until
no further improvement in the measured plant performance is observed, after
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Chapter 1 Introduction

which the search direction is changed (Tsien and Serdengecti, 1955; Jacobs and
Wonham, 1961). The methods mentioned here are all black-box methods.

The first gray-box methods were developed in the 1960s and the 1970s. By
neglecting plant dynamics and assuming that the objective function is quadratic,
the extended plant (that is, the plant plus cost function) can be modeled as a
second-order polynomial. By estimating the parameters of the polynomial, an
estimate of the extremum of the objective function can be obtained that can be
used to optimize the steady-state performance of the plant (Clarke and Godfrey,
1966, 1967; Perelman, 1961). Linear dynamics can also be included in the plant
model. Because it is convenient to estimate the model parameters if they appear
linearly in the model, the plant model is often restricted to the class of Hammer-
stein models (Keviczky and Haber, 1974; Roberts, 1965). Least-squares methods
are frequently used to estimate the parameters of the Hammerstein model (Bam-
berger and Isermann, 1978; Kazakevich and Mochalov, 1975; Golden and Ydstie,
1989). Alternative methods to estimate the model parameters are discussed
in Kazakevich and Mochalov (1984). The problem of simultaneous estimation
and optimization is a dual control problem as defined by Feldbaum (1960a,b,
1961a,b). Optimal solutions for a dual control problem are generally difficult to
obtain, even for simple cases (Filatov and Unbehauen, 2000, 2004; Wittenmark,
1995). Suboptimal dual controller are applied in Wittenmark (1993); Witten-
mark and Urquhart (1995) to simultaneously estimate the parameters of the
Hammerstein model and optimize the steady-state plant performance. In many
ways, these approaches are similar to the model-predictive control approaches
in Heirung et al. (2015a,b); Marafioti et al. (2014); Shouche et al. (1998, 2002),
where simultaneous model identification and optimization is considered.

As research interest shifted to other topics, black-box extremum-seeking meth-
ods became less popular after the 1960s. The research activity in black-box
methods got reignited by the publication of a paper by Krstić and Wang (2000).
Without defining the structure of the plant, Krstić and Wang (2000) proved
that a perturbation-based extremum-seeking controller successfully optimizes
the plant’s performance if the plant satisfies certain properties. Due to this
renewed formulation, it became apparent that extremum-seeking control can
be applied to a large class of systems. Many applications followed; see for ex-
ample Ariyur and Krstić (2003); Tan et al. (2010) and references therein. The
extremum-seeking method in Krstić and Wang (2000) relies on an estimate of the
gradient of the objective function to optimize the steady-state plant performance.
The method can be extended to include Hessian information of the objective
function so that Newton-like optimization methods can be applied (Ghaffari
et al., 2012; Moase et al., 2010; Nešić et al., 2010, 2012). Although many authors
consider similar methods as in Krstić and Wang (2000) (see for example Becker
et al. (2007); Pastoor et al. (2008); Peterson and Stefanopoulou (2004)), also
other extremum-seeking methods have been studied in recent years. Some meth-
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1.1 Introduction to extremum-seeking control

ods create a sliding mode outside a region near the extremum of the objective
function, such that the plant parameters are steered towards the extremum while
in sliding mode (Drakunov et al., 1995; Fu and Özgüner, 2011; Haskara et al.,
2000; Pan et al., 2003). Other methods rely on a sampled-data approach where
the plant performance is measured and the plant parameters are updated at each
time step. By choosing the time between the update of the plant parameters
and the measurement of the plant performance to be large, the transient of the
plant dynamics has sufficiently died out to apply derivative-based optimization
methods in combination with finite-difference methods (Popović et al., 2003;
Teel and Popović, 2001) or non-derivative-based optimization methods (Khong
et al., 2013a,b; Nešić et al., 2013b) to optimize the steady-state performance of
the plant.

Also gray-box methods for general nonlinear plants have been developed in
recent years. If plant dynamics are neglected, a parametrization of the objective
function can be used as a model for the extended plant (Mohammadi et al., 2014;
Nešić et al., 2012). A large selection of parameter estimators and optimizers can
be used to estimate the model parameters and regulate the plant parameters
to their performance-optimizing values (Nešić et al., 2013a). If a parametrized
model of the extended plant (including plant dynamics) is available, a state esti-
mator in addition to the model-parameter estimator can be defined to optimize
the steady-state plant performance (Adetola and Guay, 2006; Nešić et al., 2013a).

Recently, a new type of extremum-seeking control has appeared in the liter-
ature, which is similar to vibrational control (Bellman et al., 1986; Bullo, 2002;
Meerkov, 1980). Instead of slow perturbations (as in Krstić and Wang (2000), for
example), these extremum-seeking methods use rapid perturbations to optimize
the steady-state plant performance (Moase and Manzie, 2012b; Scheinker and
Krstić, 2013). The convergence of these methods is faster than other types of
extremum-seeking methods. Even an arbitrarily fast convergence is reported in
Moase and Manzie (2012a,b); Zhang et al. (2007b), leading to the term “‘fast”
extremum-seeking control. Another advantage is that these methods can sta-
bilize unstable plants (Moase and Manzie, 2012b; Scheinker and Krstić, 2013;
Zhang et al., 2007b). However, the applications of these methods seems to be
restricted to Hammerstein-type or Wiener-Hammerstein-type plants (Moase and
Manzie, 2012a,b) or to input-affine plants (Dürr et al., 2013, 2015; Scheinker and
Krstić, 2013, 2014). The vast majority of these methods are black-box methods.
A gray-box approach for Hammerstein-type plants is presented in Sharafi et al.
(2015).

1.1.2 Applications of extremum-seeking control

There are many different methods to optimize the performance of a plant de-
pending on how much information about the plant is available. The available
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information about the plant translates to the accuracy of the model of the plant
that can be obtained: a perfect model requires exact knowledge of the plant,
whereas a simple (or simplified) model only requires approximate knowledge of
the plant. If an accurate plant model is available, a large class of numerical opti-
mization methods can be applied to identify the performance-optimal conditions
of the plant (Boyd and Vandenberghe, 2004; Horst and Pardalos, 1994; Nocedal
and Wright, 1999). However, an accurate plant model is not always available due
to insufficient knowledge about the plant. Model uncertainty and unmodeled
disturbances result in a loss of performance. Robust optimization methods can
be applied to minimize the loss of performance (Bertsimas et al., 2011; Beyer
and Sendhoff, 2007). Alternatively, measurements can be used to compensate for
the lack of knowledge. Optimization algorithms that use measurements are often
referred to as “adaptive” or “real-time” optimization methods (Chachuat et al.,
2009). The class of real-time optimization methods includes self-optimizing con-
trol (Kariwala et al., 2008; Skogestad, 2000), necessary conditions of optimality
tracking (François et al., 2005; Srinivasan et al., 2008), adaptive and real-time
model predictive control (Adetola et al., 2009; De Souza et al., 2010; Diehl et al.,
2002) and extremum-seeking control (Ariyur and Krstić, 2003; Tan et al., 2010).

Extremum-seeking control is one of the few optimization methods that do not
require an accurate model of the plant; black-box extremum-seeking methods do
not require a plant model at all, while often a relatively simple plant model with
unknown parameters suffices for gray-box extremum-seeking methods. Due to
the use of no model or a simple model, incorporating measurement information
is relatively easy; the use of a simple update law is often sufficient (Ariyur and
Krstić, 2003; Tan et al., 2010). By contrast, real-time model-predictive control
commonly requires a recalculation of the performance-optimal conditions after
each measurement by solving an optimization problem (De Souza et al., 2010;
Diehl et al., 2002). This can be a computationally demanding task, depending
on the complexity and scale of the plant model.

Not using an accurate plant model also has its drawbacks. While model
information is readily available, the required information to optimize the per-
formance of the plant can generally not be measured instantaneously. Hence, it
takes a certain amount of time to gather the necessary information to optimize
the plant performance via measurements, which implies that the convergence
rate of extremum-seeking control is limited in practice. Because extremum-
seeking control is primarily based on measurement information, the convergence
of extremum-seeking methods is commonly much slower than the convergence of
optimization methods that primarily use model information to optimize the plant
performance. Moreover, extremum-seeking control is more sensitive to measure-
ment noise than methods that mainly rely on a plant model. Extremum-seeking
methods that utilize multiple identical or similar units of the same plant can be
applied to increase the rate of information about the plant that can be obtained
(Esmaeilzadeh Azar et al., 2011; Khong et al., 2013b; Srinivasan, 2007). However,
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these methods cannot be applied if only one unit of the plant is available. The
required amount of information to optimize the plant performance is dependent
on the number of plant parameters for black-box extremum-seeking methods,
or the number of model parameters for gray-box extremum-seeking methods.
Although an arbitrary number of plant parameters or model parameters can
be selected in theory, the number of plant parameters or model parameters is
in practice limited to a few to ensure that extremum-seeking control does not
become impractical to use due to a sluggish convergence.

Due to slow convergence, extremum-seeking control is generally not the most
suitable method to optimize the performance of the plant if an accurate model
of the plant is available. Therefore, typical applications of extremum-seeking
control are applications for which an accurate model is difficult or expensive
to obtain. This can have several reasons, for example: the complexity of the
plant is high; there are no suitable measurements available to validate the model;
the plant is subject to time-varying disturbances that are difficult to model
accurately.

Academic applications of extremum-seeking control

In an academic setting, extremum-seeking control has been applied to many
engineering domains. Application areas in the automotive industry include in-
ternal combustion engines (Hellström et al., 2013; Killingsworth et al., 2009;
Larsson and Andersson, 2008), anti-lock braking systems (Dinçmen et al., 2014;
Drakunov et al., 1995; Zhang and Ordóñez, 2007) and transmission systems
(van der Meulen et al., 2012, 2014). Extremum-seeking control has been used to
maximize the generated power of wind turbines (Creaby et al., 2009; Ghaffari
et al., 2014; Johnson and Fritsch, 2012) and solar arrays (Brunton et al., 2010;
Ghaffari et al., 2015; Leyva et al., 2006). Several applications in process control
have been reported (Bastin et al., 2009; Dochain et al., 2011; Guay et al., 2004;
Wang et al., 1999). In addition, navigation and source-seeking applications of
mobile robots using extremum-seeking control have been investigated (Cochran
and Krstić, 2009; Dixon and Frew, 2009; Liu and Krstić, 2010; Matveev et al.,
2011; Zhang et al., 2007a). Other application areas include nuclear-fusion reac-
tors (Carnevale et al., 2009; Centioli et al., 2008; Ou et al., 2008), fuel-cell power
plants (Bizon, 2010; Dalvi and Guay, 2009; Zhong et al., 2008) and air-flow
optimization (Becker et al., 2007; Beaudoin et al., 2006; Pastoor et al., 2008);
see also Ariyur and Krstić (2003); Tan et al. (2010); Zhang and Ordóñez (2012)
and references therein. Applicability of the proposed extremum-seeking methods
are often demonstrated by simulation examples. Nonetheless, there are a signifi-
cant number of applications for which a proof of concept is given by practical
experiments; see for example Ghaffari et al. (2015); Killingsworth et al. (2009);
van der Meulen et al. (2012).
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Industrial applications of extremum-seeking control

Although many applications of extremum-seeking control have been proposed
over the years, only a few industrial applications have been reported where
extremum-seeking control is used on a daily basis. Olsen et al. (1976) present an
extremum-seeking control method to maximize the output flow of a grinding mill
in spite of ore-quality variations by tuning the feed rate of the mill. The influence
of the feed rate on the output flow is indirectly obtained from measurements
of the power consumption and the oil pressure in the bearings. At the time of
publication, the extremum-seeking method had been intermittently tested on a
6m∅ × 6m grinding mill at Fosdalens Bergverk A/S, Norway, for about a year.

A second industrial application is presented in Borg et al. (1986), where
extremum-seeking control is applied to the production of aluminium in alumina
reduction cells. Because the alumina concentration in reduction cells cannot
be measured directly, the main idea in Borg et al. (1986) is to control the
concentration of alumina by adapting the feed rate of alumina such that the
electric resistance of the molten liquid inside the cells is minimized. The electric
resistance is obtained from current and voltage measurements. The gradient of
the electric resistance with respect to the feed rate is estimated using a gray-box
approach. The gradient estimate is subsequently used in the control law of the
feed rate to keep the electric resistance at a minimum. The proposed control
system had been implemented and was in operation on several reduction cells
at A/S Årdal og Sunndal Verk, Norway, for almost three years at the time of
publication.

There are likely to be several other industrial applications of extremum-seeking
control. However, the number of industrial application of extremum-seeking
control reported in the open literature is scarce.
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1.2 Scope of the thesis

In this work, we consider black-box extremum-seeking control. We mainly
focus on extremum-seeking control methods that rely on added perturbations
to estimate the required derivatives of the objective function to optimize the
steady-state performance of a plant; see for example Ariyur and Krstić (2003);
Tan et al. (2010). Because black-box extremum-seeking methods do not require
a model of the plant to optimize the steady-state plant performance, they can
be applied to many engineering domains. The main drawback of black-box
extremum-seeking methods is a slow convergence, as discussed in Section 1.1.
Therefore, we aim to improve the convergence rate of these methods. For certain
classes of plants, large-amplitude high-frequency perturbations can be used to
speed up the convergence of the extremum-seeking scheme (Moase and Manzie,
2012b; Scheinker and Krstić, 2013). However, due to actuator limitations, a
high control effort and an increased wear of components, large-amplitude high-
frequency perturbations may be undesirable or inadmissible in practice. The
first research objective of this thesis is formulated as follows.

Develop a black-box extremum-seeking method with an increased con-
vergence rate compared to classical extremum-seeking methods that
uses small-amplitude low-frequency perturbations.

Although to aim of applying extremum-seeking control is to optimize the steady-
state performance of a plant, the optimal steady-state performance is commonly
not obtained (not even in infinite time). This can be attributed to the use of
performance-indicator measurements, often in combination with added perturba-
tions, to find the optimal steady-state plant performance. While the steady-state
values of the performance indicators are assumed to be measured, the measure-
ments are different from the steady-state values due to measurement noise and
the dynamic response of the plant to changing plant-parameter values. Nonethe-
less, several extremum-seeking method have been proposed in the literature to
obtain asymptotic convergence. These methods are based on regulating the am-
plitude of the perturbations (Moura and Chang, 2013; Stanković and Stipanović,
2010; Wang et al., 2016) or omitting the perturbations entirely (Blackman, 1962;
Frait and Eckman, 1962; Hunnekens et al., 2014). Commonly local convergence
to the optimum is proved, often for a limited class of plants. A global asymptotic
stability result for general nonlinear plants is missing. This brings us to the
second research objective of this thesis.

Develop a black-box extremum-seeking method for general nonlinear
dynamical plants that ensures global asymptotic stability of the re-
sulting closed-loop system of plant and controller with respect to the
optimal steady-state performance of the plant.

The two research objectives are addressed in the remaining chapters of the thesis.
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1.3 Contributions and outline of the thesis

The outline of the thesis is given next. The main contributions of the thesis are
highlighted for each chapter.

• Chapter 2: In classical extremum-seeking methods, estimates of the
required derivatives of the objective function are obtained by correlating
the measured plant-performance signal and the perturbation signals. If the
perturbation-related content of the plant-parameter signals is low, a more
accurate derivative estimate and a faster convergence towards the optimal
steady-state plant performance may be obtained by utilizing information of
the entire plant-parameter signals. We introduce a least-squares observer
that uses the perturbation signals as well as the nominal plant-parameter
signals to obtain an accurate estimate of the gradient of the objective
function. Moreover, a simulation example illustrates that the accuracy of
the gradient estimate and the convergence rate of the extremum-seeking
scheme can be further enhanced for sufficiently low perturbation frequencies
if curvature information of the objective function is used. In addition, we
show that region of attraction of the extremum-seeking scheme can be
made global by normalizing the adaptation gain of the extremum-seeking
controller.

• Chapter 3: The extremum-seeking controller in Chapter 2 assumes that
the measurements of the performance indicators and the update of the
plant parameters are continuous in time. However, in many practical
applications, the measurements of the performance indicators are sampled
and the plant parameters are updated in a discrete-time fashion. To
optimize the steady-state plant performance in a sampled-data setting, a
discrete-time version of the extremum-seeking controller in Chapter 2 is
presented. The discrete-time controller is equivalent to the continuous-
time controller in Chapter 2 for the limit as the sampling time approaches
zero. A simulation example displays that the response of the discrete-time
controller is similar to the response of the continuous-time controller in
Chapter 2 for sufficiently high sampling rates.

• Chapter 4: Perturbations may not be necessary to optimize the steady-
state performance of the plant; the plant-parameter signals may be suf-
ficiently rich without any added excitation to accurately estimate the
required derivatives of the objective function. A self-driving extremum-
seeking controller can be applied to optimize the steady-state performance
of a certain class of dynamical plants. It is proved that the performance
of the plant exponentially converges to the optimal steady-state plant per-
formance. To the best of the authors’ knowledge, this is the first time
a rigorous stability proof of a self-driving extremum-seeking scheme for
dynamical plants is presented.
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• Chapter 5: The self-driving extremum-seeking scheme in Chapter 4 only
convergences to the optimal steady-state plant performance for a certain
class of dynamical plants. We present an perturbation-based extremum-
seeking controller to optimize the steady-state performance of general
nonlinear plants. A stability analysis proves that the closed-loop system
of plant and controller is globally asymptotically stable with respect to
the optimal steady-state plant performance under given assumptions and
suitable tuning conditions. The key to this result is that the amplitude and
the frequencies of the perturbations, as well as other tuning parameters
of the controller, are time varying and asymptotically decay to zero as
time goes to infinity. Global asymptotic stability can even be obtained if
the plant is subject to a time-varying disturbance under the assumption
that the perturbations and the zero-mean component of the disturbance
are uncorrelated. In addition, the time-varying tuning parameters can be
chosen such that global asymptotic stability is guaranteed for any plant
that satisfies the given assumptions.

• Chapter 6: The mitigation of harmonic distortion in electrical grids us-
ing active power filters is discussed. An extremum-seeking control method
is proposed to tune the current injection of an active power filter to the
grid. We show that the extremum-seeking control method can be par-
allellized under certain design assumptions to significantly increase its
optimization speed. Moreover, the extremum-seeking control method can
be implemented on top of existing approaches to combine the fast transient
response of conventional harmonic-mitigation methods with the optimizing
capabilities of extremum-seeking control. A case study a two-bus electri-
cal grid with distributed generators is presented. The extremum-seeking
method is compared with two benchmark methods. The differences in
performance for various load conditions, measurement noise and model
mismatch are discussed.

• Chapter 7: The main conclusions in this thesis are summarized and some
recommendations for future work are provided.

1.3.1 List of publications

The following list of publications forms the basis of the thesis:

• M. Haring and T. A. Johansen. Extremum-seeking control for nonlinear
plants by least-squares gradient estimation. Automatica, 2015. Manuscript
submitted for publication.

• M. Haring and T. A. Johansen. Asymptotic stability of perturbation-
based extremum-seeking control for nonlinear plants. IEEE Transactions
on Automatic Control, 2016. Manuscript submitted for publication.
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• M. Haring, B. Hunnekens, T. A. Johansen, and N. van de Wouw. Self-
driving extremum-seeking control for nonlinear dynamic plants. Automat-
ica, 2016a. Manuscript submitted for publication.

• M. Haring, E. Skjong, T. A. Johansen, and M. Molinas. An extremum-
seeking control approach to harmonic mitigation in electrical grids. IEEE
Transactions on Control Systems Technology, 2016b. Manuscript submitted
for publication.

Chapters 2, 4, 5 and 6 are based on Haring and Johansen (2015), Haring et al.
(2016a), Haring and Johansen (2016) and Haring et al. (2016b), respectively.

Additional publications

The following conference paper is not part of the thesis, but serves as a back-
ground work:

• B. G. B. Hunnekens, M. A. M. Haring, N. van de Wouw, and H. Ni-
jmeijer. A dither-free extremum-seeking control approach using 1st-order
least-squares fits for gradient estimation. In Proceedings of the 53rd IEEE
Conference on Decision and Control, pages 2679–2684, Los Angeles, Cali-
fornia, December 15-17, 2014.

The missing stability proof for dynamical plants in the above mentioned paper
is the main motivation for the results in Chapter 4. The following publications
were written in the period of the doctoral study, but are not included in the
thesis:

• B. G. B. Hunnekens, M. A. M. Haring, N. van de Wouw, and H. Nijmeijer.
Steady-state performance optimization for variable-gain motion control
using extremum seeking. In Proceedings of the 51st IEEE Conference on
Decision and Control, pages 3796–3801, Maui, Hawaii, USA, December
10-13, 2012.

• N. van de Wouw, M. Haring, and D. Nešić. Extremum-seeking control
for periodic steady-state response optimization. In Proceedings of the 51st
IEEE Conference on Decision and Control, pages 1603–1608, Maui, Hawaii,
USA, December 10-13, 2012.

• M. Haring, N. van de Wouw, and D. Nešić. Extremum-seeking control for
nonlinear systems with periodic steady-state outputs. Automatica, 49(6):
1883–1891, 2013.
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1.4 Notations

1.4 Notations

The set of real numbers is denoted by R. The set of natural numbers (nonnegative
integers) is denoted by N. The sets of positive real numbers and nonnegative
real numbers are denoted by R>0 and R≥0, respectively. Similarly, the set of
positive integers is denoted by N>0. Vectors, matrices as well as functions
with multidimensional outputs are printed in a bold font, whereas scalars and
functions with scalar outputs are printed in a normal (nonbold) font. Note that
multidimensional variables are printed in a normal font if their dimensions are
set to one for illustrative purposes. By I and 0, we denote the identity matrix
and the zero matrix, respectively. The Euclidean norm is denoted by ‖ · ‖.
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Chapter 2

Extremum-seeking control for nonlinear plants by
least-squares gradient estimation

In this chapter, we present a perturbation-based extremum-seeking
controller to optimize the performance of a general nonlinear plant
with an arbitrary number of tunable plant parameters in the presence
of an unknown bounded disturbance. The gradient of the objective
function that relates the plant-parameter values to the steady-state
performance of the plant is accurately estimated using a least-squares
observer. We show that the region of attraction for the closed-loop
system of plant and controller can be made global by normalizing
the adaptation gain of the extremum-seeking controller. The conver-
gence rates of our controller and three controllers in the literature
are compared for a variety of simulation examples. Our controller
compares favorably for five of the eight tested examples. Results of an
additional in-depth example indicate that a faster convergence can be
obtained with an observer-based controller than with a classical con-
troller if small-amplitude perturbations are applied. Furthermore, the
simulation results show that incorporating curvature information of
the objective function, if available, significantly improves the conver-
gence of the presented controller if the frequency of the perturbations
is low.

2.1 Introduction

In this chaper, we focus on extremum-seeking methods that rely on added pertur-
bations to optimize the steady-state performance of a plant. Although already
popular in the 1950s and 1960s (Draper and Li, 1951; Eveleigh, 1967; Jacobs
and Shering, 1968), perturbation-based methods have become the most popular
class of extremum-seeking control methods in recent years. Much of this success
can be attributed to the paper (Krstić and Wang, 2000). Until its publication,
it was common practice to assume that the plant is static (Blackman, 1962; Os-
trovskii, 1957) or can be described by a combination of a static nonlinearity and
linear dynamics (Eveleigh, 1967; Jacobs and Shering, 1968; Pervozvanskii, 1960).
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Without defining the structure of the plant, Krstić and Wang (2000) proved that
the a plant’s performance can successfully be optimized with a perturbation-
based extremum-seeking method if the plant satisfies certain properties. Due
to this renewed formulation, it became apparent that extremum-seeking control
can be applied to a large class of systems. Many applications followed, often
using a similar extremum-seeking controller as in Krstić and Wang (2000); see
for example Bizon (2010); Ou et al. (2008); Pastoor et al. (2008); Peterson and
Stefanopoulou (2004); Zhong et al. (2008).

Tuning largely determines the optimization performance of extremum-seeking
controllers. Tan et al. (2006) showed that, for fixed tuning conditions, there
exists a trade-off between the convergence rate and the size of the region of the
optimum to which the plant parameters ultimately converge (that is, a high
convergence rate implies a large ultimate bound). For plants of the Hammer-
stein or Wiener-Hammerstein type, Moase and Manzie (2012a,b) found that
an arbitrarily high convergence rate and an arbitrarily small ultimate bound
can be achieved simultaneously by selecting a sufficiently high perturbation fre-
quency and a sufficiently low perturbation amplitude, respectively. However,
as the extremum-seeking methods in Moase and Manzie (2012a,b) are more
sensitive to measurement noise for higher perturbations frequencies and lower
perturbation amplitudes, the presence of measurement noise may require that
the perturbation frequency is lowered or the perturbation amplitude is raised.
Large-amplitude high-frequency perturbations can be undesirable or inadmissi-
ble in practice due to actuator limitations, a high control effort and an increased
wear of components. We will therefore restrict ourselves to perturbations with
small amplitudes and low frequencies for which the tuning trade-off in Tan et al.
(2006) holds.

The classical extremum-seeking methods in Krstić and Wang (2000); Tan
et al. (2006) rely on an estimate of the gradient of the objective function that
represents the steady-state relation between the plant parameters and the plant
performance to optimize the steady-state plant performance. Therefore, the
convergence rate of the extremum-seeking scheme is dependent on the accuracy
of the gradient estimate. A more accurate gradient estimate may lead to a faster
optimization process, as reported in Gelbert et al. (2012). In Krstić and Wang
(2000); Tan et al. (2006), an estimate of the gradient of the objective function is
obtained by adding perturbations to the plant-parameter signals and correlating
the response in the plant-performance signal with the perturbation signals. This
results in an accurate gradient estimate if the perturbation-related content in
the plant-parameter signals is high. However, for small-amplitude low-frequency
perturbations, the perturbation-related content is small, in which case a more
accurate gradient estimate and a faster convergence may be achieved if the entire
plant-parameter signals (and not only the perturbation signals) are used.

The contributions of this chapter are summarized as follows. First, we in-
troduce an extremum-seeking controller that uses a least-squares observer to
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accurately estimate the gradient of the objective function. The observer uses the
perturbation signals as well as the nominal part of the plant-parameter signals to
compute a gradient estimate. Moreover, curvature information of the objective
function can be incorporated to further enhance the accuracy of the gradient es-
timate. Second, we prove that the region of attraction for the closed-loop system
of plant an controller can be made global under the assumptions in this chapter
by normalizing the adaptation gain of the extremum-seeking controller. Third,
simulations for a variety of examples taken from the extremum-seeking literature
are conducted to compare the convergence rates of the presented extremum-
seeking controller and of three extremum-seeking controllers in the literature:
the multivariable extension of the classical extremum-seeking controller in Krstić
and Wang (2000) given in Ghaffari et al. (2012), the phasor extremum-seeking
controller in Atta et al. (2015) and the observer-based controller in Guay and
Dochain (2015). The fastest convergence is achieved with the presented con-
troller for five of the eight tested examples. Simulation results of an additional
in-depth example indicate that a faster convergence can be obtained with the two
observer-based controllers than with the classical controller and the phasor con-
troller if perturbations with small amplitudes are used. Moreover, the simulation
results show that incorporating curvature information can significantly improve
the convergence of the presented controller if the frequency of the perturbations
is sufficiently low.

The remaining part of the chapter is organized as follows. After the extremum-
seeking problem is stated in Section 2.2, we present our extremum-seeking con-
troller with least-squares observer in Section 2.3. A stability analysis of the
presented scheme is provided in Section 2.4, on the basis of which tuning guide-
lines are derived. The comparison of the presented controller and the three
controllers in the literature is given in Section 2.5. The conclusion of this chap-
ter is presented in Section 2.6.

2.2 Formulation of the extremum-seeking problem

Consider the following multi-input-multi-output nonlinear plant:

ẋ(t) = f(x(t),u(t))

e(t) = g(x(t),u(t)) + n(t),
(2.1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, e ∈ Rne is the output of the
plant, n ∈ Rne is an output disturbance and t ∈ R≥0 is the time. The dimensions
of the state, the input and the output are given by nx, nu, ne ∈ N>0, respectively.
In the context of extremum-seeking control, the input u is a vector of tunable
plant parameters, the output e is a vector of measured performance indicators
and the disturbance n is measurement noise. The state x, the measurement
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noise n and the functions f and g are unknown. Therefore, the relation between
the plant parameters and the performance indicators is unknown. It is the
task of the designer to define a cost function, denoted by Z, that quantifies the
performance of the plant. The corresponding measured plant performance is
given by

y(t) = Z(e(t),u(t)). (2.2)

To simplify notations, we write the plant (2.1) and the cost function (2.2) as one
extended plant

ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t)) + d(t),
(2.3)

with output function h(x,u) = Z(g(x,u),u) and disturbance d = Z(g(x,u) +
n,u) − Z(g(x,u),u). Note that h and d are unknown because the function g
and the disturbance n are unknown. Although we do not know the functions f
and h, for analytical purposes, we assume that the following holds.

Assumption 2.1. The functions f : Rnx × Rnu → Rnx and h : Rnx × Rnu → R
in (2.3) are twice continuously differentiable. Moreover, there exist constants
Lfx, Lfu, Lhx, Lhu ∈ R>0 such that

∥∥∥∥
∂f

∂x
(x,u)

∥∥∥∥ ≤ Lfx,

∥∥∥∥
∂f

∂u
(x,u)

∥∥∥∥ ≤ Lfu (2.4)

and ∥∥∥∥
∂2h

∂x∂xT
(x,u)

∥∥∥∥ ≤ Lhx,

∥∥∥∥
∂2h

∂x∂uT
(x,u)

∥∥∥∥ ≤ Lhu (2.5)

for all x ∈ Rnx and all u ∈ Rnu.

We assume that the steady-state solutions of the plant are constant. The
existence of a constant steady-state solution of the plant is formulated in the
following assumption.

Assumption 2.2. There exists a twice continuously differentiable map X :
Rnu → Rnx and a constant LX ∈ R>0, such that

0 = f(X(u),u) (2.6)

and ∥∥∥∥
dX

du
(u)

∥∥∥∥ ≤ LX (2.7)

for all u ∈ Rnu.

The solution x = X(u) satisfies (2.6) and is therefore a constant steady-state
solution of the plant dynamics in (2.3) for each constant vector of plant param-
eters u in Rnu . From Assumption 2.2, it does not follow that the stead-state
solution X(u) is unique. Neither ensures Assumption 2.2 that other solutions
of the plant dynamics will converge to the steady-state solution X(u). The
following assumption is formulated to ensure the uniqueness and the stability of
the steady-state solution X(u).
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2.2 Formulation of the extremum-seeking problem

Assumption 2.3. There exist constants µx, νx ∈ R>0, such that for each con-
stant u ∈ Rnu, the solutions of the dynamics in (2.3) satisfy

‖x̃(t)‖ ≤ µx‖x̃(t0)‖e−νx(t−t0), (2.8)

with
x̃(t) = x(t)−X(u), (2.9)

for all x(t0) ∈ Rnx and all t ≥ t0 ≥ 0.

From Assumption 2.3, it follows that the solutions of the plant are globally ex-
ponentially stable with respect to the steady-state solution X(u) for any constant
vector of plant parameters u. The disturbance-free steady-state relation between
constant plant parameters and the plant performance can now be obtained by
the static input-to-output map

F (u) = h(X(u),u) = Z(g(X(u),u),u). (2.10)

We refer to the map F as the objective function. We assume that the cost
function Q is designed such that there exists a unique minimum of the objective
function F on the domain Rnu , where the minimum of the map F corresponds
to the optimal plant performance. This is formulated as follows.

Assumption 2.4. The objective function F : Rnu → R is twice continuously
differentiable and exhibits a unique minimum on the domain Rnu. Let the corre-
sponding minimizer be denoted by

u∗ = arg min
u∈Rnu

F (u). (2.11)

There exist constants LF1, LF2 ∈ R>0 such that

dF

du
(u)(u− u∗) ≥ LF1‖u− u∗‖2 (2.12)

and ∥∥∥∥
d2F

duduT
(u)

∥∥∥∥ ≤ LF2 (2.13)

for all u ∈ Rnu.

In addition to the previous assumptions, we assume that the disturbance d
satisfies the following bound.

Assumption 2.5. There exist constants δn, δx, δu ∈ R≥0, such that

|d(t)| ≤ δn + δx‖x(t)−X(u(t))‖+ δu‖u(t)− u∗‖ (2.14)

for all x ∈ Rnx, all u ∈ Rnu and all t ∈ R≥0.
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Chapter 2 Extremum seeking by least-squares estimation

Remark 2.6. Measurement noise is often neglected in the analysis of extremum-
seeking schemes. To show that the extremum-seeking controller optimizes the
steady-state plant performance in spite of measurement noise, it is assumed that
the noise signal and the perturbation signals are uncorrelated in Ariyur and
Krstić (2003); Tan et al. (2010). Alternatively, it is assumed that the measure-
ment noise satisfies certain stochastic properties in Stanković and Stipanović
(2010). In this chapter, we only assume that the measurement noise is bounded
(see Assumption 2.5). Although measurement noise may impair the obtainable
performance, we prove that the closed-loop system of plant and extremum-seeking
controller is stable under this less restrictive assumption.

Remark 2.7. To simplify the calculations in this chapter, we optimize the steady-
state plant performance for any initial conditions x(0) ∈ Rnx and u(0) ∈ Rnu.
For this reason, we require that Assumptions 2.1-2.5 are satisfied for all x ∈ Rnx

and all u ∈ Rnu. For a local result, it is sufficient to assume that Assumptions 2.1-
2.5 hold for compact sets of x and u, where the steady-state solution X(u) is in
the interior of the compact set of x and the minimizer u∗ is in the interior of
the compact set of u. We note that Assumption 2.1 holds for any compact sets
of x and u if the functions f and h are twice continuously differentiable.

We note that the map X, the objective function F and its minimizer u∗ are
unknown because the functions f and h are unknown. Nonetheless, we aim to
design an extremum-seeking controller that regulates the plant parameters u
towards their performance-optimizing values u∗.

2.3 Controller design

From Assumption 2.4, it follows that the plant parameters u will converge to the
minimizer u∗ as time goes to infinity for any initial value u(0) ∈ Rnu if we design
a controller that drives the plant parameters in the direction opposite to the
gradient of the objective function in (2.10). However, such a gradient-descent
controller cannot be implemented because the gradient of the objective function
is unknown. To estimate the gradient of the objective function and use this
estimated gradient to drive u towards u∗, we define

u(t) = û(t) + αωω(t), (2.15)

where αωω is a vector of perturbation signals with amplitude αω ∈ R>0. The
vector ω is defined by ω(t) = [ω1(t), ω2(t), . . . , ωnu(t)]T , with

ωi(t) =





sin

(
i+ 1

2
ηωt

)
, if i is odd,

cos

(
i

2
ηωt

)
, if i is even,

(2.16)
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2.3 Controller design

for i = {1, 2, . . . , nu}, where ηω ∈ R>0 is a tuning parameter. The purpose of
the perturbation signals is to provide sufficient excitation to accurately estimate
the gradient of the objective function. The nominal plant parameters û can be
regarded as an estimate of the minimizer u∗.

We model the input-to-output behavior of the plant (2.3) in a general form.
Let the state of the model be given by

m(t) =

[
F (û(t))

αω
dF
duT

(û(t))

]
. (2.17)

From the output equation in (2.3) and the expression of the objective function
in (2.10), it follows that the measured plant performance y can be written as

y(t) = h(x(t),u(t))− h(X(u(t)),u(t)) + F (u(t)) + d(t). (2.18)

From Taylor’s theorem and (2.15), we obtain

F (u(t)) = F (û(t) + αωω(t))

= F (û(t)) + αω
dF

du
(û(t))ω(t)

+ α2
ωω

T (t)

∫ 1

0

(1− s) d2F

duduT
(û(t) + sαωω(t))dsω(t).

(2.19)

Using (2.3) and (2.17)-(2.19), the input-to-output behavior of the plant can be
modeled as follows:

ṁ(t) = A(t)m(t) + α2
ωBw(t)

y(t) = C(t)m(t) + α2
ωv(t) + z(t) + d(t),

(2.20)

with matrices

A(t) =


0

˙̂u
T

(t)

αω

0 0


 , B =

[
0

I

]
, C(t) =

[
1 ωT (t)

]
, (2.21)

where the disturbances w, v and z are given by

w(t) =
d2F

duduT
(û(t))

˙̂u(t)

αω

,

v(t) = ωT (t)

∫ 1

0

(1− s) d2F

duduT
(û(t) + sαωω(t))dsω(t),

z(t) = h(x(t),u(t))− h(X(u(t)),u(t)).

(2.22)

The reason for modeling the input-to-output behavior of the plant (2.3) in this
way is that the state vector m in (2.17) contains a scaled version of the gradient
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Chapter 2 Extremum seeking by least-squares estimation

of the objective function, which implies that an estimate of the gradient of the
objective function can directly be obtained from an estimate of the state vector
m.

We will design an observer to estimate the state vector m. The disturbances
w and v in (2.22) depend on the Hessian of the unknown objective function F
and are therefore unknown. The disturbance z in (2.22) is unknown because it
depends on the state x, the map X and the function h, which are unknown. For
the design of the observer, we assume that z = d = 0 and that the disturbances
w and v can be approximated by the estimates ŵ and v̂, which are given by

ŵ(t) = H(û(t))
˙̂u(t)

αω

,

v̂(t) =
1

2
ωT (t)H(û(t))ω(t),

(2.23)

where the function H : Rnu → Rnu×nu is chosen by the designer and satisfies

‖H(û)‖ ≤ LH (2.24)

for all û ∈ Rnu and some constant LH ∈ R>0. An overall good choice for the
function H is given by H(û) = 0, in which case ŵ = 0 and v̂ = 0. However,
if a reasonably accurate approximation of Hessian of the objective function is
available, a more accurate gradient estimate and a faster convergence towards the
optimum may be obtained for small values of ηω by selecting H(û) ≈ d2F

duduT
(û);

see Section 2.5.
We introduce a least-squares observer that minimizes a quadratic cost function

with respect to an exponentially weighted time window of the estimation error,
similar to Hammouri and de Leon Morales (1990):

(t, m̂(t)) = arg min
p(t)∈Rnu+1

J(t,p(t)),

subject to: ṗ(τ) = A(τ)p(τ) + α2
ωBŵ(τ)

ŷ(τ) = C(τ)p(τ) + α2
ωv̂(τ), ∀τ ∈ [0, t],

(2.25)

where the cost function J is given by

J(t,p(t)) = ηm

∫ t

0

e−ηm(t−τ) (|y(τ)− ŷ(τ)|2 + σr|Dp(τ)|2
)
dτ

+ e−ηmt(m̂0 − p(0))TQ−10 (m̂0 − p(0)),

(2.26)

with

D =
[
0 I

]
(2.27)
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2.3 Controller design

and m̂0 ∈ Rnu+1, where Q0 ∈ Rnu+1×nu+1 is a symmetric positive-definite matrix.
The tuning parameter ηm ∈ R>0 is often referred to as the forgetting factor; see
for instance Ioannou and Sun (1996, Section 4.3.6). The tuning parameter
σr ∈ R≥0 is a regularization constant, similar to Guay and Dochain (2015). The
state estimate m̂ in (2.25) can be written explicitly as

m̂(t) = Q(t)Ψ(t) (2.28)

for all t ∈ R≥0, with

Q(t) =

(
ηm

∫ t

0

e−ηm(t−τ)ΦT (τ, t)
(
CT (τ)C(τ) + σrD

TD
)

Φ(τ, t)dτ

+ e−ηmtΦT (0, t)Q−10 Φ(0, t)

)−1 (2.29)

and

Ψ(t) = ηm

∫ t

0

e−ηm(t−τ)ΦT (τ, t)

(
CT (τ)

(
y(τ)− α2

ωv̂(τ)
)

+ α2
ω

(
CT (τ)C(τ) + σrD

TD
) ∫ t

τ

Φ(τ, σ)Bŵ(σ)dσ

)
dτ

+ e−ηmtΦT (0, t)Q−10

(
m̂0 + α2

ω

∫ t

0

Φ(0, σ)Bŵ(σ)dσ

)
,

(2.30)

where Φ is the state-transition matrix given by

Φ(τ, t) =


1

ûT (τ)− ûT (t)

αω

0 I


 . (2.31)

By differentiating the expressions in (2.28)-(2.29) with respect to time, we obtain
the following differential equations for the least-squares observer:

˙̂m(t) =
(
A(t)− ηmσrQ(t)DTD

)
m̂(t) + α2

ωBŵ(t)

+ ηmQ(t)CT (t)(y(t)−C(t)m̂(t)− α2
ωv̂(t))

(2.32)

and
Q̇(t) = ηmQ(t) + A(t)Q(t) + Q(t)AT (t)

− ηmQ(t)(CT (t)C(t) + σrD
TD)Q(t),

(2.33)

with initial conditions m̂(0) = m̂0 and Q(0) = Q0. Similar to Hammouri and
de Leon Morales (1990), it can be shown that the matrix Q remains positive
definite and bounded over time if the plant parameters u are uniformly persis-
tently exciting. The regularization term related to σr prevents the matrix Q
from becoming excessively large if the level of excitation is low. As regularization
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Chapter 2 Extremum seeking by least-squares estimation

deteriorates the accuracy the state estimate, the value of σr is chosen to be small.

Because m̂ is an estimate of the state m, we note that Dm̂ is a scaled esti-
mate of the gradient of the objective function. We define the following gradient
descent optimizer:

˙̂u(t) = −λu
ηuDm̂(t)

ηu + λu ‖Dm̂(t)‖ , (2.34)

where λu, ηu ∈ R>0 are tuning parameters. By normalizing the adaptation
gain in (2.34), we prevent the solutions of the closed-loop system of plant and
extremum-seeking controller from having a finite escape time if the state esti-
mate m̂ is inaccurate. Loosely speaking, it gives the observer sufficient time to
produce an accurate state estimate for arbitrary initial conditions of the closed-
loop system. This is essential for the global stability result in Section 2.4.

By combining the plant (2.3) and the extremum-seeking controller in (2.15),
(2.32)-(2.34), we obtain the closed-loop system in Figure 2.1, where the pertur-
bation vector ω and the disturbance estimates ŵ and v̂ are defined in (2.23) and
(2.16), respectively, where d is an unknown disturbance, and where αω, ηω, ηm,
λu, ηu and σr are tuning parameters. For an arbitrary unknown initial state
x(0), it is the task of the designer to choose the initial conditions m̂(0), Q(0),
û(0) and the values of the tuning parameters αω, ηω, ηm, λu, ηu and σr such
that the optimizer state û converges towards the performance-optimal value u∗.
We investigate the stability of the presented extremum-seeking scheme in the
next section to identify suitable initial conditions and tuning conditions.

2.4 Stability analysis

Due to the perturbation and the disturbance, the optimizer state û will generally
converge to a region of the performance-optimal value u∗ rather than to its exact
value. We state our main result which states the initial conditions and tuning-
parameter values under which the extremum-seeking scheme is globally uniformly
ultimately bounded. The proof is presented in Section 2.4.1.

Theorem 2.8. Under Assumptions 2.1-2.5, there exist (sufficiently small) con-
stants ε1, ε2, . . . , ε6 ∈ R>0 such that the solutions of the closed-loop system of
the plant (2.3) and the extremum-seeking controller in (2.15), (2.32)-(2.34)
are uniformly bounded for all x(0) ∈ Rnx, all m̂(0) ∈ Rnu+1, all symmetric
positive-definite Q(0) ∈ Rnu+1×nu+1, all û(0) ∈ Rnu, all αω, ηu, ηm, ηω ∈ R>0

and all σr ∈ R≥0 that satisfy αωε1 ≥ δu, ηω ≤ ε2, ηm ≤ ηωε3, αωλu ≤ ηmε4,
ηu ≤ αωηmε5 and σr ≤ ε6. Moreover, the solutions of û satisfy

lim sup
t→∞

‖û(t)− u∗‖ ≤ max

{
αωc1, ηωc2,

δn
αω

c3, δuc4, ηωδxc5

}
(2.35)

for some constants c1, c2, . . . , c5 ∈ R>0.
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2.4 Stability analysis

˙̂u = −λu
ηuDm̂

ηu + λu ‖Dm̂‖

Plant

Observer

Optimizer

u

y

m̂

αωω

Extremum-seeking controller

ẋ = f(x,u)

y = h(x,u) + d

d

û
+ +

ω

˙̂m =
(
A− ηmσrQDTD

)
m̂+ α2

ωBŵ

+ ηmQCT (y −Cm̂− α2
ωv̂)

Q̇ = ηmQ+AQ+QAT

− ηmQ(CTC+ σrD
TD)Q˙̂u

Figure 2.1: Closed-loop system of plant and extremum-seeking controller.

Under the conditions of the theorem, it follows that the optimizer state û
converges to an arbitrarily small region of the performance-optimal value u∗

for sufficiently small αω and ηω in the absence of the disturbance d (that is,
δn = δu = δx = 0). In the presence of the disturbance d, the perturbation
amplitude αω should be chosen sufficiently large to dominate the disturbance
in order to keep the extremum-seeking scheme stable; the region to which û
converges generally cannot be made arbitrarily small in this case.

Under the given tuning conditions, the extremum-seeking scheme is ultimately
bounded for any initial condition as long as Q(0) is symmetric and positive
definite. For a fast convergence of the extremum-seeking scheme, the initial
conditions û(0) and m̂(0) should ideally be chosen such that û(0) ≈ u∗ and
m̂(0) ≈m(0). However, this requires detailed knowledge of the objective func-
tion and might therefore not be feasible. From the proof of Theorem 2.8 in
Section 2.4.1, it follows that a good initial condition for Q is given by

Ξ =

[
1 0

0 2
1+2σr

I

]
. (2.36)
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Chapter 2 Extremum seeking by least-squares estimation

Remark 2.9. With αω and ηω associated with the perturbation vector, ηm associ-
ated with the observer, and ηu associated with the optimizer, the tuning conditions
in Theorem 2.8 imply that, for small values of ε2, ε3, ε4 and ε5, the plant is
faster than the perturbation vector, that the perturbation vector is faster than the
observer, and that the observer is faster than the optimizer. These differences in
time scale between the various components of the extremum-seeking scheme can
be exploited using singular-perturbation methods to prove local or semiglobal sta-
bility properties of the extremum-seeking scheme, similarly to Krstić and Wang
(2000); Tan et al. (2006). We note, however, that Theorem 2.8 proves a stronger
global stability property.

2.4.1 Proof of Theorem 2.8

For notational convenience, we introduce the following coordinate transformation:

x̃(t) = x(t)−X(u(t)),

m̃(t) = m̂(t)−m(t),

Q̃(t) = Q−1(t)−Ξ−1 − ηm
ηω

l(t),

ũ(t) = û(t)− u∗,

(2.37)

with

l(t) =

∫ t

0

ηω

[
0 ωT (τ)

ω(τ) ω(τ)ωT (τ)− 1
2
I

]
dτ. (2.38)

We note that l is uniformly bounded, which follows from the definition of ω in
(2.16). Loosely speaking, the solutions of the state variables in (2.37) converge
in two stages:

• for 0 ≤ t < t1, the solutions of x̃ and Q̃ converge to a region of the origin
and remain there, while the solutions of m̃ and ũ may drift;

• for t ≥ t1, the solutions of m̃ and ũ converge to a region of the origin.

To prove Theorem 2.8, we first derive bounds on each of the variables in (2.37)
in coherence with the two stages. A bound on the solutions of x̃ is presented in
Lemma 2.10.

Lemma 2.10. Under the conditions of Theorem 2.8, there exist constants
cx1, cx2, βx ∈ R>0 such that the solutions of x̃ satisfy

‖x̃(t)‖ ≤ max
{
cx1‖x̃(0)‖e−βxt, αωηωcx2

}
(2.39)

for all t ≥ 0 and all x̃(0) ∈ Rnx.

Proof. See Section 2.7.1.
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2.4 Stability analysis

Next, we derive bounds on the solutions of Q̃ in Lemma 2.11.

Lemma 2.11. Under the conditions of Theorem 2.8, there exist constants
cQ, βQ ∈ R>0 such that the solutions of Q̃ satisfy

‖Q̃(t)‖ ≤ max

{
cQ‖Q̃(0)‖e−ηmβQt, 1

8

}
(2.40)

for all t ≥ 0 and all Q̃(0) ∈ Rnu+1×nu+1 for which Q(0) is symmetric and positive
definite.

Proof. See Section 2.7.2.

From Lemmas 2.10-2.11, we obtain that there exists a finite time t1 ≥ 0 such
that ‖x̃(t)‖ ≤ αωηωcx2 and ‖Q̃(t)‖ ≤ 1

8
for all t ≥ t1. We utilize these bounds

on x̃ and Q̃ to obtain the following bounds on the solutions of ũ and m̃ in
Lemmas 2.12 and 2.13, respectively.

Lemma 2.12. Under the conditions of Theorem 2.8, for any finite time t1 ≥ 0,
the solutions of ũ are bounded for all 0 ≤ t ≤ t1 and all ũ(0) ∈ Rnu. In addition,
there exist constants cu1, cu2 ∈ R>0 such that the solutions of ũ satisfy

sup
t≥t1
‖ũ(t)‖ ≤ max

{
cu1‖ũ(t1)‖,

1

αω

cu2 sup
t≥t1
‖m̃(t)‖

}
(2.41)

and

lim sup
t→∞

‖ũ(t)‖ ≤ 1

αω

cu2 lim sup
t→∞

‖m̃(t)‖. (2.42)

Proof. See Section 2.7.3.

Lemma 2.13. Under the conditions of Theorem 2.8, there exists a finite time
t1 ≥ 0 such that the solutions of m̃ are bounded for all 0 ≤ t ≤ t1 and all
m̃(0) ∈ Rnu+1. In addition, there exist constants cm1, cm2, . . . , cm10 ∈ R>0 such
that the solutions of ũ satisfy

sup
t≥t1
‖m̃(t)‖ ≤ sup

t≥t1
max

{
cm1‖m̃(t1)‖, α2

ωcm2, αωηωcm3, αωηωcm4‖ũ(t)‖,

α2
ωλu
ηm

cm5‖ũ(t)‖, αω

√
σrcm6‖ũ(t)‖, δncm7,

αωηωδxcm8, αωδucm9, δucm10‖ũ(t)‖
}

(2.43)

and

lim sup
t→∞

‖m̃(t)‖ ≤ lim sup
t→∞

max

{
α2
ωcm2, αωηωcm3, αωηωcm4‖ũ(t)‖,

α2
ωλu
ηm

cm5‖ũ(t)‖, αω

√
σrcm6‖ũ(t)‖, δncm7,

αωηωδxcm8, αωδucm9, δucm10‖ũ(t)‖
}
.

(2.44)
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Chapter 2 Extremum seeking by least-squares estimation

Proof. See Section 2.7.4.

The ũ-dynamics and the m̃-dynamics can be regarded as interconnected sub-
systems for which the solutions satisfy the bounds in Lemmas 2.12 and 2.13,
respectively. For sufficiently small constants ε1, ε2, ε4 and ε6, the cycle-small-
gain condition in Dashkovskiy et al. (2007); Liu et al. (2011) is satisfied for all
αωε1 ≥ δu, all ηω ≤ ε2, all αωλu ≤ ηmε4 and all σr ≤ ε6. Therefore, from (2.41)
and (2.43), we obtain that

sup
t≥t1
‖ũ(t)‖ ≤ max

{
cu1‖ũ(t1)‖,

1

αω

cu2cm1‖m̃(t1)‖, αωcu2cm2,

ηωcu2cm3,
δn
αω

cu2cm7, ηωδxcu2cm8, δucu2cm9

} (2.45)

and

sup
t≥t1
‖m̃(t)‖ ≤ max

{
cm1‖m̃(t1)‖, αωηωcm4cu1‖ũ(t1)‖,

α2
ωλu
ηm

cm5cu1‖ũ(t1)‖,

αω

√
σrcm6cu1‖ũ(t1)‖, α2

ωcm2, αωηωcm3, δucm10cu1‖ũ(t1)‖,

δncm7, αωηωδxcm8, αωδucm9

}
.

(2.46)
Similarly, from (2.42) and (2.44), it follows that

lim sup
t→∞

‖ũ(t)‖ ≤ max

{
αωcu2cm2, ηωcu2cm3,

δn
αω

cu2cm7, ηωδxcu2cm8, δucu2cm9

}

(2.47)
and

lim sup
t→∞

‖m̃(t)‖ ≤ max

{
α2
ωcm2, αωηωcm3, δncm7, αωηωδxcm8, αωδucm9

}
.

(2.48)
The boundedness of the solutions of the closed-loop system in Theorem 2.8
follows from Lemmas 2.10-2.13, (2.45), (2.46) and the coordinate transformation
in (2.37). The bound in (2.35) of Theorem 2.8 follows from (2.47) and the
coordinate transformation in (2.37).

2.5 Simulation comparison

2.5.1 Comparison of convergence rate for examples in the literature

To demonstrate the effectiveness of the extremum-seeking controller in this
chapter, we compare its convergence rate against the convergence rate of three
other extremum-seeking controllers in the literature: the multivariable extension
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of the classical extremum-seeking controller in Krstić and Wang (2000) given in
Ghaffari et al. (2012) (that is, the gradient-based controller, not the Newton-
based controller), the phasor extremum-seeking controller in Atta et al. (2015)
and the observer-based controller in Guay and Dochain (2015). The convergence
rates of the extremum-seeking controllers are tested for eight different examples
taken from the extremum-seeking literature. For each of the eight examples,
one hundred initial conditions for the nominal plant parameters û are randomly
selected from a predefined set. As a measure for the convergence rate, we define
the convergence time as the average of the times it takes for the nominal plant
parameters to converge from their one hundred initial conditions to a predefined
region of their optimal values u∗. For all three controllers, the same perturbation
signals are applied as in the works the examples are taken from. The remaining
initial conditions of the plant and controllers are chosen such that the extremum-
seeking scheme is at steady state if the adaptation of the optimizer is turned off
(that is, if ˙̂u = 0). We let σr = 10−4 and H(û) = 0 for each of the examples.
The regularization constant σ of the controller in Guay and Dochain (2015) is
set to σ = 10−6.

The references and corresponding perturbations of the eight examples are
listed in Table 2.1. The predefined set of initial conditions and the ultimate
bound to which the solutions of û are required to convergence are given in
Table 2.2. A random-search algorithm is employed to find the tuning parameters
of the controller for which the convergence time is minimal. The obtained
minimal convergence times for each example and each controller are presented
in Table 2.3. The corresponding tuning parameters of the controllers are given
in Tables 2.4-2.7. To verify that the obtained convergence times in Table 2.3
are (at least close to) minimal the convergence times for one thousand randomly
chosen parameter sets have been computed for each example and each controller,
where the values of the parameters ranged from one fifth to five times the values
in Tables 2.4-2.7.

From Table 2.3, it follows that the fastest convergence to the ultimate bound
is obtained with the presented extremum-seeking controller for five of the eight
examples. This indicates that the controller presented in this chapter can be
a valid alternative to present-day extremum-seeking controllers for a variety of
applications. Moreover, we obtain from Table 2.3 that the obtained minimal
convergence times of the controller in Guay and Dochain (2015) and the presented
controller are comparable for about half of the examples. Similar to the controller
presented in this chapter, the extremum-seeking controller in Guay and Dochain
(2015) relies on an observer that uses the perturbation signals as well as the
nominal part of the plant-parameter signals to compute a gradient estimate of
the objective function. This in contrary to the extremum-seeking controllers in
Atta et al. (2015) and Ghaffari et al. (2012) that do not utilize the nominal part
of the plant-parameter signal for their gradient estimation. We note that the
extremum-seeking controller in Atta et al. (2015) requires a distinct perturbation
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Table 2.1: References and perturbations of the examples used in the comparison.

Example Reference Perturbations

1 (Tan et al., 2006, Section 6) 0.3 sin(0.5t)

2 (Ariyur and Krstić, 2003, Section 8.5) 0.03 sin(0.08t)

3 (Tan et al., 2010, Section 5, page 20) 0.1 sin(t)

4 (Moase and Manzie, 2012b, Section V.B) 0.05 sin(2t)

5 (Bastin et al., 2009, page 685) 0.02 sin(0.1t)

6 (Ariyur and Krstić, 2003, Section 1.3) 0.05 sin(5t)

7 (Ghaffari et al., 2012, Section 8) 0.1 sin(7t)

0.1 sin(5t)

8 (Ariyur and Krstić, 2003, Section 2.3.1) 0.05 sin(5.48t)

0.05 cos(5.48t)

0.05 sin(6.32t)

0.05 cos(6.32t)

Table 2.2: Sets of initial conditions and ultimate bounds.

Example Set of initial conditions Ultimate bound

1 |û(0)− u∗| ≤ 5 |û− u∗| ≤ 0.01

2 u∗ − 0.4 ≤ û(0) ≤ u∗ |û− u∗| ≤ 0.01

3 |û(0)− u∗| ≤ 1 |û− u∗| ≤ 0.1

4 |û(0)− u∗| ≤ 4 |û− u∗| ≤ 0.01

5 u∗ ≤ û(0) ≤ u∗ + 1 |û− u∗| ≤ 0.01

6 |û(0)− u∗| ≤ 5 |û− u∗| ≤ 0.01

7 ‖û(0)− u∗‖ ≤ 5 ‖û− u∗‖ ≤ 0.01

8 ‖û(0)− u∗‖ ≤ 5 ‖û− u∗‖ ≤ 0.01
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Table 2.3: Minimal convergence times of the extremum-seeking controllers.

Example Atta et al. Ghaffari et al. Guay and
Dochain

Presented

1 1.04× 104 217 94.1 61.5

2 217 126 19.4 5.3

3 23.2 18.6 26.4 26.9

4 229 78.0 24.6 24.4

5 733 750 534 423

6 136 90.0 168 42.6

7 55.5 48.8 25.9 34.0

8 – 52.6 196 205

Table 2.4: Tuning parameters of the controller in Atta et al. (2015).

Example k q
r

1 4.92× 10−3 0.0215

2 0.0416 48.4

3 0.339 0.558

4 47.4 0.0251

5 0.240 278

6 29.9 0.0167

7 0.0728 0.129

8 – –

35



Chapter 2 Extremum seeking by least-squares estimation

Table 2.5: Tuning parameters of the gradient-based controller in Ghaffari et al. (2012), with
K = kI.

Example k ωh ωl

1 0.248 0.686 ∞
2 1.74× 10−3 0.0373 ∞
3 0.0856 1.45 0.412

4 18.4 13.3 0.250

5 5.69× 10−3 0.0314 0.0159

6 2.27 0.630 0.129

7 7.21× 10−3 0.410 0.231

8 1.31 15.7 0.290

Table 2.6: Tuning parameters of the controller in Guay and Dochain (2015).

Example k kT kη1 kη2

1 0.172 6.17 0.255 0.443

2 0.0700 9.93 18.3 27.1

3 0.0316 0.474 0.677 1.66

4 16.5 659 14.7 181

5 7.08× 10−3 0.0679 0.765 4.91

6 1.27 0.899 14.6 5.14

7 0.0230 1.12 7.61 3.18

8 0.864 2.98 4.52 0.841

Table 2.7: Tuning parameters of the presented controller.

Example ηm ηu λu

1 0.822 0.0866 0.773

2 113 0.0854 7.77

3 0.497 0.185 0.368

4 34.0 1.57 365

5 0.468 3.44× 10−3 0.556

6 3.67 0.121 178

7 0.933 0.547 0.239

8 3.85 2.16 17.8

36



2.5 Simulation comparison

frequency for each plant parameter. Therefore, it cannot be applied to Example 8
using the perturbations in Table 2.1.

2.5.2 In-depth example

For the comparison in Section 2.5.1, we used the same perturbations as in the
works the examples were taken from. In this section, we present an in-depth
example to investigate the influence of the perturbation amplitude and the
perturbation frequency on the minimal convergence time. Moreover, we explore
the effect of using curvature information of the objective function on the minimal
convergence time. Consider the following plant:

ẋ1(t) = −x1(t) + u(t)

ẋ2(t) = −x2(t) + 0.5x21(t)

y(t) = x2(t).

(2.49)

The four extremum-seeking controllers in Section 2.5.1 are applied to minimizes
the steady-state value of y. The perturbation used by the four controllers is
given by aω sin(ηωt), as defined in (2.16). We apply the same procedure to obtain
the minimal convergence times of the four controllers as in Section 2.5.1. Let
the set of initial conditions and the ultimate bound be given by |û(0)− u∗| ≤ 5
and |û − u∗| ≤ 0.01, respectively. The values of the regularization constants
are given by σr = 1× 10−4 and σ = 1× 10−6. In Figures 2.2-2.4, the obtained
minimal convergence times of the four controllers are plotted as a function of the
angular perturbation frequency ηω. The obtained minimal convergence times for
the presented controller are displayed for both H(û) = 0 and H(û) = d2F

du2
(û) = 1.

The perturbation amplitude in Figures 2.2-2.4 is given by aω = 0.05, aω = 0.1
and aω = 0.5, respectively.

Figures 2.2-2.4 display that the obtained minimal convergence times for the
extremum-seeking controller in Guay and Dochain (2015) and the presented
controller for H(û) = 0 similar overall. Only for the smallest perturbation
amplitude in Figure 2.2, a significantly faster convergence is obtained with
the presented controller than with the controller in Guay and Dochain (2015)
for certain perturbation frequencies. The controller in Atta et al. (2015), the
controller in Guay and Dochain (2015) and the presented controller are generally
not stable in closed loop with the plant for high perturbation frequencies due
to the large phase delay induced by the plant dynamics. The controller in
Ghaffari et al. (2012) is able to compensate for the phase delay to some extent
by creating a phase lead with the high-pass filter of the controller for high values
of the cutoff frequency of the filter. Therefore, the nominal plant parameter
û is able to converge to the ultimate bound for high perturbation frequencies
if the controller in Ghaffari et al. (2012) in used. The main difference in the
obtained minimal convergence times of the controllers in Atta et al. (2015) and in
Ghaffari et al. (2012) and the observer-based controllers in Ghaffari et al. (2012)
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Figure 2.2: Minimal convergence time as a function of ηω for aω = 0.05.
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Figure 2.3: Minimal convergence time as a function of ηω for aω = 0.1.
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Figure 2.4: Minimal convergence time as a function of ηω for aω = 0.5.
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Figure 2.5: Minimal convergence time as a function of H(û) for aω = 0.1.

and in this chapter is that the fastest convergence with the phasor controller in
Atta et al. (2015) and with the classical controller in Ghaffari et al. (2012) is
obtained for the largest perturbation amplitude, while the fastest convergence
with the two observer-based controllers is obtained for the smallest perturbation
amplitude. Therefore, the possible benefit of using the nominal part of the
plant-parameter signal in addition to the perturbation signal to estimate the
gradient of the objective function (as for the observer-based controllers) may
depend on the perturbation amplitude.

We observe in Figures 2.2-2.4 that a smaller minimal convergence time of the
presented controller is obtained for H(û) = d2F

du2
(û) = 1 than for H(û) = 0 if

the perturbation frequency is sufficiently low. Choosing H(û) = d2F
du2

(û) requires
explicit knowledge of the objective function. Because the objective function
is unknown, it is not reasonable to assume that the Hessian of the objective
function is known exactly. In Figure 2.5, the minimal convergence time is plotted
as a function of constant values of H(û) for the angular perturbation frequencies
ηω = 0.1, ηω = 0.2 and ηω = 0.5. We obtain from Figure 2.5 that, for sufficiently
low perturbation frequencies, a significantly faster convergence can be obtained
compared to H(û) = 0 if H is a moderately good approximation of the Hessian of
the objective function. On the other hand, H(û) = 0 is the more suitable choice
for high perturbation frequencies. The tuning-parameter values that correspond
to the obtained minimal convergence time make a jump at H(û) = 1, which
explains the bump in the curves near H(û) = 1 in Figure 2.5.

Remark 2.14. We note that the plant (2.49) is of the Wiener-Hammerstein type.
It was found in Moase and Manzie (2012b) that an arbitrarily fast convergence
to an arbitrarily small ultimate bound can be obtained for Wiener-Hammerstein
plants by selecting a sufficiently large perturbation frequency and an sufficiently
small perturbation amplitude if the delay due to the plant dynamics is compen-
sated for. We note that, with a similar delay compensation, the convergences
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times in this section can be further reduced, especially for high perturbation
frequencies for which the phase delay is large.

2.6 Conclusion

In this chapter, we have presented an extremum-seeking controller that opti-
mizes the performance of a general nonlinear plant with an arbitrary number
of plant parameters in the presence of an unknown bounded disturbance. The
extremum-seeking controller uses a least-squares observer to accurately compute
an estimate of the gradient of the objective function. The observer utilizes both
the perturbation signals and the nominal part of the plant-parameter signals to
obtain a gradient estimate. Moreover, curvature information of the objective
function can be used to improve the accuracy of the estimate. The convergence
region of the closed-loop system of plant an controller can be made global by
normalizing the adaptation gain of the controller. A simulation comparison of
the presented controller and three other controllers in the literature shows that
a competitive convergence rate can be obtained with the presented controller
for a variety of examples. Simulation results of an additional in-depth exam-
ple indicate that utilizing the nominal part of the plant-parameter signals in
addition to the perturbation signals to compute an estimate of the gradient of
the objective function may result in a faster convergence for small perturbation
amplitudes. In addition, the simulation results display that using the Hessian
of the objective function to enhance the gradient estimate may have a positive
effect on the convergence rate if the frequency of perturbations is low, even for
a moderately good approximation of the Hessian. Further research is required
to generalize the last two statements.

2.7 Appendix

2.7.1 Proof of Lemma 2.10

From (2.3) and (2.37), it follows that the state equation for x̃ is given by

˙̃x = f (x̃ + X(u),u)− dX

du
(u)u̇. (2.50)

From Assumptions 2.1-2.3, it follows that there exists a Lyapunov function for
the x̃-dynamics in (2.50) for constant values of u, as formulated in the following
converse lemma.

Lemma 2.15. Under Assumptions 2.1-2.3, there exists a function Vx : Rnx ×
Rnu → R, and constants γx1, γx2, . . . , γx5 ∈ R>0, such that the inequalities

γx1‖x̃‖2 ≤ Vx(x̃,u) ≤ γx2‖x̃‖2, (2.51)
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∂Vx
∂x̃

(x̃,u)f(x̃ + X(u),u) ≤ −γx3‖x̃‖2 (2.52)

and ∥∥∥∥
∂Vx
∂x̃

(x̃,u)

∥∥∥∥ ≤ γx4‖x̃‖,
∥∥∥∥
∂Vx
∂u

(x̃,u)

∥∥∥∥ ≤ γx5‖x̃‖, (2.53)

are satisfied for all x̃ ∈ Rnx and all u ∈ Rnu.

Proof. The proof follows similar steps as the proof of Khalil (2002, Lemma 9.8).
Let φ(t; x̃,u) be the solution of (2.50) for constant u that starts at x̃ for t = 0,
that is φ(0; x̃,u) = x̃. For any x̃ ∈ Rnx and any u ∈ Rnu , (2.50) can be written
as

∂φ

∂t
(t; x̃,u) = f (φ(t; x̃,u) + X(u),u) . (2.54)

We define the function

Vx(x̃,u) =

∫ Tx

0

‖φ(t; x̃,u)‖2dt, (2.55)

with constant Tx >
ln(µx)
νx
≥ 0, where µx, νx ∈ R>0 are defined in Assumption 2.3.

We note that, without loss of generality, this implies that µx ≥ 1. Due to the
bound on the trajectories in (2.8), we have

Vx(x̃,u) ≤
∫ Tx

0

µ2
xe
−2νxt‖x̃‖2dt =

µ2
x

(
1− e−2νxTx

)

2νx
‖x̃‖2. (2.56)

From (2.4) of Assumption 2.1 and from (2.6) of Assumption 2.2, we have

‖f(x̃ + X(u),u)‖ =

∥∥∥∥
∫ 1

0

∂f

∂x
(σx̃ + X(u),u)dσx̃

∥∥∥∥ ≤ Lfx‖x̃‖ (2.57)

for all x̃ ∈ Rnx and all u ∈ Rnu . From (2.54) and (2.57), we obtain

∂

∂t

(
‖φ(t; x̃,u)‖2

)
≥ −2Lfx‖φ(t; x̃,u)‖2 (2.58)

for all t ≥ 0. We use this inequality to obtain

∂

∂t

(
‖φ(t; x̃,u)‖2e2Lfxt

)
≥ 0. (2.59)

By integrating both sides of (2.59) with respect to time over the domain [0, t],
it follows that

‖φ(t; x̃,u)‖2e2Lfxt − ‖x̃‖2 ≥ 0. (2.60)

Therefore, the following bound is obtained:

Vx(x̃,u) ≥
∫ Tx

0

e−2Lfxt‖x̃‖2dt =
1− e−2LfxTx

2Lfx

‖x̃‖2. (2.61)
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The bounds on Vx in (2.56) and (2.61) imply that (2.51) is satisfied with γx1 =
1−e−2LfxTx

2Lfx
and γx2 =

µ2x(1−e−2νxTx)
2νx

. Because Lfx, νx and Tx are positive constants,
we have γx1 > 0 and γx2 > 0.

By integrating both sides of (2.54) with respect to time, we have

φ(t; x̃,u) = x̃ +

∫ t

0

f(φ(τ ; x̃,u) + X(u),u)dτ. (2.62)

From straightforward computation, we obtain

∂φ

∂x̃
(t; x̃,u) = I +

∫ t

0

∂f

∂x
(φ(τ ; x̃,u) + X(u),u)

∂φ

∂x̃
(τ ; x̃,u)dτ. (2.63)

The differential equation in (2.54) can be written as

∂φ

∂t
(t; x̃,u) = f(x̃ + X(u),u) +

∫ t

0

∂f

∂x
(φ(τ ; x̃,u) + X(u),u)

∂φ

∂t
(τ ; x̃,u)dτ.

(2.64)
We define the variable

ξ(t; x̃,u) =
∂φ

∂t
(t; x̃,u)− ∂φ

∂x̃
(t; x̃,u)f(x̃ + X(u),u). (2.65)

From (2.63) and (2.64), it follows that

∂ξ

∂t
(t; x̃,u) =

∂f

∂x
(φ(t; x̃,u) + X(u),u)ξ(t; x̃,u), (2.66)

with initial condition ξ(0; x̃,u) = 0, which implies that ξ(t; x̃,u) = 0 for all
t ≥ 0. Therefore, from (2.65), we obtain that

∂φ

∂t
(t; x̃,u) =

∂φ

∂x̃
(t; x̃,u)f(x̃ + X(u),u), (2.67)

for all t ≥ 0. We use this equation and the bound on the trajectories in (2.8) of
Assumption 2.3 to obtain

∂Vx
∂x̃

(x̃,u)f(x̃ + X(u),u) =

∫ Tx

0

2φ(t; x̃,u)
∂φ

∂t
(t; x̃,u)dt

= ‖φ(Tx; x̃,u)‖2 − ‖x̃‖2

≤ −
(
1− µ2

xe
−2νxTx

)
‖x̃‖2.

(2.68)

This implies that the bound in (2.52) is satisfied with γx3 = 1 − µ2
xe
−2νxTx .

Because Tx >
ln(µx)
νx

, we have γx3 > 0.
From (2.63) and (2.4) of Assumption 2.1, we obtain

∂

∂t

∥∥∥∥
∂φ

∂x̃
(t; x̃,u)

∥∥∥∥ ≤ Lfx

∥∥∥∥
∂φ

∂x̃
(t; x̃,u)

∥∥∥∥ , (2.69)
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from which it follows that

∂

∂t

(∥∥∥∥
∂φ

∂x̃
(t; x̃,u)

∥∥∥∥ e−Lfxt

)
≤ 0. (2.70)

Similar to (2.60), by integrating both sides of (2.70) with respect to time over
the domain [0, t], we obtain

∥∥∥∥
∂φ

∂x̃
(t; x̃,u)

∥∥∥∥ e−Lfxt − 1 ≤ 0. (2.71)

This inequality is used to obtain the bound
∥∥∥∥
∂Vx
∂x̃

(x̃,u)

∥∥∥∥ ≤
∫ Tx

0

2‖φ(t; x̃,u)‖
∥∥∥∥
∂φ

∂x̃
(t; x̃,u)

∥∥∥∥ dt

≤
∫ Tx

0

2µxe
−νxt‖x̃‖eLfxtdt

=
2µx

(
e(Lfx−νx)Tx − 1

)

Lfx − νx
‖x̃‖.

(2.72)

By taking the derivative with respect to u of both sides of the equation (2.62),
we obtain

∂φ

∂u
(t; x̃,u) =

∫ t

0

(
∂f

∂x
(φ(τ ; x̃,u) + X(u),u)

(
∂φ

∂u
(τ ; x̃,u) +

dX

du
(u)

)

+
∂f

∂u
(φ(τ ; x̃,u) + X(u),u)

)
dτ.

(2.73)

By using the bounds in Assumptions 2.1-2.2, it follows that
∥∥∥∥
∂φ

∂u
(t; x̃,u)

∥∥∥∥ ≤
∫ t

0

Lfx

∥∥∥∥
∂φ

∂u
(τ ; x̃,u)

∥∥∥∥ dτ + (LfxLX + Lfu)t. (2.74)

Subsequently, use of the Gronwall-Bellman inequality yields
∥∥∥∥
∂φ

∂u
(t; x̃,u)

∥∥∥∥ ≤ (LfxLX + Lfu)teLfxt. (2.75)

Therefore, from this inequality and the bound on the trajectories in (2.8) of
Assumption 2.3, we obtain

∥∥∥∥
∂Vx
∂u

(x̃,u)

∥∥∥∥ ≤
∫ Tx

0

2‖φ(t; x̃,u)‖
∥∥∥∥
∂φ

∂u
(t; x̃,u)

∥∥∥∥ dt

≤
∫ Tx

0

2µxe
−νxt‖x̃‖(LfxLX + Lfu)teLfxtdt

=
2µx(LfxLX + Lfu)

(Lfx − νx)2

(
1− e(Lfx−νx)Tx

+ (Lfx − νx)Txe
(Lfx−νx)Tx

)
‖x̃‖,

(2.76)
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The bounds in (2.53) follows from (2.72) and (2.76), with γx4 =
2µx(e(Lfx−νx)Tx−1)

Lfx−νx
and γx5 = 2µx(LfxLX+Lfu)

(Lfx−νx)2
(
1 + ((Lfx − νx)Tx − 1)e(Lfx−νx)Tx

)
. Without loss of

generality, we assume that Lfx > νx such that γx4 > 2µxTx > 0 and γx5 >
µx(LfxLX + Lfu)T 2

x > 0.

By using the function Vx in Lemma 2.15 as a Lyapunov function candidate
for the x̃-dynamics in (2.50) for time-varying u, we obtain

V̇x(x̃,u) =
∂Vx
∂x̃

(x̃,u)f(x̃ + X(u),u)

+

(
∂Vx
∂u

(x̃,u)− ∂Vx
∂x̃

(x̃,u)
dX

du
(u)

)
u̇.

(2.77)

for all x̃ ∈ Rnx and all u ∈ Rnu . Use of the bounds in Assumption 2.2 and
Lemma 2.15 yields

V̇x(x̃,u) ≤ −γx3‖x‖2 + (γx5 + γx4LX) ‖x‖‖u̇‖. (2.78)

Subsequently, from Lemma 2.15 and Young’s inequality, we obtain

V̇x(x̃,u) ≤ − γx3
2γx2

Vx(x̃,u) +
(γx5 + γx4LX)2

2γx3
‖u̇‖2. (2.79)

To find an upper bound for ‖u̇‖, we note that it follows from (2.15) that

u̇ = ˙̂u + αωω̇. (2.80)

From the definition of ω in (2.16), we have that there exists a constant Lω2 ∈ R>0

such that
‖ω̇‖ ≤ ηωLω2. (2.81)

Moreover, from (2.34), we have that ‖ ˙̂u‖ ≤ ηu. Therefore, from (2.80)-(2.81)
and ‖ ˙̂u‖ ≤ ηu, we obtain

‖u̇‖ ≤ ηu + αωηωLω2, (2.82)

which implies that
‖u̇‖ ≤ αωηω (ε3ε5 + Lω2) . (2.83)

for all ηm ≤ ηωε3 and all ηu ≤ αωηmε5. Substituting this in (2.79) gives

V̇x(x̃,u) ≤ − γx3
2γx2

Vx(x̃,u) + α2
ωη

2
ω

(γx5 + γx4LX)2

2γx3
(ε3ε5 + Lω2)

2 . (2.84)

Then, from the comparison lemma Khalil (2002, Lemma 3.4), it follows that

Vx(x̃(t),u(t)) ≤ Vx(x̃(0),u(0))e
− γx3

2γx2
t

+ α2
ωη

2
ω

γx2
γ2x3

(γx5 + γx4LX)2 (ε3ε5 + Lω2)
2 (2.85)
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for all t ≥ 0 and all x̃(0) ∈ Rnx . From (2.85) and Lemma 2.15, it follows that

‖x̃(t)‖ ≤ max

{√
2γx2
γx1
‖x̃(0)‖e−

γx3
4γx2

t
, αωηω

√
2γx2
γx1

γx5 + γx4LX

γx3
(ε3ε5 + Lω2)

}
.

(2.86)
The proof of the lemma follows from (2.86).

2.7.2 Proof of Lemma 2.11

First, we note that Q̃ in (2.37) is well defined if Q−1 exists. From (2.29), we
have that

Q−1(t) = ηm

∫ t

0

e−ηm(t−τ)ΦT (τ, t)
(
CT (τ)C(τ) + σrD

TD
)

Φ(τ, t)dτ

+ e−ηmtΦT (0, t)Q(0)−1Φ(0, t),

(2.87)

where we substituted Q(0) = Q0. From (2.34), it follows that ‖ ˙̂u‖ ≤ ηu.
Therefore, we have

‖ũ(t)− ũ(τ)‖ =

∥∥∥∥
∫ t

τ

˙̃u(τ)dτ

∥∥∥∥ ≤ ηu(t− τ) (2.88)

for all t ≥ τ ≥ 0, which implies that state-transition matrix Φ(τ, t) in (2.31)
is bounded for any t ≥ τ ≥ 0. Moreover, the matrix C in (2.21) is uniformly
bounded because the perturbation vector ω in (2.16) is uniformly bounded.
Because each time-varying matrix in the right-hand side of (2.87) is bounded for
any t ≥ 0, the matrix Q−1(t) in (2.87) is bounded for any t ≥ 0. In addition,
the matrix Q−1(t) is positive definite for any t ≥ 0 and any symmetric positive-
definite Q(0) ∈ Rnu+1×nu+1 because the first term in the right-hand side of (2.87)
is positive semidefinite and the second term in the right-hand side of (2.87) is
positive definite if Q(0) is positive definite. Hence, Q−1(t) exists for any t ≥ 0,
which implies that Q̃(t) is well defined for any t ≥ 0.

Now, from (2.33) and (2.36)-(2.38), we obtain that the state equation for Q̃
is given by

˙̃Q = −ηmQ̃− Q̃A−AT Q̃−
(

Ξ−1 +
ηm
ηω

l

)
A−AT

(
Ξ−1 +

ηm
ηω

l

)
− ηm

ηm
ηω

l.

(2.89)
We note that Q̃ is symmetric because Q, Ξ and l are symmetric. We define the
following Lyapunov-function candidate for the Q̃-dynamics:

VQ(Q̃) = tr
(
Q̃2
)
. (2.90)

From (2.89), we have that the time derivative of VQ can be written as

V̇Q(Q̃) = −2ηm tr
(
Q̃2
)
− 4 tr

(
Q̃2A

)

− 4 tr

(
Q̃

(
Ξ−1 +

ηm
ηω

l

)
A

)
− 2ηm

ηm
ηω

tr
(
Q̃l
)
.

(2.91)
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From Young’s inequality, (2.90) and (2.91), we get

V̇Q(Q̃) ≤ −ηmVQ(Q̃)− 4 tr
(
Q̃2A

)

+
8

ηm
tr

(
AT

(
Ξ−1 +

ηm
ηω

l

)2

A

)
+ 2ηm

(
ηm
ηω

)2

tr
(
l2
)
.

(2.92)

From (2.90), it follows that

‖Q̃‖2 ≤ VQ(Q̃) ≤ nu‖Q̃‖2. (2.93)

We note that
tr
(
Q̃2A

)
≤ nu‖Q̃‖2‖A‖ (2.94)

and

tr

(
AT

(
Ξ−1 +

ηm
ηω

l

)2

A

)
≤ nu

∥∥∥∥Ξ−1 +
ηm
ηω

l

∥∥∥∥
2

‖A‖2. (2.95)

From the definition of l in (2.38), it follows that there exists a constant Ll ∈ R>0

such that
‖l‖ ≤ Ll, (2.96)

which implies that tr (l2) ≤ nuL
2
l . Moreover, from the definition of A in (2.21)

and from ‖ ˙̂u‖ ≤ ηu, we have that

‖A‖ ≤ ηu
αω

. (2.97)

Without loss of generality, we assume that ε3 and ε6 in Theorem 2.8 are suffi-
ciently small such that it follows from (2.36) and (2.96) that

∥∥∥∥Ξ−1 +
ηm
ηω

l

∥∥∥∥ ≤ 2 (2.98)

for all ηm ≤ ηωε3 and all σr ≤ ε6. By combining the bounds in (2.91)-(2.98), we
obtain

V̇Q(Q̃) ≤ −ηmVQ(Q̃) + 4
ηu
αω

nuVQ(Q̃) +
32

ηm

(
ηu
αω

)2

nu + 2ηm

(
ηm
ηω

)2

nuL
2
l .

(2.99)
Now, without loss of generality, we assume that ε3 and ε5 in Theorem 2.8 are
sufficiently small such that

V̇Q(Q̃) ≤ −ηm
2
VQ(Q̃) +

ηm
256

. (2.100)

for all ηm ≤ ηωε3 and all ηu ≤ αωηm. Use of the comparison lemma Khalil (2002,
Lemma 3.4) yields

VQ(Q̃(t)) ≤ VQ(Q̃(0))e−
ηm
2
t +

1

128
(2.101)
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for all t ≥ 0. From (2.93) and (2.101), we obtain

‖Q̃(t)‖ ≤ max

{√
2nu‖Q̃(0)‖e− ηm4 t,

1

8

}
, (2.102)

which completes the proof of Lemma 2.11.

2.7.3 Proof of Lemma 2.12

From (2.17), (2.34) and (2.37), we obtain that the state equation for ũ is given
by

˙̃u = −λu
ηu
(
αω

dF
duT

(û) + Dm̃
)

ηu + λu
∥∥αω

dF
duT

(û) + Dm̃
∥∥ . (2.103)

From (2.103), it follows that ‖ ˙̃u‖ ≤ ηu, from which we obtain that

‖ũ(t)‖ ≤ ‖ũ(0)‖+ ηut (2.104)

for all t ≥ 0. We define the following Lyapunov-function candidate for the
ũ-dynamics:

Vu(ũ) = ‖ũ‖2. (2.105)

From (2.103) and (2.105), we obtain that the time derivative of Vu is given by

V̇u(ũ) = −2λu
ηu
(
αω

dF
du

(û)ũ + ũTDm̃
)

ηu + λu
∥∥αω

dF
duT

(û) + Dm̃
∥∥ . (2.106)

From Assumption 2.4, it subsequently follows that

V̇u(ũ) ≤ − 2αωλuηuLF1‖ũ‖2
ηu + λu

∥∥αω
dF
duT

(û) + Dm̃
∥∥ +

2λuηu‖ũ‖‖D‖‖m̃‖
ηu + λu

∥∥αω
dF
duT

(û) + Dm̃
∥∥ . (2.107)

By applying Young’s inequality and substituting ‖D‖ = 1, we obtain

V̇u(ũ) ≤ − αωλuηuLF1‖ũ‖2
ηu + λu

∥∥αω
dF
duT

(û) + Dm̃
∥∥ +

λuηu‖m̃‖2
αωLF1

(
ηu + λu

∥∥αω
dF
duT

(û) + Dm̃
∥∥) .

(2.108)
From (2.105) and (2.108), it follows that

V̇u(ũ) ≤ − αωλuηuLF1Vu(ũ)

2
(
ηu + λu

∥∥αω
dF
duT

(û) + Dm̃
∥∥) (2.109)

if Vu(ũ) ≥ 2
α2
ωL

2
F1
‖m̃‖2. From Assumption 2.4, (2.105) and (2.109), we obtain

that

V̇u(ũ) ≤ − αωλuηuLF1Vu(ũ)

2
(
ηu + αωλu

(
LF2 + LF1√

2

)√
Vu(ũ)

) (2.110)
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if Vu(ũ) ≥ 2
α2
ωL

2
F1
‖m̃‖2. By using similar arguments as in the proof of Khalil

(2002, Theorem 4.18), we obtain from (2.110) that

sup
t≥t1

Vu(ũ(t)) ≤ max

{
Vu(ũ(t1)),

2

α2
ωL

2
F1

sup
t≥t1
‖m̃(t)‖2

}
(2.111)

and

lim sup
t→∞

Vu(ũ(t)) ≤ 2

α2
ωL

2
F1

lim sup
t→∞

‖m̃(t)‖2 (2.112)

for any t1 ≥ 0, where we applied (Sontag and Wang, 1996, Lemma II.1) to obtain
the limit superior in the right-hand side of (2.112). From (2.105) and (2.111), it
follows that

sup
t≥t1
‖ũ(t)‖ ≤ max

{
‖ũ(t1)‖,

√
2

αωLF1

sup
t≥t1
‖m̃(t)‖

}
. (2.113)

Similarly, from (2.105) and (2.112), we obtain that

lim sup
t→∞

‖ũ(t)‖ ≤
√

2

αωLF1

lim sup
t→∞

‖m̃(t)‖. (2.114)

The boundedness of the solutions of ũ for 0 ≤ t ≤ t1 follows from (2.104) for
any finite time t1 ≥ 0. The bounds in (2.41) and (2.42) of Lemma 2.12 follow
from (2.113) and (2.114), respectively. This completes the proof of the lemma.

2.7.4 Proof of Lemma 2.13

From (2.17), (2.20), (2.32) and (2.37), we obtain that the state equation for m̃
is given by

˙̃m =
(
A− ηmQ

(
CTC + σDTD

))
m̃ + α2

ωB (ŵ −w)

− ηmQCT
(
α2
ω (v̂ − v)− z − d

)
− αωηmσrQDT dF

duT
(û).

(2.115)

We define the following Lyapunov-function candidate for the m̃-dynamics:

Vm(m̃,Q) = m̃TQ−1m̃. (2.116)

We note that

λmin(Q−1)‖m̃‖2 ≤ Vm(m̃,Q) ≤ λmax(Q
−1)‖m̃‖2, (2.117)

where λmin(Q−1) and λmax(Q
−1) are the smallest and largest eigenvalue of Q−1,

respectively. From (2.115) and (2.33), it follows that the time derivative of Vm
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is given by

V̇m(m̃,Q) = −ηmm̃TQ−1m̃− ηmm̃T
(
CTC + σrD

TD
)
m̃

+ 2α2
ωm̃TQ−1B(ŵ −w)− 2ηmm̃TCT (α2

ω (v̂ − v)− z − d)

− 2αωηmσrm̃
TDT dF

duT
(û).

(2.118)
From (2.116), (2.118) and Young’s inequality, we obtain

V̇m(m̃,Q) ≤ −ηm
2
Vm(m̃,Q) +

2α4
ω

ηm
‖Q−1‖‖B‖2‖ŵ −w‖2

+ 3α4
ωηm|v̂ − v|2 + 3ηm|z|2 + 3ηm|d|2 + α2

ωηmσr

∥∥∥∥
dF

du
(û)

∥∥∥∥
2

.

(2.119)
From Assumption 2.4 and (2.22)-(2.24), we have

‖ŵ −w‖ ≤ 1

αω

(LH + LF2) ‖ ˙̂u‖. (2.120)

From the definition of ω in (2.16), it follows that there exists a constant Lω1 ∈
R>0 such that

‖ω‖ ≤ Lω1. (2.121)

From Assumption 2.4, (2.22)-(2.24 and (2.121), we obtain

|v̂ − v| ≤ 1

2
(LH + LF2)L

2
ω1. (2.122)

Furthermore, to obtain a bound on |z|, from (2.22), we have

|z| ≤
∣∣∣∣
∫ 1

0

(
∂h

∂x
(σx̃ + X(u),u)− ∂h

∂x
(X(u),u)

)
dσx̃

∣∣∣∣

+

∣∣∣∣
(
∂h

∂x
(X(u),u)− ∂h

∂x
(X(u∗),u∗)

)
x̃

∣∣∣∣+

∣∣∣∣
∂h

∂x
(X(u∗),u∗)x̃

∣∣∣∣
(2.123)

From Assumption 2.1, it follows that
∥∥∥∥
∂h

∂x
(x1,u1)−

∂h

∂x
(x2,u2)

∥∥∥∥ ≤ Lhx‖x1 − x2‖+ Lhu‖u1 − u2‖ (2.124)

for all x1,x2 ∈ Rnx and all u1,u2 ∈ Rnu . By applying the bound in (2.124) to
(2.123), we obtain

|z| ≤ Lhx
2
‖x̃‖2 +Lhx‖X(u)−X(u∗)‖‖x̃‖+Lhu‖u−u∗‖‖x̃‖+Lh∗‖x̃‖, (2.125)

with Lh∗ = ‖∂h
∂x

(X(u∗),u∗)‖. Subsequently, from Assumption 2.2, it follows that

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖u− u∗‖‖x̃‖+ Lh∗‖x̃‖. (2.126)
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From (2.15), (2.37) and (2.121), we have

‖u− u∗‖ ≤ ‖ũ‖+ αωLω1. (2.127)

By substituting (2.127) in (2.126), we obtain the following bound on |z|:

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖.
(2.128)

From Assumption 2.4, it follows that

∥∥∥∥
dF

du
(û)

∥∥∥∥ ≤ LF2‖ũ‖. (2.129)

Moreover, from Assumption 2.5, (2.15), (2.37), (2.121) and (2.37), we have

|d| ≤ δn + δx‖x̃‖+ δu‖ũ‖+ αωδuLω1 (2.130)

By combining (2.119), (2.120), (2.122), (2.128)-(2.130) and ‖B‖ = 1, we obtain

V̇m(m̃,Q) ≤ −ηm
2
Vm(m̃,Q) +

2α2
ω

ηm
‖Q−1‖ (LH + LF2)

2 ‖ ˙̂u‖2

+
3

4
α4
ωηm (LH + LF2)

2 L4
ω1 + 3ηm(δn + δx‖x̃‖+ δu‖ũ‖

+ αωδuLω1)
2 + 3ηm

(
Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖
)2

+ α2
ωηmσrL

2
F2‖ũ‖2.

(2.131)
From Lemmas 2.10 and 2.12, it follows that, for any finite time t1 ≥ 0, the
solutions of x̃ and ũ are bounded for all 0 ≤ t ≤ t1. Moreover, from the proof of
Lemma 2.11 in Section 2.7.2, we have that Q−1(t) is positive definite and bounded
for all 0 ≤ t ≤ t1. From this and ‖u̇‖ ≤ ηu (see (2.34)), we obtain that the
right-hand side of (2.131) is bounded for all 0 ≤ t ≤ t1. Therefore, by applying
the comparison lemma Khalil (2002, Lemma 3.4), we obtain that Vm(m̃(t),Q(t))
is bounded for all 0 ≤ t ≤ t1. Subsequently, because Vm(m̃(t),Q(t)) is bounded
for 0 ≤ t ≤ t1 and Q−1(t) is positive definite and bounded for all 0 ≤ t ≤ t1,
it follows from (2.117) that the solutions of m̃ are bounded for all 0 ≤ t ≤ t1.
Further details regarding the boundedness of m̃(t) for 0 ≤ t ≤ t1 are left to the
reader.

Let us define t1 ≥ 0 such that

‖x̃(t)‖αωηωcx2, ‖Q̃(t)‖ ≤ 1

8
(2.132)
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for all t ≥ t1. The existence of a finite time t1 ≥ 0 such that (2.132) holds follows
from Lemmas 2.10 and 2.11. Now, from (2.37) and the bound on l in (2.96) in
the proof of Lemma 2.11, it follows that

∥∥Q−1 −Ξ−1
∥∥ ≤ ‖Q̃(t)‖+

ηm
ηω
Ll. (2.133)

Without loss of generality, we assume that ε3 and ε6 in Theorem 2.8 are suf-
ficiently small such that we obtain from (2.36), Lemma 2.11 and (2.133) that

1

4
I � Q−1 � 5

4
I (2.134)

for all t ≥ t1, all ηm ≤ ηωε3 and all σr ≤ ε6. From (2.117) and (2.134), it follows
that

1

4
‖m̃‖2 ≤ Vm(m̃,Q) ≤ 5

4
‖m̃‖2 (2.135)

for all t ≥ t1. Moreover, from (2.134), we have

‖Q−1‖ ≤ 5

4
(2.136)

for all t ≥ t1. From (2.17), (2.34), (2.37) and ‖D‖ = 1, it follows that

‖ ˙̂u‖ ≤ λu‖Dm̂‖ ≤ λu

(
αω

∥∥∥∥
dF

du
(û)

∥∥∥∥+ ‖m̃‖
)
. (2.137)

Subsequently, from (2.137) and Assumption 2.4, we obtain

‖ ˙̂u‖ ≤ λu (αωLF2‖ũ‖+ ‖m̃‖) . (2.138)

From (2.135) and (2.138), it follows that

‖ ˙̂u‖2 ≤ 8λ2uVm(m̃,Q) + 2α2
ωλ

2
uL

2
F2‖ũ‖2 (2.139)

for all t1 ≥ 0. Without loss of generality, we assume that ε2 and ε4 in Theorem 2.8
are sufficiently small such that we obtain from (2.131), (2.132), (2.136) and
(2.139) that

V̇m(m̃,Q) ≤ −ηm
4
Vm(m̃,Q) + 5

α4
ωλ

2
u

ηm
(LH + LF2)

2 L2
F2‖ũ‖2

+
3

2
α4
ωηm (LH + LF2)

2 L4
ω1 + 12ηmδ

2
n + 12α2

ωη
2
ωηmδ

2
xc

2
x2

+ 12α2
ωηmδ

2
uL

2
ω1 + 12α2

ωη
2
ωηm(LhxLX + Lhu)2c2x2‖ũ‖2

+ 12ηmδ
2
u‖ũ‖2 + 12α2

ωη
2
ωηmL

2
h∗c

2
x2 + α2

ωηmσrL
2
F2‖ũ‖2.

(2.140)
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for all t ≥ t1, all ηω ≤ ε2 and all αωλu ≤ ηmε4. From the comparison lemma
(Khalil, 2002, Lemma 3.4) and (2.140), we obtain

sup
t≥t1

Vm(m̃(t),Q(t)) ≤ 10 sup
t≥t1

max

{
Vm(m̃(t1),Q(t1)), 6α

4
ω (LH + LF2)

2 L4
ω1,

48α2
ωη

2
ωL

2
h∗c

2
x2, 48α2

ωη
2
ω(LhxLX + Lhu)2c2x2‖ũ(t)‖2,

20
α4
ωλ

2
u

η2m
(LH + LF2)

2 L2
F2‖ũ(t)‖2, 4α2

ωσrL
2
F2‖ũ(t)‖2,

48δ2n, 48α2
ωη

2
ωδ

2
xc

2
x2, 48α2

ωδ
2
uL

2
ω1, 48δ2u‖ũ(t)‖2

}

(2.141)
and

lim sup
t→∞

Vm(m̃(t),Q(t)) ≤ 10 lim sup
t→∞

max

{
6α4

ω (LH + LF2)
2 L4

ω1,

48α2
ωη

2
ωL

2
h∗c

2
x2, 48α2

ωη
2
ω(LhxLX + Lhu)2c2x2‖ũ(t)‖2,

20
α4
ωλ

2
u

η2m
(LH + LF2)

2 L2
F2‖ũ(t)‖2, 4α2

ωσrL
2
F2‖ũ(t)‖2,

48δ2n, 48α2
ωη

2
ωδ

2
xc

2
x2, 48α2

ωδ
2
uL

2
ω1, 48δ2u‖ũ(t)‖2

}
,

(2.142)
where we applied Sontag and Wang (1996, Lemma II.1) to obtain the limit
superior in the right-hand side of (2.142). From (2.135) and (2.141), it follows
that

sup
t≥t1
‖m̃(t)‖ ≤ 2

√
10 sup

t≥t1
max

{√
5

2
‖m̃(t1)‖,

√
6α2

ω (LH + LF2)L
2
ω1,

4
√

3αωηωLh∗cx2, 4
√

3αωηω(LhxLX + Lhu)cx2‖ũ(t)‖,

2
√

5
α2
ωλu
ηm

(LH + LF2)LF2‖ũ(t)‖, 2αω

√
σrLF2‖ũ(t)‖,

4
√

3δn, 4
√

3αωηωδxcx2, 4
√

3αωδuLω1, 4
√

3δu‖ũ(t)‖
}
.

(2.143)

Similarly, from (2.135) and (2.141), we obtain

lim sup
t→∞

‖m̃(t)‖ ≤ 2
√

10 lim sup
t→∞

max

{√
6α2

ω (LH + LF2)L
2
ω1,

4
√

3αωηωLh∗cx2, 4
√

3αωηω(LhxLX + Lhu)cx2‖ũ(t)‖,

2
√

5
α2
ωλu
ηm

(LH + LF2)LF2‖ũ(t)‖, 2αω

√
σrLF2‖ũ(t)‖,

4
√

3δn, 4
√

3αωηωδxcx2, 4
√

3αωδuLω1, 4
√

3δu‖ũ(t)‖
}
.

(2.144)
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The bounds in (2.43) and (2.44) of Lemma 2.13 follow from (2.143) and (2.144),
respectively. This completes the proof of the lemma.
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Chapter 3

A sampled-data extremum-seeking control
approach using a least-squares observer

Although many extremum-seeking control methods assume that the
measurements of the performance indicators and the update of the
plant parameters are continuous in time, the performance-indicator
measurements are often sampled and the plant parameters are up-
dated in a discrete-time fashion in many practical applications. A
discrete-time version of the extremum-seeking controller in Chap-
ter 2 is presented to optimize the steady-state plant performance in
a sampled-data setting. We show that the discrete-time controller is
equivalent to the continuous-time controller in Chapter 2 for the limit
as the sampling time approaches zero. A simulation example displays
that the response of the discrete-time controller resembles the response
of the continuous-time controller in Chapter 2 for sufficiently high
sampling rates.

3.1 Introduction

The majority of extremum-seeking control methods are designed to operate
in continuous time: the measurements of the performance indicators are as-
sumed to be available for any given time, while the plant-parameter values are
continuously updated; see for example Krstić and Wang (2000); Nešić et al.
(2013a); Pan et al. (2003); Tsien and Serdengecti (1955). In practice, how-
ever, the performance-indicator measurements are commonly sampled and the
plant-parameter values are updated at a finite rate. Although a combination of
continuous-time extremum-seeking control methods and numerical integration
methods (for example, Euler or Runge-Kutta methods) can be used to opti-
mize the steady-state plant performance in a sampled-data setting (Mohammadi
et al., 2014), it is often computationally more efficient to apply discrete-time
extremum-seeking control methods.

We make the distinction between three types of discrete-time extremum-
seeking control methods. The first type of discrete-time extremum-seeking
control methods are methods for which the sampling time is generally large.
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By choosing a sufficiently large sampling time and keeping the plant-parameter
values constant between samples, the transient response of the plant dynamics
has almost died out at the time a new sample is taken so that the measured
performance of the plant is approximately equal to its constant steady-state
value. Hence, the relation between the plant parameters and the measured plant
performance can be treated as a quasistatic function which can be optimized
by a variety of derivative-free numerical methods (Khong et al., 2013b; Popović
et al., 2003; Teel and Popović, 2001; Zhang and Ordóñez, 2012).

The second type of discrete-time extremum-seeking control methods are gray-
box methods that use autoregressive models to identify the plant and subse-
quently optimize its steady-state performance (Bamberger and Isermann, 1978;
Fabri et al., 2015; Golden and Ydstie, 1989).

The third type of discrete-time extremum-seeking control methods use a
discrete-time update law to compute a new plant-parameter value at each sam-
pling instance (Choi et al., 2002; Guay, 2014; Ryan and Speyer, 2010; Stanković
and Stipanović, 2010). Discrete-time extremum-seeking control methods of
this type are most similar to continuous-time extremum-seeking control meth-
ods. Many of these methods can be regarded as discrete-time versions of their
continuous-time counterparts; see for example Choi et al. (2002)/Krstić (2000)
and Guay (2014)/Guay and Dochain (2015).

In this chapter, we present a discrete-time extremum-seeking controller of the
third type. The controller is a discrete-time equivalent of the continuous-time
extremum-seeking controller in Chapter 2. The discrete-time extremum-seeking
controller in this chapter optimizes the performance of a general nonlinear plant
with an arbitrary number of plant parameters in a sampled-data setting. The
discrete-time controller is equivalent to the continuous-time controller in Chap-
ter 2 for the limit as the sampling time approaches zero. A simulation example
displays that the responses of the continuous-time controller in Chapter 2 and
the discrete-time controller in this chapter are comparable for sufficiently high
sampling rates.

The sampled-data extremum-seeking control problem is formulated in in Sec-
tion 3.2. We present our discrete-time extremum-seeking controller in Section 3.3.
In Section 3.4, we investigate the relation between the discrete-time controller
and the continuous-time controller in Chapter 2. The simulation example is
given Sections 3.5. This chapter is concluded in Section 3.6.

3.2 Extremum-seeking problem formulation

Consider the following multi-input-multi-output nonlinear plant:

ẋ(t) = f(x(t),u(t))

e(t) = g(x(t),u(t)) + n(t),
(3.1)
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3.2 Extremum-seeking problem formulation

ẋ = f(x,u)

e = g(x,u) + n

Plant

u
e

ek = e(kTs)

Sampler
u(t) = uk

Zero-order hold

uk

n

yk = Z(ek,uk)

Cost function

yk

ek

Figure 3.1: Sampled-data plant and cost function.

with state x ∈ Rnx , input u ∈ Rnu , output e ∈ Rne and disturbance n ∈ Rne ,
where nx, nu, ne ∈ N>0 are the corresponding dimensions and t ∈ R≥0 is the
time. The input u is a vector of tunable plant parameters and the output e
is a vector of performance indicators. The state x, the disturbance n and the
functions f and g are unknown, which implies that the relation between the input
and the output of the plant is unknown. The output e is sampled with a fixed
sampling time Ts ∈ R>0. The kth sample is denoted by ek = e(kTs) for k ∈ N.
The output sample ek is used to compute a new input uk+1. The input uk+1 is
subsequently fed to the plant using a zero-order hold such that u(t) = uk+1 for
all t ∈ (kTs, (k + 1)Ts]. For simplicity, we assume that the computation time of
uk+1 is negligibly short compared to the sampling time. Note that t = (k+ 1)Ts
is the last (and not the first) time instance that u(t) is equal to uk+1.

A cost function Z is designed that quantifies the performance of the plant
given any plant parameters uk and any performance-indicator measurements ek.
The corresponding measured plant performance y(t) at time t = kTs is denoted
by

yk = Z(ek,uk). (3.2)

The sampled-data plant and the cost function are illustrated in Figure 3.1. With
some abuse of notation, we write the sampled-data plant and the cost function
as one extended plant

ẋ(t) = f(x(t),u(t))

yk = h(xk,uk) + dk,
(3.3)

with xk = x(kTs), h(xk,uk) = Z(g(xk,uk),uk), dk = Z(g(xk,uk) + nk,uk) −
Z(g(xk,uk),uk) and nk = n(kTs). We note that the function h and the dis-
turbance d are unknown because g, x and n are unknown. We assume the
following.

Assumption 3.1. The functions f : Rnx × Rnu → Rnx and h : Rnx × Rnu → R
in (3.3) are twice continuously differentiable. Moreover, there exist constants
Lfx, Lfu, Lhx, Lhu ∈ R>0 such that

∥∥∥∥
∂f

∂x
(x,u)

∥∥∥∥ ≤ Lfx,

∥∥∥∥
∂f

∂u
(x,u)

∥∥∥∥ ≤ Lfu, (3.4)
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∥∥∥∥
∂2h

∂x∂xT
(x,u)

∥∥∥∥ ≤ Lhx,

∥∥∥∥
∂2h

∂x∂uT
(x,u)

∥∥∥∥ ≤ Lhu (3.5)

for all x ∈ Rnx and all u ∈ Rnu.

Moreover, we assume that there exists a constant steady-state solution of the
state x of the plant dynamics, denoted by X(u), for each constant vector of
plant parameters u ∈ Rnu .

Assumption 3.2. There exists a twice continuously differentiable map X :
Rnu → Rnx and a constant LX ∈ R>0, such that

0 = f(X(u),u),

∥∥∥∥
dX

du
(u)

∥∥∥∥ ≤ LX (3.6)

for all u ∈ Rnu.

In addition, we assume that the steady-state solution X(u) is globally expo-
nentially stable for each constant vector of plant parameters u ∈ Rnu .

Assumption 3.3. There exist constants µx, νx ∈ R>0, such that for each con-
stant u ∈ Rnu, the solutions of the dynamics in (3.3) satisfy

‖x̃(t)‖ ≤ µx‖x̃(t0)‖e−νx(t−t0), (3.7)

for all x(t0) ∈ Rnx and all t ≥ t0 ≥ 0, with x̃(t) = x(t)−X(u).

The disturbance-free steady-state relation between constant plant parameters
u and the plant-performance is given by

F (u) = h(X(u),u) = Z(g(X(u),u),u). (3.8)

We refer to F as the objective function. We assume that the cost function is
designed such that the objective function exhibits a unique minimum on the
domain Rnu , where the minimum of the objective function relates to the optimal
steady-state plant performance.

Assumption 3.4. The objective function F : Rnu → R is twice continuously
differentiable and exhibits a unique minimum on the domain Rnu. Let the corre-
sponding minimizer be denoted by u∗ = arg minu∈Rnu F (u). There exist constants
LF1, LF2 ∈ R>0 such that

dF

du
(u)(u− u∗) ≥ LF1‖u− u∗‖2,

∥∥∥∥
d2F

duduT
(u)

∥∥∥∥ ≤ LF2 (3.9)

for all u ∈ Rnu.

In addition, we assume that the disturbance dk satisfies the following bound.
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3.3 Discrete-time controller

Assumption 3.5. There exist constants δn, δx, δu ∈ R≥0 such that

|dk| ≤ δn + δx‖xk −X(uk)‖+ δu‖uk − u∗‖ (3.10)

for all xk ∈ Rnx, all uk ∈ Rnu and all k ∈ N.

Remark 3.6. The assumptions for the sampled-date setting in this chapter are
equivalent to the assumptions for the continuous-time setting in Chapter 2.

We note that the map X, the map F and its minimizer u∗ are unknown
because the functions f and h are unknown. In the next section, we present a
discrete-time extremum-seeking controller to regulate the plant parameters uk
to their performance-optimizing values u∗.

3.3 Discrete-time controller

Similar to Chapter 2, we present an extremum-seeking controller that estimates
the gradient of the objective function and subsequently uses this gradient esti-
mate to steer the plant parameters uk to the minimizer u∗. We define

uk = ûk + αωωk, (3.11)

where ûk is a vector of nominal plant-parameter values, which can be thought
of as an estimate of the minimizer u∗, and where αωωk is a vector of per-
turbation signals with amplitude αω ∈ R>0. The vector ωk is defined by
ωk = [ω1,k, ω2,k, . . . , ωnu,k]

T , with

ωi,k =





sin

(
(i+ 1)πk

NωClcm

)
, if i is odd,

cos

(
iπk

NωClcm

)
, if i is even,

(3.12)

for i = 1, 2, . . . , nu, where Clcm is the least common multiple of 1, 2, . . . ,
⌈
nu

2

⌉
, and

where aω ∈ R>0 and Nω ∈ N>0 are tuning parameters, with NωClcm > 2
⌈
nu

2

⌉
.

To estimate the gradient of the objective function, we model the input-to-output
behavior of the extended plant in the following general form with the help of
Taylor’s theorem:

mk+1 = Akmk + α2
ω (B1,kw1,k + B2,kw2,k)

yk = Ckmk + α2
ωvk + zk + dk,

(3.13)

with state

mk =

[
F (ûk)

αω
dF
duT

(ûk)

]
, (3.14)
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where the matrices Ak, B1,k, B2,k and Ck are defined as

Ak =


1

∆ûTk
αω

0 I


 , B1,k =

[
0

I

]
, B2,k =




∆ûTk
2αω

0


 , Ck =

[
1 ωTk

]
, (3.15)

with

∆ûk = ûk+1 − ûk, (3.16)

and where the disturbances w1,k, w2,k, vk and zk are given by

w1,k =

∫ 1

0

d2F

duduT
(ûk + s∆ûk)ds

∆ûk
αω

,

w2,k = 2

∫ 1

0

(1− s) d2F

duduT
(ûk + s∆ûk)ds

∆ûk
αω

,

vk = ωTk

∫ 1

0

(1− s) d2F

duduT
(ûk + sαωωk)dsωk,

zk = h(xk,uk)− h(X(uk),uk).

(3.17)

We note that the state mk contains a scaled version of the gradient of the
objective function. To obtain an estimate for the gradient of the objective
function, we design an observer to estimate the state mk. The disturbances w1,k,
w2,k and vk are unknown because they depend on the Hessian of the objective
function. Similarly, the disturbance zk is unknown because the state xk, the map
X and the function h are unknown. For the design of the observer, we assume
that zk = dk = 0. We approximate the disturbances w1, w2 and v by

ŵk = ŵ1,k = ŵ2,k = H(ûk)
∆ûk
αω

,

v̂k =
1

2
ωTkH(ûk)ωk,

(3.18)

where the function H : Rnu → Rnu×nu satisfies

‖H(û)‖ ≤ LH (3.19)

for all û ∈ Rnu and some constant LH ∈ R>0. An overall good choice of H is
H(û) = 0. However, H(û) ≈ d2F

duduT
(û) is more suitable under certain tuning

conditions, assuming that a reasonably accurate approximation of the Hessian
of the objective function is available; see Section 2.5.

We introduce a recursive three-step observer to estimate the state mk. Let
the estimate of the state mk be denoted by m̂k|3. Moreover, let m̂k|1 and m̂k|2
be intermediate variables. The intermediate variables m̂k|1 and m̂k|2 and the
state estimate m̂k|3 are each obtained by minimizing a quadratic cost function
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3.3 Discrete-time controller

with respect to an exponentially weighted time window of the estimation error:

(k, m̂k|i) = arg min
pk∈Rnu+1

Ji(k,pk),

subject to: pj+1 = Ajpj + α2
ωBjŵj

ŷj = Cjpj + α2
ωv̂j, ∀j ∈ {0, 1, . . . , k} ,

(3.20)

for i = {1, 2, 3}, with

Bk = B1,k + B2,k, ∀k ∈ N. (3.21)

The corresponding cost functions J1, J2 and J3 are given by

J1(k,pk) = (1− λm)
k−1∑

q=0

λk−qm ‖yq − ŷq‖2 + σr(1− λm)
k−1∑

j=0

λk−jm ‖Dpj‖2

+ λkm(m̂0 − p0)
TQ−10 (m̂0 − p0),

J2(k,pk) = (1− λm)
k∑

q=0

λk−qm ‖yq − ŷq‖2 + σr(1− λm)
k−1∑

j=0

λk−jm ‖Dpj‖2

+ λkm(m̂0 − p0)
TQ−10 (m̂0 − p0),

J3(k,pk) = (1− λm)
k∑

q=0

λk−qm ‖yq − ŷq‖2 + σr(1− λm)
k∑

j=0

λk−jm ‖Dpj‖2

+ λkm(m̂0 − p0)
TQ−10 (m̂0 − p0),

(3.22)

with

D =
[
0 I

]
(3.23)

and m̂0 ∈ Rnu+1, where λm ∈ (0, 1) is a tuning parameter and Q0 ∈ Rnu+1×nu+1

is a symmetric positive-definite matrix. The tuning parameter σr ∈ R≥0 is a
regularization constant. We note that J2(k,pk) = J1(k,pk)+(1−λm)‖yk− ŷk‖2
and J3(k,pk) = J2(k,pk) + σr(1 − λm)‖Dpk‖2. To recursively compute m̂k|3,
we derive the update steps m̂k|1 → m̂k|2, m̂k|2 → m̂k|3 and m̂k|3 → m̂k+1|1. We
note that an explicit expression for m̂k|i is given by

m̂k|i = Qk|iΨk|i (3.24)
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for all i = {1, 2, 3} and all k ∈ N, with

Qk|1 =

(
(1− λm)

k−1∑

q=0

λk−qm ΦT
q,kC

T
q CqΦq,k + σr(1− λm)

k−1∑

j=0

λk−jm ΦT
j,kD

TDΦj,k

+ λkmΦT
0,kQ

−1
0 Φ0,k

)−1
,

Qk|2 =

(
(1− λm)

k∑

q=0

λk−qm ΦT
q,kC

T
q CqΦq,k + σr(1− λm)

k−1∑

j=0

λk−jm ΦT
j,kD

TDΦj,k

+ λkmΦT
0,kQ

−1
0 Φ0,k

)−1
,

Qk|3 =

(
(1− λm)

k∑

q=0

λk−qm ΦT
q,kC

T
q CqΦq,k + σr(1− λm)

k∑

j=0

λk−jm ΦT
j,kD

TDΦj,k

+ λkmΦT
0,kQ

−1
0 Φ0,k

)−1

(3.25)
and

Ψk|1 = (1− λm)
k−1∑

q=0

λk−qm ΦT
q,kC

T
q

(
yq + α2

ωCq

k−1∑

s=q

Φq,s+1Bsŵs − α2
ωv̂q

)

+ α2
ωσr(1− λm)

k−1∑

j=0

λk−jm ΦT
j,kD

TD
k−1∑

l=j

Φj,l+1Blŵl

+ λkmΦT
0,kQ

−1
0

(
m̂0 + α2

ω

k−1∑

p=0

Φ0,p+1Bpŵp

)
,

Ψk|2 = (1− λm)
k∑

q=0

λk−qm ΦT
q,kC

T
q

(
yq + α2

ωCq

k−1∑

s=q

Φq,s+1Bsŵs − α2
ωv̂q

)

+ α2
ωσr(1− λm)

k−1∑

j=0

λk−jm ΦT
j,kD

TD
k−1∑

l=j

Φj,l+1Blŵl

+ λkmΦT
0,kQ

−1
0

(
m̂0 + α2

ω

k−1∑

p=0

Φ0,p+1Bpŵp

)
,

(3.26)
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3.3 Discrete-time controller

Ψk|3 = (1− λm)
k∑

q=0

λk−qm ΦT
q,kC

T
q

(
yq + α2

ωCq

k−1∑

s=q

Φq,s+1Bsŵs − α2
ωv̂q

)

+ α2
ωσr(1− λm)

k∑

j=0

λk−jm ΦT
j,kD

TD
k−1∑

l=j

Φj,l+1Blŵl

+ λkmΦT
0,kQ

−1
0

(
m̂0 + α2

ω

k−1∑

p=0

Φ0,p+1Bpŵp

)
,

(3.27)
where the state-transition matrix Φ is given by

Φj,k =


1

ûTj − ûTk
αω

0 I


 (3.28)

for all j, k ∈ N. From (3.24), we obtain the following update equations of the
observer:

Step 1→ 2 (correction step):

m̂k|2 = m̂k|1 + Lk|1
(
yk −Ckm̂k|1 − α2

ωv̂k
)
,

Qk|2 =
(
I− Lk|1Ck

)
Qk|1

(
I− Lk|1Ck

)T
+

1

1− λm
Lk|1L

T
k|1,

(3.29)

Step 2→ 3 (regularization step):

m̂k|3 =

{
m̂k|2 − Lk|2Dm̂k|2, if σr > 0,

m̂k|2, if σr = 0,

Qk|3 =





(
I− Lk|2D

)
Qk|2

(
I− Lk|2D

)T
+

1

σr(1− λm)
Lk|2L

T
k|2,

if σr > 0,

Qk|2, if σr = 0,

(3.30)

Step 3→ 1 (prediction step):

m̂k+1|1 = Akm̂k|3 + α2
ωBkŵk,

Qk+1|1 =
1

λm
AkQk|3A

T
k ,

(3.31)
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with

Lk|1 = Qk|1C
T
k

(
1

1− λm
+ CkQk|1C

T
k

)−1
,

Lk|2 = Qk|2D
T

(
1

σr(1− λm)
I + DQk|2D

T

)−1 (3.32)

and initial conditions m̂0|1 = m̂0 and Q0|1 = Q0. The regularization step in
(3.30) prevents the matrix Qk|3 from becoming excessively large if the level of
excitation of the plant parameters uk is low for σr > 0. Regularization deterio-
rates the accuracy of the state estimate. Therefore, the regularization constant
σr is commonly chosen to be small. No regularization is applied if σr = 0.

Because m̂k|3 is an estimate of the state mk, we have that Dm̂k|3 is an esti-
mate of the gradient of the objective function scaled by αω. We define the
following gradient-descent optimizer to drive ûk towards u∗:

ûk+1 = ûk − λu
ηuDm̂k|3

ηu + λu‖Dm̂k|3‖
, (3.33)

where λu, ηu ∈ R>0 are tuning parameters. The adaptation gain in (3.33) is nor-
malized to prevent the solutions of the closed-loop system of plant and extremum-
seeking controller from having a finite escape time; see also Section 2.3.

An illustration of the extremum-seeking controller in (3.29)-(3.31), (3.33) is
given in Figure 3.2. The resulting optimization scheme is obtained by clos-
ing the loop between the sampled-data plant and cost function in Section 3.2
and the extremum-seeking controller presented in this section; see also Fig-
ures 3.1 and 3.2.

3.4 Relation to the continuous-time controller

To relate the discrete-time controller in Section 3.3 to the continuous-time con-
troller in Section 2.3, we introduce the following lemma.

Lemma 3.7. Let the tuning parameters of the continuous-time controller in
Section 2.3 be denoted by α′ω, η′ω, η′m, λ′u, η′u and σ′r. Let the tuning parameters
of the discrete-time controller in Section 3.3 be given by

αω = α′ω, Nω =
2π

η′ωTsClcm
, λm = e−η

′
mTs ,

λu = λ′uTs, ηu = η′uTs, σr = σ′r.

(3.34)

Under these tuning conditions, the discrete-time controller in Section 3.3 is
equivalent to the continuous-time controller in Section 2.3 for the limit as the
sampling time Ts approaches zero.
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ûk+1 = ûk − λu
ηuDm̂k|3

ηu + λu‖Dm̂k|3‖

Observer

Optimizer

uk

yk

m̂k|3

αωωk

Extremum-seeking controller

ûk

+ +

ωk

m̂k|2 = m̂k|1 + Lk|1
(
yk −Ckm̂k|1 − α2

ωv̂k
)

Qk|2 =
(
I− Lk|1Ck

)
Qk|1

(
I− Lk|1Ck

)T

+
1

1− λm
Lk|1L

T
k|1

m̂k|3 = m̂k|2 − Lk|2Dm̂k|2

Qk|3 =
(
I− Lk|2D

)
Qk|2

(
I− Lk|2D

)T

+
1

σr(1− λm)
Lk|2L

T
k|2

m̂k+1|1 = Akm̂k|3 + α2
ωBkŵk

Qk+1|1 =
1

λm
AkQk|3A

T
k

∆ûk

Figure 3.2: Discrete-time extremum-seeking controller for σr > 0.
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d̂1,2

1

2

d̂2,3

0

d̂0,1

3

Mobile robot

Fixed point

Figure 3.3: Chain of two mobile robots and two fixed points.

Proof. See Section 3.7.1.

We conclude from Lemma 3.7 that the solutions of the closed-loop system of the
sampled-data plant in Section 3.2 and the discrete-time controller in Section 3.3
are similar to the solutions of the closed-loop system of the continuous-time plant
in Section 2.2 and the continuous-time controller in Section 2.3 if the tuning
conditions in (3.34) are satisfied and the sampling time is sufficiently small.

Remark 3.8. The influence of the sampling is relatively small if the discrete-
time extremum-seeeking controller is slow with respect to the sampling time. We
note that we can make the extremum-seeking controller arbitrarily slow under
appropriate tuning conditions. Hence, for any finite sampling time, we can make
the extremum-seeking controller sufficiently slow such that the sampling has little
effect on the solutions of the closed-loop system of plant and controller.

3.5 Simulation example

To demonstrate the influence of the sampling time on the solutions of the closed-
loop system of plant and controller, we introduce the following example. Consider
two mobile robots, numbered one and two. Although the position in the XY -
plane of the two robots is unknown, our aim is to manoeuvre the robots such
that they are equally spaced on a straight line between two fixed points in the
XY -plane. The two fixed points in the XY -plane are numbered zero and three,
such that a chain of four links (numbered zero to three) is obtained consisting of
the first fixed point, the two robots and the second fixed point; see Figure 3.3.

The position of link i in the XY -plane is denoted by pi(t) = [px,i(t), py,i(t)]
T

for i = {0, 1, 2, 3}, which implies that the distance between link i and link i+ 1
is given by

d̂i,i+1(t) =
√

(px,i+1(t)− px,i(t))2 + (py,i+1(t)− py,i(t))2 (3.35)

for i = {0, 1, 2}; see Figure 3.3. The dynamics of the two robots is given by
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Mip̈i(t) + gi(ṗi(t)) = τ i(t) (3.36)

for i = {1, 2}, where the positive-definite matrix Mi and the function gi are
uncertain. Although the position pi(t) is unknown, the difference ∆pi,k =
pi,k+1 − pi,k is obtained by sampled measurements, where pi,k is defined such
that pi,k = pi(kTs). We define ∆ri,k = ri,k+1 − ri,k for i ∈ {1, 2}, where
ri,k = [rx,i,k, ry,i,k]

T is a reference for the position pi,k. The control input τ i(t)
in (3.36) is given by τ i(t) = 0 for all t ∈ [0, Ts] and τ i(t) = τ i,k+1 for all
t ∈ (kTs, (k + 1)Ts] and all k ∈ N>0, with

τ i,k+1 = M̂i
∆ri,k −∆ri,k−1

T 2
s

+ ĝi(
∆pi,k−1
Ts

)

+ K1,i
∆ri,k−1 −∆pi,k−1

Ts
+ K2,i

k−1∑

j=0

∆ri,j −∆pi,j,

(3.37)

where K1,i and K2,i are positive-definite matrices, and where the positive-definite

matrix M̂i and the function ĝi are approximations of Mi and gi.
We assume that sampled measurements of the distances d̂i,i+1(t) are available.

The sampled measurement of d̂i,i+1(t) for t = kTs is denoted by d̂i,i+1,k. We
define the plant-parameter vector uk = [rT1,k, r

T
2,k]

T and the cost function

Z(ek) =
2∑

i=0

d2i,i+1,k, (3.38)

with ek = [d0,1,k, d1,2,k, d2,3,k]
T . Note that ek indirectly depend on the plant

parameters uk, and that output of the cost function is minimal if the two robots
are equally spaced on a straight line between the two fixed points.

Let Ji = I, gi = 0.5id, Ĵi = 0.9I, ĝi = 0.4id, K1,i = 5I and K2,i = 10I
for i = {1, 2}, where id is the identify function. Moreover, let the positions
of the two fixed points be given by p0 = [1, 0]T and p3 = [7, 6]T . We use the
discrete-time extremum-seeking controller in Section 3.3 to minimize the output
of the cost function in (3.38). The tuning parameters of the controller are chosen
such that they satisfy (3.34), with α′ω = 0.2, η′ω = π, η′m = 1, λ′u = 2, η′u = 0.5
and σ′r = 1× 10−3. The function H is given by

H(û) =




4 0 −2 0

0 4 0 −2

−2 0 4 0

0 −2 0 4




(3.39)

for all û ∈ Rnu . We note that H(û) = d2F
duduT

(û) for this choice of H, where the
objective function is obtained from (3.35) and (3.38) assuming that pi,k = ri,k
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for i = {1, 2}. Although the objective function is dependent on the unknown
positions of the fixed points, computation of the Hessian of the objective function
does not require that the positions of the fixed points are known.

Simulation results for the discrete-time extremum-seeking controller for Ts = 0.02
and Ts = 0.1 are presented in Figures 3.4-3.9. For comparison’s sake, simulation
results for the continuous-time extremum-seeking controller in Section 2.3 are
also presented in Figures 3.4-3.9. The control input and the cost function for the
continuous-time extremum-seeking controller are obtained by taking the limit
for Ts → 0, which leads to

τ i(t) = M̂ir̈i(t) + ĝi(ṗi(t)) + K1,i(ṙi(t)− ṗi(t)) + K2,i

∫ t

0

(ṙi(τ)− ṗi(τ))dτ

(3.40)
and

Z(e(t)) =
2∑

i=0

d2i,i+1(t). (3.41)

The discrete-time control input τ i,k+1 in (3.37) only depends on the difference
∆ri,k = ri,k+1− ri,k and not on ri,k itself. Therefore, an identical control input is
obtained for different initial conditions ri,0 as long as the difference ∆ri,k is the
same. For convenience, we have set ri,0 = pi,0 in Figures 3.4-3.9.

Figures 3.4 and 3.5 illustrate successful implementations of the extremum-
seeking controllers as uk = [rT1,k, r

T
2,k]

T converges to a small region of their
performance-optimizing values u∗ = [3, 2, 5, 4]T . There are substantial differences
between the plant-parameter signals of the continuous-time extremum-seeking
and the discrete-time extremum-seeking controller for Ts = 0.1. For Ts =
0.02, however, the plant-parameter signals of the continuous-time extremum-
seeking and the discrete-time extremum-seeking controller are alike. Additional
simulation results (not presented here) confirm that the plant-parameter signals
of the discrete-time controller converge to those of the continuous-time controller
as the sampling time approaches zero, as stated in Section 3.4.

The paths of the mobile robots in the XY -plane are displayed in Figure 3.6.
We observe in Figure 3.6 that the mobile robots travel from their initial positions
to a region of the points [3, 2]T and [5, 4]T , respectively. These points are equally
spaced on a straight line between the fixed points p0 = [1, 0]T and p3 = [7, 6]T ,
which satisfies our aim. Similar to Figures 3.4 and 3.5, the paths of the mobile
robots are comparable for the continuous-time controller and the discrete-time
controller if Ts = 0.02 is used, while large deviations are observed if Ts = 0.1 is
applied.

From Figures 3.7 and 3.8, we obtain that the mobile robots have more difficulty
tracking the position reference if the sampling time is large, especially mobile
robot two, which is required to move faster than mobile robot one due to a higher-
frequency perturbation in the corresponding reference signal for the position
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Figure 3.4: Position reference for mobile robot one as a function of time.
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Figure 3.6: Paths of the mobile robots in the XY -plane.
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of the robot. Any tracking error influences the estimate of the gradient of
the objective function. Figure 3.9 reveals that the estimate of the gradient of
the objective function is less accurate for the the discrete-time controller with
sampling time Ts = 0.1 than continuous-time controller or the discrete-time
controller with sampling time Ts = 0.02. By noting that the gradient estimate
of the objective function drives the nominal values of the position references of
the mobile robots, the differences in the paths of the mobile robots in Figure 3.6
can be explained by the differences in the estimate of the gradient of the objective
function and the tracking error of the positions of the robots.

3.6 Conclusion

In this chapter, we have presented a discrete-time extremum-seeking controller
that optimizes the performance of a nonlinear plant with an arbitrary number
of plant parameters in a sampled-data setting. The controller is a discrete-time
counterpart of the continuous-time extremum-seeking controller in Chapter 2.
We have proved that the discrete-time controller is equivalent to the continuous-
time controller in Chapter 2 for the limit as the sampling time approaches zero.
A simulation example displays that comparable results are obtained with the
discrete-time controller and the continuous-time controller in Chapter 2 if the
sampling rate is sufficiently high.

3.7 Appendix

3.7.1 Proof of Lemma 3.7

Analogously to Section 3.2, we define the continuous-time signals ω(t), m̂(t), Q(t)
and û(t) such that ω(0) = ω0, m̂(0) = m̂0|3, Q(0) = Q0|3, û(0) = û0 and ω(t) =
ωk+1, m̂(t) = m̂k+1|3, Q(t) = Qk+1|3, û(t) = ûk+1 for all t ∈ (kTs, (k + 1)Ts]
and all k ∈ N. From (3.12) and (3.34), we have that ωk = [ω1,k, ω2,k, . . . , ωnu,k]

T ,
with

ωi,k =





sin

(
i+ 1

2
η′ωkTs

)
, if i is odd,

cos

(
i

2
η′ωkTs

)
, if i is even,

(3.42)

for i = {1, 2, . . . , nu}. For Ts → 0, we obtain from (3.42) that ω(t) =
[ω1(t), ω2(t), . . . , ωnu(t)]T , with

ωi(t) =





sin

(
i+ 1

2
η′ωt

)
, if i is odd,

cos

(
i

2
η′ωt

)
, if i is even

(3.43)
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for all t ∈ R≥0. Similarly, from (3.33) and (3.34), we have that

ûk+1 − ûk
Ts

= −λ′u
η′uDm̂k|3

η′u + λ′u‖Dm̂k|3‖
, (3.44)

which implies that

˙̂u(t) = −λ′u
η′uDm̂(t)

η′u + λ′u‖Dm̂(t)‖ (3.45)

for Ts → 0. From (3.25) (or alternatively from (3.29)-(3.32)), it follows that

Q−1k+1|3 = λmA−Tk Q−1k|3A
−1
k + (1− λm)

(
CT
kCk + σrD

TD
)
. (3.46)

We define the matrix

Āk =
1

Ts

(
I−A−1k

)
. (3.47)

From (3.46) and (3.47), we obtain

Q−1k+1|3 = λmQ−1k|3 − λmĀT
kQ−1k|3Ts − λmQ−1k|3ĀkTs

+ λmĀT
kQ−1k|3ĀkT

2
s + (1− λm)

(
CT
kCk + σrD

TD
)
.

(3.48)

Combining (3.34) and (3.48) yields

Q−1k+1|3 −Q−1k|3
Ts

= −1− e−η′mTs
Ts

Q−1k|3 − e−η
′
mTsĀT

kQ−1k|3 − e−η
′
mTsQ−1k|3Āk

+ e−η
′
mTsĀT

kQ−1k|3ĀkTs +
1− e−η′mTs

Ts

(
CT
kCk + σ′rD

TD
)
.

(3.49)
By letting Ts → 0, it follows from (3.49) that

d

dt

(
Q−1(t)

)
= −η′mQ−1(t)−A′T (t)Q−1(t)−Q−1(t)A′(t)

+ η′m
(
C′T (t)C′(t) + σ′rD

TD
)
,

(3.50)

with

A′(t) = lim
Ts→0

Āk =


0

˙̂u
T

(t)

αω

0 0


 , C′(t) = lim

Ts→0
Ck =

[
1 ωT (t)

]
. (3.51)

From (3.50), it directly follows that

Q̇(t) = η′mQ(t) + Q(t)A′T (t) + A′(t)Q(t)

− η′mQ(t)
(
C′T (t)C′(t) + σ′rD

TD
)

Q(t).
(3.52)
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Now, from (3.24) and (3.27), we have that

Q−1k+1|3m̂k+1|3 = λmA−Tk Q−1k|3m̂k|3 + α2
ωλmA−Tk Q−1k|3A

−1
k Bkŵk

+ (1− λm)CT
k (yk − α2

ωv̂k).
(3.53)

Using (3.47), we obtain that (3.53) can be written as

Q−1k+1|3m̂k+1|3 = λmQ−1k|3m̂k|3 − λmĀT
kQ−1k|3m̂k|3Ts + α2

ωλmQ−1k|3Bkw̄kTs

− α2
ωλmĀT

kQ−1k|3Bkw̄kT
2
s − α2

ωλmQ−1k|3ĀkBkw̄kT
2
s

+ α2
ωλmĀT

kQ−1k|3ĀkBkw̄kT
3
s + (1− λm)CT

k (yk − α2
ωv̂k).

(3.54)

with

w̄k =
ŵk

Ts
. (3.55)

From (3.34) and (3.54), it follows that

Q−1k+1|3m̂k+1|3 −Q−1k|3m̂k|3

Ts
= −1− e−η′mTs

Ts
Q−1k|3m̂k|3 − e−η

′
mTsĀT

kQ−1k|3m̂k|3

+ α2
ωe
−η′mTsQ−1k|3Bkw̄k − α2

ωe
−η′mTsĀT

kQ−1k|3Bkw̄kTs

− α2
ωe
−η′mTsQ−1k|3ĀkBkw̄kTs + α2

ωe
−η′mTsĀT

kQ−1k|3ĀkBkw̄kT
2
s

+
1− e−η′mTs

Ts
CT
k (yk − α2

ωv̂k).

(3.56)
For Ts → 0, we obtain from (3.56) that

d

dt

(
Q−1(t)m̂(t)

)
= −η′mQ−1(t)m̂(t)−A′TQ−1(t)m̂(t)

+ α2
ωQ−1(t)B′ŵ′(t) + η′mC′T (t)(y(t)− α2

ωv̂
′(t)),

(3.57)

with

B′ = lim
Ts→0

Bk = lim
Ts→0




1
2αω

(
ûk+1−ûk

Ts

)T
Ts

I


 =

[
0

I

]
(3.58)

and

ŵ′(t) = lim
Ts→0

w̄k = H(û(t))
˙̂u(t)

αω

, v̂′(t) = lim
Ts→0

v̂k =
1

2
ωT (t)H(û(t))ω(t),

(3.59)
where we used (3.15), (3.16) and (3.21) to obtain (3.58). Subsequently, from
(3.50) and (3.57), it follows that

˙̂m(t) =
(
A′ − η′mσ′rQ(t)DTD

)
m̂(t) + α2

ωB′ŵ′(t)

+ η′mQ(t)C′T (t)(y(t)−C′(t)m̂(t)− α2
ωv̂
′(t)).

(3.60)
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We note that (3.43), (3.45), (3.52) and (3.60) are equivalent to (2.16), (2.34),
(2.33) and (2.32) in Section 2.3, respectively. Hence, under the tuning conditions
in (3.34), the equations of the discrete-time controller in Section 3.3 and the
equations of the continuous-time controller in Section 2.3 are equivalent for the
limit as Ts → 0.
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Chapter 4

Self-driving extremum-seeking control for
nonlinear dynamical plant

The vast majority of extremum-seeking methods rely on added pertur-
bations to optimize the steady-state performance of a plant. Contrary
to these perturbation-based methods, self-driving extremum-seeking
methods do not require perturbations to obtain the optimal plant per-
formance. One of the main advantages of such self-driving extremum
seeking schemes is that asymptotic convergence to the true optimum
can be achieved, instead of convergence to a neighborhood of the op-
timum. Moreover, the absence of perturbations eliminates one of the
time scales present in classical extremum-seeking schemes, which po-
tentially allows for a faster convergence. In this chapter, we present a
novel easy-to-tune self-driving extremum-seeking controller. The sta-
bility analysis in this chapter shows that exponential convergence to
the performance-optimal conditions is achieved for dynamical plants
under the given assumptions. A simulation example illustrates the
effectiveness of the presented approach.

4.1 Introduction

In the early heydays of extremum-seeking control in the 1950s and 1960s, many
different types of extremum-seeking controllers were developed. In his survey,
Sternby (1980) mentions four different types of extremum-seeking methods: per-
turbation methods, switching methods, self-driving systems and model-oriented
methods. Since the introduction of the first extremum-seeking schemes, pertur-
bation methods have been the most popular type of extremum-seeking methods;
see Ariyur and Krstić (2003); Sternby (1980); Tan et al. (2010) and references
therein. Although switching methods (Flärdh et al., 2005), self-driving systems
(Hunnekens et al., 2014) and model-oriented methods (Fabri et al., 2015) have
recently reappeared in the literature, they have received considerably less atten-
tion than perturbation methods.

In this chapter, we will focus on self-driving systems. Self-driving systems have
two main advantages compared to the vast majority of perturbation methods.
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First, asymptotic convergence to the optimal plant performance can be achieved
instead of practical convergence, even in the presence of plant dynamics. Second,
because no perturbations are used, a faster convergence towards the optimum
may be achieved because there is no time scale associated with the perturbations,
contrary to the perturbation methods in for example Krstić and Wang (2000);
Tan et al. (2006).

A simple self-driving system for static plants is presented in the survey by
Blackman (1962). Blackman (1962) proposes to divide the time derivative of the
output of the plant by the time derivative of the input of the plant to obtain
the gradient of the plant’s input-to-output map. This gradient is subsequently
used to drive the input to its the performance-optimal value. Frait and Eckman
(1962) extended this idea to dynamical plants. To compensate for the effect of
the plant dynamics, the use of a compensating filter is proposed, which mim-
ics the effective delay due to the plant dynamics. The self-driving systems in
Blackman (1962); Frait and Eckman (1962) are difficult to implement in practice
due to use of a divider and differentiators, which are highly sensitive to noise.
Moreover, the design of a suitable compensating filter requires explicit knowl-
edge about the plant, which is generally not available. Recently, a new type
of self-driving extremum-seeking controller was introduced in Hunnekens et al.
(2014). Instead of using a divider and differentiators, Hunnekens et al. (2014)
propose to use a least-squares estimator to extract the gradient of the plant’s
input-to-output map. The authors prove that the plant parameter converges to
the extremum of the map under mild assumptions on the initial conditions if the
plant is static. In addition, simulation results of a Hammerstein-type plant in
Hunnekens et al. (2014) display that the proposed self-driving system can also be
used to optimize dynamical plants. A similar observation was made in Guay and
Dochain (2015), where a simulation example of a Wiener-type plant illustrates
an asymptotic convergence of the plant parameter if the perturbation signal of
the perturbation-based extremum-seeking controller in Guay and Dochain (2015)
is omitted. However, neither Hunnekens et al. (2014) nor Guay and Dochain
(2015) specify under which conditions these self-driving methods can successfully
be applied to dynamical systems. Moreover, a formal stability proof of these self-
driving methods is lacking because the stability proof in Hunnekens et al. (2014)
does not consider dynamical systems and the plant-parameter signal without
perturbations does not satisfy the uniform persistence-of-excitation assumption
in Guay and Dochain (2015).

The main contributions of this chapter are summarized as follows. First, we
we present a novel self-driving extremum-seeking controller. The controller is
described by ordinary differential equations, which implies that no data buffers
are required to store the input and output signals as in Hunnekens et al. (2014).
The presented extremum-seeking scheme has only two tuning parameters, which
makes it easy to tune. Second, a stability analysis is presented, which shows that
exponential convergence of the plant parameter to its performance-optimal value
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can be obtained for suitable initial conditions and tuning-parameter values. To
the best of our knowledge, this is the first rigorous stability proof of self-driving
systems for dynamical plants. In addition, a simulation example of a nonlinear
dynamical plant is provided to illustrate the effectiveness of the presented self-
driving extremum-seeking scheme.

This chapter is organized as follows. The extremum-seeking problem is formu-
lated in Section 4.2. The self-driving extremum-seeking controller is presented
in Section 4.3. The stability analysis of the resulting closed-loop scheme is
presented in Section 4.4. An illustrative example of the proposed self-driving
extremum-seeking method is given in Section 4.5. The findings in this chapter
are summarized in Section 4.6.

4.2 Problem formulation

Consider a single-input-single-output nonlinear plant given by the following
general state-space model:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t)),
(4.1)

with state x ∈ Rnx , state dimension nx ∈ N>0, input u ∈ R, output y ∈ R and
time t ∈ R≥0. The input u can be regarded as a tunable plant parameter. The
state x and the functions f and h are unknown. The output y is a measure for
the performance of the plant and is obtained by measurement. Although the
relation between the input u and the output y is unknown, we consider the plant
to be a cascade of three subsystems: a dynamical system, a static nonlinearity
and a second dynamical system; see Figure 4.1. Let the dynamical subsystems
(numbered one and two as in Figure 4.1) be given by the state-space models

ẋi(t) = fi(xi(t), ui(t))

yi(t) = hi(xi(t), ui(t)),
(4.2)

for i = 1, 2, with states xi ∈ Rnxi , inputs ui ∈ R and outputs yi ∈ R, where
the state dimensions nxi ∈ N>0 are such that nx = nx1 + nx2. The input of the
plant is the input of the first subsystem, that is u = u1. The output of the plant
is the output of the second subsystem, that is y = y2. Moreover, let the static
nonlinearity be denoted by G, such that

u2(t) = G(y1(t)). (4.3)

If the dynamical subsystems of the plant are linear, then the plant is of the
Wiener-Hammerstein type. Wiener-Hammerstein systems have proven to be
useful in modelling real-life systems such as biological systems, diesel engines and
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ẋ1 = f1(x1, u1)

y1 = h1(x1, u1)

Dynamical

u = u1 y = y2u2 = G(y1)

Static

ẋ2 = f2(x2, u2)

y2 = h2(x2, u2)

y1 u2

Plant

system
Dynamical
system

nonlinearity

Figure 4.1: Plant consisting of two dynamical subsystems and a static nonlinearity.

systems in the process industry; see Moase and Manzie (2012b); Sternby (1980)
and references therein. Extremum-seeking control for Wiener-Hammerstein-type
plants is studied in several publications; see for example Ariyur and Krstić (2003);
Moase and Manzie (2012b); Shekhar et al. (2014) and also Pervozvanskii (1960);
Serdengecti (1956). Although not every nonlinear dynamical plant exhibits the
above structure, we note that the class of plants that we consider in this chapter
includes and exceeds the class of Wiener-Hammerstein systems, due to the fact
that the dynamical plants are allowed to be nonlinear.

In line with our knowledge of the plant, the states x1 and x2 and the functions
f1, h1, f2, h2 and G are considered to be unknown. For later computational ease,
we make the following assumption regarding the smoothness of the functions f1,
h1, f2 and h2.

Assumption 4.1. For i = 1, 2, the functions fi : Rnxi×R→ Rnxi and hi : Rnxi×
R → R are twice continuously differentiable. Moreover, there exist constants
Lfxi, Lfui, Lhxi, Lhui ∈ R>0 such that

∥∥∥∥
∂fi
∂xi

(xi, ui)

∥∥∥∥ ≤ Lfxi,

∥∥∥∥
∂fi
∂ui

(xi, ui)

∥∥∥∥ ≤ Lfui (4.4)

and ∥∥∥∥
∂hi
∂xi

(xi, ui)

∥∥∥∥ ≤ Lhxi,

∥∥∥∥
∂hi
∂ui

(xi, ui)

∥∥∥∥ ≤ Lhui (4.5)

for all xi ∈ Rnxi and all ui ∈ R.

We assume that for each constant input, the dynamical subsystems exhibit a
constant steady-state response, which is formulated as follows.

Assumption 4.2. For i = 1, 2, there exists a twice continuously differentiable
map Xi : R→ Rnxi such that

0 = fi(Xi(ui), ui) (4.6)

for all ui ∈ R. Moreover, there exists a constant LXi ∈ R>0 such that
∥∥∥∥
∂Xi

∂ui
(ui)

∥∥∥∥ ≤ LXi (4.7)

for all ui ∈ R and i ∈ {1, 2}.
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4.2 Problem formulation

Here, we note that the map Xi is the explicit solution of the implicit equation
(4.6). Moreover, for each of the dynamical subsystems, we assume that the
constant steady-state solution xi = Xi(ui) is unique and globally exponentially
stable, as formalized below.

Assumption 4.3. For i = 1, 2, there exist constants µxi, kxi ∈ R>0 such that

‖x̃i(t)‖ ≤ kxi‖x̃i(t0)‖e−µxi(t−t0), (4.8)

with x̃i(t) = xi(t)−Xi(ui), for all xi(t0) ∈ Rnxi, all t ≥ t0 ≥ 0 and all constant
ui ∈ R.

From this assumption, it follows that, for each constant input ui, the dynamical
subsystems have a unique constant steady-state output given by

yi = Fi(ui) = hi(Xi(ui), ui), i = 1, 2. (4.9)

As a consequence, for each fixed input u, the plant has a unique constant steady-
state output given by

y = F (u) = F2(G(F1(u))). (4.10)

Recall that y is a measure of the plant performance. In this chapter, we assume
that the lowest1 steady-state value of y corresponds to the best plant performance.
We refer to F as the objective function. We assume below that there exists a
unique minimum of the objective function for which the steady-state plant
performance is optimal as formulated in the following assumption.

Assumption 4.4. The objective function F : R → R is twice continuously
differentiable and exhibits a unique minimum on the domain R denoted by

u∗ = arg min
u∈R

F (u). (4.11)

Moreover, the minimizer u∗ corresponds to an extremum of the twice continuously
differentiable map G : R→ R such that

dG

dy1
(F1(u

∗)) = 0. (4.12)

Furthermore, there exist constants LF1 , LF2 , LG ∈ R>0 such that

dF

du
(u)(u− u∗) ≥ LF1|u− u∗|2 (4.13)

and ∣∣∣∣
d2F

du2
(u)

∣∣∣∣ ≤ LF2,

∣∣∣∣
d2G

dy21
(y1)

∣∣∣∣ ≤ LG (4.14)

for all u, y1 ∈ R.

1If the highest value of y corresponds to the best plant performance, the plant output can
be defined as −y.
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Chapter 4 Self-driving extremum-seeking control

Because the functions f1, h1, f2, h2 and G are unknown, the maps X1, X2, F1,
F2 and F are also unknown. Hence, the performance-optimizing plant-parameter
value u = u∗ is unknown. In this chapter, we aim to drive the input u towards
u∗ by means of an extremum-seeking controller.

Remark 4.5. Assumptions 4.1-4.4 can be relaxed by assuming that the given
bounds hold only locally (that is, the bounds hold for all xi in a neighborhood of
Xi, for all u in a neighborhood of u∗ and for all y1 in a neigborhood of F1(u

∗))
if a local extremum-seeking result is required. We emphasize that the presented
structure of the plant is essential for the results in this chapter. It is important to
note that the extremum-seeking algorithm in this chapter generally does not drive
the input u towards u∗ if the steady-state responses of the dynamical subsystems
are not exponentially stable. For perturbation-based extremum-seeking schemes,
on the other hand, often only asymptotic stability is required; see for example
Tan et al. (2006).

4.3 Self-driving extremum-seeking controller

In this section, we will introduce a self-driving extremum-seeking controller to
steer the input u of the plant (4.1) towards its performance-optimizing value
u∗. From Assumption 4.4, it follows that the input u will converge to u∗ if u is
steered in the gradient-descent direction of the objective function F in (4.10).
The gradient of the objective function is unknown and needs to be estimated
before it can be used for such purpose. To estimate the gradient of the objective
function, we model the plant in a general form, where we assume that the plant
input u is a continuously differentiable function of time. We define

m1(t) = F (u(t))−Q1(t)
dF

du
(u(t)),

m2(t) =
dF

du
(u(t)),

(4.15)

where Q1(t) is a known function of time. In particular, we define Q1(t) as the
solution of the differential equation

Q̇1(t) = −ηQ1(t) + u̇(t), (4.16)

with tuning parameter η ∈ R>0, where u̇ is known and will be defined in (4.21).
By taking the time derivatives of m1 and m2, and taking into account the plant
dynamics (4.2)-(4.3), we obtain

ṁ1(t) = −Q1(t)w(t) + ηQ1(t)m2(t)

ṁ2(t) = w(t)

y(t) = m1(t) +Q1(t)m2(t) + z(t),

(4.17)
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4.4 Stability analysis

u̇ = −ληm̂2

˙̂m1 = η(y − m̂1)

˙̂m2 = ηQ2Q1 (y − m̂1 −Q1m̂2)

Q̇1 = −ηQ1 + u̇

Q̇2 = ηQ2 − ηQ2
1Q

2
2,Plant

Observer

Optimizer

u

y

m̂2u̇

Extremum-seeking controller

ẋ = f(x, u)

y = h(x, u)

Figure 4.2: Self-driving extremum-seeking scheme.

with

w(t) =
d2F

du2
(u(t))u̇(t),

z(t) = y(t)− F (u(t)).
(4.18)

The signals w and z can be regarded as disturbances to the plant. We introduce
the following observer for the plant (4.17):

˙̂m1(t) = η(y(t)− m̂1(t))

˙̂m2(t) = ηQ2(t)Q1(t) (y(t)− m̂1(t)−Q1(t)m̂2(t)) ,
(4.19)

where Q2(t) is the solution of the differential equation

Q̇2(t) = ηQ2(t)− ηQ2
1(t)Q

2
2(t), (4.20)

with Q2(0) > 0. We note that m̂1 and m̂2 are estimates for m1 and m2, respec-
tively. Hence, m̂2 is an estimate for the gradient of the objective function.

To steer the input u of the plant (4.1) towards its performance-optimizing
value, we introduce the gradient-descent optimizer

u̇(t) = −ληm̂2(t), (4.21)

with tuning parameter λ ∈ R>0 and employing the gradient estimate m̂2. The
resulting extremum-seeking scheme consisting of the plant and the extremum-
seeking controller (that is, the observer and the optimizer) is illustrated in
Figure 4.2.

4.4 Stability analysis

As for self-driving systems in general, selecting suitable initial condition and
tuning-parameter values is essential for a successful convergence of the input u
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Chapter 4 Self-driving extremum-seeking control

to its performance-optimal value u∗. For example, if we choose the initial values
of m̂2 and Q1 equal to zero, u remains constant and will not converge to u∗. To
identify suitable initial conditions x1(0), x2(0), m̂1(0), m̂2(0), Q1(0), Q2(0), u(0)
and tuning-parameter values λ, η, we present an in-depth stability analysis of
the presented extremum-seeking scheme.

Let us define the following coordinate transformation:

x̃i(t) = xi(t)−Xi(ui(t)),

m̃i(t) = m̂i(t)−mi(t),

Q̃1(t) = Q1(t) + λ
dF

du
(u(t)),

Q̃2(t) = Q−12 (t)−
(
λ
dF

du
(u(t))

)2

,

ũ(t) = u(t)− u∗

(4.22)

for i = 1, 2. For notational convenience, we additionally introduce the transfor-
mation

x̃u1(t) =
x̃1(t)

ũ(t)
, x̃u2(t) =

x̃2(t)

ũ2(t)
, m̃u

1(t) =
m̃1(t)

ũ2(t)
,

m̃u
2(t) =

m̃2(t)

ũ(t)
, Q̃u

1(t) =
Q̃1(t)

ũ(t)
, Q̃u

2(t) =
Q̃2(t)

ũ2(t)
.

(4.23)

We note that the transformation (4.23) is well defined if ũ(t) 6= 0. To specify
the time domain for which the transformation is well defined, we introduce

tf = max {τ ∈ R≥0 ∪ {∞} : ũ(t) 6= 0,∀t ∈ [0, τ)} . (4.24)

Hence, t = tf is the first time instance for which ũ(t) = 0, which implies that the
transformation (4.23) is well defined for 0 ≤ t < tf . We will show that the states
in (4.23) remain arbitrarily small under suitable initial conditions and tuning
conditions. We will do this in two steps: first, we show in Lemma 4.6 that the
solutions of the dynamics governing the states in (4.23) satisfy bounds that imply
local input-to-state stability if tf is infinite; second, we invoke a local small-gain
argument to show in Lemma 4.7 that the corresponding interconnection of the
states in (4.23) is stable and that the bound on the solutions of m̃u

2 can be made
arbitrarily small under suitable initial conditions and tuning conditions.

Lemma 4.6. Under Assumptions 4.1-4.4, there exist constants cx11, cx12, cx21, cx22, cx23, cx24, cQ11, cQ12, cQ13,
cQ21, cQ22, cQ23, cQ24, cm21, cm22, . . . , cm27, ρλ, ρη ∈ R>0 such that for any 0 ≤ t1 ≤
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4.4 Stability analysis

tf the following bounds holds:

sup
0≤t<t1

‖x̃u1(t)‖ ≤ max {cx11‖x̃u1(0)‖, ληcx12} ,

sup
0≤t<t1

‖x̃u2(t)‖ ≤ max

{
cx21‖x̃u2(0)‖, cx22 sup

0≤t<t1
‖x̃u1(t)‖,

cx23 sup
0≤t<t1

‖x̃u1(t)‖2, ληcx24
}
,

sup
0≤t<t1

|Q̃u
1(t)| ≤ max

{
cQ11|Q̃u

1(0)|, λcQ12 sup
0≤t<t1

|m̃u
2(t)|, λ2cQ13

}
,

sup
0≤t<t1

|Q̃u
2(t)| ≤ max

{
cQ21|Q̃u

2(0)|, cQ22 sup
0≤t<t1

|Q̃u
1(t)|2,

λcQ23 sup
0≤t<t1

|Q̃u
1(t)|, λ3cQ24

}
,

sup
0≤t<t1

|m̃u
2(t)‖ ≤ max

{
1

λ
cm21|m̃u

1(0)|, cm22|m̃u
2(0)|,

1

λ
cm23 sup

0≤t<t1
‖x̃u1(t)‖, 1

λ
cm24 sup

0≤t<t1
‖x̃u1(t)‖2,

1

λ
cm25 sup

0≤t<t1
‖x̃u2(t)‖, cm26 sup

0≤t<t1
|Q̃u

1(t)|, λcm27

}

(4.25)

for all λ < ρλ and all η < ρη, if

|m̃u
2(t)| < 1 and |Q̃u

2(t)| < λ2
L2
F1

2
(4.26)

for all 0 ≤ t < t1.

Proof. See Section 4.7.1.

Lemma 4.7. Under Assumptions 4.1-4.4, for any constant C ∈ R>0, there exist
constants εx1, εx2, εm1, εm2 , εQ1, εQ2, εη, ελ ∈ R>0 such that

sup
0≤t<tf

|m̃u
2(t)| < C (4.27)

for all ‖x̃u1(0)‖ < λεx1, all ‖x̃u2(0)‖ < λεx2, all |m̃u
1(0)| < λεm1, all |m̃u

2(0)| < εm2,
all |Q̃u

1(0)| < λεQ1, all |Q̃u
2(0)| < λ2εQ2, all η < εη and all λ < ελ.

Proof. See Section 4.7.2.

We note that (4.23) and (4.27) imply that |m̃2(t)| < C|ũ(t)| for 0 ≤ t < tf .
Because the constant C can be chosen arbitrarily small, from (4.22), we obtain
that the gradient estimate m̂2 remains arbitrarily close to the gradient m2 =
dF
du

(u) under the initial conditions and tuning conditions given in Lemma 4.7.
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Chapter 4 Self-driving extremum-seeking control

The gradient-descent optimizer in (4.21) steers the input u to its performance-
optimizing value u∗ if the gradient estimate m̂2 is sufficiently accurate. As a
result, exponential convergence to the optimum is obtained in Theorem 4.8 for
a sufficiently small constant C, with tf =∞.

Theorem 4.8. Under Assumptions 4.1-4.4, there exist constants µu, εx1, εx2,
εm1, εm2 , εQ1, εQ2, εη, ελ ∈ R>0 such that

|ũ(t)| ≤ |ũ(0)|e−ληµut (4.28)

for all t ≥ 0, all ũ(0) ∈ R \ {0}, all ‖x̃1(0)‖ < λεx1|ũ(0)|, all ‖x̃2(0)‖ <
λεx2|ũ(0)|2, all |m̃1(0)| < λεm1|ũ(0)|2, all |m̃2(0)| < εm2|ũ(0)|, all |Q̃1(0)| <
λεQ1|ũ(0)|, all |Q̃2(0)| < λ2εQ2|ũ(0)|2, all η < εη and all λ < ελ.

Proof. From (4.15), (4.21) and (4.22), it follows that

˙̃u = −ληdF
du

(u)− ληm̃2. (4.29)

We introduce the Lyapunov-function candidate

Vu(ũ) = ũ2. (4.30)

From (4.29), we obtain that the time derivative of Vu is given by

V̇u(ũ) = −2ληũ
dF

du
(u)− 2ληũm̃2. (4.31)

Now, let the constant C in Lemma 4.7 be given by C = LF1

2
, such that

|m̃2| <
LF1

2
|ũ| (4.32)

under the conditions of Lemma 4.7, where we used m̃u
2 = m̃2

ũ
. From Assump-

tion 4.4, (4.31) and (4.32), we obtain

−λη(LF1 + 2LF2)ũ
2 ≤ V̇u(ũ) ≤ −ληLF1ũ

2. (4.33)

From (4.30) and (4.33), it follows that

−λη(LF1 + 2LF2)Vu(ũ) ≤ V̇u(ũ) ≤ −ληLF1Vu(ũ). (4.34)

By applying the comparison lemma (Khalil, 2002, Lemma 3.4), we obtain

Vu(ũ(0))e−λη(LF1+2LF2)t ≤ Vu(ũ(t)) ≤ Vu(ũ(0))e−ληLF1t (4.35)

for all 0 ≤ t < tf .
We will prove by contradiction that tf =∞ if ũ(0) 6= 0. From the definition

of tf in (4.24) and the continuity of the solutions of ũ, it follows that tf > 0 if
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ũ(0) 6= 0. Suppose that tf is a finite positive number. We note that Vu(ũ) = 0
if and only if ũ = 0. If tf > 0, we must have that ũ(0) 6= 0, which implies that
Vu(ũ(0)) > 0. Under the conditions of Lemma 4.7, we have that the bounds
in (4.35) are satisfied for all 0 ≤ t < tf . From (4.35) and the continuity of the
solutions of Vu, it therefore follows that Vu(ũ(tf )) ≥ Vu(ũ(0))e−λη(LF1+2LF2)tf > 0,
which implies that ũ(tf ) 6= 0. Therefore, we have that ũ(t) 6= 0 for all 0 ≤ t ≤ tf .
From this and the continuity of the solutions of ũ, we conclude that there must
exist some t∗ > tf for which ũ(t) 6= 0 for all 0 ≤ t < t∗. This contradicts the
definition of tf in (4.24). Hence, tf cannot be zero or a finite positive number
and must be infinite. Theorem 4.8 follows from (4.23), (4.30) and (4.35), with
µu = LF1

2
and εx1, εx2, εm1, εm2 , εQ1, εQ2, εη, ελ as defined in Lemma 4.7.

4.4.1 Discussion

From (4.22) and Theorem 4.8, it follows that, for any u(0) 6= u∗, the input u
of the plant (4.1) exponentially converges to its performance-optimal value u∗

under the initial conditions and tuning conditions of Theorem 4.8. Moreover,
we obtain that the closer u(0) is to u∗ and the smaller the tuning parameter λ
is, the closer x1(0), x2(0), m̂1(0), m̂2(0), Q1(0) and Q2(0) are required to be to

X1(u(0)), X2(u(0)), m1(0), m2(0), −λdF
du

(u(0)) and
(
λdF
du

(u(0))
)−2

, respectively,
to guarantee exponential convergence. To obtain a fast convergence, high values
of the tuning parameters λ and η should be chosen. However, too high values
may result in an unstable extremum-seeking scheme.

From Assumption 4.3, it follows that the steady-state solutions of the dynam-
ical subsystems of the plant are exponentially stable. Therefore, one can ensure
that x1(0) and x2(0) are sufficiently close to X1(u(0)) and X2(u(0)), respectively,
by keeping the plant parameter constant for a sufficiently long time before the
adaptation of the extremum-seeking scheme is turned on at time t = 0. Similarly,
by keeping the plant parameter constant, the (measured) output y converges to
its steady-state value F (u(0)). Therefore, y is an accurate estimate of F (u(0)) if
the plant parameter is kept constant for a sufficiently long time. To ensure that
m̂1(0), m̂2(0), Q1(0) and Q2(0) are sufficiently close to m1(0), m2(0), −λdF

du
(u(0))

and
(
λdF
du

(u(0))
)−2

, respectively, we additionally require a sufficiently accurate
initial estimate of gradient of the map F . An accurate initial gradient estimate
can be obtained using a finite-difference approach or by using the observer of
the extremum-seeking controller while slowly perturbing the plant parameter.

4.4.2 Aspects of numerical implementation and measurement noise

The time derivative of u converges to zero as u exponentially converges to u∗.
As a result, Q1 becomes increasingly smaller and Q2 continuously grows as the
plant parameter u converges to u∗; see (4.16) and (4.20). A too large value of Q2

may affect the numerical stability of the extremum-seeking algorithm. Moreover,
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Chapter 4 Self-driving extremum-seeking control

because Q2 serves as an amplification gain for measurement noise in the system
(see the second equation of (4.19)), noise-related issues may arise if Q2 becomes
too large. To maintain numerical stability and limit the effect of measurement
noise, one could turn off the adaptation of the plant parameter if Q2 become too
large, as suggested in Hunnekens et al. (2014). Alternatively, one could add a
regularization term to the observer to bound Q2, similar to Guay and Dochain
(2015) and Chapter 2, which leads to

˙̂m2(t) = ηQ2(t)Q1(t) (y(t)− m̂1(t)−Q1(t)m̂2(t))− σηQ2(t)m̂2(t) (4.36)

and

Q̇2(t) = ηQ2(t)− ηQ2
1(t)Q

2
2(t)− σηQ2

2(t), (4.37)

where σ ∈ R>0 is a (small) regularization constant. It should be noted that
turning off the adaptation or adding a regularization term prevents the plant
parameter u from converging to u∗. In the absence of numerical discrepancies
and measurement noise, with any of these two modifications, the plant parameter
u converges to a neighborhood of the optimal value u∗, where the size of the
neighborhood can be made arbitrarily small by turning off the adaptation only
for sufficiently large values of Q2 or by making the regularization constant σ
sufficiently small, respectively. The level of numerical discrepancies and the level
of measurement noise determine which turn-off values of Q2 or which values of
the regularization constant are appropriate.

4.5 Example

Consider a nonlinear plant of the form (4.2)-(4.3) (with the cascaded structure
as in Figure 4.1), with u = u1, y = y2 and

ẋ1(t) = −x1(t)− x31(t) + u1(t)

y1(t) = x1(t)

u2(t) = (y1(t)− 2)2

ẋ2(t) = −x2(t)− arctan(x2(t)) + u2(t)

y2(t) = x2(t).

(4.38)

Note that this system satisfies Assumption 4.1 for arbitrarily large compact sets;
see also Remark 4.5. From (4.38) and the implicit function theorem, we have
that

dX1

du1
(u1) =

1

1 + 3X2
1 (u1)

,
dX2

du2
(u2) =

1 +X2
2 (u2)

2 +X2
2 (u2)

, (4.39)

with X1(0) = X2(0) = 0. This implies that Assumption 4.2 is satisfied. As-
sumption 4.3 is satisfied because both the x1- and x2-dynamics exhibit a unique
globally exponentially stable equilibrium point for constant values of u. Finally,
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because F1(u1) = X1(u1) and F2(u2) = X2(u2) are monotonic functions, As-
sumption 4.4 on the existence of a unique minimum for the objective function
F (u) = F2(G(F1(u))), with G(y1) = (y1 − 2)2, is also satisfied for arbitrarily
large compact sets.

Next, in Figures 4.3-4.7 we present simulation results for the following param-
eter setting for the extremum seeking controller: λ = 40, η = 1. Moreover, the
regularization constant in the observer for the gradient estimate, see Section
4.4.2, has been set to σ = 10−12. We observe in Figure 4.3 that the performance
variable y indeed converges to a very small neighborhood of the optimum (mini-
mum). Figure 4.4 shows the asymptotic convergence of the input u to its optimal
value u∗ = 10. Figures 4.5 and 4.6 display the convergence of the states x1 and
x2 of the plant to their optimal steady states. Figure 4.7 illustrates the quality
of the gradient estimate using the proposed observer. Clearly, the absence of
(dither) perturbations in the proposed self-driving extremum seeking controller
allows for such a smooth asymptotic convergence towards the optimum.

4.6 Conclusion

In this chapter, we have presented a self-driving extremum-seeking controller that
optimizes the steady-state performance of a class of nonlinear dynamical plants
under the given assumptions. The stability analysis in this chapter shows that
exponential convergence to the performance-optimal condition can be achieved
under suitable initial conditions and tuning conditions. To the best of our
knowledge, this is the first rigorous stability proof for self-driving extremum-
seeking schemes with dynamical plants. A simulation example displays the
effectiveness of the presented extremum-seeking approach.

4.7 Appendix

4.7.1 Proof of Lemma 4.6

We will derive the bounds in Lemma 4.6 one by one. Although, we do not
explicitly mention it for every step of the derivations below, we note that the
bounds are derived for 0 ≤ t < t1 ≤ tf , which implies that ũ(t) 6= 0 for all
0 ≤ t < t1. Moreover, we note that the following lemma (converse stability
result) holds under Assumptions 4.1-4.3 for constant ui, with i = 1, 2.

Lemma 4.9. For i = 1, 2, under Assumptions 4.1-4.3, there exist functions
Wxi : Rnxi × R → R and constants γWi1, γWi2, γWi3, γWi4, γWi5 ∈ R>0 such that
the inequalities

γWi1‖x̃i‖2 ≤ Wxi(x̃i, ui) ≤ γWi2‖x̃i‖2, (4.40)
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Figure 4.3: Plant performance as a function of time.
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Figure 4.5: State x1 and X1(u1) as a function of time.
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Figure 4.6: State x2 and X2(u2) as a function of time.
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Figure 4.7: Gradient estimate and the true gradient as a function of time.
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∂Wxi

∂x̃i
(x̃i, ui)fi(x̃i + Xi(ui), ui) ≤ −γWi3‖x̃i(t)‖2, (4.41)

∥∥∥∥
∂Wxi

∂x̃i
(x̃i, ui)

∥∥∥∥ ≤ γWi4‖x̃i‖, (4.42)

∥∥∥∥
∂Wxi

∂ui
(x̃i, ui)

∥∥∥∥ ≤ γWi5‖x̃i‖ (4.43)

are satisfied for all x̃i ∈ Rnxi and all ui ∈ R.

Proof. The proof follows similar lines as the proof of Lemma 2.15 in Section 2.7.1.

To derive the bound on x̃u1 , we introduce the Lyapunov-function candidate

Vx1(x̃1, ũ) =
1

ũ2
Wx1(x̃1, u1), (4.44)

with u1 = ũ + u∗, where Wx1 is defined in Lemma 4.9. We note that, from
Lemma 4.9, it follows that

γW11‖x̃u1‖2 ≤ Vx1(x̃1, ũ) ≤ γW12‖x̃u1‖2. (4.45)

From (4.2) and (4.22), we have

˙̃x1 = f1(x̃1 + X1(u1), u1)−
dX1

du1
(u1)u̇1. (4.46)

By taking the time derivative of Vx1 and substituting (4.46), we obtain

V̇x1(x̃1, ũ) =
1

ũ2
∂Wx1

∂x̃1

(x̃1, u1)f1(x̃1 + X1(u1), u1)

+
1

ũ

(
∂Wx1

∂u1
− ∂Wx1

∂x̃1

(x̃1, u1)
dX1

du1
(u1)

)
u̇1
ũ
− 2Vx1(x̃1, ũ)

˙̃u

ũ
.

(4.47)

From Assumption 4.4, it follows that
∣∣dF
du

(u)
∣∣ ≤ LF2|ũ|. Then, from (4.23) and

(4.29), we obtain ∣∣∣∣
˙̃u

ũ

∣∣∣∣ ≤ λη(LF2 + |m̃u
2 |). (4.48)

By noting that u̇1 = ˙̃u, from Assumption 4.2, Lemma 4.9, (4.47) and (4.48), we
obtain

V̇x1(x̃1, ũ) ≤ −γW13‖x̃u1‖2 + 2ληVx1(x̃1, ũ) (LF2 + |m̃u
2 |)

+ λη (γW15 + γW14LX1) ‖x̃u1‖ (LF2 + |m̃u
2 |) .

(4.49)
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From (4.45) and Young’s inequality, it subsequently follows that

V̇x1(x̃1, ũ) ≤ − γW13

2γW12

Vx1(x̃1, ũ) + 2ληVx1(x̃1, ũ) (LF2 + |m̃u
2 |)

+ λ2η2
1

2γW13

(γW15 + γW14LX1)
2 (LF2 + |m̃u

2 |)2 .
(4.50)

From this, it follows that

V̇x1(x̃1, ũ) ≤ − γW13

4γW12

Vx1(x̃1, ũ) + λ2η2
1

2γW13

(γW15 + γW14LX1)
2 (LF2 + 1)2 ,

(4.51)
if |m̃u

2 | < 1, which holds by (4.26) in the lemma, and λη < γW13

8γW12(LF2+1)
. By

applying the comparison lemma (Khalil, 2002, Lemma 3.4), we obtain

Vx1(x̃1(t), ũ(t)) ≤ Vx1(x̃1(0), ũ(0))e
− γW13

4γW12
t

+ λ2η2
2γW12

γ2W13

(γW15 + γW14LX1)
2 (LF2 + 1)2 ,

(4.52)

for all 0 ≤ t < t1, if sup0≤t<t1 |m̃u
2(t)| < 1 and λη < γW13

8γW12(LF2+1)
. The bound

on x̃u1 of Lemma 4.6 follows from (4.45) and (4.52), with cx11 =
√

2γW12

γW11
and

cx12 = 2
γW13

√
γW12

γW11
(γW15 + γW14LX1) (LF2 + 1).

Similarly, to derive the bound on x̃u2 , we introduce the Lyapunov-function
candidate

Vx2(x̃1, x̃2, ũ) =
1

ũ4
Wx2(x̃2, u2), (4.53)

with u2 = G(h1(x1, u1)), x1 = x̃1+X1(u1) and u1 = ũ+u∗, where Wx2 is defined
in Lemma 4.9. Similar to (4.45), we note that

γW21‖x̃u2‖2 ≤ Vx2(x̃1, x̃2, ũ) ≤ γW22‖x̃u2‖2. (4.54)

From (4.2) and (4.22), we have

˙̃x2 = f2(x̃2 + X2(u2), u2)−
dX2

du2
(u2)u̇2. (4.55)

Taking the time derivative of Vx2 and substituting (4.55) yields

V̇x2(x̃1, x̃2, ũ) =
1

ũ4
∂Wx2

∂x̃2

(x̃2, u2)f2(x̃2 + X2(u2), u2)− 4Vx2(x̃1, x̃2, ũ)
˙̃u

ũ

+
1

ũ2

(
∂Wx2

∂u2
(x̃2, u2)−

∂Wx2

∂x̃2

(x̃2, u2)
dX2

du2
(u2)

)
u̇2
ũ2
.

(4.56)

From u2 = G(h1(x1, u1)), it follows that

u̇2 =
dG

dy1
(h1(x1, u1))

(
∂h1
∂x1

(x1, u1)ẋ1 +
∂h1
∂u1

(x1, u1)u̇1

)
. (4.57)
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Using Assumption 4.4 and (4.9), we note that

dG

dy1
(h1(x1, u)) =

dG

dy1
(h1(x1, u))− dG

dy1
(h1(X1(u), u))

+
dG

dy1
(F1(u))− dG

dy1
(F1(u

∗)).

(4.58)

From Assumptions 4.1 and 4.4 and from (4.22), we have
∣∣∣∣
dG

dy1
(h1(x1, u))− dG

dy1
(h1(X1(u), u))

∣∣∣∣

=

∣∣∣∣
∫ 1

0

d2G

dy21
(h1(x̃1σ + X1(u), u))

∂h1
∂x̃1

(x̃1σ + X1(u), u)dσx̃1

∣∣∣∣ ≤ LGLhx1‖x̃1‖.
(4.59)

From Assumptions 4.1-4.2 and (4.9), it follows that
∣∣∣∣
dF1

du1
(u1)

∣∣∣∣ =

∣∣∣∣
∂h1
∂x1

(X1(u1), u1)
dXi

du1
(u1) +

∂h1
∂u1

(X1(u1), u1)

∣∣∣∣ ≤ LF3 (4.60)

for all u1 ∈ R, with LF3 = Lhx1LX1 +Lhu1. Therefore, from Assumption 4.4 and
(4.60) and from (4.22), we obtain

∣∣∣∣
dG

dy1
(F1(u))− dG

dy1
(F1(u

∗))

∣∣∣∣ =

∣∣∣∣
∫ 1

0

d2G

dy21
(F1(ũσ + u∗))

dF1

du1
(ũσ + u∗)dσũ

∣∣∣∣
≤ LGLF3|ũ|.

(4.61)
By combining (4.58), (4.59) and (4.61), we obtain

∣∣∣∣
dG

dy1
(h1(x1, u))

∣∣∣∣ ≤ LG(Lhx1‖x̃1‖+ LF3|ũ|). (4.62)

From Assumptions 4.1-4.2, (4.2) and (4.22), we have

|ẋ1| = |f(x1, u1)− f1(X1(u1), u1)|

=

∣∣∣∣
∫ 1

0

∂f1
∂x1

(x̃1σ + X1(u1), u1)dσx̃1

∣∣∣∣ ≤ Lfx1‖x̃1‖.
(4.63)

Then, from Assumption 4.1, (4.23), (4.48), (4.57), (4.62), (4.63) and u̇1 = ˙̃u, it
follows that∣∣∣∣

u̇2
ũ2

∣∣∣∣ ≤ LG(Lhx1‖x̃u1‖+ LF3) (Lhx1Lfx1‖x̃u1‖+ ληLhu1(LF2 + |m̃u
2 |)) (4.64)

Now, by applying the bounds in Lemma 4.9, (4.48) and (4.64) to (4.56), we
obtain

V̇x2(x̃1, x̃2, ũ) ≤ −γW23‖x̃u2‖2 + (γW25 + γW24LX2) ‖x̃u2‖LG(Lhx1‖x̃u1‖+ LF3)

× (Lhx1Lfx1‖x̃u1‖+ ληLhu1(LF2 + |m̃u
2 |))

+ 4ληVx2(x̃1, x̃2, ũ)(LF2 + |m̃u
2 |).

(4.65)

94



4.7 Appendix

From (4.54) and Young’s inequality, it subsequently follows that

V̇x2(x̃1, x̃2, ũ) ≤ − γW23

2γW22

Vx2(x̃1, x̃2, ũ) +
1

2γW23

L2
G (γW25 + γW24LX2)

2

× (Lhx1‖x̃u1‖+ LF3)
2 (Lhx1Lfx1‖x̃u1‖+ ληLhu1(LF2 + |m̃u

2 |))2

+ 4ληVx2(x̃1, x̃2, ũ)(LF2 + |m̃u
2 |).

(4.66)
From this, we obtain that

V̇x2(x̃1, x̃2, ũ) ≤ − γW23

4γW22

Vx2(x̃1, x̃2, ũ) +
1

2γW23

L2
G (γW25 + γW24LX2)

2

× (Lhx1‖x̃u1‖+ LF3)
2 (Lhx1Lfx1‖x̃u1‖+ ληLhu1(LF2 + 1))2

(4.67)
if |m̃u

2 | < 1 and λη < γW23

16γW22(LF2+1)
. By applying the comparison lemma (Khalil,

2002, Lemma 3.4), we obtain

Vx2(x̃1(t), x̃2(t), ũ(t)) ≤ Vx2(x̃1(0), x̃2(0), ũ(0))e
− γW23

4γW22
t

+
2γW22

γ2W23

L2
G (γW25 + γW24LX2)

2

(
Lhx1 sup

0≤t<t1
‖x̃u1(t)‖+ LF3

)2

×
(
Lhx1Lfx1 sup

0≤t<t1
‖x̃u1(t)‖+ ληLhu1(LF2 + 1)

)2

(4.68)

for all 0 ≤ t < t1, if sup0≤t<t1 |m̃u
2(t)| < 1 as guaranteed by (4.26) and λη <

γW23

16γW22(LF2+1)
. The bound on x̃u2 of Lemma 4.6 follows from (4.54) and (4.68), with

cx21 =
√

2γW22

γW21
, cx22 = 6

γW23

√
γW22

γW21
(γW25 + γW24LX2)LGLhx1

(
γW23

16γW22
+ LF3Lfx1

)
,

cx23 = 6
γW23

×
√

γW22

γW21
(γW25+γW24LX2)LGL

2
hx1Lfx1 and cx24 = 6

γW23

√
γW22

γW21
(γW25+

γW24LX2)LGLF3Lhu1(LF2 + 1).
Next, we derive the bound on Q̃u

1 . From (4.15), (4.16), (4.21), (4.22) and
(4.23), we have

˙̃Qu
1 = −ηQ̃u

1 − ληm̃u
2 + λ

d2F

du2
(u)

u̇

ũ
− Q̃u

1

˙̃u

ũ
. (4.69)

We introduce the Lyapunov-function candidate

VQ1(Q̃
u
1) = (Q̃u

1)2. (4.70)

By substituting (4.69), the time derivative of VQ1 can be written as

V̇Q1(Q̃
u
1) = −2η(Q̃u

1)2 − 2ληQ̃u
1m̃

u
2 + 2λQ̃u

1

d2F

du2
(u)

u̇

ũ
− 2VQ1(Q̃

u
1)

˙̃u

ũ
. (4.71)

By noting that u̇ = ˙̃u, from Assumption 4.4, (4.48) and Young’s inequality, it
follows that

V̇Q1(Q̃
u
1) = −ηVQ1(Q̃

u
1) + 2ληVQ1(Q̃

u
1)(LF2 + |m̃u

2 |)
+ λ2η (λLF2(LF2 + |m̃u

2 |) + |m̃u
2 |)2 .

(4.72)
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From this, it follows that

V̇Q1(Q̃
u
1) = −η

2
VQ1(Q̃

u
1) + λ2η (λLF2(LF2 + 1) + |m̃u

2 |)2 . (4.73)

if |m̃u
2 | < 1 and λ < 1

4(LF2+1)
. From the comparison lemma (Khalil, 2002,

Lemma 3.4), we obtain

V̇Q1(Q̃
u
1(t)) = VQ1(Q̃

u
1(0))e−

η
2
t + 2λ2

(
λLF2(LF2 + 1) + sup

0≤t<t1
|m̃u

2(t)|
)2

(4.74)
for all 0 ≤ t < t1, if sup0≤t<t1 |m̃u

2(t)| < 1 as guaranteed by (4.26) and λ <
1

4(LF2+1)
. The bound on Q̃u

1 of Lemma 4.6 follows from (4.70) and (4.74), with

cQ11 =
√

2, cQ12 = 4 and cQ13 = 4LF2(LF2 + 1).
To derive the bound on Q̃u

2 , we note that from (4.20), (4.22) and (4.23), we
have

˙̃Qu
2 = −ηQ̃u

2 + η(Q̃u
1)2 − 2ληQ̃u

1

1

ũ

dF

du
(u)− 2λ2

1

ũ

dF

du
(u)

d2F

du2
(u)

u̇

ũ
− 2Q̃u

2

˙̃u

ũ
.

(4.75)
We introduce the Lyapunov-function candidate

VQ2(Q̃
u
2) = (Q̃u

2)2. (4.76)

Using (4.75), its time derivative is given by

V̇Q2(Q̃
u
2) = −2η(Q̃u

2)2 + 2ηQ̃u
2(Q̃u

1)2 − 4VQ2(Q̃
u
2)

˙̃u

ũ

− 4ληQ̃u
2Q̃

u
1

1

ũ

dF

du
(u)− 4λ2Q̃u

2

1

ũ

dF

du
(u)

d2F

du2
(u)

u̇

ũ
.

(4.77)

Subsequently, from Assumption 4.4, (4.48) and Young’s inequality, we obtain

V̇Q2(Q̃
u
2) ≤ −ηVQ2(Q̃

u
2) + 4ληVQ2(Q̃

u
2)(LF2 + |m̃u

2 |)

+ η
(
|Q̃u

1 |2 + 2λLF2|Q̃u
1 |+ 2λ3L2

F2(LF2 + |m̃u
2 |)
)2
.

(4.78)

From this, it follows that

V̇Q2(Q̃
u
2) ≤ −η

2
VQ2(Q̃

u
2) + η

(
|Q̃u

1 |2 + 2λLF2|Q̃u
1 |+ 2λ3L2

F2(LF2 + 1)
)2

(4.79)

if |m̃u
2 | < 1 and λ < 1

8(LF2+1)
. From the comparison lemma (Khalil, 2002,

Lemma 3.4), we obtain

VQ2(Q̃
u
2(t)) ≤ VQ2(Q̃

u
2(0))e−

η
2
t

+ 2

(
sup

0≤t<t1
|Q̃u

1(t)|2 + 2λLF2 sup
0≤t<t1

|Q̃u
1(t)|+ 2λ3L2

F2(LF2 + 1)

)2

(4.80)
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for all 0 ≤ t < t1, if sup0≤t<t1 |m̃u
2(t)| < 1 as guaranteed by (4.26) and λ <

1
8(LF2+1)

. The bound on Q̃u
2 of Lemma 4.6 follows from (4.76) and (4.80), with

cQ21 =
√

2, cQ22 = 6, cQ23 = 12LF2 and cQ24 = 12L2
F2(LF2 + 1).

To derive the bounds on m̃u
1 and m̃u

2 , we introduce the Lyapunov-function
candidate

Vm(m̃u
1 , m̃

u
2 , Q2, ũ) = (m̃u

1)2 +
1

ũ2
Q−12 (m̃u

2)2. (4.81)

From (4.22) and (4.23), we have

1

ũ2
Q−12 = Q̃u

2 +

(
λ

1

ũ

dF

du
(u)

)2

. (4.82)

From Assumption 4.4, we have that

LF1 ≤
1

ũ

dF

du
(u) ≤ LF2. (4.83)

Therefore, we have

λ2
L2
F1

2
≤ 1

ũ2
Q−12 ≤ λ2

(
L2
F2 +

L2
F1

2

)
(4.84)

if |Q̃u
2 | < λ2

L2
F1

2
. From this, we obtain the following bound on Vm:

λ2
L2
F1

2
(m̃u

2)2 ≤ Vm(m̃u
1 , m̃

u
2 , Q2, ũ) (4.85)

and

Vm(m̃u
1 , m̃

u
2 , Q2, ũ) ≤ (m̃u

1)2 + λ2
(
L2
F2 +

L2
F1

2

)
(m̃u

2)2 (4.86)

if |Q̃u
2 | < λ2

L2
F1

2
. From (4.17), (4.19), (4.22) and (4.23), it follows that

˙̃mu
1 = −ηm̃u

1 + η
z

ũ2
+

1

ũ
Q1
w

ũ
− 2m̃u

1

˙̃u

ũ
(4.87)

and

˙̃mu
2 = −ηũ2Q2

1

ũ
Q1

(
m̃u

1 +
1

ũ
Q1m̃

u
2

)
+ ηũ2Q2

1

ũ
Q1

z

ũ2
− w

ũ
− m̃u

2

˙̃u

ũ
. (4.88)

Moreover, from (4.20), we have

d

dt

(
1

ũ2
Q−12

)
= −η 1

ũ2
Q−12 + η

(
1

ũ
Q1

)2

− 2
1

ũ2
Q−12

˙̃u

ũ
. (4.89)
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Using (4.87)-(4.89), the time derivative of Vm can be written as

V̇m(m̃u
1 , m̃

u
2 , Q2, ũ) = −η(m̃u

1)2 − η
(
m̃u

1 +
1

ũ
Q1m̃

u
2

)2

− η 1

ũ2
Q−12 (m̃u

2)2 + 2m̃u
1

1

ũ
Q1
w

ũ
− 2

1

ũ2
Q−12 m̃u

2

w

ũ

+ 2η

(
m̃u

1 +
1

ũ
Q1m̃

u
2

)
z

ũ2
− 4Vm(m̃u

1 , m̃
u
2 , Q2, ũ)

˙̃u

ũ
.

(4.90)

From Young’s inequality, it follows that

V̇m(m̃u
1 , m̃

u
2 , Q2, ũ) ≤ −η

2
(m̃u

1)2 − η

2

1

ũ2
Q−12 (m̃u

2)2 + 4Vm(m̃u
1 , m̃

u
2 , Q2, ũ)

∣∣∣∣
˙̃u

ũ

∣∣∣∣

+ η
∣∣∣ z
ũ2

∣∣∣
2

+
2

η

∣∣∣∣
1

ũ
Q1

∣∣∣∣
2 ∣∣∣w
ũ

∣∣∣
2

+
2

η

∣∣∣∣
1

ũ2
Q−12

∣∣∣∣
∣∣∣w
ũ

∣∣∣
2

.

(4.91)
From Assumption 4.4, (4.22) and (4.23), we have

∣∣∣∣
1

ũ
Q1

∣∣∣∣ ≤ |Q̃u
1 |+ λLF2. (4.92)

From Assumption 4.4, (4.18), u̇ = ˙̃u and (4.48), we obtain
∣∣∣w
ũ

∣∣∣ ≤ ληLF2(LF2 + |m̃u
2 |). (4.93)

From (4.2), (4.9), (4.18), (4.22) and y = y2, it follows that

z = h2(x2, u2)− h2(X2(u2), u2) + F2(u2)− F (u). (4.94)

Using Assumption 4.1, we obtain

|h2(x2, u2)− h2(X2(u2), u2)| =
∣∣∣∣
∫ 1

0

∂h2
∂x2

(x̃2σ + X2(u2), u2)dσx̃2

∣∣∣∣ ≤ Lhx2‖x̃2‖.
(4.95)

From (4.2), (4.3), (4.9), (4.10), (4.22) and u = u1, it follows that

F2(u2)− F (u) = F2(G(h1(x̃1 + X1(u), u)))− F2(G(h1(X1(u), u)))

=

∫ 1

0

dF2

du2
(G(h1(x̃1σ + X1(u), u)))

dG

dy1
(h1(x̃1σ + X1(u), u))

× ∂h1
∂x1

(x̃1σ + X1(u), u)dσx̃1.

(4.96)
From Assumptions 4.1-4.2 and (4.9), we have

∣∣∣∣
dF2

du2
(u2)

∣∣∣∣ =

∣∣∣∣
∂h2
∂x2

(X2(u2), u2)
dX2

du2
(u2) +

∂h2
∂u2

(X2(u2), u2)

∣∣∣∣ ≤ LF4 (4.97)
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for all u2 ∈ R, with LF4 = Lhx2LX2 + Lhu2. From (4.22), u1 = u and (4.62), it
follows that

∣∣∣∣
dG

dy1
(h1(x̃1 + X1(u), u))

∣∣∣∣ ≤ LG(Lhx1‖x̃1‖+ LF3|ũ|). (4.98)

for any x̃1 ∈ Rnx1 . Now, from Assumption 4.1 and (4.96)-(4.98), we obtain

|F2(u2)− F (u)| ≤
∫ 1

0

LF4LG(Lhx1‖x̃1‖σ + LF3|ũ|)Lhx1dσ‖x̃1‖

≤ LF4LGLhx1‖x̃1‖
(

1

2
Lhx1‖x̃1‖+ LF3|ũ|

)
.

(4.99)

Subsequently, from (4.23), (4.94), (4.95) and (4.99), we have

∣∣∣ z
ũ2

∣∣∣ ≤ Lhx2‖x̃u2‖+ LF4LGLhx1‖x̃u1‖
(

1

2
Lhx1‖x̃u1‖+ LF3

)
. (4.100)

Substituting the bounds in (4.48), (4.84), (4.92), (4.93) and (4.100) into (4.91)
yields

V̇m(m̃u
1 , m̃

u
2 , Q2, ũ) ≤ −η

2
(m̃u

1)2 − η

2

1

ũ2
Q−12 (m̃u

2)2

+ 4ληVm(m̃u
1 , m̃

u
2 , Q2, ũ)(LF2 + |m̃u

2 |)

+ η

(
Lhx2‖x̃u2‖+ LF4LGLhx1‖x̃u1‖

(
1

2
Lhx1‖x̃u1‖+ LF3

))2

+ 2λ2η
(
|Q̃u

1 |+ λLF2

)2
L2
F2(LF2 + |m̃u

2 |)2

+ 2λ4η

(
L2
F2 +

L2
F1

2

)
L2
F2(LF2 + |m̃u

2 |)2

(4.101)

if |Q̃u
2 | < λ2

L2
F1

2
. From this and (4.81), it follows that

V̇m(m̃u
1 , m̃

u
2 , Q2, ũ) ≤ −η

4
Vm(m̃u

1 , m̃
u
2 , Q2, ũ)

+ η

(
Lhx2‖x̃u2‖+ LF4LGLhx1‖x̃u1‖

(
1

2
Lhx1‖x̃u1‖+ LF3

))2

+ 2λ2η
(
|Q̃u

1 |+ λLF2

)2
L2
F2(LF2 + 1)2 + 2λ4η

(
L2
F2 +

L2
F1

2

)
L2
F2(LF2 + 1)2

(4.102)

if |Q̃u
2 | < λ2

L2
F1

2
, |m̃u

2 | < 1 and λ < 1
16(LF2+1)

. By applying the comparison lemma
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(Khalil, 2002, Lemma 3.4), we obtain

Vm(m̃u
1(t), m̃u

2(t), Q2(t), ũ(t)) ≤ Vm(m̃u
1(0), m̃u

2(0), Q2(0), ũ(0))e−
η
4
t

+ 4

(
Lhx2 sup

0≤t<t1
‖x̃u2(t)‖+ LF4LGLhx1

× sup
0≤t<t1

‖x̃u1(t)‖
(

1

2
Lhx1 sup

0≤t<t1
‖x̃u1(t)‖+ LF3

))2

+ 8λ2
(

sup
0≤t<t1

|Q̃u
1(t)|+ λLF2

)2

L2
F2(LF2 + 1)2

+ 8λ4
(
L2
F2 +

L2
F1

2

)
L2
F2(LF2 + 1)2

(4.103)

for all 0 ≤ t < t1, if sup0≤t<t1 |Q̃u
2(t)| < λ2

L2
F1

2
, sup0≤t<t1 |m̃u

2(t)| < 1 and
λ < 1

16(LF2+1)
. The bounds on m̃u

1 and m̃u
2 follow from (4.85), (4.86) and (4.103),

with cm21 =
√
10

LF1
, cm22 = 1

LF1

√
10
(
L2
F2 +

L2
F1

2

)
, cm23 = 8

√
10

LF1
LF3LF4LGLhx1,

cm24 = 4
√
10

LF1
LF4LGL

2
hx1, cm25 = 4

√
10

LF1
Lhx2, cm26 = 8

√
5

LF1
LF2(LF2 + 1) and cm27 =

4
√
5

LF1

(
2LF2 +

√
L2
F2 +

L2
F1

2

)
LF2(LF2 + 1).

The proof of Lemma 4.6 is complete by defining ρλ = 1
16(LF2+1)

and ρη =

min
{

2γW13

γW12
, γW23

γW22

}
.

4.7.2 Proof of Lemma 4.7

For simplicity of the proof, let εx1 = εx2 = εm1 = εm2 = εQ1 = εQ2 = ε0 for
some constant ε0 ∈ R>0, with ε0 ≤ C. Moreover, let ελ ≤ ρλ and εη ≤ ρη, such
that the bounds in Lemma 4.6 on λ and η are satisfied for λ < ελ and η < εη.
The exact values of ε0, ελ and εη will be assigned later. From the first bound in
Lemma 4.6, it follows that

sup
0≤t<t1

‖x̃u1(t)‖ < λmax {ε0, εη} cx1, (4.104)

with cx1 = max{cx11, cx21}, if ‖x̃u1(0)‖ < λεx1 and η < εη. From the second
bound of Lemma 4.6 and (4.104), we have

sup
0≤t<t1

‖x̃u2(t)‖ < λmax {ε0, εη} cx2, (4.105)

with cx2 = max{cx21, cx22cx1, cx23ρλ max{C, ρη}c2x1, cx24}, if ‖x̃u2(0)‖ < λεx2, λ <
ελ and η < εη, where we used that ε0 ≤ C, ελ ≤ ρλ and εη ≤ ρη. From the
bound on Q̃u

1 in Lemma 4.6, we obtain

sup
0≤t<t1

|Q̃u
1(t)| < λmax

{
ε0, ελ, sup

0≤t<t1
|m̃u

2(t)|
}
cQ1, (4.106)
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with cQ1 = max{cQ11, cQ12, cQ13}, if |Q̃u
1(0)| < λεQ1 and λ < ελ. Similarly, from

the bound on m̃u
2 in Lemma 4.6, (4.104) and (4.105), it follows that

sup
0≤t<t1

|m̃u
2(t)| < max

{
ε0, ελ, εη, sup

0≤t<t1
|Q̃u

1(t)|
}
cm2, (4.107)

with cm2 = max{cm21, cm22, cm23cx1, cm25cx2, cm26, cm27, cm24ρλ max{C, ρη}c2x1}, if
|m̃u

1(0)| < λεm1, |m̃u
2(0)| < λεm2 and λ < ελ, where we again used that ε0 ≤ C,

ελ ≤ ρλ and εη ≤ ρη. By combining (4.106) and (4.107), we obtain that

sup
0≤t<t1

|Q̃u
1(t)| < λmax {ε0, ελ, εη} cm2cQ1 (4.108)

and
sup

0≤t<t1
|m̃u

2(t)| < max {ε0, ελ, εη} cm2cQ1, (4.109)

if the small-gain condition λ < ελ ≤ 1
cQ1cm2

holds, where we assume without

loss of generality that cm2 ≥ 1 and cQ1 ≥ 1. Now, from the bound on Q̃u
2 in

Lemma 4.6 and (4.108), it follows that

sup
0≤t<t1

|Q̃u
2(t)| < λ2 max {ε0, ελ, εη} cQ2, (4.110)

with cQ2 = max{cQ21, cQ22 max{C, ρλ, ρη}c2m2c
2
Q1, cQ23cm2cQ1, cQ24}, if |Q̃u

2 | <
λ2εQ2 and λ < ελ. Now, let ε0, ελ and εη be given by

ε0 = min

{
min{1, C}
cm2cQ1

,
L2
F1

2cQ2

}
,

ελ = min

{
ρλ,

min{1, C}
cm2cQ1

,
L2
F1

2cQ2

}
,

εη = min

{
ρη,

min{1, C}
cm2cQ1

,
L2
F1

2cQ2

}
.

(4.111)

We note that, from (4.111), it follows that max{ε0, ελ, εη} ≤ min{1,C}
cm2cQ1

and

max{ε0, ελ, εη} ≤ L2
F1

2cQ2
. Then, from (4.109)-(4.111), we obtain

sup
0≤t<t1

|m̃u
2(t)| < min{1, C} (4.112)

and

sup
0≤t<t1

|Q̃u
2(t)| < λ2

L2
F1

2
, (4.113)

if ‖x̃u1(0)‖ < λεx1, ‖x̃u2(0)‖ < λεx2, |m̃u
1(0)| < λεm1, |m̃u

2(0)| < εm2, |Q̃u
1(0)| <

λεQ1, |Q̃u
2(0)| < λ2εQ2, η < εη and λ < ελ, with εx1 = εx2 = εm1 = εm2 = εQ1 =

εQ2 = ε0.
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We note that the bounds in (4.112) and (4.113) are obtained with the help

of Lemma 4.6 under the assumption that |m̃u
2(t)| < 1 and |Q̃u

2(t)| < λ2
L2
F1

2

for all 0 ≤ t < t1. We will prove by contradiction that |m̃u
2(t)| < 1 and

|Q̃u
2(t)| < λ2

L2
F1

2
for all 0 ≤ t < tf under the conditions of the lemma. First, we

assume without loss of generality that cm2 ≥ 1, cQ1 ≥ 1 (as above) and cQ2 ≥ 1.

From (4.111), it follows that ε0 ≤ min{1, C} and ε0 ≤ LF 1
2

2
for cm2 ≥ 1, cQ1 ≥ 1

and cQ2 ≥ 1, such that |m̃u
2(0)| < 1 and |Q̃u

2(0)| < λ2
L2
F1

2
if |m̃u

2(0)| < εm2

and |Q̃u
2(0)| < λ2εQ2, with εm2 = εQ2 = ε0. From this and the continuity of the

solutions of m̃u
2 and Q̃u

2 , we obtain that there must exist some t∗, with 0 ≤ t∗ < tf ,

such that |m̃u
2(t∗)| = 1 and/or |Q̃u

2(t∗)| = λ2
L2
F1

2
and such that |m̃u

2(t)| < 1 and

|Q̃u
2(t)| < λ2

L2
F1

2
for all 0 ≤ t < t∗, if |m̃u

2(t)| < 1 and/or |Q̃u
2(t)| < λ2

L2
F1

2
do not

hold for all 0 ≤ t < tf . Now, suppose there exists some t∗, with 0 ≤ t∗ < tf ,

such that |m̃u
2(t∗)| = 1 and/or |Q̃u

2(t∗)| = λ2
L2
F1

2
and such that |m̃u

2(t)| < 1 and

|Q̃u
2(t)| < λ2

L2
F1

2
for all 0 ≤ t < t∗. From the bounds in (4.112) and (4.113),

we have that sup0≤t<t∗ |m̃u
2(t)| < 1 and sup0≤t<t∗ |Q̃u

2(t)| < λ2
L2
F1

2
under the

conditions of the lemma. From this and the continuity of the solutions of m̃u
2

and Q̃u
2 , we obtain that |m̃u

2(t∗)| < 1 and |Q̃u
2(t∗)| < λ2

L2
F1

2
, which contradicts

that |m̃u
2(t∗)| = 1 and/or |Q̃u

2(t∗)| = λ2
L2
F1

2
. Hence, we conclude that |m̃u

2(t)| < 1

and |Q̃u
2(t)| < λ2

L2
F1

2
for all 0 ≤ t < tf under the conditions of the lemma.

Therefore, the bounds in (4.112) and (4.113) hold for all 0 ≤ t1 ≤ tf . The bound
on m̃u

2 in (4.27) follows from (4.112).
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Chapter 5

Asymptotic stability of perturbation-based
extremum-seeking control for nonlinear plants

We introduce a perturbation-based extremum-seeking controller for
general nonlinear dynamical plants with an arbitrary number of tun-
able plant parameters. The controller ensures asymptotic convergence
of the plant parameters to their performance-optimizing values for
any initial plant condition under the assumptions in this chapter.
The key to this result is that the amplitude and the frequencies of the
perturbations, as well as other tuning parameters of the controller,
are time varying. Remarkably, the time-varying tuning parameters
can be chosen such that asymptotic convergence is achieved for all
plants that satisfy the assumptions, thereby guaranteeing stability of
the resulting closed-loop system of plant and controller regardless of
tuning.

5.1 Introduction

Although extremum-seeking methods aim to tune the plant parameters such
that the steady-state performance of the plant is optimal, commonly only near-
optimal values are obtained due to the effects of plant dynamics, measurement
noise and added perturbations. Therefore, practical convergence with respect to
the optimal steady-state plant performance is the standard for many extremum-
seeking methods; see for example Khong et al. (2013b); Krstić and Wang (2000);
Nešić et al. (2012); Tan et al. (2006). Asymptotic convergence results are rel-
atively rare. It is shown in Moura and Chang (2013) that local exponential
convergence to the optimal steady-state performance can be achieved for static
plants by exponentially decaying the amplitude of the added perturbations once
the plant parameters enter a neighborhood of the performance-optimizing values.
Similarly, local exponential convergence to the optimal steady-state performance
for dynamical plants is claimed in Wang et al. (2016) by regulating the pertur-
bation amplitude. In Stanković and Stipanović (2010), asymptotic convergence
for Wiener-Hammerstein-type plants is obtained by letting the perturbation
amplitude and the adaptation gain of the controller asymptotically converge to

103



Chapter 5 Asymptotic stability of extremum-seeking control

zero as time goes to infinity.
In addition, a few references describe asymptotic behavior for extremum-

seeking methods that do not rely on added perturbations; see for example Guay
and Dochain (2015); Hunnekens et al. (2014). It is shown in Hunnekens et al.
(2014) that asymptotic convergence to the optimal plant performance can be ob-
tained with an extremum-seeking controller that uses first-order least-squares fits
if the plant is static. Moreover, simulation results for a Hammerstein-type plant
indicate that asymptotic convergence can also be obtained for certain dynamical
plants. In Guay and Dochain (2015), a simulation example of a Wiener-type
plant displays asymptotic convergence to the optimal steady-state performance
if the perturbation of the extremum-seeking controller in Guay and Dochain
(2015) is omitted.

The main contributions of this chapter can be summarized as follows. First,
we introduce a novel perturbation-based extremum-seeking controller for general
nonlinear dynamical plants with an arbitrary number of plant parameters. From
the stability analysis in this chapter, it follows that, under given assumptions
and appropriate tuning of the controller, the closed-loop system of plant and con-
troller is globally asymptotically stable with respect to the optimal steady-state
plant performance in the sense that the solutions of the closed-loop system are
bounded and asymptotically converge to the steady-state values for which the
plant performance is optimal for any initial condition of the plant. The key to
this result is that the amplitude and the frequencies of the perturbations, as well
as other tuning parameters of the controller, are time varying and asymptotically
decay to zero as time goes to infinity. To the best of our knowledge, this is the
first work about extremum-seeking control in which global asymptotic stabil-
ity with respect to the optimal steady-state performance of general nonlinear
dynamical plants is proved. Second, we prove that global asymptotic stability
can even be obtained if the plant is subjected to a time-varying disturbance
under the assumption that the perturbations of the controller and the zero-mean
component of the disturbance are uncorrelated. Third, there exist time-varying
tuning-parameter values of the controller that ensure global asymptotic stability
of the closed-loop system for all plants that satisfy the assumptions in this chap-
ter. Application of these values eliminates the necessity (in Krstić and Wang
(2000); Tan et al. (2006) for example) to tune the extremum-seeking controller
in order to obtain a stable closed-loop system.

The organization of this chapter is as follows. The extremum-seeking prob-
lem is formulated in Section 5.2. Our extremum-seeking controller is introduced
in Section 5.3. The stability analysis of the resulting closed-loop system of plant
and controller is given in Section 5.4. We demonstrate our findings with two
simulation examples in Section 5.5, after which this chapter is concluded in
Section 5.6.
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5.2 Problem formulation

5.2 Problem formulation

We consider the following mulit-input-single-ouput nonlinear plant:

ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t)) + d(t),
(5.1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, y ∈ R is the output and where
t ∈ R≥0 is the time. The dimensions of the state and the input are denoted by
nx, nu ∈ N>0, respectively. The input u can be regarded as a vector of tunable
plant parameters. The output of the function h can be seen as a measure for
the performance of the plant. We refer to the output of h as the performance
cost. The performance cost is measured by the imperfect measurement y. The
discrepancy between the performance cost and the measurement is denoted by
the disturbance d. Our aim is to find the constant plant-parameter values that
optimize the steady-state plant performance by minimizing the steady-state
performance cost. However, the exact relation between the plant parameters
and the performance cost is unknown, meaning that the state x, the functions f
and h, the state dimension nx and the disturbance d are unknown. To identify
for which plant-parameter values the steady-state plant performance is optimal,
we rely on the plant-parameter values u, the measurement y and a set of general
assumptions about the plant, which we introduce next.

Our first assumption is that there exist a constant (unknown) steady-state
solution of the plant denoted by x = X(u) for each set of constant plant-
parameter values u. This is formalized as follows.

Assumption 5.1. There exists a twice continuously differentiable map X :
Rnu → Rnu and a constant LX ∈ R>0 such that

0 = f(X(u),u) (5.2)

and ∥∥∥∥
dX

du
(u)

∥∥∥∥ ≤ LX (5.3)

for all u ∈ Rnu.

We note that X(u) is the explicit solution of the implicit equation (5.2) for
any u ∈ Rnu . Our second assumption is that the plant is globally exponentially
stable with respect to the steady-state solution X(u) if u is constant.

Assumption 5.2. There exist constants µx, νx ∈ R>0 such that, for each con-
stant u ∈ Rnu, the solutions of (5.1) satisfy

‖x̃(t)‖ ≤ µx‖x̃(t0)‖e−νx(t−t0), (5.4)

with
x̃(t) = x(t)−X(u), (5.5)

for all x(t0) ∈ Rnx and all t ≥ t0 ≥ 0.
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From Assumptions 5.1 and 5.2 and the output function of the plant, we
obtain that steady-state relation between the plant-parameter values and the
performance cost can be written as

F (u) = h(X(u),u). (5.6)

We refer to F as the objective function. In order to minimize the steady-state
performance cost and to optimize the steady-state plant performance, we aim
to find the plant-parameter values for which the output of objective function is
minimal. Because the functions f and h are unknown, the objective function is
also unknown. Nonetheless, we assume that F (u) exhibits a unique minimum
for some unknown value u = u∗ for which the steady-state plant performance is
optimal. This is formulated in the following assumption.

Assumption 5.3. The objective function F : Rnu → R is twice continuously
differentiable and exhibits a unique minimum on the domain Rnu. Let the cor-
responding minimizer be denoted by u∗. There exist constants LF1, LF2 ∈ R>0

such that
dF

du
(u)(u− u∗) ≥ LF1‖u− u∗‖2 (5.7)

and ∥∥∥∥
d2F

duduT
(u)

∥∥∥∥ ≤ LF2 (5.8)

for all u ∈ Rnu.

We note that, although (5.7) implies that F (u∗) is a unique minimum of the
objective function, it does not imply that the objective function is convex. A
similar assumption to (5.7) for a single-parameter plants is stated in Tan et al.
(2006).

The existence of a steady-state solution, the stability of the plant and the
existence of a minimum of the objective function are common assumptions in
the extremum-seeking literature; see for example Krstić and Wang (2000); Tan
et al. (2006). Additionally, we require the following bounds on the derivatives
of the functions f and h for analytical purposes.

Assumption 5.4. The function f : Rnx×Rnu → Rnx and h : Rnx×Rnu → R are
twice continuously differentiable. Moreover, there exist constants Lfx, Lfu, Lhx, Lhu ∈
R>0 such that

∥∥∥∥
∂f

∂x
(x,u)

∥∥∥∥ ≤ Lfx,

∥∥∥∥
∂f

∂u
(x,u)

∥∥∥∥ ≤ Lfu (5.9)

and ∥∥∥∥
∂2h

∂x∂xT
(x,u)

∥∥∥∥ ≤ Lhx,

∥∥∥∥
∂2h

∂x∂uT
(x,u)

∥∥∥∥ ≤ Lhu (5.10)

for all x ∈ Rnx and all u ∈ Rnu.
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Remark 5.5. We note that Assumptions 5.1-5.4 are the same as Assump-
tions 2.1-2.4 in Chapter 2. Similarly to Remark 2.7, for a local result, it is
sufficient to assume that Assumptions 5.1-5.4 hold for compact sets of x and u,
where the steady-state solution X(u) is in the interior of the compact set of x and
the minimizer u∗ is in the interior of the compact set of u. Assumption 5.4 holds
for any compact sets of x and u if the functions f and h are twice continuously
differentiable.

Because the objective function is unknown, any information about the objec-
tive function is obtained via the measurement y. We note that the measurement
y differs from the output of the objective function F (which is equal to the steady-
state performance cost) in two ways: first, the measurement is not equal to the
performance cost due to the disturbance d; second, the performance cost is not
equal to the output of the objective function due to the plant dynamics. Nonethe-
less, we aim to steer the plant parameters u to their performance-optimizing
values u∗ under the given assumptions by using the measurement y as feedback.

5.3 Proposed controller

From Assumption 5.3, it follows that the plant parameters u converge to their
performance-optimizing values u∗ if they are steered in the direction opposite to
the gradient of the objective function. Because the objective function is unknown,
we estimate (a scaled version of) its gradient and use this gradient estimate to
steer u to u∗. We introduce the following sinusoidal perturbations to provide
sufficient excitation to the plant-parameter signals to accurately estimate the
gradient of the objective function:

ω(t) = [ω1(t), ω2(t), . . . , ωnu(t)]T , (5.11)

with

ωi(t) =





sin

(
i+ 1

2

∫ t

0

ηω(τ)dτ

)
, if i is odd,

cos

(
i

2

∫ t

0

ηω(τ)dτ

)
, if i is even

(5.12)

for i = 1, 2, . . . , nu, where ηω ∈ R>0 is a time-varying tuning parameter. We
note that if ηω is constant, the perturbation signals in (5.12) are given by
ω1 = sin(ηωt), ω2 = cos(ηωt), ω3 = sin(2ηωt), etcetera. The use of sinusoidal
perturbations with constant angular frequencies is common in extremum-seeking
control; see for example Ariyur and Krstić (2003); Tan et al. (2010) and references
therein. The corresponding plant-parameter signals are given by

u(t) = û(t) + αω(t)ω(t), (5.13)
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where û ∈ Rnu is the nominal value of the plant parameters and αω ∈ R>0 is
the time-varying amplitude of the perturbation signals. The tuning parameters
αω and ηω satisfy the differential equations

α̇ω(t) = −gα(t)αω(t), η̇ω(t) = −gω(t)ηω(t), (5.14)

with initial conditions αω(0), ηω(0) ∈ R>0 and time-varying parameters gα, gω ∈
R≥0. This is not the first work about extremum-seeking control for which the
amplitude of the perturbations is time varying. Sinusoidal perturbations with a
time-varying amplitude are also used to optimize the plant performance in the
presence of multiple local extrema in Tan et al. (2009), to increase the conver-
gence rate of the extremum-seeking controller in Moase et al. (2010), to obtain
local exponential convergence for static plants in Moura and Chang (2013) and
for dynamical plant in Wang et al. (2016), and to achieve nonlocal asymptotic
convergence for Wiener-Hammerstein-type plants in Stanković and Stipanović
(2010). In this chapter, we utilize sinusoidal perturbations with a time-varying
amplitude and time-varying frequencies to obtain asymptotic convergence of the
plant parameters to their performance-optimizing values by letting the value of
αω and ηω asymptotically decay to zero as time goes to infinity. Here, the novelty
lies in the decay of the frequencies in addition to the decay of the amplitude
of the perturbations, which allows us to extend the results in Stanković and
Stipanović (2010) to the general nonlinear plant in (5.1).

In this chapter, we introduce an extremum-seeking controller that asymptoti-
cally regulates the nominal plant parameters û to u∗ with the help of an estimate
of the gradient of the objective function. To be able to estimate the gradient
of the objective function from the measurement y, we impose the following
assumption on the disturbance d.

Assumption 5.6. The disturbance d : R≥0 → R is integrable. Moreover, there
exists a constant bd ∈ R for which

bd = lim
T→∞

1

T

∫ T

0

d(t)dt. (5.15)

We define
d̃(t) = d(t)− bd. (5.16)

In addition, there exists a vector bωd ∈ Rnu for which

bωd = lim
T→∞

1

T

∫ T

0

ω(t)d̃(t)dt. (5.17)

Furthermore, there exist constants qd, qωd ∈ R≥0 such that

∣∣∣∣
∫ t

0

d̃(τ)dτ

∣∣∣∣ ≤ qd (5.18)
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and ∥∥∥∥
∫ t

0

(
ω(τ)d̃(τ)− bωd

)
dτ

∥∥∥∥ ≤ qωd (5.19)

for all t ≥ 0.

We note that the disturbance d is allowed to be discontinuous and unbounded
as long as the bounds on the integrals in (5.18) and (5.19) exist. The constant
bd is a bias in the measurement. We refer to d̃ as the zero-mean component
of the disturbance. The vector bωd is a measure for the correlation between ω
and d̃. We refer to ω and d̃ as uncorrelated if bωd is equal to the zero vector.
Uncorrelation between the perturbations and the zero-mean component of the
disturbance is used to prove the practical stability results in Ariyur and Krstić
(2003); Tan et al. (2010), where (5.17) is equivalent to the noise assumption in
Tan et al. (2010) for bωd = 0. Similarly, the asymptotic stability result in this
chapter can only be obtained if the perturbations and the zero-mean component
of the disturbance are uncorrelated.

5.3.1 Model of the input-to-output behavior of the plant

To obtain an estimate of the gradient of the objective function from the measure-
ment signal y, we model the input-to-output behavior of the plant. The state of
the model is given by

m1(t) = F (û(t)) + bd, m2(t) = αω(t)
dF

duT
(û(t)). (5.20)

By combining the output equation in (5.1) and the expression for objective
function in (5.6), the measurement y can be expressed as

y = h(x,u)− h(X(u),u) + F (u) + d. (5.21)

With the help of Taylor’s theorem and (5.13), the steady-state performance cost
can be written as

F (u) = F (û + αωω)

= F (û) + αω
dF

du
(û)ω + α2

ωω
T

∫ 1

0

(1− s) d2F

duduT
(û + sαωω)dsω.

(5.22)

By combining (5.14), (5.16) and (5.20)-(5.22), we obtain the following input-to-
output behavior of the plant:

ṁ1(t) =
˙̂u
T

(t)

αω(t)
m2(t)

ṁ2(t) = −gα(t)m2(t) + α2
ω(t)w(t)

y(t) = m1(t) + ωT (t)m2(t) + α2
ω(t)v(t) + z(t) + d̃(t),

(5.23)
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with

w =
d2F

duduT
(û)

˙̂u

αω

,

v = ωT
∫ 1

0

(1− s) d2F

duduT
(û + sαωω)dsω,

z = h(x,u)− h(X(u),u).

(5.24)

The signals w, v and z can be regarded as unknown disturbances. The influences
of w, v and z on the state and output of the model are small if û is slowly time
varying, if αω is small and if the state x of the plant is close to its steady-state
value X(u). We note that the state m2 in (5.20) is equal to the gradient of the
objective function scaled by the perturbation amplitude αω. Hence, an estimate
of the gradient of the objective function can be obtained from an estimate of
the state m2.

5.3.2 Controller design

We introduce an extremum-seeking controller that consists of an observer to
estimate the state of the model in (5.23) and an optimizer that uses the estimate
of the state m2 of the observer to regulate the nominal plant parameters û to
their performance-optimizing values u∗. Let the observer be given by

˙̂m1(t) = ηm(t) (y(t)− m̂1(t))

˙̂m2(t) = −gα(t)m̂2(t) + ηm(t)Q(t)ω(t)
(
y(t)− m̂1(t)− ωT (t)m̂2(t)

)

Q̇(t) = ηm(t)Q(t)− 2gα(t)Q(t)− ηm(t)Q(t)ω(t)ωT (t)Q(t),

(5.25)

with time-varying tuning parameter ηm ∈ R>0 and state m̂1 ∈ R, m̂2 ∈ Rnu and
Q ∈ Rnu×nu , where Q is symmetric and positive definite. Similar to (5.14), the
tuning parameter ηm satisfies the differential equation

η̇m(t) = −gm(t)ηm(t), (5.26)

with initial condition ηm(0) ∈ R>0 and time-varying parameter gm ∈ R≥0.
We note that m̂1 and m̂2 are estimates of m1 and m2 in (5.20), respectively.
Therefore, m̂2 is an estimate of the scaled gradient of the objective function.
We define the following gradient-descent optimizer to steer the nominal plant
parameters û to their performance optimizing values u∗:

˙̂u(t) = −λu(t)
ηu(t)m̂2(t)

ηu(t) + λu(t)‖m̂2(t)‖
, (5.27)

where λu, ηu ∈ R>0 are time-varying tuning parameters that satisfy the differen-
tial equations

λ̇u(t) = −gλ(t)λu(t), η̇u(t) = −gu(t)ηu(t), (5.28)
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5.3 Proposed controller

˙̂u = −λu
ηum̂2

ηu + λu‖m̂2‖

˙̂m1 = ηm(y − m̂1)

˙̂m2 = −gαm̂2 + ηmQω
(
y − m̂1 − ωTm̂2

)

Q̇ = ηmQ− 2gαQ− ηmQωωTQ

Plant

Observer

Optimizer

u

y

m̂2

αωω

Extremum-seeking controller

ẋ = f(x,u)

y = h(x,u) + d

d

û
+ +

ω

Figure 5.1: Closed-loop system of plant and extremum-seeking controller.

with initial conditions λu(0), ηu(0) ∈ R>0 and time-varying parameters gλ, gu ∈
R≥0. We note that the adaptation gain of the optimizer in (5.27) is normalized
to preclude a finite escape time of the solutions of the closed-loop system of
plant and extremum-seeking controller if the estimate m̂2 is inaccurate.

5.3.3 Closed-loop system

The closed-loop system of the plant in (5.1) and the extremum-seeking controller
in (5.25) and (5.27) is illustrated in Figure 5.1. To accurately estimate the
state of the model in (5.23) with the observer in (5.25), it is assumed that the
following design assumptions are satisfied: first, the plant parameters (that is,
the sum of the nominal plant parameters and the perturbations) are slowly time
varying with respect to the plant dynamics so that the performance cost remains
close to its steady-state value (that is, the disturbance z in (5.24) is small);
second, the observer uses a sufficiently long time history of the perturbation
signals and measurement signal to be able to accurately extract the state of the
model from these signals, which requires the observer to be slow compared to the
perturbations; third, the nominal plant parameters are slowly time varying with
respect to the observer so that an accurate state estimate is obtained (that is,
the disturbance w in (5.24) is small). Under these design assumptions, different

111



Chapter 5 Asymptotic stability of extremum-seeking control

time scales can be assigned to the various components of the closed-loop system
of plant and controller, similar to Krstić and Wang (2000); Moase and Manzie
(2011); Tan et al. (2006). We conclude that the closed-loop system should be
tuned to exhibit four time scales under these assumptions:

• fast – the plant;

• medium fast – the perturbations of the controller;

• medium slow – the observer of the controller;

• slow – the optimizer of the controller.

The time scales of the perturbations, the observer and the optimizer are depen-
dent on the tuning parameters αω, ηω, ηm, λu and ηu. As mentioned above, we
let αω and ηω asymptotically converge to zero to obtain asymptotic convergence
of the plant parameters to their performance-optimizing values. This implies that
the perturbations become slower as time progresses. To ensure that the observer
and the controller are sufficiently slow compared to the perturbations, the tuning
parameters ηm, λu and ηu are required to be time varying and asymptotically
decay to zero as well.

5.4 Stability analysis

To investigate under which initial conditions and tuning conditions the plant
parameters converge to their performance-optimizing values, we analyse the
stability of the closed-loop system of the plant in (5.1) and the extremum-seeking
controller in (5.25) and (5.27). Contrary to extremum-seeking controllers with
constant tuning parameters in Krstić and Wang (2000); Tan et al. (2006), for
example, we allow our choice of tuning-parameter values to be bad initially, as
long as suitable tuning-parameter values are obtained after a finite time t1 ≥ 0.
Our main result is presented next.

Theorem 5.7. Suppose that the parameters gα, gω, gm, gλ and gu in (5.14),
(5.26) and (5.28) are chosen such that

∫ ∞

0

e−
∫ t
0 gm(τ)dτdt =∞,

∫ ∞

0

min
{
e−

∫ t
0 (gα(τ)+gλ(τ))dτ , e−

∫ t
0 gu(τ)dτ

}
dt =∞

(5.29)

and
max {gα(t), gω(t), gm(t), gλ(t), gu(t)} ≤ cg (5.30)

for all t ≥ 0 and some constant cg ∈ R>0. Moreover, suppose that

max

{
ηm(t)

αω(t)
qd,

ηm(t)

αω(t)
qωd,

1

αω(t)
‖bωd‖

}
≤ cd (5.31)
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for all t ≥ 0 and for some constant cd ∈ R>0. Let αω(0), ηω(0), λm(0), λu(0),
ηu(0) ∈ R>0. Under these assumptions and Assumptions 5.1-5.4 and 5.6, there
exist (sufficiently large) constants c1, c2, . . . , c5 ∈ R>0 and (sufficiently small)
constants ε1, ε2, . . . , ε7 ∈ R>0 such that, if there exists a time t1 ∈ R≥0 for which

gα(t) + gω(t) ≤ ε1, gα(t) ≤ ηm(t)ε2,

|gm(t)− gω(t)| ≤ ηm(t)ε3, ηω(t) ≤ ε4,

ηm(t) ≤ ηω(t)ε5, ηu(t) ≤ αω(t)ηm(t)ε6,

αω(t)λu(t) ≤ ηm(t)ε7

(5.32)

for all t ≥ t1, then the solutions of the closed-loop system of the plant in (5.1) and
the extremum-seeking controller in (5.25) and (5.27) are bounded for all t ≥ 0,
all x(0) ∈ Rnx, all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu, all symmetric positive-definite
Q(0) ∈ Rnu×nu and all û(0) ∈ Rnu. In addition, the solutions of û satisfy

lim sup
t→∞

‖û(t)− u∗‖ ≤ lim sup
t→∞

max

{
αω(t)c1, ηω(t)c2,

ηm(t)

αω(t)
c3qd,

ηm(t)

αω(t)
c4qωd,

1

αω(t)
c5‖bωd‖

}
.

(5.33)

5.4.1 Proof of Theorem 5.7

To prove Theorem 5.7, we define the following coordinate transformation:

x̃(t) = x(t)−X(u(t)),

m̃1(t) = m̂1(t)−m1(t)

− ηm(t)k1(t)−
ηm(t)

ηω(t)
lT1 (t)m2(t),

m̃2(t) = m̂2(t)−m2(t)− ηm(t)Q(t)k2(t),

Q̃(t) = Q−1(t)− 1

2
I− ηm(t)

ηω(t)
l2(t),

ũ(t) = û(t)− u∗,

(5.34)

with

k1(t) =

∫ t

0

d̃(τ)dτ,

k2(t) =

∫ t

0

(
ω(τ)d̃(τ)− bωd

)
dτ

(5.35)

and

l1(t) =

∫ t

0

ηω(τ)ω(τ)dτ,

l2(t) =

∫ t

0

ηω(τ)

(
ω(τ)ωT (τ)− 1

2
I

)
dτ.

(5.36)
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Chapter 5 Asymptotic stability of extremum-seeking control

We note that k1 and k2 in (5.35) are bounded; see Assumption 5.6. Moreover,
from the definition of ω in (5.11), it follows that l1 and l2 in (5.36) are also
bounded. Loosely speaking, the convergence of the closed-loop system can be
divided in three stages:

• for 0 ≤ t < t1, the tuning parameters converge to the bounds in (5.32),
while the state (5.34) of the closed-loop system may drift;

• for t1 ≤ t < t2, the variables x̃ and Q̃ converge to a region of the origin and
remain there, while the rest of the state (5.34) of the closed-loop system
may drift;

• for t ≥ t2, the variables m̃1, m̃2 and ũ converge to a region of the origin
and remain there.

Next, we derive bounds on solutions of the individual variables in (5.34) in
accordance with the three stages. First, we derive bounds on x̃ and Q̃ in
Lemmas 5.8 and 5.9, respectively.

Lemma 5.8. Under the conditions of Theorem 5.7, there exist constants cx1, cx2, βx ∈
R>0 such that the solutions of x̃ are bounded for all t ≥ 0 and all x̃(0) ∈ Rnx.
Moreover, the solutions of x̃ satisfy

‖x̃(t)‖ ≤ max
{
cx1‖x̃(t1)‖e−βx(t−t1), αω(t)ηω(t)cx2

}
(5.37)

for all t ≥ t1.

Proof. See Section 5.7.1.

Lemma 5.9. Under the conditions of Theorem 5.7, there exist constants cQ, βQ ∈
R>0 such that the solutions of Q̃ are bounded for all t ≥ 0 and all Q̃(0) ∈ Rnu×nu

for which Q(0) is symmetric and positive definite. Moreover, the solutions of Q̃
satisfy

‖Q̃(t)‖ ≤ max

{
cQ‖Q̃(t1)‖e−βQ

∫ t
t1
ηm(τ)dτ

,
1

8

}
(5.38)

for all t ≥ t1.

Proof. See Section 5.7.2.

From Lemmas 5.8 and 5.9, we have that the solutions of x̃ and Q̃ are bounded
for all time under the given assumptions. Moreover, it follows that there exists
a time t2 ≥ t1 such that ‖x̃(t)‖ ≤ αω(t)ηω(t)cx2 and ‖Q̃(t)‖ ≤ 1

8
for all t ≥ t2

under the conditions of Theorem 5.7. We use these bounds on x̃ and Q̃ to obtain
the results in Lemmas 5.10 and 5.11 regarding the solutions of m̃1, m̃2 and ũ.
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Lemma 5.10. Under the conditions of Theorem 5.7, there exists a time t2 ≥ t1
such that the solutions of m̃1 and m̃2 are bounded for all 0 ≤ t ≤ t2, all m̃1(0) ∈ R
and all m̃2(0) ∈ Rnu. In addition, there exist a function Vm : R×Rnu×Rnu×nu →
R≥0 and constants γm1, γm2, . . . , γm5, cm1, cm2, . . . , cm9 ∈ R>0 such that

max
{
γm1|m̃1(t)|2, γm2‖m̃2(t)‖2

}
≤ Vm(m̃1(t), m̃2(t),Q(t))

≤ max{γm3|m̃1(t)|2, γm4‖m̃2(t)‖2}
(5.39)

for all t ≥ t2. Moreover, for all t ≥ t2, we have that

V̇m(m̃1(t), m̃2(t),Q(t)) ≤ −ηm(t)γm5Vm(m̃1(t), m̃2(t),Q(t)) (5.40)

if

Vm(m̃1(t), m̃2(t),Q(t)) ≥ max

{
α4
ω(t)cm1, α

2
ω(t)η2ω(t)cm2,

α2
ω(t)η2ω(t)cm3‖ũ(t)‖2, α

2
ω(t)η2m(t)

η2ω(t)
cm4‖ũ(t)‖2, α

4
ω(t)λ2u(t)

η2m(t)
cm5‖ũ(t)‖2,

η2u(t)

η2m(t)
cm6‖ũ(t)‖2, η2m(t)cm7q

2
d, η

2
m(t)cm8q

2
ωd, cm9‖bωd‖2

}
.

(5.41)

Proof. See Section 5.7.3.

Lemma 5.11. Under the conditions of Theorem 5.7, there exists a time t2 ≥ t1
such that the solutions of ũ are bounded for all 0 ≤ t ≤ t2 and all ũ(0) ∈
Rnu. In addition, there exist a function Vu : Rnu → R≥0 and constants
γu1, γu2, γu3, γu4, cu1, cu2 ∈ R>0 such that

γu1‖ũ(t)‖2 ≤ Vu(ũ(t)) ≤ γu2‖ũ(t)‖2 (5.42)

for all t ≥ t2. Moreover, for all t ≥ t2, we have that

V̇u(ũ(t)) ≤ −min
{
αω(t)λu(t)γu3Vu(ũ(t)), ηu(t)γu4

√
Vu(ũ(t))

}
(5.43)

if

Vu(ũ(t)) ≥ max

{
1

α2
ω(t)

cu1‖m̃2(t)‖2,
η2m(t)

α2
ω(t)

cu2q
2
ωd

}
. (5.44)

Proof. See Section 5.7.4.

To prove that the solutions of m̃1, m̃2 and ũ remain bounded for all t ≥ t2
and to show that bound in (5.33) holds, we introduce the following Lyapunov-
function candidate as proposed in Dashkovskiy et al. (2010); Jiang et al. (1996);
Liu et al. (2011):

V (m̃1, m̃2, ũ,Q, αω) = max

{
Vu(ũ),

1

α2
ω

cu1
γm2

Vm(m̃1, m̃2,Q)

}
, (5.45)
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where the functions Vm and Vu are defined in Lemmas 5.10 and 5.11, respectively.
By following similar lines as in Jiang et al. (1996), we obtain the following result
regarding the solutions of m̃1, m̃2 and ũ.

Lemma 5.12. Under the conditions of Theorem 5.7, there exist constants
γV 1, γV 2, γV 3, cV 1, cV 2, . . . , cV 5 ∈ R>0 such that the solutions of m̃1, m̃2 and
ũ are bounded for all t ≥ t2, all m̃1(t2) ∈ R, m̃2(t2) ∈ Rnu and all ũ(t2) ∈ Rnu,
where t2 ∈ R≥0 is defined in Lemmas 5.10 and 5.11. In addition, the solutions
of m̃1, m̃2 and ũ satisfy

lim sup
t→∞

max

{
γV 1

αω(t)
|m̃1(t)|,

γV 2

αω(t)
‖m̃2(t)‖, γV 3‖ũ(t)‖

}

≤ lim sup
t→∞

max

{
αω(t)cV 1, ηω(t)cV 2,

ηm(t)

αω(t)
cV 3qd,

ηm(t)

αω(t)
cV 4qωd,

1

αω(t)
cV 5‖bωd‖

}
.

(5.46)

Proof. See Section 5.7.5.

The proof of Theorem 5.7 follows from Lemmas 5.8-5.12 and the coordinate
transformation in (5.34).

5.4.2 Choice of tuning parameters

We explore the implications of Theorem 5.7 for different choices of the tuning
parameters αω, ηω, ηm, λu and ηu. First, we consider constant tuning parameters,
in which case Theorem 5.7 reduces to the following result.

Corollary 5.13. Let the tuning parameters αω, ηω, ηm, λu, ηu ∈ R>0 be constant
(that is, gα = gω = gm = gλ = gu = 0). Under Assumptions 5.1-5.4 and
5.6, there exist (sufficiently large) constants c1, c2, . . . , c5 ∈ R>0 and (sufficiently
small) constants ε1, ε2, ε3, ε4 ∈ R>0 such that the solutions of the closed-loop
system of the plant in (5.1) and the extremum-seeking controller in (5.25) and
(5.27) are bounded for all t ≥ 0, all x(0) ∈ Rnx, all m̂1(0) ∈ R, all m̂2(0) ∈
Rnu, all symmetric positive-definite Q(0) ∈ Rnu×nu, all û(0) ∈ Rnu and all
αω, ηω, ηm, λu, ηu ∈ R>0 that satisfy ηω < ε1, ηm < ηωε2, ηu < αωηmε3 and
αωλu < ηmε4. In addition, the solutions of û satisfy

lim sup
t→∞

‖û(t)− u∗‖ ≤ max

{
αωc1, ηωc2,

ηm
αω

c3qd,
ηm
αω

c4qωd,
1

αω

c5‖bωd‖
}
.

(5.47)

Proof. The proof follows directly from Theorem 5.7 for gα = gω = gm = gλ =
gu = 0.
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From Corollary 5.13, we obtain that û converges to a region of performance-
optimizing value u∗, where the size of the region is dependent on the tuning
parameters αω, ηω and ηm and the disturbance-related constants qd, qωd and
bωd. If the perturbations and the zero-mean component of the disturbance are
uncorrelated (that is, bωd = 0), the size of the region of u∗ to which û converges
can be made arbitrarily small by selecting suitable tuning parameters. This result
is similar to the results for plants with output disturbances in Ariyur and Krstić
(2003); Tan et al. (2010). It is generally not possible to make the size of the
region of u∗ to which û converges arbitrarily small if the perturbations and the
zero-mean component of the disturbance are correlated. We note that, because
bωd depends on the tuning parameter ηω (see Assumption 5.6), correlation of the
perturbations and the zero-mean component of the disturbance may be avoided
by choosing a different value of ηω.

Now, let us consider time-varying tuning parameters. In particular, let the
time-varying parameters gα, gω, gm, gλ and gu be defined as follows.

Corollary 5.14. Let the parameters gα, gω, gm, gλ and gu in (5.14), (5.26) and
(5.28) be given by

gα(t) =
rα

r0 + t
, gω(t) =

rω
r0 + t

, gm(t) =
rm
r0 + t

,

gλ(t) =
rλ

r0 + t
, gu(t) =

ru
r0 + t

,
(5.48)

where the constants r0 ∈ R>0 and rα, rω, rm, rλ, ru ∈ R≥0 satisfy

0 < rα < rm, 0 < rω < rm,

rm < rα + rλ ≤ 1, rα + rm < ru ≤ 1.
(5.49)

Suppose that the perturbations and the zero-mean component of the disturbance
are uncorrelated (that is, bωd = 0). Under this assumption and Assumptions 5.1-
5.4 and 5.6, the solutions of the closed-loop system of the plant in (5.1) and the
extremum-seeking controller in (5.25) and (5.27) are bounded for all t ≥ 0, all
x(0) ∈ Rnx, all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu, all symmetric positive-definite
Q(0) ∈ Rnu×nu, all û(0) ∈ Rnu and all αω(0), ηω(0), ηm(0), λu(0), ηu(0) ∈ R>0.
In addition, the solutions of û satisfy limt→∞ û(t) = u∗.

Proof. The proof follows from Theorem 5.7 for gα, gω, gm, gλ and gu defined in
(5.48) and (5.49). We note that, for any αω(0), ηω(0), ηm(0), λu(0), ηu(0) ∈ R>0,
there exists a time t1 ∈ R≥0 such that (5.32) in Theorem 5.7 holds for all
t ≥ t1.

Under the conditions of Corollary 5.14, û converges to u∗, even in the presence
of an unknown disturbance (if the perturbations and the zero-mean component of
the disturbance are uncorrelated). It is not difficult to show that the state x of the
plant converges to X(u∗) under the conditions of Corollary 5.14, which implies
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that the plant performance converges to the optimal steady-state performance
as time goes to infinity. We note that the closed-loop system is globally asymp-
totically stable with respect to the optimal steady-state plant performance under
the conditions of Corollary 5.14 in the sense that the solutions of the closed-loop
system are bounded and asymptotically converge to the steady-state values for
which the plant performance is optimal for any initial condition of the plant. To
the best of our knowledge, this is the first work about extremum-seeking control
in which global asymptotic stability to the optimal steady-state performance
of the general nonlinear plant in (5.1) is proved. Because global asymptotic
stability with respect to the optimal steady-state plant performance is ensured
for any plant that satisfies the assumptions in Corollary 5.14, selecting any set
of tuning parameters that satisfy (5.48) and (5.49) eliminates the necessity (in
Krstić and Wang (2000); Tan et al. (2006) for example) to tune the extremum-
seeking controller in order to guarantee stability of the resulting closed-loop
system. Nonetheless, plant-specific tuning of the controller is often desirable as
suitably chosen tuning parameters can significantly enhance the overall conver-
gence rate of the extremum-seeking scheme. Moreover, we note that bωd is the
time average of the product of the perturbations, whose frequencies asymptoti-
cally converge to zero, and the zero-mean component of the disturbance. Hence,
bωd = 0 for a large class of disturbances. Corollary 5.14 does not guarantee
convergence or boundedness of the solutions of the closed-loop system if bωd 6= 0.
To guarantee robustness of the closed-loop system for time-varying tuning of
the controller if bωd 6= 0, the perturbation amplitude should be chosen such
that limt→∞ αω(t) > 0, which precludes asymptotic convergence to the optimal
steady-state plant performance.

5.5 Simulation examples

We introduce two examples to illustrate the results in this chapter.

5.5.1 Example 1

Consider the following double-input-single-output plant

ẋ1(t) = −x1(t) + u21(t)

ẋ2(t) = −x2(t) + u2(t)

ẋ3(t) = −x3(t) + u1(t)x2(t)

y(t) = 2(x1(t) + x2(t)− u2(t)) + (x2(t) + x3(t))
2,

(5.50)

with state x = [x1, x2, x3]
T and plant-parameter vector u = [u1, u2]

T . The
corresponding objective function of the plant is given by F (u) = 2u21+(1+u1)

2u22.
We apply the extremum-seeking controller in Section 5.3 to the plant (5.50).
The tuning parameters of the controller are chosen as defined in Corollary 5.13
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and Corollary 5.14, where the tuning constants in Corollary 5.14 are set to
r0 = 200, rα = 0.4, rω = 0.4, rm = 0.45, rλ = 0.1 and ru = 0.9. The
initial tuning-parameter values are set to αω(0) = 0.1, ηω(0) = 1, ηm(0) = 1,
λu(0) = 0.5 and ηu(0) = 0.04 for both tuning conditions. The trajectories
of the plant parameters are illustrated in Figure 5.2. Figure 5.3 displays the
corresponding measurement y of the performance cost for the first 2000 time
units. From Figure 5.2, we obtain that the plant parameters asymptotically
converge to the performance-optimizing values u∗ = 0 if the time-varying tuning
in Corollary 5.14 is applied. The corresponding measurement y in Figure 5.3
asymptotically converges to the minimum F (u∗) = 0 of the objective function.
This implies that the optimal steady-state performance of the plant is obtained
as time goes to infinity. Contrarily, the plant parameters converge to a region of
u∗ = 0 for the constant tuning in Corollary 5.13 (see Figure 5.2) for which the
obtained plant performance is suboptimal. As a result, we observe in Figure 5.3
that the measurement y converges to the value 0.5 instead of zero.

5.5.2 Example 2

To illustrate the influence of a time-varying disturbance on the convergence of
the plant parameters for the time-varying tuning in Corollary 5.14, we consider
the plant

ẋ(t) = −x(t) + u(t)

y(t) = (x(t)− 1)2 + d(t),
(5.51)

with disturbance d(t) = sin(0.2t). The objective function is given by F (u) =
(u − 1)2. We note that the perturbation ω in (5.11) and the zero-mean com-
ponent of the disturbance d̃ = d are uncorrelated for any values r0, rω > 0 in
Corollary 5.14. We let r0 = 10, rα = 0.15, rω = 0.25, rm = 0.4, rλ = 0.3 and
ru = 0.6. Figures 5.4 and 5.5 illustrate the evolution of the plant parameter
u, the performance cost (x− 2)2 and the measurement y as a function of time
for the initial tuning-parameter values αω(0) = 0.2, ηω(0) = 0.8, ηm(0) = 0.6,
λu(0) = 0.2 and ηu(0) = 0.4. We observe in Figure 5.4 that the plant parame-
ter u converges to its performance-optimizing values u∗ = 1 as time progresses.
However, the convergence of the plant parameter is momentarily disrupted when
the angular frequency ηω of the perturbation is equal to the angular frequency
of the disturbance (that is, ηω = 0.2). A similar observation can be made in
Figure 5.5 where the performance cost rises as ηω reaches the value 0.2. We note
that this disruption can be contributed to a “momentary correlation” of the
perturbation and the zero-mean component of the disturbance for ηω = 0.2. We
note that the effect of the momentary correlation can be diminished by increasing
the perturbation amplitude. Alternatively, the disruption can be prevented by
choosing ηω(0) smaller than 0.2. Figure 5.5 shows that the performance cost
converges to the optimal value F (u∗) = 0 as time elapses. This implies that the
optimal steady-state performance is achieved despite that the measurement y of
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u1

0 1 2 3 4 5

u
2

-1

0

1
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Figure 5.2: Trajectory of the plant parameters u = [u1, u2]T for Example 1 using the constant
tuning in Corollary 5.13 and the time-varying tuning in Corollary 5.14.
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Figure 5.3: Measurement y of the performance cost as a function of time for Example 1 using
the constant tuning in Corollary 5.13 and the time-varying tuning in Corollary 5.14.
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Figure 5.4: Plant parameter u as a function of time for Example 2.
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Figure 5.5: Performance cost (x− 1)2 and measurement y as a function of time for Example 2.

the performance cost is corrupted by the disturbance d.

5.6 Conclusion

In this chapter, we have introduced a perturbation-based extremum-seeking
controller to optimize the steady-state performance of nonlinear dynamical plants.
We have shown that global asymptotic stability of the closed-loop system of plant
and controller with respect to the optimal steady-state plant performance can
be obtained for any plant that satisfies the assumptions in the chapter. The key
to this result is that the tuning parameters of the controller are time varying
and asymptotically decay to zero as time goes to infinity. We note that global
asymptotic stability can even be obtained if the plant is subjected to a time-
varying disturbance under the assumption that the perturbations of the controller
and the zero-mean component of the disturbance are uncorrelated. Moreover,
we have identified time-varying tuning-parameter values of the controller for
which the closed-loop system is globally asymptotically stable for all plants that
satisfy the assumptions in this chapter. Two simulation examples illustrate the
effectiveness of the proposed extremum-seeking controller.

5.7 Appendix

5.7.1 Proof of Lemma 5.8

From (5.1) and (5.34), we obtain that the state equation for x̃ is given by

˙̃x = f(x̃ + X(u),u)− dX

du
(u)u̇. (5.52)

Because the plant is globally exponentially stable with respect to the steady-state
solution X(u) for constant u, the following converse lemma holds.

121



Chapter 5 Asymptotic stability of extremum-seeking control

Lemma 5.15. Under Assumptions 5.1, 5.2 and 5.4, there exists a function
Vx : Rnx × Rnu → R and constants γx1, γx2, γx3, γx4, γx5 ∈ R>0 such that the
inequalities

γx1‖x̃‖2 ≤ Vx(x̃,u) ≤ γx2‖x̃‖2, (5.53)

∂Vx
∂x̃

(x̃,u)f(x̃ + X(u),u) ≤ −γx3‖x̃‖2 (5.54)

and ∥∥∥∥
∂Vx
∂x̃

(x̃,u)

∥∥∥∥ ≤ γx4‖x̃‖,
∥∥∥∥
∂Vx
∂u

(x̃,u)

∥∥∥∥ ≤ γx5‖x̃‖ (5.55)

are satisfied for all x̃ ∈ Rnx and all u ∈ Rnu.

Proof. We note that Assumptions 5.1, 5.2 and 5.4 are the same as Assump-
tions 2.1-2.3 in Chapter 2. Therefore, the proof follows from the proof of
Lemma 2.15 in Section 2.7.1.

We use the function Vx as a Lyapunov-function candidate for the x̃-dynamics
for time-varying plant parameters u. By using (5.52), the time derivative of Vx
for time-varying plant parameters can be written as

V̇x(x̃,u) =
∂Vx
∂x̃

(x̃,u)f(x̃ + X(u),u) +

(
∂Vx
∂u

(x̃,u)− ∂Vx
∂x̃

(x̃,u)
dX

du
(u)

)
u̇.

(5.56)
From Assumption 5.1 and Lemma 5.15, we obtain that the time derivative of Vx
can be bounded by

V̇x(x̃,u) ≤ −γx3‖x̃‖2 + (γx5 + γx4LX) ‖x̃‖‖u̇‖. (5.57)

Subsequently, from Lemma 5.15 and Young’s inequality, it follows that

V̇x(x̃,u) ≤ − γx3
2γx2

Vx(x̃,u) +
1

2γx3
(γx5 + γx4LX)2 ‖u̇‖2. (5.58)

From (5.58) and the comparison lemma (Khalil, 2002, Lemma 3.4), we obtain

Vx(x̃(t),u(t)) ≤ Vx(x̃(t0),u(t0))e
− γx3

2γx2
(t−t0)

+
1

2γx3
(γx5 + γx4LX)2

∫ t

t0

e
− γx3

2γx2
(t−τ)‖u̇(τ)‖2dτ

(5.59)

for all t ≥ t0 ≥ 0. To find an upper bound for ‖u̇‖, we note that it follows from
(5.13) and (5.14) that

u̇ = ˙̂u− gααωω + αωω̇. (5.60)

From the definition of ω in (5.11), it follows that there exist constants Lω1, Lω2 ∈
R>0 such that

‖ω‖ ≤ Lω1, ‖ω̇‖ ≤ ηωLω2. (5.61)
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Moreover, from (5.27), we have that ‖ ˙̂u‖ ≤ ηu. Therefore, from (5.60), (5.61)
and ‖ ˙̂u‖ ≤ ηu, we obtain

‖u̇‖ ≤ ηu + αωgαLω1 + αωηωLω2. (5.62)

Because αω, ηω and ηu are nonincreasing (see (5.14) and (5.28)), from (5.30) in
Theorem 5.7 and (5.62), it follows that

‖u̇(t)‖ ≤ ηu(0) + αω(0)cgLω1 + αω(0)ηω(0)Lω2 (5.63)

for all t ≥ 0. By substituting (5.62) in (5.59), we obtain

Vx(x̃(t),u(t)) ≤ Vx(x̃(0),u(0)) +
γx2
γ2x3

(γx5 + γx4LX)2

× (ηu(0) + αω(0)cgLω1 + αω(0)ηω(0)Lω2)
2

(5.64)

for all t ≥ 0. From (5.32) in Theorem 5.7 and (5.62), it follows that

‖u̇(t)‖ ≤ αω(t)ηω(t)(ε5ε6 + ε2ε5Lω1 + Lω2) (5.65)

for all t ≥ t1, all gα ≤ ηmε2, all ηm ≤ ηωε5 and all ηu ≤ αωηmε6. From (5.14),
we have that

αω(t) = αω(τ)e−
∫ t
τ gα(s)ds, ηω(t) = ηω(τ)e−

∫ t
τ gω(s)ds (5.66)

for any t ≥ τ ≥ 0. Without loss of generality, we assume that ε1 in Theorem 5.7
is sufficiently small such that it follows from (5.32) and (5.66) that

αω(τ)ηω(τ) = αω(t)ηω(t)e
∫ t
τ (gα(s)+gω(s))ds ≤ αω(t)ηω(t)e

γx3
8γx2

(t−τ)
. (5.67)

for all t ≥ τ ≥ t1 and all gα + gω ≤ ε1. From (5.65) and (5.67), we have

∫ t

t1

e
− γx3

2γx2
(t−τ)‖u̇(τ)‖2dτ ≤ 4α2

ω(t)η2ω(t)
γx2
γx3

(ε5ε6 + ε2ε5Lω1 + Lω2)
2 (5.68)

for all t ≥ t1. Therefore, from (5.59) and (5.68), we obtain

Vx(x̃(t),u(t)) ≤ max

{
2Vx(x̃(t1),u(t1))e

− γx3
2γx2

(t−t1),

4α2
ω(t)η2ω(t)

γx2
γ2x3

(γx5 + γx4LX)2 (ε5ε6 + ε2ε5Lω1 + Lω2)
2

}

(5.69)
for all t ≥ t1. From (5.53) in Lemma 5.15 and (5.64), it follows that the
solutions x̃(t) are bounded for all t ≥ 0 and all x̃(0) ∈ Rnx . The bound in (5.37)
of Lemma 5.8 follows from (5.53) and (5.69).

123



Chapter 5 Asymptotic stability of extremum-seeking control

5.7.2 Proof of Lemma 5.9

We note that Q̃ in (5.34) is well defined if Q−1 exists. First we will show that the
solution Q(t) of (5.25) is invertible for all t ≥ 0 and all symmetric and positive-
definite Q(0). Let [0, tQ) be the maximal interval of existence of Q−1(t), with
tQ ∈ R≥0∪{∞}. We note that Q−1(t) is positive definite for all tQ ∈ R≥0∪{∞}
because Q(0) is positive definite. From (5.25), it follows that the time derivative
of Q−1 is given by

d

dt

(
Q−1

)
= −ηmQ−1 + 2gαQ

−1 + ηmωω
T (5.70)

for all t ∈ [0, tQ), where we omitted the time index t for brevity. From (5.70),
we obtain

−ηmQ−1 � d

dt

(
Q−1

)
� 2gαQ

−1 + ηm‖ω‖2I (5.71)

for all t ∈ [0, tQ). Because ηm is nonincreasing (see (5.26)), we have from (5.30)
in Theorem 5.7, (5.61) in the proof of Lemma 5.8 and (5.71) that

−ηm(0)Q−1(t) � d

dt

(
Q−1(t)

)
� 2cgQ

−1(t) + ηm(0)L2
ω1I (5.72)

for all t ∈ [0, tQ). Subsequently, from the comparison lemma (Khalil, 2002,
Lemma 3.4), we obtain

Q−1(0)e−ηm(0)t � Q−1(t) � Q−1(0)e2cgt +
ηm(0)

2cg
L2
ω1I (5.73)

for all t ∈ [0, tQ). From (5.73) and the continuity of the solutions of Q−1, it
follows that Q−1(t) is defined for all t ≥ 0 and all positive definite Q(0). Hence,
tQ =∞. Moreover, from (5.73), we have that Q−1(t) is positive definite for all
t ≥ 0 and all positive definite Q(0).

Now, from (5.26), (5.28), (5.34), (5.35) and (5.70), we obtain that the state
equation for Q̃ is given by

˙̃Q = −ηmQ̃ + 2gαQ̃ + gαI + (2gα + gm − gω − ηm)
ηm
ηω

l2. (5.74)

Because Q(0) is symmetric and l2 in (5.36) is a symmetric function, we obtain
from (5.34) that Q̃(0) is symmetric as well. Subsequently, from (5.74), it follows
that Q̃(t) remains symmetric for all t ≥ 0. We define the following Lyapunov-
function candidate for the Q̃-dynamics:

VQ(Q̃) = tr
(
Q̃2
)
. (5.75)

From (5.74), it follows that the time derivative of VQ can be written as

V̇Q(Q̃) = −2ηm tr
(
Q̃2
)

+ 4gα tr
(
Q̃2
)

+ 2gα tr
(
Q̃
)

+ 2(2gα + gm − gω − ηm)
ηm
ηω

tr
(
Q̃l2

)
.

(5.76)
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From Young’s inequality, (5.75) and (5.76), we obtain

V̇Q(Q̃) ≤ −ηmVQ(Q̃) + 4gαVQ(Q̃) +
2

ηm
g2α tr (I)

+
2

ηm
(2gα + gm − gω − ηm)2

(
ηm
ηω

)2

tr
(
l22
)
.

(5.77)

We note that tr (I) = nu. Moreover, from the definition of l2 in (5.35), it follows
that there exists a constant Ll2 ∈ R>0 such that

‖l2‖ ≤ Ll2, (5.78)

which implies that tr (l22) ≤ nuL
2
l2. We therefore obtain that

V̇Q(Q̃) ≤ −ηmVQ(Q̃) + 4gαVQ(Q̃) +
2

ηm
g2αnu

+
2

ηm
(2gα + |gm − gω|+ ηm)2

(
ηm
ηω

)2

nuL
2
l2.

(5.79)

From (5.30) in Theorem 5.7, (5.14) and (5.26), it follows that

ηω(0)e−cgt ≤ ηω(t), ηm(0)e−cgt ≤ ηm(t) (5.80)

for all t ≥ 0. Because ηm is nonincreasing (see (5.26)), from (5.30) in Theorem 5.7,
(5.79) and (5.80), we obtain that

V̇Q(Q̃(t)) ≤ 4cgVQ(Q̃(t)) +
2

ηm(0)
c2gnue

cgt

+
2

ηm(0)
(3cg + ηm(0))2

(
ηm(0)

ηω(0)

)2

nuL
2
l2e

3cgt

(5.81)

for all t ≥ 0. Applying the comparison lemma (Khalil, 2002, Lemma 3.4) gives

VQ(Q̃(t)) ≤ VQ(Q̃(0))e4cgt +
2

3ηm(0)
cgnue

cgt

+
2

ηm(0)cg
(3cg + ηm(0))2

(
ηm(0)

ηω(0)

)2

nuL
2
l2e

3cgt

(5.82)

for all t ≥ 0. Without loss of generality, we assume that ε2, ε3 and ε5 in
Theorem 5.7 are sufficiently small such that it follows from (5.32) and (5.79)
that

V̇Q(Q̃) ≤ −ηm
2
VQ(Q̃) +

ηm
256

(5.83)

for all t ≥ t1, all gα ≤ ηmε2, all |gm − gω| ≤ ηmε3 and all ηm ≤ ηωε5. Use of the
comparison lemma (Khalil, 2002, Lemma 3.4) yields

VQ(Q̃(t)) ≤ max

{
2VQ(Q̃(t1))e

− 1
2

∫ t
t1
ηm(τ)dτ

,
1

64

}
(5.84)
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for all t ≥ t1. We note that, from (5.75), it follows that

‖Q̃‖2 ≤ VQ(Q̃) ≤ nu‖Q̃‖2. (5.85)

The boundedness of the solutions Q̃(t) follows from (5.82) and (5.85) for 0 ≤
t ≤ t1 and from (5.84) and (5.85) for t ≥ t1. The bound in (5.38) of Lemma 5.9
follows from (5.84) and (5.85).

5.7.3 Proof of Lemma 5.10

From (5.23), (5.25), (5.34) and (5.35), we obtain that the state equations for m̃1

and m̃2 are given by

˙̃m1 = −ηmm̃1 −
˙̂u
T

αω

m2 + (gm − gω − ηm) ηmk1

+ (gα + gm − gω − ηm)
ηm
ηω

lT1 m2 − α2
ω

ηm
ηω

lT1 w + α2
ωηmv + ηmz

(5.86)

and

˙̃m2 = −gαm̃2 − ηmQωm̃1 − ηmQωωTm̃2 − ηmQωηmk1 − ηmQω
ηm
ηω

lT1 m2

+ (gα + gm − gω − ηm) ηmQk2 − α2
ωw + α2

ωηmQωv + ηmQωz

+ ηmQbωd.
(5.87)

We introduce the following Lyapunov-function candidate for the m̃1, m̃2-dynamics:

Vm(m̃1, m̃2,Q) = m̃2
1 + m̃T

2 Q−1m̃2. (5.88)

We note that

max
{
|m̃1|2, λmin(Q−1)‖m̃2‖2

}
≤ Vm(m̃1, m̃2,Q)

≤ max
{

2|m̃1|2, 2λmax(Q
−1)‖m̃2‖2

}
,

(5.89)

where λmin(Q−1) and λmax(Q
−1) are the smallest and largest eigenvalue of Q−1,

respectively. From (5.25) (see also (5.70) in the proof of Lemma 5.9), (5.86) and
(5.87), it follows that the time derivative of Vm can be written as

V̇m(m̃1, m̃2,Q) = −ηmm̃2
1 − ηmm̃T

2 Q−1m̃2 − ηm(m̃1 + ωTm̃2)
2

− 2

αω

m̃1
˙̂u
T
m2 + 2 (gm − gω) ηmm̃1k1 − 2ηmηm(m̃1 + ωTm̃2)k1

+ 2 (gα + gm − gω)
ηm
ηω
m̃1l

T
1 m2 − 2ηm

ηm
ηω

(m̃1 + ωTm̃2)l
T
1 m2

+ 2 (gα + gm − gω − ηm) ηmm̃T
2 k2 − 2α2

ω

ηm
ηω
m̃1l

T
1 w − 2α2

ωm̃T
2 Q−1w

+ 2ηmm̃T
2 bωd + 2α2

ωηm(m̃1 + ωTm̃2)v + 2ηm(m̃1 + ωTm̃2)z.

(5.90)
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By applying Young’s inequality and using (5.88), we obtain

V̇m(m̃1, m̃2,Q) ≤ −ηm
2
Vm(m̃1, m̃2,Q) +

8

α2
ωηm
‖ ˙̂u‖2‖m2‖2

+ 4ηm

(
ηm
ηω

)2

‖l1‖2‖m2‖2 +
8

ηm
|gm − gω|2η2m|k1|2 + 4ηmη

2
m|k1|2

+
8

ηm
(gα + |gm − gω|)2

(
ηm
ηω

)2

‖l1‖2‖m2‖2 + 6ηm‖Q‖‖bωd‖2

+
6

ηm
(gα + |gm − gω|+ ηm)2 η2m‖Q‖‖k2‖2 + 4ηm|z|2

+ 8
α4
ω

ηm

(
ηm
ηω

)2

‖l1‖2‖w‖2 + 6
α4
ω

ηm
‖Q−1‖‖w‖2 + 4α4

ωηm|v|2.

(5.91)

From Assumption 5.3 and (5.20), we have

‖m2‖ ≤ αωLF2‖ũ‖. (5.92)

From Assumption 5.6 and (5.35), it follows that

|k1| ≤ qd, ‖k2‖ ≤ qωd. (5.93)

From the definition of l1 in (5.35), it follows that there exists a constant Ll1 ∈ R>0

such that
‖l1‖ ≤ Ll1. (5.94)

From Assumption 5.3 and (5.24), we obtain

‖w‖ ≤ 1

αω

LF2‖ ˙̂u‖. (5.95)

Similarly, from Assumption 5.3, (5.61) in the proof of Lemma 5.8 and (5.24), we
obtain

|v| ≤ 1

2
LF2L

2
ω1. (5.96)

Furthermore, to obtain a bound on |z|, from (5.24), we have

|z| ≤
∣∣∣∣
∫ 1

0

(
∂h

∂x
(σx̃ + X(u),u)− ∂h

∂x
(X(u),u)

)
dσx̃

∣∣∣∣

+

∣∣∣∣
(
∂h

∂x
(X(u),u)− ∂h

∂x
(X(u∗),u∗)

)
x̃

∣∣∣∣+

∣∣∣∣
∂h

∂x
(X(u∗),u∗)x̃

∣∣∣∣
(5.97)

From Assumption 5.4, it follows that

∥∥∥∥
∂h

∂x
(x1,u1)−

∂h

∂x
(x2,u2)

∥∥∥∥ ≤ Lhx‖x1 − x2‖+ Lhu‖u1 − u2‖ (5.98)
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for all x1,x2 ∈ Rnx and all u1,u2 ∈ Rnu . By applying the bound in (5.98) to
(5.97), we obtain

|z| ≤ Lhx
2
‖x̃‖2 + Lhx‖X(u)−X(u∗)‖‖x̃‖+ Lhu‖u− u∗‖‖x̃‖+ Lh∗‖x̃‖,

(5.99)
with Lh∗ = ‖∂h

∂x
(X(u∗),u∗)‖. Subsequently, from Assumption 5.1, it follows that

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖u− u∗‖‖x̃‖+ Lh∗‖x̃‖. (5.100)

From (5.13), (5.34) and (5.61) in the proof of Lemma 5.8, we have

‖u− u∗‖ ≤ ‖ũ‖+ αωLω1. (5.101)

By substituting (5.101) in (5.100), we obtain the following bound on |z|:

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖.
(5.102)

From (5.27), it follows that ‖ ˙̂u‖ ≤ ηu. By substituting ‖ ˙̂u‖ ≤ ηu and the bounds
in (5.92)-(5.96) and (5.102) in (5.91), we obtain

V̇m(m̃1, m̃2,Q) ≤ −ηm
2
Vm(m̃1, m̃2,Q) + 8

η2u
ηm

L2
F2‖ũ‖2

+ 4α2
ωηm

(
ηm
ηω

)2

L2
l1L

2
F2‖ũ‖2 +

8

ηm
|gm − gω|2η2mq2d + 4ηmη

2
mq

2
d

+ 8
α2
ω

ηm
(gα + |gm − gω|)2

(
ηm
ηω

)2

L2
l1L

2
F2‖ũ‖2

+
6

ηm
(gα + |gm − gω|+ ηm)2 η2m‖Q‖q2ωd + 6ηm‖Q‖‖bωd‖2

+ 8
α2
ω

ηm

(
ηm
ηω

)2

L2
l1L

2
F2‖ ˙̂u‖2 + 6

α2
ω

ηm
‖Q−1‖L2

F2‖ ˙̂u‖2

+ α4
ωηmL

2
F2L

4
ω1 + 4ηm

(
(LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖+
Lhx
2
‖x̃‖2

)2

.

(5.103)

We note that if the right-hand side of (5.103) is bounded and Q−1 is positive
definite and bounded for all 0 ≤ t ≤ t2, where t2 ≥ t1 is a finite time, then it
follows from (5.89) and (5.103) that the solutions m̃1(t) and m̃2(t) are bounded
for all 0 ≤ t ≤ t2 using the same arguments as applied in the proofs of Lemmas 5.8
and 5.9. From (5.73) in the proof of Lemma 5.9, it follows that

λmin(Q−1(0))e−ηm(0)t ≤ λmin(Q−1(t)),

λmax(Q
−1(t)) ≤ λmax(Q

−1(0))e2cgt +
ηm(0)

2cg
L2
ω1

(5.104)
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for all t ≥ 0, which implies that Q−1 is positive definite and bounded for all
0 ≤ t ≤ t2. The boundedness of the right-hand side of (5.103) for all 0 ≤ t ≤ t2
follows from the bounds on gα, gω and gm in (5.30) of Theorem 5.7, from the lower
bound on ηω and ηu in (5.80) in the proof of Lemma 5.9 and the fact that αω, ηm
and ηu are nonincreasing (see (5.14) and (5.28)), from the boundedness of x̃ and
ũ for 0 ≤ t ≤ t2 in Lemmas 5.8 and 5.11, respectively, from ‖ ˙̂u‖ ≤ ηu (see (5.27))
and from the bounds in (5.104), which imply that ‖Q−1(t)‖ = λmax(Q

−1(t)) and
‖Q(t)‖ = 1

λmin(Q−1(t))
are bounded for all 0 ≤ t ≤ t2. Further details regarding

the boundedness of the solutions m̃1(t) and m̃2(t) for 0 ≤ t ≤ t2 are left to the
reader.

Let us define t2 ≥ t1 such that

‖x̃(t)‖ ≤ αω(t)ηω(t)cx2, ‖Q̃(t)‖ ≤ 1

8
(5.105)

for all t ≥ t2. The existence of a finite time t2 ≥ t1 such that ‖x̃(t)‖ ≤
αω(t)ηω(t)cx2 for all t ≥ t2 follows from Lemma 5.8, where we assume without loss
of generality that ε1 in Theorem 5.7 is sufficiently small such that gα(t)+gω(t) <
βx for all t ≥ t1 and all gα+gω ≤ ε1. Similarly, the existence of a constant t2 ≥ t1
such that ‖Q̃(t)‖ ≤ 1

8
for all t ≥ t2 follows from Lemma 5.9 if

∫∞
t1
ηm(t)dt =∞,

which implies that first term in the right-hand side of (5.38) becomes smaller
than 1

8
as time goes to infinity. From (5.26) and the first equation in (5.29) of

Theorem 5.7, we have
∫ ∞

t1

ηm(t)dt = ηm(0)

∫ ∞

t1

e−
∫ t
0 gm(τ)dτdt

= ηm(0)




∫ ∞

0

e−
∫ t
0 gm(τ)dτdt

︸ ︷︷ ︸
=∞

−
∫ t1

0

e−
∫ t
0 gm(τ)dτdt

︸ ︷︷ ︸
≤t1


 =∞

(5.106)
for all ηm(0) ∈ R>0. Hence, there exist a time t2 ≥ t1 such that (5.105) holds
for all t ≥ t2.

Now, from (5.34) and (5.78) in the proof of Lemma 5.9, it follows that
∥∥∥∥Q−1 −

1

2
I

∥∥∥∥ ≤ ‖Q̃‖+
ηm
ηω
Ll2. (5.107)

Without loss of generality, we assume that ε5 in Theorem 5.7 is sufficiently small
such that it follows from (5.32), Lemma 5.9 and (5.105) that

1

4
I � Q−1 � 3

4
I (5.108)

for all t ≥ t2 and all ηm ≤ ηωε5. Subsequently, from (5.89) and (5.108), we
obtain

max

{
|m̃1|2,

1

4
‖m̃2‖2

}
≤ Vm(m̃1, m̃2,Q) ≤ max

{
2|m̃1|2,

3

2
‖m̃2‖2

}
(5.109)
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for t ≥ t2. Moreover, from (5.108), it follows that

‖Q−1‖ ≤ 3

4
, ‖Q‖ ≤ 4 (5.110)

for all t ≥ t2. From (5.27) and (5.34), we have that

‖ ˙̂u‖ ≤ λu‖m̂2‖ ≤ λu (‖m̃2‖+ ‖m2‖+ ηm‖Q‖‖k2‖) . (5.111)

Subsequently, from (5.92), (5.93) and (5.110), we obtain

‖ ˙̂u‖ ≤ λu (‖m̃2‖+ αωLF2‖ũ‖+ 4ηmqωd) . (5.112)

for all t ≥ t2. From (5.109) and (5.112), it follows that

‖ ˙̂u‖2 ≤ 12λ2uVm(m̃1, m̃2,Q) + 3α2
ωλ

2
uL

2
F2‖ũ‖2 + 48η2mλ

2
uqωd (5.113)

for all t ≥ t2. Without loss of generality, we assume that ε2, ε3, ε4, ε5 and ε7
in Theorem 5.7 are sufficiently small such that we obtain from (5.32), (5.103),
(5.105), (5.110) and (5.113) that

V̇m(m̃1, m̃2,Q) ≤ −ηm
4
Vm(m̃1, m̃2,Q) + 2α4

ωηmL
2
F2L

4
ω1 + 16α2

ωη
2
ωηmc

2
x2L

2
h∗

+ 16α2
ωη

2
ωηmc

2
x2(LhxLX + Lhu)2‖ũ‖2 + 8

α2
ωη

3
m

η2ω
L2
l1L

2
F2‖ũ‖2

+ 27
α4
ωλ

2
u

ηm
L4
F2‖ũ‖2 +

8η2u
ηm

L2
F2‖ũ‖2 + 8η3mq

2
d + 96η3mq

2
ωd + 24ηm‖bωd‖2

(5.114)
for all t ≥ t2, all gα ≤ ηmε2, all |gm − gω| ≤ ηmε3, all ηω ≤ ε4, ηm ≤ ηωε5 and
all αωλu ≤ ηmε7. From this, it follows that

V̇m(m̃1, m̃2,Q) ≤ −ηm
8
Vm(m̃1, m̃2,Q) (5.115)

if

Vm(m̃1, m̃2,Q) ≥ 72 max

{
2α4

ωηmL
2
F2L

4
ω1, 16α2

ωη
2
ωηmc

2
x2L

2
h∗,

16α2
ωη

2
ωηmc

2
x2(LhxLX + Lhu)2‖ũ‖2, 8α

2
ωη

3
m

η2ω
L2
l1L

2
F2‖ũ‖2, 27

α4
ωλ

2
u

ηm
L4
F2‖ũ‖2,

8η2u
ηm

L2
F2‖ũ‖2, 8η3mq2d, 96η3mq

2
ωd, 24ηm‖bωd‖2

}

(5.116)
for all t ≥ t2. The bounds in (5.39), (5.40) and (5.41) of Lemma 5.10 follow from
(5.109), (5.115) and (5.116), respectively.
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5.7.4 Proof of Lemma 5.11

From (5.20), (5.27) and (5.34), we obtain that the state equation for ũ is given
by

˙̃u = −λu
ηu
(
αω

dF
duT

(û) + m̃2 + ηmQk2

)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ . (5.117)

From (5.117), it follows that ‖ ˙̃u‖ ≤ ηu, from which we obtain that

‖ũ(t)‖ ≤ ‖ũ(0)‖+ ηu(0)t (5.118)

for all t ≥ 0. We define the following Lyapunov-function candidate for the
ũ-dynamics:

Vu(ũ) = ‖ũ‖2. (5.119)

From (5.117) and (5.119), it follows that the time derivative of Vu is given by

V̇u(ũ) = −2λu
ηu
(
αω

dF
du

(û)ũ + ũTm̃2 + ηmũTQk2

)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ . (5.120)

From Assumption 5.3, we subsequently obtain that

V̇u(ũ) ≤ − 2αωλuηuLF1‖ũ‖2
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥

+
2λuηu‖ũ‖ (‖m̃2‖+ ηm‖Q‖‖k2‖)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ .
(5.121)

By applying Young’s inequality, it follows that

V̇u(ũ) ≤ − αωλuηuLF1‖ũ‖2
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥

+
4λuηu max {‖m̃2‖2, η2m‖Q‖2‖k2‖2}

αωLF1

(
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥) .
(5.122)

If Vu(ũ) ≥ 8
α2
ωL

2
F1

max {‖m̃2‖2, η2m‖Q‖2‖k2‖2}, then from (5.119) and (5.122), it

follows that

V̇u(ũ) ≤ − αωλuηuLF1‖ũ‖2
2
(
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥) . (5.123)

From Assumption 5.3, (5.119) and (5.123), we obtain that

V̇u(ũ) ≤ − αωλuηuLF1Vu(ũ)

2
(
ηu + αωλu

(
LF2 + LF1√

2

)√
Vu(ũ)

) , (5.124)
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if Vu(ũ) ≥ 8
α2
ωL

2
F1

max {‖m̃2‖2, η2m‖Q‖2‖k2‖2}. From Assumption 5.6, from (5.93)

and (5.110) in the proof of Lemma 5.10 and from (5.124), it follows that, for all
t ≥ t2,

V̇u(ũ) ≤ −1

4
min

{
αωλuLF1Vu(ũ), ηu

√
2LF1√

2LF2 + LF1

√
Vu(ũ)

}
, (5.125)

if Vu(ũ) ≥ 8
α2
ωL

2
F1

max {‖m̃2‖2, 16η2mq
2
ωd}. The boundedness of the solutions ũ(t)

for all 0 ≤ t ≤ t2 follows from (5.118). The bounds in (5.42), (5.43) and (5.42)
of Lemma 5.11 follow from Vu(ũ) ≥ 8

α2
ωL

2
F1

max {‖m̃2‖2, 16η2mq
2
ωd}, (5.119) and

(5.125), respectively.

5.7.5 Proof of Lemma 5.12

For notational convenience, we introduce the shorthand notation W (t) =
V (m̃1(t), m̃2(t), ũ(t),Q(t), αω(t)). We note that the function V in (5.45) is
not continuously differentiable with respect to time due to the use of the maxi-
mum function. Let the upper right-hand time derivative of V (see for example
Khalil (2002)) be denoted by D+W (t) using the shorthand notation above. Let
us consider the following three cases, similar to Jiang et al. (1996).

Case 1: Vu(ũ) > 1
α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q). We note that W = Vu(ũ) for Case 1.

Therefore, we obtain from Lemma 5.11 that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W
}

(5.126)

if

W ≥ max

{
1

α2
ω

cu1‖m̃2‖2,
η2m
α2
ω

cu2q
2
ωd

}
. (5.127)

It follows from Lemma 5.10 that

1

α2
ω

cu1
γm2

Vm(m̃1, m̃2,Q) ≥ 1

α2
ω

cu1‖m̃2‖2. (5.128)

Because W > 1
α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q) for Case 1, we conclude from (5.127) and

(5.128) that, for all t ≥ t2, (5.126) holds if

W ≥ η2m
α2
ω

cu2q
2
ωd. (5.129)

Case 2: Vu(ũ) < 1
α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q). We have W = 1

α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q)

for Case 2. Therefore, it follows from (5.14) and Lemma 5.10 that, for all t ≥ t2,

D+W ≤ −(ηmγm5 − 2gα)W (5.130)
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if

W ≥ cu1
γm2

max

{
α2
ωcm1, η

2
ωcm2, η

2
ωcm3‖ũ‖2,

η2m
η2ω
cm4‖ũ‖2,

α2
ωλ

2
u

ηm
cm5‖ũ‖2,

η2u
α2
ωη

2
m

cm6‖ũ‖2,
η2m
α2
ω

cm7q
2
d,
η2m
α2
ω

cm8q
2
ωd,

1

α2
ω

cm9‖bωd‖2
}
.

(5.131)
Without loss of generality, we assume that ε2 in Theorem 5.7 is sufficiently small
such that we obtain from (5.32) and (5.130) that

D+W ≤ −ηm
2
γm5W (5.132)

for all gα ≤ ηmε2. Moreover, without loss of generality, we assume that ε4, ε5,
ε6 and ε7 in Theorem 5.7 are sufficiently small such it follows from (5.32) and
Lemma 5.11 that

Vu(ũ) ≥ cu1
γm2

max

{
η2ωcm3‖ũ‖2,

η2m
η2ω
cm4‖ũ‖2,

α2
ωλ

2
u

ηm
cm5‖ũ‖2,

η2u
α2
ωη

2
m

cm6‖ũ‖2
}

(5.133)
for all ηω ≤ ε4, ηm ≤ ηωε5, ηu ≤ αωηmε6 and αωλu ≤ ηmε7. Because W > Vu(ũ)
for Case 2, we conclude from (5.131) and (5.133) that, for all t ≥ t2, (5.132)
holds if

W ≥ max

{
α2
ω

cu1
γm2

cm1, η
2
ω

cu1
γm2

cm2,
η2m
α2
ω

cu1
γm2

cm7q
2
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ω

cu1
γm2
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2
ωd,
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cu1
γm2

cm9‖bωd‖2
}
.

(5.134)

Case 3: Vu(ũ) = 1
α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q). We note that W = Vu(ũ) =

1
α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q) for Case 3. Therefore, we obtain from (5.14) and Lem-

mas 5.10 and 5.11 that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W, (ηmγm5 − 2gα)W

}
(5.135)

if

W ≥ max
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1
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η2m
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2
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(5.136)
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By following the same steps as for Case 1 and Case 2, we obtain from (5.135)
and (5.136) that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W,

ηm
2
γm5W

}
(5.137)

if

W ≥ max

{
α2
ω

cu1
γm2

cm1, η
2
ω

cu1
γm2

cm2,
η2m
α2
ω

cu1
γm2

cm7q
2
d,

η2m
α2
ω

max

{
cu2,

cu1
γm2

cm8

}
q2ωd,

1

α2
ω

cm9‖bωd‖2
}
.

(5.138)

We note that both (5.126) and (5.132) imply that (5.137) holds. Moreover, the
inequalities in (5.129) and (5.134) are satisfied if (5.138) is satisfied. Hence, for
all three cases and for all t ≥ t2, we have that the (5.137) holds if the inequality
in (5.138) is satisfied. From (5.32) in Theorem 5.7 and (5.137), we obtain that,
for all t ≥ t2 (with t2 ≥ t1),

D+W ≤ −min {αωλu, ηu} βV min
{
W,
√
W
}

(5.139)

for all αωλu ≤ ηmε7 if (5.138) holds, with βV = min
{
γu3, γu4,

γm5

2ε7

}
. By applying

the same reasoning as for (5.106) in the proof of Lemma 5.10, it follows from
the second equation in (5.29) that

∫ ∞

t2

min {αω(τ)λu(τ), ηu(τ)} dτ =∞. (5.140)

Now, from (5.139), (5.140) and the comparison lemma (Khalil, 2002, Lemma 3.4),
we obtain that the solutions W (t) monotonically converge to zero as time goes
to infinity for any initial condition W (t2) ≥ 0 if the right-hand side of (5.138) is
zero. By using similar arguments as in the proof of (Khalil, 2002, Theorem 4.18),
we obtain from (5.138), (5.139) and (5.140) that

sup
t≥t2

W (t) ≤ sup
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}

(5.141)
and

lim sup
t→∞

W (t) ≤ lim sup
t→∞
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γm2

cm1, η
2
ω(t)

cu1
γm2

cm2,
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(5.142)
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where we applied (Sontag and Wang, 1996, Lemma II.1) to obtain the limit
superior in the right-hand side of (5.142). Because αω and ηω are nonincreasing
(see (5.14)), it follows that the second and third term in the right-hand side of
(5.141) are bounded. Moreover, from (5.31) in Theorem 5.7, we have that the
fourth, fifth and sixth term in the right-hand side of (5.141) are bounded. Hence,
we obtain from (5.141) that the solutions W (t) are bounded for all t ≥ t2. From
Lemmas 5.10 and 5.11 and from the definition of V in (5.45), we have that

max

{
cu1
α2
ω

γm1

γm2

|m̃1|2,
cu1
α2
ω

‖m̃2‖2, γu1‖ũ‖2
}
≤ W

≤ max

{
cu1
α2
ω

γm3

γm2

|m̃1|2,
cu1
α2
ω

γm4

γm2

‖m̃2‖2, γu2‖ũ‖2
} (5.143)

for t ≥ t2, where we used the shorthand notation W = V (m̃1, m̃2, ũ,Q, αω).
From (5.141) and (5.143), it follows that the solutions m̃2(t), m̃2(t) and ũ(t) are
bounded for all t ≥ t2, all m̃1(t2) ∈ R, m̃2(t2) ∈ Rnu and all ũ(t2) ∈ Rnu . The
bound in (5.46) of Lemma 5.12 follows from (5.142) and (5.143).
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Chapter 6

An extremum-seeking control approach to
harmonic mitigation in electrical grids

This chapter focuses on the minimization of the harmonic distortion
in multi-bus electrical grids using a single active power filter. Active-
power-filter control for local filtering has been studied extensively in
the literature. The few works about system-wide harmonic mitigation
using active power filters are based on an accurate grid model as well
as multiple current measurements. The effort and expenses required
to obtain an accurate grid model may be substantial, especially if the
complexity and scale of the grid are large. In this chapter, we inves-
tigate the use of extremum-seeking control in order to optimize the
injection current of an active power filter for system-wide harmonic
mitigation. Because extremum-seeking control is often model free, it
can be used without knowledge of the electrical grid. The price to
pay is a slow convergence compared to model-based control methods.
A case study of a two-bus electrical grid with distributed generators
displays an improved performance of the used extremum-seeking con-
trol method compared to a local-filtering approach under constant load
conditions of the electrical grid, while the performance with respect to
a model-based system-wide filtering method is comparable. The case
study also shows that the used extremum-seeking control method is
slower to respond to changes in load conditions than the local and the
model-based system-wide filtering methods. Extremum-seeking control
can be implemented on top of existing approaches to combine the fast
transient response of conventional harmonic-mitigation methods with
the optimizing capabilities of extremum-seeking control.

6.1 Introduction

In this chapter, we apply extremum-seeking control to compute the injection
current of an active power filter that minimizes the harmonic distortion in all
nodes of an electrical grid. Harmonic distortion in alternating-current power
grids is the presence of harmonic components in current and voltage signals other
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than the fundamental frequency. Harmonic distortion is caused by nonlinear
loads in the power grid. Although low levels of harmonic distortion are often
tolerated, high levels of harmonic distortion can result in significant power losses
and an increased wear of mechanical components in the grid. Severe harmonic
distortion may even lead to overheating and failure of components. Several
harmonic mitigation methods are discussed in Key and Lai (1998); Singh (2009);
Akagi et al. (2007).

An active power filter injects a current to counteract the harmonic distortion
generated by the nonlinear loads in the power grid. For local compensation of
the harmonic distortion generated by a single nonlinear load, the optimal current
injection by the active power filter has the same amplitude and the opposite
phase of the load harmonics other than the fundamental frequency component.
The control of active power filters for local filtering has been studied extensively
in Akagi et al. (2007); El-Habrouk et al. (2000); Grady et al. (1990); Singh et al.
(1999) and references therein. Computing the optimal current injection for si-
multaneously compensating harmonics in all nodes of a multi-bus system is more
cumbersome as minimizing the harmonic distortion in one bus may increase the
level of distortion in another. To find the optimal current injection of an active
power filter for system-wide mitigation in a multi-bus electrical grid under con-
stant load conditions, a cost function is introduced in Grady et al. (1991, 1992)
to weigh the harmonic voltage distortion in the buses of the grid. The impedance
matrix of the power grid is used to link the voltage distortion to the current of
the active power filter. The optimal current injection is subsequently obtained
by minimizing the cost function. In addition, this method can be applied to find
the optimal location of the active power filter in the grid.

In Skjong et al. (2015a,b,c, 2016), a model-predictive control method is pre-
sented for system-wide harmonic mitigation in multi-bus electrical grids. The
proposed method is applied to find the optimal current injection of the active
power filter to mitigate the dominant harmonics in the electrical grid.

We note that the methods in Grady et al. (1991, 1992) and in Skjong et al.
(2015a,b,c, 2016) require a reasonably accurate grid model to effectively mitigate
the harmonic distortion in the electric grid. Accurately modeling the electrical
grid may require the modeling of many components in the grid as well as their
interconnections. The effort and expenses required to obtain an accurate grid
model may be substantial, especially if the complexity and scale of the grid are
large. Extremum-seeking control can be a valid alternative in this case, because
a model of the grid is not required. The contributions of this chapter can be
summarized as follows. First, we present a discrete-time extremum-seeking con-
trol method to find the injection current of the active power filter such that the
harmonic distortions in all the nodes of the electrical grid are minimized. The
presented extremum-seeking method is computationally cheap and can easily be
implemented to an electrical grid with an arbitrary number of nodes since no
grid model is required. Second, the extremum-seeking controller can be imple-
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mented on top of existing approaches to combine the fast transient response of
conventional harmonic-mitigation methods with the optimizing capabilities of
extremum-seeking control. Third, we present a case study of a two-bus electrical
grid with distributed generators. We compare harmonic-mitigation capabilities
of the presented extremum-seeking control method in this chapter with those of
a local-filtering method and of the model-predictive control method in Skjong
et al. (2015a,b,c, 2016). We investigate the effects of static and dynamic load
conditions, measurement noise and model mismatch on the harmonic mitigation
for these three methods and for a combination of the extremum-seeking control
method and the local-filtering method.

The organization of this chapter is as follows. We formulate the harmonic-
mitigation problem in Section 6.2. The extremum-seeking control method is
introduced in Section 6.3. The case study is presented in Section 6.4, followed
by the conclusion of this chapter in Section 6.5.

6.2 Harmonic-mitigation problem formulation

Consider a three-phase three-wire multi-bus power grid with an active power
filter. The active power filter is connected to one of the buses of the grid. Suppose
we want to minimize the harmonic distortion in n buses of the electrical grid. Let
these buses be numbered one to n. Moreover, let the three phases be denoted
by a, b and c. Under constant load conditions, the voltage in bus j of phase p
may be written as

Vj,p(t) =
∞∑

h=1

V h
j,p sin

(
2πht

Tf
+ φhj,p

)
(6.1)

for j = {1, 2, . . . , n} and p = {a, b, c}, where V h
j,p and φhj,p are the amplitude and

the phase of the hth-order harmonic of Vi,j(t) with time t, and where Tf is the
period of the fundamental frequency. To balance the objective of minimizing
the harmonic distortion in the n buses, we introduce the following cost function
consisting of the sum of squared voltage amplitudes of the dominant distortion
harmonics in the electrical grid, similar to Grady et al. (1991, 1992):

Z(V h1
1,a , . . . , V

hm
n,c ) =

∑

p∈{a,b,c}

n∑

j=1

∑

h∈H

βhj,p
(
V h
j,p

)2
, (6.2)

where βhj,p is a positive weighting constant for the voltage amplitude V h
j,p, and

where H = {h1, h2, . . . , hm} is a set consisting of the orders of m dominant
harmonics in the electrical grid to be mitigated, where each element ofH is unique
and larger than one. As pointed out in Grady et al. (1992), the cost function
in (6.2) is suited to incorporate several harmonic-distortion measures, including
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Figure 6.1: Harmonic-mitigation scheme.

the total harmonic distortion, the telephone influence factor and the motor-load
loss function. Assuming the voltage signals Vj,p(t) in (6.1) are measured, the
amplitudes V h

j,p can be obtained by applying the fast Fourier transform to one
period of the fundamental harmonic of the voltage signals.

To minimize the harmonic distortion in the buses, we provide the following
current reference to the active power filter for the three phases a, b and c:

iAF,a(t) =
∑

h∈H

(
uh1,a sin

(
2πht

Tf

)
+ uh2,a cos

(
2πht

Tf

))
,

iAF,b(t) =
∑

h∈H

(
uh1,b sin

(
2πht

Tf
− 2π

3
h

)
+ uh2,b cos

(
2πht

Tf
− 2π

3
h

))
,

iAF,c(t) =
∑

h∈H

(
uh1,c sin

(
2πht

Tf
+

2π

3
h

)
+ uh2,c cos

(
2πht

Tf
+

2π

3
h

))
,

(6.3)

with parameters uh1,p, u
h
2,p for p ∈ {a, b, c} and h ∈ H. By feeding the references

in (6.3) to the active power filter, the active power filter generates a current
injection for the three phases with feedback from the power grid. In turn, the
current injection to the grid influences the voltages in the buses. Hence, there is
a relation between the parameters uh11,a, u

h1
2,a, . . . , u

hm
2,c of the current reference of

the active power filter in (6.3) and the harmonics of the voltage signals in (6.1).
Without detailed knowledge of the electrical grid, as we assume here, the relation
between the parameters uh11,a, u

h1
2,a, . . . , u

hm
2,c and voltage signals is unknown. The

active power filter and the power grid can be regarded as one black box with
the current reference in (6.3) as input and the measured voltage signals in (6.1)
as output; see Figure 6.1.

Nonetheless, for constant values of the parameters uh11,a, u
h1
2,a, . . . , u

hm
2,c , we as-

sume that the relation between the parameters and the amplitudes of the har-
monics of the voltage signals that are part of the cost function in (6.2) are static
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under constant load conditions. With this, we mean that there exist unknown
static functions ghj,p such that

V h
j,p = ghj,p(u

h1
1,a, u

h1
2,a, . . . , u

hm
2,c ) (6.4)

for all j ∈ {1, 2, . . . , n}, all p ∈ {a, b, c} and all h ∈ H. The same assumption
is implicitly made in Grady et al. (1991, 1992) by linking the injection current
of the active power filter to the amplitudes of the voltages in the buses via the
impedance matrix of the power grid. The main difference with this work is that
the impedance matrix in Grady et al. (1991, 1992) is assumed to be known while
the static functions ghj,p in this work are unknown.

By combining (6.4) and the cost function in (6.2), we obtain that the out-
put of the cost function can be expressed as a function of the parameters
uh11,a, u

h1
2,a, . . . , u

hm
2,c :

F (uh11,a, u
h1
2,a, . . . , u

hm
2,c ) = Z(gh11,a(u

h1
1,a, . . . , u

hm
2,c ), . . . , ghmn,c (u

h1
1,a, . . . , u

hm
2,c ))

=
∑

p∈{a,b,c}

n∑

j=1

∑

h∈H

βhj,p
(
ghj,p(u

h1
1,a, . . . , u

hm
2,c )
)2
.

(6.5)

We refer to the function F as the objective function. To minimize the cost
function in (6.2) under constant steady-state conditions of the power grid, we
aim to find the values of the parameters uh11,a, u

h1
2,a, . . . , u

hm
2,c for which the value of

the objective function is minimal. We note however that the objective function
is unknown because the functions ghj,p are unknown. An extremum-seeking con-

troller may be defined to tune the parameters uh11,a, u
h1
2,a, . . . , u

hm
2,c such that the

objective function is minimal using the output of the cost function as feedback;
see Figure 6.1.

Note that the number of parameters is 6m. The convergence speed of extremum-
seeking control methods is inversely dependent on the number of parameters.
Hence, a slow convergence is obtained if the number of harmonics to be mitigated
(that is, m) is large. We make the following design assumptions to reduce the
number of parameters:

• the electrical grid is balanced;

• the harmonics in the grid are isolated.

A balanced electrical grid implies that the phases of the harmonics in the buses
have the same amplitude and are shifted 120◦ with respect to each other. There-
fore, the same parameters can be chosen for the three phases of the current
reference in (6.3), that is,

uh1 = uh1,a = uh1,b = uh1,c, uh2 = uh2,a = uh2,b = uh2,c (6.6)
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for all h ∈ H. With this assumptions, the number of parameters is reduced to
2m. The design assumption of a balanced grid is common in many text books
about harmonic mitigation; see for example Akagi et al. (2007).

In addition, we assume that the harmonics in the grid are isolated. By isolated
harmonics, we mean that the current reference for a given harmonic does not
influence different-order harmonics in the voltages of the buses, that is

V h
j,p = g̃hj,p(u

h
1,a, u

h
2,a, . . . , u

h
2,c) (6.7)

for all j ∈ {1, 2, . . . , n}, all p ∈ {a, b, c}, all h ∈ H and some unknown functions
g̃hj,p. We note that the output of the function ghj,p in (6.4) depends on parameters
of all harmonics in H, while the output of the function g̃hj,p in (6.7) only depends
on parameters of the harmonic h. From (6.6) and (6.7), it follows that the
objective function in (6.5) can be written as

F (uh11,a, u
h1
2,a, . . . , u

hm
2,c ) =

∑

h∈H

F h(uh1 , u
h
2), (6.8)

with

F h(uh1 , u
h
2) =

∑

p∈{a,b,c}

n∑

j=1

βhj,p
(
g̃hj,p(u

h
1 , u

h
2 , . . . , u

h
1 , u

h
2)
)2
. (6.9)

Because the parameters uhr1 , u
hr
2 do not affect the output of the function F hq

for each r, q ∈ {1, 2, . . . ,m}, r 6= q, the minima of the functions F h can be
computed in parallel for h ∈ H. The functions F h are unknown because the
functions g̃hj,p are unknown. For balanced grids with isolated harmonics, m
extremum-seeking controllers can be used in parallel to generate the reference
current of the active filter, where each controller generates the reference for one
harmonic; see Figure 6.2. We note that each controller is required to tune only
two parameters. The corresponding cost function for each h ∈ H is given by

Zh(V h
1,a, . . . , V

h
n,c) =

∑

p∈{a,b,c}

n∑

j=1

βhj,p
(
V h
j,p

)2
. (6.10)

Similarly to having a balanced grid, the isolation of harmonics is a standard
assumption for the design of harmonic-mitigation devices Akagi et al. (2007).

We note that any unbalance in the grid and any coupling between harmonics
will deteriorate the obtainable performance of the extremum-seeking controllers.
However, even in the presence of unbalance and coupling between harmonics,
it may be beneficial to make the simplifications in (6.6) and (6.7) because of
the significantly faster optimization response that can be achieved due to the
reduction in parameters and the parallelization of the extremum-seeking control
method.
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Figure 6.2: Harmonic-mitigation scheme for isolated harmonics.

6.3 Extremum-seeking control method

For each h ∈ H, we introduce a discrete-time extremum-seeking controller to
find the values of the parameters uh1 and uh2 for which the objective function F h

in (6.9) exhibits a minimum. The controller in this chapter is a modified version
of the extremum-seeking controller in Chapter 3. Let the sampling time of the
extremum-seeking controller be denoted by the positive constant Ts. At each
sampling instance t = kTs, the extremum-seeking controller computes an update
for the parameter values uh1,k and uh2,k, denoted by uh1,k+1 and uh2,k+1 respectively,

such that uh1(t) = uh1,k+1 and uh2(t) = uh2,k+1 for all t ∈ (kTs, (k + 1)Ts] and all
integers k. Here, we assume that the computation time is small compared to
the sampling time. Note that t = (k + 1)Ts is the last (and not the first) time
instance that uh1(t) = uh1,k+1 and uh2(t) = uh2,k+1.

We define

uh1,k = ûh1,k + αhωω
h
1,k, uh2,k = ûh2,k + αhωω

h
2,k, (6.11)

where ωh1,k and ωh2,k are perturbations with amplitude αhω > 0. The amplitude

αhω can be regarded as a tuning parameter and is commonly chosen to be small.
The perturbations ωh1,k and ωh2,k are given by

ωh1,k = sin

(
2πk

Nh
ω

)
, ωh2,k = cos

(
2πk

Nh
ω

)
, (6.12)

where the tuning parameter Nh
ω > 0 is a sufficiently large integer. The nominal

values ûh1,k and ûh2,k can be regarded as an estimate of the parameter values
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that minimize the objective function F h. The extremum-seeking controller uses
an estimate of the gradient of the objective function F h to regulate the nomi-
nal parameters ûh1,k and ûh2,k to the minimum of the objective function using a
gradient-descent approach.

To estimate the gradient of the objective function F h, we derive a general
dynamic model for the relation between the parameters uh1,k, u

h
2,k and the out-

put of the cost function Zh in (6.10). Let yhk denote the output of the cost
function Zh, where the input V h

1,a, . . . , V
h
n,c of the cost function Zh is obtained

by taking the fast Fourier transform of the measured voltage signals in (6.1)
for the time interval (kTs − Tf , kTs]. From (6.7), (6.9) and (6.10), we obtain
that yk ≈ F h(uh1,k, u

h
2,k) for constant parameter values uh1,k = uh1 and uh2,k = uh2

under constant load conditions of the electrical grid. Due to the use of the fast
Fourier transform, a distributed time delay is introduced between the parameter
values uh1,k, u

h
2,k and the output yhk . This delay is especially large if Tf � Ts.

Bounded time delays in extremum-seeking schemes can be handled by making
the extremum-seeking controller sufficiently slow; see for example Yu and Oz-
guner (2002); Haring et al. (2013). Here, we will compensate for the time delay
to be able to obtain a faster convergence of the extremum-seeking controller. We
model the output for time-varying parameters uh1,k and uh2,k as

yhk ≈
1

N

N−1∑

r=0

F h(uh1,k−r, u
h
2,k−r), (6.13)

where we assume that N =
Tf
Ts

is a positive integer. Linear interpolation can be

applied to obtain a similar expression if
Tf
Ts

is not a positive integer. From (6.11)
and Taylor’s theorem, we have that

F h(uh1,k, u
h
2,k) ≈ F h(ûh1,k, û

h
2,k) + αhω

∂F h

∂uh1
(ûh1,k, û

h
2,k)ω

h
1,k

+ αhω
∂F h

∂uh2
(ûh1,k, û

h
2,k)ω

h
2,k

(6.14)

for sufficiently small values of αhω > 0. Similarly, from Taylor’s theorem, it
follows that

F h(ûh1,k+1, û
h
2,k+1) ≈ F h(ûh1,k, û

h
2,k) + αhω

∂F h

∂uh1
(ûh1,k, û

h
2,k)

∆ûh1,k
αhω

+ αhω
∂F h

∂uh2
(ûh1,k, û

h
2,k)

∆ûh2,k
αhω

,

(6.15)

∂F h

∂uh1
(ûh1,k+1, û

h
2,k+1) ≈

∂F h

∂uh1
(ûh1,k, û

h
2,k) (6.16)
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and
∂F h

∂uh2
(ûh1,k+1, û

h
2,k+1) ≈

∂F h

∂uh2
(ûh1,k, û

h
2,k), (6.17)

with
∆ûh1,k = ûh1,k+1 − ûh1,k, ∆ûh2,k = ûh2,k+1 − ûh2,k, (6.18)

for sufficiently small values of αhω > 0, where we assume that ∆ûh1,k = O(αhω) and

∆ûh2,k = O(αhω) as αhω → 0, where O denotes the big-O notation. By combining
(6.11) and (6.13)-(6.18), we obtain

yhk ≈ F h(ûh1,k, û
h
2,k) + αhω

∂F h

∂uh1
(ûh1,k, û

h
2,k)

1
N

∑N−1
r=0 u

h
1,k−r − ûh1,k
αhω

+ αhω
∂F h

∂uh2
(ûh1,k, û

h
2,k)

1
N

∑N−1
r=0 u

h
2,k−r − ûh2,k
αhω

.

(6.19)

Now, let us define the following state vector of the model:

mh
k =




F h(ûh1,k, û
h
2,k)

αhω
∂Fh

∂uh1
(ûh1,k, û

h
2,k)

αhω
∂Fh

∂uh2
(ûh1,k, û

h
2,k)


 . (6.20)

From (6.15)-(6.20), it follows that the relation between the parameters uh1,k, u
h
2,k

and the output yhk can be approximated by the following dynamic model:

mh
k+1 = Ah

km
h
k

yhk = Ch
km

h
k,

(6.21)

with

Ah
k =




1
∆ûh1,k
αhω

∆ûh2,k
αhω

0 1 0

0 0 1


 (6.22)

and

Ch
k =

[
1

1
N

∑N−1
r=0 u

h
1,k−r − ûh1,k
αhω

1
N

∑N−1
r=0 u

h
2,k−r − ûh2,k
αhω

]
. (6.23)

We note the last two elements of the state vector mh
k in (6.20) are equal to

the gradient of the objective function F h scaled by the tuning parameter αhω.
Therefore, an estimate of the gradient of the objective function can be obtained
by estimating the state vector mh

k.

We introduce the following three-step observer to estimate the state vector
mh

k, as in Chapter 3:
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Step 1→ 2 (correction step):

m̂h
k|2 = m̂h

k|1 + Lh
k|1
(
yhk −Ch

km̂
h
k|1
)
,

Qh
k|2 =

(
I− Lh

k|1C
h
k

)
Qh
k|1
(
I− Lh

k|1C
h
k

)T
+

1

1− λhm
Lh
k|1
(
Lh
k|1
)T
,

(6.24)

Step 2→ 3 (regularization step):

m̂h
k|3 = m̂h

k|2 − Lh
k|2Dm̂h

k|2,

Qh
k|3 =

(
I− Lh

k|2D
)

Qh
k|2
(
I− Lh

k|2D
)T

+
1

σhr (1− λhm)
Lh
k|2
(
Lh
k|2
)T
,

(6.25)

Step 3→ 1 (prediction step):

m̂h
k+1|1 = Ah

km̂
h
k|3,

Qh
k+1|1 =

1

λhm
Ah
kQ

h
k|3
(
Ah
k

)T
,

(6.26)

with

Lh
k|1 = Qh

k|1
(
Ch
k

)T
(

1

1− λhm
+ Ch

kQ
h
k|1
(
Ch
k

)T
)−1

,

Lh
k|2 = Qh

k|2D
T

(
1

σhr (1− λhm)
I + DQh

k|2D
T

)−1 (6.27)

and

D =

[
0 1 0

0 0 1

]
. (6.28)

Here, m̂h
k|3 is an estimate of the state vector mh

k , and m̂h
k|1 and m̂h

k|2 are interme-

diate variables. The matrix Qh
k|3 and the intermediate variables Qh

k|1 and Qh
k|2

are positive definite. The tuning parameter λhm ∈ (0, 1) is sometimes referred
to as the forgetting factor Johnstone and Anderson (1982). Its value is often
chosen to be close to one. The tuning parameter σhr > 0 is a regularization
constant. Because regularization deteriorates the estimate of the state vector
mh

k, its value is commonly chosen to be small. The correction step in (6.24)
updates the estimate of the state vector with the output yk of the cost function
as feedback. The regularization step in (6.25) prevents the elements of the ma-
trix Qh

k|3 from becoming excessively large if the parameter signals uh1,k and uh2,k
are (momentarily) not sufficiently rich to accurately estimate the state vector
mh

k . The prediction step in (6.26) predicts the state vector at the next sampling
instance using the same update equation as the model in (6.21).

Noting that m̂h
k|3 is an estimate of the state vector mh

k, we obtain that Dm̂h
k|3
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is an estimate of the gradient of the objective function F h scaled by the tuning
parameter αhω. Similarly, D1m̂

h
k|3 and D2m̂

h
k|3 are estimates of the scaled partial

derivatives of F h with respect to uh1 and uh2 , respectively, with

D1 =
[
0 1 0

]
, D2 =

[
0 0 1

]
. (6.29)

With this in mind, we define the following gradient-descent optimizers for the
parameters uh1,k and uh2,k:

uh1,k+1 = uh1,k − λhu
ηhuD1m̂

h
k|3

ηhu + λhu‖Dm̂h
k|3‖

,

uh2,k+1 = uh2,k − λhu
ηhuD2m̂

h
k|3

ηhu + λhu‖Dm̂h
k|3‖

.

(6.30)

The tuning parameter λhu can be regarded as the linear part of the gains of the
optimizers since |∆uh1,k| ≤ λhu|D1m̂

h
k|3| and |∆uh2,k| ≤ λhu|D2m̂

h
k|3|. The gains of

the optimizers are normalized. The tuning parameter ηhu > 0 can be regarded
as the normalization gain. We note that |∆uh1,k| ≤ ηhu and |∆uh2,k| ≤ ηhu so that

the model in (6.21) is accurate for sufficiently small values of αhω > 0 and ηhu > 0
under constant load conditions of the electrical grid.

The extremum-seeking controller for each h ∈ H is obtained by combining
the observer in (6.24)-(6.26) and the optimizers in (6.30). We note the average
parameter values 1

N

∑N−1
r=0 u

h
1,k−r and 1

N

∑N−1
r=0 u

h
2,k−r of the matrix Ch

k in (6.23)
can be obtained by using moving-average filters as illustrated in Figure 6.3.

6.4 Case study: two-bus electrical grid with distributed

generators

We consider the two-bus electrical grid with distributed generators in Figure 6.4.
The electrical grid portrays a simplified shipboard power system. It consists of
two generators, two buses with propulsion loads, an active power filter, an LCL
filter and RC shunts. The two buses represent switchboards that connect each
generator to its respective load. The effective impedance of the main bus connec-
tion (that is, the connection between the two buses) is described by the resistor
RMB and the inductor LMB. The propulsion loads are modeled as variable-speed
drives with 12-pulse rectifiers. The LCL filter is used to suppress the switching
noise of the active power filter. The RC shunts represent the shunt capacitance
of bus bars and cables. The parameters of the model are presented in Table 6.1.
The per-unit model is given relative to the generator power rating. The current
that can be produced by the active filter is limited. To avoid unwanted effects
due to saturation of the filter current (that is, current clipping), the current
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Figure 6.3: Extremum-seeking controller for h ∈ H.
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Table 6.1: Parameters of the electrical grid (with angular frequency ωf = 2π
Tf

).

Parameter Value Unit

Nominal voltage 690 V

Fundamental frequency
(

1
Tf

)
50 Hz

Generator power rating 1 MVA

LG1, LG2 0.2 pu

RG1 0.1·LG1·ωf pu

RG2 0.1·LG2·ωf pu

LMB 0.04 pu

RMB 0.1·LMB·ωf pu

CS1, CS2 2 µF

RS1, RS2 2 Ω

LL1, LL2 0.3 mH

RL1, RL2 0.03 Ω

CC 30 µF

RC 10 Ω

RD 160 Ω

references given to the active power filter are cut off if they exceed the maximal
allowable current that the active power filter can produce. More information
about the model can be found in Skjong et al. (2016).

Many harmonics are eliminated due to the use of 12-pulse rectifiers. The
dominating harmonics that remain are of the orders 12r ± 1 for positive inte-
ger values of r. This is due to the phase-shifting transformer that connects
the two parallelled 6-pulse rectifiers to the main grid. We use the extremum-
seeking control method in Section 6.3 to compute the optimal parameters uh1
and uh2 of the current reference (6.3) of the active power filter for the harmonics
h ∈ {11, 13, 23, 25}. The sampling time of the extremum-seeking controller is
given by Ts = 10−3 s. The tuning parameters are set to αhω = 0.01 pu, Nh

ω = 80,
λhm = 0.985, λ11u = λ13u = 5 pu, λ23u = λ25u = 2 pu, ηhu = 5× 10−4 and σhr = 10−3

for all h ∈ {11, 13, 23, 25}. The parameters of the cost functions in (6.10) are
set to βhj,p = 1 for all j ∈ {1, 2}, all p ∈ {a, b, c} and all h ∈ {11, 13, 23, 25}.

To illustrate the difference between local and system-wide harmonic mitigation,
we compare our results with those of a local-filtering method. The local-filtering
method extracts the 11th, 13th, 23rd and 25th harmonic from current mea-
surements of the local load (that is, Load 2 in Figure 6.4) using a fast Fourier
transform and provides the same harmonics with an opposite phase to the ac-

149



Chapter 6 Harmonic mitigation in electrical grids

L
oad

1

C
S
1

R
S
1

R
M

B
L
M

B

C
S
2

R
S
2

L
oad

2

L
L
2

R
L
2

L
L
1

R
L
1

C
C

R
C

R
D

A
ctive

p
ow

er
fi
lter

B
u
s

2

G
en

2
G

en
1

L
G
2

R
G
2

R
G
1

L
G
1

B
u
s

1

F
ig

u
re

6
.4

:
M

o
d

el
o
f

tw
o
-b

u
s

sh
ip

b
o
a
rd

p
ow

er
sy

stem
.

150



6.4 Case study: electrical grid with distributed generators

tive power filter as current reference, similar to Williams and Hoft (1991). The
extremum-seeking control method can easily be combined with other methods.
To demonstrate this, we additionally present results for a combination of the
extremum-seeking method and the local-filtering method. For this combined
method, the current reference that is supplied to the active power filter is the
sum of the current references of the extremum-seeking control method and the
local-filtering method.

Moreover, we also compare our result with those of the model-predictive con-
trol method in Skjong et al. (2015a,b,c, 2016) that uses current measurements
of the generators and the loads to mitigate the same harmonics. The model-
predictive control method uses a simplified model of the grid to generate the
current reference to the active power filter. In this simplified grid model, the
active power filter is modeled as perfect current sources, the generators are con-
sidered to be perfect voltage sources, the variable-speed drives with 12-rectifiers
are modeled as perfect current sources, the RC shunts are replaced by shunt ca-
pacitors, and the LCL filter is omitted. More details about the model-predictive
control method are discussed in Skjong et al. (2016).

6.4.1 Harmonic mitigation under constant load conditions

We use the total harmonic distortion (THD) as a measure for the mitigation
performance. Table 6.2 presents the total harmonic distortion of the voltage in
the buses under different constant load conditions, where the power of Load 1
and Load 2 is denoted by P1 and P2, respectively. From Table 6.2, we obtain the
total harmonic distortion of the model-predictive control (MPC) method and the
extremum-seeking control (ESC) method are comparable. Compared to these
two system-wide harmonic-mitigation methods, the local-filtering method (Local)
performs significantly worse. Combining the extremum-seeking control method
and the local-filtering method (Local + ESC) gives a harmonic-mitigation per-
formance that is similar to those of the model-predictive control method and the
extremum-seeking control method. We note that the values of the total harmonic
distortion of the voltages in the buses mildly oscillate if the extremum-seeking
controller is applied due to the use of perturbations. The values in Table 6.2 are
the time-averaged values of the total harmonic distortion.

As mentioned before, the current references are constrained in order not to ex-
ceed the maximal allowable current of the active power filter. In Figure 6.5, the
constrained current references for phase a for the load condition P1 = P2 = 1.0 pu
are presented. We observe that the current references of the model-predictive con-
trol method, the extremum-seeking control method and the combined extremum-
seeking control and local-filtering method are cut off to stay within the allowable
current range of [−1, 1] pu. Moreover, we note that the current references for all
methods apart from the local-filtering method are very similar, which explains
the numbers in Table 6.2. The corresponding current injection produced by the
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active power filter is shown in Figure 6.6. We observe that the current-injection
signals are more noisy compared to the current-reference signals in Figure 6.5
due to the switching of the active power filter.

6.4.2 Harmonic mitigation under dynamic load conditions

In Figures 6.7 and 6.8, the THD dynamic responses to a step in the power of
the loads are displayed; the power of both loads is increased from 0.3 pu to
1.0 pu at time zero. Compared to the model-predictive control and the local-
filtering method, it takes the extremum-seeking control method much longer
to adapt to the new power levels of the loads. The converge is faster for the
combined extremum-seeking control and local-filtering method, but not as fast
as for the model-predictive control and the local-filtering methods. We note that
convergence rate of the extremum-seeking control method and the combined
method can be increased under a different tuning of the extremum-seeking
controllers. However, this will deteriorate the steady-state performance of the
extremum-seeking method due to the tuning trade-off discussed in Tan et al.
(2006).

6.4.3 Measurement noise

To investigate the effect of measurement noise on the performance of the
harmonic-mitigation methods, we add additive Gaussian white noise to all mea-
surement signals such that the corresponding signal-to-noise ratios (SNR) are
equal to ten. All four methods are based on measurements and are therefore
influenced by measurement noise. The measurement noise is transmitted to the
electrical grid via the generated current references and the active power filter.
We observe in Figures 6.9 and 6.10 that the voltage signals in Bus 2, which is
connected to the active power filter, are most affected by measurement noise: the
differences in total harmonic distortion over time can be as large as one percent
for all methods. Other than a minor increase in the values of the total harmonic
distortion for the model-predictive control method, no significant difference in
noise sensitivity between the methods is observed, also for other noise levels.

6.4.4 Model mismatch

Of the four methods presented in this section, model-predictive control is the
only method that relies on a model to mitigate the harmonic distortion in the
voltage and current signals of the electrical grid. The model-predictive control
method uses a simplified version of the model in Figure 6.4 to compute the
current references of the active power filter; see Skjong et al. (2016). For the
above simulations, the parameters of the simplified model have the same values
as in Table 6.1. In real-life applications, the parameters for the model of the
model-predictive control method have to be measured or estimated. Six sets
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6.4 Case study: electrical grid with distributed generators

Table 6.2: Percentage of time-averaged voltage THD in the buses for various constant load
conditions.

MPC Local ESC Local + ESC P1 [pu] P2 [pu]

Bus 1 3.92 6.44 4.07 4.11
1.0 1.0

Bus 2 4.06 5.57 4.20 4.27

Bus 1 1.80 3.21 1.95 1.96
0.3 0.3

Bus 2 2.00 2.76 1.93 1.96

Bus 1 2.45 6.06 2.65 2.67
1.0 0.3

Bus 2 2.43 5.11 2.35 2.37

Bus 1 2.07 3.98 2.17 2.19
0.3 1.0

Bus 2 2.35 4.02 2.31 2.34
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Figure 6.5: Constrained current reference for phase a as a function of time for P1 = P2 = 1.0 pu.
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Figure 6.6: Current injection for phase a generated by the active power filter as a function of
time for P1 = P2 = 1.0 pu.
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Figure 6.7: Percentage of voltage THD in Bus 1 as a function of time as the values of P1 and
P2 jump from 0.3 pu to 1.0 pu at time zero.
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Figure 6.8: Percentage of voltage THD in Bus 2 as a function of time as the values of P1 and
P2 jump from 0.3 pu to 1.0 pu at time zero.
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Figure 6.9: Percentage of voltage THD in Bus 1 as a function of time for P1 = P2 = 1.0 pu.
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6.5 Conclusion

of model parameters are presented in Table 6.3 to simulate the case of model
mismatch. The corresponding total harmonic distortion of the voltages in the
buses are given in Table 6.4.

From Table 6.4, we obtain that total harmonic distortion for the first five
parameter sets is comparable to the total harmonic distortion for the exact
parameters in Table 6.2. We note that the total harmonic distortion for the first
and second parameter set is slightly lower than for the exact parameters. Overall,
the model-predictive control method is not very sensitive to model mismatch
for parameters moderately close to their exact values. Set 6 appears to be an
exception to the rule.

6.5 Conclusion

In this chapter, we have presented an extremum-seeking control method that
optimizes the injection current of an active power filter for the minimization of
harmonic distortion in electrical grids. The method relies on measurements of the
voltages at all nodes in the grid. The main advantage of the presented method
compared to other methods is that no grid model is required. The presented
method is computationally cheap, can easily be applied to an electrical grid
with an arbitrary number of nodes, and can be implemented on top of existing
methods. A case study of a two-bus electrical grid with distributed generators is
presented, where we compare the performance of the extremum-seeking control
method with the performances of harmonic-mitigation method based on local
measurements and a model-predictive control method. The case study displays
that the performance of the presented extremum-seeking control method is
significantly better than that of the local-filtering method and comparable to that
of the model-predictive control method under constant steady-state conditions
of the grid. The convergence of the extremum-seeking control method is slower
than for the other methods. The convergence rate can be increased by combining
the extremum-seeking control method and the local-filtering method.
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Figure 6.10: Percentage of voltage THD in Bus 2 as a function of time for P1 = P2 = 1.0 pu
with SNR = 10.

Table 6.3: Parameter sets for the model of the MPC. Percentages are with respect to the values
in Table 6.1.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

LG1, LG2 110% 95% 120% 90% 95% 90%

RG1, RG2 110% 95% 120% 90% 95% 90%

LMB, RMB 110% 110% 120% 90% 105% 120%

CS1, CS2 110% 110% 120% 90% 105% 120%

Table 6.4: Percentage of voltage THD in the buses for P1 = P2 = 1.0 pu for the MPC method,
with the parameter sets for the model of the MPC in Table 6.3.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Bus 1 3.79 3.88 3.94 3.97 3.99 4.67

Bus 2 3.86 3.97 4.10 4.12 4.13 4.32
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Chapter 7

Concluding remarks

7.1 Conclusions regarding the objectives of the thesis

Black-box extremum-seeking control methods have been studied in this work,
with a main focus on perturbation-based methods. The first objective of this
work has been to develop a black-box extremum-seeking control method with
an increased convergence rate compared to classical extremum-seeking control
methods that uses small-amplitude low-frequency perturbations.

• Classical perturbation-based extremum-seeking control methods use an
estimate of the gradient of the objective function to optimize the steady-
state performance of a plant. In Chapter 2, we have pointed out that
the convergence speed of classical perturbation-based extremum-seeking
control methods is dependent on the accuracy of the gradient estimate.
For classical methods, the gradient estimate is based on the perturbation-
related content in the plant-parameter signals and the corresponding plant-
performance signal. Because the perturbation-related content in the plant-
parameter signals is low if small-amplitude low-frequency perturbations
are used, an improved accuracy of the gradient estimate and a faster con-
vergence may be achieved if the entire plant-parameters signals (and not
only the perturbation-related content) are used to estimate the gradient
of the objective function. An extremum-seeking controller with a least-
squares observer has been introduced in Chapter 2. The least-squares
observer uses the entire plant-parameter signals to obtain a gradient esti-
mate. Moreover, curvature information of the objective function can be
utilized to further enhance the gradient estimate. In addition, the observer
provides inherent filtering of plant dynamics and noise. To test the overall
performance, the convergence rate of the extremum-seeking controller has
been compared with the convergence rate of three other extremum-seeking
controllers in the literature for several examples. The comparison reveals
that the maximal obtained convergence rate of the presented controller is
comparable or higher than those of the other three controllers. An exten-
sive simulation example displays that a faster convergence is obtained for
small-amplitude low-frequency perturbations with the two observer-based
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controllers that use the entire plant-parameter signals to estimate the gra-
dient of the objective function than with the classical extremum-seeking
controller and the phasor extremum-seeking controller that do not utilize
the entire plant-parameter signals for their gradient estimation. In addi-
tion, it shows that incorporating curvature information of the objective
function can significantly improve the convergence rate for sufficiently low
perturbation frequencies.

• Although many extremum-seeking control methods assume that the mea-
surements of the performance indicators and the update of the plant pa-
rameters are continuous in time, the performance-indicator measurements
are often sampled and the plant parameters are updated in a discrete-
time fashion in many practical applications. In Chapter 3, a discrete-time
version of the continuous-time extremum-seeking controller in Chapter 2
has been presented to optimize the steady-state plant performance in a
sampled-data setting. The discrete-time controller in Chapter 3 reduces to
the continuous-time controller in Chapter 2 for the limit as the sampling
time approaches zero.

• In Chapter 6, an application of the discrete-time extremum-seeking con-
troller in Chapter 3 has been developed in the form of active-power-filter
control for system-wide harmonic-mitigation in electrical grids. A case
study of a two-bus electrical grid with distributed generators displays an
improved performance of the used extremum-seeking control method com-
pared to a local-filtering approach under constant load conditions of the
electrical grid, while a comparable performance with respect to a model-
based system-wide filtering method is observed. The case study also shows
that the used extremum-seeking control method is slower to respond to
changes in load conditions than the local and the model-based system-
wide filtering methods. The extremum-seeking control method can be
implemented on top of existing approaches to combine the fast transient
response of conventional harmonic-mitigation methods with the optimizing
capabilities of extremum-seeking control.

The second objective of this thesis has been to develop a black-box extremum-
seeking method for general nonlinear dynamical plants that ensures global asymp-
totic stability of the resulting closed-loop system of plant and controller with
respect to the optimal steady-state performance of the plant.

• In Chapter 4, we have presented a self-driving extremum-seeking controller
that optimizes the steady-state performance of a class of nonlinear dynam-
ical plants. The stability analysis in Chapter 4 shows that exponential
convergence to the optimal steady-state performance can be guaranteed
under suitable initial conditions and tuning conditions. To the best of the
authors’ knowledge, the stability proof in Chapter 4 is the first rigorous
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stability proof for self-driving extremum-seeking schemes with dynamical
plants.

• Local convergence to the optimum has been proved for a certain class of
nonlinear dynamical plants with the self-driving extremum-seeking con-
troller in Chapter 4. To obtain global asymptotic convergence for gen-
eral nonlinear dynamical plants, we have introduced a perturbation-based
extremum-seeking controller in Chapter 5. We have shown that global
asymptotic stability of the closed-loop system of plant and controller with
respect to the optimal steady-state plant performance can be obtained for
any plant that satisfies the assumptions in Chapter 5. The key to this
result is that the tuning parameters of the controller are time varying and
asymptotically decay to zero as time goes to infinity. Global asymptotic
stability can even be obtained if the plant is subjected to a time-varying
disturbance under the assumption that the perturbations of the controller
and the zero-mean component of the disturbance are uncorrelated. More-
over, the time-varying tuning parameters can be chosen such that global
asymptotic stability is achieved for all plants that satisfy the assumptions.

7.2 Recommendations for future work

The following recommendations for future work are based on the findings in this
thesis:

• In Chapter 2, we have illustrated with a simulation example that a faster
convergence may be obtained with an extremum-seeking controller that
uses the entire plant-parameter signals to estimate the gradient of the
objective function than with a classical extremum-seeking controller if
small-amplitude low-frequency perturbations are used. To be able to make
a more general assessment of performance, the convergence speed could be
compared for many more plants. Ideally, the improvements in convergence
speed should be proved mathematically.

• It has been shown in Chapter 3 that the discrete-time extremum-seeking
controller in Chapter 3 reduces to the continuous-time extremum-seeking
controller in Chapter 2 for the limit as the sampling time goes to zero.
Moreover, it has been proved in Chapter 2 that the closed-loop scheme
of plant and continuous-time extremum-seeking controller is stable under
certain assumptions. A stability proof could be added to Chapter 3 to show
that also the stability of the closed-loop system of plant and discrete-time
extremum-seeking controller can be guaranteed under similar assumptions.

• The self-driving extremum-seeking controller in Chapter 4 can only be
applied to single-parameter plants. The extension to multi-parameter
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plants is not straightforward. Additional research is required to develop
a self-driving extremum-seeking controller that can be applied to multi-
parameter plants.

Additionally, the following recommendations are given:

• There are often many different extremum-seeking control methods that
can be applied to optimize the steady-state performance of a plant. Some
extremum-seeking control method possess properties that uniquely distin-
guish them from others, such as the convergence to a global optimum in
the presence of local optima (Khong et al., 2013a,b; Nešić et al., 2013b) or
the stabilization of unstable plants (Moase and Manzie, 2012b; Scheinker
and Krstić, 2013; Zhang et al., 2007b). For many other extremum-seeking
control methods, it is much harder to distinguish when it is appropriate to
apply them and when other methods form a better alternative. Users of
extremum-seeking control may end up with several methods that appear
to be equally suitable at first sight. A clear overview of the advantages
and drawbacks of different extremum-seeking control methods would be
most helpful and is still something that is missing at the moment.

• Perturbation are frequently added to extremum-seeking control schemes to
ensure that that the plant-parameter signals are sufficiently rich to obtain
the information required to optimize the steady-state performance of a
plant. The optimal level of added excitation is dependent on the plant,
disturbances and noise, and changes as the plant parameters converge to
their performance-optimizing values. Several extremum-seeking controllers
have been proposed in the literature to regulate the level of excitation by
changing the amplitude of the perturbations (Moase et al., 2010; Moura
and Chang, 2013; Wang et al., 2016). What the optimal level of excitation
is remains a mystery however. Adding perturbations to increase the level
of excitation may not be required, as we have seen in Chapter 4. How
much excitation is desirable and how the desired level of excitation can be
achieved are interesting research questions. Most probably, the answers
of these questions involve solving a dual-control problem, as discussed in
Section 1.1.1. Although solving a dual-control problem can be a challenging
task, knowing how much excitation to apply and how to do this would be a
great help in developing more efficient extremum-seeking control methods.

160



Bibliography

V. Adetola and M. Guay. Adaptive output feedback extremum seeking receding horizon
control of linear systems. Journal of Process Control, 16(5):521–533, 2006.

V. Adetola and M. Guay. Parameter convergence in adaptive extremum-seeking control.
Automatica, 43(1):105–110, 2011.

V. Adetola, D. DeHaan, and M. Guay. Adaptive model predictive control for con-
strained nonlinear systems. Systems & Control Letters, 58(5):320–326, 2009.

H. Akagi, E. H. Watanabe, and M. Aredes. Instantaneous power theory and applications
to power conditioning. John Wiley & Sons, Hoboken, New Jersey, 2007.

V. Alstad and S. Skogestad. Null space method for selecting optimal measurement
combinations as controlled variables. Industrial & Engineering Chemistry Research,
46(3):846–853, 2007.

V. Alstad, S. Skogestad, and E. S. Hori. Optimal measurement combinations as
controlled variables. Journal of Process Control, 19(1):138–148, 2009.

R. Antonello, R. Oboe, L. Prandi, and F. Biganzoli. Automatic mode matching in
MEMS vibrating gyroscopes using extremum-seeking control. IEEE Transactions
on Industrial Electronics, 56(10):3880–3891, 2009.
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G. Bastin, D. Nešić, Y. Tan, and I. Mareels. On extremum seeking in bioprocesses
with multivalued cost functions. Biotechnology Progress, 25(3):683–689, 2009.

J. F. Beaudoin, O. Cadot, J. L. Aider, and J. E. Wesfreid. Bluff-body drag reduction
by extremum-seeking control. Journal of Fluids and Structures, 22(6-7):973–978,
2006.

R. Becker, R. King, R. Petz, and W. Nitsche. Adaptive closed-loop separation control
on a high-lift configuration using extremum seeking. AIAA Journal, 45(6):1382–
1392, 2007.

161



Bibliography

R. Bellman, J. Bentsman, and S. M. Meerkov. Vibrational control of nonlinear systems:
vibrational stabilizability. IEEE Transactions on Automatic Control, 31(8):710–716,
1986.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust
optimization. SIAM Review, 53(3):464–501, 2011.

H.-G. Beyer and B. Sendhoff. Robust optimization - a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218, 2007.

N. Bizon. On tracking robustness in adaptive extremum seeking control of the fuel
cell power plants. Applied Energy, 87(10):3115–3130, 2010.

P. F. Blackman. Extremum-seeking regulators. In J. H. Westcott, editor, An Exposition
of Adaptive Control, pages 36–50. Pergamon Press, Oxford, 1962.

P. Borg, T. Moen, and J. Aalbu. Adaptive control of alumina reduction ccell with
point feeders. Modeling, Identification and Control, 7(1):45–56, 1986.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
Cambridge, U.K., 2004.

A. Bratcu, I. Munteanu, S. Bacha, and B. Raison. Maximum power point tracking of
grid-connected photovoltaic arrays by using extremum seeking control. Journal of
Control Engineering and Applied Informatics, 10(4):3–12, 2008.

S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson. Maximum power point
tracking for photovoltaic optimization using ripple-based extremum seeking control.
IEEE Transactions on Power Electronics, 25(10):2531–2540, 2010.

F. Bullo. Averaging and vibrational control of mechanical systems. SIAM Journal on
Control and Optimization, 41(2):542–562, 2002.

D. Carnevale, A. Astolfi, C. Centioli, S. Podda, V. Vitale, and L. Zaccarian. A new
extremum seeking technique and its application to maximize RF heating on FTU.
Fusion Engineering and Design, 84(2-6):554–558, 2009.

C. Centioli, F. Iannone, G. Mazza, M. Panella, L. Pangione, S. Podda, A. Tuccilo,
V. Vitale, and L. Zaccarian. Maximization of the lower hybrid power coupling in the
Frascati Tokamak Upgrade via extremum seeking. Control Engineering Practice,
16(12):1468–1478, 2008.

B. Chachuat, B. Srinivasan, and D. Bonvin. Adaptation strategies for real-time
optimization. Computers & Chemical Engineering, 33(10):1557–1567, 2009.
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Control and coordination in hierarchical systems. John Wiley & Sons, Chichester,
UK, 1980.
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L. Fu and U. Özgüner. Extremum seeking with sliding mode gradient estimation
and asymptotic regulation for a class of nonlinear systems. Automatica, 47(12):
2595–2603, 2011.

G. Gelbert, J. P. Moeck, O. Paschereit, and R. King. Advanced algorithms for gradient
estimation in one- and two-parameter extremum seeking controllers. Journal of
Process Control, 22(4):700–709, 2012.
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