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Abstract

High false alarm rates are a problem in anti-submarine warfare in littoral wa-
ters using active broadband sonar. Automatic classification algorithms may
help combat this problem by filtering out detections due to non-threatening
targets. An important feature for classification purposes is knowledge of the
target’s depth. Using active sonar with vertical beamforming capabilities,
the received signal from a target can be used to find an estimate of the
target’s depth given an initial guess of the target’s horizontal distance from
the ship, the bottom profile and the sound speed profile.

The estimation is done by an optimization algorithm. The algorithm
varies relevant parameters and models signals based on these parameters,
comparing the modelled signals with the received signal until parameters
providing an optimal fit are found. The modelling is based on using a ray
tracing procedure to find eigenrays for a candidate target depth, finding
vertical arrival angles and arrival times by use of these eigenrays, and syn-
thesizing a signal based on the arrival angles and arrival times. The ray
tracing procedure is done numerically using LYBIN, a platform developed
by the Norwegian Defence Logistics Organization (NDLO). Three candidate
objective functions for comparing recorded signals to modelled signals are
presented.

The validity of the eigenray finding procedure is confirmed, and results
from testing the optimization procedure on synthetic data when applying
the different objective functions are presented. The results show that the
method produces target depth estimates which are suitable for classification
purposes.
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Sammendrag (abstract in
Norwegian)

Høye falsk alarm-rater er et problem ved bruk av aktiv bredbåndssonar
under antiubåtkrigføring i farvann med mange fremmedelementer. Automa-
tiske klassifikasjonsalgoritmer kan bidra til å bekjempe dette problemet ved
å filtrere ut deteksjoner fra ufarlige mål. Kunnskap om målets dyp er viktig
for å klassifisere mål. Ved bruk av aktiv sonar med mulighet for vertikal
stråleforming kan det mottatte signalet fra et mål brukes til å finne et esti-
mat for målets dyp, gitt en startgjetning for målets horisontale avstand fra
skipet, bunnprofilen og lydhastighetsprofilen.

Estimeringen gjøres ved bruk av en optimeringsalgoritme. Algoritmen
varierer relevante parametere og modellerer signaler basert på disse param-
eterene for så å sammenligne de modellerte signalene med det mottatte
signalet. Dette gjøres inntil det blir funnet et sett med parametere som gir
best mulig samsvar mellom modellert og mottatt signal. Modelleringen går
ut på å anvende strålesporing for å finne egenstråler for et antatt måldyp og
finne ankomstvinkler og ankomsttider basert på egenstrålene, for deretter
å syntetisere et signal basert på ankomstvinklene og -tidene. Strålegangen
beregnes numerisk ved bruk av LYBIN, et verktøy utviklet av Forsvarets lo-
gistikkorganisasjon (FLO). Det presenteres tre målfunksjonskandidater som
brukes til å sammenligne mottatte signaler med modellerte signaler.

Validiteten til prosedyren som brukes for å finne egenstråler blir bekreftet,
og resultater fra bruk av optimeringsalgoritmen på syntetisk data med de
tre målfunksjonene blir presentert. Resultatene viser at metoden produserer
måldypsestimater som er gode nok til bruk i klassifikasjonsøyemed.
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Chapter 1

Introduction

Making observations under water is a complex task. Seawater is a highly
absorbing medium when considering microwave transmission, making ob-
servation methods based on radar severely limited even at small ranges and
rendering them useless for long distance underwater observations. However,
as pressure waves are fairly well-behaved in water, acoustic methods using
sonar (SOund Navigation And Ranging) equipment are suited for investi-
gating underwater objects.

Two main kinds of sonar systems are in use - passive sonars record envi-
ronmental sound only, without disturbing the surroundings. Active sonars
work by emitting a sound pulse with a predetermined amplitude and fre-
quency, called a ping, into the ocean and recording the resulting environ-
mental sound [1]. If one considers the ocean as a system, the two approaches
are equivalent to either observing the system passively, or by actively excit-
ing the system with input in the shape of a ping and observing the recorded
echoes as the response. Active sonar systems are able to obtain different
information about their surroundings than passive systems, especially with
their ability to measure arrival times, the time from a ping is emitted until
an echo is heard. If the propagation speed of the ping is known, the distance
traveled by it can then be estimated using its arrival time, providing an es-
timate of the distance between the sonar and the target from which the ping
was reflected. Due to the availability of this additional information, active
sonar is often used in anti-submarine warfare.

When using active sonar in anti-submarine warfare, classification of tar-
gets is a key issue - if the ping elicits a response from the surroundings
in the form of an echo from a target, is the target a shoal of fish, an oil
pipeline, a submarine, rock formations or something entirely different? Such
questions arise especially often when using active sonar in littoral waters -
oceanic regions with a high density of disturbing elements. Alarms from non-
threatening objects are a problem since they complicate the tactical picture,
and automatic classification schemes that can identify the source of an echo

1



2 CHAPTER 1. INTRODUCTION

and filter away such false alarms are needed in order to simplify the work
of the operator [2]. Automatic classification schemes may also prove use-
ful in the development of navigational systems for autonomous underwater
vehicles, helping them navigate littoral waters successfully. An important
feature in automatic classification algorithms is knowledge of the target’s
depth.

Regular sonar processing focuses mainly on estimating the range (hor-
izontal distance from sonar), bearing and speed of a target. Knowledge
of these features allows us to distinguish between stationary and moving
targets in most cases. However, when encountering long objects such as
oil pipelines, they may be erroneously classified as moving targets. A ship
moving along a pipeline emitting pings at different points in time would
place the pipeline at different points in space, thus creating the illusion of
a moving target and causing a false alarm. This problem may be remedied
by estimating the target’s depth, as knowing the depth of the target could
eliminate some options. If the target is located on the sea bottom, chances
are that it is, in fact, a pipeline or some other large bottom litter object
and thus not hostile, such that it may be deprioritized in favor of targets
located closer to the surface. Conversely, and perhaps more importantly, if
the target is not located at the sea bottom, it almost certainly is not an oil
pipeline, shipwreck or some feature of the bottom topography, suggesting
a more interesting target. Hence, knowledge of a target’s depth is clearly
important in automatic classication schemes. The purpose of this work is
therefore to develop an algorithm capable of estimating a target’s depth
with sufficient accuracy to, at the very least, determine whether the target
is located at the sea bottom or not, through the analysis of acoustic data
collected by use of active sonar.

Active sonar systems work by having a transmitter emit a ping of known
frequency and amplitude into the ocean, then recording acoustic data by
use of a receiver consisting of an array of hydrophones, essentially listening
for echoes of the emitted ping. The transmitter and the receiver are often
assumed to be located at the same position. Once recorded, the acoustic
data is processed to determine where the sound came from and at what
times echoes of the ping return to the ship through the use of beamforming,
matched filtering and CA-CFAR averaging [3][4].

The result of this processing is a data set containing digital acoustic
data sampled over a period of time and distributed over several channels
corresponding to the angles used in beamforming. The problem of depth
estimation of a target now becomes part of the inverse problem of deter-
mining the properties of the ship’s surroundings from the recorded acoustic
data [5]. If no other information about the ocean were given, this would
be quite a hard problem, as solving the inverse problem would encompass
ab initio estimation of the shape and properties of the ocean floor, the tar-
get’s range, the sound speed dependency on depth, et cetera, in addition
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to the estimation of the target depth. However, assumptions can be made
about these additional parameters from previous measurements, providing
an initial guess for the properties of the surroundings.

The method proposed here for solving the inverse problem is one that
utilizes modelling and optimization. If a sufficiently accurate mathematical
model is available, one may simulate the propagation of sound in the ocean
and use this to synthesize signals. Working with the assumption that a
modelled signal resembles the recorded signal if the model parameters re-
semble the real world parameters, one could try to fit the model parameters
by use of an optimization algorithm to create a modelled signal that resem-
bles the recorded signal as closely as possible. Due to the nonlinear nature
of sound wave propagation in water, some care must be taken in creating
such a mathematical model. Here, we shall use a scheme similar to ray
backpropagation, which has been used earlier for solving similar problems
with passive sonar [6][7][8]. The scheme entails using ray tracing to obtain
eigenrays [9]. Ray tracing is a procedure in which the path of sound rays are
calculated from an approximation of the nonlinear wave equation, similar
to the tracing of light rays done in optics, to determine the different paths
taken by the emitted ping and its echoes. Eigenrays are the sound rays that
reach a certain depth at a certain range, and are pivotal to determining the
times at which and directions in which the echoes from a ping are recorded.

Calculating the path of sound rays in sea water is a non-trivial task.
Due to differences in salinity and temperature at different ocean depths,
the speed of sound will vary accordingly, producing refraction effects [9].
Matters are further complicated due to reflection of rays at the sea bottom
and the surface. Obtaining an analytical solution for the paths taken by
a ping will therefore be a near impossible problem in all but the simplest
cases, introducing the need for numerical methods for obtaining these paths.
This problem has been thoroughly analyzed, leading to tools such as LY-
BIN, a platform developed by the Norwegian Defence Logistics Organization
(NDLO) which, among other things, can compute ray paths accurately and
effectively [10]. We will use LYBIN extensively for this purpose.

Another point of interest is finding a way of comparing the modelled
signal to the recorded signal. The way in which this is done leads to the
formulation of the objective function used in the optimization procedure.
The inverse problem should not be ill-posed, that is, there should exist a
unique, stable solution to the problem. The choice of objective function
will influence the problem’s properties in this respect. In addition, the
optimization procedure should not be too costly in terms of computational
power, meaning the objective function should not be too time consuming to
evaluate. Three objective functions will be presented which try to address
these issues. The first of these is the full comparison function, wherein a
full signal is modelled and compared entrywise with the recorded signal.
The second, named the simplified comparison function, is an approximation
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to the full comparison function. The third method is based on Bayesian
inference, and therefore named the Bayesian objective function, wherein
the recorded signal is further processed to extract discrete arrival times
and arrival angles for comparison with modelled arrival times and angles,
avoiding the time consuming signal modelling.

The optimization algorithm itself should be chosen so as to effectively
and reliably produce satisfactory results. The objective function will have
local minima which should be avoided. This leaves two options for the type
of optimization algorithm - either to use a global optimization algorithm,
capable of avoiding local minima by itself, or to first use an initialization
procedure to provide a suitable starting point close to the global minimum,
from which a local optimization algorithm is used. Here, we will employ the
latter strategy, using an exhaustive search method to obtain a rough estimate
of optimal model parameters, before refining the choice of parameters by use
of the Nelder-Mead optimization algorithm [11].

Finally, the method’s accuracy and stability in different situations and
in the presence of noise must be tested. Unfortunately, obtaining real life
acoustic test data is hard. This research is carried out in collaboration with
the Norwegian Defense Research Establishment (FFI), which has extensive
amounts of acoustic data to test the procedure on. However, due to the clas-
sified nature of this data, results obtained when using it cannot be presented
here. Instead, we shall rely on the use of synthesized data - signals created
by means of the aforementioned acoustic model - for testing the procedure.
The synthesized signals are assumed to be modelled with sufficient fidelity
so as to be interchangeable with real signals when it comes to testing.



Chapter 2

Theory

This chapter will provide a theoretical background for the problem, first
formulating the problem in a general manner and giving an overview of
the parameters involved and the proposed solution method. We will then
expand on some key subjects, providing a derivation of the mathematical
model for wave propagation, some considerations on factors influencing the
strength of signals and a presentation of how to obtain eigenrays using the
mathematical model. Continuing, we present how to model signals through
the use of eigenrays, and some considerations about the preprocessing of
recorded signals. Lastly, we will discuss how to represent the sound speed
profile in a manner that is susceptible to ordinary optimization methods and
present three choices of objective functions and the optimization algorithm
used.

Some topics that are vital to the method will not be explained in much
detail. Beamforming and matched filtering will not be explored in depth;
as we assume that the data obtained is already processed using these tech-
niques, a thorough explanation of them would be superfluous in the con-
text of this thesis. Technical details regarding the sonar equipment are
not discussed, and neither are environmental effects such as absorption and
reflection coefficients. This is because neither of these topics are directly
connected to the numerical experiments carried out later, in contrast with
topics such as the analytical method for finding eigenrays, which is later
used to verify the numerical eigenray finding scheme and therefore explored
in greater detail.

2.1 Problem formulation and overview

Assume that a set of digital acoustic data is given, and that it is sampled at
times {tj}Ntj=1, beamformed vertically in the directions {θi}Nθi=1 and matched
filtered to yield a set of measurements {Sij} = {S(θi, tj)} for the acoustic
intensity S at the receiver. This set of measurements is what we consider
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6 CHAPTER 2. THEORY

as the recorded signal. Thus, we have a signal recorded in the directions θi
and at the times tj . Given that the signal contains echoes from a ping, our
task is to solve the inverse problem of finding the target depth zt the ping
was reflected from.

However, the recorded intensity is dependent upon many other parame-
ters in addition to the target depth, such as the geometry of the surroundings
and the sound speed, and therefore the problem of target depth estimation
is only part of the larger inverse problem of determining all properties of
the surroundings from the recorded signal. We therefore need to determine
certain parameters simultaneously, especially those which are connected to
the geometry of the surroundings and the sound speed. This is similar to
the problem encountered in matched field processing, which is often used
for passive, low-frequency sonar [12] [13].

The parameters describing the geometry of the problem are the target
range rt, the depth of the sonar system, zs, the bottom depth zb and the
target depth zt. The parameters rt, zb and zt are illustrated in figure 2.1.
Note that while the bottom depth is in reality a function, zb(r), varying with
the distance from the ship, we shall limit ourselves to considering flat bottom
profiles and therefore denote the bottom depth as zb. Another important
factor, the sound speed profile c(z), will generally be a function varying with
depth.

Some parameters pertaining to the surroundings are not included in the
inverse problem as they have less influence on the signal than the afore-
mentioned parameters. Instead, these parameters are considered known,
using standard values obtained empirically when needed. Examples of such
parameters are reflection coefficients of the bottom and surface interfaces,
surface wave heights, and temperature and salinity levels in the ocean (al-
though, since they influence the sound speed, they are implicitly included
through the sound speed profile) [14]. Also, the geometry of the target, such
as its height and length, are disregarded.

Other parameters of importance are associated with the sonar system
itself and the characteristics of the emitted ping, for example the sonar’s
bandwidth, B, and the sonar’s vertical beamwidth, θBW . These parameters
are controllable and therefore considered as known, so they are not part
of the inverse problem. Their importance lies in determining statistical
quantities, such as the uncertainty in measurements of arrival angles and
arrival times, which are used in the modelling of signals.

In summary, there are five parameters, the estimation of which consti-
tutes the inverse problem at hand: zt, rt, zs, zb and c(z). Whereas zt is
unknown beforehand, some assumptions may be made about the four re-
maining parameters to provide a starting point for the solution method:

• rt can be estimated by regular horizontal beamforming and processing,
providing an initial guess. If an echo is detected at a time t, one can
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Figure 2.1: Simplified overview of geometric parameters. The line from the ship
to the submarine shows the direct path taken by sound waves as a ray perpendicular
to the wave fronts.

use a mean sound speed c̄ to approximate the distance to the target
by rt ≈ c̄t, disregarding the vertical travel distance of the ping.

• zb can be estimated if bathymetric observations for the area in which
the signal is recorded are available.

• zs will vary slightly in rough seas as the vessel follows the waves, yet
one may initially assume that the sonar system is at the depth where
it would be located in calm seas.

• As is the subject of section 2.7, c(z) can be estimated from historical
sound speed observations, and by representing it as a piecewise linear
function, we can optimize with respect to c(z) by use of Empirical
Orthogonal Functions (EOFs) [6].

Note that these four parameters could, as a further approximation, be con-
sidered as known and thus excluded from the solution procedure. Although
a solution could be obtained faster in this way, it would put the solution
procedure at considerable risk of mismatching, an undesirable situation in
which reliable solutions cannot be obtained due to discrepancies between
the modelled situation and the real physical situation [6].

2.2 Solution approach
We shall determine zt and the other parameters by a method based on com-
parisons of the recorded signal and signals modelled through a mathematical
model; if the modelled signal resembles the recorded signal closely enough,
the parameters used in the modelling should be close to the real parameters,



8 CHAPTER 2. THEORY

thereby constituting a good estimate of the real parameters. It is therefore
important to obtain an accurate mathematical model of sound propagation
and a good method of modelling signals based on this, so that the modelled
signals closely resemble real signals. The sound propagation model used in
this work is presented in section 2.3.

The signal modelling is based on finding arrival times, the time delays
from the ping is emitted until the echoes are recorded at the receiver, and
arrival angles, the directions in which the echoes are recorded. With knowl-
edge of these, a signal can be constructed. The arrival times and angles
are calculated by use of eigenrays, paths which the ping follows to reach a
specified depth at a specified distance from the ship [9]. For a set of can-
didate parameters, including zt and rt, we want to find eigenrays for zt at
rt; assuming that both the sonar system and the target are stationary, the
sound must follow the eigenray paths to reach the target, and once reflected
from it, must follow the same eigenray paths in reverse back toward the
receiver. Hence, all possible paths for the ping are given by combinations of
eigenrays. Both analytical and numerical methods for obtaining eigenrays
are presented in section 2.4.
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Figure 2.2: Left: Five eigenrays with constant sound speed profile. Right: Sound
speed profile used. zs = 50 m, zt = 150 m, zb = 400 m and rt = 4000 m.

Figure 2.2 shows an example of five eigenrays. Consider the ping travel-
ling along any of the five rays from the source to the target. Upon reflection,
it may follow either of the five eigenrays back toward the source again. In
total, this gives 25 possible combinations of eigenray paths for the ping to
follow. The eigenrays’ exit angles at the source then become the arrival
angles for the backward propagated ping, and the arrival times become the
sum of the travel times along the eigenrays chosen forward and backward.
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Using the arrival angles and travel times obtained by use of eigenrays,
we can synthesize signals by assuming that each arrival results in a Gaussian
shaped signal centered at the arrival time and angle, and superpositioning
these signals. Details about this procedure is given in section 2.5. The result
of this is a synthesized signal as shown in figure 2.3, with intensities recorded
as a function of time and vertical angle.
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Figure 2.3: Example of a synthesized signal.

The modelled signal is then compared to the recorded signal through an
objective function as explained in section 2.8, and by changing the model pa-
rameters through the use of the optimization algorithm presented in section
2.9, a set of optimal model parameters is obtained. The solution procedure
is summarized in the flowchart shown in figure 2.4.

2.3 Mathematical model of sound propagation
Preliminary assumptions

Some assumptions must be made in order to obtain a mathematical model
for the underwater propagation of sound. First, the speed of sound in the
ocean varies in the range 1460-1500 m/s, greatly exceeding the maximum
attainable relative speed between the target and the vessel, such that the
target and the vessel can be considered stationary. Next, for a target lo-
cated 10 km away, the ping will have to travel for 13-15 s, depending on
the target’s depth, which is such a small time scale that we may assume
that temporal variations in ocean conditions are negligible, and thus that
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Figure 2.4: Flowchart of the complete solution process. Red boxes indicate data
acquisition, green boxes indicate routines and blue boxes indicate subroutines.
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sound speed is independent of time. Furthermore, we assume that both
source and target can be considered as point masses, disregarding their ge-
ometrical shape. This assumption is valid for purposes of calculating the
propagation of sound, but corrections must be made to account for the sur-
face area of the target when the strength of the reflected signal is taken
into consideration, as will be discussed in section 2.3.2. Next, we assume
that the ping’s source and the receiver are located at the same position, an
assumption that is reasonable for hull mounted sonar systems since they are
relatively compact. We also assume that signals are emitted omnidirection-
ally - that is, sound is emitted spherically from the transmitter. Finally, as
the matched filter used in preprocessing the data compresses pulses in time
to a length of 1/B, where B is the signal’s bandwidth, a ping will be of
millisecond duration in the preprocessed signal [3]. For propagation mod-
elling purposes, we therefore assume that the ping’s duration is so short as
to be considered instantaneous, although this assumption must be corrected
when using the propagation model to model full signals, as explained in
section 2.5. Building on these assumptions, we can derive a mathematically
tractable yet physically feasible model for the propagation of the ping.

2.3.1 The ray equation

We follow [9] and start with the wave equation for pressure, which we assume
the sound waves will act according to. From this, we shall describe the paths
taken by the sound by rays perpendicular to the wave fronts of the pressure
wave by means of characteristics of the eikonal equation. The wave equation
for pressure is given by:

∆p− 1
c2
∂2p

∂2t
= 0,

where c is the (depth-dependent) speed of sound. Given proper bound-
ary and initial values, this could be solved numerically by finite difference
or finite elements methods, but such methods are ineffective at the scale
of underwater acoustical problems; obtaining an accurate solution by such
means would require a discretization with many nodes, resulting in a com-
putationally expensive method [9]. Since our approach relies on determining
the propagation of sound for many different configurations of the model pa-
rameters, we need a less computationally expensive method. To this effect,
further assumptions and modifications can be made that yield simpler, more
effective ways of solving the problem numerically. The first of these is using
the one-dimensional Fourier transform as explained in [9] to eliminate time
dependency and arrive at the Helmholtz equation:
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∆p+ ω2

c2 p = 0. (2.1)

Here, ω is the angular frequency of the propagating wave, which is a known
quantity since the ping is generated at a known frequency. We therefore
have a problem in the spatial variables, represented in the vector r. The
next step is to seek a solution to the Helmholtz equation in the form of a
ray series:

p(r) = eiωτ(r)
∞∑
j=0

Aj(r)
(iω)j , (2.2)

yielding for the gradient:

∇p = eiωτ
iω∇τ ∞∑

j=0

Aj
(iω)j +

∞∑
j=0

∇Aj
(iω)j

 (2.3)

and for the Laplacian:

∆p = eiωτ
(−ω2|∇τ |2 + iω∆τ)

∞∑
j=0

Aj
(iω)j + 2iω∇τT

∞∑
j=0

∇Aj
(iω)j +

∞∑
j=0

∆Aj
(iω)j


(2.4)

Inserting (2.2) and (2.4) into (2.1) now gives

(−ω2|∇τ |2+iω∆τ)
∞∑
j=0

Aj
(iω)j +2iω∇τT

∞∑
j=0

∇Aj
(iω)j +

∞∑
j=0

∆Aj
(iω)j =−ω

2

c2

∞∑
j=0

Aj
(iω)j ,

and by equating terms of equal order in ω, we get:

O(ω2) : |∇τ |2 = 1
c2

O(ω) : ∆τA0 + 2(∇τ)T∇A0 = 0
O(ω1−j) : ∆τAj + 2(∇τ)T∇Aj + ∆Aj−1 = 0. j = 1, 2...

The first of these equations is called the Eikonal equation, while the rest
are called the transport equations - the eikonal equation describes the prop-
agation of the pressure wave, while solving the transport equations yields
the amplitude of the pressure wave. Typically, as a high-frequency approx-
imation (ω � 0), all equations but the eikonal and the first transport are
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neglected. In this application, as we are only interested in the paths taken
by the wave, we disregard all transport equations and turn to the eikonal
equation to obtain these paths. This equation may be solved by the method
of characteristics. As can be seen from (2.3), ∇p is proportional to ∇τ when
disregarding terms of order less than ω, meaning ∇τ is nearly perpendic-
ular to the wave fronts. We therefore introduce the characteristic, or ray
trajectory, x(s) = [x(s), y(s)]T , by

dx
ds = c∇τ ⇒

∣∣∣∣dx
ds

∣∣∣∣2 = c2|∇τ |2 = 1, (2.5)

where s is the arc length along the ray. Differentiating once more with
respect to s and applying the chain rule now yields:

d
ds

(1
c

dx
ds

)
=


∂2τ

∂x2
∂2τ

∂x∂y
∂2τ

∂x∂y

∂2τ

∂y2

 dx
ds =


∂2τ

∂x2
∂2τ

∂x∂y
∂2τ

∂x∂y

∂2τ

∂y2

 c∇τ
= c

2
d
ds |∇τ |

2 = c

2
d
ds

1
c2 = − 1

c2∇c

Introducing cylindrical coordinates, x(s) = [r(s) z(s)]T , and defining

ξ = 1
c

dr
ds , η = 1

c

dz
ds

we get a system of ODEs:

ξ = 1
c

dr
ds

dξ
ds = − 1

c2
∂c

∂r

η = 1
c

dz
ds

dη
ds = − 1

c2
∂c

∂z
.

(2.6)

This system is solvable, given the right initial values, but is not very de-
scriptive. To get a solution of the more intuitive form z(r) we may observe
that

dr
ds = cξ ⇒



cη = dz
ds = dz

dr
dr
ds = cξ

dz
dr ⇒ dz

dr = η

ξ
dξ
ds = dξ

dr
dr
ds = cξ

dξ
dr = − 1

c2
∂c

∂r
⇒ dξ

dr = − 1
ξc3

∂c

∂r
dη
ds = dη

dr
dr
ds = cξ

dη
dr = − 1

c2
∂c

∂z
⇒ dη

dr = − 1
ξc3

∂c

∂z
.

These three equations can be further manipulated to form one second-order
ODE by differentiating the first equation with respect to r and substituting
the remaining two:

d2z

dr2 =

dη
dr ξ − η

dξ
dr

ξ2 =
−∂c
∂z

+ η

ξ

∂c

∂r

ξ2c3 =
−∂c
∂z

+ dz
dr
∂c

∂r
ξ2c3 . (2.7)
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Next, note that from (2.5) we have:

1 =
(dr

ds

)2
+
(dz

ds

)2
=
(dr

ds

)2
+
(dz

dr
dr
ds

)2
=
(dr

ds

)2
(

1 +
(dz

dr

)2
)

⇒
(dr

ds

)2
= 1

1 +
(dz

dr

)2 .

Using this, we may rewrite the ξ2 term in (2.7) by:

ξ2 = 1
c2

(dr
ds

)2
= 1
c2

1

1 +
(dz

dr

)2

and finally, by substituting this into (2.7) we arrive at the ray equation:

d2z

dr2 = 1
c

[
1 +

(dz
dr

)2
] [
−∂c
∂z

+ dz
dr
∂c

∂r

]
.

We can easily impose initial conditions for this. Any ray trajectory must
start at the source depth, so z(0) = zs. In addition, we require z′(0) =
tan(θ0), where θ0 is the exit angle of the ray [9]. Assuming the sound speed
profile to be invariant within the geographical region surrounding the sonar,
meaning that c is independent of r, the equation is simplified and our initial
value problem becomes:

d2z

dr2 = −1
c

∂c

∂z

[
1 +

(dz
dr

)2
]
, z(0) = zs, z′(0) = tan(θ0). (2.8)

Additionally, once the ray path is known, we can calculate the travel time
along the ray by

t =
rt∫

0

√
1 + (z′(r))2

c(z(r)) dr. (2.9)

Note that from (2.8), we can derive an important property of the sound
rays. Since c(z) is strictly positive, the sign of z′′(r) and thus the direc-
tion of curvature of z(r) depends only on the sign of the c′(z) term, with
sgn(z′′(r)) = −sgn(c′(z)). This means that if c(z) increases with depth, such
that c′(z) > 0, z(r) will have negative curvature, toward shallower waters.
Conversely, if c(z) decreases with depth, such that c′(z) < 0, z(r) will have
positive curvature, toward deeper waters. This can be summarized in the
rule that z(r) will curve toward local minima in sound speed. Due to this, it
is possible to find rays that follow paths that never collide with the surface
or the bottom, thereby not experiencing the losses in signal strength that
occur during such reflections.
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2.3.2 Signal strength

A propagating ping is subject to several gain and loss mechanisms altering
the ping’s intensity upon arrival at the receiver. Knowledge of these mech-
anisms is needed both to synthesize a realistic signal and for estimating the
probability of detection of a signal. In this section, some terminology and
results pertaining to signal strength are presented. All quantities presented
here are measured in the decibel scale. For a more detailed description of
these, see [1].

The ping is emitted with a certain intensity called the Source Level (SL).
The energy contained in the ping when emitted will be spread out spheri-
cally, meaning the intensity of the signal will be proportional to s−2, where
s is the distance travelled. In addition, events like bottom or surface re-
flections will cause intensity loss by means of absorption and scattering of
the acoustic waves. These losses constitute the Transmission Loss (TL). We
must also consider that the signal is recorded in the presence of noise, which
has an intensity called the Noise Level (NL).

In formulating the mathematical model it was assumed that both the
target and the source could be considered point masses. When considering
reflection of the sound wave from the target, this assumption is no longer
valid. A correction to the point mass assumption can be made by taking
into account that the target reflects a part of the incoming ping proportional
to its surface area, in effect acting as an amplifier for the reflected signal.
This is represented by a gain called Target Strength (TS). Furthermore,
during the beamforming done at the receiver, the signals received at several
hydrophones are combined to yield one directed signal. This combination
of information means there will be a gain in signal strength relative to the
ambient noise. This gain is represented in the Directivity Index (DI).

The logarithmic sonar equation combines these five quantities to estimate
the Signal-to-Noise Ratio (SNR) observed at the receiver:

SNR = SL− 2TL + TS−NL + DI, (2.10)

which captures the effect of the different gain and loss mechanisms encoun-
tered by the signal when travelling from the sonar, via the target and back
to the sonar [1]. Note that the transmission loss used here is defined for
one-way transmissions, such that the transmission loss is doubled when con-
sidering two-way transmission of sound. If the sound follows a different path
when travelling toward the target than upon returning to the sonar, differ-
ent TL levels must be used for the forward and return paths, and (2.10)
becomes:

SNR = SL− TLF − TLR + TS−NL + DI, (2.11)

where TLF and TLR are the transmission losses along the forward and
return paths, respectively.
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The SNR is used, among other things, for detection purposes. A method
for discerning between noise and information in a signal is based on calcu-
lating the Signal Excess (SE), the strength of the recorded signal compared
to some Noise Threshold (NT). The NT is a predetermined value, and if the
SNR of some part of a signal is below this threshold, that part is considered
noise. The SE is given by:

SE = SNR −NT = SL− 2TL + TS−NL + DI−NT. (2.12)

Thus, if SE < 0 for some part of the signal, that part is considered noise.
The SE is used to estimate the probability of detection of individual arrivals,
and to remove noise from signals [1].

The choice of NT affects the probability of detection and the probabil-
ity of false alarms, as low noise thresholds result in higher detection rates
accompanied by higher false alarm rates. This is contrasted with the lower
detection rates and lower probability of false alarms when using high noise
thresholds. We will use LYBIN for the calculation of detection probabilities,
which are used in the Bayesian objective function.

2.4 Finding eigenrays
The next problem at hand is using the ray equation to find eigenrays. Eigen-
rays can be found either analytically or numerically, depending on the com-
plexity of the environment. For example, if the speed of sound is constant
and the bottom perfectly flat, it is a simple geometric problem to find exit
angles of the eigenrays given environmental parameters. However, if the
bottom is irregular and the speed of sound varying with depth, as is the
case in the ocean, analytical solutions are too hard to obtain, and numerical
strategies must be employed. The forward problem of calculating the path
of a sound ray in the ocean given initial angle, initial depth and sound speed
profile, can be solved quite accurately by means of numerical ray tracing pro-
cedures [9]. However, the backward problem of calculating the initial angle
from the target depth and range, i.e. finding which initial angles result in
rays hitting the target, is a harder task. We here present first an analytical
solution to the ray equation (2.8) for the linear sound speed profile case
along with some considerations about the obtainment of eigenrays for the
analytical situation, before introducing a numerical scheme for identifying
eigenrays based on the forward propagation of large number of rays.

The entirety of the calculations for analytic ray tracing when considering
linear sound speed profiles is presented here, as I have not been able to
find a satisfactory derivation of them in the literature. For a given set of
environmental parameters, eigenrays are fully characterised by their arrival
angles, so the problem of finding eigenrays consists of finding θ such that
for a solution of the initial value problem (2.8) with z′(0) = tan(θ), we
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have z(rt) = zt. Another quantity of interest is the travel time of sound
following a given eigenray, in addition to the transmission loss occurring
when following an eigenray. These parameters can be calculated for a given
set of environmental parameters once the exit angle of the eigenray is known,
and are used in the synthetization of signals.

2.4.1 Analytical solutions

In most cases, c(z) is of such a form that finding an analytical solution to
(2.8) is virtually impossible. However, analytical solutions can be found for
some choices of c(z), providing a useful basis for testing the accuracy and
stability of the numerical eigenray schemes. One such choice is the linear
sound speed profile. In this case, we have

c(z) = cb − c0
zb

z + c0 ⇒ ∂c

∂z
= cb − c0

zb
,

where cb is the sound speed at the bottom. Thus, equation (2.8) becomes

d2z

dr2 = − 1
z + γ

[
1 +

(dz
dr

)2
]
, z(0) = zs, z′(0) = tan(θ0), γ = c0zb

cb − c0
.

This can be rearranged to find:

d2z

dr2 (z + γ) +
(dz

dr

)2
= d2

dr2

[
z2

2 + γz

]
= −1

⇒ z2

2 + γz = −r
2

2 +Ar +B. (2.13)

By imposing initial conditions, we find

A = tan(θ0)(zs + γ),

B = zs(γ + zs
2 ).

Substituting this into (2.13), rearranging and solving a quadratic equation
with respect to z now yields

z(r) = −γ ±
√

(zs + γ)2 + 2 tan(θ0)(zs + γ)r − r2,

where the choice of sign depends on which convention for the sign of z is
used, and the sign of γ. We shall adopt the convention that z ≥ 0, such that
the positive solution is used if γ > 0 and the negative if γ < 0, i.e.

z(r) = −γ + sgn(γ)
√

(zs + γ)2 + 2 tan(θ0)(zs + γ)r − r2,

where sgn is the sign function.
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Dealing with reflections is somewhat intricate. We first need to find the
ranges {rn}Nn=1 at which reflections occur, determine whether the reflection
is from the surface or the sea bottom, and then find reflection angles be-
fore determining the further propagation of the ray. It is now suitable to
generalize somewhat. We look for a solution of the ray equation on sev-
eral intervals {In}Nn=0, where In = [rn, rn+1] and r0 = 0. Let {zn}Nn=0
be the collection of the z(rn), and {θn}Nn=0 be the angles which the ray
path forms with the horizontal at the points {(rn, zn)}Nn=0. Repeating the
preceding calculations on each interval and imposing the initial conditions
z(rn) = zn, z

′(rn) = tan(θn) gives us the path restricted to an interval In as

z(r)|In = −γ + sgn(γ)
√

(zn + γ)2 + 2 tan(θn)(zn + γ)(r − rn)− (r − rn)2.

(2.14)

Assuming that zn+1 is known, we now find an expression for which range
the reflection occurs at by solving z(rn+1)|In = zn+1 with respect to rn+1,
which gives:

rn+1 = rn + tan(θn)(zn + γ)±
√

tan2(θn)(zn + γ)2 + (zn + γ)2 − (zn+1 + γ)2.

Again, some care must be taken in order to choose the right sign. There
are two possible values of zn+1: zn+1 = zb and zn+1 = 0. Also note that we
require rn+1 > rn. If zn+1 = 0 and γ > 0, we have

(zn + γ)2 − (zn+1 + γ)2 ≥ 0,

such that the positive solution must be chosen to satisfy rn+1 > rn. Con-
versely, if zn+1 = 0 and γ < 0, we have

(zn + γ)2 − (zn+1 + γ)2 ≤ 0,

such that rn+1 > rn for either solution. We then choose the negative solu-
tion, since we want the first point of contact with the surface. In summary,
if zn+1 = 0, we have:

rn+1 = rn + tan(θn)(zn + γ) + sgn(γ)
√

tan2(θn)(zn + γ)2 + (zn + γ)2 − γ2.

(2.15)

A similar calculation for the case zn+1 = zb yields

rn+1 = rn + tan(θn)(zn+γ)−sgn(γ)
√

tan2(θn)(zn+γ)2+(zn+γ)2−(zb+γ)2.

(2.16)

It is now possible to determine zn+1. First, we determine under which
conditions a bottom reflection will occur. From (2.16), we observe that
given an exit angle θn such that

tan2(θn) <
(
zb + γ

zn + γ

)2
− 1,
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there can be no bottom reflection since rn+1 would be a complex number.
Thereby, we require

tan2(θn) ≥
(
zb + γ

zn + γ

)2
− 1

for a bottom reflection to occur next. In addition, from the ray equation
we know sgn(z′′(r)) = −sgn(c′(z)) = −sgn(γ), so that if γ > 0, a bottom
reflection will happen before a surface reflection if possible. Also note that
if γ > 0 and tan(θn) < 0, equation (2.16) states that rn+1 < rn, which is
inadmissible. Thus, we know that if γ > 0 and

tan(θn) >

√(
zb + γ

zn + γ

)2
− 1, (2.17)

we will have zn+1 = zb. Otherwise, zn+1 = 0. A similar calculation can be
done if γ < 0; we will have zn+1 = 0 if

tan(θn) < −

√(
γ

zn + γ

)2
− 1, (2.18)

otherwise, zn+1 = zb.
To obtain the exit angles θn+1 at each reflection point, we use the law of

specular reflection, θn+1 = −θin, where θin is the incoming angle from the
left, given by

tan(θin) = lim
r→r−

n+1

z′(r)|In .

This leads to the condition

tan(θn+1) = − lim
r→r−

n+1

z′(r)|In ,

from which we find

tan(θn+1) =

√
(tan2(θn) + 1)

(
zn + γ

γ

)2
− 1, zn+1 = 0 (2.19)

tan(θn+1) = −

√
(tan2(θn) + 1)

(
zn + γ

zb + γ

)2
− 1, zn+1 = zb. (2.20)

We have now fully determined the propagation of the rays in the linear
sound speed case - given an initial angle θ0 along with initial depth z0 = zs,
we can determine the first reflection depth z1 by use of condition (2.17) or
(2.18), then find the first reflection range range r1 by use of (2.15) or (2.16)
and the first reflection angle θ1 by use of (2.19) or (2.20). These may again
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be used to find z2, r2 and θ2, and so forth. The path the ray will follow
between these points is given by (2.14).

Using equations 2.14-2.16 and 2.19-2.20, it is now possible to solve for
the initial angle θ0, given target depth zt, source depth z0, and target range
rt. The angle at which the ray hits the target is irrelevant. The direct
path should pose no problems – we have one equation and one unknown,
so the solution should be readily available. For each additional reflection,
we introduce three unknowns; an additional zn, θn and rn. We now look
for rays with certain patterns in bottom and surface reflections. Assuming
knowledge of this pattern for a ray, we know all the zn. In addition, we have
one equation for each of the θn and rn, leaving us with as many equations
as unknowns and the possibility of solving the set of equations recursively.
However, although interesting, this is considered out of the scope of this
work, and we shall not attempt to solve these equations here.

The travel time integral given by (2.9) may be split this into several
integrals if the number of reflections, N , of the ray is known:

t =
rt∫

0

√
1 + (z′(r))2

c(z(r)) dr =
N−1∑
n=0

rn+1∫
rn

√
1 + (z′(r))2

c(z(r)) dr +
rt∫

rN

√
1 + (z′(r))2

c(z(r)) dr,

yet once again, attempting to obtain an analytical expression for these in-
tegrals is considered outside the scope of this work.

An example of eigenrays for the linear sound speed profile case is given
in figure 2.5. These eigenrays were obtained by use of the numerical scheme
presented in the next section. We can see that due to the constant positive
sound speed gradient, the rays curve toward the surface as explained in
section 2.3.1, allowing for rays that follow paths of surface reflections only.
This is important since bottom reflections absorb more energy from the ping
than surface reflections, and we can see that it is possible for a ping to follow
a path of significantly less loss. In fact, this is possible for any sound speed
profile in which the sound speed is increasing over a certain depth interval
[1].

We may now introduce some terminology used in describing eigenrays.
The transmission loss qualities of paths following eigenrays are influenced
by the amount and type of reflections occurring; surface reflections cause
losses in signal strength, bottom reflections even more so, and so it is im-
portant to know an eigenray’s history. The history of an eigenray is given
as a sequence of letters specifying the amount and order of reflections in the
ray, for instance an eigenray with the history ’sbs’ would be characterised
by a surface reflection, followed by a bottom reflection and another surface
reflection before reaching the target. The empty history ’ ’ signifies a direct
eigenray. Note that although it is possible to have two subsequent surface
reflections without a bottom reflection in between, there must occur a lower
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Figure 2.5: Left: Eigenrays with linear sound speed profile. Right: Sound speed
profile used. zs = 50 m, zt = 150 m, zb = 400 m, rt = 4000 m.

turning point between the surface reflections. This information is impor-
tant for numerical eigenray procedures, as it allows us to discern between
different families of eigenrays, and is therefore included in the ray’s history,
signified by the letter ’l’. Also note that with negative sound speed gradi-
ents, it is possible to have two bottom reflections with an upper turning
point between, which we shall signify by the letter ’u’ in the history. Using
this nomenclature, the eigenrays presented in figure 2.5 have the histories
’l’, ’sl’, ’sb’, ’bs’ and ’sbs’.

2.4.2 Numerical solutions

As is evident from the preceding section, numerical schemes are needed to
find eigenrays due to the nonlinear nature of the ray equation making ana-
lytical solutions exceedingly hard to obtain for all but the simplest choices
of sound speed profile and bottom profile.

We will employ a numerical eigenray finding scheme based on LYBIN, a
platform developed by the Norwegian Defence Logistics Organization [10].
It works by calculating a large number of ray paths with varying exit angles,
and selecting the rays that end up within a certain target depth range around
the target depth. These rays are then grouped into families according to
their history, and the mean of the exit angles for each family is taken as
the exit angle of the eigenray belonging to that family. Similarly, travel
times are calculated for each ray in a family, and the mean travel time of a
family of rays is taken as the travel time of the eigenray belonging to that
family. An example is shown in figure 2.6, where the rays belonging to nine
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Figure 2.6: Left: Nine ray families, black horizontal lines denote edges of target
depth range. Right: Sound speed profile used. zs = 50 m, zt = 250 m, zb = 400 m,
rt = 6000 m. Target depth range: 10 m.

ray families are shown hitting a target depth range of extent 10 m in either
direction around the target depth.

The numerical approach allows us to find approximate eigenrays for a
wide range of sound speed profiles. An example is shown in figure 2.7,
where eigenrays have been found when using a nonlinear sound speed pro-
file. Note especially that the sound speed profile used gives rise to two
nearly indistunguishable eigenrays with histories ’lulu’ and ’lulul’ following
a near-sinusoidal trajectory with no bottom or surface reflections due to the
tendency of refraction toward sound speed minima.

LYBIN is used here as a black box system, meaning its exact inner work-
ings are not generally known to us. However, the accuracy of the eigenray
estimates provided through the use of LYBIN can be checked. In chapter
4, this is done by finding eigenrays numerically using a linear sound speed
profile, then using the numerical exit angles of the eigenrays in the linear
sound speed model presented in section 2.4.1 to find the depth reached at
the target range, and observing the error in eigenray depth at the target
range. Note that the eigenray estimates are sensitive to the size of the tar-
get depth range and the number of rays traced. If too few rays are traced,
some eigenray families may not be identified, as no rays from these families
end within the desired depth range. Similarly, if the target depth range is
too small, a large number of rays must be traced to ensure that all eigenray
families are found, making the procedure computationally intensive. How-
ever, if the depth range is too large, there is a possibility that ray families
incapable of reaching the target depth are considered as eigenray families.
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Figure 2.7: Left: Eigenrays for a nonlinear sound speed profile. Right: Sound
speed profile used. zs = 50 m, zt = 60 m, zb = 400 m, rt = 6000 m.

It is therefore important to find a reasonable balance between the size of the
depth range around the target depth and the number of rays traced. This
issue is also addressed in chapter 4.

LYBIN is also capable of estimating the transmission loss along each
ray, taking into account the distance travelled along a ray as well as losses
occurring from absorption during bottom and surface reflections. It is possi-
ble to specify different sea floor types varying from from solid rock floors to
sea floors consisting of deep sediment layers, each with different absorption
properties. This allows us to model signals based on arrivals with different
transmisson losses.

2.5 Modelling signals

Infinitely many eigenrays can be found, but most of these result in arrivals
that are so weak as to be indiscernible from noise. From the large number of
eigenrays that can be found numerically, only a few are needed to produce
a realistic signal, namely those with least transmission loss. The optimum
number of eigenrays to use in modelling signals must be decided as a trade-
off between fidelity and speed; using more eigenrays in modelling will result
in better accuracy of estimates, at the expense of execution time. This is
the subject of one of the tests done, as presented in chapter 4.

Assume that N eigenrays are used. We now wish to construct a synthe-
sized signal based on these, to use for comparison with the recorded signal.
Recall that the signal consists of intensity measurements recorded in the
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directions θi and at the times tj . Each eigenray presents a path the sound
will follow from the source to the target and, when assuming stationary con-
ditions, a path the sound will follow from the target back to the source after
reflection. Thus, the sound will follow all possible combinations of eigenrays
forward and back again, resulting in N2 distinct arrivals (θ̂m, t̂m), whose
arrival times t̂m are the travel times along the eigenrays followed toward
the target in addition to the travel times along the eigenrays followed back
toward the source. The arrival angle θ̂m, the direction in which each arrival
is recorded, is the exit angle of the eigenray followed back to the source.

Furthermore, a recorded signal will have certain uncertainties in the
recordings; beamforming leaks information throughout the angle channels,
such that an arrival will not be present in only one angle channel, but will
be spread over several channels, the extent of which is dependent on the
beamwidth of the receiver, θBW . Additionally, we can no longer assume
that the ping is instantaneous, but must take into account that it has a
certain duration. Due to this, after matched filtering, the signal will have a
spread in time dependent on 1/B, where B is the bandwidth of the sonar [3].
We will model the signal by disregarding phase information, and assuming
that the m’th arrival results in a Gaussian signal given by

Sm(θi, tj) = Am exp

−1
2

(θi − θ̂m
σθ

)2

+
(
tj − t̂m
σt

)2
 ,

where σt is the ping’s standard deviation in time and σθ its standard devi-
ation in angle. We shall use σt = 1/B and σθ = θBW /2 [2].

The amplitude, Am, is chosen depending on the desired signal-to-noise
ratio if noise is present, by letting

Am = 10
NL
10 · 10

SNR
10 , (2.21)

where SNR is the logarithmic signal-to-noise ratio and NL is the noise level.
The SNR can be estimated by use of equation (2.11), where we use es-
timates of transmission losses for the eigenrays obtained through LYBIN,
and use empirical values for the signal level, directivity index, noise level
and target strength. The signals resulting from the individual arrivals are
superpositioned to yield the noiseless synthesized signal:

S =
N2∑
m=1

Sm. (2.22)

This generates the model signals which we try to fit to the recorded signal in
the comparison based objective functions. If the modelled signal is used as
a substitute for a real signal for testing the method, as is the case in chapter
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4, it can be subjected to Gaussian noise to create a more realistic signal:

S = n(µn, σn) +
N2∑
m=1

Sm,

where n(µn, σn) is a random Gaussian process with expectation µn and stan-
dard deviation σn. Although it is possible to use a sophisticated acoustic
model to calculate expected noise and reverberation levels for a given envi-
ronment, we shall use the simplifying assumption that µn = 70 dB re 1 µPa
and σn = 60 dB re 1 µPa, respectively.

Note that when modelling signals for use in testing, the signal is given
additional entries corresponding to 0.3 seconds of Gaussian noise before and
after the first and last arrivals, respectively, to allow for use of the noise
removal strategy described in the next section.

Example 2.5.1. Consider a situation in which the following parameters are
used: zt = 150 m, zs = 5 m, zb = 500 m, rt = 6000 m and a linear sound
speed profile c(z) = 1480 + 0.04z. The three strongest eigenrays are pre-
sented with their characteristics in table 2.1. Note the higher transmission
loss in the third eigenray due to its bottom reflection.

No. Exit angle Travel time TL History
1 -5.9◦ 4.043 s 75.0 dB ’sl’
2 6.0◦ 4.042 s 76.5 dB ’l’
3 12.7◦ 4.101 s 82.8 dB ’bs’

Table 2.1: Eigenrays for the situation in question.

No. θ̂i t̂i TL History
1 -5.9◦ 8.086 s 150.0 dB ’sl’ + ’ls’
2 6.0◦ 8.085 s 151.5 dB ’sl’ + ’l’
3 -5.9◦ 8.085 s 151.5 dB ’l’ + ’ls’
4 6.0◦ 8.085 s 153.0 dB ’l’ + ’l’
5 12.7◦ 8.144 s 157.8 dB ’sl’ + ’sb’
6 12.7◦ 8.143 s 159.3 dB ’l’ + ’sb’
7 -5.9◦ 8.144 s 157.8 dB ’bs’ + ’ls’
8 6.0◦ 8.143 s 159.3 dB ’bs’ + ’l’
9 12.7◦ 8.202 s 165.6 dB ’bs’ + ’sb’

Table 2.2: Arrivals obtained from the eigenrays.

Combining these gives the nine arrivals presented in table 2.2. Using
these arrivals, we synthesize a signal consisting of superpositioned Gaussian
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shaped signals. The result is shown in figure 2.8. Notice how arrivals 1-4
and 5-8 superposition in clusters due to their similar arrival times, creating
wide areas of intensity due to their spread in arrival angle. Also note how
the cluster containing arrivals 1-4 has larger amplitude than the cluster
containing arrivals 5-8 due to the difference in transmission loss between
arrivals. Finally, we may note the weak, lone arrival stemming from taking
the bottom reflected path both forwards and backwards.
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Figure 2.8: Signal based on the arrivals in table 2.2.

2.6 Preprocessing of signals

After being recorded at the receiver, the signal must be processed into a form
suitable for our method. Recall that the receiver consists of a hydrophone
array. In its rawest form, the signal is recorded as several time series, one for
each hydrophone of the array. Determining the directionality of the signals
is done by the beamforming technique; analogous to the human ear, the
hydrophone array may be used to identify the direction from which sound
originates by observing time delays and phase shifts between recordings
from different hydrophones [3]. This is usually done in the horizontal plane
to determine the North-South-East-West directionality of the signal, but
although such horizontal beamforming is standard in most sonars, some
sonars also have good vertical beamforming capabilities, meaning that one
can obtain vertical directionality for the signal as well. After beamforming,
the acoustic data is processed to minimize noise and thereby increase the
Signal-to-Noise Ratio (SNR) of the signal. This is accomplished by first
applying matched filtering, essentially looking for the known form of the
emitted ping in the received signal by means of convolution [3]. The next
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step is using an algorithm to discern signal from noise. Here, we shall apply
CA-CFAR filtering to remove noise.

2.6.1 Noise removal by CA-CFAR filtering

After synthetization of a test signal, or after a real signal has been beam-
formed and matched filtered, one should try to remove ambient noise as the
optimization procedure will become unstable in the presence of noise. Since
noise levels may vary with time due to engine noise etc., one should first
try to normalize noise levels by making a local in time estimate of noise lev-
els. This is done by employing a normalisation scheme called cell-averaging
constant false alarm rate (CA-CFAR) filtering [4]. The CA-CFAR filter nor-
malizes the signal levels against a local estimate of noise levels; proceeding
entrywise through the signal, each entry is, in turn, considered a Cell Under
Test (CUT). A local estimate of the noise around the CUT is obtained as
the average of the surrounding cells; the closest cells, or guard cells, are not
included in this estimate as they may be corrupted by the signal contained in
the CUT. Figure 2.9 gives an illustration; only the cells marked WINDOW
are used in the noise level estimates.

The size of the guard band and the windows are chosen according to
which type of signal the CA-CFAR filter is applied to. For signals with
only one arrival, the guard band may be small enough to contain just one
arrival. However, for signals with several arrivals with distinct arrival times
one may risk corrupting the noise estimates with entries from other arrivals.
Therefore, the guard band should be large enough to encompass all arrivals.
In our case, we have used an ad hoc size of the guard band - the length of the
signal minus 0.4 seconds worth of entries. Each window was given 40 entries.
These sizes were chosen by trial and error, and are not necessarily optimal.
To obtain a better size of the guard band, one may take into account that
larger target ranges and bottom depths lead to a wider spread in arrival
times, and adjust the guard cell number accordingly. However, the problem
of finding an optimum size of guard bands is considered out of scope for this
project, and the solution of this problem is left to later work.

Figure 2.9: Illustration of CA-CFAR averaging

After a local noise level estimate is obtained, the value of the CUT is
normalized by dividing the recorded intensity by the noise level estimate.
This yields an estimate of the SNR levels in the signal, which can be used
for estimating the signal excess as described in equation (2.12). The SE
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estimate can in turn be used for thresholding, removing all signal entries
with an SE estimate lower than 0. This removes most of the noise, and the
remaining signal is well suited for optimization.

Also, after removing noise from the signal, it is possible to isolate arrivals
by noting the times and angles (θi, ti) for which local maxima appear in the
signal. These arrivals are used in the objective function based on Bayesian
inference presented in section 2.8.2.

2.7 Representing sound speed profiles by EOFs

Due to temperature and salinity fluctuations caused by seasonal variations
and geographical differences such as ocean currents and sea depth, the sound
speed profile, which dictates much of the propagation behaviour of sound,
will vary between geographical regions and with the time of year. Also, ocean
temperature and salinity is strongly dependent on depth, leading to depth
dependent sound speed. This complicates the matter of choosing the correct
sound speed profile c(z) for a given situation. However, the reasonable
assumption that sound speed profiles are range independent for the ranges
considered here (0-10 km) simplifies the problem. Additionally, since the
time scales used in this problem are small (0-20 seconds), we may assume
that the sound speed profiles are time independent as well. This leaves us
with the problem of choosing a sound speed profile that is representative
of the time and geographical area considered, which may be solved in two
ways. The first way is to make real-time observations of the sound speed
profile and use these. The second is to use historical data for the sound
speed profile, gathered in the same geographical area and at the same time
of year as the signal is recorded.

There is some difficulty in optimizing with respect to the sound speed
profile c(z), the main challenge being that it is a function, implying the need
for variational methods whereas standard numerical optimization methods
optimize with respect to scalar quantities. We therefore want to represent
the sound speed profile by means of scalars, and preferably as few as possi-
ble to simplify optimization. First, since we are reliant upon experimental
data, where the sound speed is measured at certain depths, we begin by
approximating c(z) by a continuous, piecewise linear function:

c(z) =



c0
z1 − z
z1

+ c1
z

z1
0 ≤ z < z1

c1
z2 − z
z2 − z1

+ c2
z − z1
z2 − z1

z1 ≤ z < z2

...
cn−1

zn − z
zn − zn−1

+ cn
z − zn−1
zn − zn−1

zn−1 ≤ z ≤ zn
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where {zj}nj=1 is some partition of the ocean depth and {cj}nj=1 the sound
speed at these depths. This function is completely determined by the depth
partitioning {zj}nj=1 and the coefficients {cj}nj=1, such that we may represent
c(z) by a vector c = [c0 c1 . . . cn]T and a vector z = [z0 z1 . . . zn]T .

Changing the sound speed profile now amounts to changing the ci coef-
ficients. However, there may be impractically many of these. In addition,
an initial guess for the ci is needed. Both these issues can be solved by
the use of historical data and EOFs. Extracting EOFs from a data set is
equivalent to using principal components analysis on the data set, in which
the most vital characteristics of the data are isolated by means of a Sin-
gular Value Decomposition (SVD) [15]. Assume that m measurements of
the sound speeds at the specified depths have been made and are recorded
in the vectors c1, c2...cm. We may calculate the mean of these recordings,
c̄, and use an SVD on the matrix formed by zero-mean column vectors,
[c1 − c̄, c2 − c̄, ..., cm − c̄] to obtain the EOFs v1,v2, ...,vm and their as-
sociated variances σ1, σ2, ..., σm as described in [6]. Using these, we can
represent the sound speed profile as

c = c̄ +
m∑
k=1

γkvk

where the γj are the weighting coefficients for the EOFs. If the data is
well correlated, the first few EOFs will account for most of the variation in
the data, and we may therefore truncate the expansion of c after the first
few EOFs; typically, three or four EOFs will account for >95% of the total
variation in the data [2]. This is an acceptable error, and we therefore let

c = c̄ + γ1v1 + γ2v2 + γ3v3.

Now, by varying γ1, γ2 and γ3, we also vary c(z) in an efficient manner which
is susceptible to ordinary optimization methods. The variances σ1, σ2, ..., σm
are useful for the optimization in that they provide reasonable limits within
which the values of γ1, γ2, ..., γm can be varied.

2.8 Objective function

In order to use optimization methods to find the best fitting model parame-
ters, we need an objective function that compares model parameters to the
recorded signal. The objective function should obtain a global minimum
when optimal parameters are reached. Here, three candidates for objective
function are presented. The first two are based on modelling signals from
the model parameters for direct comparison with the recorded signal. The
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last is based on the method of Bayesian inference, and differs from the first
two in that arrival angles and times are extracted from the recorded signal
and compared to modelled arrival angles and times, thus requiring further
processing of the recorded signal but less modelling.

2.8.1 Direct comparison

Full comparison function

The first two objective functions make use of signal modelling as presented
in section 2.5. For a given set of model parameters, eigenrays are found and
used to model a signal. Since the recorded signal is sampled at Nt discrete
points in time and beamformed in Nθ discrete angles, it can be represented
in a matrix:

S =


S11 S12 . . . S1Nθ

S21 S22
...

... . . .
SNt1 . . . SNtNθ


where each Sij = S(θi, tj) is the intensity sampled in direction θi and at the
time tj . Similarly, the modelled signal is given by

M =


M11 M12 . . . M1Nθ

M21 M22
...

... . . .
MNt1 . . . MNtNθ

 .

The most obvious objective function for comparing the two signals, which
we will name the full comparison function, is now given by

f(M ;S) = ||S −M ||2, (2.23)

for some matrix norm || · ||. We shall use the Frobenius norm,

||S −M ||F =

√√√√√ Nt∑
i=0

Nθ∑
j=0
|Sij −Mij |2,

effectively finding the root-square distance between the two signals. If the
recorded signal can be exactly reproduced, the function will have a unique
minimum when S = M , a desirable property. However, when dealing with
real world signals and in the presence of random noise it is almost certainly
impossible to obtain a perfect reproduction of the recorded signal by mod-
elling, and so the unique minimum will most likely not be attained. Still,
the full comparison function is a viable option.
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Simplified comparison function

A problem with the full comparison function is that it is computationally
expensive, since each evaluation requires the formation of a full model signal
M , which is a time-consuming task. An approximation can be done by
considering the signal in vector form. Let

s =



S11
...

SNt1
S12
...

S1Nθ
...

SNtNθ


and m =



M11
...

MNt1
M12
...

M1Nθ
...

MNtNθ


.

We now have

f(M ;S) = ||s−m||22 = sT s− 2sTm + mTm.

Since the sT s term is independent of m, and therefore independent of the
model parameters, it is invariant under optimization with respect to the
model parameters and can be disregarded. Moreover, the modelled signal
M is a superposition of signals from the arrivals, as explained in (2.22), so
we may write

m =
N2∑
k=1

mk,

where each mk corresponds to the partial signal resulting from the k’th
arrival. From this, we see that by disregarding the sT s term, we can form
the equivalent objective function

f̄(M ;S) = −2sTm + mTm = mTm− 2
N2∑
k=1

mk
T s.

If the mTm term could now be disregarded, we would arrive at a much
more computationally efficient objective function; since each of the mk, due
to the Gaussian shape of the signal they contain, are mostly zeroes, we
can compute the sum term very quickly by simply truncating the mk to a
smaller size containing only nonzero entries and computing the inner product
of the truncated vector with the corresponding entries in the recorded signal,
essentially exploiting the sparsity of the mk signals.
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In fact, as we shall see in chapter 4, this approach works well for a range
of problems, although not in all cases. We therefore introduce the objective
function, which we will name the simplified comparison function, given by

g(M ;S) = −sTm = −
N2∑
k=1

mk
T s (2.24)

as an inferior, yet more efficient alternative to the full comparison function.
The problem with the simplified comparison function is that if the recorded

signal has an area in which arrivals are clustered (that is, several arrivals
that are so close in time and angle that they superposition on top of each
other), thereby having a stronger signal in this area, the simplified compar-
ison function will value model parameters which gather all arrivals in this
cluster area higher than those where arrivals are more spread out. This can
be seen from the terms

mk
T s =

Nt∑
i=1

Nθ∑
j=1

SijMk,ij ,

which are largest when the maxima of the Mk,ij are close to the maximum
of Sij . In the full comparison function, this is corrected by the term

mTm =
N2∑
k=1

N2∑
l=1

mk
Tml,

which punishes model parameters that assign too many arrivals close to each
other. Since this term is discarded in the simplified comparison function, no
such punishment exists, and a minimum occurs when all modeled arrivals
are centered near the strongest point of the recorded signal, meaning the
global optimum is no longer obtained when S = M .

2.8.2 Bayesian inference

An alternative objective function can be derived by use of Bayesian inference.
Methods based on Bayesian inference have earlier been used successfully
for estimating environmental properties based on acoustic data [16][17][18].
Bayesian inference is a method of model inference based on Bayes’ rule where
the probability of a hypothesis being correct is estimated, taking into regard
experimental evidence. Bayes’ rule states that [19]:

P (H|E) = P (E|H)P (H)
P (E) ,

with H denoting the event that the hypothesis is correct and E the event
that the evidence is observed. The above terms can be described further.
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P (H) is the prior probability, an estimate of the probability that the hy-
pothesis is correct, calculated before reviewing the evidence, while P (H|E)
is the posterior probability, the probability that the hypothesis is correct
when taking the evidence into account. The P (E|H) terms represents the
probability of observing the experimental evidence given that the hypothesis
is correct, and the P (E) term, called the model evidence, is the probability
of observing the experimental evidence when viewed independently of the
hypothesis.

We seek to maximise P (H|E) by varying H, that is, to find the hypoth-
esis most likely to be true when comparing it to the experimental evidence.
Note that the P (E) term is independent of the hypotheses being consid-
ered, and can therefore be disregarded in the optimization. We now wish to
present our problem in the framework of Bayesian inference. The hypothesis
H will be that a given set of model parameters are correct, and the exper-
imental evidence considered will be a set of arrivals (θi, ti) extracted from
the recorded signal as described in section 2.6.1.

Under the assumption that the sound propagation model is accurate
enough as to be considered exact, H, the event that the model parame-
ters are correct, is equivalent to M , the event that the m modeled arrivals
{mj}mj=1 = {(θ̂j , t̂j)}mj=1 are correct. This assumption is not entirely true; in
general, we can be quite sure that the model is qualitatively correct, but with
minor numerical errors in eigenray paths and errors in sound speed causing
slightly incorrect modeled arrivals even with correct model parameters. This
issue is addressed later in this section.

We define the event R as the event that the set of n recorded arrivals
{ri}ni=1 = {(θi, ti)}ni=1 is observed, and take this as the evidence event E. In
the framework of Bayesian inference, we thereby wish to maximize

P (M |R) = P (R|M)P (M),

and so our objective function is P (M |R). Here, the P (M) term is the proba-
bility that the modeled arrivals are correct when not taking the recorded ar-
rivals into account. Note that sinceM and H are equivalent events, we may
take P (M) = P (H). The P (M |R) term is the probability that the model is
correct when taking the recorded arrivals into account. The P (R|M) term
denotes the probability of observing the recorded arrivals when assuming
that the model is correct. The next step is to explore the two right hand
terms more closely, starting with the P (R|M) term.

First, we need to arrive at a working definition of the event [R|M ], which
can be described as the event:

The n recorded arrivals ri are observed, given that the m modeled arrivals
mj are correct.
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If all possible arrivals are modeled and all modeled arrivals are correct, each
recorded arrival must be predicted by the model unless it is a false alarm.
Stated more rigorously, this means that unless ri is a false alarm, there must
exist an mj such that ri = mj . On the other hand, if a modeled arrival has
no corresponding recorded arrival, that modeled arrival must have remained
undetected. Therefore, we may refine our definition of [R|M ] more rigor-
ously as the event:

All ri are either matched or false alarms, all matched mj are detected and
all unmatched mj are not detected.

By labelling an ri as matched, we mean that there exists an mj such that
ri = mj , and vice versa for labelling an mj as matched.

Next, using the law of total probability we condition on F , the number
of false alarms among the n recorded arrivals, and find that [19]

P (R|M) =
n∑
k=0

P (R|M,F = k)P (F = k). (2.25)

Let us now assume that k recorded arrivals are false alarms, and thatm ≥ n,
that is, there are at least as many modeled arrivals as recorded arrivals. This
implies that there must be n− k matchings between recorded and modeled
arrivals, and hence m−n+k undetected modeled arrivals. For convenience,
let I = {1, .., n} and J = {1, ..,m}. We can now define [R|M,F = k] as the
event:

There exist sequences {il}n−kl=1 , il ∈ I and {jl}n−kl=1 , jl ∈ J such that ril = mjl

and mjl are detected for all l, and such that all mj , j /∈ {jl}n−kl=1 , are unde-
tected.

For ease of notation, denote by j̃ any number in J that is not in a given
sequence {jl}n−kl=1 , and write {j̃l}m−n+k

l=1 for a sequence consisting of all such
numbers. The last condition in the event can then be rewritten as:

...all mj̃l
, j ∈ {j̃l}m−n+k

l=1 are undetected.

All arrivals are unique unless two eigenrays have the same travel time. This
occurs very rarely, and so we may assume that all arrivals are unique. Thus,
there can only be one pair of sequences that yields a correct combination of
recorded and modeled arrivals, excepting sequence pairs that yield the same
matchings. For example, the pair {1, 2}, {1, 2} and the pair {2, 1}, {2, 1}
are different pairs of sequences, but yield the same matchings d1 = m1 and
d2 = m2. To ensure uniqueness of the different pairs made such that we
avoid redundancy, we impose the condition that the sequences {il}n−kl=1 must
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be ordered, that is, i1 < i2 < ... < in−k, while the {jl}n−kl=1 remain unordered.
The reasoning behind this is demonstrated in the following example:

Example 2.8.1. With two recorded arrivals, three modeled arrivals and no
false alarms, we have I = {1, 2}, J = {1, 2, 3}, n = 2, m = 3 and k = 0.
Allowing non-ordered subsets from both I and J , we can make twelve pairs
of sequences of length n− k = 2:

a) {1, 2}, {1, 2} b) {1, 2}, {1, 3} c) {1, 2}, {2, 1}
d) {1, 2}, {2, 3} e) {1, 2}, {3, 1} f) {1, 2}, {3, 2}
g) {2, 1}, {1, 2} h) {2, 1}, {1, 3} i) {2, 1}, {2, 1}
j) {2, 1}, {2, 3} k) {2, 1}, {3, 1} l) {2, 1}, {3, 2}.

Note that pairs a) and i) are equivalent in that they both state that r1 =
m1, r2 = m2. The pairs b) and k), c) and g), d) and l), e) and h), and f)
and j) are also equivalent in the same respect. However, requiring that the
sequences from I be ordered leaves us with the six unique pairs:

a) {1, 2}, {1, 2} b) {1, 2}, {1, 3} c) {1, 2}, {2, 1}
d) {1, 2}, {2, 3} e) {1, 2}, {3, 1} f) {1, 2}, {3, 2},

thus eliminating the problem of redundant pairs.

Next, we define Ip to be the set of all ordered sequences from I of length p,
and Jp to be the set of all unordered sequences from J of length p. From
this, we define ⋃

i∈Ip

⋃
j∈Jp

to be the union over all sequences i = {il}pl=1 ∈ Ip and j = {jl}pl=1 ∈ Jp,
allowing us to write [R|M,F = k] as a union of events:⋃

i∈In−k

⋃
j∈Jn−k

{All ril = mjl , all mjl detected, all mj̃l
undetected}.

Note that the events {All ril = mjl , all mjl detected, all mj̃l
undetected}

are disjoint as the pair of sequences providing the correct matching is unique,
meaning no two such events can occur simultaneously unless the underlying
sequences i and j are equal. This allows us to write P (R|M,F = k) as

P

 ⋃
i∈In−k

⋃
j∈Jn−k

{All ril = mjl , all mjl detected, all mj̃l
undetected}


=
∑

i∈In−k

∑
j∈Jn−k

P (All ril = mjl , all mjl detected, all mj̃l
undetected). (2.26)
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To progress further, we assume that all matchings, detections and non-
detections are independent and introduce the notations pij = P (ri = mj)
and pdj = P (mj detected). Using this, we find for some arbitrary i ∈ In−k,
j ∈ Jn−k:

P (All ril = mjl , all mjl detected, all mj̃l
undetected)

=P (All ril = mjl)P (All mjl detected)P (All mj̃l
undetected). (2.27)

Continuing, due to independence of matchings we have:

P (All ril = mjl)
=P (ri1 = mj1 , ri2 = mj2 , ..., rin−k = mjn−k)
=P (ri1 = mj1)P (ri2 = mj2)...P (rin−k = mjn−k)

=
n−k∏
l=1

piljl , (2.28)

and by the same argument for the remaining terms:

P (All mjl detected) =
n−k∏
l=1

pdjl (2.29)

P (All mj̃l
undetected) =

m−n+k∏
l=1

(1− pdj̃l). (2.30)

Inserting (2.28), (2.29) and (2.30) into (2.27), and inserting the result into
(2.26) now yields:

P (R|M,F = k) =
∑

i∈In−k

∑
j∈Jn−k

(
n−k∏
l=1

piljlpdjl

)(
m−n+k∏
l=1

(1− pdj̃l)
)
, (2.31)

and finally, by inserting (2.31) into (2.25) we arrive at the expression:

P (R|M) =
n∑
k=0

P (F = k)
∑

i∈In−k

∑
j∈Jn−k

(
n−k∏
l=1

piljlpdjl

)(
m−n+k∏
l=1

(1− pdj̃l)
)
.

(2.32)

Next, we assume that false alarms occur independently, and with a fixed
probability pFA for a given noise threshold [4]. Thus, the number of false
alarms is binomially distributed and we have

P (F = k) =
(
n

k

)
pkFA(1− pFA)n−k. (2.33)

We now need an expression for pij and pdj that depends on the ri = (θi, ti)
and the mj = (θ̂j , t̂j). First, since arrival angles and times are measured dis-
cretely, we must define matching using the measured angles and times. We
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now say that ri matches mj if θi ∈ (bθ̂jc, dθ̂je) and ti ∈ (bt̂jc, dt̂je), where
b·c and d·e are the floor and ceiling operators rounding the quantities down
and up to the closest units of precision, respectively. For arrival angles, the
unit of precision is ∆θ, the angular resolution used in the beamforming,
while for arrival times the unit of precision is ∆t, the sampling period. Fur-
thermore, we assume that ri is bivariate normally distributed with expected
value (θi, ti), no covariance between θi and ti, and standard deviations [20]:

σθ = θBW√
s

(2.34)

σt = 1
B
√
s
, (2.35)

where s is the linear SNR of the signal, θBW is the vertical beamwidth of
the sonar and B is the bandwidth of the sonar. As an approximation we
now find:

pij = P (ri matches mj) = P (bθ̂jc ≤ θi ≤ dθ̂je ∩ bt̂jc ≤ ti ≤ dt̂je)

=
dθ̂je∫
bθ̂jc

dt̂je∫
bt̂jc

Cexp
[
−(θ − θi)2

2σ2
θ

− (t− ti)2

2σ2
t

]
dtdθ

≈ ∆θ∆tCexp
[
−(θ̂j − θi)2

2σ2
θ

− (t̂j − ti)2

2σ2
t

]
,

where C is a normalization constant dependent on ∆θ and ∆t, both of which
are constants. In fact, we may take K = ∆θ∆tC, such that

pij ≈ Kexp
[
−(θ̂j − θi)2

2σ2
θ

− (t̂j − ti)2

2σ2
t

]
.

As mentioned earlier, our model will not be entirely exact, and we need
take this into account. A correction can be made through moderation of the
choice of σθ and σt which, due to the inexactness of the modeled arrivals,
will be larger than proposed in equations (2.34) and (2.35). Especially note-
worthy is the error in modeled arrival times arising from inexact sound speed
profiles. A rough approximation to the travel time along a path is t = s/c̄,
where s is the arc length of the path and c̄ the mean sound speed. The error
in travel time estimation arising from sound speed uncertainty is then

σct = s

c̄

∆c̄
c̄
,

where ∆c̄/c̄ is the relative uncertainty in mean sound speed. For a target
located 2000 m from the sonar, a minimum esimate of s is 4000 m, and using
a mean sound speed of 1480 m/s with a relative uncertainty of 0.2%, we have
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σct = 5 · 10−3 s. Compared to the σt presented above, which with a sonar
bandwidth of 1 000 Hz and an SNR of 14 dB will give σt = 2 ·10−4 s, we see
that the uncertainty in arrival time is grossly underestimated. Therefore, in
applications, care should be taken to choose a reasonable value for σθ and
σt.

The pdj term for a modeled arrival is dependent on the noise threshold
level used in thresholding when pre-processing the signal, in addition to
the estimated signal excess level of the arrival. LYBIN provides a way of
calculating pdj which takes into account the distribution of environmental
noise. However, as LYBIN is a black box system, the method by which it
calculates pdj is unknown to us, and we shall have to rely on the values
provided. This concludes our derivation of P (R|M). The next step is to
obtain an expression for the prior probability P (M).

The prior probability P (M) can be estimated through an analysis of
all model parameters and their uncertainties. Recall that the event M is
equivalent to the event H that the model parameters are correct. The model
parameters considered here are rt, zt, zb, zs, and c(z), represented by the
EOF coefficients γ1, γ2 and γ3. Regarding them as random variables and
assuming independence of their correctness, we find

P (M) = P (H)
=P (rt = r̂t, zt = ẑt, zb = ẑb, zs = ẑs, γ1 = γ̂1, γ2 = γ̂2, γ3 = γ̂3)
=P (rt = r̂t)P (zt = ẑt)P (zb = ẑb)P (zs = ẑs)P (γ1 = γ̂1)P (γ2 = γ̂2)P (γ3 = γ̂3),

where p̂ denotes the estimated quantity of the parameter p. The problem
now becomes assigning probability distributions to each random variable.
If all variables are considered uniformly distributed, it is easily seen that
P (M) becomes constant and thereby irrelevant to the optimization. This is
in fact what has been done in this implementation.

On the other hand, a more sophisticated model may view the random
variables as having distinct distributions. We are given initial estimates rt0
and zb0 of rt and zb, and uncertainties in these estimates can be used as stan-
dard deviations, allowing us to view rt and zb as normally distributed. The
sonar depth zs will vary with surface wave height, and assuming a model
for the surface waves is obtainable, for instance assuming they will follow a
sinusoidal shape with a given frequency and amplitude, a probability distri-
bution for zs can be obtained. The EOF coefficients can also be assumed to
be normally distributed with zero mean and variances σ1, ..., σm. The target
depth zt is tricky. If there exists an estimate for the target depth from a
previously recorded ping, the target depth may follow a Gaussian distribu-
tion with this previous estimate as expected value and a certain standard
deviation which should be based on worst-case-errors using σθ. The use
of non-uniform distributions in calculating P (M) is an interesting topic for
further work.
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Approximate expression

Evaluation of the objective function for Bayesian inference is rather compu-
tationally expensive; the number of unordered sequences of length n−k from
{1, ...,m} ism!/(m−n+k)!, where p! denotes the factorial of p. The number
of ordered sequences of length n − k comprised of numbers from {1, ..., n}
is n!/(k! (n− k)!), such that the number of pairs of sequences made with k
false alarms is:

m!n!
(m− n+ k)! k! (n− k)! ,

a number which grows prohibitively large as n and m grows. This means
that the number of terms in the double sum involved in evaluating equation
(2.32) will be very large, and we will need to find an approximation to
equation (2.32) for the objective function to work in practice.

First, we may note that for a noise threshold level of 13 dB, pFA is of
the order of magnitude 10−6, and so by equation (2.33), p(F = 0) ≈ 1 and
p(F = k) ≈ 0, k = 1, ..., n if n is not too large [4]. The choice of NT used
in the tests in chapter 4 is 13 dB, and so this is a reasonable simplification.
This gives us the approximate expression

P (R|M) ≈
∑
i∈In

∑
j∈Jn

(
n∏
l=1

piljlpdjl

)(
m−n∏
l=1

(1− pdj̃l)
)
. (2.36)

This reduces the amount of additions to m!/(m − n)!. In fact, when using
a uniform distribution on the model parameters as described above, we can
use this P (R|M) as the objective function, which is what is done in the
implementation used for testing the Bayesian objective function in chapter
4. Note that using the same amount of modeled arrivals as recorded arrivals,
letting m = n, gives the even more simplified expression

P (R|M) ≈
∑
i∈In

∑
j∈Jn

(
n∏
l=1

piljlpdjl

)
.

2.9 Optimization
The final part of the solution procedure, optimization, is done by compar-
ing the recorded signal to a modelled signal, then attempting to modify the
optimization parameters in the modelled signal in order to obtain a better
fit. The choice of which parameters to optimize with respect to is a mat-
ter of complexity and accuracy. By optimizing with respect to too few or
inconsequential parameters, we risk obtaining a sub-optimal fit, and as a
result, an incorrect target depth estimate. On the other hand, if too many
parameters are included, the computational complexity of the problem may
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become insurmountable. The parameters to optimize with respect to should
therefore be chosen carefully.

Of course, zt should be among the optimization parameters. Other suit-
able candidates for optimization parameters are rt, zb, zs and c, as these
parameters influence the eigenray paths used in modelling signals. As ex-
plained in section 2.7, optimization with respect to c entails optimizing with
respect to the EOF weighting coefficients γ1, γ2,... γm.

2.9.1 Optimization algorithm

The black box nature of LYBIN makes partial derivatives of any objective
function with respect to the problem parameters impossible to obtain, leav-
ing us with the choice of either a derivative-free optimization algorithm or
using numerical gradients in a more sophisticated algorithm. As the ob-
jective functions are generally computationally expensive to evaluate, we
would like to limit the amount of evaluations needed. Calculating numerical
gradients calls for several evaluations per approximation, thereby favouring
derivative-free algorithms. Due to its robustness and ease of implementa-
tion, the algorithm chosen here is the popular derivative-free Nelder-Mead
algorithm for unconstrained nonlinear optimization problems [11] .

Algorithm 2.9.1. Nelder-Mead

Initialization: Starting with the initial guess x0 ∈ Rn, generate n ad-
ditional points xi by increasing the i’th component of x0 by 5 %. If the i’th
component of x0 is 0, instead change that component to 0.00025 in xi.

1) Sort the xi according to their objective function values f(xi), and de-
note by x(1), ...,x(n+1) the sequence of points sorted from lowest to high-
est objective function value. Compute the centroid of the n first points,
xm = 1

n

∑n
k=1 x(k).

2) Find xr = xm + (xm − x(n+1)), the reflection point of x(n+1) through
the centroid.

3) Calculate f(xr). If f(x(1)) ≤ f(xr) < f(x(n)), exchange x(n+1) with
xr and return to step 1. If f(xr) < f(x(1)), go to step 4. If f(xr) ≥ f(x(n)),
go to step 5.

4) Find xe = xr + (xm − x(n+1)), expanding on the reflection point. Calcu-
late f(xe). If f(xe) < f(xr), exchange x(n+1) with xe and return to step 1.
Otherwise exchange x(n+1) with xr and return to step 1.

5) If f(xr) < f(x(n+1)), let xc = xm + (xr − xm)/2. Otherwise, let
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xc = xm + (x(n+1) − xm)/2. If f(xc) < f(xr), exchange x(n+1) with xc
and return to step 1. Otherwise, go to step 6.

6) Shrink the simplex by assigning vi = x1 +(xi−x1)/2, i = 2, ..., n+1 and
exchanging all xi for vi except x1. Return to step 1.

Termination: The algorithm is terminated upon some reaching some stop-
ping criterion, such as the volume of the simplex shrinking below some
tolerance level, or the length of each edge of the simplex being smaller than
the tolerance level.

The idea behind the algorithm is quite simple. Given n optimization
variables, we create a simplex of dimension n defined by n+ 1 corner points
distributed around the starting guess. An n-dimensional simplex is the n-
dimensional equivalent of a triangle; in two dimensions, it is a triangle, in
three dimensions a tetrahedron, et cetera. The shape and position of this
simplex is then altered by exchanging the corner point with the highest
function value for some new point located outside or inside the simplex with
a lower function value. If no point with a lower function value is found with
which to exchange the worst corner point, the simplex is shrunk. Thus, the
simplex will move toward areas of lower function values, eventually shrinking
as it approaches a local minimum, enclosing the minimum. The algorithm
is terminated upon reaching some stopping criterion - for example if the
volume of the simplex becomes smaller than a given tolerance.

To avoid local minima, the Nelder-Mead algorithm requires that the op-
timization start reasonably close to the global minimum. To find such an
initial guess, an exhaustive search method is employed, computing the ob-
jective function values with different problem parameters and choosing the
parameters that yield the lowest objective function value. This approach
quickly runs into the curse of dimensionality, as an increasing number of op-
timization parameters necessitates a large number of evaluations to obtain
a reasonable initial guess. For example, with two parameters one may wish
to check the objective function values for five choices of each parameter,
necessitating 25 evaluations of the objective function. If a third parameter
were introduced, and one wants to check the objective function values for
five choices of this parameter as well, 125 evaluations of the cost function are
needed, resulting in a large increase in function evaluations. Due to this,
a global optimization algorithm able to obtain the global minimum with-
out relying on the expensive initialization procedure would be preferable.
One such algorithm is the simulated annealing algorithm, a derivative-free,
stochastic global optimization method, which has been applied with success
to geoacoustical parameter estimation using matched field processing [21].
The application of simulated annealing to this optimization problem may
be an interesting task in the future. On a side note, we may mention that
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the exhaustive search is very parallelizable, and a parallel implementation
should be considered in the future if the simulated annealing algorithm does
not provide significant improvements.

Example 2.9.1. With a geometry of zs = 50 m, zt = 350 m, zb = 400 m
and rt = 8000 m, and a given sound speed profile, the signal displayed in
figure 2.10 is synthesized and used as a recorded signal.
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Figure 2.10: Signal when zs = 50 m, zt = 350 m, zb = 400 m, rt = 8000 m.

The method is applied, optimizing with respect to bottom depth and
target depth using the simplified objective function, while considering zs =
50 m and rt = 8000 m as known. The initialization procedure considers
bottom depths from 350 to 450 m in steps of 10 m, and target depths from
surface to bottom in steps of 10 m, obtaining the objective function values
displayed in figure 2.11.
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Figure 2.11: Simplified comparison function for various model bottom depths and
target depths. Correct model parameters: zt = 350 m, zb = 400 m.
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The minimum of these is found at zb = 390 m, zt = 390 m, which is
used as an initial guess in the Nelder-Mead algorithm. After applying the
Nelder-Mead algorithm, the optimal parameters are found to be zb = 386 m,
zt = 372 m. The signal produced with these parameters is shown in figure
2.12, resembling that of figure 2.10.
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Figure 2.12: Signal when zs = 50 m, zt = 372 m, zb = 386 m, rt = 8000 m.
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Chapter 3

Implementation and test
setup

3.1 Implementation
The solution method was implemented in MATLAB. Due to the modular
structure of the program, as can be observed from the flowchart in figure
2.4, implementation of the method is done by use of many separate func-
tions. Use of LYBIN is facilitated through the binary interface LybinCom 6.2
and incorporated in the MATLAB code through the use of a COM server
[22]. Since LYBIN is currently a 32-bit-only program, a 32-bit version of
MATLAB had to be used in order for the LybinCom interface to function.
The Nelder-Mead optimization algorithm described in section 2.9 is already
available as the built-in MATLAB function fminsearch.m, and is the only
non-basic built-in MATLAB function used in the code.

In a previous implementation, LYBIN version 6.1 was used. This version
had an issue with the inability to modify the target depth range used for
identifying eigenrays as explained in section 2.4.2. The range was set to
80 m with no possibility of change, causing errors in eigenray estimation
which led to inaccurate target depth estimates [23]. With the release of the
unofficial update version 6.2 in February 2014, this is no longer an issue as
the target depth range is modifiable. This is demonstrated in section 4.1.

When implementing the Bayesian objective function, the approximate
expression given in equation (2.36) was used. However, there was an unfor-
tunate oversight; the pij were calculated using the incorrect formula

pij ≈ Kexp
[
−(θ̂j − θi)2

2σ2
θ

− (t̂j − ti)2

2σt

]
and not the the correct version:

pij ≈ Kexp
[
−(θ̂j − θi)2

2σ2
θ

− (t̂j − ti)2

2σ2
t

]
,

45
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meaning that the standard deviation in time was effectively √σt instead
of the correct σt. Luckily, this error turns out to be less significant than
expected; the method was tested using

σt = 1
B
√
s
,

instead of the corrected version

σct = s

c̄

∆c̄
c̄

proposed in chapter 2.8.2. During testing, the SNR ranged from 10 dB to
30 dB and B was set to 1000 Hz, and so the effective standard deviation in
time used in the implementation varied from √σt = 0.017 s for an SNR of
10 dB to √σt = 0.0056 s for an SNR of 30 dB. Had the correct expression
for pij and the corrected version of σt been used, the standard deviation
in time would have varied from σct = 0.027 s for a target range of 10 000
m to σct = 0.005 s for a target range of 2 000 m, when using a relative
sound speed error of 0.2% and a mean sound speed of 1480 m/s. Therefore,
we can consider the results obtained here by use of the Bayesian objective
function as comparable to results obtained with the corrected σct . Since
the incorrect implementation was used during all tests where the Bayesian
objective function was applied, the long time needed for carrying out the
tests (2-3 weeks of runtime using a computer cluster) made redoing the tests
impractical. It was therefore decided to keep the results obtained with the
implementation error, and prioritize a new run of these tests during future
work.

LYBIN allows the user to assign parameters pertaining to the sonar sys-
tem and the environment, all of which have default values unless otherwise
specified [22]. Some of these parameters were varied during the testing, and
the choice of these parameters is described in the next section. The pa-
rameters which were set to a non-default level but otherwise kept constant
throughout the testing is described below:

• Wind speed was set to 0 m/s, meaning no waves were assumed.

• A silt bottom was assumed, which corresponds to bottom type 4 in
LYBIN [22].

• The bandwidth of the sonar, B, was set to 1 kHz.

• The vertical beamwidth of the signal, θBW , was set to 10 degrees.

• The beamforming resolution, ∆θ, was 0.1 degrees. If this had been
a real recorded signal, this would imply extensive oversampling as
the vertical beamwidth is 10 degrees, but since we are working with
synthesized data, no actual beamforming is done, and so this only
determines the angular resolution of the synthesized signals.
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• The frequency of the emitted ping, f , was set to 6.5 kHz.

• The sampling frequency, fs, was set to 2 kHz. Note that if this were a
real signal, the signal would be undersampled. The sampling frequency
would then need to be higher to satisfy the Nyquist sampling criterion
unless we were considering baseband converted, complex sampled data,
but once again, since we are working with synthesized data, this only
determines the time resolution of the signal.

• The signal level used was 218 dB re 1 µPa, the target strength 10 dB,
the noise level 70 dB re 1 µPa and the directivity 20 dB.

• The noise threshold value used was 13 dB. Note that this value may
need to be adjusted for use with real data, as it is quite restrictive.

3.2 Test setup

When testing the method, we are interested in whether the eigenray esti-
mates produced are correct, how accurate the target depth estimates are,
which objective functions perform best under different circumstances, and
how sensitive the method is to noise and disturbances. We therefore wish
to test the method on a wide range of situations, meaning there is a time
constraint on how long the optimization procedure is allowed to run. As ex-
plained in section 2.9, the initialization procedure is subject to the curse of
dimensionality, meaning that the execution time grows exponentially in the
number of optimization variables. Therefore, we shall instead opt for the use
of several tests, while limiting ourselves to a maximum of three optimization
variables in each test. All tests of the target depth estimate accuracy are
done on synthesized data.

In all, five tests have been carried out. The first test is designed to check
the accuracy of the numerical eigenray estimates. The second, third and
fourth tests investigate the accuracy of the target depth estimation method
when using the different objective functions, in the presence of noise and
under differing environmental conditions. In the second test, we optimize
with respect to bottom depth and target depth in different problem geome-
tries using a fixed sound speed profile. In the third test, we optimize with
respect to the two most significant EOF coefficients and the target depth
in different problem geometries. In the fourth test, we again optimize with
respect to bottom depth and target depth, but this time with several qual-
itatively different sound speed profiles. The fifth and last test considers the
execution time of the method when using different objective functions for a
smaller set of problem geometries.

Target range and source depth are not considered as optimization vari-
ables in any test; it is assumed that optimizing with respect to bottom depth
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will be sufficient to investigate the performance of the method when using
geometric parameters as optimization variables, and so it would be unnec-
essarily time consuming to run tests with other geometric parameters as
optimization variables.

3.2.1 Accuracy of eigenray estimation

A test was done to check the accuracy of the eigenray estimates, in which
cases the eigenray estimates might fail, and to demonstrate the improve-
ments in eigenray accuracy from LYBIN version 6.1 to version 6.2. For each
set of environmental parameters (rt, zb and zt), five eigenrays were calcu-
lated by the numerical method presented in section 2.4.2. The range of rt
considered was 1000 m to 10 000 m in steps of 100 m, with zb from 100 m to
1000 m in steps of 10 m, and zt from 50 m to 650 m in steps of 200 m. The
source depth zs was kept constant at 50 m throughout the test. A linear
sound speed profile was used, in which sound speed varied from 1480 m/s
at the surface to 1500 m/s at the bottom. During this test, 5000 rays were
traced per eigenray estimate.

The numerical eigenray method was set to produce five eigenrays, rep-
resented by their exit angles {θi}5i=1, for each set of parameters. These exit
angles were used as initial angles in an analytical ray tracing, as described
in section 2.4.1. The resulting analytical depth at target range given the
numerical exit angles, z(rt; θi), was compared with the desired target depth
zt, giving the mean error in eigenray depth at target range, which is used
as the benchmark for checking eigenray accuracy:

E = 1
5

5∑
i=1
|zt − z(rt; θi)|. (3.1)

Note that this is a test of eigenray accuracy with linear sound speed profiles
only, since we do not have an analytical solution for a general sound speed
profile. The idea is that accuracy with a linear sound speed profile will imply
accuracy when using a nonlinear sound speed profile.

Sensitivity to number of rays used and target depth range size

The eigenray estimates are sensitive to the size of the target depth range
used for identifying ray families for eigenrays, as explained in section 2.4.2.
With LYBIN version 6.2, the size of the target depth range can be varied,
allowing for more accurate eigenray estimates. Another important detail in
the numerical eigenray estimation is the number of rays traced; with too few
rays traced, some ray families may be overlooked, causing the procedure to
fail in identifying certain eigenrays. On the other hand, more rays in the
eigenray finding procedure will lead to longer execution time. We therefore
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want to find a trade-off between the size of the target depth range and the
number of rays traced in the eigenray finding procedure.

This issue has been investigated by varying the target depth range from
15 m to 55 m in steps of 10 m and the number of rays used from 0 to 3000 in
steps of 500, measuring the mean errors in eigenray estimates using equation
(3.1). The bottom depth was set to 200 m, the target depth 50 m, the source
depth 50 m and the target range to 6000 m during this test, representing
a typical scenario. Once again, as we are reliant on analytical solutions to
test the eigenray estimates against, a linear sound speed profile was used.

3.2.2 Tests on synthesized data

We have not been able to obtain real acoustic data to test the method on.
FFI has several sets of recorded data which are suited for testing, yet all
of these are classified such that results found based on this data cannot
published. However, it is possible to test the procedure using synthesized
data. When using the full comparison and simplified comparison functions,
this entails using a signal modelled as proposed in section 2.5 with added
Gaussian noise as the recorded signal. When using the Bayesian objective
function it is unnecessary to model signals, and only arrival angles and
arrival times are synthesized.

To obtain a more realistic situation and to test the method’s sensitivity
to inexact angle and arrival time measurements, the modeled arrival angles
and arrival times were treated as Gaussian distributed random variables, as
proposed in [2]:

θi = n

(
θ̂i,

θBW√
s

)
, ti = n

(
t̂i,

1
B
√
s

)
.

Here, n(µ, σ) specifies a Gaussian process with expected value µ and stan-
dard deviation σ. The θ̂i and t̂i are the arrival angles and arrival times as
found by the numerical eigenray scheme, θBW is the vertical beamwidth of
the sonar, B is the bandwidth of the sonar and s = 10SNR/10 is the linear
signal-to-noise ratio. The θi and ti were obtained by first calculating θ̂i and
t̂i numerically and then adding Gaussian noise to these values.

In addition to the Gaussian noise added to signals and the arrivals, we
want to be able to test the method’s accuracy with differing SNR levels. This
has been done by modifying the signal strengths of the different arrivals. The
SNR level for each arrival is first calculated as proposed in section 2.3.2, and
we denote by SNRm the calculated SNR value of the m’th arrival. Then,
the SNR levels are adjusted by assigning

SNRm ← SNRm −max
k
{SNRk}+ SNRmodel.

This alters the strongest arrival’s SNR level to SNRmodel, and the other
arrivals’ SNR values are modified relative to this level. The new SNR levels
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are then used for modelling signals as described in section 2.5, yielding a
modeled signal with an adjusted SNR level for use with the comparison
objective functions. Note that by varying the SNR values, s is also varied,
allowing us to test the method’s stability in the presence of different levels
of noise in the signal and inaccuracies in measurements.

In all tests, unless otherwise specified, five eigenrays were used for syn-
thetization of recorded signals and modelling of signals for use in the two
comparison functions. When testing the Bayesian objective function, two
eigenrays were used for synthetization of recorded arrivals and two eigenrays
were used for modelling arrivals to compare with the recorded arrivals.

Optimizing bottom depth and target depth

In this test, bottom depth and target depth were chosen as the optimiza-
tion parameters, with the purpose of investigating the performance of the
method with varying geometric parameters and SNR levels. The geometric
parameters used in the test were rt from 2000 m to 10 000 m in steps of 2000
m, zb from 200 m to 1000 m in steps of 200 m, and zt from 50 m to 50 m
above bottom depth in steps of 100 m. SNR levels were varied from 10 dB
to 30 dB in steps of 2 dB. The source depth was held constant at 50 m. The
nonlinear sound speed profile shown in figure 3.1 was used. The test was
done using both three and five eigenrays, translating to 9 and 25 arrivals,
for modelling when applying the comparison function. The eigenray finding
procedure traced 3000 rays per run. The size of the target depth range was
set to 15 m.
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Figure 3.1: Sound speed profile used when optimizing with respect to bottom
depth and target depth.

All three objective functions presented in section 2.8 were used in the
test, to explore the difference in estimates provided by these. For each set of
geometric parameters and each SNR level, ten iterations were made in which
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a signal was synthesized by the method described in the preceding section,
and the optimization procedure using the simplified comparison function
was applied to this signal in order to estimate the target depth. The mean
absolute error of these target depths estimates were then calculated. Also,
for each set of geometric parameters and each SNR level, ten iterations were
made in which arrivals were calculated and subjected to noise as described in
the preceding section, before the optimization procedure using the Bayesian
objective function was applied to these arrivals to estimate the target depth.
The mean absolute error of these estimates was calculated. Due to the long
evaluation time of the full comparison function, this objective function was
tested for a smaller selection of parameters; rt was varied from 2000 m to 10
000 m in steps of 4000 m, zb from 200 m to 1000 m in steps of 400 m, and zt
from 50 m to 150 m above bottom depth in steps of 200 m. The SNR was
still varied from 10 dB to 30 dB in steps of 2 dB. Five iterations equivalent
to those made with the simplified comparison function were made with the
full comparison function.

The results of this test are analyzed in four ways in section 4.2.1:

• The first analysis determines whether three eigenrays are sufficient in
modelling signals for comparison with recorded signals or if five eigen-
rays should be used, based on results for the simplified comparison
function.

• The second analysis looks at the error in target depth estimation as a
function of SNR and target range, to see how sensitive the method is
to increasing noise levels, and how sensitive it is to increasing target
range. It also looks at the differences between the comparison and
Bayesian objective functions.

• The third analysis is similar to the second, as it looks at the error
in target depth estimation as a function of SNR and bottom depth
to further determine the sensitivity of the method to noise, and to
investigate the sensitivity to bottom depths. A comparison between
the two objective function types is also given.

• The fourth analysis compares the results obtained by use of the full
comparison function with the results obtained by use of the simpli-
fied comparison function and the Bayesian objective function, to see
whether the simplified objective function is a reasonable approxima-
tion to the full comparison function, and to further explore the differ-
ences between the the comparison functions and the Bayesian objective
function.
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Figure 3.2: Maximal and minimal extent of sound speed profiles when varying
EOF coefficient γi from −√σi to √σi. Left: Varying γ1. Right: Varying γ2. Full
lines indicate mean sound speed. Dashed lines indicate maximum and minimum
extent of sound speed profiles considered.

Optimizing sound speed and target depth

In the next test, we look at optimization with respect to the EOF coefficients
of the two most significant EOFs and the target depth. A data set of six
sound speed profiles was used. From the sound speed data set, EOFs were
extracted, with σ1 = 3.2296 · 103, σ2 = 0.2973 · 103, and

∑
σi = 3.6172 · 103.

From this we see that the first EOF accounts for 89.28% of the variation
within the data set, while the second accounts for 8.22% of the variation; in
total, the two EOFs account for 97.5% of the variation, meaning they are
well suited for approximating sound speed profiles. Had the data set been
larger, this number may have been lower. The mean sound speed profile is
shown in figure 3.2, along with the maximum and minimum extent of the
variations made when varying the EOF coefficients.

During the test, rt was varied from 2000 m to 10000 m in steps of 4000
m, and zt from 60 m to 300 m in steps of 60 m. The EOF coefficients γ1
and γ2 were varied from -100% to 100% of √σ1 in steps of 40% of √σ1 and
-100% to 100% of √σ2 in steps of 40% of √σ2, respectively. The bottom
depth was kept constant at 450 m. The source depth was at 50 m. The
SNR was kept constant at 25 dB. Only the simplified comparison function
and the Bayesian objective function were used in this test, since using three
optimization variables increased the computational complexity of the ini-
tialization procedure so much that optimization using the full comparison
function used too much time.

For each set of parameters, ten iterations were made where a signal was
synthesized with added Gaussian noise for use in the simplified comparison
function and a set of arrivals for use in the Bayesian objective function, and
the target depth estimated subsequently, before calculating the mean abso-
lute error in estimates. In addition to the arrival noise and signal noise, an
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element of uncertainty was added to the sound speed profiles used for syn-
thesizing recorded signals by adding Gaussian noise distributed as n(0,√σi)
to the EOF coefficients before synthesizing.

Sensitivity to sound speed profile

The different sound speed profiles obtained when varying the EOF coeffi-
cients in the preceding test are qualitatively similar, as seen in figure 3.2,
yet it is also of interest to see how the method performs when qualitatively
different sound speed profiles are being used, as is the case for sound speed
profiles measured during different months of the year at a given geographic
location. Figure 3.3 shows the seasonal variation of the sound speed profile
at a location in the North Sea. Note the increasing sound speed near the
surface due to increasing temperature during the summer months and the
decrease during the winter months.

In this test, as the sound speed profiles are measured for depths up to
300 m, the bottom depth was held at a constant 300 m. The target range
was varied from 2000 to 10000 m in steps of 2000 m, the target depth from
10 to 290 m in steps of 70 m, and the source depth was kept constant at 5 m
to simulate a more realistic propagation situation, where the sonar system
is located close to the surface. All different sound speed profiles shown in
figure 3.3 were used for testing. The SNR was set to 25 dB. For each pa-
rameter setup and sound speed profile, when using the simplified comparison
function and the Bayesian objective function, ten iterations were in which
recorded signals or arrivals were modelled before applying the optimiza-
tion procedure. When using the full comparison function, three iterations
of modelling signals and applying the optimization procedure were done.
The optimization parameters were target depth and bottom depth. Mean
absolute errors in target depth estimate were noted.
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Figure 3.3: Sound speed profile exhibiting seasonal variations
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3.2.3 Execution time

Finally, a test was done to investigate the execution time of the method
using the different objective functions in different geometries, and to see the
difference in time usage with an increasing number of rays traced in the
eigenray finding procedure.

The test was performed by varying rt from 2000 m to 10000 m in steps
of 2000 m, and by varying zb from 250 m to 650 m in steps of 200 m. The
target depth was kept constantly at 200 m, and the source depth at 5 m.
The test was first done with 3000 rays traced in the eigenray procedure,
then redone with 5000 eigenrays. When testing the comparison objective
functions, recorded signals were synthesized with a sampling frequency of
8000 Hz, in contrast with earlier tests which used a sampling frequency
of 2000 Hz, meaning the time resolution of the signal was greater during
this test. This did not make a difference in the accuracy of the method,
but as real signals are sampled with similar frequencies, it is reasonable to
test with realistic values here. In this spirit, the beamforming resolution was
increased from 0.1 degrees to 1 degree, a more usual choice in real situations.
When testing the Bayesian objective function, two eigenrays were used for
synthesizing recorded arrivals, while both two and three eigenrays were used
for modelling arrivals for comparison with the recorded arrivals.

For each choice of geometric parameters, the execution time of the
method using the different objective functions was measured. This was
done by first synthesizing a recorded signal (or recorded arrivals, in the case
of the Bayesian objective function), then applying the method to obtain
an estimate of the target depth by optimizing with respect to target depth
and bottom depth. Only the time used when applying the method was
measured, by means of the built-in MATLAB functions tic and toc. The
execution time of the simplified comparison function was measured by car-
rying out ten such iterations per parameter setup and calculating the mean
time usage. Similarly, the Bayesian objective function was tested with ten
iterations. The full comparison function was tested using three iterations
due to its long execution time.

The computer used for testing was a TOSHIBA Satellite 830W laptop,
with an Intel i5-2467 CPU running at a clock rate of 1.6 GHz, 4 GB of
RAM and Windows 7 64-bit version. It is worth noting that a more powerful
computer may have achieved faster execution times, but as the relative time
difference between objective functions is most of interest here, testing on
this computer should be sufficient.



Chapter 4

Results and discussion

In this chapter, we present and discuss the results of the various tests de-
scribed in section 3.2. We will start by presenting the results of the tests
eigenray estimation procedure, before continuing with the results of the var-
ious tests on synthesized data and finishing with the results pertaining to
execution time. All results are discussed as soon as they are presented.

4.1 Accuracy of eigenray estimation

Figure 4.1 shows the errors in eigenray depth at target range as calculated
by use of equation (3.1) for all choices of rt, zb and zt and a linear sound
speed profile. Note the large improvement in accuracy from LYBIN version
6.1 to 6.2. Also note that both versions show diminishing accuracy as rt
increases, and as zb decreases. This is to be expected, as ray tracing at large
ranges requires more steps with the underlying numerical scheme than ray
tracing at close range in deep waters, thus accumulating a larger numerical
error, and since ray tracing in shallow waters is more sensitive to errors
due to a higher number of bottom reflections. Still, in general, the eigenray
estimation procedure is more than accurate enough when using LYBIN ver-
sion 6.2; an error of 2 m at 8000 m translates to an error of less than 0.01
degrees in exit angle, which is less than the angular resolution used in most
beamforming schemes.

However, we may also note that there appears to be band structures
wherein estimate quality deteriorates. The estimated eigenrays for a case
lying in one of these bands is shown in figure 4.2. It is obvious that the ’ls’
and ’sl’ eigenrays are incorrect. An explanation of this can be given based
on figure 4.3. In this figure, we can see that one ray from each of the families
’ls’ and ’sl’ enters the target depth range, thereby causing these families to
be counted among the eigenray families although the families do not include
eigenrays. The problem in this case is alleviated by reducing size of the
target depth range, such that the ’ls’ and ’sl’ families no longer enter the

55
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Figure 4.1: Mean error in eigenray depth at target range. Number of rays traced:
5000. Left: LYBIN version 6.1, target depth range: 80 m. Right: LYBIN version
6.2, target depth range: 15 m.
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target depth range. Another way of dealing with this problem would be to
require that ray families must enclose the target depth, that is, at least one
ray from the family must end below the target depth and one above the
target depth. Implementing this solution means changing the source code
of LYBIN, which could not be done in the time frame of this work and is
therefore considered a candidate for further work.
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Figure 4.2: Numerical eigenrays. zs = 50 m, zt = 50 m, zb = 150 m, rt = 3900
m. Target depth range: 15 m.
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Figure 4.3: Ray families. Left: ’ls’ family. Right: ’sl’ family. Black horizontal
lines denote edges of target depth range. zs = 50 m, zt = 50 m, zb = 150 m, rt =
3900 m. Target depth range: 15 m. Number of rays traced: 5000.
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Sensitivity to target depth range size and number of rays used

Figure 4.4 shows the results of the test of eigenray sensitivity to the number
of traced rays and the target depth range size for the case zb = 200 m, zt = 50
m, zs = 50 m, rt = 6000 m. We can see that reducing the target depth range
size from 55 m to 15 m improves estimates, and that increasing the number
of rays used increases accuracy, to a certain point. It would seem that
there is little to gain from increasing the number of rays used beyond 1000,
but figure 4.5 suggests otherwise. Here, we see a case where by increasing
the number of rays from 2000 to 3000, a direct eigenray is identified. This
shows that although accuracy does not improve noticeably beyond 1000 rays,
tracing more rays allows for the discovery of new eigenray families with less
transmission loss, which are of importance as they represent the paths most
likely to result in a detectable signal. In the following sections, eigenray
estimation is done with 15 m target depth range and 3000 rays traced.
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Figure 4.4: Mean error in eigenray depth at target range with varying number of
rays and target depth range size. zs = 50 m, zt = 50 m, zb = 200 m, rt = 6000 m.
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Figure 4.5: Eigenrays for a nonlinear sound speed profile using different numbers
of eigenrays. Left: 2000 rays used. Right: 3000 rays used. zs = 50 m, zt = 250 m,
zb = 400 m, rt = 6000 m.
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4.2 Tests on synthesized data

Here, the results from the three tests of the target depth estimation method
carried out on synthesized data, described in section 3.2.2, are presented
and discussed. First, we consider the results of optimizing with respect
to bottom depth and target depth. Next, we shall look at the results of
optimizing with respect to two EOF coefficients and target depth. Finally,
we present the results of the test with qualitatively different sound speed
profiles.

4.2.1 Optimizing bottom depth and target depth

Number of eigenrays for signal modelling

Figure 4.6 shows the minimum, maximum and mean estimates of target
depth obtained by use of the simplified comparison function on recorded
signals synthesized with differing SNR levels for a set of geometric parame-
ters. On the left side we see results when using three eigenrays for modelling
signals to compare with the recorded signal, while on right side we see results
using five eigenrays. We may observe that using five eigenrays provides more
consistent and correct estimates for the target depth than using three eigen-
rays when SNR levels are low. That five eigenrays is superior to three is to
be expected; using more eigenrays provides more information, which should
lead to better estimates, especially when SNR is low. Low SNR levels makes
it difficult to discern signal from noise during the thresholding described in
chapter 2.6. Note that estimates improve as SNR increases, but that for low
SNR values (10-14 dB), estimates fail since the SNR is close to or below the
noise threshold value of 13 dB, such that arrivals risk being dismissed as
noise. Also, the results are satisfying enough to discourage the use of more
than five eigenrays. We will therefore look only at results obtained by use
of five eigenrays for modelling in the following sections.
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Figure 4.6: Estimates of target depth as a function of SNR. Dots represent indi-
vidual estimates. Left: 3 eigenrays. Right: 5 eigenrays. zs = 50 m, zt = 150 m,
zb = 600 m, rt = 4000 m.
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Estimation error as a function of SNR and target range

The plots in figure 4.8 show the error in target depth estimation as a function
of SNR and target range for four different target depths. The left column
contains errors occurring when using the simplified comparison function,
while the right column contains errors occurring when using the Bayesian
objective function.

First, we may observe the positive result that the errors are mostly within
acceptable range for classification purposes irrespective of objective function;
we only need an approximate estimate for target depth to say whether it is
close to the bottom or not, and estimates with errors of less than 50 m are
considered good enough for this purpose. Second, we may note the failure
of the simplified comparison function in the case where zt = 250 m and rt =
8000 m, as well as the case where zt = 350 m and rt = 4000 m. We will now
attempt to explain this failure.

In the case with zt = 350 m and rt = 4000 m, the method estimates zt
to be 55 m. Figure 4.7 shows the recorded signal in this case, synthesized
with zt = 350 m, along with the signal modelled with zt = 55 m. We see
that the signal produced with zt = 55 m has all arrivals clustered around
5.44 seconds and 2 degrees, whereas the recorded signal has its arrivals more
spread out, although with a maximum strength near 5.44 seconds.

Arrival angle in degrees

A
rr

iv
al

 ti
m

e 
in

 s
ec

on
ds

Signal with zt = 55 m (dB re 1 µPa)

 

 

−30 −20 −10 0 10 20 30
5.4

5.45

5.5

5.55

5.6

5.65

5.7

70

75

80

85

90

95

Arrival angle in degrees

A
rr

iv
al

 ti
m

e 
in

 s
ec

on
ds

Signal with zt = 350 m (dB re 1 µPa)

 

 

−30 −20 −10 0 10 20 30
5.4

5.45

5.5

5.55

5.6

5.65

5.7

70

75

80

85

90

95

Figure 4.7: Synthesized signal. Left: Modelled signal, zt = 55 m. Right: Recorded
signal, zt = 350 m. zs = 50 m, zb = 400 m, rt = 4000 m.

Based on this observation, the failure may be attributed to the short-
comings of the simplified comparison function; as explained in chapter 2.8.1,
the simplified comparison function will, if possible, prefer parameters pro-
ducing arrivals clustered around the strongest part of the recorded signal.
The objective function values for various choices of bottom depths and tar-
get depths is shown in figure 4.9. From this figure we can see that although
there are local minima near a target depth of 350 m, there is also a minimum
at a target depth of 55 m which is marginally stronger, thereby constituting
the global minimum. Since the faulty estimates occur due to the problem
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Figure 4.8: Mean error in estimates of target depth as a function of SNR and
target range. Bottom depth: 400 m. Left column: Simplified comparison function.
Right column: Bayesian objective function.
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geometry, the error persists independent of SNR values, as seen in figure
4.8. Running the estimation with the same parameters but using the full
comparison function yields correct estimates for the target depth. Since the
full comparison function does not have the same affinity for clustering as the
simplified comparison function, this should solidify the explanation that the
incorrect target depth estimate is due to the flaws in the simplified compar-
ison function and thereby is unavoidable. As a side note, we may observe
that the minimum at zt = 55 m observed in figure 4.9 is valid for all bottom
depths; this is since the signal at zt = 55 m is modelled by eigenrays with
no bottom reflections, thus the modelled signal is the same for all bottom
depths.

Figure 4.9: Simplified comparison function for various model bottom depths and
target depths. Correct model parameters: zt = 350 m, zb = 400 m.

We now turn to the case where zt = 250 m and rt = 8000 m. Upon closer
inspection of results here, it is revealed that in three out of ten iterations
with SNR = 20, the target depth is estimated successfully to 250 m ±1
m. However, in the remaining seven cases, the method was unsuccessful,
yielding target depth estimates of 50 m. An analysis of this case shows the
same situation as for rt = 4000 m, zt = 350 m, with arrivals clustering at the
strongest part of the recorded signal. However, this is a borderline case; the
random noise added to arrival angles and arrival times times as described
in section 3.2 can decide whether the minimum of the simplified comparison
function is located at a target depth of 250 m or 50 m, explaining why three
of the ten iterations yield correct results for this parameter setup. This
observation would suggest that in certain cases, the simplified comparison
function is sensitive to disturbances in arrival times and arrival angles.

Next, we look at the performance of the Bayesian objective function.
Figure 4.8 shows that the Bayesian objective function fails to provide es-
timates of sufficient accuracy for classification purposes for just one set of
parameters, when rt = 6000 m and zt = 150 m. In this case, the estimate ac-
curacy deteriorates with increasing SNR. The figure would imply mediocre
performance with an SNR of 20; when looking at the results in detail, it
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turns out that here, too, three out of ten iterations produced a target depth
estimate of ~155 m, which is close enough to the true target depth. The
seven other estimates place the zt at 210 m with zb = 370 m. This behaviour
may be due to too few eigenrays being used in the optimization. As can be
seen from table 4.1, for the true geometric parameters there are four eigen-
rays available with very similar transmission loss properties, meaning that
small changes in bottom depth or target depth will influence which eigenrays
are the strongest and thus used for modelling arrivals. Indeed, just by using
4000 rays in the eigenray procedure instead of 3000, we see from table 4.2
that the ordering of the eigenrays change.

No. Exit angle Travel time TL History
1 10.2◦ 4.103 s 85.8 dB ’bs’
2 -10.8◦ 4.116 s 86.0 dB ’sbs’
3 -8.9◦ 4.083 s 86.1 dB ’sb’
4 8.4◦ 4.073 s 86.4 dB ’b’

Table 4.1: Eigenrays with zs = 50 m, zt = 150 m, zb = 400 m, rt = 6000 m. Rays
traced: 3000.

No. Exit angle Travel time TL History
1 10.2◦ 4.103 s 85.9 dB ’bs’
2 -8.9◦ 4.083 s 86.0 dB ’sb’
3 -10.8◦ 4.116 s 86.1 dB ’sbs’
4 8.4◦ 4.073 s 86.5 dB ’b’

Table 4.2: Eigenrays with zs = 50 m, zt = 150 m, zb = 400 m, rt = 6000 m. Rays
traced: 4000.

The test was carried out while using only two eigenrays for the recorded
arrivals and two eigenrays for modelled arrivals. Thus, while the recorded
arrivals may be obtained using one pair of eigenrays, subsequently modelled
arrivals using nearly the same parameters as the recorded arrivals may be
modelled using a different eigenray pair, resulting in the modelled arrivals
being non-matching when, in fact, the model parameters are nearly correct.
This means that the global minimum may be missed. Additionally, with
a target depth of 210 m and bottom depth of 370 m, the two strongest
eigenrays have nearly identical exit angles and travel times to those of the
eigenrays used in the recorded arrivals, meaning that when using two eigen-
rays, zt = 210 m and zb = 370 m looks like a good candidate since all arrivals
match the recorded arrivals. However, if more eigenrays were used, both in
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modelling the recorded arrivals and the arrivals used for matching, fewer
arrivals would match for this erroneous choice of parameters.

Also, as the SNR increases, σt and σθ decreases, meaning the objective
function becomes more sensitive to discrepancies in arrival time and arrival
angle. Since random noise is added to the recorded arrivals, this means that
arrivals modeled using the correct model parameters will not generally match
the recorded arrivals, and even less so as the objective function becomes
more sensitive. Thus, a starting point close to but not exactly at the correct
model parameters will be preferred. However, due to the eigenray problems
explained in the preceding paragraph, these close model parameters will
produce non-matching arrivals when using two eigenrays, and so the arrivals
with a target depth of 210 m and bottom depth of 370 m are increasingly
chosen as the best match as SNR increases.

The problem may be corrected by increasing the number of eigenrays
used for modelling arrivals. When increasing the number of eigenrays used
for modelling arrivals for matching from two to three, the target depth esti-
mate became 130 m for all iterations, a significant improvement. This would
indicate that a more sophisticated method of determining which eigenrays
to use may be beneficial, for example determining the number of eigenrays
to use based on the transmission losses of the eigenrays instead of using
a predetermined number of eigenrays, for example that all eigenrays with
transmission losses within 5 dB of the strongest arrival should be used for
modelling arrivals.

Otherwise, we can see from figure 4.8 that the Bayesian objective func-
tion seems to be more sensitive to the SNR values than the simplified com-
parison function. This can be attributed to the Bayesian objective function
being more sensitive to the added noise than the simplified comparison func-
tion; whereas the simplified comparison function smears arrivals over a quite
large area and therefore is more robust to perturbations in arrival angles and
arrival times, the Bayesian objective function requires the modelled arrivals
to be quite close to the recorded arrivals to make an impact on the value of
the function. It may also be due to the implementation error mentioned in
section 3.1; redoing the test with corrected values of σt proposed in section
2.8.2 may reveal a different behaviour, since σct is independent of SNR.

We may also observe that while both functions display a general trend
of improved estimates for shorter ranges, the Bayesian objective function
seems more sensitive to target range than the simplified objective function.
Once again, this may be due to the Bayesian objective function being more
sensitive to disturbances in arrival angles and arrival times than the sim-
plified comparison function. At longer ranges, eigenray estimates are less
accurate, as seen in section 4.1, which may result in larger variations in ar-
rival angles and arrival times due to numerical errors. This would affect the
Bayesian objective function negatively. However, if the test is redone with
corrected values of σt, this behaviour may be subdued since the σct increases
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with target range, making the Bayesian objective function less sensitive to
disturbances in arrival angle and arrival times at larger ranges.

As a final observation, we may see that excepting cases with SNR =
10-12 dB, the two objective functions never produce faulty estimates simul-
taneously, a trend we shall see continuing in the following results.

Estimation error as a function of SNR and bottom depth

Figure 4.10 shows the error in target depth estimates as a function of SNR
and bottom depth for four different target ranges. The left column contains
errors occurring with use of the simplified comparison function, while the
right column contains errors when using of the Bayesian objective function.

Again, we see that most estimates using both methods are suitable for
classification purposes, yet we may observe that the simplified objective
function breaks down in some cases. Inspection of the results reveals that
the analysis from the preceding section applies here as well; clustering of
arrivals lead to an incorrect global minimum in the objective function. We
also see once more that the Bayesian objective function, while somewhat
less accurate, still reliably produces acceptable estimates in all cases but
one, with zb = 400 m, rt = 6000 m and zt = 150. This is the same pa-
rameter setup that caused the trouble seen in the previous section, and the
analysis from the previous section still applies here. Disregarding the failed
cases, there seems to be a slight but not definite trend toward better esti-
mates for larger bottom depths when viewing the results from the simplified
comparison function. Errors in the Bayesian objective function seem to be
largely independent of bottom depth. The trend of more SNR dependency
for the Bayesian objective function than the simplified comparison function
seems to persist in these results. We may also note that here, too, erroneous
estimates in the Bayesian objective function and the simplified comparison
function do not occur simultaneously except for at low SNR values, where
poor estimates are to be expected.

Comparison of objective functions

Figures 4.11 and 4.12 show the error in target depth estimation as a function
of SNR and bottom depth, and as a function of SNR and target range,
respectively. In both figures, the leftmost column contains estimation errors
occurring after applying the full comparison function, the middle column
contains estimation errors occurring after use of the simplified comparison
function, and the rightmost column contains estimation errors occurring
after use of the Bayesian objective function. In figure 4.11 three target
ranges are used while zt is kept at 50 m, and in figure 4.12, five target
depths are used while zb is kept at 1000 m.

In both figures, we can see that the full comparison function is slightly



66 CHAPTER 4. RESULTS AND DISCUSSION

Bottom depth

S
N

R

Target range: 2000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 2000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 4000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 4000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 6000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 6000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 8000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 8000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 10000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Bottom depth

S
N

R

Target range: 10000

 

 

200 400 600 800 1000
10

15

20

25

30

0

10

20

30

40

50

Figure 4.10: Mean error in estimates of target depth as a function of SNR and
bottom depth. Target depth: 150 m. Left column: Simplified comparison function.
Right column: Bayesian objective function.
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Figure 4.11: Mean error in estimates of target depth as a function of SNR and
bottom depth. Target depth: 50 m. Left: Full comparison function. Middle:
Simplified comparison function. Right: Bayesian objective function.

better than the simplified comparison function, but not decisively so. It
should therefore be reasonable to use the simplified comparison function in-
stead of the full comparison function as long as arrival clustering is not a
possibility. We may also notice from figure 4.12 that the Bayesian objective
function still performs worse at long ranges than the comparison functions.
Again, it would be interesting to see whether the use of more than two eigen-
rays and use of the corrected σt would improve this aspect of the Bayesian
objective function, and such a test should be carried out in the future.

Once again, we see that the Bayesian objective function and the simpli-
fied comparison function seldom produce faulty estimates at the same time,
which would imply that this behaviour is consistent throughout all tests.
This may be useful; due to its large computational cost, the full objective
function may not be viable for use in a real-time system. However, a strategy
for estimating target depths may be formulated based on first using both
the Bayesian objective function and the simplified comparison function to
provide estimates. Then, if the two estimates differ by a distance less than
some predetermined value, for example 50 m, one may be fairly certain that
the estimates are good. If the estimates do not match, then the full objective
function may be applied in an attempt to ascertain the target depth.
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Figure 4.12: Mean error in estimates of target depth as a function of SNR and
target range. Bottom depth: 1000 m. Left: Full comparison function. Middle:
Simplified comparison function. Right: Bayesian objective function.
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4.2.2 Optimizing sound speed and target depth

Figures 4.14 and 4.17 show the error in target depth estimation when op-
timizing with respect to the two leading EOF coefficients γ1 and γ2, and
target depth. Figure 4.14 shows the error as a function of γ1 and target
range, and figure 4.17 shows the error as a function of γ2 and target range.
To clarify, the coefficient values in the figures signify the EOF coefficients
used when synthesizing the recorded signal. In both figures, results for
different target depths are displayed, with the left column containing esti-
mation errors occurring after applying the simplified comparison function
and the right column containing estimation errors occurring after use of the
Bayesian objective function. Also common to both figures is the bottom
depth, which is kept constantly at 450 m. In figure 4.14, the γ1 used when
synthesizing is varied between -100% and 100% of √σ1 while the γ2 used
when synthesizing is kept at -20% of √σ2. In figure 4.17, the γ2 used when
synthesizing is varied between -100% and 100% of √σ2 while the γ1 used
when synthesizing is kept at 20% of √σ1. To illustrate the space of sound
speed profiles considered when optimizing with respect to γ1 and γ2, figure
4.13 shows the sound speed profiles generated when using several different
values of γ1 and γ2, along with the mean sound speed profile of the data set
from which the EOFs originate.
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Figure 4.13: The space of sound speed profiles considered when optimizing with
respect to EOF coefficients. Red: Mean sound speed profile. Blue: sound speed
profiles generated by use of EOFs.

Estimation error as a function of γ1 and target range

Looking at figure 4.14, we first consider the performance of the simplified
comparison function. It generally provides accurate estimates, failing in 18
out of 90 cases but otherwise working well, even at large ranges. The failed



70 CHAPTER 4. RESULTS AND DISCUSSION

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 60

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 60

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 120

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 120

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 180

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 180

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 240

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 240

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 300

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Target range

E
O

F
 c

oe
ffi

ci
en

t 1
 (

%
)

Target depth 300

 

 

2000 6000 10000

−100

−60

−20

20

60

100

0

10

20

30

40

50

Figure 4.14: Mean error in estimates of target depth as a function of target
range and EOF coefficient 1. EOF coefficient 1 measured in percentage of √σ1.
Bottom depth: 450 m. SNR: 25 dB. EOF coefficient 2: -20% of √σ2. Left column:
Simplified comparison function. Right column: Bayesian objective function.
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cases will now be investigated further. We may look at the case when zt = 60
m, rt = 6000 m and γ1 = −0.2√σ1. Table 4.3 displays the eigenrays used to
synthesize the recorded signal in this case. The optimization procedure sug-
gests zt = 10 m, γ1 = 0.4√σ1 and γ2 = 0.8√σ2 as the optimal parameters.
The sound speed profile this produces is contrasted with the correct sound
speed profile in figure 4.15. We see that the suggested sound speed profile
has a sharper increase in sound speed near the surface and in the 75-150
m depth zone, which traps more eigenrays in the upper water body due to
more acute refraction of rays. This allows for the eigenrays shown in table
4.4. Note that many of these eigenrays have no surface collisions, leading to
lower transmission loss and thereby stronger arrivals.

No. Exit angle Travel time TL History
1 -4.7◦ 4.076 s 70.4 dB ’sls’
2 3.2◦ 4.077 s 74.6 dB ’lslsl’
3 -3.8◦ 4.076 s 75.3 dB ’slsl’
4 3.6◦ 4.077 s 76.8 dB ’lsls’
5 2.2◦ 4.078 s 85.2 dB ’lulu’

Table 4.3: Eigenrays used for synthesizing the recorded signal. zs = 50 m, zt =
60 m, zb = 450 m, rt = 6000 m. γ1 = −0.2√σ1, γ2 = −0.2√σ2.

No. Exit angle Travel time TL History
1 -2.9◦ 4.077 s 69.7 dB ’slsl’
2 1.0◦ 4.077 s 71.9 dB ’lululu’
3 -1.4◦ 4.077 s 74.1 dB ’ululu’
4 1.4◦ 4.077 s 75.3 dB ’lulul’
5 -1.6◦ 4.077 s 78.7 dB ’ulul’

Table 4.4: Eigenrays used for modelling the signal matched to the recorded signal.
zs = 50 m, zt = 10 m, zb = 450 m, rt = 6000 m. γ1 = 0.4√σ1, γ2 = 0.8√σ2.

We may now look at the signals shown in figure 4.16. On the left side,
we see the recorded signal, produced from the eigenrays in table 4.3. On the
right side we see the signal obtained by the optimal model, produced from
the eigenrays in table 4.4, which is nearly identical to the recorded signal but
with greater signal strength. The extra signal strength causes the simplified
objective function to choose zt = 10 m, γ1 = 0.4√σ1, γ2 = 0.8√σ2 as a better
match than the original model parameters; the stronger arrivals cause the
products mk

T s used in equation (2.24) to be larger for the incorrect model
parameters than the original model parameters. This can be compared to
the analysis in section 4.2.1, where the recorded signal had several distinct
arrivals, and a failure occurred due to the method producing a signal with
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Figure 4.15: Sound speed profiles. Blue: Sound speed profile used when synthe-
sizing recorded signal. Red: Sound speed profile suggested by the method.

a single strong cluster centered at the strongest arrival among the recorded
arrivals. Here, the recorded signal consists of such a single strong cluster,
but the method produces parameters resulting in an even stronger signal
which otherwise resembles the recorded signal, causing a failed estimate.
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Figure 4.16: Left: Recorded signal, with zt = 60 m, γ1 = 0.2√σ1, γ2 = −0.2√σ2.
Right: Optimal signal, with zt = 10 m, γ1 = 0.4√σ1, γ2 = 0.8√σ2. Both: zs = 50
m, zb = 450 m, rt = 6000 m.

Analysis of the other failed cases for the simplified comparison function
reveals the cause of all failures to be the same; the sound speed profile is
changed to focus eigenrays to yield a single, strong arrival that corresponds
to the strongest arrival in the recorded signal. We may note that there is
a large number of errors when zt = 60 m and rt = 6000 m, which would
imply that this particular geometry provides ideal conditions for the focusing
described earlier. This is reasonable; the target is situated in the sound
channel, and the recorded signal will resemble the signal in figure 4.16 for
most sound speed profiles. The method will then alter the sound speed
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profile to focus rays into even stronger arrivals, mimicking the situation
analysed in the preceding paragraph. A significant observation is that all
the false predictions made in this way placed the target depth closer to the
surface than the correct target depth. This may be explained in light of the
earlier analysis; the distinct minimum in sound speed at 25-30 m depth will
cause many rays to refract toward this area, creating many strong eigenrays
for depths here, and an ideal situation for focusing arrivals into one strong
cluster. If the clustered arrivals happen to match a strong arrival in the
recorded signal, the simplified comparison function will value this strongly,
as seen earlier, and therefore the method will predict a target depth close
to the surface. As the failures are due to a flaw in the objective function, it
does not seem likely that they can be remedied unless changes are made to
the simplified comparison function.

The Bayesian objective function exhibits some of the behaviour seen from
earlier results, with estimate accuracy deteriorating as the target range in-
creases. The most glaring errors are seen for a target range of 6000 m and
target depth of 300 m. What happens in this geometry is similar to the
situation where the Bayesian objective function fails in the results from sec-
tion 4.2.1; when estimating the eigenrays used for generating the recorded
signals, there are several eigenrays with very similar transmission losses, and
small perturbations in model parameters alter the choice of eigenrays due to
fluctuations in transmission loss, leading to mismatching of arrivals. Addi-
tionally, it is possible to alter the sound speed profile to find two eigenrays
with similar arrival times and angles to the two eigenrays used for synthesiz-
ing the recorded arrivals. If three eigenrays were used, this may have been
prevented, as not all arrivals produced with the erroneous model parameters
match with the recorded arrivals when three eigenrays are used. Inspection
of results shows that the Bayesian objective function exhibits no general
trend in whether erroneous estimates are over- or underestimated.

Failed cases aside, we may note that the method largely predicts the
target depth with sufficient accuracy for classification purposes, and that
there is no clear dependency on the value of γ1 used. It is worth noting that
the Bayesian objective function performs best at shorter ranges. Also, we
can once again observe that the two objective functions are seldom simulta-
neously wrong in their target depth estimates.

Estimation error as a function of γ2 and target range

Looking at figure 4.17, we start by considering the performance of the simpli-
fied objective function. As for the preceding results, we see that the overall
performance is good; the target depth was estimated correctly in all but 13
out of the 90 cases considered. Closer inspection reveals that the explana-
tion for the failed estimates is the same as earlier; the sound speed profile is
altered to focus eigenrays such that arrivals are clustered and hit a strong
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Figure 4.17: Mean error in estimates of target depth as a function of target range
and EOF coefficient 2. EOF coefficient 2 measured in percentage of √σ2. Bottom
depth: 450 m. SNR: 25 dB. EOF coefficient 1: 20% of√σ1. Left column: Simplified
comparison function. Right column: Bayesian objective function.
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arrival in the recorded signal or, when the recorded signal is a single strong
cluster, focuses arrivals into an even stronger cluster. We may observe that
as in the preceding section, there is a large number of errors with the sim-
plified comparison function for rt = 6000 m, zt = 60 m, further cementing
the assertion that the errors occur as a result of the geometry in these cases.

The Bayesian objective function performs on par with than the simplified
comparison function; when disregarding the failure for the case with rt =
6000 m and zt = 300 m where we once again see failed estimates for five out
of six choices of γ2 which may be due to problematic geometry, most of the
estimates provided are exact enough for classification purposes, although
less accurate than those produced by the simplified comparison function.
Neither of the two objective functions show clear patterns of dependency on
γ2. It is worth noting that in this case, too, the Bayesian objective function
and the simplified objective function both produce faulty estimates in only
two of the ninety cases considered, further strenghtening the estimation
strategy proposed in section 4.2.1.

4.2.3 Sensitivity to sound speed profile

Figure 4.18 shows eigenray estimation errors for different target depths, tar-
get ranges and the different sound speed profiles presented in figure 3.3. The
objective function used was the simplified comparison function. The bottom
depth was fixed at 300 m. The source depth used was 5 m. The SNR used
was 25 dB. Looking at the figure, it is apparent that when applying the sim-
plified comparison function, the accuracy of the target depth estimates will
vary according to which sound speed profile is being used. A closer look at
the cases in which the method fails reveals that the cause of the erroneous
estimates is the same as discussed in section 4.2.1; clustering of arrivals
causes the simplified objective function to value wrong parameters higher
than the correct parameters. We may observe that the frequency of faulty
estimates seems to be dependent on the seasonal variations in the sound
speed profile. The distribution of estimation error seems to be comparable
for the winter months (January, February and March), the spring months
(April, May and June), the summer months (July, August, September) and
the autumn months (October, November, December). The largest number
of faulty estimates is seen during the summer months, followed by the win-
ter months. Incidentally, the sound speed profiles for these months contain
the most extreme sound speed variations, indicating that the simplified com-
parison function performs better for sound speed profiles with less variation.
This is reasonable, since sound speed profiles with more extreme variations
allow for the clustering of arrivals in sound speed channels, which is known
to put the simplified comparison function at risk of erroneous estimates.

Next, figure 4.19 shows the results obtained by use of the full compari-
son function, the simplified comparison function and the Bayesian objective
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Figure 4.18: Mean error in estimates of target depth as a function of target range
and target depth for different sound speed profiles. Bottom depth: 300 m.
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Figure 4.19: Mean error in estimates of target depth as a function of SNR and
target range. Bottom depth: 1000 m. Left: Full comparison function. Middle:
Simplified comparison function. Right: Bayesian objective function.
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function when considering the four sound speed profiles presented in fig-
ure 4.20 which are deemed representative of each season. We see that the
full comparison function performs flawlessly, while the Bayesian objective
function in general performs better than the simplified comparison function
although estimates get worse as the target range increases. We also see
some seasonal variation in the performance of the Bayesian objective func-
tion, with the best estimates occurring for January and April, and worse
estimates for July and October. Once again, it would be interesting to see
whether the erroneous estimates persist with a correct implementation of
the Bayesian objective function and when using more eigenrays for mod-
elling arrivals.

We also see that at least one of the Bayesian objective function and the
simplified comparison function produces erroneous estimates in 34 out of
the 125 cases. In twelve out of these cases, both of them fail. In five of these
twelve cases, the two objective functions produced target depth estimates
differing by more than 50 m. Had the strategy proposed in section 4.2.1
been applied here, this means that in just 7 out of 125 cases, the target
depth would be estimated incorrectly.
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Figure 4.20: The four sound speed profiles deemed representative of their season.

4.3 Execution time

Figure 4.21 shows the mean execution time of the method as a function of
target range for several bottom depths when using the simplified comparison
function and the Bayesian objective function with two and three eigenrays
for modelling. In the left column, we see execution times with 3000 rays
traced in the eigenray estimation procedure. In the right column, we see
execution times with 5000 rays. Execution times when using the full com-
parison function are omitted from the plots as they are very large compared
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to those of the other objective functions.
The execution times are not surprising; we can see that execution times

are close for all objective functions shown. This is because 70-80% of the
computational work in all three objective functions is done in the eigenray
estimation. We can see that the larger sums involved in evaluating the
Bayesian objective function when going from two to three eigenrays yield
a constant increase in computational time of ~30 seconds. We can also
see that the execution time increases with target range; this is because the
underlying numerical algorithm in LYBIN will need to take more steps for
longer ranges. We can also see that the execution time increases with bottom
depth. This is because of the additional target depths we need to consider in
the initialization procedure. The spacing between candidate target depths
in the exhaustive search was set to 10 m, meaning that with a bottom depth
of 250 m, we would need to consider 26 target depths, while with a bottom
depth of 450 m, this number would increase to 46, causing the execution
time to grow. Furthermore, we see that when increasing the number traced
rays from 3000 to 5000, the slope of the execution time graph increases since
each run of the eigenray finding procedure, and thus each evaluation of the
objective functions, becomes more costly.

The mean execution time of the full comparison function ranges from
1100 s for zb = 250 m to 1800 s for zb = 650 m, with variations of ± 100
s depending on target range and the number of rays used, and so the full
comparison function is not as sensitive to target range and number of rays
used. This is because most of the work done in evaluation the full comparison
function comes from the arithmetic operations involved in modelling a full
signal for comparison and the subsequent comparison; compared to this,
the work done in the eigenray finding procedure is small. This information
gives more credence to the strategy proposed in section 4.2.1, since it appears
that doing one estimation with the simplified comparison function and one
estimation with the Bayesian objective function will still be faster than a
single estimation using the full objective function.

From these results, we can also glean some information about what
should be done to speed up the method using the different objective func-
tions. Using the simplified comparison function and the Bayesian objective
function, most of the work is done in LYBIN during the ray tracing, and so
decreasing the execution time of the method here would involve optimization
of LYBIN. As we do not know the inner workings of LYBIN, no concrete
measures can be presented here in this regard. Reductions in the execution
time using the full comparison function could be obtained if the modelling
and norm evaluation involved could be sped up. This should be possible
using a compiled language such as C++ or Fortran instead of MATLAB.
Another way of speeding up the method irrespective of objective function
is using a more effective optimization algorithm which requires less function
evaluations.



80 CHAPTER 4. RESULTS AND DISCUSSION

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Bottom depth 250

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range
E

xe
cu

tio
n 

tim
e 

in
 s

ec
on

ds

Bottom depth 250

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Bottom depth 450

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Bottom depth 450

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Bottom depth 650

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Target range

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Bottom depth 650

 

 

Simplified comparison
Bayes, 2 eigenrays
Bayes, 3 eigenrays

Figure 4.21: Execution times for the simplified comparison function and the
Bayesian objective function. Left: Using 3000 rays in eigenray estimation. Right:
Using 5000 rays in eigenray estimation.



Chapter 5

Future work and conclusion

5.1 Suggested directions for further work

Based on the preceding results and analyses, we now review some possible
topics for future work.

As mentioned in section 4.1, the eigenray finding procedure can be im-
proved by requiring that ray families enclose the target depth at target
range. This would reduce the chance of obtaining spurious eigenrays, thus
improving the accuracy of the target depth estimation algorithm. Applying
this condition would entail editing the source code of LYBIN. Also, it may be
possible to obtain initial angles of eigenrays analytically when using linear
sound speed profiles, as outlined in section 2.4.1. If so, it may be possible
to expand this result to analytical solutions for initial angles of eigenrays
with piecewise linear sound speed profiles, eliminating the need for LYBIN
when considering flat sea bottoms and speeding up the method significantly.
However, further expanding this to encompass general bottom profiles seems
improbable, so the use of numerical methods for obtaining eigenrays seems
unavoidable. Therefore, improvements to the numerical method for obtain-
ing eigenrays should take precedence over exploring analytical solutions.

As of now, the optimization algorithm being used is based on a brute-
force search to obtain initial values for the Nelder-Mead algorithm. This is
not necessarily the best solution, especially as the number of optimization
parameters, and thereby the size of the parameter search space, grows, in-
creasing the execution time exponentially. It is therefore desirable to use a
more sophisticated optimization algorithm where the initial search is done
more intelligently or is not needed at all. A possible candidate is adaptive
simulated annealing, as mentioned in section 2.9. On the other hand, the
initialization procedure is readily parallelizable, and a parallel implementa-
tion of the brute-force search may prove to be fast enough provided that it
is run on a sufficiently fast computer. Also, to improve the execution time
of the method, a C++ implementation should be considered.
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It is of interest to test the method further. This would entail redoing
the testing of the Bayesian objective function with correct implementation
and when applying the correction to σt as suggested in section 2.8.2, due to
the implementation error in the Bayesian objective function as described in
section 3.1. It is also possible to implement the P (M) term in the Bayesian
objective function using non-uniform probability distributions for the model
parameters, as suggested in section 2.8.2. Another improvement to the
Bayesian objective function would be to implement an adaptive method of
choosing the number of eigenrays modelled, as proposed in section 4.2.1,
perhaps in combination with testing the Bayesian objective function when
using more than two eigenrays for modelling arrivals. This may resolve the
problem of ambiguity of eigenrays described in section 4.2.1.

It would also be of interest to test the method on real data. This would
entail obtaining unclassified recorded acoustic data from a sonar system with
good vertical beamforming capabilities, and with detections from a target
situated at a known depth. From the preceding results and discussion, it
would appear that the strategy suggested in section 4.2.1 could be used for
this testing. The proposed strategy consists of first estimating target depth
using both the simplified comparison function and the Bayesian objective
function, then checking whether the estimates agree. If they do not agree,
the full comparison function could be applied to determine the target depth.
It may also be of interest to use bottom profiles instead of flat sea beds to
investigate sensitivity to varying bathymetric conditions. As a side note,
a better way of choosing the size of guard bands for CA-CFAR filtering
should be found, as suggested in section 2.6. This is not strictly related to
the estimation method, but may prove useful when encountering real signals.

5.2 Conclusion
Estimation of target depth has been carried out on synthesized acoustic data
using three different objective functions. The results obtained are acceptable
for classification purposes. The most accurate estimates were obtained when
using the full objective function. The simplified comparison and Bayesian
objective functions generally produce acceptable estimates, and are viable
as more computationally efficient alternatives to the full objective function.

More testing needs to be done to ensure the stability and accuracy of the
method using real acoustic data. Additionally, the method must be tested
once more using the Bayesian objective function with a correct implementa-
tion to ensure the validity of the Bayesian objective function. Improvements
can be made with regards to eigenray estimation accuracy and the choice
of optimization algorithm. A promising strategy for target depth estima-
tion can be formulated using simultaneous estimates by both the simplified
comparison function and the Bayesian objective function.
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