
A Hybrid Metaheuristic for a
Multi-Objective Mixed Capaciated General
Routing Problem

Ingvild Lyckander

Master of Science in Physics and Mathematics

Supervisor: Markus Grasmair, MATH
Co-supervisor: Elin Halvorsen-Weare, SINTEF

Geir Hasle, SINTEF

Department of Mathematical Sciences

Submission date: July 2014

Norwegian University of Science and Technology

Abstract

In this thesis, we have studied a bi-objective variant of the Mixed Capaci-
tated General Routing Problem (MCGRP). The MCGRP is a generalization
of other well known routing problems. It is defined on a mixed, weighted
graph, where a homogeneous fleet of vehicles with capacity constraints ser-
vices a set of required entities. These entities can be nodes, directed arcs and
undirected edges. The aim of the problem is to find a set of vehicle routes
so that every required entity is serviced exactly once and the total route cost
is minimized. In the current work, a bi-objective variant of the MCGRP is
proposed, where also route balance is optimized.

To solve the problem, a hybrid metaheuristic solution method is proposed.
The aim of the method is to find a diversified set of potential Pareto optimal
solutions with high quality objective values. The solution method is a variant
of a genetic algorithm to obtain a diversified set of solutions, combined with
local search based heuristics to improve the quality of the objective values.

To our knowledge, this is the first study of multi-objective variants of the
MCGRP, hence the results cannot be compared directly with results from
other studies. Instead, the performance of the method is evaluated by visual
inspection of the plotted potential Pareto front and by comparing the quality
of the objective values with the best known solutions to the single-objective
MCGRP.

The solution method is conducted on 23 instances. Solutions that are as good
as the best known solutions of the single-objective MCGRP was found for two
of them, of which one is known to be optimal. The solutions were well spread
out along the potential Pareto front for most of the instances, but a large
population size or multiple runs of the same instance is necessary to obtain
a good approximation of the Pareto front. For most of the instances, the
objectives are conflicting, meaning they cannot be simultaneously optimized.

There is still a lot of research potential for the multi-objective MCGRP, and
we hope this thesis will motivate further research.

Sammendrag

I denne masteroppgaven har vi studert en bi-objektiv variant av ruteproblemet
kjent som “Mixed Capacitated General Routing Problem” (MCGRP). Dette
problemet er en generalisering av andre kjente rute-optimaliserings-problemer.
Problemet er definert på en vektet, blandet graf. Noen av enhetene i grafen
må betjenes. For å betjene disse enhetene disponeres en homogen flåte med
kjøretøy, der hvert kjøretøy har en begrenset betjeningskapasitet. Målet er
å finne et optimalt sett med kjøreruter, slik at hver pålagt enhet er betjent
nøyaktig én gang og den totale rutekostnaden er minimert. Vi har studert en
bi-objektiv variant av MCGRP, hvor også rutebalanse er optimalisert.

For å løse problemet har vi foreslått en hybrid metaheuristisk løsningsme-
tode. Formålet med metoden er å finne et sett av potensielle Paretooptimale
løsninger, med god spredning langs en approksimert Paretofront, minimal
rutekostnad og god rutebalanse. For å oppnå god spredning av løsninger har
vi valgt å basere løsningsmetoden på en genetisk algoritme, kombinert med
lokalsøk-baserte heuristikker for å forbedre kvaliteten på objektivverdiene.

Vi har ikke funnet noen andre studier på varianter av MCGRP med mer en
ett objektiv, hvilket betyr at vi ikke kan sammenligne resultatene våre direkte
med resultater fra andre studier. Derimot har vi evaluert resultatene ved å
grafisk fremstille den approksimerte Paretofronten og ved å sammenligne ob-
jektivverdiene med de beste kjente løsninger til den enkelt-objektive MCGRP
der total rutekostnad er minimert.

Løsningsmetoden ble gjennomført for 23 datasett. Løsninger med like god
rutekostobjektiv som de beste kjente løsningene for enkelt-objektiv MCGRP
ble funnet for to datasett, hvorav én er bevist å være optimal. For de fleste
datasettene viste løsningene seg å ha god spredning langs den approksimerte
Paretofronten. Dog vil det trolig være nødvendig å øke populasjonsstørrelsen
eller utføre et søk flere ganger for samme datasett for å oppnå en god approksi-
masjon av den optimale Paretofronten. De to objektivene er tilsynelatende i
konflikt for de fleste datasettene, hvilket betyr at de ikke kan optimaliseres på
samme tid.

Det er fortsatt stort potensial for videre forskning på den multi-objektive vari-
anten av MCGRP, og vi håper at denne oppgaven vil motivere til fremtidige
studier.

Acknowledgements

This thesis was written in cooperation with SINTEF, and is my completion
of a Master’s degree in Applied Mathematics at the Norwegian University of
Science and Technology.

I would like to thank my supervisors at SINTEF Dr. Geir Hasle and Dr. Elin
Halvorsen-Weare, and my supervisor at NTNU, Dr. Markus Grasmair.

Especially, I would like to thank Geir and Elin for giving me the opportunity
to write the thesis at SINTEF and present our work at the VeRoLog confer-
ence in Oslo, June 2014.

Finally, I would like to thank my good friends Kjetil and Ingrid for feedback
on the thesis.

Ingvild Lyckander Trondheim, July 2014

IV

Abbreviations

MCGRP Mixed Capacitated General Routing Problem
CVRP Capacitated General Routing Problem
CARP Capacitated Arc Routing Problem
MOP Multi-objective optimization problem
PPS Potential Pareto optimal solution
EA Evolutionary algorithm
GA Genetic algorithm
LS Local search
LNS Large Neighborhood Search
VRP Vehicle Routing Problem
TSP Travelling Salesman Problem
GRP General Routing Problem
CGRP Capacitated General Routing Problem
CGRP-m Capacitated General Routing Problem on Mixed Graphs
OX Order crossover
NSGA Nondominant Sorting Genetic Algorithm
RBX Route based crossover
w-DAG Weighted directed acyclic graph
ALNS An Adaptive Large Neighborhood Search

List of Figures

3.1 A simple MCGRP example. 13
3.2 A two-route solution to the example in Figure 3.1 13

5.1 Illustration of the dominance rules 28
5.2 Illustration of the non-dominated domain 30

6.1 An edge illustated as an α and a β arc 33
6.2 Illustration of the shortest path between two tasks 34
6.3 Example of an individual representation 35
6.4 An example of the RBX crossover 38
6.5 An example of a route represented as a w-DAG 40
6.6 An example of the Cross-and-Split crossover 41

7.1 A plateau shaped potential Pareto front 52
7.2 Two sample potential Pareto fronts of CBMix3 52
7.3 A curved shaped Pareto front 53
7.4 Two sample potential Pareto fronts of CBMix11 54
7.5 A corner point shaped Pareto front 55
7.6 Two sample potential Pareto fronts of CBMix17 55
7.7 Illustration of the diversity measure 56

A.1 Sample potential Pareto front for CBMix5 76
A.2 Sample potential Pareto front for CBMix13 77
A.3 Sample potential Pareto front for CBMix15 78
A.4 Sample potential Pareto front for CBMix17 79
A.5 Sample potential Pareto front for CBMix19 80
A.6 Sample potential Pareto front for CBMix21 81

V

List of Tables

7.1 The instances . 48
7.2 The results evaluated with respect to diversity 58
7.3 The results evaluated with respect to quality of the objectives 59
7.4 The minimal total route cost and optimal route balance 61
7.5 The consistency of the solution method 62
7.6 Convergence, number of iterations, and running time 63

A.1 Objective values for non-dominated solutions of CBMix5 . . . 76
A.2 Objective values for non-dominated solutions of CBMix13 . . 77
A.3 Objective values for non-dominated solutions of CBMix15 . . 78
A.4 Objective values for non-dominated solutions of CBMix17 . . 79
A.5 Objective values for non-dominated solutions of CBMix19 . . 80
A.6 Objective values for non-dominated solutions of CBMix21 . . 81

VII

Contents

1 Introduction 1

2 Background 5

3 The MCGRP 9
3.1 Prior work on the MCGRP . 10
3.2 Problem description . 11

4 Multi-objective MCGRP 15
4.1 Prior work on multi-objective routing problems 15
4.2 Relevant objectives for the multi-objective MCGRP 17

5 Genetic algorithm for a MOP 21
5.1 The genetic algorithm . 21
5.2 Assessment . 23
5.3 Diversification techniques . 27
5.4 Selection . 29
5.5 Recombination and improvement 29
5.6 Stopping criterion . 30

6 Metaheuristic procedure 31
6.1 A second look at the problem 31
6.2 The network representation 32
6.3 Chromosome encoding . 34
6.4 Initial population . 35
6.5 Crossover . 36
6.6 Mutation . 42
6.7 Improvement . 46

7 Computational study 47
7.1 Implementation and instances 47

7.1.1 Assumptions for the input data 49
7.1.2 Neglecting service cost 49

7.2 Parameter settings . 49
7.3 Results . 51

IX

X CONTENTS

7.3.1 Diversity . 56
7.3.2 The quality of the objectives 57
7.3.3 Related objectives . 60
7.3.4 Consistency . 62
7.3.5 Running time . 63

7.4 Discussion . 64

8 Conclusion and further research 67
8.1 Conclusion . 67
8.2 Further research . 68

A Sample potential Pareto fronts 75
A.1 CBMix5 . 76
A.2 CBMix13 . 77
A.3 CBMix15 . 78
A.4 CBMix17 . 79
A.5 CBMix19 . 80
A.6 CBMix21 . 81

Chapter 1

Introduction

Routing problems have been well-studied since first introduced in combinato-
rial optimization theory by Dantzig and Ramser (1959, [1]), mainly because
of the wide range of applications in industry, such as logistics, transportation
and distribution, but also due to scientific interest. For all capacitated rout-
ing problems, capacity constrained vehicles seek to service a set of customers.
The customers are located on a network that defines the path and travel cost
between them. The aim is to generate a set of routes for the vehicles, where
a route is the vehicle’s path including all the customers serviced by the same
vehicle. The set of routes must fulfil the criterion that every customer is ser-
viced exactly once and that the total demand serviced by each vehicle does
not exceed the vehicle capacity. At the same time the travel cost should min-
imized.

Routing problems are often divided into two classes according to the type of
the components of the graph that are required to be serviced. When a sub-
set of the nodes is required to be serviced, the problem is categorized as a
Capacitated Vehicle Routing Problem (CVRP). On the other hand, problems
containing a set of links required to be serviced are referred to as Capacitated
Arc Routing Problems (CARP). However, for many real life problems there is
no clear distinction between node and arc routing problems. Because of that,
Pandi and Muralidharan (1995, [2]) introduced a general routing problem on
a mixed graph, which later was the inspiration for the problem studied in this
thesis, called the Mixed Capacitated General Routing Problem (MCGRP).
Here, both links and nodes are required to be serviced. Hence, the MCGRP
is a generalization of both the CVRP and the CARP. In contrast to the latter
two problems, the MCGRP is defined on a mixed graph, i.e., the network
may contain both directed and undirected links. The general definition of the
problem makes MCGRP more suited than node or arc routing problems for
modelling certain real-life problems. Two relevant examples are waste collec-
tion and newspaper delivery. Here, demand located along streets of single
households can be aggregated and represented as a link required to be ser-

1

2 CHAPTER 1. INTRODUCTION

viced. On the other hand, isolated demand locations, such as hospitals and
apartment buildings, are more adequately represented by nodes. The prob-
lem is explained in more detail in Chapter 3. Due to the differences between
the problems, previously proposed solution methods for CVRPs and CARPs
cannot be used to solve the MCGRP without transforming the problem or
modifying the method. Hence, in the study of the MCGRP new solutions
methods are constructed, but they are often inspired by existing solution
methods for other routing problems.

Despite its scientific interest and the large number of fields of applications,
there are few previous studies on the MCGRP. Moreover, in the existing liter-
ature, the problems usually consider only a single cost objective. However, in
many applications, additional objectives may be of interest. Relevant objec-
tives can be route balancing, load balancing, soft time windows, minimizing
the number of vehicles in the solution, and others. In this thesis we study
multi-objective variants of the MCGRP, where total route cost is still mini-
mized, but route balancing must be optimized at the same time. The objective
components are given in more detail in Chapter 4.

The goal of a multi-objective optimization problem (MOP) is to obtain a set
of Pareto optimal solutions. Here, a solution is said to be Pareto optimal if
none of the objective function values can be improved without deteriorating
at least one other objective value. The set of Pareto optimal solutions is called
a Pareto front. To get a good approximation to the whole Pareto front, diver-
sity among the many Pareto optimal solutions is needed. Thus, for a MOP
we are aiming to achieve diversity along the Pareto front and convergence
towards optimal solutions and at the same time want to keep the run-time of
the algorithm at a reasonable level.

For real-life applications, the size of the instances is likely to cause run-time
issues. This is a result of the complex structure of the MCGRP, combined
with the extremely high number of possible solutions. Due to its complex-
ity, heuristics and metaheuristics have been applied to find approximations of
the optimal solutions to the MCGRP. In this thesis a hybrid metaheuristic
is proposed to find a high quality approximation to the Pareto front for the
multi-objective MCGRP. The metaheuristic uses a genetic algorithm to pro-
vide a set of diversified solutions, on which a local search based heuristic is
applied with aim of finding improved solutions closer to the frontier.

To increase the efficiency of the search, the metaheuristic uses a non-dominated
ranking sort mechanism. In addition, elitism among the population is applied
in the GA with the intention of increasing the diversity among the solutions.
Both principles are explained in more detail in Chapter 5, followed by the
description of the metaheuristic in Chapter 6.

3

In order for the reader to fully appreciate the methods proposed in this thesis,
some background on MOPs is needed. Hence, a brief description of MOP
and an overview of solution methods to multi-objective problems are given in
Chapter 2.

This is the first study on multi-objective MCGRP, so the results cannot be
compared with results from other methods. Instead, the results are evalu-
ated by studing the shape of the Pareto front and the minimal cost found is
compared with the total route cost of the best known solutions to the single-
objective MCGRP. The results and evaluation are presented in Chapter 7 and
Chapter 8.

There is still a lot of research potential for the multi-objective MCGRP and
improvements to the proposed solution method that can be done. Some sug-
gestions are presented in Chapter 8.2.

Chapter 2

Background

Before the metaheuristic method proposed in this thesis is described, some
background on multi-objective problems needs to be given. This chapter cov-
ers a brief description of Multi-Objective Problems (MOP) in general and of
some methods that can be used to solve them.

A MOP is a combinatorial optimization problem with multiple objectives that
should be minimized given a set of constraints. In Ehrgott and Gandibleux
(2000, [3]), the general form of a linear MOP is defined as follows:

minimize
x

Fx (2.1a)

subject to

x ∈ X, (2.1b)
where X is the feasible domain in RN defined by the set of constraints. The
constraints are assumed to be linear, hence the domain is convex. Here F is a
Q×N objective matrix, where Q is the number of objectives. The matrix F
contains Q 1 × N row vectors Fq, defining the parameters for each objective
q.

An optimal solution to a MOP is a set of non-dominated solutions, i.e. so-
lutions not dominated by other solutions. Jozefowiez et al. (2007, [4]) define
dominance as follows:

Definition 2.0.1 A solution x = (x1, x2, ..., xN) dominates (denoted ≺) a
solution z = (z1, z2, ..., zN) if and only if for all q ∈ {1, ..., Q} we have Fq(x) ≤
Fq(z), and there exists a q ∈ {1, ..., Q} such that Fq(x) < Fq(z).

The set of non-dominated solutions is called a Pareto set.

Definition 2.0.2 A Pareto set consists of all non-dominated solutions to a
MOP. The solutions in a Pareto set are called Pareto optimal solutions. The
continuous line of all possible non-dominated solutions to a MOP is referred
to as the Pareto front.

5

6 CHAPTER 2. BACKGROUND

It may be of interest to observe that the Pareto optimal solutions to a linear
MOP on a convex domain are always located on the boundary of the feasible
domain (Faggian 2007, [5]).

When a heuristic search method is used to find the Pareto set, the solutions are
not guaranteed to be optimal. Therefore, it will be useful to define a solution
to be potential Pareto optimal when discussing heuristic search methods:

Definition 2.0.3 A potential Pareto optimal solution (PPS) relative to an
algorithm A is a solution found by A, which is not dominated by any other
solutions found by A. The line between all the PPS found by algorithm A is
referred to as the potential Pareto front relative to A.

In this thesis, the goal is to find an approximation to the Pareto front. How-
ever, if the preferences of the objectives are known, techniques can be used to
seek a single solution on the frontier. In the following, techniques searching
for a single solution are presented, before techniques searching for an approx-
imation to the Pareto front are discussed.

Methods searching for a single solution
Variations of weighted method, bounded constraint methods and goal pro-
gramming are some examples. In the weighted method, the objectives are
combined by a foreknown preference, forming a single-objective problem. The
objectives can be combined linearly or with a higher degree. A solution found
by the weighted method is Pareto optimal, and the weight parameters define
the location of the solution on the Pareto front. However, there are no correla-
tions between the weight and the Pareto front. Or in other words, an uniform
spread of weight parameters does not necessarily produce a uniform spread
of points on the Pareto front (Caramia and Dell’Olmo, 2008, [6]). Hence, the
variation of weights may be a computational burden.

In bounded constraints methods, only the single most important objective func-
tion is minimized. The other objectives form additional constraints, where
given upper and lower bounds decide the feasible interval for each objective
value.

The ε-constraint method is an example of the bounded constraint method on
a minimization problem, where a lower bound is not needed. The selection of
the bound parameters is the main challenge. With appropriate values for the
bound parameters, the method will find Pareto optimal solutions. However,
when the constraints defined by the bound parameters are strict, the problem
may become infeasible.

7

In goal programming methods, a target value is defined for each objective and
the total deviation from the goals is minimized in one single objective. The
method offers a Pareto slack optimum, which means the objective values are
at most a set distance from the optimum. The allowed maximum distance
from the optimum is defined by the decision-maker, and by reducing this dis-
tance, the method generates a Pareto optimal solution. Common for all these
methods is that the problem is turned into a single-objective problem.

Another approach is the Lexicographic method, where single-objective prob-
lems are solved multiple times. In this method, the objective functions are
arranged in order of importance, and the problems are solved in order of de-
creasing priority. At each iteration, the objectives with higher priority than
the one to be minimized form additional constraints. These constraints en-
sure the corresponding objective value to be as least as good as the optimum
found when that objective was minimized. This method is useful when a con-
tinuous trade-off among the objectives is not of interest. The shortcoming is
that optimization problems that are solved near the end of the hierarchy may
become infeasible or do not influence the optimal solution, because of strict
constraints.

A drawback for all of these methods is the requirement of an a priori ar-
ticulation of preference, which means that the decision-maker has to choose
appropriate parameters for the value of the objective components or the rel-
ative importance of each objective.

Methods searching for Pareto front
A priori articulation of preference is not needed when searching for the Pareto
front. Heuristic search algorithms are popular methods to find an approxi-
mation to the Pareto front. Because the goal of these methods is to find an
approximation to the whole Pareto front, we have to choose a heuristic search
method which seeks diversity along the Pareto front and convergence towards
Pareto optimal solutions. Diversity may be achieved by using a global op-
timization technique or by including specially designed diversity techniques.
The diversified solutions can be improved by a local search (LS) based method
to find local optimums in the areas close to the solutions.

The most common heuristics used on MOPs are LS strategies and evolution-
ary algorithms (EA), introduced by Fogel (1966, [7]), or a hybrid of these. In
EA, new solutions are created by combining existing solutions and only the
best solutions are kept in the search.

Since the new solutions are created by crossing two solutions, the new solu-
tions may differ to a great extend from the existing solutions at each step.
This enables the search to cover a large area of possible solutions in a few

8 CHAPTER 2. BACKGROUND

steps, and the search converges more likely to the global optimal solutions
than to local optimal solutions (Marler, 2004 [8]). These methods are dis-
cussed in detail by Marler and Arora (2004, [8]).

The genetic algorithm (GA) is an evolutionary method, first introduced by
Holland (1975, [9]). The algorithm is based on the principle of natural selec-
tion and evolution. A population of candidate solutions evolves towards better
solutions in an iterated process through genetic operators. At each iteration,
the current solutions in the population are called a generation. A new gener-
ation of the population is selected from the current generation, based on the
solutions fitness value. The fitness value is a measure of how good a solution
is relative to the current generation. A crossover operator is then applied on
pairs of selected solutions in the population, called parent solutions, to gener-
ate new solutions, called child solutions. The crossover operator decides how
the two parent solutions are combined to generate child solutions. A muta-
tion operator makes changes on a random selection of the child solutions with
a certain probability, before the child solutions are included in the population.

As mentioned, evolutionary algorithms search a large area of possible solu-
tions and do not easily get trapped in local optima. However, when one of
the global optimums is almost reached, EA may not be sufficient to find the
precise location of the optimal solution because of the possibly big changes
in the solutions at each step. LS based strategies, on the other hand, are de-
signed to locate the local optimum. Hence, it would be useful to combine the
GA with a LS based method to obtain both the local and the global property.

In a LS based heuristic, an initial solution gradually improves by making
changes within a single solution as long as an improved solution is found.
Two LS based heuristics proposed in this thesis, is the Large Neighborhood
Search (LNS) and Cross.

The LNS was first proposed by Shaw (1998, [10]). When the LNS is applied
on a solution in a routing problem where the aim is to distribute tasks to
vehicles, the solution is first destroyed by removing a set of tasks. Then, the
tasks are reinserted in the solution through a repair process.

When the Cross algorithm (1997, [11]) is applied on a solution in a routing
problem, a new solution is created by swapping a set of tasks between two
vehicles within the same solution.

Chapter 3

The MCGRP

Capacitated routing problems were first introduced by Dantzig and Ramser
(1959, [1]). They called the problem the Vehicle Routing Problem (VRP).
The VRP is similar to the Travelling Salesman Problem (TSP), but the total
demand serviced by each vehicle is constrained by an upper capacity. The
problem is defined on an undirected graph and a homogeneous fleet of vehi-
cles is used to service the subset of the nodes that are required to be serviced.

15 years later, Orloff (1974, [12]) needed a formulation to model real trans-
portation problems, where the VRP was not sufficient. He defined the General
Routing Problem (GRP), where both a subset of the edges and the nodes are
required.

Both the VRP and the GRP are defined on an undirected graph. However,
when modelling routing problems in urban areas, it is useful to introduce
the possibility of one-way streets, modelled as arcs in the network. A routing
problem defined on a directed graph was first introduced by Golden and Wong
(1981, [13]): The Capacitated Arc Routing Problem (CARP). Here, as for the
VRP, a subset of arcs is required to be serviced. The VRP is also referred to
as the Capacitated Vehicle Routing Problem (CVRP).

The MCGRP is a generalization of all the latter problems. In contrast to the
other problems, the MCGRP is defined on a mixed graph containing both
edges and arcs at the same time. In addition, a subset of the nodes, edges and
arcs may be required to be serviced, as in CVRP, GRP and CARP respectively.

Prior work on the MCGRP with a single objective is presented in this chapter.
In Chapter 3.2, the MCGRP is described in more detail.

9

10 CHAPTER 3. THE MCGRP

3.1 Prior work on the MCGRP

Pandi and Muralidharan (1995, [2]) were the first to introduce the General
Routing Problem (GRP) on a mixed graph under constraints, defined as the
Capacitated General Routing Problem (CGRP). For the CGRP defined by
Pandi and Muralidharan, a heterogeneous fleet of vehicles is fixed over speci-
fied segments and nodes of a street network and the routes are under maximum
duration constraints. A homogeneous fleet version of the CGRP was intro-
duced by Gutierrez et al. (2002, [14]), called Capactiated General Routing
Problem on Mixed Graphs (CGRP-m). Prins and Bouchenoua (2004, [15])
formulated the MCGRP as we will use in this thesis. They constructed a set
of benchmark instances which will be used in the analysis in this thesis.

Several heuristic solution methods have been used to generate upper and lower
bounds on instances of the MCGRP. The most common approach for gener-
ating upper bounds for the MCGRP is LS based heuristics, such as Simulated
Annealing (Kokubugata et al., 2007 [16]), an Adaptive Iterated Local Search
algorithm (Dell’Amico et al., 2012 [17]), and SINTEF’s VRP solver Spider
(Hasle et al., 2012 [18]). Kokubugata et al. (2007, [16]) use three LS based
operators to generate neighbor solutions in the Simulated Annealing algo-
rithm: exchange of required tasks between two routes, move of one task from
one route to another, and exchange of tasks within the same route. The pro-
posed method proved to be advantageous in handling complicated variants
of the MCGRP such as MCGRP with time windows or multiple depots. In
the Adaptive Iterated Local Search algorithm by Dell’Amico et al. (2012,
[17]), the LS based operators or-opt, 2-opt, 3-opt, and swap of tasks are uti-
lized. A set of Destructor and Constructor operators is used to remove and
re-insert a randomly drawn number of tasks at each iteration. A Destructor
and Constructor operator pair is chosen based on the previous effectiveness
of the operators. Prins and Bouchenoua (2005, [15]) use a memetic algorithm
to solve the MCGRP. An initial solution is constructed by joining the nearest
free task to a route until the vehicle’s capacity is exhausted. The routes in
an initial solution are then merged if possible. To generate new generations,
the order crossover (OX) is applied on two parent solutions. The child indi-
vidual forms a large TSP tour, on which a split operator is used to separate
the tour into feasible routes, based on the shortest path in a direct auxiliary
graph. Based on the solutions of a matching problem, Bach et al. (2013, [19])
generated lower bounds on the MCGRP.

Bosco et al. (2013, [20]) were the first to formulate the problem as an Integer
Program and used a Branch-and-Cut algorithm to find exact optimal solu-
tions for small instances. Exact solution methods were also explored by Gaze
(2014, [21]), where more optimal solutions were found.

3.2. PROBLEM DESCRIPTION 11

3.2 Problem description

The aim of the MCGRP is to generate a set of vehicle routes starting and
ending at a depot, such that every task is serviced exactly once and the total
demand serviced by each vehicle does not exceed the vehicle capacity. In this
thesis, a multi-objective variant of the MCGRP is studied. Here, the total
travel cost is minimized, and at the same time the route balance is optimized.

Before we define vehicles route, a description of the network follows. The MC-
GRP is defined on a mixed weighted graph G = (V,A,E) of vertices, directed
links, and undirected links. In order to simplify the notation we assume that
the set V of vertices has the form V = {1, ..., N}, where N is the number of
vertices. The set A ⊆ {(i, j) ∈ V × V } contains the directed links, referred to
as arcs. The undirected links, referred to as edges, are elements of the subset
E ⊆ {(i, j) : i, j ∈ V, i < j}. To easily keep the properties of arcs and edges
in the implementation of the problem in Chapter 5, edges are handled as two
opposite directed arcs. Therefore, an additional set of links ET is introduced.
The set ET is defined as ET = {(j, i) : (i, j) ∈ E}, meaning that for every
element (i, j) in E, there is a corresponding element with opposite direction
(j, i) in ET . Because a link cannot be both an arc and an edge, the sets A
and E must be disjoint, i.e., A ∩E = ∅. Similarly, A ∩ET = ∅. The union of
A and E forms the set of all links in the graph. Every link has a non-negative
weight c, denoting the cost of traversing the given link. There is no weight
associated with the nodes. The graph G is assumed to be strongly connected.
That is, there exists a path between any two vertices. By our definition of
the problem, loops and parallel links may occur in the graph. However, the
weighted graph need not obey the triangle inequality.

Some components in the graph are required to be serviced, defined by the
subsets VR ⊆ V , AR ⊆ A, and ER ⊆ E. Every required component, later
referred to as task, must be serviced once by a single vehicle. Every task
has a non-negative demand, given by the demand function d: (VR ∪ER ∪AR)
→ R≥0. In addition, every task in the graph has a corresponding non-negative
service cost, s: (VR ∪ ER ∪ AR) → R≥0.

Now, as the network is defined, the description of a vehicle route follows. A
homogeneous fleet of vehicles K is based in one distinguished vertex, referred
to as the depot. The fleet consists of a set of at mostM vehicles with maximum
load capacity C. A vehicle route, later referred to as route, is a sequence of
connected links and nodes, starting and ending at the depot. A route forms
a closed walk, defined in ([22]) as follows:

Definition 3.2.1 In a graph, a walk is a sequence of vertices (v0, v1, v2, ..., vk)
such that vi is adjacent with a link to vi+1 for all 1 ≤ i ≤ k − 1. In a walk,

12 CHAPTER 3. THE MCGRP

vertices may be repeated. We say that a walk is closed if the first and last
vertices are the same.

Thus, a route Rk has the form

Rk = (vk,0, ek,1, vk,1, ek,2, ..., vk,nk−1, ek,nk
, vk,nk

), nk ∈ N, (3.1)

where vk,0 = vk,nk
is the depot, vk,l ∈ V for all l ≤ nk, ek,l ∈ (E ∪ ET ∪ A)

for all l ≤ nk and ek,l is a link from node vk,l−1 to node vk,l. Note that a link
or a node, including the depot, may occur multiple times in a route. By the
definition of a closed walk, there cannot be any disconnected subtours within
a route.

A solution to the MCGRP is a set of routes, such that every task is serviced
exactly once. A set of routes together with a function Ψ : (ER∪AR∪VR)→ k
form a routing plan P := {{(Rk)k∈K},Ψ}. The function Ψ defines which
tasks are serviced by vehicle k. It has the property that v ∈ RΨ(v) for all
v ∈ VR and e ∈ RΨ(e) for all e ∈ (ER ∪ AR) in such way that all tasks are
contained precisely once in one route in the routing plan. This is one out of
two criteria for a routing plan to be feasible. The second criterion says that
the total demand serviced on a route cannot exceed the vehicle maximum load
capacity C, i.e., ∑

e∈(ER∪AR)
Ψ(e)=k

d(e) +
∑
v∈VR

Ψ(v)=k

d(v) ≤ C, k ∈ K. (3.2)

The number of vehicles in use in the problem is defined by the instance, and
may be either fixed, bounded by the size of the fleet, or unbounded if the fleet
size is unlimited. Due to the criterion of non-splitting demand, there cannot
be solutions with more vehicles than tasks in the graph.

When a link is traversed without being serviced, it is said to be deadheaded.
The cost of the route is defined as the sum of traversal cost on the deadheaded
links and service cost on the required links and nodes included in the route.
There is no cost in terms of additional vehicles in use. If the number of vehi-
cles in use is not fixed, the number of vehicles is decided by minimization of
the total route cost, but cannot exceed the fleet size for the bounded case.

Figure 3.1 shows a simple example of a network used in the MCGRP, from
Lyckander (2014, [23]). Required links and nodes are drawn with a solid line,
non-required links and nodes with a dashed line. The costs and demands are
shown on the corresponding link or node. In this example, the vehicle capac-
ity is 400 and node 1 represents the depot. A solution to the example shown
in Figure 3.1 is illustrated in Figure 3.2.

3.2. PROBLEM DESCRIPTION 13

1

23

4

5 7

8

c = 100, d = 100

c = 10, d = 100

c = 30c = 60

c = 70

c = 10

c =
 60

c =
 10

c
=

 5

c
=

 5

c =
 30

c =
 15, d =

 100

c
=

 1
5

c
=

 1
0

d = 100

d = 100

6
d = 100

Figure 3.1: A simple MCGRP example.

1

23

5 6 7

8c = 10, d = 100

c = 30

c
=

 5

c =
 15, d =

 100

41

23

4

5 6 7

8

c = 100, d = 100

c =
 10

c
=

 5

c =
 30

c
=

 1
0

Route 1 Route 2
d = 100

d = 100

d = 100

Figure 3.2: A two-route solution to the example shown in Figure 3.1. Route
1: cost = 155, load = 300; route 2: cost = 60, load = 300. Total routing cost
is 215.

Run-time issues may occur when solving a MCGRP, due to the problem’s
complex structure. In fact, the TSP is a special case of the MCGRP.

The TSP was proven to be NP-hard in the mid-1960s, discussed in e.g. Garey
and Johnson and (1979, [24]). Hence, MCGRP is NP-hard.

Exact methods can often solve MCGRP instances of smaller size, but due to
the exponential running time, heuristic procedures are preferred as solution
methods for many real life problems.

Chapter 4

Multi-objective MCGRP

In most studies on routing problems, the aim of the problem is to minimize
the total route cost including service costs and use of vehicles. However, a ma-
jority of real-life problems, e.g. in distribution and logistics, have additional
objective components that should be optimized. In this chapter, an overview
of multi-objective routing problems which previously have been addressed in
the literature is given. Relevant objectives for the MCGRP and how they may
influence the problem are described in Chapter 4.2.

4.1 Prior work on multi-objective routing prob-
lems

Multi-objective vehicle routing problems have received increased attention,
due their its many real life applications and scientific interest. Jozefowiez
et al. (2008, [25]) survey the different multi-objective vehicle routing prob-
lems addressed in the literature. Marler and Arora (2004, [8]) present an
overview of multi-objective optimization methods in general. In this chapter,
an overview of the studies based on techniques that can be used to find a
single point on the frontier follows, before an overview of studies of heuristic
search methods used to find an approximation to the Pareto front is given.

Different techniques to find a single Pareto optimal solution have been pro-
posed in the literature. Norouzi et al. (2009, [26]) solve an open vehicle routing
problem, where travel cost is minimized and the obtained sale is maximized.
They use an ε-constraint method to compare the results from a multi-objective
particle swarm optimization method proposed in the paper. Giannikos (1995,
[27]) uses goal programming to solve a location and routing problem for haz-
ardous waste transportation and treatment. In addition to minimizing the
total operating cost and perceived risk, the aim is the equitable distribution
of risk among population centres and of the disutility caused by the opera-

15

16 CHAPTER 4. MULTI-OBJECTIVE MCGRP

tion of the treatment facilities. Keller and Goodchild (1987, [28]) propose a
lexicographic method for minimizing the length and maximizing the profit of
a TSP with profit.

Usually, when solving a multi-objective routing problem, the aim is to find a
set of solutions representing a good approximation to the Pareto front instead
of presenting a single solution. That is the reason why the most used heuristic
methods are population based approaches, such as genetic or memetic algo-
rithms. For instance, Jozefowiez et al. (2009, [29]) use a genetic algorithm
involving classical multi-objective operators to solve a bi-objective VRP with
route balancing. The aim is to minimize total route cost and the difference be-
tween the maximal and minimal route cost. Additionally, they introduce two
mechanisms which favour the diversification of the search. Mei et al. (2011,
[30]) use a Decomposition-Based Memetic Algorithm for a multi-objective
CARP. As mentioned in Chapter 2, different LS based methods are applied
on MOPs. Hansen (1997, [31]) gives a good description of how Tabu Search
could be implemented to solve MOP in general, and Caballero et al. (2007,
[32]) apply Tabu Search on a location routing problem. Banos et al. (2013,
[33]) implement a Simulated Annealing algorithm to solve a multi-objective
VRP with time window. Other approaches are also addressed in the litera-
ture, such as Ant Colony system, by e.g. Baran and Schaerer (2003, [34]), and
Scatter Search, by e.g. Corberan et al. (2002, [35]). To ensure both diversi-
fication and convergence toward an optimal solution, hybrid algorithms have
been a preferred method. Jozefowiez et al. (2007, [4]) use a multi-objective
combined EA and LS to solve the VRP with route balancing. They use a
genetic algorithm to generate a set of solutions spread out close to the Pareto
front, and use Tabu Search to search for solutions closer to the Pareto front.
Banos et al. (2013, [36]) introduce a combined multi-start multi-objective EA
with Simulated Annealing to solve the multi-objective VRP with time win-
dows.

Different techniques can be used to achieve diversity in the search. Srini-
vas and Deb (1995, [37]) propose a Nondominant Sorting Genetic Algorithm
(NSGA) to solve multi-objective optimization problems in general. The non-
dominated sorting ranks the solutions in a population based on their non-
domination. A sharing function is used to locate high populated areas. The
fitness function favours low rank and low density areas, with the aims of
archiving better diversity and convergence than regular genetic algorithms.
An improved version of the NSGA is proposed by Deb et al. (2002, [38]),
called NSGA-II. The main improvements were the lowering of the run-time
of the non-dominated sorting from O(MN3) to O(MN2), inclusion of elitism
techniques which speeds up the performance of the algorithm, and reduce the
number of parameteres set by the decision maker. An elitist technique was
also proposed in Jozefowiez et al. (2009, [29]). The diversification technique

4.2. RELEVANT OBJECTIVES FOR THE MULTI-OBJECTIVE MCGRP17

was an expansion of the sharing strategy, see e.g. Goldberg and Richardson
(1987, [39]), inspired from the elitism strategy. In the search, potential Pareto
optimal solutions are stored in an archive A0. In addition to A0, archives
containing the non-dominated solutions to the problem where one objective
function is maximized instead of minimized are considered. At each iteration,
some solutions in the archives are included in the population.

4.2 Relevant objectives for the multi-objective
MCGRP

Depending on the application, many objectives may be of interest when con-
sidered a multi-objective MCGRP. Minimizing a risk or the waiting time for
the costumers, or maximize a profit are some examples. Balancing of the
routes is also a relevant aspect, since the drivers of the routes in delivery
problems are often motivated by equally distributed workload.

In this thesis we have studied two objectives: routing cost and route balance.
When only two objectives are considered, the problem may be referred to as
a bi-objective MCGRP.

In this thesis, the cost of a link denotes the length of the link. Additionally,
we assume the vehicles to traverse the links with constant speed. Thus, the
time required to traverse a link is proportional to the length. We inform the
reader that cost, time and length of a link may be used interchangeably in this
thesis. In the same way, the service cost of a task indicates the time required
to service the task.

Routing cost

The aim of the routing cost objective is to minimize the total cost of a solution
in terms of travel time. The cost objective includes the costs of traversing the
routes and servicing the tasks. Two cost functions are defined for the problem:

The function
c : (E ∪ A)→ R≥0 (4.1)

defines the cost of deadheading links, i.e., when a link is traversed, and the
function

s : (VR ∪ ER ∪ AR)→ R≥0 (4.2)

18 CHAPTER 4. MULTI-OBJECTIVE MCGRP

defines the cost of servicing a task. The cost of route k is defined as

ck(Rk) =
∑

e∈Rk∩(E∪A)

c(e) +
∑

e∈(ER∪AR)
Ψ(e)=k

s(e) +
∑
v∈VR

Ψ(v)=k

s(v), ∀k ∈ K. (4.3)

The first sum denotes the total traversal cost for route Rk. The second and
third sum are the total service cost of tasks serviced by vehicle k located on
links and nodes respectively.

The cost objective function F1 for a routing plan is the total cost of the routes
in the routing plan, i.e.,

F1(x) =
∑
k∈K

ck(Rk). (4.4)

Route balance

The aim of the route balance objective is to equalize the route lengths within
a solution. There are several ways to formulate route balance to obtain this.
One approach is to minimize the length difference between the longest and
shortest route in the routing plan. In this formulation, the length of a route is
equal to the route cost, defined in the previous objective. Hence, the objective
function F2 is defined as

F2(x) = maxk∈K(ck(Rk))−mink∈K(ck(Rk)). (4.5)

Another approach is to minimize the spread of route lengths, i.e. variance of
the sets of routes in a solution. This variance can be formulated as

V ar(x) =
1

|K|
∑
k∈K

(ck(Rk)− µck)2, (4.6)

where µck is the mean route length. When inserting the formula for the mean
and letting the objective value be equal to the variance, equation (4.6) becomes

F ′2(x) =
1

2|K|
∑
k1∈K

∑
k2∈K

(ck(Rk1)− ck(Rk2))2. (4.7)

The route balance objective may cause complications to the solutions in terms
of artificially balanced routes. The equalization of route lengths can easily be

4.2. RELEVANT OBJECTIVES FOR THE MULTI-OBJECTIVE MCGRP19

obtained by making the shortest routes longer by including detours. A solu-
tion is said to be artificially balanced if at least one route includes detours.
However, this contradicts the route cost objective and is unacceptable in so-
lutions for real life cases. Hence, artificially balanced routes must be avoided.
Thus, when the route balance objective is considered, an additional criterion
must be included, ensuring every route is optimal in terms of route cost given
the set of distributed tasks to service. This criterion is later referred to as
route optimality criterion. Due to the route cost objective, this criterion is
automatically fulfilled when the route balance objective is not considered.

Chapter 5

Genetic algorithm for a
multi-objective problem

The hybrid metaheuristic proposed in this thesis is a variant of a genetic al-
gorithm. Therefore, a description of how the genetic algorithm can be applied
on a general multi-objective problem is given in this chapter. A description of
problem specific parts of the hybrid metaheuristic proposed is given in Chap-
ter 6.

5.1 The genetic algorithm
In a genetic algorithm, a set of solutions, also called individuals, form a popu-
lation which is improved gradually in an evolutionary process. Each iteration
in the search represents a generation of the population. Every unique solution
has a unique chromosome, consisting of values for a set of parameters that
define a potential solution to the problem. Properties of the chromosome can
be inherited or mutated. This leads to the creation of new solutions and the
population is evolved toward better solutions.

The basic steps of a genetic algorithm is described in Algorithm 1 at page 23.

At first, the data set is initialized. How we initialize the data is explained in
detail in Chapter 6.2. Then a construction algorithm, see Chapter 6.4, is used
to create a set of initial solutions. Each iteration in the algorithm consists
then of four steps: assessment, selection, recombination, and improvement.

Assessment
To evaluate the individuals, every individual in the population is assigned a fit-
ness value measuring the success of the individual. The fitness value depends

21

22 CHAPTER 5. GENETIC ALGORITHM FOR A MOP

on the number and size of potential Pareto fronts dominating the individual
and the distance from other individuals in the current generation measured in
term of the ojective values. Non-dominated individuals, distanced from other
individuals, are favoured by this fitness value. The fitness value is defined in
Chapter 5.2.

As a part of the assessment step, the method executes an elitism diversifica-
tion technique to achieve a population well spread along the potential Pareto
front. Here, archives containing members of the population with special prop-
erties are created. The individuals in the archives are later added back in the
population. This technique is explained in Chapter 5.3.

Selection
The selection step consists of building a new generation based on the individ-
uals fitness value and the diversification techniques, and choosing the parent
individuals to be recombined to create new child individuals. This is explained
in more detail in Chapter 5.4.

Recombination
The recombination step is divided into two parts: crossover and mutation. In
the crossover operator, two child individuals are created, inheriting different
parts of the chromosomes of each of the parent individuals. The mutation op-
erators are applied on the child individual with a certain probability, making
a small change in the child chromosome.

The basic layout of this step is discussed in Chapter 5.5 and a detailed expla-
nation of the implementation of this step in our concrete problem is given in
Chapter 6.5 and 6.6.

Improvement
Finally, an improvement function is applied on the child’s chromosome. This
function systematical makes changes to specific parts of the chromosome with
an aim to improve the individual. What kind of improvement methods used
in the proposed solution method is described in Chapter 6.7.

The generation iterations in line 3 to 8 in Algorithm 1 continue until the search
converges or a maximum number of iterations is reached. This is explained in
more detail in Chapter 5.6.

5.2. ASSESSMENT 23

Algorithm 1 Genetic Algorithm(instance)
1: Initialization(instance)
2: P := Initial Solution
3: repeat
4: Assessment(P)
5: P ← Selection(P)
6: Recombine(P)
7: Improve(P)
8: until Stopping criterion
9: return non-dominated elements of P

5.2 Assessment

The genetic algorithm evaluates an individual s in generation Pi by a fitness
value ϕis. The fitness value depends on the chromosome of the individual and
the rest of the individuals in generation Pi. First, a rank value κis is assigned
to each individual, denoting how many potential Pareto fronts dominates the
individual. The rank value is used for defining a preliminary fitness value ψsi ,
which is then modified by means of a niche counter φis, denoting the density
of other solutions in the area around the solution s. The values of the rank,
fitness and niche counter are explained in this chapter.

Rank
The rank κis of solution s in generation P1 is set by an elitism mechanism.
This mechanism uses the dominance rule given in Definition 2.0.1 to assign a
rank for each individual. The rank of an individual denotes how many poten-
tial Pareto fronts dominate the individual s.

At first, the non-dominated individuals in Pi are assigned the rank 1. In other
words, κis = 1, if there exists no individual s′ in generation Pi with s′ ≺ s.
The individual with rank 1 constitute the subset S1

i ⊂ Pi, and form the first
potential Pareto front in generation Pi.

Then, the non-dominated individuals in Pi\S1
i are assigned the rank 2. Hence,

these individuals are only dominated by some of the individuals in the first
potential Pareto front in generation Pi. These individuals constitute the sub-
set S2

i ⊂ Pi, and they form the second potential Pareto front.

Inductively, the non-dominated individual in Pi \
⋃m
k=1 S

k
i are assigned the

rank m+ 1.

24 CHAPTER 5. GENETIC ALGORITHM FOR A MOP

In other words, for every individual s in Pi, the rank κis equals m+ 1 if:

1. There exists no solution s′ in Pi \
⋃m
k=1 S

k
i such that s′ ≺ s.

2. There exist a solution s′′ in Pi \
⋃m−1
k=1 S

k
i , such that s′′ ≺ s.

A naïve approach to sompute the rank for all the individuals, is first to find
all non-dominated individuals, assign them the rank 1 and remove them from
the set. Then, find all non-dominated individuals, assign the rank 2, and so
on. This naïve approach requires O(NN) time, where N is the number of
individuals in the population, but the most common implementation, intro-
duced by Deb et al. (2002, [38]), requires O(N2) time. We propose a faster
approach, O(N log(N)) time, assuming the problem is bi-objective.

At first, the population is sorted in lexicographic order, i.e., in ascending order
with respect to the first objective value, and then with respect to the second
objective. The rank is assigned to the individuals in that order. This means,
when assigning a rank to an individual, referred to as the current individual,
the individuals with lower first objective value than the current individual are
already assigned a rank.

Since the rank is the number of potential Pareto fronts dominating the current
individual, studying only individuals dominating the current one is sufficient
when assigning a rank value. In other words, it is sufficient to compare the
current individual with the individuals with lower first objective value or with
the same first, but lower second objective value, to decide a rank for the cur-
rent individual.

To decide how many potential Pareto fronts dominating the current individual,
we need to find an individual with the highest rank dominating the current in-
dividual. Thus, the rank of the current individual is one higher than the rank
of these individuals. Moreover, these individuals can be found by searching
through the individuals with lower first objective value, i.e., the individuals
that are already assigned a rank value.

Instead of searching through all the individuals with lower first objective value,
it is sufficient to compare the current individual with one individual represent-
ing each rank. Due to the ordering of individuals, we know the first objective
of the individuals are equal or lower than the first objective value of the
current individual. Hence, if a potential Pareto front dominates the current
individual, then also the individual with the lowest second objective value in
that potential Pareto front, called the corner individual, dominates the cur-
rent individual.

5.2. ASSESSMENT 25

Therefore, we only need to compare the current individual with the corner
individual for each rank assigned.

To do this, a list containing the second objective value for the corner individ-
uals is created. The list is sorted in ascending order with respect to the corner
individuals’ ranks, and due to the dominance rule, the objective values are in
ascending order too.

When the second objective of an individual lies between the values at positions
i and i + 1 in the list, the individual is dominated by at least one individual
in the ith potential Pareto front, but not by any solutions in the potential
Pareto front number i + 1. Hence, the individual is assigned the rank i + 1.
In addition, it becomes the new corner individual for rank i+ 1.

A special case occurs when the second objective is lower than the first element
in the list. Then, the solution is not dominated by any other solution, and it is
assigned rank 1. On the other hand, if the second objective is higher than the
last element in the list, the solution is dominated by every other already ini-
tialized potential Pareto front. The rank is the length of the list plus 1, and an
element containing the second objective value is inserted at the end of the list.

The pseudocode for the rank assignment is given in Algorithm 2. In the
algorithm, Fq(s) means the value of the qth objective of the individual s.

Algorithm 2 Rank(Current Generation)
1: RankIndex ← ∅
2: Mergesort1(Current Generation)
3: for all s ∈ Current Generation do
4: if Fq(s) is equal Fq(s′) for all objectives q then
5: s ← set same rank as s′
6: else if F2(s) < first element in RankIndex then
7: Set F2(s) to be the first element in RankIndex
8: s ← set rank to be 1
9: else if F2(s) > last element in RankIndex then

10: Add F2(s) to the end of RankIndex
11: s ← set rank to be the number of elements in Rank Index
12: else
13: Find j such that Rank Index(j) ≤ F2(s) < Rank Index(j + 1).
14: RankIndex(j + 1) ← F2(s)
15: s ← set rank j + 1
16: end if
17: s′ ← s
18: end for

26 CHAPTER 5. GENETIC ALGORITHM FOR A MOP

In Algorithm 2, the sorting in line 2 requires O(N log(N)) time. Then, for ev-
ery N solutions, the look up and insertion in lines 13 to 15 requires O(log(N))
time. The other cases in lines 4 to 11 are computed in constant time. Hence,
the complexity of the algorithm is O(N log(N)).

The preliminary fitness value
The preliminary fitness of the individual s is given as:

ψis =
S(N +Rκis

)−Rκis

N
(5.1)

where N is the population size, κis is the rank of solution s in population Pi
and Rκis

is

Rκis
= 1 +

∑
r>κis

|Ei
r|, (5.2)

where Ei
r is the size of the set of all individuals in population Pi with rank

r. Moreover, S is a selection pressure, decided by the decision maker. Higher
preliminary fitness is favored if S is greater than 1.

Hence, the preliminary fitness value does not depend on the objective values
themself, but only on the rank. As the preliminary fitness value is defined,
every individual with the same rank has the same preliminary fitness value.
But, up until now, the density around an individual is not considered. The
density is calculated by a sharing function, explained in the next section.

Sharing function
The individuals in low density areas are preferred compared to individuals in
crowded areas. Therefore, to enhance diversity in the population, the fitness
value is divided by a niche counter. The niche counter increases with the
number of solutions within a given distance from the solution, and a smaller
distance gives a higher value.

The niche counter at generation Pi is defined as

φis =
∑
s′∈Pi

sh(s, s′), (5.3)

5.3. DIVERSIFICATION TECHNIQUES 27

where sh(s, s′) is the sharing function of the current individual s and another
individual s′ in the same generation. The sharing function is defined as

sh(s, s′) =

{
1− d(s,s′)

γ
, if d(s, s′) ≤ γ,

0, otherwise,
(5.4)

where d(s, s′) is the Manhattan distance between the objective values of the
individuals s and s′. γ is the distance of which two solutions are defined to
be neighbors, given by the decision maker.

At last, a solution s in generation Pi is evaluated by a new fitness value, which
is divided by the niche counter:

ϕis =
ψis
φis
. (5.5)

5.3 Diversification techniques
An elitism diversification technique proposed in Jozefowiez et al. (2007, [4]),
is included in the solution method to achieve population spread out along the
potential Pareto front.

All new non-dominated individuals are kept in a separate archive A0. At each
generation, a number of individuals stored in the archive are included in the
population. In this way, the population will contain a higher number of high-
quality individuals.

Additionally, to increase the diversity of the population, a number of indi-
viduals are included in the population from separate elitism archives. There
is a corresponding elitism archive for each objective function, containing the
non-dominated individuals according to a new dominance rule ≺q, where one
objective is maximized instead of minimized. The dominance rule is defined
as follows:

∀y, z ∈ Pi, y ≺q z ⇔(
∀l ∈ {1, ..., Q} \ {q}Fl(y) ≤ Fl(z)

)
∧
(
Fq(y) ≥ Fq(z)

)
∧(

(∃l ∈ {1, ..., Q}Fl(y) < Fl(z)) ∨ (Fq(y) > Fq(z))
)
,

(5.6)

28 CHAPTER 5. GENETIC ALGORITHM FOR A MOP

where Pi is the current population. The archiveAq contains the non-dominated
individuals according to dominance rule ≺q, where the qth objective compo-
nent is maximized and the rest of the components are minimized. A few
individuals from each archive will be added to the new population at each
generation, which will be explained in Chapter 5.4.

In the following, the method to find the non-dominated individuals in the
population with respect to the new dominance rule ≺q is described. Here, we
assume the problem to be bi-objective.

At first, the population is sorted in increasing order by the value of the objec-
tive to be minimized, later referred to as q, and then by the other objective
value.

The first individual in the sorted population is non-dominated. Then, an in-
dividual is non-dominated if the qth objective value is as least as good as the
qth objective values for all the individuals denoted as non-dominated.

An example of the Pareto fronts for the dominance rules ≺1 and ≺2 is given
in Figure 5.1.

Figure 5.1: An example of the Pareto fronts for the dominance rules ≺, ≺1,
and ≺2.

Every non-dominated individual found in the search with respect to the domi-
nance rules ≺, ≺1 and ≺2 is stored in the respective archive. In this way, even
if the individual is replaced in the population, it is not lost. However, new
individuals created may dominate individuals in the archives with respect to
the relevant dominance rule. In order to prevent this, the dominated solu-
tions are removed from the archives after a number of generations, set by the
decision maker.

5.4. SELECTION 29

5.4 Selection
In the selection step, a new generation is created and a set of individuals from
the new generation are chosen as parent solutions for the recombination step.

A new generation Pi+1 consists of the following:

1. M randomly chosen individuals from each archive,

2. N−(Q+1)M
2

best solutions with respect to fitness in Pi, where N is the
population size, Q is the number of objectives and (Q + 1)M is the
number of individuals included from the archives,

3. N−(Q+1)M
2

new child individuals from the recombination phase, to be
described in Chapter 5.5.

The latter are created by first selecting N−(Q+1)M
2

parents from generation Pi
by independent binary tournaments. In a binary tournament, two individuals
are randomly selected from the population. The individual with the high-
est fitness will become a parent individual. Then, the parent individuals are
paired. Finally, from each pair of parents a pair of child individuals is created.

5.5 Recombination and improvement

As a final and essential contribution to the new generation, N−(Q+1)M
2

new
individuals are created by recombining the pairs of parent individuals. The
recombination phase consists of two processes: crossover and mutation.

The chromosomes of two parent individuals are recombined to create two new
child individuals. The crossover is a function f(sp1, sp2) = so1, so2. Here, the
individuals sp1, sp2 are the parent individuals, combined to create the child in-
dividuals so1, so2. If the parents are in generation number i, i.e., sp1, sp2 ∈ Pi,
then the child individuals are in generation number (i+1), i.e., so1, so2 ∈ Pi+1.

For each child, a mutation operator may be applied with a certain probability.
A mutation function m makes a change in a single individual’s chromosome:
m(so1) = s′o1. When the mutation function is applied, so1 is no longer in the
population, but is replaced by s′o1.

The concrete operations of the recombination step are strongly problem de-
pendent. For instance, what qualities the child individual aims to inherit from
the parent individuals is decided by the problem to be solved and which op-
erations that can be applied on individuals is confined by the encoding of the

30 CHAPTER 5. GENETIC ALGORITHM FOR A MOP

chromosomes. The crossover and mutations operators proposed in this thesis
are explained in more detail in Chapter 6.5 and 6.6 respectively.

Finally, all the child individuals are improved, if possible, by a function:
i(so1) = s∗o1. How this function is defined, is explained in Chapter 6.7.

5.6 Stopping criterion
A maximum and a minimum number of generations for the search are set by
the decision maker. The aim of the minimum number of generation is to pre-
vent premature stopping of the algorithm before the Pareto is reached. The
maximum number of generations prohibits the search to continue in infinite
time. At the generations between the minimum and maximum number of
generations, the search may stop due to a convergence criterion, determined
by an error measure.

The error measure is defined as the area of the non-dominated domain, bounded
by a given upper value for each of the objectives. The domain is illustrated
in Figure 5.2. The area of the domain will decrease as long as new stricly
non-dominated solutions are found. The search stops if the error measure is
not changed in a given number of generations, also set by the decision maker.

Figure 5.2: The area (grey) of the non-dominated domain. The upper values
for each objective are illustrated by the dotted lines.

Chapter 6

Metaheuristic procedure

In this chapter, the parts of the genetic algorithm presented in Chapter 5
which are strongly dependent on the problem to be solved are presented.
First, the encoding of the problem is given. Then, the proposed operations
applied on the individuals are described.

6.1 A second look at the problem
We recall from Chapter 3.2 that a solution to the MCGRP is a routing plan,
containing information about which task is assigned to which route and the
tasks’ ordering in the route.

The route problem can be divided into two problems: finding the optimal
distribution of tasks among the vehicles and creating the optimal order of the
given task in one route with respect to the set of objectives.

However, for instance when a solution to a delivery problem is applied, an em-
ployee would always choose the shortest path including the given set of tasks.
This is consistent with the route optimality criterion discussed in Chapter
4.2. As a consequence, the second part of the problem is considered a single-
objective problem; when the tasks are distributed among the vehicles, the
route is decided as the most cost-efficient way to service all tasks. This in-
cludes both a cost optimal ordering of tasks, as well as requirs the path be-
tween the tasks to be the shortest path with respect to route cost.

Thus we can reformulate the problem as a two-stage problem:

1. Assign the tasks to different vehicles.

2. For each vehicle, given the assigned set of tasks, find the shortest route
that serves all these tasks.

31

32 CHAPTER 6. METAHEURISTIC PROCEDURE

6.2 The network representation
The second part of the problem consists of solving a TSP for each vehicle.
Due to the route optimality criterion, the path between two tasks is set to be
the shortest path between the tasks. Hence, finding the shortest route servic-
ing a set of tasks is equivalent to finding the best possible order of the tasks.
In order to obtain this, different sequences of servicing the tasks are studied.
Assume a sequence is proposed, the optimal route is simply the shortest path
from one task to the next. The distance between two tasks is defined as follows:

1. The distance between two tasks located on nodes is the length of the
shortest path from the first node to the second node.

2. The distance from a task located on a node n1 to a task located on an
arc a1 is the length of the shortest path from the node n1 to a1’s start
node. For the opposite case, the distance is the length of the shortest
path from a1’s end node to node n1.

3. The distance from a task on arc a1 to a task on arc a2, is the length of
the shortest path from a1’s end node to a2’s start node.

4. The tasks located on edges are handled as two tasks located on opposite
directed arcs, referred to as α and β arcs, where only one of the two
tasks needs to be serviced. The distances are calculated accordingly.

The length of the shortest path between two nodes is generated by the Floyd-
Warshall algorithm.

However, finding an optimal TSP path when tasks are located on edges is not
straight forward. If both possible traversal directions of a required edge are
studied, this may cause an additional computational burden, as the number
of possible solutions doubles for every task located on an edge.

Tasks located on edges
Instead of trying to service a task from either direction for each edge task in a
route, the traversal direction of an edge task is already decided when assigning
it in the first stage of the problem.

This is done by replacing every edge with two arcs in opposite directions,
having the same cost and demand, but the criterion that just one of the arcs
needs to be serviced. These arcs are called α and β arcs, illustrated in Figure
6.1. When an edge task is distributed to a vehicle, it is either the α arc or
the β arc that is distributed. During the search, an α arc may be changed
to a β arc and vice versa. This will be explained in more detail in Chapter 6.6.

6.2. THE NETWORK REPRESENTATION 33

Figure 6.1: Replace the required edges with an α and a β arc.

We find it suitable to encode the network as a distance matrix, denoting the
distance of the shortest path between any pair of tasks. The distance matrix
for the network in Figure 6.1 is given as follows:

Tasks 1 2 3 4 5α 5β
1 0 3 3 5 0 2
2 8 0 7 4 8 6
3 4 5 0 1 4 3
4 2 5 1 0 2 0
5α 2 5 1 4 0 2
5β 0 5 3 5 2 0

Properties of the distance matrix worth noticing is that it may be asymmetric,
which is a consequence of directed links in the network, and the zeros outside
the diagonal is a result of calculating the distance from task tm to tn if

1. tm is located on a node, and tn is located on an outgoing arc from that
node,

2. tm is located on an arc, and tn is located on the endnode of that arc, or

3. tm and tn are located on arc am and an respectively, and the endpoint
of am if connected to the initial point of an.

The shortest paths from task 1 to 4 and from task 4 to 1 are illustrated in
Figure 6.2.

34 CHAPTER 6. METAHEURISTIC PROCEDURE

Figure 6.2: The shortest path from task 1 to task 4 (left) and from task 4 to
task 1 (right).

According to the definition of the two-stage problem, it is sufficient to repre-
sent the individuals by:

1. which tasks are assigned to each route in the solution,

2. the ordering of the tasks within each route,

3. for each task located on an edge, define whether the α or the β arc is
serviced.

With this information, the objective values for an individual can be evaluated
immediately given the distance matrix and the service costs for the tasks.

6.3 Chromosome encoding

As we have seen above, a solution, i.e., a routing plan, can be easily con-
structed from the distribution of the tasks to the different vehicles and the
order in which the vehicles service their respective tasks. Hence, it is suitable
to encode the chromosome as a list of routes, where a route is represented
as a list of tasks in the order they appear in the route, encoded with their
number. Using this encoding, there is an one-to-one correlation between the
chromosome and the solution, hence a chromosome is unambiguous.

In this way, a chromosome defines a routing plan if and only if every task ap-
pear precisely once. But there is no guarantee that the routing plan is feasible
according to the capacity constraint given this encoding. However, the oper-
ators proposed in the solution method are designed to ensure feasibility, by
preventing actions resulting in a solution becoming infeasible. The operators
are described in more detail in Chapter 6.5 and 6.6.

6.4. INITIAL POPULATION 35

Given this encoding, operations such as extraction and deleting of tasks or
routes are possible, as well as inserting tasks or routes if they are disjoint
with the existing routes. But, some post-processing is usually necessary in
order to obtain a valid routing plan, such as re-distribution of tasks for ob-
taining feasibility or re-ordering of tasks to fulfil the route optimality criterion.

A possible solution and its chromosome representation is illustrated in Figure
6.3. In this example, the tasks 1, 3 and 5α are serviced in this order in the
first route, and tasks 2 and 4 in the second route.

Figure 6.3: Example of an individual representation

6.4 Initial population

An initial population of N individuals is created by a construction heuristic.
The aim of the heuristic is to create a set of reasonable high quality individ-
uals with high diversity.

To evaluate an individual, a scalarizing objective function is used, defined as

F̃ν = νF1 + (1− ν)F2. (6.1)

Here, F1 and F2 are the objective values, and the variable ν is the weighting of
the objectives. For each ν uniformly distributed in [0,1], an initial individual
is constructed, evaluated with respect to F̃ν .

When constructing an initial individual, tasks are chosen in random order
among the tasks not yet assigned and inserted in the individual’s chromo-
some. When a task located on an edge is chosen, the direction of servicing
the edge, i.e., the α or β arc, is chosen randomly.

36 CHAPTER 6. METAHEURISTIC PROCEDURE

The task is placed in the first route in the chromosome that remains feasible
after insertion of the task.

The placement of the task in the route is determined by F̃ν . Here, the task
is first tentatively inserted at all possible positions in the route and evaluated
with respect to F̃ν . The task is then inserted at the first position where F̃ν is
minimized.

The procedure continues until there are no more tasks to assign.

Since the tasks are placed in random order, the distribution of tasks among
the vehicles is a result of a stochastic process only. The ordering of the tasks,
on the other hand, is a result of the scalarizing objective function. Here, the
aim of an unique objective weight for each individual is to obtain a diversified
population.

As a consequence of ordering the tasks based on the scalarizing objective func-
tion, the individuals may not fulfil the route optimality criterion discussed in
Chapter 4.2. However, the main purpose of the initial population is to create
a set of solutions with high diversity, and therefore this criterion is neglected
for the initial population.

As a final remark; since tasks are only added to routes which remained feasible
after inserting the task, and all tasks are added exactly once, all individuals
in the initial population are feasible.

6.5 Crossover

In the crossover process, two parent individuals are combined and generate
two child individuals. Two crossover operators are proposed in this thesis:
RBX (Potvin and Bengio 1996, [40]) and a Cross-and-Split (Prins 2004,
[41]). Which operator to use is chosen randomly, but for each pair of parents,
the same crossover is applied to generate the two children.

RBX

The route based crossover (RBX) operator creates a child solution by extract-
ing a set of routes from each parent individual. An example of the operator
applied on two parent solutions are illustrated in Figure 6.4. The operator
will be described in more detail in the following.

6.5. CROSSOVER 37

Firstly, a random number of routes is extracted from the chromosome of the
first parent. The routes to be extracted are chosen randomly. This is illus-
trated in step 2 in Figure 6.4, and is represented as lines 3-6 in Algorithm 3.

To avoid duplicates of tasks when extracting parts from the chromosome of
the second parent, the tasks currently constituting the child’s chromosome are
removed from the second parent’s chromosome. Step 3 in Figure 6.4 gives an
example of this operation, forming the lines 7-9 in Algorithm 3.

Finally, the non-empty routes in the second parent’s chromosome are extracted
and added to the child’s chromosome. The result is illustrated in the final step
in Figure 6.4.

For the second child individual created, the first parent individual become the
second parent individual and vice versa.

Algorithm 3 RBX(Parent1, Parent2)
1: number of routes ← random number
2: Routes ← ∅
3: for all i = 1, ..., number of routes do
4: Routes ← add random route in Parent1
5: end for
6: Child ← Routes
7: for all task ∈ Routes do
8: Parent2 ← Parent2 \ {task}
9: end for

10: Parent2 ← remove empty routes
11: for all route ∈ Parent2 do
12: Child ← add route
13: end for
14: return Child

38 CHAPTER 6. METAHEURISTIC PROCEDURE

Figure 6.4: An example of the RBX crossover

6.5. CROSSOVER 39

Cross-and-Split

The Cross-and-Split operator creates a child individual by extracting a se-
quence of tasks from each parent individual. First, the routes in each parent
chromosome are merged, and a sequence of both chromosomes is inherited by
the child individual. Then, a tour splitting operator is applied on the child in
order to split the single route into feasible routes. An example of the operator
applied on two parent solutions are illustrated in Figure 6.6. The operator
will be described in more detail in the following, and the pseudocode is given
in Algorithm 4.

First, the routes in the chromosome for each of the parents are merged, such
that each chromosome consists of a single route servicing all the tasks. An
example is given in the second step in Figure 6.6.

To extract a sequence from the first parent’s chromosome, two breaking points
in the chromosome are randomly chosen. The sequence between the breaking
points is extracted and added to the child chromosome, placed at the same
position as it occurs in the parent’s chromosome. This operation is illustrated
in step 3 in Figure 6.6.

As for the RBX operator, the tasks which currently constitute the child’s
chromosome are removed from the second parent’s chromosome, in order to
avoid duplication of tasks.

The remaining tasks in the second parent’s chromosome are added to the
child’s chromosome. These tasks are extracted in the ordering they occur in
the parent chromosome, starting from a randomly chosen position. The tasks
are inserted in the first available position in the child chromosome.

Now, as illustrated in the last step in Figure 6.6, the child chromosome con-
tains all the tasks in a single route. However, the single route is most likely
infeasible according to the capacity constraint and needs to be split into fea-
sible routes. To find a cost efficient way to split the route without making
a change in the task ordering, the chromosome is represented as a weighted
directed acyclic graph (w-DAG), where the shortest path in the graph with
respect to route cost defines where to split the routes.

40 CHAPTER 6. METAHEURISTIC PROCEDURE

An arc in the w-DAG corresponds to the route servicing the tasks defined
by the intitial and ending point of the arc in the w-DAG. In the following ti
denotes the task at position i in the child’s chromosome. Then, the w-DAG
representing the chromosome is built in the following way:

1. For every task ti in the chromosome, there is a corresponding arc ai in
the w-DAG. The endpoint of ai is then connected to the initial point of
ai+1. The arc ai corresponds to the route servicing task ti only.

2. Additional arcs are added for every sequence of tasks ti, ti+1, ..., tk in the
chromosome for which the total demand of the route given by [ti, ..., tk]
does not exceed the capacity C. These arcs connect the initial point of
link ai and the endpoint of ak, and corresponds to the route given by
the tasks [ti, ..., tk], serviced in the given order.

3. The cost of an arc is the route cost of the route corresponding to the
arc.

The single route in the chromosome is split into the routes corresponding to
the arcs which constitute the shortest path in the w-DAG.

An example of a graph representing a large route, is illustrated in Figure 6.5.
Here, the capacity is 10 and the tasks are serviced in the order 3−4−5β−1−2.
The red links in the w-DAG represent the shortest path and split the route
into three routes defined by the tasks [3, 4], [5β], and [1, 2].

Figure 6.5: An example of how a route (left) is represented as a w-DAG
(right). C = 10.

For the second child individual created, the first parent individual become
the second parent individual and vice versa. The same splitting points in the
chromosomes of the parents are used for both child solutions.

6.5. CROSSOVER 41

Figure 6.6: An example of the Cross-and-Split crossover

42 CHAPTER 6. METAHEURISTIC PROCEDURE

Algorithm 4 Cross-and-Split(Parent1, Parent2)
1: mergeRoutes(Parent1, Parent2)
2: i, j ← random indices in Parent1
3: S ← ∅
4: S add Parent1[i→ j]
5: Child[i→ j] ← S
6: for all task ∈ S do
7: Parent2 → remove task
8: end for
9: k ← random index in Parent2

10: lP1 ← length of Parent1
11: lP2 ← length of Parent2
12: for all index ≤ size of Parent2 do
13: Child[(j+index+1) modulo lP1] = Parent2[(k+index) modulo lP2]
14: end for
15: seperateRoute(Child)
16: return Child

6.6 Mutation
After the crossover operator is applied, one of several mutation operators will
be applied with a given probability. In this thesis, five mutation operators are
applied to improve individuals: two simple operators, one large neighorhood
search, a cross exchange and a greedy approach.

Simple mutation operators
Two simple mutation operators are implemented: Swap tasks and Swap edge.

The swap task operator swaps two randomly chosen tasks between two ran-
domly chosen, distinct routes in a solution such that it remains feasible after
the swap of tasks. A task is reinserted at the position from where the other
task was removed.

The swap edge operator randomly chooses an edge in one of the routes in the
solution and changes the traversal direction. For the chosen edge, this means
the α arc is transformed into a β arc and vice versa. Since the edge remains
at the same position, feasibility is not an issue.

6.6. MUTATION 43

An Adaptive Large Neighborhood Search
An Adaptive Large Neighborhood Search (ALNS), inspired by Pisinger and
Ropke (2010, [42]), is introduced with the aim of making more radical changes
in the solution by replacing individual tasks in different routes in an iterative
process. At each iteration, a neighborhood of the current solution is con-
structed. For each neighbor constructed, a destroy operator is first applied
on the current solution to remove a set of tasks. Then, a repair operator is
applied to reinsert the tasks.

If an improvement with respect to route cost is found in the neighborhood, the
search continues with the solution in the neighborhood with best route cost
objective value. Else, the search stops and returns the last improved solution.

Destroy operators:
The destroy operators choose which tasks to be removed from the solution.
The highest number of tasks to be removed is decided by the decision maker.
As the iteration number increases, the number of tasks to be removed reduces
with a degree decided by the decision maker. The following destroy operators
are applied:

• Delete random: The tasks to be replaced are chosen randomly among
all routes in the solution.

• Delete max cost: The tasks are chosen randomly among the 2σ tasks
with the highest service cost, where σ is the number of tasks to be
replaced.

• Delete max reduction in cost: The tasks are chosen as the tasks
with the highest reduction in total route cost when removed from the
solution.

Repair operator:
After a destroy operator is applied, a repair operator is applied to reinsert the
tasks. The following repair operators are proposed:

• Repair Hamilton Cycle: For each route that would remain feasible
after insertion of the task and each position in that route, the cost of
placing the task at that point is computed. The task is placed at a
position that would result in the minimal increase in total route cost.
The tasks are inserted in descending order with respect to demand. In
this way, conflicts due to infeasible routes are reduced to a minimum.

44 CHAPTER 6. METAHEURISTIC PROCEDURE

• Repair fast insert: A task is inserted in the shortest route that
would remain feasible after insertion. As for the Repair Hamilton
Cycle operator, the task is placed at the most cost-efficient position
in the route and the task are inserted in descending order with respect
to demand.

If the load of the vehicles is close to their capacity, it is possible that the tasks
are inserted in the routes in such a way that no routes remain feasible before
the final task is inserted. When that happens, the neighbor solution is not
added in the neighborhood.

On each neighbor to construct, one destroy and one repair operator is applied.
The probability of an operator to be chosen is affected by the success earlier in
the search. The success rate of the ith destroy operator is denoted as ρ−i and
ρ+
i is the success rate of the ith repair operator. When a neighbor is created

and added to the neighborhood, the values are updated in the following way:

ρ−i = λ−ρ−i + (1− λ−)Φ (6.2)

and
ρ+
i = λ+ρ+

i + (1− λ+)Φ, (6.3)

where λ−, λ+ ∈ [0, 1] are decay parameters controlling the change in ρ−i and
ρ+
i . Φ is assigned the highest value of the following parameters:

• ω4 if the solution is feasible and the best solution in the neighborhood,

• ω3 if the solution is feasible and improved compared to current solution,

• ω2 if the solution is feasible

• ω1 if no feasible solutions are found.

Here, ω4 ≥ ω3 ≥ ω2 ≥ ω1 are assigned values by the decision maker. Hence,
operators which have generated good solutions have higher probability to be
chosen than operators generating worse solutions or none at all.

Cross

In the Cross operator, sequences of tasks are swapped between two routes
in an individual in an iterative process. At each iteration, the last part of
the longest route is swapped with the last part of one of the other routes in
the same individual. The search continues as long as an improvement with
respect to the route balance objective is found.

6.6. MUTATION 45

The longest route is defined as the route in the current solution with the high-
est route cost. The length of the sequence of tasks to be removed from the
longest route is chosen randomly between 0 and half the number of tasks in
this route.

The other route included in the swap is decided by the route balance objec-
tive. Here, the route which causes the best route balance value as a result of
the swap of tasks is chosen.

However, the length of the sequence to be removed from this route and in-
serted in the end of the longest route is decided by the route cost objective.
Here, the most cost-efficient swap in terms of different lengths of the sequence
is chosen, given all routes remain feasible.

Greedy swap of task

This mutation operator uses a greedy approach of moving tasks with the aim
of improving the route balance objective. The idea is to iteratively move tasks
from the longest route to the most cost-optimal route as long as an improve-
ment is found.

At each iteration, a randomly chosen task is removed from the longest route.

The task is inserted by the Repair Hamilton Cycle operator in the ALNS,
i.e., it is inserted in the route with lowest increased total route cost after in-
sertion, when the task is placed at the most cost-efficient position in the route.

To evaluate the individual by the correct objective values, a 2-OPT TSP-solver
is applied on both routes where a change is made.

If the value of the route balance objective is improved, the search continues.
Otherwise, the last improved individual is returned.

The pseudocode is given in Algorithm 5. Here, we assume the route balance
objective to be the second objective function, i.e. F2(·).

46 CHAPTER 6. METAHEURISTIC PROCEDURE

Algorithm 5 Greedy swap of task(Child)
1: improved ← TRUE
2: while improved do
3: stemp ← copy Child
4: rl ← longest route in stemp
5: task ← random task in rl
6: IncreaseCost ← ∅
7: for all route in stemp, except rl, do
8: IncreaseCost(route) ← the increased cost if task is included in route
9: end for

10: rmin ← the route with lowest IncreaseCost
11: rmin in stemp ← add task
12: 2-OPT(rl, rmin)
13: if F2(stemp) ≤ F2(Child) then
14: Child ← stemp
15: else
16: improved ← FALSE
17: end if
18: end while
19: return Child

6.7 Improvement
The improvement function in this solution method, is the heuristic TSP solver
2-OPT (Croes, 1958, [43]).

The function is applied on every route individually in the child’s chromosome.
The ordering of tasks in a route is changed if the function finds a new ordering
with lower route cost than the original route. As well as improving one objec-
tive value, the main purpose of this function is to fulfil the route optimality
criterion discussed in Chapter 4.2, which is the reason why the route balance
objective is neglected.

As a result of using a heuristic TSP solver, the ordering of tasks is not guar-
anteed to be optimal. But since the solution method proposed in this thesis
is a heuristic, we define it is sufficient to fulfil the route optimality criterion if
the ordering of tasks is determined by the value of route cost only.

Ideally, the function would be applied on every child. However, the function is
relatively time consuming compared to rest of the method. Hence, this TSP
solver is applied on every new child individual with a generation frequency,
set by the decision maker.

Chapter 7

Computational study

The proposed solution method is applied on the bi-objective variant of the
MCGRP, where the total route cost and route balanced is optimized. The
route cost objective is defined in equation (4.3). The route balance objective
is formulated as minimizing the length difference between the longest and
shortest route in the routing plan, defined in equation (4.5).

How the proposed solution method is implemented and information about the
instances studied are explained in Chapter 7.1. The settings for the param-
eters introduced in Chapter 5 and 6 are given in Chapter 7.2. Finally, the
results are presented in Chapter 7.3 and discussed in Chapter 7.4.

7.1 Implementation and instances

The proposed solution method was coded in C++. The computational exper-
iments were conducted on a PC with 2.67 GHz 4×6-core Xeon 24 Intel CPUs.

The evaluation was conducted on the 23 CBMix instances, from Prins and
Bouchenoua (2005, [15]). These are the most studied instances for the MC-
GRP. For the CBMix benchmark instances, the number of nodes varies from
11 to 150, and number of tasks from 20 to 212. The problem size for each
instance is given in Table 7.1. The number of vehicles is not fixed, and for
each solution the number of vehicles is optimized in terms of the objectives.

47

48 CHAPTER 7. COMPUTATIONAL STUDY

Table 7.1: The instances

Instance Nodes Links Tasks
CBMix1 21 66 48
CBMix2 68 246 185
CBMix3 31 88 79
CBMix4 53 111 98
CBMix5 32 61 65
CBMix6 49 96 108
CBMix7 75 158 168
CBMix8 77 168 177
CBMix9 29 47 50
CBMix10 56 110 107
CBMix11 69 235 82
CBMix12 38 71 53
CBMix13 150 292 141
CBMix14 94 332 93
CBMix15 52 91 91
CBMix16 71 138 169
CBMix17 42 118 63
CBMix18 117 212 127
CBMix19 126 302 212
CBMix20 43 131 73
CBMix21 60 138 180
CBMix22 25 58 42
CBMix23 11 27 20

Service cost was added to the required entities for the instances. Since the
service cost is a constant term in the total route cost for a solution, this term
is usually neglected when solving a single-objective minimize cost problem.
However, when considering route balance, the service costs influence the so-
lutions to a great extent, and need to be considered.

The quality of the route cost objective function value is evaluated by the dis-
tance to the best known solution of the single-objective problem where only
route cost is considered. Here, the service cost is neglected.

The CBMix instances and the best known solutions are found on the MCGRP
subpage to SINTEF’s TOP webpage ([44]), where the best known results of
the CBMix instances from the studies by Prins and Bouchenoua (2005, [15]),
Kokubugata et al. (2007, [16]), Hasle et al. (2012, [17]) and Bosco et al.
(2013, [20]) are presented.

7.2. PARAMETER SETTINGS 49

Each instance was solved 30 times. A number of instances were additionally
solved with a stricter convergence criterion, resulting a higher running time.

7.1.1 Assumptions for the input data

The following assumptions about the input data are made:

1. The network cannot have any links with negative cost, i.e. infinite cycles
to reduce cost cannot occur.

2. The network is not a multi-graph, i.e. there is no parallel links. This is
to avoid implementation issues when different objectives do not prefer
the same link in a pair of parallel links.

7.1.2 Neglecting service cost

An interesting observation made while testing the proposed solution method
is that the service cost had a great impact on the operators’ actions which
are affected by the route cost. The reason for this is probably that the service
cost dominates the decision of determining the most cost efficient route to
remove or add a task. By neglecting the service cost for these operators, the
quality of both objectives were improved. The service cost was neglected in
the following operations:

• Crossover Cross-and-Split: In the search for the shortest path of the
w-DAG.

• Mutation ALNS: In the destroy operator Delete max reduce in cost
and both the repair operators Repair Hamilton Cycle and Repair
fast insert.

7.2 Parameter settings

The population consists of 80 individuals. At each generation, 8 randomly
chosen solutions are added to the population from each of the three archives
A0, A1, and A2 stroring the non-dominated individuals with respect to the
dominance rules described in Chapter 5.3. At every fifth generation, the TSP
solver 2-OPT is applied on every route in all the child solutions.

50 CHAPTER 7. COMPUTATIONAL STUDY

Fitness
The solution method was experimentally tuned, but we observed no great
variation of the results by changing in the values of the parameters. The
parameters defined in the fitness value given in equation (5.1) and (5.4) are
assigned the following values:

Parameter Notation Value
Selection pressure S 1.7
Sharing distance γ 0.01

Crossover and mutation
The probability for the operators to be applied is decided as follows:

• Each of the two crossover operators is applied with a probability of 50%.

• For each child solution, a mutation operator is applied with a probability
of 50%.

• Each of the five mutation operators is chosen with equal probability, i.e.,
with a probability of 20%.

ALNS
At the beginning of the search, 15% of the tasks are to be removed and rein-
serted. At each iteration, the number of tasks to be removed by a destroy
operator is reduced with 5%.

The following success rate and decay parameters were used:

Parameter Notation Value
First success rate ω1 0
Second success rate ω2

1
3

Third success rate ω3
2
3

Fourth success rate ω4 1
Repair decay parameter λ+ 0.7
Destroy decay parameter λ− 0.5

Stopping criterion
The minimum and maximum number of generations were set to 2000 and
25000 respectively.

After the minimum number of generations is reached, the search stops when
the area of the non-dominated domain is unchanged for 100 consecutive gen-
erations.

7.3. RESULTS 51

7.3 Results

Since this is the first study on multi-objective MCGRP, there exists no work
which can be used to compare the results from the solution method proposed
in this thesis. Hence, it is difficult to evaluate the performance of the method.
The method is evaluated with respect to the diversity of the potential Pareto
front and the quality of the objectives. The qualities of the objectives are
compared with the solutions to the single-objective MCGRP. We are also in-
terested to see whether the objectives are conflicting. The objectives are con-
flicting if improvement in one objective requires a reduction in the quality of
the other objective, thus both objectives cannot be simultaneously optimized.
At last, the solution method is evaluated by its consistency and running time.

The instances CBMix5, CBMix13, CBMix17, CBMix19, and CBMix21 were
in addition solved with a stricter stopping criterion. Here, the minimum and
maximum number of generations were 10 000 and 100 000 respectively, the
convergence criterion was applied when the area of the non-dominated do-
main is unchanged for 500 consecutive generations, and the population size
was increased to 150. The results are presented in Appendix A, by a plot
of the potential Pareto front and all the non-dominated solutions found by
every 500th generations for both a standard and a longer run. Additionally,
the objective values for the solutions in the potential Pareto front are given
as a list.

In the results presented below, the service cost is excluded from the value
of the cost objective. Thus the value can then be compared with the best
known solution for each instance. However, the service cost is included when
evaluating in terms of the route balance objective.

The potential Pareto fronts of the instances had different shapes; plateau,
curved, and potential Pareto fronts with corner points. In Figure 7.1 to 7.6,
potential Pareto fronts illustrating the different shapes are presented. For each
case, the first figure is the union of the final set of non-dominated solutions
for all 30 runs of the corresponding instance, which most likely gives the best
picture of the behaviour of the Pareto front. The second figure illustrates two
sample potential Pareto fronts found by the solution method for the same in-
stance. The total route cost of the best known solution to the single-objective
minimizing cost MCGRP is represented as a dotted line in the figures.

We want to make the reader awair of that the x-axis, which denotes the total
route cost, does not start at zero in the following figures.

52 CHAPTER 7. COMPUTATIONAL STUDY

Plateau
The shape of the Pareto front contains a plateau if there is a saddle point in it.

For Pareto fronts of this shape, there is an interval where one objective can
be improved without requiring a reduction in the other objective. Hence, for
an interval for one objective value, the objectives are not conflicting. In this
interval, it is necessary with a high density of solutions in the potential Pareto
front to obtain a good approximation of the optimal Pareto front, and pre-
clude the case if it is a part of the potential Pareto front dominating an area
where it is hard to find new solutions, instead of an actual plateau.

Figure 7.1: The potential Pareto front of CBMix3 has a plateau. The total
route cost of the best known solution is 3643.

Figure 7.2: Two sample potential Pareto fronts of CBMix3

7.3. RESULTS 53

Curved

The Pareto front is gently curved if the slope of the tangent to the polynomial
interpolation of the non-dominated solutions is not-increasing and there is no
single solution where both objectives are optimized simultaneously.

For a gently curved Pareto front, an improvement of a high quality objective
value requires a higher reduction in the other objective value than the same
improvement in a objective value when it is of lower quality. Pareto fronts
of this shape require many and well spread solutions in the potential Pareto
front to obtain a good approximation.

The objectives are conflicting for all objective values in a gently curved Pareto
front, in contrast to the Pareto fronts containing a plateau.

Figure 7.3: The potential Pareto front of CBMix11 is gently curved. The total
route cost of the best known solution is 4494.

54 CHAPTER 7. COMPUTATIONAL STUDY

Figure 7.4: Two sample potential Pareto fronts of CBMix11

Corner point

If the Pareto front consists of one almost vertical and one almost horizontal
line, meeting at a corner solution of high quality, the Pareto front is said to
have a corner point shape.

Here, one objective may be improved, without requiring much reduction in
quality of the other objective. The objectives are in this case less conflicting
than for the Pareto fronts that are plateau and gently curved shaped.

A solution among the corner point(s) is a natural choice as a single solution
of the problem.

Since the Pareto front consists mostly of straight lines between the non-
dominated solutions, Pareto fronts of this shape requires a lower density of
solutions in the potential Pareto front to obtain a good approximation of the
Pareto front compared to the two other shapes.

7.3. RESULTS 55

Figure 7.5: The potential Pareto front of CBMix17 has a corner point shape.
The total route cost of the best known solution is 4037.

Figure 7.6: Two sample potential Pareto fronts of CBMix17

56 CHAPTER 7. COMPUTATIONAL STUDY

7.3.1 Diversity

The diversity of the potential Pareto front is evaluated by a quality measure
bp, which is the average distance from every integer point on the potential
Pareto front to the nearest solution, weighted by the relative importance of
having a close solution to that point at the potential Pareto front. The mea-
sure bp is between 0 and 1, and low values are favoured. It is defined as

bp =
∑
mj∈Pf

dmj

|PF |
wmj

, (7.1)

where Pf is the set of points in the potential Pareto front with integer ob-
jective values and mj is such a point on the potential Pareto front located
between the non-dominated solutions sj and sj+1. The distance dmj

is the
Manhattan distance from point mj to the nearest solution, weighted by wmj

.
The value of wmj

is defined in the following.

The importance of finding a close solution to a point mj is given by the area
of the rectangle defined by the sj in the left, upper corner and the sj+1 in the
right, lower corner. Hence, relative importance wmj

is defined as

wmj
=

Dj∑
l=1,..,|A0|−1Dl

. (7.2)

Here, Dj is the the area defined by the solutions sj and sj+1 and A0 is the
set of the non-dominated solutions, i.e., the solutions located on the potential
Pareto front. The distance dmj

and the area Dj are illustrated in Figure 7.7.

Figure 7.7: The distance dmj
from point mj in the potential Pareto front to

the nearest solution, weighted by the area Dj (blue).

7.3. RESULTS 57

The reason why the importance of a close point is determined by the areaDj is
that the desire for a high density of solutions in an area depends on the shape
of the potential Pareto front. A high density of solutions is more important in
the parts of the potential Pareto front where the improvement in one objec-
tive value requires a large reduction of the other objective value (large area),
than in parts of the potential Pareto front where one objective is improving
while the other is unchanged (small area). This is because we want detailed
information about how much reduction is required in an objective value to
achieve an improvement in the other objective value. If there are many close
solutions, the potential Pareto front between the two non-dominated solu-
tions is a good representation of possible solutions to the problem. On the
other hand, if there are no close solutions, a long distance between the two
non-dominated solutions can be due to poor diversification properties of the
solution method, and the potential Pareto front may be unreliable. It may
also be that no solutions exist in this area, as a consequence of solving an
integer problem.

The solutions studied in the calculation of bp, are the solutions in the poten-
tial Pareto front and the union of the set of non-dominated solutions found
by every 500th generation. The sets of non-dominated solutions for a consec-
utive number of generations are usually not disjoint, hence only the union of
non-dominated solution set for some generations is needed. We found it ap-
propiate to use the set of non-dominated solutions by every 500th generation
as a good representation for the total set of solutions found by the solution
method.

Table 7.2 gives the best and average value of bp over 30 runs for each instance.

7.3.2 The quality of the objectives

The quality of the objective function values is measured for each instance by
the following values:

1. The total route cost of the minimal total route cost objective found in
30 runs.

2. The relative gap between the minimal total route cost and the total
route cost in the best known solution.

3. The average total route cost of the minimal total route cost objective
found in 30 runs.

4. The relative gap between the average minimal total route cost and the
total route cost in the best known solution.

58 CHAPTER 7. COMPUTATIONAL STUDY

5. The minimal route balance objective value found in 30 runs, divided by
the total route cost in the best known solution.

6. The average minimal route balance objective value found in 30 runs,
divided by the total route cost in the best known solution.

Table 7.3 shows the results of the evaluation of the quality of the objectives
for all the 23 instances in the CBMix benchmark. Best known value marked
with ∗ are known to be optimal.

Table 7.2: The bp-value for the CBMix instances.

Instance Best bp Average bp
CBMix1 0.0048 0.0192
CBMix2 0.0051 0.0280
CBMix3 0.0057 0.0187
CBMix4 0.0022 0.0148
CBMix5 0.0034 0.0170
CBMix6 0.0029 0.0183
CBMix7 0.0038 0.0249
CBMix8 0.0034 0.0289
CBMix9 0.0030 0.0131
CBMix10 0.0036 0.0173
CBMix11 0.0022 0.0167
CBMix12 0.0019 0.0306
CBMix13 0.0037 0.0188
CBMix14 0.0029 0.0164
CBMix15 0.0012 0.0210
CBMix16 0.0024 0.0263
CBMix17 0.0037 0.0147
CBMix18 0.0057 0.0210
CBMix19 0.0023 0.0277
CBMix20 0.0042 0.0159
CBMix21 0.0028 0.0287
CBMix22 0.0056 0.0147
CBMix23 0.0014 0.0359

7.3.
R

E
SU

LT
S

59

Table 7.3: The quality of the solutions.

Instance Best known Minimal cost Gap [%] Average cost Gap [%] Optimal balance [%] Average balance [%]
CBMix1 2589 2631 1.62 2737 5.72 0.39 0.79
CBMix2 12220 13757 12.58 14090 15.30 0.47 0.75
CBMix3 3643 3971 9.00 4215 15.71 0.52 1.35
CBMix4 7583 8857 16.80 9330 23.04 0.95 1.63
CBMix5 4531 4879 7.68 5103 12.63 0.51 1.05
CBMix6 7087 7749 9.34 7960 12.32 0.62 0.92
CBMix7 9607 10783 12.24 11112 15.67 0.60 0.88
CBMix8 10524 11928 13.34 12442 18.23 0.71 1.09
CBMix9 4038 4298 6.44 4482 10.98 0.62 1.23
CBMix10 7582 8741 15.29 9025 19.03 1.00 1.77
CBMix11 4494 5095 13.37 5321 18.40 0.36 0.87
CBMix12 3138* 3235 3.09 3271 4.25 0.16 1.02
CBMix13 9110 10195 11.91 10642 16.82 0.90 1.37
CBMix14 8566 9452 10.34 9812 14.54 0.54 0.99
CBMix15 8280 8960 8.21 9409 13.63 1.15 2.36
CBMix16 8886 9817 10.48 10178 14.54 0.81 1.52
CBMix17 4037 4309 6.74 4528 12.17 0.82 1.49
CBMix18 7089 7675 8.27 7973 12.48 0.92 1.31
CBMix19 16347 19075 16.69 19587 19.82 0.46 0.73
CBMix20 4844 5297 9.35 5533 14.23 0.39 0.90
CBMix21 18069 21143 17.01 21987 21.68 0.79 1.24
CBMix22 1941 1941 0.00 2046 5.43 0.21 0.66
CBMix23 780* 780 0.00 781 0.17 0.13 0.51

60 CHAPTER 7. COMPUTATIONAL STUDY

7.3.3 Related objectives

To study whether the objectives are conflicting, the minimal total route cost
and the associated route balance objective value are compared with the min-
imal route balance objective value and the associated total route cost found
in 30 runs, for each instance.

Results are provided in Table 7.4.

7.3.
R

E
SU

LT
S

61

Table 7.4: The total route cost and route balance associated with the routes of minimal total route cost and optimal balance
found in the search. Relative balance is the value of the route balance objective function value relative to the associated
minimal total route cost.

Instance Cost optimality Balance Relative balance [%] Cost Balance optimality
CBMix1 2631 273 10.38 3416 10
CBMix2 13757 372 2.70 14834 58
CBMix3 3971 313 7.88 5399 19
CBMix4 8857 707 7.98 10864 72
CBMix5 4879 2113 43.31 7416 23
CBMix6 7749 407 5.25 8283 44
CBMix7 10783 587 5.44 12555 58
CBMix8 11928 316 2.65 14882 75
CBMix9 4298 488 11.35 5066 25
CBMix10 8741 350 4.00 9931 76
CBMix11 5095 643 12.62 7502 16
CBMix12 3235 59 1.82 4131 5
CBMix13 10195 436 4.28 13462 82
CBMix14 9452 643 6.80 11651 46
CBMix15 8960 497 5.55 11707 95
CBMix16 9817 557 5.67 12652 72
CBMix17 4309 651 15.11 5503 33
CBMix18 7675 365 4.76 13162 65
CBMix19 19075 527 2.76 20606 75
CBMix20 5297 674 12.72 6183 19
CBMix21 21143 801 3.79 24945 143
CBMix22 1941 139 7.16 2570 4
CBMix23 780 42 5.38 947 1

62 CHAPTER 7. COMPUTATIONAL STUDY

7.3.4 Consistency

To evaluate the consistency of the search, the variance in the non-dominated
area A and the variance of bp (see Chapter 7.3.1) in 30 runs are studied for
each instance. The first measure indicates the consistency of the quality of
the solutions, and the latter indicates the consistency of diversity.

Here, the objective values are normalized by the 1-norm and the reference
point for calculating non-dominated area is determined by the highest value
found for each objective in the 30 runs.

The results are presented in Table 7.5.

Table 7.5: Consistency of the solution method

Instance Variance in A Variance in bP
CBMix1 1.741871e-03 3.917344e-04
CBMix2 5.598549e-04 8.811634e-04
CBMix3 4.944684e-04 3.319523e-04
CBMix4 4.503000e-04 4.316225e-04
CBMix5 9.402769e-04 1.368447e-03
CBMix6 4.546529e-04 7.387032e-04
CBMix7 1.298392e-03 6.837383e-04
CBMix8 1.340938e-03 7.384597e-04
CBMix9 6.099346e-04 3.142817e-04
CBMix10 3.941335e-04 4.043126e-04
CBMix11 3.815741e-04 4.699770e-04
CBMix12 4.098985e-03 3.919886e-03
CBMix13 6.129167e-04 5.165376e-04
CBMix14 2.306751e-04 7.095727e-04
CBMix15 1.570979e-03 1.809534e-03
CBMix16 4.147505e-04 2.496749e-03
CBMix17 4.192875e-04 3.014201e-04
CBMix18 6.023753e-04 6.353965e-04
CBMix19 4.019810e-04 1.009852e-03
CBMix20 3.176083e-04 4.440617e-04
CBMix21 1.906364e-03 1.507752e-03
CBMix22 4.449079e-04 3.887032e-04
CBMix23 9.400558e-04 1.022579e-03

7.3. RESULTS 63

7.3.5 Running time

Finally, we consider how the search converges and the CPU time required,
and evaluate the following:

1. Number of runs stopped because the maximum number of iterations was
reached.

2. The average number of iterations required for the search to finish.

3. The average time required for the search to finish.

Table 7.6 shows the results of the evaluation of convergence and running time,
for all the 23 instances in the CBMix benchmark.

Table 7.6: Convergence, number of iterations, and running time

Instance Non-converged Iterations required Average time [s]
CBMix1 0 2281.9 209.46
CBMix2 0 2306.9 1870.43
CBMix3 0 2823.8 429.41
CBMix4 0 3187.0 771.15
CBMix5 0 3272.6 353.39
CBMix6 0 2479.9 614.38
CBMix7 0 2893.9 1417.52
CBMix8 0 2325.5 1317.65
CBMix9 0 2349.7 182.56
CBMix10 0 2306.4 623.83
CBMix11 0 2762.9 455.47
CBMix12 4 4849.3 823.23
CBMix13 0 2169.8 834.12
CBMix14 0 2391.9 575.75
CBMix15 0 2770.3 640.82
CBMix16 0 2695.7 1601.13
CBMix17 0 2683.1 332.09
CBMix18 0 2557.7 1036.35
CBMix19 0 2536.1 2087.65
CBMix20 0 2360.2 293.30
CBMix21 0 2389.3 1494.15
CBMix22 0 2946.1 170.62
CBMix23 5 9415.2 351.33

64 CHAPTER 7. COMPUTATIONAL STUDY

7.4 Discussion

The distance between the solutions in the potential Pareto front differs among
the instances. For example, the solutions in the potential Pareto front of in-
stance CBMix17 in Figure A.4 was found to be well diversified. The non-
dominated solutions found for the CBMix19 instance on the other hand, are
not as well spread out along the potential Pareto front, indicated by poten-
tial Pareto fronts presented in Figure A.5. Here, the density of solutions is
extremely low in the area close to what looks like a plateau in the potential
Pareto front between the total route cost values <20 100,21 200> in Figure
A.5(b) compared to other parts of the potential Pareto front. Hence, we can-
not verify whether the plateau dominates an area where no improved feasible
solutions exist, or if the solution method was unable to find solutions in this
area. The difference in the quality of the diversification properties in the result
from these two instances is supported by the average bp value in Table 7.2.
The value was found to be 0.0147 and 0.0277 for the CBMix17 and CBMix19.

Additionally, we see from Table 7.2 that there is a large gap between the best
and average bp value. Hence, one run of the solution method is probably not
sufficient to obtain a well diversified result.

However, as mentioned in Chapter 7.3, the aim is not to obtain a potential
Pareto front where the solutions are equally distributed along the potential
Pareto front, but rather to find a good approximation of the Pareto front. In
the abscence of prior work on the problem or exact solution method, we do not
have any prior knowledge of how the Pareto fronts for the instances looks like.
As a result of working with descrete problems, there may not exist solutions
well spread along the Pareto front. Hence, for parts of the potential Pareto
front with low density of solutions, we cannot conlcude if this is representative
for the Pareto front or due to a weakness in the soluton method. On the other
hand, for the areas of high density of solutions, we can study the correlation
of the objectives by the shape of the potential Pareto front.

For most of the instances, the potential Pareto fronts were either curved or
shaped as a curve with one or multiple plateaus in the potential Pareto front.
Hence, in most of the potential Pareto fronts, the objectives are conflicting,
but for certain intervals on the potential Pareto front one objective could be
improved without requiring a reduction in the other objective. These intervals
are of great interest, since both objectives can be optimized simultaneously,
which makes the choice of a single best solution within the interval straight-
forward. An example of such an interval, where the density of solutions is
sufficiently high as to verify plateaus in the Pareto front, appears for the CB-
Mix15 instance in Figure A.3(b), for total route cost between <9400, 9600>
and <9600, 9800>.

7.4. DISCUSSION 65

We observed that when a new non-dominated solution was found in a genera-
tion, such that the area of the non-dominated domain decreased, the solution
usually dominated multiple non-dominated solutions from the last generation.
Hence, the total number of non-dominated solutions decreased. However,
in the following generations, new non-dominated solutions on the potential
Pareto front were usually found. As a consequence, the number of generations
the method could search for new solutions with an unchanged non-dominated
area had a great impact on the number of solutions in the potential Pareto
front.

Solutions with total route cost as good as the total route cost in the best
known solution was found in relation to two instances (CBMix22, CBMix23),
where one of them is the proven optimal solution, as shown in Table 7.3. On
average for all instances the gap between the minimal total route cost found
and the total route cost in the best known solution was 13.8%.

From Table 7.3, we see that the relative value of the route balance objective
does depend on the problem size, rather than the value of the total route cost.
This could be explained by the increased difficulty to find balanced routes
when the problem size is large, or that a larger population size may be neces-
sary to explore a higher number of solutions.

The mutation operators based on a local search (ALNS, Cross, and Greedy
swap of tasks) had a great effect on improving the quality of the objectives.
If only the crossover operators and the simple mutation operators are applied,
only a small number of all possible solutions were found. The main reason
for this is that in these operators, only a consecutive sequence of tasks in
the routes are inherited or a single task is replaced, which is not sufficient
operators for finding all possible solutions. In the local search based muta-
tion operators multiple independent tasks are removed and inserted in more
efficient positions. Due to this property, solutions which otherwise would not
have been explored are found, preventing premature convergence.

After all, premature convergence was an issue in the beginning of the search
in some instances. This was, however, usually a temporary state where no
non-dominated solutions were found, and the population resumed evolving
after a number of generations. Thus, the problem was reduced by introducing
a minimum number of generations.

Despite a sufficiently high value for the minimum number of generations to
prevent premature convergence, most of the runs converged in a short number
of generations after the minimum number of generations was reached. This is
shown in Table 7.6.

66 CHAPTER 7. COMPUTATIONAL STUDY

For five of the six instances presented in Appendix A, we observe a small
improvement in the quality of the objectives by letting the search continue
for a longer time. Here, the required CPU time was approximately ten times
higher than for the standard runs. The gap between the total route cost of
the best known solution and the average minimal total route cost found by
the proposed solution method was reduced from 16.13% to 13.56% on average
for these six instances. Hence, the value for the minimum number of genera-
tions and number of generations for the non-dominated area to be unchanged
before the convergence criterion is applied is decided as a trade off between
the quality of the objectives and the required running time.

However, a longer run does not guarantee an improved solution compared to
the standard run. For one of the instances (CBMix17), the minimal total
route cost found in the standard run is lower than for the long run. This is
a consequence of that the method is stochastic, hence the difference in the
quality of the objectives is a result of coincidences in the operators, as well as
running time.

The variances in bp and in the area of the non-dominated domain are low
and consistent for all of the instances, as shown in Table 7.5. However, even
though the variances are low, Figures 7.1 to 7.6 indicate that a single run of
the solution method may not be sufficient to obtain a good approximation of
the Pareto front. Instead, a union of multiple potential Pareto fronts for the
same instance would make a more precise approximation.

Chapter 8

Conclusion and further research

8.1 Conclusion

Routing problems in general and the MCGRP in particular are of great inter-
est, both scientifically and in terms of applications for delivery problems and
logistics. Prior work on the MCGRP has only been focusing on minimizing
the total route cost. However, the addition of other aspect may be interesting
when modeling real life problems. For instance, the drivers of the vehicles in a
delivery case are motivated by an equal distribution of work load. Hence, bal-
ancing of routes is of likely to be an important factor in practicle applications.

In this thesis, we have studied a bi-objective variant of the MCGRP that is
optimized with respect to total route cost and route balance. For the latter
objective, the length difference between the longest and shorterst route in a
solution is minimized. We propose a hybrid metaheuristic solution method
based on the genetic algorithm with local search based heuristic methods as
mutation operators. The aim of the search is to find a set of high quality
solutions with great diversity.

To our knowledge, this is the first study of a multi-objective variant of the MC-
GRP; hence it is difficult to evaluate the performance of the solution method.
To evaluate the quality of the objectives, the results are compared with the
best known solutions to the single-objective minimize total cost MCGRP. The
diversity of the solutions is evaluated by studying the location of the solutions
in the potential Pareto front, and properties of the objectives are determined
by the shape of the potential Pareto front.

The best known total route cost was found for two instances (CBMix22, CB-
Mix23), where one of them is the proven optimal solution. The maximum gap
between the minimal total route cost found and the total route cost in the
best known solution was 17.01% (CBMix21). On average over all instances
the gap was 13.8%.

67

68 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

The results indicate a good diversity of the solutions along the potential Pareto
front. However, a larger population size than proposed in this thesis or multi-
ple runs of the same instance may be necessary to obtain a good approximation
of the Pareto front. As expected, to achieve a well diversified Pareto set of
high quality solutions is more difficult for instances of larger sizes than for
instances of smaller sizes.

Based on the shape of the potential Pareto fronts, the objective values seem
to be conflicting in most of the instances. However, the precise correlations
of the objectives differ among the instances.

Our contribution to the research consists of providing the first multi-objective
variant of the MCGRP. Additionally, we propose an approach to assign ranks
to the solutions in O(N log(N)) time, which can easily be expanded to general
bi-objective problems based on elitism.

8.2 Further research

There is potential for improvement in the proposed solution method. First
of all, as mentioned in Chapter 6.3, the operators proposed in this method
are designed to ensure feasibility in all the solutions. However, it may be the
case that improved feasible solutions are found by allowing the solution to be
infeasible as a temporary state in the search.

Secondly, a potential drawback of the method is that the operators’ behavior
does not depend on the previous success or failure. Here, we may achieve
improved results if the operators only did small changes in the solutions as
the search converged, or the operators were adaptive, i.e. which operator to
choose was based on previous success.

The CPU time required for the search to converge will decrease significantly
if the solution method is implemented using parallel programming. At each
generation, it is only the assessment and selection steps which require infor-
mation about the rest of the population. The two remaining steps, which are
also the most time consuming, are independent for each pair of parents chosen
in the selection step, and could be implemented in as many parallels as there
are pairs of parents.

Since this is the first study on a multi-objective variant of the MCGRP, the
performance of the solution method cannot be evaluated by comparing the
results with results from other methods. It would be interesting to construct

8.2. FURTHER RESEARCH 69

an exact solution method and compare the results with the Pareto front for a
small instance.

It may also be interesting to extend the problem. We have only studied two
objectives in this thesis. But as we mentioned in Chapter 4.2, other objectives
may be of interest in applications, such as time objectives, profits or number
of overlapping routes.

The proposed solution method can easily be generalized to problems with more
or other objectives than the two objectives considered in this thesis. The main
change needed to handle more objectives is the method for assigning a rank
value, described in Chapter 5.2. Additionally, an evaluation measure of the
objectives must be defined, and it is strongly recommended to redesign the
operators which are optimizing a particular objective if this objective is no
longer considered. An example is the repair operator in the ALNS, see Chapter
6.6, where tasks are reinserted in the shortest route, with the aim of improving
the route balance objective.

Bibliography

[1] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Man-
agement Science, vol. 6, pp. 80–91, Oct. 1959.

[2] R. Pandi and B. Muralidharan, “A capacitated general routing problem
on mixed network,” Computers and Operations Research, vol. 22, pp. 465–
478, May 1995.

[3] M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR Spektrum, vol. 22,
pp. 425–460, 2000.

[4] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Target aiming pareto search
and its application to the vehicle routing problem with route balancing,”
Journal of Heuristics, vol. 135, no. 5, pp. 455–469, 2007.

[5] S. Faggian, Maximum Principle for Linear-Convex Boundary Control
Problems applied to Optimal Investment with Vintage Capital. math.OC,
2007.

[6] M. Caramia and P. Dell’Olmo, “Multi-objective optimization,” in Multi-
objective Management in Freight Logistics Increasing Capacity, Service
Level and Safety with Optimization Algorithms, ch. 2, Springer, 2008.

[7] L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence Through Sim-
ulated Evolution. New York: John Wiley & Sons, 1966.

[8] R. Marler and J. Arora, “Survey of multi-objective optimization methods
for engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, 2004.

[9] J. H. Holland, Adaptation in Natural and Artifical Systems. University
of Michigan Press, 1975.

[10] P. Shaw, “Using constraint programming and local search methods to
solve vehicle routing problems,” Lecture Notes in Computer Science,
vol. 1520, pp. 417–431, 1998.

71

72 BIBLIOGRAPHY

[11] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J. Y. Potvin, “A
tabu search heuristic for the vehicle routing problem with soft time win-
dows,” IEEE Transacion on evolutionary computation, vol. 31, pp. 170–
186, 1997.

[12] C. S. Orloff, “A fundamental problem in vehicle routing,” Networks, vol. 6,
no. 3, pp. 281–284, 1974.

[13] B. Golden and R. Wong, “Capacitated arc routing problems,” Networks,
vol. 11, pp. 305–315, 1981.

[14] J. Gutiérrez, D. Soler, and A. Hervás, “The capacitated general routing
problem on mixed graphs,” Revista Investigacion Operacional, vol. 23,
no. 1, pp. 15–26, 2002.

[15] C. Prins and S. Bouchenoua, “A memetic algorithm solving the vrp, the
carp and general routing problems with nodes, edges and arcs,” Recent
Advances in Memetic Algorithms, vol. 166, pp. 65–85, 2004.

[16] H. Kokubugata, A. Moriyama, and H. Kawashima, “A practical solution
using simulated annealing for general routing problems with nodes, edges,
and arcs,” Engineering Stochastic Local Search Algorithms. Designing,
Implementing and Analyzing Effective Heuristics, vol. 4638, pp. 136–149,
2007.

[17] M. Dell’Amico, J. Díaz, G. Hasle, and M. Iori, “An adaptive iterated
local search for the node, edge, and arc routing problem.” Working paper
submitted, 2012.

[18] G. Hasle, O. Kloster, M. Smedsrud, and K. Gaze, “Experiments on the
node, edge, and arc routing problem,” SINTEF, May 2012. ISBN 978-
82-14-05288-6.

[19] L. Bach, G. Hasle, and S. Wøhlk, “A lower bound for the node, edge, and
arc routing problem,” Computers & Operations Research, vol. 40, no. 4,
pp. 943–952, 2013.

[20] A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo, “Modeling and
solving the mixed capacitated general routing problem,” Optimization
Letters, vol. 7, no. 7, pp. 1451–1469, 2013.

[21] K. A. Gaze, E. E. Halvorsen-Weare, G. Hasle, and C. Mannino, “A
branch-and-price method for the mixed capacitated general routing prob-
lem.” Working paper, 2014.

[22] P. Soberon, “Graph theory,” in Problem-Solving Methods in Combina-
torics, ch. 4, pp. 43–57, Springer Basel, 2013.

BIBLIOGRAPHY 73

[23] I. Lyckander, M. Grasmair, E. Halvorsen-Weare, and G. Hasle, “Route
balance for the mixed capacitated general routing problem.” Project the-
sis, 2014.

[24] M. R. Garey and D. S. Johnson, Computers and Interactability; A Guide
to the Theory of NP-Completeness. W.H.Freeman and Company, 1979.

[25] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Multi-objective vehicle routing
problems,” European Journal of Operational Research, vol. 189, no. 2,
pp. 293–309, 2008.

[26] N. Norouzi, R. Tavakkoli-Moghaddam, A. Salamatbakhsh, and M. Ali-
naghian, “Solving a novel bi-objective open vehicle routing problem in
a competitive situation by multi-objective particle swarm optimization,”
Journal of Applied Operational Research, vol. 1, no. 1, pp. 15–29, 2009.

[27] I. Giannikos, “A multiobjective programming model for locating treat-
ment sites and routing hazardous wastes,” European Journal of Opera-
tional Research (1998), vol. 104, pp. 333–342, 1996.

[28] C. P. Keller and M. F. Goodchild, “The multiobjective vending problem:
a generalization of the travelling salesman problem,” Environment and
Planning B: Planning and Design, vol. 15, pp. 447–460, 1988.

[29] N. Jozefowiez, F. Semet, and E.-G. Talbi, “An evolutionary algorithm for
the vehicle routing problem with route balancing,” European Journal of
Operational Research, vol. 195, no. 3, pp. 761–769, 2009.

[30] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[31] M. P. Hansen and M. P. Hansen, “Tabu search for multiobjective opti-
mization: Mots,” in Proceedings of the Thirteenth International Confer-
ence on Multiple Criteria Decision Making, pp. 6–10, Springer-Verlag,
1997.

[32] R. Caballero, M. Gonzale, F. Guerrero, J. Molina, and C. Paralera, “Solv-
ing a multiobjective location routing problem with a metaheuristic based
on tabu search. applocation to a real case in andalusia.,” European Jour-
nal of Operational Research, vol. 177, pp. 1751–1763, 2007.

[33] R. Banos, J. Ortega, C. Gil, A. Fernandez, and F. de Toro, “A simu-
lated annealing-based parallel multi-objective approach to vehicle routing
problems with time windows,” Expert Systems with Applications, vol. 40,
pp. 1696–1707, 2013.

74 BIBLIOGRAPHY

[34] B. Baran and M. Schaerer, “A multiobjective ant colony system for vehi-
cle routing problem with time windows,” Proceedings of the Twenty-first
IASTED International Conference on Applied Informatics, pp. 97–102,
2003.

[35] A. Corberan, E. Fernandez, M. Laguna, and R. Marti, “Heuristic solutions
to the problem of routing school buses with multiple objectives,” Journal
of the Operational Research Society, vol. 53, pp. 427–435, 2002.

[36] R. Banos, J. Ortega, G. Consolacion, M. A. L., and F. de Toro, “A
hybrid meta-heuristic for multi-objective vehicle routing problems with
time windows,” Computer and Industrial Engineering, vol. 65, pp. 286–
296, 2013.

[37] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary Computation, vol. 2,
no. 3, pp. 221–248, 1995.

[38] K. Deb, A. Pratab, S. Agarwal, and T. Meyarival, “A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii,” IEEE Transacion on evolutionary
computation, vol. 6, no. 2, pp. 182–197, 2002.

[39] D. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multi-model function optimization,” Second International Conference on
Genetic Algorithms, pp. 41–49, 1987.

[40] J.-Y. Potvin and S. Bengio, “The vehicle routing problem with time win-
dows part ii: Genetic search,” INFORMS Journal on Computing, vol. 8,
pp. 165–172, 1996.

[41] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Computers and Operations Research, vol. 31, pp. 1985–
2002, 2004.

[42] D. Pisinger and S. Ropke, “Large neighborhood search,” Intelligent In-
formation Management, vol. 4, pp. 66–74, May 2012.

[43] G. A. Croes, “A method for solving traveling salesman problems,” Oper-
ations Res. 6, pp. 791–812, 1958.

[44] SINTEF, “Top web page.” Accessed: October 2013.

Appendix A

Sample potential Pareto fronts

In this appendix, a sample potential Pareto front of a standard and a longer
run of the instances CBMix5, CBMix13, CBMix17, CBMix19, and CBMix21
are presented. For each instance, a plot of the potential Pareto front and
all the non-dominated solutions found by every 500th generations for both a
standard (left figure) and a longer run (right figure) is given. Additionally, the
objective values for the solutions in both potential Pareto fronts are stated in
a table below the figures.

75

76 APPENDIX A. SAMPLE POTENTIAL PARETO FRONTS

A.1 CBMix5

(a) Standard run (b) Long run

Figure A.1: Sample potential Pareto front for CBMix5

Table A.1: The objective values of the solutions in Figure A.1

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
5277 1021 4954 1837
5286 457 5050 179
5353 374 5075 161
5370 189 5088 132
5444 138 5113 125
5591 115 5178 123
5663 111 5182 119
5692 93 5333 110
5706 77 5407 91
5842 52 5749 88
5869 49 5789 87
5909 43 5803 83

5821 69
5877 53
5879 49
5936 40
5953 22

A.2. CBMIX13 77

A.2 CBMix13

(a) Standard run (b) Long run

Figure A.2: Sample potential Pareto front for CBMix13

Table A.2: The objective values of the solutions in Figure A.2

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
11312 1740 10950 709
11341 598 10960 292
11387 584 11014 260
11421 530 11025 229
11436 504 11039 215
11444 338 11130 213
11963 224 11144 188
12027 217 11181 168
12037 196 11208 155
12591 176 11283 120
13025 168 11481 119
13032 157 11523 114
13103 140 11577 102
13181 134 11619 97
13208 117 11720 81
13217 106 11784 61
13326 103 11786 59

11805 54
11841 52
11846 51

78 APPENDIX A. SAMPLE POTENTIAL PARETO FRONTS

A.3 CBMix15

(a) Standard run (b) Long run

Figure A.3: Sample potential Pareto front for CBMix15

Table A.3: The objective values of the solutions in Figure A.3

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
9651 473 9011 406
9755 407 9013 383
9787 400 9026 371
9825 368 9028 348
9869 362 9065 312
9872 359 9104 293
9971 351 9135 242
9977 350 9139 240
10029 309 9200 229
10062 301 9239 210
10092 276 9282 197
10157 269 9356 176
10170 252 9450 156
10220 237 9524 153
10245 219 9597 144
10258 202 9769 141
10288 199 9823 135
10291 196 9827 133
10323 189 9833 132
10336 172 9839 130

9879 129
9903 121
10039 117
10396 114
11227 105

A.4. CBMIX17 79

A.4 CBMix17

(a) Standard run (b) Long run

Figure A.4: Sample potential Pareto front for CBMix17

Table A.4: The objective values of the solutions in Figure A.4

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
4309 651 4410 561
4319 574 4417 440
4382 368 4480 377
4454 294 4481 366
4458 177 4487 256
4526 100 4544 225
4531 95 4555 206
4601 91 4572 198
4605 87 4629 182
4667 77 4642 164
4821 68 4714 158
4827 62 4949 152
4907 56 5003 145

5074 135
5148 129
5219 113
5288 95
5362 92
5370 85
5444 77
5510 74
5513 71
5519 56
5581 46
5656 43

80 APPENDIX A. SAMPLE POTENTIAL PARETO FRONTS

A.5 CBMix19

(a) Standard run (b) Long run

Figure A.5: Sample potential Pareto front for CBMix19

Table A.5: The objective values of the solutions in Figure A.5

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
19444 372 19123 456
19474 347 19147 436
19546 320 19223 356
19626 303 19360 330
19716 253 19426 310
19764 240 19455 290
19926 238 19521 270

19837 236
19993 231
20094 217
20281 216
20313 184
20353 178
21292 117
21315 112
21349 107
21361 100
21441 96

A.6. CBMIX21 81

A.6 CBMix21

(a) Standard run (b) Long run

Figure A.6: Sample potential Pareto front for CBMix21

Table A.6: The objective values of the solutions in Figure A.6

(a) Total route cost (a) Route balance (b) Total route cost (b) Route balance
22027 1796 21134 560
22038 812 21139 512
22127 598 21164 446
22201 580 21220 444
22349 412 21294 441
22537 393 21347 438
22624 377 21350 435
22778 301 21359 390
22908 295 21900 364
22964 286 21956 362
23029 279 22028 358
23104 272 22083 356
23215 266 22086 353
23253 263 22095 329
23263 257 22165 308

22223 302
23011 299
23049 296
23390 273
23451 261
23495 250
23900 229
24897 229
24821 229

	Introduction
	Background
	The MCGRP
	Prior work on the MCGRP
	Problem description

	Multi-objective MCGRP
	Prior work on multi-objective routing problems
	Relevant objectives for the multi-objective MCGRP

	Genetic algorithm for a MOP
	The genetic algorithm
	Assessment
	Diversification techniques
	Selection
	Recombination and improvement
	Stopping criterion

	Metaheuristic procedure
	A second look at the problem
	The network representation
	Chromosome encoding
	Initial population
	Crossover
	Mutation
	Improvement

	Computational study
	Implementation and instances
	Assumptions for the input data
	Neglecting service cost

	Parameter settings
	Results
	Diversity
	The quality of the objectives
	Related objectives
	Consistency
	Running time

	Discussion

	Conclusion and further research
	Conclusion
	Further research

	Sample potential Pareto fronts
	CBMix5
	CBMix13
	CBMix15
	CBMix17
	CBMix19
	CBMix21

