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Abstract

Simulations of turbulent flow and gas dispersion are performed using Nek5000, with

and without a subgrid-scale model. The results are compared with data from wind-

tunnel experiments and previously performed simulations in CDP. These comparisons

show good agreement between the reference data and the results obtained in this thesis,

and the simulation time is reported to be approximately five times faster for Nek5000.

Two routines have been implemented to improve the work with complex geometries,

and a laminar test case is used to confirm the importance of this work and the spectral

accuracy of the solver.
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Notation v

Notation

CONVENTION we let subscript h denote the discretized variables

u the velocity field

p pressure

f source function

ν kinematic viscosity

U Freestream velocity / velocity scale

L Length scale

Re = UL/ν Reynolds number

d The dimension of the problem, in this thesis d = 3

Ω Some general domain in Rd

sij = 1/2(∇u +∇Tu) Strain-rate tensor

S = |sij | =
√

2sijsij Absolute value of the strain-rate tensor

τij subgrid-scale tensor

A The bilinear Laplace operator

B The bilinear divergence operator

C The trilinear convection operator

A The stiffness matrix

D The divergence matrix

C The convection matrix

M The mass matrix

H The Helmholtz matrix

||u|| the L2 norm of u

||u||m the Hm norm of u

||u||m,k the Hm norm of u on the domain Ωk

v



Chapter 1. Introduction 1

Chapter 1

Introduction

The physics regarding fluids in motion are described mathematically by the Navier-

Stokes (N-S) equations. They are a result of the conservation of momentum and mass

and are stated in Eq. (2.1). This thesis is restricted to numerical solutions of the

incompressible N-S equations. For a complete description of the necessary assumptions

and simplifications it is referred to [1]. An important dimensionless quantity is the

Reynolds number Re, which describes the ratio between momentum forces and viscous

forces. For large Reynolds numbers the flow becomes turbulent and a large range of scales

needs to be resolved. A lot of research has been devoted to determine the amount of

energy present at the different scales of motion, and the interaction between them. These

ideas has led to turbulence modelling which is based on the idea that the effect of the

smallest turbulent motions can be modelled, while the larger motions are resolved by the

numerical grid. In this thesis both laminar and turbulent flows will be solved numerically,

and a physically motivated model for the smallest structures will be compared with a

mathematical filter meant to stabilize the flow. In addition to solving the N-S equations

the transport of a passive scalar will also be analysed and compared with a set of reference

solutions. The software applied in this thesis is Nek5000 which is an implementation

of the spectral element method initialized in the 80’s. In addition to validate Nek5000

as a software for analyzing gas dispersion the work in this thesis also attempts to make

Nek5000 more applicable to cases consisting of more complex geometry.

This thesis is divided in 3 parts. The first part which consists of the two following

chapters are devoted to the physical understanding of Eq. (2.1), the solution methods

1



Chapter 1. Introduction 2

applied and a thorough presentation of the Spectral Element Method. Chapter 4 gives

the reader a brief introduction to the functionalities of the solver Nek5000 to motivate

some of the implementation performed. The last three chapters describes the work

performed by the author, a presentation of the results and the discussion of these.

1.1 A brief overview of the work done for this thesis

Before we end this introduction a brief overview of the work done for this thesis is listed

here. It can be divided in three main sections and will be presented properly in Chapter 5

and 6.

• Nek5000 grid generation

– Project edges onto a higher order arc.

– General surface projection.

– Testing of algorithm for different surfaces.

– Curvature propagation.

– Changes and adjustments to mshconvert.

• Laminar flow around cylinder

– Generation of geometry and grid.

– Setup of the problem with necessary input and output.

– Simulations with Nek5000 with different grid size, polynomial order, time

stepping method and other settings.

• Turbulent flow with gas dispersion

– Grid generation.

– Setup the problem with necessary input and output.

– Implementation of the spatial averaging routine for the dynamic Smagorinsky

model.

– Simulations with Nek5000 with different grids, polynomial order,stabilization

methods.

• Analytical work with the numerical filter.

2
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Chapter 2

Problem description

This chapter will present the incompressible Navier-Stokes equations and give a descrip-

tion of the physical effects of each term. It will also present the idea behind Large Eddy

Simulations and subgrid-scale models, and prepare the mathematical formulations that

will be further analysed in Chapter 3.

2.1 The incompressible Navier-Stokes equations

With the assumption of an incompressible flow, the conservation of mass results in a

divergence-free restriction on the velocity u and the incompressible N-S equations on a

domain Ω ⊂ Rd can be stated as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u + f , ∇ · u = 0, on Ω, (2.1)

with appropriate boundary conditions which will be discussed in Chapter 2.1.1.

A widely studied simplification of these equations is the Stokes problem which is obtained

by omitting the convective term. This simplification will be used as a starting point for

the analysis of the full problem in Chapter 3.1, but first a brief description of each term

in Eq. (2.1) and their mathematical influence on the problem will be given.

• ∂u/∂t - The time-derivative of the velocity. For a steady state flow this term

will be equal zero. The discretization of this term is often based on some implicit

scheme.

3
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• u ·∇u - The convective term. Describes the transport due to the flow itself on each

of its components. The term is not present in a Stokes problem. The mathematical

operator corresponding to this term is non-linear and non-symmetric, and does

therefore require an explicit scheme to be solved efficiently.

• ∇p - The pressure gradient. Removal of this term results in a pure advection

diffusion problem. In the incompressible N-S equations the pressure is treated as a

Lagrange multiplicator, assuring the projection of u onto a divergence free space.

• Re - The Reynolds number. Defined as UL/ν where U is a velocity scale, L is

a length scale and ν is the viscosity of the fluid. Re describes the ratio between

momentum forces and viscous forces. Notice that for large Reynolds numbers

the unstable non-linear term dominates the transportation, and the flow can be

characterized as turbulent.

• ∆u - The diffusive term. Describes the natural diffusion of the fluid, and is in-

versely proportional to the Reynolds number. The corresponding mathematical

operator stabilizes the system and it is therefore generally easier to solve the N-S

equations for high-viscosity fluids. It should be mentioned that this term is a sim-

plification of the Reynolds stress tensor that can be made under the assumption of

incompressibility and constant viscosity. The more general formulation that will

be used to replace ν∆u in Chapter 2.3 is ∂j [ν(∂jui + ∂iuj)] = 2 ∇ · (νsij), the

tensor sij is known as the strain-rate tensor.

• f - Force term. Describes external forces such as gravity,sources and sinks. Note

however that for incompressible flow the gravity term is incorporated in the pres-

sure term, ∇p := ∇p+ ρg.

• ∇ · u - The divergence-free condition is a result of the conservation of mass in an

incompressible flow.

For large Reynolds numbers the huge span in length scales requires a fine mesh to

solve Eq. (2.1) exactly. Because a fine mesh implies a high computational cost, a

Direct Numerical Simulation (DNS) is not feasible for problems of a certain geometrical

complexity. With Large Eddy Simulations (LES) the smallest structures are modelled,

thus allowing a coarser mesh. In Chapter 2.3 this method and a particular model will be

discussed. The Navier-Stokes equations can only be solved if the boundary conditions

4
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are given. The boundary conditions are not stated explicitly in Eq. (2.1) because they

depend on the physical situation and belong as a specification to each individual case.

The next subsection gives a quick overview of the different boundary conditions applied

in this thesis.

2.1.1 Boundary conditions

Depending on the kind of flow and the geometry for a particular problem different

boundary conditions are applied. In this section n and t will denote the normal vector

and a tangential vector to the boundary surface. The boundary conditions applied

for the cases investigated in this thesis will be given the names I,O,SYM and W for

Inflow, Outflow, Symmetry and Wall. Their mathematical formulation and physical

interpretation are given as

• I - Inflow, defining the velocity field on the boundary. Mathematically this is

equivalent to non-homogeneous Dirichlet conditions.

u = g(x, t). (2.2)

• O - Outflow, letting the fluid flow “effortlessly” out through the boundary. For-

mally stated as

1

Re
∇u · n− pn = 0. (2.3)

• SYM - Symmetry, denying any flux through the boundary without disturbing the

tangential velocity. Convenient to apply in an open channel where the streamwise

direction is parallel to the boundary. Mathematically this is described as

u · n = 0, (∇u · t) · n = 0. (2.4)

• W - Wall, Representing a physical object. Also known as the no-slip condition

which is based on the assumption that the fluid closest to the object moves with

the same speed as the object itself. In this thesis all objects and geometries are kept

5



Chapter 2. background on fluid dynamics 6

still, so mathematically this is equivalent to homogeneous Dirichlet conditions.

u = 0. (2.5)

2.1.2 Weak formulation of N-S

The numerical algorithms applied in this thesis require a weak formulation of Eq. (2.1).

Before the weak form is derived a few operators will be defined to simplify the final

expression.

(u,v) =

∫
Ω

u · vdΩ

A(u,v) = ν(∇u,∇v)

B(u, p) = −(∇ · u, p)

C(w; u,v) = (w · ∇u,v)

(2.6)

A weak formulation is obtained by multiplying with the test functions v and q in Eq.

(2.1) and integrating over the entire domain,∫
Ω

∂u

∂t
· vdΩ +

∫
Ω

(u · ∇)u · vdΩ = −
∫

Ω
∇p · vdΩ + ν

∫
Ω

∆u · vdΩ +

∫
Ω

f · vdΩ∫
Ω

(∇ · u)qdΩ = 0.

(2.7)

Introducing the compact inner product notation and applying the divergence theorem

on the right hand side of the first equation yields

(
∂u

∂t
,v) + (u · ∇u,v) = (∇ · v, p)− ν(∇u,∇v) + (f ,v)

(∇ · u, q) = 0.

(2.8)

The contributions from the boundary as a result of the application of the divergence

theorem are included in the force term. The choice of search spaces for the velocity

and pressure will be justified in Chapter 3, but will be stated here to present the weak

formulation. Let V ⊂ H1(Ω)3 and Q ⊂ L2(Ω), by using the notation introduced in Eq.

(2.6) the weak formulation of the incompressible N-S equations can be stated as:

6
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Find (u, p) ∈ V ×Q such that

(
∂u

∂t
,v) + C(u; u,v) = −B(v, p)−A(u,v) + (f ,v),

B(u, q) = 0,

(2.9)

∀ (v, q) ∈ V ×Q.

To solve this equation numerically, everything has to be discretized and expressed using

a set of basis functions. These basis functions can then describe any test functions

(vh, qh), and the solution (u, p) can be approximated by a discretized solution (uh, ph).

This also results in discrete bilinear operators that can be represented by matrices. The

discretized system of equations can be stated as

M
∂uh
∂t

+ C(uh)uh = DT ph −Auh +M fh, (2.10)

Duh = 0. (2.11)

2.2 The passive scalar equation

The N-S equations explain how a fluid will behave, and solving these provides a pressure-

velocity field on the domain of interest. In many practical situations one is however

interested in how a scalar such as heat or a neutral gas will move in this flow. The

equation corresponding to the motion of a scalar φ in a velocity field u will be referred

to as the passive scalar (PS) equation and is stated as

ρcp(
∂φ

∂t
+ u · ∇φ) = ∇ · (k∇φ) + qvol. (2.12)

The constants k and ρcp are interpreted depending on the scalar transported. For

dispersion of neutral gas with φ as the volume concentration of the gas they resemble

the viscosity and mass flux. The last term on the right hand side qvol is the source term

and is not included in this thesis since all gas enters the control volume as a boundary

condition.

The passive scalar equation is solved in this thesis as a Helmholtz problem, by applying

an explicit scheme on the convection term and an implicit scheme on the diffusion term.

7
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This is similar to the discretization performed on the momentum equation which will be

discussed in detail in Chapter 3.

2.3 Resolving the turbulent term using LES

When DNS is not feasible due to a high Reynolds number, LES is one of the most

powerful tools for simulating turbulent flows. The idea is based on the fact that the

small turbulent structures behave homogeneously and are therefore easy to model. This

way the larger structures driven by geometry, inflow conditions and external forces can

be simulated using a coarser grid while the effect of the small structures is modelled.

LES will be introduced here in a mathematical fashion, starting by defining a filter

function, although in many practical cases the filter function is not well defined. The

reason for this is that the grid itself is often considered a filter, with the grid size as the

filter width. As pointed out by Carati et al. [2] the filter is in this case nothing else but

numerical discretization error.

2.3.1 Filter

The idea behind LES starts with defining a filter, which separates the modelled struc-

tures from the resolved ones. A filter in its general mathematical form introduced by

Leonard [3] is given as

U r(x, t) =

∫
Ω
Gr(r,x)U(x− r, t)dr. (2.13)

The filter is assumed to commute with the differential operators ∇, ∆ and ∂/∂t. By

applying the filter on the N-S equations and making the given assumptions the filtered

N-S equations can be stated as

∂ur

∂t
+ ur · ∇ur = −∇pr + ν∆ur + f r −∇ · τ,

∇ · ur = 0,

(2.14)

where τ in this case denotes the subgrid-scale (SGS) stress given as

τij(ui, uj) = (uiuj)
r − uriurj . (2.15)

8
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This tensor is a consequence of applying the filter on the non-linear advection term, and

it is this tensor that is modelled by a subgrid-scale model. See [4] for a full derivation

of the application of a filter on the momentum equation.

2.3.2 Dynamic Smagorinsky-Lilly SGS model

The problem is now reduced to modelling the tensor τij , and one of the most common

SGS models is the dynamic Smagorinsky-Lilly model which is the one applied in this

thesis. The initial progress of this model was made by Smagorinsky in 1963, and by

Lilly in 1967 [5] who suggested the following model for the SGS tensor

τij = −2Csl
2Srsrij ,

srij =
1

2

(
∂uri
∂xj

+
∂urj
∂xi

)
,

Sr =
√

2srijs
r
ij ,

(2.16)

where l denotes the filter width, which for this thesis is equivalent to the grid size. The

resolved strain rate srij can be calculated from the filtered velocity gradients, and the

problem is now reduced to determining the constant Cs. There were several attempts

to determine this constant for the entire domain, but in lack of a general constant

applicable to all flow situations a dynamic constant Cd was presented to replaces Csl
2

in Eq. (2.16). Cd is called the dynamic Smagorinsky constant, and is both time and

space dependent. The general idea is that Cd is unaffected by the filter and from this

assumption a computable expression is developed for the dynamical constant.

Let a, b denote two distinct filters with corresponding filter widths la, lb. Throughout this

thesis la will be the grid size. The second filter width lb is in this thesis based the same

elemental grid, but with a number of nodes Nb = Na−2. Hence the relation lb/la, which

is the only parameter needed for the simulation is estimated as λ = (Na − 1)/(Nb − 1).

Filter b is often referred to as the test filter and is only included to provide an estimation

of the dynamic Smagorinsky constant. Remember that a is the filter corresponding too

the numerical discretization, while filter b is obtained by applying the filter described

in Chapter 3.4.2 with αi = 1 for the highest modes. Let τij and Tij denote the stresses

9



Chapter 2. background on fluid dynamics 10

based on single- and double filtering operations on the N-S equations

τij = (uiuj)
a − uai uaj ,

Tij = ((uiuj)
a)b − (uai )

b(uaj )
b.

(2.17)

Applying the b filter on the first tensor in Eq. (2.17) allows us to define a new tensor

Lij that depends only on the a-filtered variables. The following relation is known as the

Germano identity and was first introduced in 1991 [6],

Lij = Tij − (τij)
b = (uai u

a
j )
b − (uai )

b(uaj )
b. (2.18)

This tensor now depends on the a-filtered solution and not the resolved one, hence the

identity in Eq. (2.18) provides a computable expression for Lij .

Substituting the stress-tensors in Eq. (2.18) with their corresponding expression from

Eq. (2.16) and assuming a dynamic constant unaffected by the filter one obtains an

approximation for Lij which is also computable,

Lij ≈ 2Csl
2
bSabsabij − 2(Csl

2
aSasaij)b

≈ 2Csl
2
a[λ

2Sabsabij − (Sasaij)b]

= 2CdMij .

(2.19)

Mij = λ2Sabsabij − (Sasaij)b (2.20)

Cd = Csl
2
a (2.21)

λ = lb/la (2.22)

Minimizing the mean-square error between the exact Lij as expressed in Eq. (2.18) and

the Boussinesq-based approximation in Eq. (2.19) yields the best approximation for the

dynamic Smagorinsky constant

Cd =
cden
cnum

=
MijLij

2MklMkl
. (2.23)

Note that the double indices imply summing. This expression is however not a stable

option and to deal with this most implementations apply some sort of mean or smoothing

in time and/or space when calculating the constant. In this thesis the smoothing is done

in both time and space for the denominator and the numerator in Eq. (2.23). The spatial

10
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averaging routine is explained in Chapter 5.3 while the time average used is given as

〈cden〉n+1 = εcn+1
den + (1− ε)〈cden〉n, (2.24)

with ε = 0.001. Another property of this expression is that the constant Cd is inde-

pendent of the filter width, the only necessary variable is the coefficient λ = lb/la. The

assumption made in this model is that turbulence behaves as diffusion, similar to the

kinematic viscosity a turbulent viscosity νt is defined which for this case is given as

νt = CdSa.

Let us end this section by stating the filtered N-S equations with the LES using the

dynamical Smagorinsky subgrid scale model, and remember that the diffusive term is

written in general terms as 2∇ · (νsij).

∂ua

∂t
+ ua · ∇ua = −∇pa + fa + 2∇ · (ν + νt)s

a
ij

∇ · ua = 0.

(2.25)

Notice that if vt is a constant in the entire domain this equation would be equivalent to

the one for a fluid with viscosity ν ′ = ν + νt. The idea is that νt will be larger when

the subgrid structures are significant and closer to zero when the flow is laminar. This

is just one of many types of models that are based on an analogy between subgrid-scale

stress and physical stress.

11
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Chapter 3

Numerical algorithms

In the previous chapter the N-S equations were presented and reformulated in several

ways without any details on how to actually solve the equations. This chapter aims

to give a more detailed description of the solution methods applied. The choice of

algorithms and solution spaces requires a more thorough analysis which will be performed

on the steady Stokes problem. The time discretization applied will be discussed in

Chapter 3.5.

3.1 Numerical concepts on the Stokes problem

The steady Stokes problem does not include the convection term or the time derivative

but the highest order terms are all present and is therefore a valid problem to perform

this necessary analysis [7]. The steady Stokes problem with homogeneous boundary

conditions is given as

−µ∆u +∇p = f , ∇ · u = 0, in Ω,

u = 0 on ∂Ω.
(3.1)

Applying the weak formulation to the Stokes problem implies a minimum requirement

on the spaces for u and p, and their test functions. These spaces will be defined as

H1
0 (Ω)3 =

{
v ∈ H1(Ω)3 | v = 0 on ∂Ω

}
,

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω
qdx = 0

}
.

(3.2)

12
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The formulation can easily be extended to include inhomogeneous Dirichlet conditions

on u by defining a lifting function as described in [8]. Note also that the pressure is

only present through its gradient and is therefore not uniquely defined unless the extra

constraint on the mean is defined, hence the 0 in L2
0. The weak form can now be stated

as

Find (u, p) ∈ H1
0 (Ω)3 × L2

0(Ω) such that

B(v, p) +A(u,v) = (f ,v),

B(u, q) = 0.
(3.3)

∀ (v, q) ∈ H1
0 (Ω)3 × L2

0(Ω).

The numerical solution of this problem requires a discrete formulation of the weak form,

with (uh, ph) ∈ V × Q as the discrete solution. The discrete spaces V,Q are subspaces

of H1
0 (Ω)3, L2

0(Ω) equipped with the discrete H1(Ω)3- and L2(Ω)-norm denoted || · ||V

and || · ||Q. For the discrete weak form to be well-posed it has to meet the requirements

stated by the inf-sup condition. This condition is known from the study of saddle-point

problems, and is often referred to as the Babuska-Brezzi condition due to their important

results in [9] and [10]. The condition can be stated as

inf
q∈Q

sup
v∈V

B(v, q)

||v||V ||q||Q
≥ b, (3.4)

for some b > 0. Fulfilling this condition often implies a staggered grid, such that the

pressure and the velocity are evaluated at different points. For a Spectral Element for-

mulation of this problem a valid choice of subspaces (V,Q) is
([
PN ∩H1

0

]3
, PN−2 ∩ L2

0

)
.

This will be referred to as the PNPN−2 formulation where PN denotes the space of poly-

nomials up to degree N . It was however proved by Guermond in [11] that for a particular

formulation of the Stokes problem the approximation spaces do not need to fulfill the

inf-sup condition. The numerical method corresponding to this formulation will for the

sake of convenience use the same polynomial degree for pressure and velocity. The sub-

spaces (V,Q) is therefore chosen as
([
PN ∩H1

0

]3
, PN ∩ L2

0

)
, and will be referred to as

the PNPN formulation.

Before the analysis of the N-S equations can be taken any further the theory behind the

Spectral Element Method will be presented in the following subsections.

13
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3.2 Finite element method

Finite element method (FEM) is one of the most widely used numerical methods applied

on problems within construction, flow simulation and many other areas. It offers a

precise mathematical foundation and due to the local support of the basis functions it

guaranties a sparse system. The decomposition of the geometrical domain into a finite

amount of elements, makes it possible to create general algorithms applicable to all kinds

of geometries. For the full mathematical foundation of FEM it will be referred to [8], but

some of the key properties will be stated here to provide a thorough understanding of

the spectral element method (SEM). Throughout this section p denotes the polynomial

degree of the basis functions, h represents the average grid size, E is the total number

of elements and d is the number of dimensions.

FEM provides an algorithm for solving any well-posed boundary value problem (BVP).

The mathematical formulation is obtained by first finding the Galerkin formulation with

a corresponding search space X and then choosing a discrete subspace Xp
h ⊂ X spanned

by the finite element basis functions {φpi }. The key property of the basis functions is

that they only have local support in a small part of the domain. This is what gives rise

to the resulting sparse linear system. By increasing the polynomial order, the number

of grid points used to define the polynomial will need to increase as well. This implies

either reducing the distance between the grid points or increasing the support of each

basis function. Both approaches will reduce the sparsity of the final matrix. Another

important aspect of FEM is the treatment of the domain Ω, on which a triangulation

{Th} is defined such that the original domain is divided into elements. By defining a

reference element and a general mapping function, all the local contributions can be

calculated by a generalized quadrature rule before being added to the global system of

equations. This is a process tailored for parallelization, and can be generalized for a

wide range of problems.

FEM is called a projection method since the solution uh ∈ Xp
h is a projection of the

actual solution u of the BVP onto the discrete space Xp
h. Provided that the initial BVP

is well-posed there exists two constants M,α > 0 known as the bounded and coercivity

constant such that the error of the solution can be reduced to a pure projection error.

14
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The result is known as Cea’s lemma,

||u− uh||X ≤
M

α
min
vh∈Xp

h

||u− vh||X , (3.5)

the solution uh provided by the Galerkin method is known as the orthogonal projection

of u onto Xp
h.

Before this section ends it is important to understand the two ways to increase accuracy

and the effects these two ways have on the algorithm. Assume the solution of the

BVP to be infinitely smooth and the domain be sufficiently regular. This yields an

error e = Chp, C being some positive constant. Factors such as geometric complexity,

condition number, non-linear operators and the continuity of the solution will all provide

slightly more complicated error estimates. However for a simpler BVP such as the

Poisson problem on the unit square, the error estimate is valid. A h-refinement will lead

to an algebraic convergence of order p, while the sparsity of the system is conserved

and the total algorithm does not change in any other way than increasing the number

of elements. Keeping h constant and increasing p will provide exponential decay of the

error, but the sparsity will be reduced and all integrals solved will require quadrature

rules of higher order. A formal statement and numerical validation of the error estimate

can be found in [7] chapter 2.6.

To sum up the discussion above a general error estimate from [8] is stated as a theorem,

Theorem 3.1. Let Ω = [−1, 1] and {Ωk} be the non-overlapping elements with a corre-

sponding element size hk. If u|Ωk
∈ Hσ(Ωk), then the following error estimate will hold

for any σ > p ≥ 1

inf
uh∈Xp

h

||u− uh||1 ≤ C

(∑
k

h2p
k |u|

2
p+1,k

)1/2

. (3.6)

3.3 Spectral methods

Spectral methods (SM) share a some of the mathematical ideas as FEM, but are not as

widely used in real life problems. There are many ways to apply SM, and in this thesis

15
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only the Galerkin version with numerical integration (sometimes referred to as G-NI)

will be considered and will be referred to only as SM. For a full introduction to SM and

its applications to BVP see [12]. SM can be reduced to an interpolation problem such as

FEM, and are interesting from a theoretical point of view due to its spectral convergence

rate which allows you to obtain solutions of extremely high accuracy. The most impor-

tant drawback of SM are the difficulties with applications to complex geometries. The

Fourier basis gives rise to a very efficient method, but is restricted to periodic boundary

conditions. Using the GLL-points and corresponding Lagrange polynomials allow the

system of equations surging from a BVP can be constructed in an elegant way, but it is

rarely sparse and often result in expensive calculations.

Applying SM on a BVP in one dimension requires a set of basis functions {ψi}N defined

on the whole domain Ω. The discrete space Xh(Ω) spanned by the basis functions

involves all polynomials up to degree N . A function u is projected onto Xh by the

relation

uh(x) =

N∑
i=0

aiψi(x). (3.7)

Where the coefficients ai are called the expansion coefficients. The basis and the be-

longing coefficients can be chosen in many different ways, in this thesis functions ψi will

be the Lagrange polynomials based on the Gauss-Lobatto-Legendre (GLL) nodes. The

reason for choosing these nodes is because it enables us to apply the Gauss-Lobatto

quadrature rule. This is one of several existing Gauss-quadratures, and the only one

allowing fixed endpoints which is the case for this thesis. For more detailed information

on GL-quadrature and other quadrature rules it is referred to [13]. The GLL-nodes

{ξi}N+1 are given as the solutions of the equation

(1− ξ2)L′N (ξ) = 0. (3.8)

LN being the Legendre polynomial of degree N , defined from the Sturm-Liouville prob-

lem

d

dx

[
(1− x2)

d

dx
Ln(x)

]
+ n(n+ 1)Ln(x) = 0. (3.9)

16
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With equations Eq. (3.8) and Eq. (3.9) the local spectral basis functions ψj can be

stated as

ψj(x) =
N∏
i 6=j

x− ξi
ξj − ξi

. (3.10)

{ξi} being the solutions to Eq. (3.8). Note that ψj(ξi) = δij . The expansion coefficients

in Eq. (3.7) are then chosen as ai = ui := u(ξi).

This definition of the expansion coefficients is convenient since the actual value of the

function in any point can just be read directly from the coefficients without having to

sum all the contributions from the different polynomials. Creating a basis for 2 and

3 dimensions is done simply by taking the tensor product of the basis functions in

each direction. To keep track of indices in this section i, j, k = 1, · · · , N is used for

the Lagrange polynomials in one direction while m, l, n = 1, · · · , Nd will be used for

the tensor product of the Lagrange polynomials spanning an entire element. For this

particular example l = i+N(j − 1) +N2(k − 1), such that the three dimensional basis

functions Ψl is given as

Ψl(x) = ψi(x)ψj(y)ψk(z). (3.11)

This expansion to multiple dimensions preserves the Ψl(ξm) = δlm. To clarify some of

the concepts the SM approach will be applied on the Helmholtz equation

−∆u+ λu = f in Ω, (3.12)

u = 0 on ∂Ω. (3.13)

Ω will for this example be defined as the unit square [−1, 1]2. Let us start by defining

the space V = H1
0 (Ω) and assuming f ∈ L2(Ω). The weak formulation after applying

the divergence theorem can now be stated.

Find u ∈ V st.

∫
Ω
∇u · ∇vdΩ + λ

∫
Ω
uvdΩ =

∫
Ω
fvdΩ ∀v ∈ V (3.14)

17



Chapter 3. background on numerical methods 18

To solve this using SM the discrete space Vh ⊂ V is defined as span{Ψl} following the

preceding definitions the discrete weak formulation is stated as

Find uh =
∑

l ulΨl ∈ Vh st.

∑
l

(
ul

∫
Ω
∇Ψl · ∇ΨmdΩ + ulλ

∫
Ω

ΨlΨmdΩ

)
=

∫
Ω
fΨmdΩ ∀Ψm ∈ Vh. (3.15)

The following step of this particular spectral method is evaluating the integrals by using

the GLL-quadrature rule, the resulting system of equations is then given as

∑
l

(
ul
∑
n

ρn∇Ψl(ξn) · ∇Ψm(ξn) + ulλ
∑
n

ρnΨl(ξn)Ψm(ξn)

)
(3.16)

=
∑
n

ρnfΨm(ξn), for m = 1, · · · , N2, (3.17)

where ρn is the quadrature weight for the nth node, and ξn is the vector containing the

coordinates to the nth node. Note that all the indices l,m, n = 1, · · · , N2. This can be

written in a compact matrix form as

(A+ λM)uh = f̃ , (3.18)

where the elements in the matrices and vectors are given as

Alm =
∑
n

ρn∇Ψl(ξn) · ∇Ψm(ξn),

Mlm =
∑
n

ρnΨl(ξn)Ψm(ξn) = ρlδlm,

(uh)l = u(ξl),

f̃m =
∑
n

ρnf(ξn)Ψm(ξn) = ρmf(ξj).

(3.19)

From these equations it is clear that the mass matrix M is diagonal and the right hand

side vector f̃ is easily calculated, while the stiffness matrix A is symmetric but full.

The method outlined in this section is similarly to FEM also a projection method, but

by applying a different set of basis functions the projection error is different as well.

This theorem and more information about spectral methods and their properties can be

found in [14].

18
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Theorem 3.2. Let Ω[−1, 1] and u ∈ Hσ(Ω). The projection of u onto PN for any σ ≥ 1

is given as

inf
vh∈PN

||u− vh||1 ≤ CN1−σ||u||σ. (3.20)

3.4 Spectral element method

In the early 1980’s the idea to combine FEM and SM came along to obtain the flexibility

and sparse properties of FEM combined with the spectral convergence rate provided by

SM. The result was the Spectral element method (SEM). Several formulations were

investigated mainly by Patera and Maday in the papers [15], [16], [17] with important

contributions from Fischer, Rønquist and several more. It is important to understand

that when solving the N-S equations the efficiency of the solution method is crucial.

The algorithm has to be parallelizable and the development of the super-computers and

computational clusters has played an important role in deciding which variants of SEM

is applied today. The idea is to divide the domain of the BVP into elements as in FEM

and then use spectral basis functions of higher degree with support only within one

single element.

In the previous subsection the power of spectral methods was illustrated on the unit

square in two dimensions. But the limitations when it comes to more complex geometry

rapidly affects the spectral convergence rate. Let Ω̂ be the reference element [−1, 1]d, the

standard procedure when working on a deformed geometry Ω with SM is to first create

a map F : Ω̂ → Ω. An example of this map is the Gordon-Hall procedure described

in Chapter 3.4.4. The Jacobian is then given as the transposed tensor derivative of F ,

which in two dimension is written as

J = (∇F)T =

∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

 , J = det(J). (3.21)

This allows us to transform both derivatives and integrals to the reference domain, let

ξ = [ξ, η]T denote the axis in the reference domain corresponding to x = [x, y]T in the
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deformed domain. The transformation is performed according to the following identities

dx = Jdξ∫
Ω
f(x)dx =

∫
Ω̂
f̂Jdξ

∇u = J−T ∇̂û.

(3.22)

Here û, f̂ are obtain by simply substituting x with F(ξ) and ∇̂ is the partial differential

operator wrt. ξ. The important thing to notice here is that whenever an integral

is solved and a derivative is introduced the Jacobian appears in the equation. When

applying the GLL-quadrature to solve the integrals, equality is guaranteed if and only if

the function integrated is of polynomial degree 2n− 1 or less, and the error gets bigger

with increasing polynomial degree. A higher order Jacobian could imply a large error

in the quadrature.

Although the whole domain Ω is deformed, the deformation of each element {Ωk} is

normally a lot less crucial. This gives SEM a huge advantage and allows it to obtain

accurate results even in complicated domains.

Let us again consider the Helmholtz problem Eq. (3.13), but this time on a more general

domain Ω. The set of elements {Ωk} is defined such that Ωi
⋂

Ωj is either empty, a vertex

or a line and Ω =
⋃K
k=1 Ωk. By applying SEM to Eq. (3.13) the corresponding weak

formulation can be stated.

For all elements Ωk Find uh,k ∈ XN
k such that

∫
Ωk

∇uh,k · ∇vh,kdΩ + λ

∫
Ωk

uh,kvh,kdΩ =

∫
Ωk

fvh,kdΩ ∀vh,k ∈ XN
k . (3.23)

Where XN
k = H1

0 (Ωk)
⋂
PN (Ωk). The same discretization procedure as performed for

the pure spectral case is now done for each of the subdomains Ωk,

∑
i

(
ui

∫
Ωk

∇ψi · ∇ψjdΩ + uiλ

∫
Ωk

ψiψjdΩ

)
=

∫
Ωk

fψjdΩ ∀ψj ∈ Vh. (3.24)

Since the elements can be deformed a Gordon-Hall map is constructed to map the

coordinates to the reference element Ω̂ = [−1, 1]d. Applying the identities from Eq.
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(3.22) to Eq. (3.24) yields

∑
i

(
ui

∫
Ω̂k

(J−Tk ∇̂ψ̂i)
T (J−Tk ∇̂ψ̂j)JkdΩ̂ + uiλ

∫
Ω̂k

ψ̂iψ̂jJkdΩ̂

)
=

∫
Ω̂k

f̂ψjJkdΩ̂ ∀ψj ∈ Vh.

∑
i

(
ui

∫
Ω̂k

∇̂T ψ̂iJ−1
k J−Tk ∇̂ψ̂jJkdΩ̂ + uiλ

∫
Ω̂k

ψ̂iψ̂jJkdΩ̂

)
=

∫
Ω̂k

f̂ψjJkdΩ̂ ∀ψj ∈ Vh.

(3.25)

Notice how the integrals depend on the local Jacobian Jk and its determinant Jk. The

local matrices Ak,Mk and the loading vector fk are gathered from each element. Equiv-

alently as for FEM the global matrices has to be assembled from all the local matrices

corresponding to each subdomain. This procedure is general and if the elements are

chosen to be sufficiently small it can be performed on almost any deformed domain as

opposed to SM.

3.4.1 Convergence properties

This subsection will present an error estimate that is comparable to Theorem 3.1 and 3.2.

The Spectral Element Method can as mentioned earlier be regarded as a projection

method similar to FEM and SM. It was proved in [18] that spectral convergence can be

achieved only by requiring the solution u to be sufficiently regular within each element.

This as opposed to pure spectral methods which requires regularity in the entire domain

is an advantage when working with turbulent flows in complex domains. For the sake

of clarity the relevant spaces for the following error estimates are repeated here, XN
k =

H1
0 (Ωk)

⋂
PN (Ωk), and PN,k =

{
v ∈ L2(Ω), v|Ωk

∈ PN (Ωk)
}

.

Theorem 3.3. Let Ω = [−1, 1] and {Ωk} be the set of non-overlapping elements. If

u|Ωk
∈ Hσ(Ωk) ∀ k, the following will hold for any σ ≥ 1

inf
vh∈XN

k

||u− vh||1 ≤ CN1−σ

(
||u||1 +

K∑
k=1

||u||σ,k

)
. (3.26)

It should be mentioned that the result in Theorem 3.2 holds for SEM as well. Note that

this result is for a spatial approximation of a function u, although SEM provides great

error estimates the solution of the N-S equations are also restricted by the errors due to

temporal discretizations. This will be further discussed in Chapter 3.5.
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3.4.2 Filtering

Although SEM provides spectral convergence in space, a non-sufficient resolution of the

smallest structures often leads to spurious oscillations and an unstable scheme as shown

in chapter 2.4.1.2 in [7]. In [19] a filter-based stabilization is introduced for SEM applied

on the Navier-Stokes equations. The idea is to project a part 0 < α < 1 of the solution

onto a polynomial space of lower order, explicitly they define the filter Fα as

Fα = αIN−1 + (1− α)Id. (3.27)

Where IN−1 is the projector from PN to PN−1 and Id is the identity operator. The

parameter α is recommended to be somewhere in the interval (0.05, 0.3). The effect of

Fα in Legendre space is analysed by Pasquetti and Xu in [20]. A quick demonstration

of how the filter works will however be given here.

Let u =
∑N

i=0 ûiLi be some function, where Li denote the Lagrange polynomial of order

i and ûi the corresponding coefficient. The effect of the filter can be given as

Fαu = (1− α)ûNLN + ûN−1LN−1 + (ûN−2 + αûN )LN−2 +
N−3∑
i=0

ûiLi. (3.28)

From this identity the effect of the filter becomes clear, it is simply removing a part

α from the highest mode N to the mode N − 2. The rest of the coefficients remain

unchanged. For a full derivation and discussion on this matter it is referred to chapter

6.5.1 in [7].

The filter in Eq. (3.28) is in this thesis applied such that the k highest Legendre modes

are dampened with coefficients αi = (k−ik )2α0, with α0 being the filter constant for the

highest mode. The action of the filter can therefore be described as a matrix equation

in two steps, first adding the contribution from the higher polynomials to the lower ones

and then subtracting the contribution from the higher polynomials. Let u be the vector

containing the Legendre coefficients.

u∗ = (I + Fα,k)u,

u∗∗ = (I − Iα,k)u∗.
(3.29)
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In this case Iα,k is a diagonal matrix diag(0, 0, · · · , αk−1, αk−2, · · · , α0) while Fα,k is also

sparse and with the same non-zero entries as Iα,k, but this time they are located on the

second sup-diagonal (removing the 2 first zeros).

(Iα,k)i,j = δi,jαi−(n−1), if i > n− k + 1,

(Fα,k)i,j = δi,j+2αi−(n−1), if i > n− k + 1.
(3.30)

The filter is proved to be an effective stabilization method and it preserves the spectral

convergence rate. Another property of interest is that the filtering procedure does not

imply dissipation of energy, let the energy norm be defined as E(u) = ||u||2L2
. By

applying Parseval’s identity [21] the difference in energy between the original solution

and the filtered solution is given as

ε = E(u)− E(Fαu) (3.31)

= 2αûN (ûN ||LN ||2 + ûN−2||LN−2||2)− α2û2
N (||LN ||2 + ||LN−2||2) (3.32)

≈ 2α

N

[
(1− α

2
)û2
N + ûN ûN−2

]
, (3.33)

which can take both positive and negative values depending on the sign and size of

ûN ûN−2. By applying the known norm of the Legendre polynomials the deduced ab-

solute error ε of the filtered energy is of order ε ∼ α/N . The approximation ||LN ||2 ≈

||LN−2||2 ≈ 1/N have been used to achieve the result in Eq. (3.33).

3.4.2.1 A physical approach to the filter

A good physical description of the filter has not yet been presented, this subsection

is an attempt to show the resemblance between known properties of some differential

equations and the mathematical filter described in the previous section.

Let u be some smooth continuous function, and let ū = [û1L1(x), û2L2(x), · · · ] be the

vector with the corresponding Legendre basis times the appropriate coefficients. The

matrix Pk is a diagonal matrix with ones on the k last entries and 0 on the rest.

23



Chapter 3. background on numerical methods 24

Let us consider the two initial value problems

∂v

∂t
= λ1∆v, v(0) = v0,

∂u

∂t
= −λ2u, u(0) = u0,

(3.34)

with λ1, λ2 > 0. The second IVP in Eq. (3.34) has a known analytical solution u =

u0e
−λ2t which decays exponentially in time. The first IVP is known as the heat equation

and is known to diffuse or smooth out the initial condition. Now let the operators −1

and ∆ on the right hand sides of Eq. (3.34) be applied only on the k highest Legendre

polynomials. By applying the Legendre decomposition and the truncated operators the

system can then be written as

∂v̄

∂t
= λ1∆Pkv̄

T , v(0) = v0,

∂ū

∂t
= −λ2Pkū

T , u(0) = u0.

(3.35)

The Laplace operator applied in a Legendre space is known to take a sparse upper

triangular form with entries only on even sup-diagonals. By naming this matrix A the

entries are given as

Aij = 4||Li||−2

(j−i)/2−1∑
k=0

||Lj−1−2k||−2, if 2 ≤ j − i = mod(2). (3.36)

This relation is derived in Appendix A.

The matrix-matrix product APk will lead to a Laplacian matrix where the N − k first

columns are zero while the last k remains unchanged. This modified Laplacian will be

denoted A∗. Doing a first order implicit Euler on Eq. (3.35) can be written as

(I − λ1∆tA∗)un+1 = un =⇒ un+1 = (I − λ1∆tA∗)−1un,

(I + λ2∆tPk)u
n+1 = un =⇒ un+1 = (I + λ2∆tPk)

−1un.
(3.37)

Notice the resemblance to the application of the filter in Eq. (3.29). The second step is

identical if

αi = λ2∆t/(1 + λ2∆t) ≈ λ2∆t. (3.38)
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The truncated Laplacian A∗ is not equal to the corresponding filter matrix Fα,k, but

there are some similarities between these to matrices. They are both upper triangular

with zeros along the diagonal and positive entries on the second sup-diagonal. The

main difference is that the Laplacian applied on the Nth Legendre function LN affect

all the terms LN−2, LN−4, · · · , while the filter only affects LN−2. To illustrate this

effect Figure 3.1 shows the non-zero entries of the Laplacian matrix, the red dots indicate

the non-zero entries that are not present in the filtering matrix. If however filtering is

applied only on the last two nodes, then Fα,2 = A∗ if αi = λ1∆tAn−2−i,n−i, for i = 0, 1

Using the known formula of the norm from Eq. (A.2) we can write this as

αi = λ1∆t(2(n− i)− 3)(2(n− i)− 2). (3.39)

If one were to insist that the Laplacian should work locally in Legendre space, in other

Figure 3.1: The non-zero entries of the Laplacian matrix applied on the last eight
Legendre modes. The blue dots are present in both the Laplacian matrix and the filter

matrix while the red dots are only non-zero for the Laplacian.

words imposing Aij = 0 for j − i > 2, then the Laplacian and the filtering would have

the same non-zero entries and by choosing αi as indicated in Eq. (3.39) would yield

equality. Notice in particular the similarity of applying a filter and including a SGS

model, with νT as a constant in Eq. (2.25) the term ∇νT sij reduces to νT∆u.

This way of considering the filtering procedure is similar to the variational multiscale

(VMS) approach to LES first introduced by Hughes [22]. This method is based on the

assumption that the unresolved structures have a negligible effect on the larger scales,

hence the SGS model is only included for the small but still resolved scales of motion.
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3.4.3 Aliasing

When evaluating the integral surging from the non-linear term in the N-S equations the

polynomial to be integrated can be of order 2P +(P −1) or even higher depending of the

Jacobian. Notice that the number of GLL-nodes are N = P + 1, and the corresponding

quadrature rule is said to be of order N . An Nth order GLL-quadrature is known

to solve an integral exactly when the integrand is of order 2N − 3 = 2P − 1 or less.

Hence the error surging from this evaluation can be of significant size. Applying a

quadrature rule of a not sufficiently high order results in an amplification of the lower

modes, attempting to compensate for the higher order modes omitted. Since a spectral

element method arguably has a good accuracy these “variational crimes” should not be

committed, and it is therefore common practice to solve this particular integral using

a quadrature rule of order 3/2N . The concept and illustrative examples are given in

Chapter 2.4 in [7]. Aliasing is however not always a necessity, if the grid resolution

is sufficiently fine the non-linear term will not need to be solved using a higher order

quadrature rule, an example of this is presented in Chapter 6. This is one of the time

vs. accuracy questions one have to decide for each problem. Instead of applying the

GLL-quadrature ”designed” for the basis functions the functions has to be evaluated in

a new set of GLL-points with 3/2 as many nodes. This is a costly process and should

only be applied when absolutely necessary.

3.4.4 Gordon-Hall algorithm

Working with complex geometries often requires one or more elements to be deformed.

The integrals surging from the weak formulation are solved using a quadrature rule over a

reference domain Ω̂ = [−1, 1]d for efficiency and implementation purposes. The Gordon-

Hall algorithm is a general method that creates an isometric map from an arbitrary

simply connected domain to Ω̂. Let x̃ be the mapping function from the reference

domain to the physical domain given on the form

x̃ =
∑
i

∑
j

∑
k

xijkli(r)lj(s)lk(t). (3.40)
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Figure 3.2: An illustration of how the Gordon-Hall algorithm creates a map from the
reference element to the deformed element. The GLL-points are drawn along the edge
Γk,0 on the deformed element which corresponds to s = −1 on the reference element.

li being the ith Lagrange polynomial. The full description of the algorithm with help-

ful figures can be found in [23] chapter 4. Without going to much into the mathe-

matical foundation of this method a more intuitive and implementable presentation of

the method will be provided in this chapter. For simplicity a two-dimensional domain

will be considered here, and the 3D case will be an easy expansion of the algorithm

presented here. Consider a deformed domain Ω ∈ R2 ( Figure 3.2), with Γi,j repre-

senting the discrete boundary coordinates. The four vertices can then be expressed as

Γ0,0,Γ0,N ,ΓN,0ΓN,N . Let φ0, φN be defined as

φ0(ξ) =
1− ξ

2
, φN (ξ) =

1 + ξ

2
. (3.41)

Let {ξ0, . . . , ξN}N+1 = {−1, . . . , 1}N+1 be the GLL-points corresponding to the La-

grange polynomial of order N . An important property for the functions in Eq. (3.41) is

that φ0(ξ0) = φN (ξN ) = 1 and φ0(ξN ) = φN (ξ0) = 0.
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The algorithm provides a stepwise routine depending on the complexity of the domain.

The first step is to create a mapping to a polygon spanned from the vertices of Ω.

x̃i,j = Γ0,0φ0(ri)φ0(sj)

+ Γ0,Nφ0(ri)φN (sj)

+ ΓN,0φN (ri)φ0(sj)

+ ΓN,NφN (ri)φN (sj)

(3.42)

If the edges are straight the algorithm ends here, but for curved edges a second step is

performed adding the deformation of the edges.

x̃i,j = x̃i,j + (Γi,0 − x̃i,0)φ0(sj)

+ (Γi,N − x̃i,N )φN (sj)

+ (Γ0,j − x̃0,j)φ0(ri)

+ (ΓN,j − x̃N,j)φN (ri)

(3.43)

In 3D the additional knowledge of the faces may be applied to create mappings from

elements with deformed faces as a third step. The only difference when applying this

algorithm in three dimensions is that you need to include φ for a third coordinate tk

and the number of vertices and edges are 8 and 12 instead of 4 and 4.

3.5 Time integration for incompressible N-S

So far the spatial discretization by SEM has been described in detail and so far been

proved to yield spectral convergence, but for unsteady flows the development in time

is determined by the temporal discretization and puts an additional restriction on the

convergence rate. Because the N-S equations are computationally demanding to solve

exactly a large number of splitting methods have been developed, all attempting to

find the ideal balance between speed and accuracy. The most common set of solution

methods are called projection methods, which first calculates a velocity field that does

not fulfill the divergence-free condition and then projecting this field onto a divergence-

free space. For an extensive discussion regarding projection methods it is referred to [24].

The projection is done by solving a Poisson equation for the pressure.
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3.5.1 Operator-splitting techniques

In this chapter aj , bj will denote the coefficients for some explicit and implicit scheme.

Let us consider a simplified transient problem

du

dt
= f(u, t)u+ g(t)u. (3.44)

f is here a function of u and t, while g is only dependent of the time t. Let superscript

denote the time step, such that gn = g(n∆t) for some fixed time step ∆t. One step

applying a kth order Backward Difference scheme (BDFk) yields

k∑
j=0

bju
n+1−j = ∆tfn+1un+1 + ∆tgn+1un+1. (3.45)

Now notice that fn+1 = f(un+1, tn+1) requires that u is known at time tn+1 which is

not achievable at the current step. This term is therefore approximated by a kth order

explicit scheme leading to

k∑
j=0

bju
n+1−j = ∆t

k∑
j=0

ajf
n−jun−j + ∆tgn+1un+1. (3.46)

Now the terms can be ordered such that only the implicit terms are present on the left

hand side,

(b0 −∆tgn+1)un+1 = −
k∑
j=1

bju
n+1−j + ∆t

k∑
j=0

ajf
n−jun−j . (3.47)

This way of solving Eq. (3.44) allows easy invertible terms to be solved implicitly while

non-linear terms can be extrapolated. In the Navier-Stokes equation this strategy will

be applied to split the non-linear term from the rest. In this thesis the schemes BDFk

and a kth order extrapolation (EXTk) for k = 2, 3 are applied, the coefficients can be

found in [25].

It should be mentioned that the explicit/implicit schemes introduced in this section are

stable only for operators with eigenvalues below a certain limit γ that depends on the

scheme. When applied on the N-S equations it is the convection term ∆tM−1C(u)u as

observed in Eq. (3.58) that is evaluated by an explicit scheme and it is these eigenvalues

that needs to be constrained. Let he and ue denote the grid size and the maximum
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absolute velocity in element e. According to [7] the maximum eigenvalue of M−1C(u)

can be estimated as λmax ≈ cmaxe u
eP 2/he, where c is some constant obtained from

numerical experiments and analytical results. Notice that ∆xemin = hemin/P
2 due to

the distribution of the GLL-nodes. This relation leads to an easily computable stability

criteria analogous to the CFL-condition,

∆tλmax = cuemax
∆t

∆xemin
≤ γ. (3.48)

This inequality is used to adjust the time step such that the development in time is

maximized within the stability criteria for the scheme.

3.5.2 Operator integrating factor schemes (OIFS)

The operator-splitting method described in the previous chapter may lead to an unstable

scheme, and require small time steps. OIFS is a similar method but it offers a more

stable scheme and is more efficient by using a multi-stage method that allows larger

advances in time. The presentation of the method is presented here in a computational

fashion, for a full description and derivation of the method it is referred to Maday et

al [26].

Throughout this section the NS-equation will be considered in its operational form as

introduced in Eq. (2.11)

M
du

dt
+ C(u)u = −Au +DT p+M f , Du = 0 (3.49)

Now let Q(t) be an operator such that Q(tn+1) = I and

dQ(t)Mu

dt
= Q(t)M

du

dt
+
d

dt
[Q(t)M ] u, (3.50)

= Q(t)M
du

dt
+Q(t)C(u)u. (3.51)

This way Eq. (3.49) can be written as

dQ(t)Mu

dt
= Q(t)(−Au +DT p+M f). (3.52)
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Evaluating this equation with a BDFk-scheme results in a system

k∑
j=0

bjQ(tn+1−j)Mun+1−j = ∆t Q(tn+1)(−Aun+1 +DT pn+1 +M fn+1). (3.53)

Applying the fact that Q(tn+1) = I enables Eq. (3.54) to be written as

b0Mun+1 +

k∑
j=1

bjQ(tn+1−j)Mun+1−j = ∆t(−Aun+1 +DT pn+1 +M fn+1). (3.54)

Notice how all the easily invertible operators are evaluated implicitly, while the convec-

tive non-linear term is hidden in the BDFk scheme. OIFS allows the terms in the sum to

be calculated in an elegant fashion. First of all the auxiliary variable ũj is defined such

that Q(tn+1−j)Mun+1−j = M ũj thus enabling the summation expression to be found

by solving the initial value problem

M
dũj
ds

= −C(ũj(s))ũj(s), tn+1−j ≤ s ≤ tn+1

ũj(t
n+1−j) = u(tn+1−j).

(3.55)

Notice how the integrational factor Q(t) is never evaluated directly.

The final scheme applied for solving Eq. (3.49) when applying OIFS consists of one

implicit scheme for solving Eq. (3.54) and an explicit multistage scheme for solving Eq.

(3.55). When applied in this thesis the first scheme corresponding to the bj coefficients is

an implicit BDFk-scheme while the second is an explicit 4th order Runge-Kutta scheme

(RK4). Solving Eq. (3.55) with a multi-stage method implies a bit more work per time

step, but as it stabilizes the routine larger advances in time can be made and the overall

efficiency improves.

3.5.3 Fractional step - (PNPN)

The formulation applied in this method is justified by Guermond in [11] and is based on

the following formulation of the Stokes problem

−µ∆u +∇p = f in Ω, u = 0 on ∂Ω,

∆p = ∇ · f in Ω, ∂np = (−∇×∇× u + f) · n on ∂Ω.
(3.56)
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This formulation is obtained by taking the divergence of the momentum equation and

applying the divergence-free condition to obtain the second equation in Eq. (3.56). The

vector identity −∆u = −∇∇·u+∇×∇×·u combined with the divergence-free condition

yields the boundary condition for the pressure.

Fractional step exploits this algebraic splitting and the algorithm can be divided into

four separate steps. The momentum equation will still be considered in its operational

form

M
du

dt
+ C(u)u = −Au +DT p+M f . (3.57)

Where M,A,D,C(u) denotes the mass integral, Laplacian, gradient and non-linear op-

erator. A schematic overview of the method is stated below, where the equations on the

right hand side are solved and the updated solution is stated on the left hand side. By

performing these steps the solution (u, p) is developed one time step from (un, pn) to

(un+1, pn+1).

u∗ = −
k∑
j=1

bju
n+1−j + ∆tM−1(

k∑
j=1

ajC(un+1−j)un+1−j +M fn+1),

DM−1DT pn+1 =
1

∆t
Du∗,

u∗∗ = u∗ + ∆tM−1DT pn+1,

(b0M + ∆tA)un+1 = Mu∗∗.

(3.58)

As earlier mentioned this method is convenient because it allows us to handle the different

terms with different solution techniques. Hence the term including the non-linear skew-

symmetric advection matrix C(u) will be approximated by an kth order extrapolation

(EXTk) scheme. The first step can also be evaluated in an OIFS procedure to gain

stability. This implies using the discretization introduced in Eq. (3.54) with only the

forcing function on the right hand side, and solving the IVP Eq. (3.55) with RK4 to

obtain u∗.

The second equation is the Poisson equation for the pressure which assures a divergence-

free velocity field, and it is this step along with step three that allows this to be classified

as a projection method.
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Note that p ∈ L2 ⊃ H1 hence the Poisson equation is somewhat different from the

one normally studied in textbooks. Another difficulty is the treatment of the boundary

conditions. Ideally the BC’s should be determined by the velocity field un+1, but since

this solution is yet to be calculated the intermediate velocity field u∗ is used to impose

the boundary conditions. With pn+1 known the third equation is simply an update of

the velocity to impose the divergence-free condition. Now the last equation is solved

implicitly due to the nice symmetric structure of the Laplacian operator. This results

in a system equivalent to the Helmholtz problem as discussed in Chapter 3.3 and 3.4.

This method provides an efficient algorithm, and by subtracting 1/∆tM−1DT pn from

the first equation in 3.58 the Poisson equation can be solved for δpn+1 = pn+1 − pn

instead of pn+1. This yields a scheme with errors in the L2-norm of orders O(∆t) for

pressure and O(∆t2) for velocity as stated in [24].

3.5.4 Discrete splitting - (PNPN−2)

The fractional step method is a splitting method based on the idea that two analytical

operators can be applied in sequence and still provide a good result. The method

presented in this section makes no such assumption and splits the discrete system of

equation instead of applying the operators in sequence. The algorithm presented here

is similar to the Uzawa algorithm, but with some adjustments to make it more efficient.

The detailed description regarding the implementation in Nek5000 is found in [27].

To start the explanation of the method we continue considering the incompressible N-S

equations in their operational form

1

∆t
Mun+1 −DT pn+1 +Aun+1 = M f̃n+1, Dun+1 = 0. (3.59)

The outline of the method is based on Eq. (3.3), but with some changes. Since this

is a method for the unsteady N-S equation the time derivative has to be included, and

the non-linear term which is treated explicitly as studied in Chapter 3.5.1 and 3.5.2

is added as a part of the right hand side function. So M f̃n+1 does in this equation

incorporate both the original forcing function, the non-linear term and the explicit part

of the time-derivative from the BDFk-scheme. By doing this reformulation the unsteady

Stokes problem is obtained and algorithms studied for this problem can be applied. By
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defining the matrix H = 1/∆tM +A Eq. (3.59) can be written as

H −DT

D 0

un+1

pn+1

 =

M f̃n+1

0

 . (3.60)

The splitting that will be done in the next step will use the pressure difference δpn+1 =

pn+1 − pn as was done for the fractional step algorithm. Eq. (3.61) can be restated as

H −DT

D 0

un+1

δpn+1

 =

M f̃n+1 +DT pn

0

 . (3.61)

Solving this exactly is known as the Uzawa algorithm and is computationally demanding

and converge slowly. To overcome this issue simplifications and reformulations are made

which saves a lot of computational time at the cost of accuracy. The system is rewritten

using a LU-factorization of the matrix in Eq. (3.61), which will allow the solution to be

found in two separate steps. This requires the inverse of H that will be replaced by an

approximation Q ≈ H−1. The matrix decomposition is given as

H −DT

D 0

 ≈
 H 0

−D −DQDT

I −QDT

0 I

 . (3.62)

Applying these two matrices leads to a two step algorithm on the form

 H 0

−D −DQDT

 u∗

δpn+1

 =

M fn+1 +DT pn

0

 , (3.63)

I −QDT

0 I

un+1

δpn+1

 =

 u∗

δpn+1

 (3.64)

To clarify what is going on, a brief description of each step is given, The first step

in Eq. (3.63) corresponds to an initial solution of the velocity using the old pressure

value, notice that this will not guarantee a divergence-free velocity. The second step

in Eq. (3.63) is the discrete Poisson equation for the pressure and will make sure that

the pressure corresponds to a divergence-free flow. The first step in Eq. (3.64) is just a

projection of the velocity field onto a divergence-free space. The final step is of no real

value and will instead be replaced by an update of the pressure pn+1 = pn + δpn+1.
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In this thesis the approximation of the inverse Helmholtz matrix was of first order,

Q = ∆tM−1. Higher order approximations can be made, but this is a convenient

definition since M is a diagonal matrix.

Unlike the fractional step method this way of solving the N-S equations requires the

discrete spaces for velocity and pressure to meet the inf-sup condition stated in Eq.

(3.4). It also induces a discrete splitting error. The splitting error induced by this

scheme has been a topic of discussion for many years, see for instance the discussion

between Perot and Abdallah in [28], [29] and [30]. The author will not choose sides in

this debate, but state that there will be some numerical differences between these two

methods which will be presented in Chapter 6.

The method yields a scheme with errors in the L2-norm of orders O(∆t) for pressure

and O(∆t2) for velocity as proved in [24], for a second order BDF scheme.
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Chapter 4

Application of Nek5000

Many numerical solvers for turbulent flows are available on the market. From large

commercial softwares such as Fluent which runs as a black-box solver, to full open-

source codes such as Nek5000 and OpenFOAM. The solvers can vary in the numerical

method; Finite volume, Finite Difference, Finite Element, Spectral Element etc., the

particular algorithm for resolving the pressure-velocity coupling, for instance fractional

step, pressure correction, inexact factorization and Uzawa. The type of simulation

available also varies from solver to solver, whether they apply RANS, LES, DNS or

a variety of these. Although most solvers offer multiple of the settings listed above it

is important to be aware of their strengths and weaknesses before choosing which one

to use. This chapter is devoted to the handling of Nek5000, and can serve as a brief

introduction to the code.

4.1 Nek5000 basics

Nek5000 is a flow solver developed mainly by Paul Fischer and has through the past 20

years had several contributors. It is an open-source code applicable to many different

types of flow and it has been put a lot of effort into the parallelization of the code,

guaranteeing optimal speedup. All the parallelization is accessed through subroutines

and functions, enabling the user to make advanced functions without having to deal

directly with the MPI library. With SEM as the numerical method applied it is possible

to obtain very accurate results.
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Nek5000 provides some basic tools for generation of mesh. For more complex geometries

this tool cannot compare with more visual softwares such as ICEM from ANSYS that

exports mesh to several numerical solvers such as Fluent and Nastran. An automatic

way of converting a mesh created in ICEM to the format required by Nek5000 is therefore

very useful. The way the mesh is created in this thesis is visualized in Figure 4.1.

ICEM
Element grid

Nek5000
GLL-nodes

mshconvert.msh .rea

Figure 4.1: Visualization of how the mesh is created. The elemental mesh is first
generated using ICEM, the script mshconvert converts this to a .rea-file and finally the

distribution of the GLL-nodes is done during the initialization in Nek5000

So far Nek5000 has supported three automatic routines for generating curved edges;

circles in 2-D geometries, spherical shell elements and a general 2nd degree interpolation.

Further manipulation of the element edges is left to the user to define manually in

usrdat2 for each particular problem. One of the objectives of this thesis is to make

Nek5000 more user-friendly and create automatic routines to handle complex geometry.

Before the work regarding the mesh routines are further elaborated an overview of the

file structure will be presented.

4.2 Editable files

Figure 4.2: Visualization of how the file structure in Nek5000 is built up.

Working with Nek5000 requires knowledge to some practicalities. The program is re-

compiled for every case and the user specify all the necessary information in the three

files {.rea,.usr,SIZE}. .usr and SIZE are compiled with the standard Nek5000 library

using makenek which creates the executable file nek5000, they can be considered the

surface and the core of the entire program. The .rea file contains case-specific informa-

tion read during the initialization of the compiled program. The user guide [25] contains
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a tutorial that explains the necessary steps on how to get started with Nek5000. The

next chapters will try to give some understanding on how the user is able to make the

changes necessary for each case. Figure 4.3 illustrates how the files work together.

4.2.1 SIZE

Since Nek5000 is mostly based on Fortran77 all memory allocations are done statically

and must be specified explicitly before runtime. Most of the variables used to determine

the memory usage are stated in SIZE. The size of the working arrays necessary to perform

the calculations are mostly defined by the upper limits of elements, processors, scalars

and of course the polynomial degree of the local Lagrange functions. These variables

define the sizes of almost all the arrays used in the program so it is important to define

these variables as accurately as possible to optimize memory usage. The SIZE file can

be considered as the necessary base of Nek5000.

4.2.2 .rea

Lines Section Name Specifications

103 PARAMETERS All problem-specific variables
K PASSIVE SCALAR DATA Convective and diffusive constants for scalars
K LOGICAL SWITCHES Boolean variables defining the solution method
E MESH DATA All nodes and elements are specified here
E CURVED SIDE DATA All the curved sides are specified here
E FLUID BC BC type for all elements and their faces
E THERMAL BC Thermal BC type for all elements and their faces
K PRESOLVE/RESTART Filename(s) of an initialized solution
K INITIAL CONDITIONS possibilities to specify IC further
K OUTPUT FIELD information that will be written to file

Table 4.1: An overview of the different sections in .rea. E represents a predefined
number depending on your problem which scales roughly as the number of elements,

while K ≈ 1− 25 are user defined numbers.

In .rea all the problem specific parameters are given. While the content in SIZE is an

absolute necessity to even compile the program, .rea contains variables that are not used

until the initialization of the case. The structure of the file is given in Table 4.1. Of the

103 variables specified in the beginning of the file there are roughly 50 of them that are

used. Note that apart from the mesh information .rea restricts itself to single variables

and boolean flags while .usr needs to be applied for more advanced implementations.
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4.2.3 .usr

This file contains a series of standard routines open for modification by the user. In

addition the user is free to specify new routines if needed. A description of these routines

are given in the Nek5000 User manual [25]. A list of those frequently used for this thesis

are described below,

• userbc - Define the boundary conditions on the inflow boundary.

• uservp - Define variable properties, impose the eddy viscosity when applying LES.

• userchk - Read inflow data, and specify the output.

• usrdat2 - Project the geometry onto a deformed general surface. The details of

how this routine is used will be specified further in Chapter 5.

• usrdat3 - Defines the interpolation algorithm that is applied to the inflow data.

In addition to these routines all user-defined functions are specified in this file. The LES

implementation in Nek5000 is based on several subroutines in addition to those stated

above. A list of some of the variables and functions applied for the implementations in

this thesis are stated in Appendix B. The .usr file can be considered as the surface of

Nek5000, easily accessible for the user.

4.3 The basics of the solver

The most important building blocks in Nek5000 are the fluid and heat functions that

solves the N-S and passive scalar equations. The N-S solver works in different ways

depending on the mathematical formulation enabled whereas the PS equation, which

does not depend on the pressure, is solved similarly for PNPN and PNPN−2. For the sake

of clarity, Figure 4.3 shows how the algorithms are called from the main routine. This

is a simplified flow chart that does not include choices such as filters, preconditioners,

LES-model, de-aliasing etc. but it explains how the two main algorithms are selected

using the boolean variable ifsplit.
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ifsplit ?

Heat Heat fluidfluid

Discrete splitting  Fractional step  Passive scalar solver  

Yes:  PNPNNo:  PNPN-2

Figure 4.3: Visualization of the steps in Nek5000.

The description of the routines corresponding to discrete splitting and fractional step

are found in Chapter 3.5.4 and 3.5.3. For further details regarding the implementation

in Nek5000 it is referred to [27] and [31].

As mentioned before an important difference between these two implementations is the

fact that the PNPN implementation is based on an analytical splitting algorithm, while

the PNPN−2 formulation is based on a splitting of the discrete scheme. The boundary

condition of the pressure Poisson equation in the fractional step method is often men-

tioned as a major difference between these two schemes, and a reason to choose the

latter. It is however stated and proved in for instance [24] that the discrete splitting

also introduces an erroneous boundary condition weakly.

4.4 Nek5000 for complex geometries

Nek5000 has its own mesh generator prenek that allows the user to define geometries

and curves using analytical expressions. This tool does however have limited visual

support, and can not compare with for instance ICEM when working with more complex

geometries.

For curved geometries that can be expressed analytically such as bent cylinders, ellipsoids

etc. the recommended procedure is to project the points of interest onto the surface in

usrdat2. Even for a simple shape such as a sphere some implementation has to be done

and it demands that the user has knowledge to Fortran77 and the structure of Nek5000.

The necessary implementation consists of two steps
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1. determine the faces that belong to the deformed surface

2. project the predefined GLL-points onto the deformed surface

This can be done without too much work for shapes with a known analytical expression

such as a cylinder or a sphere, but for some general CAD geometry it is no way to

perform this projection routine. This is a vulnerable point for a SEM solver since the

elements generated by the mesh are relatively coarse. Many Finite volume based solvers

do not support curved elements simply because the complex geometries are resolved

with a sufficiently high resolution and it is of no interest to approximate them any

better. However for a spectral element solver it is necessary to address this problem

since spectral convergence for the approximated solution in PN is not achievable if the

geometry is only represented in P1 or P2.

4.4.1 converting mesh from ICEM to Nek5000

For more advanced geometry it is considered a necessity to have some visual mesh

generator. In this thesis all of the meshes have been made in ICEM and then converted

using the python script mshconvert as illustrated in Figure 4.1. Since a lot of the work

done regarding the mesh was done based on this script a brief description will be given

here.

ICEM is able to write mesh files for many different solvers, including Fluent and Nastran.

The original mshconvert script can take any of these two formats as input and write

a corresponding .rea file with a predefined parameter list. It supports curved edges

by applying the midpoint notation, and all velocity boundary conditions available in

Nek5000. It also has a propagation parameter for a cylinder, this allows element edges

inside the domain to be affected by the curvature of the geometry. The idea is that a

smooth transition of the element deformation, will improve the Jacobians and lead to

better accuracy.
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Chapter 5

Implementation

This chapter aims to present the implementations done in this thesis. The routines

implemented are meant to develop Nek5000 functionalities in the encounter with complex

geometries.

As shown in Figure 4.1 the coarse element grid is created in ICEM and then converted

using the existing python script mshconvert while the distribution of GLL-nodes and

the simulation itself was performed in Nek5000. The input file .rea contains exact

information about the corners, limited information about the edges, and no information

about the faces of the elements. Hence the distribution of the GLL-nodes on a non-

regular surface requires data exceeding the one in .rea.

Two advancements have been made in this thesis regarding the work with irregular

geometries in Nek5000. The first part is a fully automatic procedure that projects any

edge onto a circle segment. This is a convenient method when working with cylinder

geometries and other similar shapes. An equivalent routine exists for 2D geometry, and

some special cases of 3D geometry as well. The routine created for this thesis is however

a general method in 3D that allows an edge to be specified as a circle segment in any

plane independent of the coordinate axes. The second part is an attempt to improve

the possibilities to work with general boundary surfaces by creating a semi-automatic

procedure allowing the user to represent any geometry with polynomials of the same

order as the basis functions for the velocity. The algorithms are presented in Chapter 5.

Propagation of curved geometry was also experimented with. The effect observed on

the grid was very small, and a similar test was done in two dimensions on an annulus
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by Korczak and Patera [17]. Their results suggests that the accuracy is not affected in

any significant way by doing a similar propagation. Based on these results and my own

observation it was decided to rather focus on the two routines mentioned above.

5.1 Project edges onto a specified arc

The Gordon Hall (GH) algorithm that is described in Chapter 3.4.4 was already imple-

mented as a function in the Nek library. By defining the GLL-nodes on the curved edges

such that they correspond to an arc, the GH-algorithm is able to distribute the internal

nodes accordingly.

The curved edges are specified in .rea and have until now been read as a second degree

polynomial or as a part of a spherical shell. The routine xyzarc() was created to process

curved edges specified in .rea with a radius and a center. It can be considered as an

alternative to the already implemented xyzquad() in genxyz.f which generates curved

edges represented as second order polynomials. The algorithm is described below and

Figure 5.1 gives a visual representation of the situation.

The two end nodes of the edge are denoted a and b. The midpoint of the linear edge

is named c, while θ is the full angle of the circle sector, cc is the center coordinates, g

denotes the vector containing the GLL-points in [−1, 1] and r will be the radius.

l = a-b ! vector between the corner nodes

c = (a+b)/2 ! midpoint location

h = c-cc ! height of the framed triangle

θ = arctan(abs(l)/2* abs(h)) ! half the angle of the circle sector

g = g*θ ! angles to the GLL -points on the circle -sector

!---------- Finding the intersecting points ----------!

!---- x on the line l, and extend x-cc to the arc ----!

do k=1,lx1 ! for the number of nodes in one direction

α = h*tan(g[k]) ! offset from the midpoint on l

x = c-α*l/abs(l) ! actual coordinate on l

m = x-cc ! hypotenuse of the imposed triangle

edge(k) = cc+r*m/abs(m) ! final coordinate on the arc

enddo

This code defines the GLL-nodes on a circle sector corresponding to the radius and circle

center provided in section CURVED SIDE DATA in .rea. The remaining operation is to
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call the Gordon Hall algorithm and create the internal GLL-points. To make this imple-

a b

cc

c

θ
h

α
dθ

Figure 5.1: A sketch of the curved edge and the variables necessary to calculate the
projection

mentation fully automatic a small change in the script mshconvert was also necessary.

Since ICEM provides the midpoints of the curved edges, a function points2circ was

added to convert the midpoint information originally provided to a circle center and its

corresponding radius.

5.2 General surface projection

The routine xyzarc() enables the user to more accurately represent circular edges. For

more complex geometry such as actual terrain and other surfaces without any analytic

expression, large elements make the geometrical representation difficult. Theoretically

the GLL-points can be projected onto a non-analytical surface, but since the element

mesh is created in a different program the necessary information is not available to

Nek5000. The idea is to create an additional surface mesh in ICEM such that the nodes

in this mesh describes the surface fine enough to distribute the GLL-nodes correctly in

Nek5000. During the initialization of the mesh in Nek5000 the program can read this

information and project the GLL-nodes onto the provided surface. The routine was

made as automatic as possible, and can be summarized in these three steps
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1. Create initial mesh and convert to .rea applying mshconvert.

2. Create refined surface mesh on the non-regular surface.

3. Enable projection by adding the line call surfprojection(n,a,b).

To explain the input parameters, let us first agree upon some naming conventions. The

set of surface points is denoted S, while fe denotes the set of points in element e that

belong to the face that is going to be projected onto the surface described by S. The

number of interpolation points is denoted n, which has a maximum upper limit of three,

since the surface mesh is recommended to be a tetrahedra mesh. Setting n = 1 simply

projects a point in fe to the closest one in S. The interpolation algorithm used for

this experiment is an inverse distance interpolation which applies the inverse distance

squared as weights. The distance between a point x0 ∈ fe, and a point xi ∈ S is given

as

||x0 − xi||a = a||x0 − xi||l2 + (1− a)||n0 −
(x0 − xi)

||x0 − xi||l2
||l2 , (5.1)

with n0 as the surface unit normal vector of the initial element face in the point x0.

The last parameter is provided to determine the size of the working array, which is

denoted wrk in the pseudo code for this routine. The projection is done element wise,

and to avoid unnecessary calculations a subset Se ⊂ S is used in Eq. (5.1). Let xe

be the point at the center of face fe with radius re, the subset is then formulated as

Se = {x ∈ S, ||xe − x|| < b · re}.

Let {x}m be the m closest points to x0 in the sense of the norm defined by Eq. (5.1).

The new point x∗ is chosen such that it minimizes the distance to the points {x}m along

the line x0 + kn0. Mathematically this can be stated as,

min
k∈R

E(k),

E(k) =
m∑
i=1

wi|x0 + kn0 − xi|2,

wi = |x0 − xi|−1.

(5.2)

The choice of the weighting function is based on the intuitive idea that the points that

initially were closest to x0 should have bigger influence when minimizing along the
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normal. The minimization problem is a second degree equation with respect to k and

can therefore be solved exactly. To do this let us define the vectors x̃i = xi − x0 and

then find the k0 such that E′(k0) = 0,

E′(k) = 2

m∑
i=1

win0 · (kn0 − x̃i), (5.3)

E′(k0) = 0 =⇒ k0 =
1∑m
i=1wi

m∑
i=1

win0 · x̃i, (5.4)

x∗ = x0 + k0n0. (5.5)

An important argument for projecting the points in this manner is that for a plane ele-

ment face all nodes move parallel to each other thus maintaining their relative position.

In addition to the standard Nek5000 library the file surfpro.f needs to be added to

the folder trunk/nek/ along with all the other scripts applied by Nek5000. This imple-

mentation could be done directly in .usr, but it is of practical interest to keep this file

as tidy as possible. Two external files are also generated by the modified mshconvert

script for the algorithm to work. The file surf.i contains all the coordinates to the

points on the refined surface, while the element and face number of all the faces that

are going to be projected are written to bdry.i.

The algorithm is best explained through a simple box with a non-regular floor. An

example of this situation is the hill of Ekeberg. Before describing the algorithm let

Etot = nxnynz be the total number of elements, N is the polynomial degree and let us

for simplicity assume that nx = ny = nz such that E = E
2/3
tot is the number of elements

containing a face on the non-regular surface. The number of points on the refined

surface Ns should be approximately EN4 in order to describe the surface for all the

GLL-points that belong to the boundary. This estimate assumes that the surface mesh

is equidistantly distributed whereas the GLL-nodes are denser along the boundaries of

each element, ∆xmin = O(1/N2).

46



Chapter 5. Implementation 47

The pseudo code for the algorithm is listed below with the temporal costs commented

out.

iwrkelem = read(bdry.i)

wrksurf = read(surf.i)

do e,f in iwrkelem !O(E)

wrk = create_working_surface(e,f,wrksurf) !O(EN^4)

do i in GLL -nodes !O(N^2)

interp = init_interpolation_array () !O(1)

do j in wrk !O(N^4)

update_int_array(interp ,wrk(j)) ! O(1)

enddo

set_new_point(interp ,wrk ,i,e,f) ! O(1)

enddo

fix_GLL () !O(N^3)

enddo

fix_geom ()

To understand the algorithm a short description of the functions is given in the list

below, note that these are idealized routines simplified to explain the flow of the total

algorithm, for all auxiliary subroutines implemented see Appendix B.2.3.

• create working surface(e,f,wrksurf) – Loops through all the nodes in wrksurf and

adds the surface coordinates within a certain radius to the center of face f on

element e to the array wrk. This saves time in the search for interpolation points

for each GLL-node.

• init interpolation array() – initializing the array containing the closest points on

the surface for the current GLL-node.

• update int array(interp,wrk(j)) – compares the surface point j to the already ex-

isting interpolation points in interp and adds it to the list if it is found to be closer

to the ith GLL-node.

• set new point(interp,wrk,i,e,f) – updating the new GLL-point determined by the

surface points in interp.

• fix GLL() – There is a risk after distributing the GLL-points on the surface that

some of the internal GLL-points falls outside the element. This function distributes

all internal GLL-points correctly between the projected face and the opposite.
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• fix geom() – An already existing Nek routine that makes sure the manipulation of

the geometry is consistent with neighbouring elements, and distributes the internal

GLL-points correctly.

Although this routine is only called once, and therefore will not contribute significantly

to the total runtime of the program it is desirable to have a fast algorithm. Another

analysis important to be made is the amount of extra storage space needed for this

algorithm. By analysing the pseudo code the time of the algorithm should be of order

O(E(EN4 + N2N4 + N3)) = O(EN4(E + N2)) and the amount of additional storage

space will be of order O(EN4 + E + N2) = O(EN4). By reading surf.i directly in

create_working_surface the amount of storage space drops to O(E + N2), but this

requires opening and reading through the entire file for each element.

The routine attempts to be as automatic as possible and the only implementation nec-

essary is a call from usrdat2 with 3 input variables.

Now an illustrative example of how this method is applied by the user. Say you have a

project called ”myFlow”, and the mesh and surface mesh created in ICEM are named

mesh myFlow and surfmesh myFlow. The following commands are then executed

>> ./ mshconvert --mesh mesh_myFlow

--reafile init.rea --outfile myFlow.rea

--tol 1e-3 --temperature True --curvetype A

>> ./ mshconvert --mesh surfmesh_myFlow

--mesh_format surface

After running the commands above the only thing left is to add call surfpro(n,a,b)

to usrdat2.

This is an initial framework for surface projection that seems to work well for the geome-

tries tested in this thesis. The code is also structured such that it is easy to manipulate

and several ideas for further work on this algorithm will be discussed in Chapter 7.
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5.2.1 Test of the projection routine

To test the algorithm described in Chapter 5.2 the hill of Ekeberg in Oslo and a helicopter

body was used. These surfaces were loaded as .tin files in ICEM and coarse hex meshes

were created around the surfaces. The domains are presented in Figure 5.2 and 5.3,

notice the coarse element sizes in the figures. Especially in the hill of Ekeberg the mesh

edges clearly give a bad representation of the actual geometry. These geometries were

chosen because they resemble a typical problem with spectral elements. Since the initial

element mesh is relatively coarse it does not capture all the details in the geometry and

the GLL-nodes distributed on the faces corresponding to the unstructured surface will

be misplaced. With the routine described in Chapter 5.2 the surface is approximated

accurately by higher order polynomials. The algorithm restricts itself to relatively

Figure 5.2: Body of a helicopter.

Figure 5.3: Hill of Ekeberg.

smooth surfaces, since the polynomial describing the surface is typically of order P ≈ 7.
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5.3 Spatial averaging routine

The dynamic Smagorinsky model has previously been implemented in Nek5000 for flow

in a channel. The SGS model as described in Chapter 2 depends on an averaging

routine to calculate the dynamic Smagorinsky constant. The previous implementation

in Nek5000 applies a planar average routine in addition to averaging in time. The planar

averaging is based on the assumption that the Smagorinsky constant is the same for all

points with equal distance to the walls of the channel. This is a case specific averaging

routine based on the assumption of homogeneous turbulence in the entire plane, hence

only applicable to flows in idealized geometries.

When applying dynamical Smagorinsky to Case 1 a new spatial mean routine had to be

applied for it to be stable. It was first attempted to average only in time, but this proved

not to be sufficient. It was therefore implemented a routine for taking the average within

each element, let cenum, c
e
den denote the numerator and the denominator in Eq. (2.23).

The means are then calculated as

cenum =
1

V

∫
Ωe

cenumd Ω ≈ 1

V

N3∑
i=1

ρi,ec
e
num,i. (5.6)

And similarly for ceden. The coefficients ρi,e are found in the array BM1(lx1,ly1,lz1)

in the file MASS.
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Chapter 6

Case studies and results

This chapter will present the cases investigated and the results acquired. The main tools

in addition to Nek5000 used to obtain the results in this chapter are ANSYS ICEM and

python. For post-processing Visit and Matlab were used.

6.1 Case 1: Gas dispersion in a simplified urban area

The scenario investigated in this case is dispersion of a neutral gas in a rectangular

tunnel with four cubic blocks placed as obstacles. The blocks have sides h = 0.109m

and represent a set of buildings forming a street canyon. The gas is released from a

circular source on ground level and is translated by the wind field through the canyon,

see Figure 6.1. In this figure h has been used as the length scale. The dotted lines

indicate the positions where data is collected.

Scaling the entire domain with the size of the boundary layer H = 1m restricts it to

the box 0.0 ≤ x/H ≤ 4.96,−1.75 ≤ y/H ≤ 1.75, 0 ≤ z/H ≤ 1.5. The four cubic

boxes are centered around (1.4315, 0) with a distance h between each box. The source

is placed with its center in (0.396, 0) and has a radius r = 0.0515. The grid used for

the computations consists of 14747 elements and a polynomial degree of 7, this makes

the total number of nodes N ≈ 5.2mill. There are no curved elements in this case, so

the circular source is created simply by requiring that the inflow velocity is non-zero

only for the nodes on the floor within that particular circle. The corresponding area is
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Figure 6.1: Schematic overview of the domain from above. The data is collected along
the dotted lines.

somewhat different from that of a circle ≈ 5%, but this is scaled correctly during the

post-processing.

The simulations are performed using Large Eddy Simulation (LES) with the dynamic

Smagorinsky-Lilly subgrid-scale model and by applying the polynomial filtering routine

that is available in Nek5000. The release of gas will result in a plume that is advected

with the wind field, see Figure 6.3. The concentration of the released gas at the indicated

positions in Figure 6.1 are compared with experimental wind-tunnel data and simulations

performed in CDP [32]. For clarification some of the variables repeatedly mentioned in

this section are stated explicitly in Table 6.1.

Variable value unit commentary

H 1 m length scale of the domain
h 0.109 m the sides of the cubic boxes
Q 50 dm3/min gas release from source
Uref ≈ 1.08 m/s reference value of U

Table 6.1: Essential variables, Uref is calculated as a time average of the velocity in
x-direction at a point far away from the floor and walls and will therefore vary by a

small amount from case to case.

The inflow condition at x = 0 has to be mapped onto the boundary at each time

step. To mimic the situation in the wind-tunnel the velocity field on the inflow was

generated in a different simulation performed in CDP. The inflow velocity was written

to file every 0.0013s for a total of 28s and had to be interpolated onto the domain for

the simulations in Nek5000 since the grid was not identical. The right plot in Figure 6.2
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Figure 6.2: The averaged (left) and instantaneous (right) x-velocity on the inflow
boundary.

is an instantaneous picture of the inflow velocity in x-direction, notice how the pattern

repeats itself along the y-axis. This is because the inflow data was generated in a smaller

channel, approximately 1/3 of the width of the computational domain used for the data

sampling. An interpolation algorithm implemented at FFI was applied to adjust the

inflow data to the computational mesh, this was done directly in .usr.

Figure 6.3: An iso-surface of the average concentration with C = 0.03 after 22 seconds
of sampling. Streamwise direction is from left to right.

The simulations in Nek5000 were performed in the following manner; first 6 seconds

of flow-through to initialize the velocity field in the channel, followed by 8 seconds of

gas release to initialize the gas concentration. After assuring that the wind-field was
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correctly created and the released gas had reached the measurement lines furthest from

the source, the data sampling of 22 seconds started.

The mesh used in the simulations performed in Nek5000 and the one performed in CDP

are different, and the resolution in the part of the domain close to the cubes is described

in Table 6.2. It is evident that the resolution is better in the simulations done in CDP

and especially in the z-direction.

Solver nx ny nz
CDP 28 28 64

Nek5000 22 22 36

Table 6.2: Number of nodes used to represent one cube.

6.1.1 Results - Gas dispersion

This case is a part of a larger project designed to evaluate different solvers ability to

perform simulations of gas dispersion. The N-S equations are solved using the PNPN

formulation with the fractional step method, IOFS with a target CFL-number equal

2.0 was enabled to maximize the time step as recommended in [25]. It should be men-

tioned that when activating the SGS model and deactivating the filter the simulation

is more probable to blow up. This effect is captured in Figure 6.4 that shows how the

Smagorinsky model does not damp spurious velocity modes in the same degree as the

filter.
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Figure 6.4: ||u||∞ as a function of time. The green line represents the simulation
with the dynamic Smagorinsky SGS model and the blue line represents the filtering with

α = 0.05 and a quadratic decay on the last 3 modes.
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Figure 6.5: Time-averaged concentration with a sample time of 22.00s at z/H = 0.025
plotted and scaled with the free-stream velocity and the emission rate. Compared with
wind-tunnel data and results from CDP. Two dashed lines on either side of the centerline

represent the canyon.

Figure 6.5 shows the scaled concentration along the dotted lines in Figure 6.1. According

to this figure Nek5000 does indeed capture the important features of the mean concen-

tration. At the two first measurement lines the results are slightly skewed to the right,

this is to some degree also the case for the CDP simulations but not for the experiment.

A possible explanation could be that the inflow condition favours one of the sides of the

domain, or simply that the sampling time is not sufficiently long.
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The results also indicate that the difference between the SGS model and the filtering is

not that large, if anything the SGS model shows a tendency to estimate higher concen-

tration peaks. In particular the first plot indicates a significant difference. An important

difference between the filtering and the SGS model is that the filter works based on the

current state of the flow whereas the amount of diffusion added by the SGS model is

strongly biased by the previous states of the flow. This could lead to local observations

of either too much or too little smoothing.

The concentration along the vertical measurement lines is plotted in Figure 6.6 and

overall Nek5000 provides good results according to the reference solutions. The largest

difference is found close to the wall right in the middle of the cubes. In particular

the simulation with filtering underestimates the concentration in this domain. The

resolution of the mesh used for the Nek5000 simulations in this area is notably worse

than for the CDP-simulations. And in the middle of the cubes neither one of the filter

or the Dynamic Smagorinsky model are able to correct this. The PNPN formulation is

known to produce splitting errors of significant sizes close to the wall, and could play an

important role in this part of the domain.

The simulations were also performed using the PNPN−2 formulation with filtering, and

the results were similar to those observed above. The SGS model did however not

function at all for the PNPN−2 implementation, and resulted in a system crash in one of

the earliest time steps. It was beyond the scope of this work to correct this presumable

bug in the Nek5000 implementation.

It was also experimented with different meshes. An attempt was made to improve the

results at the measurement lines in between the cubes by increasing the resolution in

this particular area, this was done by using the refinement functionality in ICEM. The

rest of the mesh was made coarser to keep the amount of elements at approximately the

same level. The amount of nodes used to describe one cube as presented in Table 6.2

were for this simulation (nx, ny, nz) = (21, 21, 63). The simulation was performed using

PNPN with filtering, but the results were similar to the ones previously obtained. It

could seem like a refinement of the mesh in the x and y direction could be necessary to

achieve better results.
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Figure 6.6: Time-averaged concentration with a sample time of 22.00s at y = 0 plotted
and scaled with the free-stream velocity and the emission rate. Compared with wind-

tunnel data and results from CDP.

As for the performance of Nek5000 the results are baffling. With the same number of

processors, same accuracy criteria, and approximately the same number of nodes in the

grid, Nek5000 simulated one second of flow more than five times as fast as a numerical

code comparable to CDP! This was done without any particular tuning and with a time

step about 2/3 of the one used in CDP.
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To check how Nek5000 scales for the number of processors, one second of flow was

simulated using the PNPN−2 formulation on the grid with 14747 elements, N = 7,

DT = 0.001 and both IOFS and filtering was activated. The results are presented

in Figure 6.7.
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Figure 6.7: Scaling results, from case 1 with 14747 elements, PNPN−2 formulation
using filtering and N = 7.

This is far from optimal speedup which is the theoretical upper limit, and Nek5000 were

perhaps expected to perform better than these results indicate. This performance test

is done without doing any tweaking of the settings, and it is probable that by adjusting

some parameters in .rea a better speedup could be obtained.

6.2 Case 2: Drag and lift on a cylinder

A standard benchmark case for flow solvers is presented in [33]. The case is to calculate

the drag and lift coefficients on a cylinder in a rectangular channel. The setup for the

domain and boundary conditions are given in Figure 6.8. The constants applied in

the description of the geometry and the coefficient scales are listed in table Table 6.3.

Finding the drag and lift coefficient requires a calculation of the velocity field around

the cylinder which is done by solving the unsteady N-S equations until a steady flow is
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Constant Value Property

H 0.41m Width and height for the channel
D 0.1m Diameter of the cylinder and length scale
U 0.2m/s Velocity scale
ν 10−3m2/s Kinematic viscosity of the fluid
Re 20 Reynolds number

Table 6.3: Constants for case 2

reached. This implies that the spatial accuracy will dominate the error and one would

expect great results in Nek5000 due to its spectral convergence rate.

The flow is laminar with Reynolds number Re = 20 so all the challenges arising when

dealing with turbulent flow does not come to play in this case. The drag and lift forces

Figure 6.8: Computational domain and boundary conditions.

on a surface S are given as

FD =

∫
S

(ρν
∂vt
∂n

ny − pnx)dS, FL = −
∫
S

(ρν
∂vt
∂n

nx + pny)dS. (6.1)

vt is the tangential velocity, n = [nx, ny, 0] is the unit vector normal to the surface S

and the tangent velocity vector is defined as t = [ny,−nx, 0].

Surface integrals in Nek5000 are solved numerically,
∫
S fdS =

∑
fiAi, where f is some

function and Ai is the quadrature weight to the ith GLL-node for the surface integral
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over face S. Ai corresponds to a two dimensional mass matrix in Nek5000 available for

all elements and all faces in the array area(lx1,lz1,6,lelt).

The coefficients corresponding to these forces known as the drag and lift coefficients are

given by the formulas

cD =
2FD

ρU2DH
, cL =

2FL
ρU2DH

. (6.2)

Nek5000 provides functions for calculating lift and drag on any user-specified object.

The function is called drag_calc(scale), with the input parameter defined by the

user, for this case scale = 2/(ρU2DH). Apart from this the function set_obj() has to

be modified to create an object that consists of pointers to all the faces on the cylinder.

The mesh around the cylinder is illustrated in Figure 6.9. Initially this case was solved

7 1 8
2 34 5

69 10
Figure 6.9: Initial mesh around cylinder.

using a second degree polynomial to describe the circle segments corresponding to each

element. With the implementation of the new routine as described in Chapter 5.1 the

circle segments could be represented with the same order as the polynomials used for the

velocity. The importance of the error resulting from the second degree approximation

of the circle segments is presented in Chapter 6.

An additional test performed on this case was how different settings in Nek5000 affect the

estimation of the drag and lift coefficients. Perhaps most curious is whether the PNPN

or PNPN−2 formulation is applied. Note that the pressure in the latter formulation is

not defined on the boundary of the cylinder and does therefore need to be extrapolated

onto the surface in order for the integral to be calculated. It is however more likely that

this effect will be negligible compared with the splitting error implied by both schemes,

since they both impose an erroneous boundary condition on the pressure.
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6.2.1 Results - benchmark comparison

The results are presented in Table 6.4, and they confirm that the treatment of the

geometry is essential, both coefficients are computed with significantly better accuracy.

Compared with the results from the other softwares applied in [33] Nek5000 performs

# of Cells Software cD cL %Err cD %Err cL

2124030 Nek5000 (mid) 6.18349 0.008939 0.030 4.19
2124030 Nek5000 (arc) 6.18498 0.009413 0.005 0.10
3145728 CFX 6.18287 0.009387 0.04 0.15
3145728 OpenFOAM 6.18931 0.00973 0.06 3.5
3145728 FEATFLOW 6.18465 0.009397 0.01 0.05

Table 6.4: Results for the drag and lift coefficients with reference values cD = 6.18533
and cL = 0.009401. P = 11 for the simulations in Nek5000.

just as well or better in most cases. It should be mentioned that the division of the grid

is created in a different manner for Nek5000 so the comparison is not as direct as it may

seem from the table.

6.2.2 Results - internal adjustments

As discussed in Chapter 4 there are many adjustments available in Nek5000. To un-

derstand the actual effect on the results, several different settings were investigated for

this case and the results are presented in Table 6.5. The spectral convergence is also

confirmed in Figure 6.10 by calculating the lift coefficient error for increasing polynomial

degree.

The setting that has the biggest impact on the result is the PNPN scheme which clearly

performs worse than the others. It would seem like the error on the boundary known

to be present in both schemes has a bigger effect in the PNPN formulation. Use of the

IOFS method was expected to have a negative effect on the accuracy as stated in [23],

this is however not observed for this case. The filtering does have a negative effect on

calculation of the lift coefficient as expected, but it is of relatively small significance

which confirms the analytical results from Eq. (3.33).

Be aware that these results are obtained from a laminar test case and does not in any way

suggest any optimal adjustment for Nek5000. It is however important to be aware that

the activation of de-aliasing does not guarantee a better result. For a well-resolved flow
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Figure 6.10: The logarithm of the error plotted against the polynomial degree. All
results are with PNPN−2 and de-aliasing, and they are solved without using the charac-
teristic scheme or any filtering. Two lines illustrating a second order convergence and
spectral convergence is plotted to illustrate the convergence rate obtained in Nek5000.

situation such as N = 11 for this case, the effect of aliasing is negligible and applying a

higher order quadrature to resolve the non-linear term is a waste of computational time.

For N = 7 the results show that activation of de-aliasing provides a better estimate, so

the decision to activate de-aliasing or not depends on the type of flow and the resolution

of the mesh. The fact that the aliased solution for N = 11 performs better than the

rest, is probably because of the accuracy of the reference solution.

Settings % Error

# N ifsplit Dealiasing IOFS Filter cD cL
1 11 No Yes No No 0.005 0.10
2 11 No No No No 0.005 0.03
3 11 No Yes No Yes 0.006 0.31
4 11 No Yes Yes No 0.005 0.11
5 11 Yes Yes No No 0.012 2.35
6 7 No Yes No No 0.002 12.24
7 7 No No No No 0.013 25.04

Table 6.5: Test of solver settings in Nek5000.

When designing the mesh it is important to be aware of how the computational time

depends on the polynomial degree. In user manual for Nek [25] it states that the compu-

tational time for one time step is of order O(EN4) = O(EP 4). This is confirmed in the

left plot in Figure 6.11. Another important consequence of increasing the polynomial
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degree is that the time step decreases with a factor O(P 2) due to the CFL-condition

seen in Eq. (3.48). The computational time per time unit is therefore expected to be

O(EP 6) which is confirmed in the right plot in Figure 6.11.
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Figure 6.11: Computational time for one time step and for one second in Nek5000
as a function of the polynomial degree P .
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Chapter 7

Concluding remarks

Nek5000 has proven to give accurate results with a relatively coarse mesh as presented

in Chapter 6. This is as expected since it is based on a higher order method known to

yield great accuracy. As for the performance it is no doubt that the effort put into the

efficiency of the code has paid off. The possibility to obtain results 5-10 times faster than

similar softwares is an important factor to keep in mind when choosing which software

to use. The polynomial degree is chosen by changing a single parameter, which makes

performance tests and accuracy adjustments simple to do.

Since the mathematical formulation in Nek5000 is based on a tensor product of the basis

functions in each direction it is limited to the use of hex-mesh. This is no problem for

the geometries studied in this thesis, but for complex geometry the use of tetrahedral

mesh is mandatory.

Another aspect worth noticing is the filtering procedure which has some similarities to

variational multiscale as presented in Chapter 3.4.2.1. It would be interesting to design

some test cases to further investigate its properties.

The fact that Nek5000 is an open-source code is also a huge advantage to other black-

box solvers. Although the user community is not that large there are several committed

users that provide their help on short notice. Many different examples are available, and

the user guide contains a nice introduction with everything needed to get the program

up and running. The documentation of variables and functions are however sometimes

missing, which was the main motivation behind the creation of Appendix B.
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7.1 Further work

The surface projection could be expanded and improved in many ways. Making it

iterative such that the points are projected more controlled towards the surface is one

possibility. Experimentation with the weighting function and the distance norm should

be done to see what provides best results. Treating the points along the edges differently,

since they have a larger risk of being affected by the neighbouring element. Omitting

the projection for certain points, especially those on edges that limits to other boundary

conditions. Restricting the relative or absolute change to avoid too much disturbance

in the original mesh. These are just some ideas that might be worth having in mind if

applying or expanding this method.

For the simple array case it was experimented with different meshes and Nek5000 seemed

to have no problems with refined grids from ICEM. The refinement functionality does

however not provide the same flexibility to adjust the number of elements. Perhaps even

better results could have been achieved by making an o-grid around the most important

part of the domain, say for instance the box, x/H < 3, |y|/H < 0.4, z/H < 0.15 the

nodes could have been distributed in a more economical fashion and an overall better

result could have been achieved.

Finding out why the dynamic Smagorinsky model did not work for the PNPN−2 is also

something that should be investigated further. As well as experimentation with other

LES-models.

The effect of the filter is also something that could be studied further, perhaps it would

be possible to support the choice of alpha based on some analytical result.
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Appendix A

Properties of Legendre

polynomials

The Legendre polynomials are a group of orthogonal polynomials on (−1, 1) satisfying

the recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), (A.1)

where L0(x) = 1 and L1(x) = x. Some other useful properties are the L2-norm and the

derivatives which can be found in any texbook, for instance [12],

||Ln(x)||2 =

∫ 1

−1
Ln(x)dx =

2

2n+ 1
,

L′n+1(x) = (2n+ 1)Ln(x) + L′n−1(x).

(A.2)

By continuing the recursive form of the second line in Eq. (A.2) one obtains

L′n−1(x) = (2(n− 2) + 1)Ln−2(x) + L′n−3(x),

L′n−3(x) = (2(n− 4) + 1)Ln−4(x) + L′n−5(x),

...

(A.3)
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Which ultimately enables an expression for the derivative based on the lower order

Legendre polynomials, explicitly given as

L′n+1(x) = (2n+ 1)Ln(x)

+ (2(n− 2) + 1)Ln−2(x)

+ (2(n− 4) + 1)Ln−4(x) + · · ·

(A.4)

Notice that the coefficients in front of each polynomial is 2 times the inverse norm of

the same polynomial squared, allowing the expression to be simplified to

L′n+1(x) = 2||Ln||−2Ln(x)

+ 2||Ln−2||−2Ln−2(x)

+ 2||Ln−4||−2Ln−4(x) + · · ·

(A.5)

In this thesis the second order derivatives will be used and by the result in Eq. (A.4)

they will be given as

L′′n+1(x) = 2||Ln||−2L′n(x)

+ 2||Ln−2||−2L′n−2(x)

+ 2||Ln−4||−2L′n−4(x) + · · ·

(A.6)

Applying the same recurrence relations from Eq. (A.4) to the rhs. derivatives and

assembling the terms allows the second derivative of the Legendre polynomial to be

written as

1

4
L′′n+1(x) = ||Ln||−2||Ln−1||−2Ln−1(x)

+
(
||Ln||−2 + ||Ln−2||−2

)
||Ln−3||−2Ln−3(x)

+
(
||Ln||−2 + ||Ln−2||−2 + ||Ln−4||−2

)
||Ln−5||−2Ln−5(x) · · ·

(A.7)

This can be written in a compact form as

L′′n+1(x) =

dn/2e∑
j=1

Λn+1,n+1−2jLn+1−2j(x), (A.8)

Λn+1,n+1−2j = 4||Ln+1−2j ||−2
j−1∑
k=0

||Ln−2k||−2. (A.9)
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The sum Λi,j can be considered as the coefficient describing the amount of L′′i which is

described by Lj . For the sake of clarity Λ is restated here with indices i, j

Λi,j = 4||Lj ||−2

(i−j)/2−1∑
k=0

||Li−1−2k||−2. (A.10)
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Appendix B

Variables and Functions in

Nek5000

B.1 Variables

The Nek manual provides information on many of the variables given in the .rea and

SIZE file. It is however no list of useful variables defined in other files. In Table B.1

some of the variables that have been frequently used in .usr subroutines are listed. Note

that all the variables listed in this table are defined outside of SIZE, .rea and .usr

B.2 Functions

B.2.1 standard calculations found in math.f or navier1.f

nekasgn(ix,iy,iz,ie) Assigns the coordinates of node (ix,iy,iz) in element ie to the

common variables x,y,z.

facind(kx1,kx2,ky1,ky2,kz1,kz2,nx1,ny1,nz1,f) Assigns the index limits of a face

f with nx1,ny1,nz1 points in each spatial direction.

zwgll(zg,wg,nx1) Get the nx1 GLL-points and weights to zg and wg.

cadd(zg,c,nx1) Adding a constant c to a vector zg of length nx1.

69



Appendix B. Variables and functions in Nek 70

AVG

uavg(ax1,ay1,az1,lelt) Averaged values of u, similar for v,w,p
urms(ax1,ay1,az1,lelt) Variance of u, similar for v,w,p
vwms(ax1,ay1,az1,lelt) Covariance of vw
tavg(ax1,ay1,az1,lelt,ldimt) Averaged values of t and all passive scalars
GEOM

xm1(lx1,ly1,lz1,lelt) X-coordinates for the velocity mesh
xm2(lx2,ly2,lz2,lelv) X-coordinates for the pressure mesh
unx(lx1,lz1,6,lelt) Surface normals
area(lx1,lz1,6,lelt) Surface integral weights
INPUT

cbc(6,lelt,0:ldimt1) Boundary conditions of each face
ccurve(12,lelt) Curved side character
curve(12,6,lelt) Curved side information
PARALLEL

lglel(lelt) Mapping from local to global element index
gllel(lelg) Mapping from global to local element index
SOLN

vx(lx1,ly1,lz1,lelv) X-velocity
t(lx1,ly1,lz1,lelv,ldimt) Temperature and passive scalars
vtrans(lx1,ly1,lz1,lelt,ldimt1) Diffusive constant to additional scalars
vdiff(lx1,ly1,lz1,lelt,ldimt1) Convective constants to additional scalars
TSTEP

istep Current iteration step
iostep Output step frequency
time Current time
tstep Current time step
dt Time step
dtlag(10) The previous 10 time steps
bd(10) Max 10 backward difference coeffs
ab(10) Max 10 extrapolation coeffs (Adam-Bashforth)
WZ

zgm1(lx1,3) GLL points for x,y and z directions
OTHER

x,y,z Local coordinates assigned by nekasgn()
ux,uy,uz Local velocities assigned by nekasgn()
temp Local temperature assigned by nekasgn()
nio Processor node number
ndim Number of dimensions
nelv Number of elements for velocity mesh
nelt Number of elements for the t-mesh
pm1 (lx1,ly1,lz1,lelv) Pressure mapped to mesh 1

Table B.1: useful variables in Nek, the bold capital sections denote the separate files
in /trunk/nek/.
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cmult(zg,c,nx1) Multiplying every element of vector zg of length nx1 with c.

chsign(wrk,nx1) change the sign of every element in vector wrk of length nx1.

cfill(zg,c,nx1) Fill vector zg of length nx1 with the constant c.

rzero(zg,nx1) Fill vector zg of length nx1 with zeroes.

rcopy(zg,zg2,nx1) copy all elements from vector zg2 to vector zg, both of length nx1.

B.2.2 Functions regarding mesh and distribution of GLL-points

gh face extend(x,zg,n,type,ie,v) The Gordon hall algorithm described in chapter 3,

the type variable denotes whether the algorithm should use vertices, edges or faces to

distribute the inner GLL-points.

xyzlin(xl,yl,zl,nxl,nxl,nxl,ie,ifaxl) Generate bi- or trilinear mesh.

fix geom() Routine for assuring mesh consistency and re distributing the internal GLL-

points correctly on the updated geometry.

B.2.3 Additional auxiliary functions implemented for this thesis

readsurfpro(wrksurf,iwrkelem) Read the coordinates from surf.i to wrksurf and

add the elements and faces in bdry.i to iwrkelem.

getfaceinfo(mid,radius,wrk,ie,f) Estimate the midpoint mid and radius of the face

f in element ie.

createworkingarray(wrkbdry,wrksurf,mid,iter,beta,rad,f) updating wrkbdry, Get

the points in wrksurf within a distance rad from the point mid.

fix gll(ie,f) Redistribute the GLL-points between face f and the opposite face in ele-

ment ie to make sure that all points lie within the element.

getface(kx1,kx2,ky1,ky2,kz1,kz2,wrk,n,ie) assigning the values of the face in ele-

ment ie corresponding to the index limits kx1,kx2. . . to the array wrk(n,n,3) .

getsurfnorm(sn,ix,iy,iz,f,ie) Providing the surface normal sn at point ix,iy,iz of

element ie and face f.
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calcerror(error,lambda,sn,wrk,radius) calculate the distance error from the initial

GLL-point to a given point on the surface.

interp up(iinterp,rinterp,n,error,k) Update interpolation points, validate if the new

point k with distance error from the current point is closer than the existing interpo-

lation points in iinterp.

set new pt(iinterp,rinterp,ix,iy,iz,ie) defining the position of the new GLL-point on

the surface.

getlimits(k,n,kx1,kx2,ky1,ky2,kz1,kz2) Get the index limits kx1,kx2. . . corresponding

to edge k with n GLL-points.

setcoords(xq,yq,zq,xedge,yedge,zedge,nxl,k) copy the updated edges xedge to the

initial edges xq.

getcoords(xq,yq,zq,xedge,yedge,zedge,nxl,k) copy the node information from the

initial edge xq to xedge.

checkcorner(is,ix,iy,iz,kz1,kz2,ky1,ky2,kx1,kx2) Check if the current GLL-point

is a corner.

addcorners(wrkbdry,iter,ie,f) Add the corners of the element to wrkbdry so that

they can be used to do the projection of neighbouring points.

B.2.4 Additional functions for mshconvert

This section contains the additional functions written to supplement the script mshconvert.py.

In addition to the functions listed here, minor extensions were also done in the already

existing functions.

getreastart(name) Use the first section of the file name.rea as a template for the new

.rea file.

getreaend(name) Use the last section of the file name.rea as a template for the new

.rea file.

fixbc(name) Fix lower case inflow boundary conditions.

fixthermalbc(name,iftemp) Include thermal boundary conditions if the flag temperature=true.
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points2circ(x1,x2,x3) Find the radius and midpoint of the circle correponding to 3

points on an arc.

write surface file() Write the file surf.i.

write surf list() Write the file bdry.i.

fixSIZE() Add or change the variables that describes the sizes of surf.i and bdry.i

in the local SIZE file.
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