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Summary

Krylov methods are projection methods that can transform big linear ODEs to smaller linear

ODEs with similar properties. Two such methods (the symplectic Lanczos method (SLM) and

the Krylov projection method (KPM)), together with a more classical method, are compared with

each other on linear Hamiltonian differential equations, restarts are used to improve the solu-

tions via iterative refinement. The behavior of global error and energy as a function of time is

examined. Computation time for the different methods are also shown. The methods are also

compared to each other on non autonomous linear Hamiltonian differential equation. Energy

preservation for the symplectic Lanczos method is proved and shown when restart is not used,

along with convergence for both Krylov methods.

Sammendrag

Krylovmetoder er projeksjonsmetoder som kan transformere store lineære differensialligninger

til mindre lineære differesialligninger med lignende egenskaper. To slike metoder (symplectic

Lanczos method og Krylov projection method), sammen med en mer vanlig metode, er sam-

menlignet med hverandre på lineære Hamiltonske differensiallikninger, omstarter er brukt for

å forbedre løsningen via iterativ forfining. Oppførsel av global feil og energi som en funksjon av

tid er er utforsket. Metodene er også sammenlignet med hverandre på ikke autonome lineære

Hamiltonian differensiallikningen. Energibevaring for symplectic Lanczos method er bevist og

vist om omstart ikke er benyttet, sammen med konvergens for begge Krylov metodene.
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Chapter 1

Introduction

Hamiltonian differential equations are found in several branches of physics and mathematics,

eg. in planetary motion, in particle physics and in control theory. This text will be examining

how Krylov methods can be utilized on linear Hamiltonian differential equations on the form

u̇(t ) = Au(t )

u(0) = u0.
(1.1)

For the system to be considered Hamiltonian, the matrix A ∈R2 j×2 j needs to have the following

property [6]

(J j A)> = J j A,

where

J j =
 0 I j

−I j 0

 ,

and I j is the j × j identity matrix.

The matrix A is often large and sparse. Computing good approximations of the linear system

can be computationally costly. Krylov methods that exploits these properties can therefore be a

valuable tool. These methods can transform a big linear system to a small linear system, leading

to less computationally demanding calculations. This text will consider two such methods, the

symplectic Lanczos method (SLM), and the Krylov projection method (KPM).

1
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SLM only works with Hamiltonian matrices, it has the property that the projected system also is

Hamiltonian. This property has made SLM a popular choice when finding eigenvalues of large

Hamiltonian matrices, see eg. [4] and [27]. Since SLM preserves the Hamiltonian structure of the

matrix, and the projected problem has the same structure as equation (1.1), the produced ap-

proximation is energy preserving. KPM is not designed to have any structure preserving property,

but require less computations per step. It also works on any ODE on the form of equation (1.1),

not just in the cases where A is Hamiltonian. The Krylov methods can utilize restarts to improve

the solutions via iterative refinement.

The aim with this thesis is to study these two Krylov methods and the restart, and compare them

to other popular solution methods in: global error, energy preservation, and computation time.

The energy preservation for SLM will also be examined, together with derivation of the methods

and proof of convergence.

Equation (1.1) has the well known analytical solution

u(t ) = exp(At )u0.

Computing the matrix exponential is a very costly operation. But the Krylov subspace methods

presented leads to problems with a size suitable for such computations. How energy, error and

computation time behaves in this case will be examined.

In addition to the case with Hamiltonian linear ODEs with constant energy, as in equation (1.1),

the Krylov methods will be tested on problems with a source term:

u̇(t ) = Au(t )+b f (t )

u(0) = u0,
(1.2)

where A is an Hamiltonian matrix, p is a vector, and f (t ) is a scalar time dependent function.

Behavior of the error and energy as a function of time, together with computation time will be

explored. MATLAB notation will be used where applicable.
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Chapter 2

Background theory

This chapter will contain the theoretical aspects of the Krylov methods, such as derivation, proof

of convergence and necessary assumptions.

2.1 Zero initial condition

If KPM and SLM are to be used with the restarts, it is important that the initial conditions are zero.

The reason for this is explained in Section 2.5.4. Equation (1.1) can be transformed so that it has

zero initial conditions in the following way [10]:

Start by considering

û(t ) = u(t )−u0,

then rewrite the equation with the new variable:

˙̂u(t ) = Aû(t )+ Au0

û(0) = 0.
(2.1)

The solution of the original problem can be obtained by

u(t ) = û +u0.

4
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All test problems with a non-zero initial condition will be transformed in this way without using

the hat notation. The letter b will be used to describe the product Au0.

2.2 Energy

It is well known that the energy of a system on the form of equation (1.1) can be expressed as

[11]

H1(u) = 1

2
u> J Au.

If the transformation in Section 2.1 is used, the energy is

H2(û) = 1

2
û> J Aû + û> Jb. (2.2)

2.3 Integration methods

The time domain [0,Ts] will be divided in k pieces, so that the step size is h = Ts/k. The time

discretized solution of u(t j ) is called U j , with t j = j h where j = 1,2, . . . ,k. Since the initial value

is known to be zero, j = 0 is disregarded. The integration methods considered in this text are the

trapezoidal rule, forward Euler, and the midpoint rule. The definitions of the different methods

are given in Table 2.1.

The trapezoidal rule and the midpoint rule are the same method if the problem is linear with

constant coefficients. The midpoint rule is a symplectic Runge-Kutta method, this means that

when applied to an autonomous Hamiltonian system it produces a numeric solution which is a

symplectic map [19]. In other words, for symplectic methods

(
∂un

∂u0

)>
J
∂un

∂u0
= J . (2.3)

Here ∂un
∂u0

is the Jacobian matrix obtained by differentiating the components of the numerical

solution un , with respect to all components of the initial condition. The midpoint rule can be

divided into two steps: forward Euler, and backwards Euler. By first performing a backward Eu-
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Table 2.1: Methods for integrating in time. Note that since the midpoint rule uses the midpoint
Fi+ 1

2
, twice as many points need to be saved for the midpoint rule as for the other methods. The

trapezoidal and midpoint rule have quadratic convergence rates, while forward Euler has linear
convergence. To compare the methods we use the squared number of points for forward Euler
compared to the other methods. g (t ,u) is the right hand side of equation (1.1) or (1.2).

Trapezoidal rule (trap) [24] Ui+1−Ui
2h = g (ti ,Ui )+ g (ti+1,Ui+1)

Forward Euler (Euler) [25] Ui+1−Ui
h = g (ti ,Ui )

Midpoint rule (mid) [26] Ui+1−Ui
h = g

(
ti + h

2 , 1
2 (Ui +Ui+1)

)

Table 2.2: The method for exact integration in time. Since the method is very computationally
demanding it will only be used on small projected matrices. It also need the test problem to
have constant energy. The expected convergence will be depending on the approximation of A,
since this method is only exact in time. The method is explained in MATLAB’s docmentation:
[1].

Eigenvalue and diagonalization (diag) [V ,D] = eig(A)

Ui =V ·diag
(
exp

(
diag(D · ti )

))
/V ·b −b

ler step and then a forward Euler step, we are effectively performing a step of the midpoint rule.

The trapezoidal rule is not symplectic, but it is conjugate to the midpoint rule. This means that

if you first apply forward Euler, and then backwards Euler, you have done one step of the trape-

zoidal rule. The trapezoidal rule therefore behaves very similar to the midpoint rule.

Forward Euler has no energy preserving properties, and is used to show the difference between

a classical integration method, and an energy preserving integration method.

In addition to the iteration schemes in Table 2.1, an exact solver is used for comparison. It is

presented in Table 2.2.
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2.3.1 Energy conservation for the trapezoidal rule

This section will show the energy preserving properties of the trapezoidal rule on the initial value

problem

u̇(t ) = Au +b

u(0) = 0.
(2.4)

The proof is based on [23]. The energy of this function has already been presented in equation

(2.2). The main ingredients in this proof are the gradient of H1 and the deffinition of the trape-

zoidal rule. Assume that A is a Hamiltonian matrix, so that J A i symmetric.

The gradient of H1(u) is

∇H1(u) = J (Au +b).

The trapezoidal rule found in Table 2.1, used on equation (2.4) gives

U j+1 −U j

h
= A

U j+1 +U j

2
+b.

We observe that

∇H1

(U j+1 +U j

2

)
= J A

U j+1 +U j

2
+ Jb.

Since
U j+1−U j

h = J−1∇H1

(
U j+1+U j

2

)
and ∇H1

(
U j+1+U j

2

)>
J−1∇H1

(
U j+1+U j

2

)
= 0, we have

∇H1

(U j+1 +U j

2

)>U j+1 −U j

h
= 0.

Substituting J
(

A
U j+1+U j

2 +b
)

for ∇H1

(
U j+1+U j

2

)
gives

1

2h
U>

j+1 J AU j+1 − 1

2h
U>

j J AU j + 1

h
Jb>U j+1 − 1

h
Jb>U j = 0.

This can be rewritten as

H2(U j+1)−H2(U j ) = 0.

Hence the trapezoidal rule conserves the energy for functions with constant energy.
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2.4 Windowing

The Krylov methods have a tendency to loose its performance when the time domain is large.

A solution to this problem is to divide the time domain in smaller sub intervals, and solve each

sub interval individually. How this is done is described in Algorithm 1.

Algorithm 1 Windowing

Start with an initial value U0 ∈Rm̂ , K ∈N and k ∈N.
Make an empty vector U .
for j = 1,2, . . . ,K do

Solve differential equation with k +1 points in time and initial value U0.
Place the new points at the end of U .
Update U0 to be the last value of U .
Delete the last point of U .

end for
Return U .

2.5 Solution methods

Two Krylov methods is considered in this text. Their names are symplectic Lanczos method

(SLM), and Arnoldi’s algorithm (KPM, as it is implemented as the Krylov projection method). In

this section we describe the derivation of these methods and give a proof of the energy preser-

vation for SLM.

Krylov methods are techniques to produce approximate solutions by projecting the original

problem to obtain a smaller dimensional problem. The main feature of these methods is that a

smaller linear system can be used to obtain numerical solutions, and this makes the computa-

tions much less demanding. However, finding these projected systems can be time consuming.

The approximated solution can be improved by a restart approach. This is done using the Krylov

method again, to solve a similar equation for the error. The error is simply the difference be-

tween the projected solution, and exact solution. This can be done repeatedly until the desired

accuracy is obtained.
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Assume that the equations are on the form

u̇(t ) = Au(t )+b

u(0) = 0
(2.5)

when these methods are used. When using SLM, it is important that A is a Hamiltonian matrix.

These methods will be compared to equation (1.1) solved with the trapezoidal rule, or the mid-

point rule if equation (1.2) is solved. This method will be called direct method (DM).

2.5.1 Arnoldi’s Algorithm and the Krylov projection method

This section is based on the derivation of the method done in [13] and [15].

The Krylov subspace is the space Wn(A,b) = {b, Ab, · · · , An−1b} = {v1, v2, · · · , vn}, where n ≤ m̂.

The vectors vi together with hi , j = v>
i Av j are found by Arnoldi’s algorithm, shown in Algorithm

2. Let Vn be the m̂ ×n matrix consisting of column vectors [v1, v2, · · · , vn] and Hn be the n ×n

upper Hessenberg matrix with elements (hi , j )i , j=1,··· ,n . Then the following holds [28]:

AVn =Vn Hn +hn+1,n vn+1e>
n

V >
n AVn = Hn

V >
n Vn = In .

(2.6)

Here, en is the n-th canonical vector in Rn , where n is the number of iterations performed with

Arnoldi’s algorithm.

Construct the approximation un(t ) =Vn zn(t ), by requiring that

żn(t ) = Hn zn(t )+‖b‖2e1

zn(0) = 0.
(2.7)

Note that from (2.6), Hn = V >
n AVn , and ‖b‖2e1 = V >

n b. By substituting un(t ) = Vn zn(t ) in equa-
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Algorithm 2 Arnoldi’s algorithm[29]

Start with A ∈Rm̂×m̂ , b ∈Rm̂ , n ∈N and a tolerance ι ∈R.
v1 = b/‖b‖2

for j = 1,2, . . . ,n do
Compute hi , j = v>

i Av j , vi for i = 1,2, . . . , j

Compute w j = Av j −Σ j
i=1hi , j vi

h j+1, j = ‖w j‖2

if h j+1, j < ι then
STOP

end if
v j+1 = w j /h j+1, j

end for
Return Hn , Vn , vn+1, hn+1,n .

tion (2.5) we obtain the residual

rn(t ) = b − u̇n(t )+ Aun(t ).

This can be rewritten by means of zn(t ) to get

rn(t ) = b −Vn żn(t )+ AVn zn(t ).

Using (2.6), we obtain

rn(t ) = hn+1,ne>
n zn(t )vn+1. (2.8)

Since hn+1,n is zero for some n ≤ m̂, (since Vm̂hm̂+1,m̂ vm̂+1 = 0 by construction [30]), the proce-

dure will converge towards the correct solution u(t ).

Larger n gives a better approximation of the solution, but also higher computational complex-

ity. The size of hn+1,n can be used to decide how large n should be, by requiring hn+1,n to be

smaller than some tolerance. If a fixed n is preferred, restarting can be used to obtain the de-

sired approximation. A restart is based on solving the equation for the error εn(t ) = u(t )−un(t )

to improve the current approximation. This equation is obtained by subtracting (2.5) from (2.7)

to get

ε̇n(t ) = Aεn(t )− rn(t ). (2.9)
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Since (2.9) has a format similar to (2.5), we can apply n iterations of KPM to approximated εn(t )

numerically, and use the obtained approximation to improve the numerical solution of the orig-

inal problem, ie. u(t ) ≈ un(t )+ ε̃n(t ), with ε̃n(t ) ≈ εn(t ). The procedure can be repeated, and the

equation for the error after i −1 restarts is

ε(i )
n (t ) = Aε(i )

n (t )− r (i )
n (t ),

with

r (i )
n (t ) = h(i−1)

n+1,n v (i−1)
n+1 e>

n ε
(i−1)
n (t ).

Equation (2.9) can be projected writing ε(i )
n (t ) ≈Vnδ

(i )
n (t ), and using (2.6), to obtain the following

system of ODEs:

δ̇(i )
n (t ) = H (i )

n δ(i )
n (t )+e1h(i−1)

n+1,ne>
n δ

(i−1)
n (t ), i ≥ 1. (2.10)

The numerical solution after i restarts is found by u(i )
n (t ) =

i∑
j=0

V ( j )
n δ

( j )
n (t ), where δ(0)

n (t ) = zn(t )

and found by equation (2.7).

Repeatedly solving equation (2.10) can increase the accuracy of the approximated solution within

a desired accuracy provided, the restarted method converges. See [14] for a proof that under ap-

propriate assumptions on the matrix A, the restarted KPM method converges even for n = 1.

It is no longer possible to use hn+1,n as a measure for the error when the restart is used, since

Arnoldi’s algorithm has no way to measure how much this iteration improved the solution com-

pared to previous iterations.

2.5.2 Symplectic Lanczos method

SLM requires the matrix A in equation (2.5) to be Hamiltonian. The method is very similar to

KPM, with the main difference beeing that orthonormality in Arnoldi’s algorithm is replaced by

symplecticity in SLM. This makes the derivations of the method quite similar.

Let Sn = [v1, v2, . . . , v n
2

, w1, w2, . . . , w n
2

] ∈ Rm̂×n , Hn ∈ Rn×n , vn+1 ∈ Rm̂ and ξn+1 ∈ R be generated
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from Algorithm 3, with the restart variable n, the matrix A ∈ Rm̂×m̂ and the vector b ∈ Rm̂ as

arguments. The following properties then hold:

ASn = Sn Hn +ζn+1vn+1e>
m̂

J−1
n S>

n Jm̂ ASn = Hn

S>
n Jm̂Sn = Jn .

(2.11)

Algorithm 3 Symplectic Lanczos method [8], with reortogonalization from [5].

Start with a Hamiltonian matrix A ∈Rm̂×m̂ , b ∈Rm̂ , n ∈N
ñ = n

2
v0 = 0 ∈Rm̂

ζ1 = ‖b‖2

v1 = 1
ζ1

b
for j = 1,2, . . . , ñ do

v = Av j

δ j = v>
j v

w̃ = v −δ j v j

κ j = v>
j Jm̃ v

w j = 1
κ j

w̃ j

w = Aw j

S̃ j−1 = [v1, v2, . . . , v j−1, w1, w2, . . . , w j−1]
w j = w j + S̃ j−1 J j−1S̃>

j−1 Jm̃ w j

β=−w>
j Jm̃ w

ṽ j+1 = w −ζ j v j−1 −β j v j +δ j v j

ζ j+1 = ‖ṽ j+1‖2

v j+1 = 1
ζ j+1

ṽ j+1

S̃ j = [v1, v2, . . . , v j , w1, w2, . . . , w j ]
v j+1 = v j+1 + S̃ j J j S̃>

j Jm̃ v j+1

end for
Sn = [v1, v2, . . . , vñ , w1, w2, . . . , wñ]

Hn =
[

diag
(
[δ j ]ñ

j=1

)
tridiag

(
[ζ j ]ñ

j=2, [β j ]ñ
j=1, [ζ j ]ñ

j=2

)
diag

(
[κ j ]ñ

j=1

)
diag

(
[−δ j ]ñ

j=1

) ]
Return Hn , Sn , vn+1, ζn+1.

The algorithm only performs n
2 iterations, since two vectors are created per iteration: v j and w j .

Creating two vectors per iterations almost halves the total work load, and ensure the symplec-
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ticity of the method.

Also in this case we consider approximations of the type un(t ) = Sn zn(t ) such that

żn(t ) = Hn zn(t )+‖b‖2e1

zn(0) = 0.

From (2.11), we have that Hn = J−1
n S>

n Jm̂ ASn , and ‖b‖2e1 = S>
n b. By substituting un(t ) = Sn zn(t )

in equation (2.5), we get the residual

rn(t ) = b − u̇n(t )+ Aun(t )

Writing this in terms of zn(t ) gives

rn(t ) = b −Sn żn(t )+ ASn zn(t )

Use (2.11) to obtain

żn(t ) = Hn zn(t )+‖b‖2e1. (2.12)

Equation (2.12) and (2.7) are identical, except for the underlying assumptions about Hn . Since

S>
n Jnζn+1vn+1 = 0 for some n ≤ m̂ [7], the method converges.

A restart can be performed if a small, fixed n is preferred instead of an increasing n. The restart

procedure can be derived by looking at the difference εn(t ) = u(t )−un(t ):

εn(t ) = Aεn(t )− rn(t ).

This equation is similar to (2.12), therefore we can apply iterations of SLM to approximate εn(t )

numerically. The obtained approximation can be used to improve the numerical solution of the

original problem, with u(t ) = un(t )+ ε̃n(t ), with ε̃n(t ) ≈ εn(t ). This procedure can be repeated,
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and the equation for the error after i −1 restarts is

ε̇(i )
n (t ) = Aε(i )

n (t )+ r (i )
n (t ),

where

r (i )
n (t ) = ζ(i−1)

n+1 v (i−1)
n+1 e>

m̂ε
(i−1)
n (t ).

Write ε(i )
n (t ) = Snδ

(i )
n (t ), and use equation (2.11) to obtain

δ̇(i )
n (t ) = H (i )

n δ(i )
n (t )+e1ζ

(i−1)
n+1 e>

n δ
(i−1)
n (t ), i ≥ 1. (2.13)

The numerical solution after i−1 restarts is found by u(i )
n (t ) =

i∑
j=0

S( j )
n δ

( j )
n (t ), where δ(0)

n (t ) = zn(t )

and found by equation (2.12).

Proof that SLM without restart is energy preserving

This section will show that if equation (2.12) is solved by the trapezoidal rule, the energy of un(t )

is preserved [12]. It is well known that the Hamiltonian ODE (1.1), solved with an energy pre-

serving method has constant energy. Since Hn is Hamiltonian, the solution of (2.12) will have a

constant energy. The remaining problem is to show that the transformation from zn(t ) to un(t )

is energy preserving.

The energy of equation (2.12) is

H2(zn) = 1

2
z>

n Jn Hn zn + z>
n Jne1‖b‖2

While the energy of the original problem is

H2(un) = 1

2
u>

n J Aun +u>
n Jb.
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Perform the substitution un(t ) = Sn zn(t ) to get

H2(un) = 1

2
z>

n S>
n J ASn zn + z>

n S>
n Jb.

Using that b = Sne1‖b‖2, and simplifying with equation (2.11) gives

H2(un) = 1

2
z>

n Jn Hn zn + z>
n Jne1‖b‖2.

This results in:

H2(zn)−H2(un) = 0.

Since the transformation does not change the energy, SLM is energy preserving. This will not

hold for KPM for a couple of reasons. First, Hn is not a Hamiltonian matrix, so equation (2.7) is

not a Hamiltonian ODE, and therefore does not have constant energy. The other reason is that

the transformation un(t ) = Vn zn(t ) is not symplectic, and will change the energy. Results are

shown in Section 4.6.

To the best of our knowledge, there are no results regarding the energy preservation of the

restarted SLM.

2.5.3 Linearity of the methods

The Krylov methods require a vector that can be used to generate the orthogonal basis. In the

general problem,

u̇(t ) = Au(t )+b,

b is used to create the orthogonal basis. But what if instead of just b, there were some time

dependance, eg. b1 +b2 f (t ), or:

u̇(t ) = Au(t )+b1 +b2 f (t ).

In this case the Krylov method needs to be used two times, one time to solve u̇1(t ) = Au1(t )+b1,

and another to solve u̇2(t ) = Au2(t )+b2 f (t ). u1(t ) and u2(t ) can then be added together to solve
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the original problem. The reason for this is the need for a vector that can generate the orthogo-

nal space. In this case there is no common vector b̃ so that b̃ f̃ (t ) = b1 +b2 f (t ).

An even bigger problem arises when a differential equation has a source term that is not sepa-

rable in time and space, see eg. [13] and [15]. As an example, consider the wave equation [18]:

∂2q(t , x, y)

∂t 2
= ∂2q(t , x, y)

∂x2
+ ∂2q(t , x, y)

∂y2
+ g (t , x, y) where g (t , x, y) 6= p(x, y) f (t ).

If this equation is discretized with the method described in Section 3.1.1, it would give a unique

time dependent function f (t )i , for each point x and y . This results in

u̇(t ) = Au(t )+
m̂∑

i=1
ei fi (t ), (2.14)

where m̂ is the size of the matrix. This means that equation (2.14) needs to be solved m̂ times

to obtain the solution if a Krylov method is used, making run times increase. Our earlier studies

suggest that the computational cost increases too much with this approach. [15].

2.5.4 A comment on the restart

Ensuring efficient convergence with restarts can be challenging. How this is done is discussed

in Section 3.4 and 4.3.

The restart is the reason why the initial conditions need to be zero. In equation (2.7) and (2.12) it

is possible to remove the term be1 by shifting the initial conditions. However, in equation (2.10)

and (2.12) the term is time dependent, making the shift impossible. If restarts are used without

shifting the initial conditions, the initial condition for the error equation is unknown. Hence,

the shift is necessary.

2.5.5 Direct method

Until now, the methods presented do not solve the original problem, but some transformed

problem. We will compare these methods to more usual solutions. The method used for com-
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Table 2.3: Computational cost of some mathematical operations. n is restart variable, m̂ is the
size of the full linear system, and k is the number of steps in time. Computational cost for the
different operations are found in [21].

Operation Cost
Integration with forward Euler O (kn2)

Integration with Trapezoidal or midpoint rule O (kn3)
Arnoldi’s algorithm O (n2m̂)

Symplectic Lanczos method O (n2m̂)
Transforming from zn(t ) to un(t ) O (m̂nk)

Matrix vector multiplication (m̂ ×n)(sparse matrix) O (m̂)
Matrix vector multiplication (m̂ ×n) (dense matrix) O (nm̂)

parison is called direct method, or DM. DM uses one of the integration methods presented in Table

2.1 to solve equation (1.1) or (1.2), without the use of any Krylov method.

Assuming that equation (1.1) is used: The energy of DM will be constant with Ts , if an energy

preserving method is used. The error will increase linearly with Ts [20]. A goal of this text is to

see how the Krylov methods error and energy behave compared to DM.

2.5.6 Number of operations

This section contains a brief discussion about the number of computations for each method

presented. A table of computational cost for different mathematical operations is given in Table

2.3.

Table 2.4 shows that the asymptotic cost for KPM and SLM are equal. It is difficult to predict how

Windowing compares to this, due to the unknown relation between K and ir . The difference

between the Krylov methods and DM strongly depends on n and ir . Results are shown in Section

4.7 and 5.5.
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Table 2.4: Number of operations needed for the different solving methods when trapezoidal rule
is used. ir is the number of restarts needed for the methods to converge. For windowing K ·k
is equal to k for the other methods. Windowing with DM is not interesting since it is exactly the
same method as DM.

Method Computational cost for the different methods
KPM Arnoldi’s algorithm, an integration method, and the transformation.

O ((n2m̂ +kn3 +m̂nk)ir )
SLM Symplectic Lanczos method, an integration method and the transformation.

O ((n2m̂ +kn3 +m̂nk)ir )
DM An integration method with n = m̂.

O (km̂3)
Windowing SLM or KPM needs to be run K times.

(KPM or SLM) O ((n2m̂ +kn3 +m̂nk)ir K )

2.6 SLM as a method for eigenvalue problems

It is well known in the literature that the symplectic Lanczos method is mainly a method applied

to approximate the eigenvalues of Hamiltonian matrices, see eg. [4],[27], and [16]. This section

will explain why this algorithm so attractive for these types of problems.

Eigenvalue problems for large sparse matrices occur in many different areas, eg. control theory,

model reduction, and system analysis. SLM is the only method that exploits and preserves these

properties. Eigenvalues of Hamiltonian matrices comes in pairs, {±λ}, or in quadruples, {±λ,

±λ̄}. Since the projected matrix is Hamiltonian, these pairs or quadruples are preserved, and

easy to find on the reduced system. Another important property, which is common to all Krylov

subspace eigenvalue methods, is that the biggest eigenvalue is found first.

The method is not without flaws. Frequent breakdowns can occur when applying the method to

ill conditioned matrices. But much work has been done to overcome the difficulties.The most

promising improvements for SLM when applied to eigenvalue problems are based on perform-

ing restarts, and there are a number of approaches proposed in the literature, see eg. [4], [27].

This way the numerical estimations can be improved without losing the Hamiltonian structure,

and without a too high computational cost. Much work is being done to improve the method

further [9], [3].
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In this thesis we have considered how SLM can be used to solve linear Hamiltonian ordinary dif-

ferential equations. Our main comparison method is a similar technique based on the Arnoldi

algorithm (KPM). Both methods are implemented with and without restart and their qualitative

properties (mainly regarding energy preservation and global error growth) have been investi-

gated.



Chapter 3

Programming

This section explains the test problems, the implementation, and how important results are

found.

3.1 Test problems

This section will present the test problems used in the result sections.

Two Hamiltonian matrices are implemented, one is sparse and random, and the other is a dis-

cretization of the wave equation. These matrices have two test problems each, one test problem

with constant energy, and one test problem with varying energy. All test problems satisfy the

condition

u(t ,0, y) = u(t ,1, y) = u(t , x,0) = u(t , x,1) = 0.

3.1.1 The wave equation

The first test problem is based on the 2 dimensional wave equation,

∂2ξ

∂t 2
= ∂2ξ

∂x2
+ ∂2ξ

∂y2
+p(x, y) f (t ). (3.1)

The spacial domain is the unit square. Each direction is divided in m sub intervals, each of

length hs = 1/m, so that xi = hs · i , y j = hs · j , with i , j = 1, . . . ,m −1. The discretization of the

20
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wave equation can be obtained by approximating ∂2ξ
∂x2 + ∂2ξ

∂y2 with Ã, where Ã is the five point

stencil [22], and approximate p(xi , y j ) with b̃i+(m−2)( j−1), where i , j = 1, . . . ,m −1. This results in

the following system of ODEs:

q̇(t ) = I w(t )

ẇ(t ) =−Ãq(t )+ b̃ f (t ).

This can be written as equation (1.1) if u(t ) = [q(t ); w(t )], b = [0; b̃], and

A =
 0 Im̂

−Ã 0

 ,

This will be referred to as wave, and is a second order approximation of the wave equation. The

size of the matrix A is m̂ = 2(m −2)2, where m is the number of steps in each spacial direction.

Two test problems are implemented. We consider one test problem with constant energy, which

is

q(t , x, y) = sin(πx)sin(2πy)cos(
p

5πt )

w(t , x, y) = sin(πx)sin(2πy)
p

5πsin(
p

5πt )

q0(x, y) = sin(πx)sin(2πy)

w0(x, y) = 0

f (t , x, y) = 0.

We also test the methods on a test problem with varying energy, a non autonomous Hamiltonian

system:

q(t , x, y) = sin(πx)y(y −1)(t 2 +1)

w(t , x, y) = sin(πx)y(y −1)(2t )

q0(x, y) = sin(πx)y(y −1)

w0(x, y) = 0

f (t , x, y) = 2sin(πx)y(y −1)− (t 2 +1)sin(πx)(2−π2 y(y −1)).



CHAPTER 3. PROGRAMMING 22

3.1.2 A random test problem

The second implemented Hamiltonian matrix is random, and given by

D = rand(m̂,1)+5Im̂

D1 = rand(m̂ −1,1)

A = Jm̂ gallery(’tridiag’,D1,D,D1)

This matrix is referred to as semirandom, its size is m̂ = 2(m−2)2, which is the same for the wave

equation, this is done to easier be able to compare the two methods. The part 5Im̂ is added to

make Jm̂ A diagonally dominant, this is done to guarantee good convergence of the methods.

Our experiments on fully random problems have shown that the convergence is significantly

deteriorated.

The test problem is given by

u(t , x, y) = unknown

u0(x, y) = rand(2(m −2)2,1)

f (t , x, y) = 0

when the energy is constant, and

u(t , x, y) = unknown

u0(x, y) = 0

f (t , x, y) = rand(2(m −2)2,1) · rand(1,k),

when the energy is varying.

Since we are interested in comparing the different methods to each other, the matrix and the

test problems are saved and reused. The analytical solutions to the test problems are in gen-

eral unknown, but can be computed accurately by an efficient implementation of the matrix

exponential and/or of the variation of constants formula. Therefore it is impossible to show

convergence in the traditional sense. But there are are some important reasons to use it. It gives

a sparse Hamiltonian matrix with much randomness, the randomness makes it difficult for the
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Krylov methods to find an approximated solution, which gives more interesting results. Specif-

ically semirandom will show more correctly how restarting can improve the solution, compared

to wave (the discreticatizon of the wave equation given in Section 3.1.1).

The error will be measured as the difference between the solution obtained by a Krylov method

and a different method depending on the problem type. The exact solver diag will be used if the

energy is constant, it will be marked errordiag. In the case with varying energy, the exact solvers

does not work, in this case the error and energy will be measured as the difference between the

Krylov method, and the midpoint rule, and is marked with errorcomp. This will make the error

seem a lot smaller than it really is, but it gives good results.

3.2 Output data

This section will explain how different interesting values are calculated in the program.

All errors are obtained with the same function. At each time step, this function finds the max-

imum absolute difference between the approximated solution and the exact solution. The re-

sulting vector of absolute errors is then divided by the exact solution, so that the error is relative

to the exact solution. This will be marked with "error" on the plots. In the case where the cor-

rect solution is unknown, as in semirandom (the random test problem implemented in Section

3.1.2), the error is measured as the difference between the numerical approximations produced

by SLM or KPM and diag if the energy is constant, or DM if the energy is varying. These cases are

marked with "errordiag" and "errorcomp", respectively. In some results errordiag and errorcomp

will also be used with wave for comparative reasons.

The energy is found with one dedicated energy function. The energy is calculated for each time

step, and then initial energy is subtracted from these values to obtain the absolute energy error.

When comparing approximated energy with analytical energy, the energies are calculated inde-

pendently, and then subtracted from each other. This is done for all energies in Chapter 5. If the

energies are compared to the analytical solution they are marked "energy", and "energycomp" if
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they are compared to DM.

Other interesting results are the number of restarts, and computation time. The number of

restarts is 1 if a Krylov method is used without restart. Any restart is then counted and added

to this. The reason for this is that when plotting the number of restarts on a logarithmic scale

MATLAB removes all zeros from the plot. The symbol for the number of restarts will be ir . Com-

putation times are measured as the time it takes to calculate the solution of the test problem.

Calculations common to all methods are not included. The symbol for computation time is Tc .

3.3 Figure

All figures are plotted with a dedicated plot tool. This makes it easier to change plots, or un-

cover programming faults. The program uses the solver to obtain data described in section 3.2.

Each run of the solver then gives information about one point on the figure, this means that the

solver is run several times for each plot. This removes noisy data, and makes it easy to choose

the position of each point.

All labels and legends are generated with a dedicated label tool. On some plots, a black solid line

is placed. This line is used to show trends, it is marked with "∝ ξa", where a ∈N is the increase,

and ξ is the data the line is increasing with. SLM and KPM will on pictures be called KPM(n) and

SLM(n), where n is the restart variable.

3.4 Implementation

All algorithms and methods are implemented in MATLAB R2014b on an ubuntu 14.04 LTS com-

puter with intel i7 4770 CPU and 16 GB of RAM. The program is divided into several small func-

tions, each function is individually tested. Functions are reused as much as possible. MATLAB’s

backslash operator is used to solve the linear systems in the trapezoidal rule and the midpoint

rule, sparse matrices are used where possible.
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There are two ways to implement the number of restarts the Krylov methods should perform.

One way is to choose a number of iterations and hope it converges. The other method is to iter-

ate until the change in the solution is below a certain threshold tolerance. Both of these methods

are implemented, but mostly the last will be used since this gives more information about how

well the solution is approximated. The tolerance will be called ι (iota) since iota is used to de-

scribe something small[2].

All codes used to create results in the text can be found on github:

https://github.com/sindreka/Master

https://github.com/sindreka/Master


Chapter 4

Results for test problems with constant

energy

This chapter will show how error, energy and computation times changes with the number of

restarts ir , the tolerance ι, the time domain Ts , the number of steps in time k, the number of

points in each spacial direction m and the restart variable n. We are especially interested in

seeing how the energy for SLM behaves, and how KPM and SLM differ. The predictions and proofs

made in the theory chapter will also be tested.

Due to the computational complexity of finding an exact solution with diag, which is needed

when calculating semirandom’s error, fairly small matrices are used. Unless stated otherwise,

assume that m = 8, which makes the size of the matrix m̂ = 2(m − 2)2 = 72, and k = 20 per

second.

4.1 Convergence

This section shows convergence for the different methods, wave is used since it is necessary to

know the analytical solution. The time domain, Ts = 1 second for all plots in this section.

26
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4.1.1 Convergence with numerical integration

(a) Convergence of trapezoidal
rule without restart.

(b) Convergence of forward Eu-
ler without restart.

(c) Convergence of midpoint
rule without restart.

(d) Convergence of trapezoidal
rule with restart.

(e) Convergence of forward Eu-
ler with restart.

(f) Convergence of midpoint
rule with restart.

Figure 4.1: Convergence for the different integration methods. Notice that forward Euler uses k2

points in time where the other methods use k points in time to obtain the same accuracy. n = 2
is kept constant for all plots, since smaller n generally gives poorer convergence. For the figures
with restart enabled: the tolerance ι= 1e −10. 1 second is simulated.

Figure 4.1 shows that all methods converge with the expected rate. The trapezoidal rule and the

midpoint rule converges quadratically and near identically, the trapezoidal rule and the mid-

point coincide on linear constant coefficient problems. So on such Hamiltonian systems they

are both symplectic. Since the midpoint rule also is symplectic on problems with non constant

coefficients, it will be used when restart is enabled. The trapezoidal rule has a faster run time,

and will be used when restart is not enabled due to insignificant differences in error. Both the

midpoint and the trapezoidal rule require the solution of one linear system per time step. The

linear systems are solved with the function "backslash" in MATLAB.

Forward Euler has a slow computation time due to the larger k needed for the same conver-

gence. It also has a tendency to diverge on longer time intervals and poorly approximates the
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energy, which is shown Figure 4.2 for trapezoidal rule and forward Euler. The poorly approxi-

mated energy is reason enough not to use forward Euler.

(a) Energy error for trapezoidal
rule.

(b) Energy error for forward Eu-
ler.

Figure 4.2: A figure showing the difference in energy between trapezoidal rule and forward Euler.
1 second is simulated and restart is not enabled.

4.1.2 Convergence with an exact solver

(a) Convergence of the exact
solver without restart.

Figure 4.3: Convergence for exact solvers. DM uses the trapezoidal rule, and is included to show
the difference between this figure, and Figure 4.1. Note that the exactness of the method is
for the integration in time, the spacial step-size is kept constant. The expected convergence is
therefore still quadratic with m. n = 2 because taking the matrix exponential is a costly operation
and it is harder for the methods to converge when n is small. 1 second is simulated. The exact
solver is defined in Table 2.2.

Figure 4.3 shows that the convergence is quadratic for the exact solver.
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4.2 Convergence with the restart

This section will show how error and energy change with the tolerance ι and the number of

restarts ir .

4.2.1 Convergence as a function of ι

(a) Error for wave. (b) Energy error for wave. (c) Number of restarts for wave.

(d) Error for semirandom.
.

(e) Energy error for
semirandom.

(f) Number of restarts for
semirandom.

Figure 4.4: These figures show how choosing different tolerances ι affects the solution. The pic-
tures on the top are for wave and the pictures at the bottom are for semirandom. This plot con-
siders 10 seconds and uses the midpoint rule. Remember that errordiag is the relative difference
between the specified method (eg. KPM or SLM), and an exact solver. [

Figure 4.4 shows that if wave is used, there is no reason to use the restart. From Figure 4.1 we

conclude that this also is the case for larger m. wave will therefore not be used again until Chap-

ter 5. If you are interested in using a Krylov method on the wave equation with constant energy,

it can be very well utilized. The largest orthogonal space needed is about n = 2 (depending on

Ts , see Section 4.3), which gives a very low run time. The rest of this chapter will only consider

semirandom, since this better shows the difference between using restarts and not.
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Figure 4.4f shows that the number of restarts are the same for KPM and SLM. Figure 4.4d shows

that there is little reason to restart after gaining a certain precision, since the changes will not be

visible. Based on Figure 4.4e i conclude that ι= 1e −6 is a suitable tolerance.

Figure 4.4d shows that both KPM and SLM need to restart to gain a low error. But Figure 4.4e

shows that the energy for SLM increases the first times it restarts, before it starts sinking again.

This shows that the energy can be accurately estimated by SLM without restart, but not the error.

This seems to indicate that the restart procedure ruins the energy preservation property of SLM,

but many restarts can better the approximation of the energy. The energy of KPM can also be

estimated to machine accuracy, even though its initial energy is quite high.

4.2.2 Convergence as a function of ir

(a) Error as a function of ir .
.

(b) Energy error as a function of
ir .

(c) Error as a function of time
with constant ir = 10.

(d) Energy error a function of
time with constant ir = 10.

Figure 4.5: The top figures show how the error and energy change as a function of the number
of restarts ir . The bottom pictures show how error and energy behave with increasing time
domain, with constant ir = 10, and Ts = 10.
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Figure 4.5a and 4.5b show that for KPM(6) and SLM(6) it is necessary to perform more than 4

restarts to gain accuracy w.r.t. error. After 8 restarts the change in the solution is too small to

observe. This shows why it is wise to use ι and not ir as convergence criterion. If ι is used, the

Krylov methods can perform the exact number of iterations needed to converge, with any n and

Ts . If ir is used as convergence criterion, it needs to be changed with n and Ts . Figure 4.5c shows

that the error increases linearly with time for the first few points, as predicted in 2.5.5. Figure

4.5d shows that the energy increases, SLM shows no energy preserving property in this case.

4.3 How to choose the restart variable n

This section will look at how n can be chosen to avoid unnecessary restart, and still give satisfac-

tory results. Figure 4.4d and 4.4e shows that the energy and error behaves quite similarly, except

when ir = 0 for SLM. If only energy preservation is important, there is no need to use KPM, or to

wisely choose an n. This section will therefore only consider the error. How n should change

with the size of the matrix A (which is given by m̂ = 2(m −2)2, see Section 3.1.1 for a more thor-

ough explanation), and the length of the time domain Ts , is explored. We assume that all cases

tested here are independent.
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4.3.1 Restart variable as a function of m

(a) Error for KPM without
restart.

(b) Error for SLM without
restart.

(c) Error for KPM with restart. (d) Error for SLM with restart.

Figure 4.6: The pictures show which n gives convergence for different m, where the size of the
matrix A, is given by m̂ = 2(m−2)2. The top pictures are without restart, and the bottom pictures
are with restart. 10 seconds is simulated.

Figure 4.6a and 4.6b show that n can be choose independently of m, as long as n ≥ 40 when

restart is not enabled. Figure 4.6c and 4.6d show that if restart is enabled, a good approximation

of the solution can be found with any n, for any m. The reason for the independence between

m and n can be due to the structure of the matrix.
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4.3.2 Restart variable as a function of Ts

(a) Error for KPM without
restart.

(b) Error for SLM without
restart.

(c) Error for KPM with restart. (d) Error for SLM with restart.

Figure 4.7: The pictures show which n gives convergence for different Ts . The top plots are
without restart, and the bottom pictures are with restart.

Figure 4.7a and 4.7b show that the length of the time domain is affecting the optimal choice of

n if restart is not enabled. In this case n should increase linearly with Ts . n and Ts are indepen-

dent when restart is enabled. The lines are not overlapping due to the linear increase in error

over time.

SLM and KPM behave very similarly in all pictures shown in this section, thus the values of n will

be the same for the different methods. Based on Figure 4.6 and 4.7, this text will consider n = 40

when restart is not enabled, and n = 8 when restart is enabled.

4.4 Energy and error

This section will show how the error and energy of SLM, KPM and DM changes as a function of

time. Restarts and windowing will also be tested.
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4.4.1 Energy and error as a function of time

In this case, the midpoint rule is used if the restart is enabled, while the trapezoidal rule is used

if the restart is not enabled. Windowing is not considered.

(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart. (e) Number of restarts.

Figure 4.8: The figures show how the error and energy changes with as a function of time. The
top pictures are without restart, and the bottom pictures are with restart and ι= 1e −6.

Figure 4.8 shows that the error for all methods are very similar, and increases linearly. Figure 4.8b

shows that KPMs energy increases very fast, while SLM and DMs energy remains constant. When

restart is enabled, SLM and KPMs energy are very similar, and a little worse than SLMs energy

without restart. The number of restarts increases as a function of Ts .

4.4.2 Energy and error as a function of time for windowing.

Windowing (see Section 2.4) is now used together with the Krylov methods. The K windows

each have a length 1 second. The window is chosen fairly small based on the energies in Figure

4.8b and 4.8d, in these figures, the energy increases when Ts becomes too large.
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(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart.

Figure 4.9: The figures show how the error and energy change over time when windowing is
used. The top pictures are without restart, and the bottom pictures are with restart and ι= 1e−6.

Figure 4.9 shows that when windowing is enabled, the increasing energy of KPM that occurred on

Figure 4.8b disappears. If restarting is not enabled, the error increases linearly, and the energy

is preserved for all methods. The energy is slowly increasing when restart is enabled. The error

and energy with windowing is comparable to Figure 4.8. This makes windowing an interesting

idea.

4.4.3 Behavior of energy and error on long time domains

In this section it is shown what happens when the time domain becomes to large for the Krylov

methods to converge.
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(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart.

Figure 4.10: This figure shows how different methods perform on a long time domain.

Figure 4.10a shows that, without restart, the increase in error is linear until the numerical value

for the errors is about the same size as the numerical value of the exact solution, ei. ∼ 1. The

energy for KPM increase to about 1 before flattening out, while the energy for SLM and DM is near

constant. Actually the energy for SLM and DM is near constant for all values of Ts , m, and n.

Figure 4.10c and 4.10d shows that when restart is enabled, the energy and error for the Krylov

methods diverges. This means: Do not use a Krylov method on a long time domain when restart

is enabled, without increasing n.

Figure 4.11a and 4.11c show that if windowing is used, the trend of increasing error continues

as it did on Figure 4.9, until it becomes constant, around 100 seconds. Figure 4.11a shows that

KPMs energy is poorly approximated if restart is not enabled. When restart is enabled the energy

increases slowly for all methods, suggesting the numerical round off errors are to blame. Win-

dowing can effectively be used to avoid the divergence happening on long time domains when

restart is enabled.
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(a) Error for windowing with-
out restart.

(b) Energy error for windowing
without restart.

(c) Error for windowing with
restart.

(d) Energy error for windowing
with restart.

Figure 4.11: This figure shows how windowing performs on a very long time domain.

4.5 Energy and error with exact solvers

This section will show how using an exact solver can improve the error and energy, compared to

the trapezoidal rule. It is also shown how restarting with midpoint rule changes the energy and

error after using an exact solver, and how windowing behaves with an exact solver.
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4.5.1 Exact solver vs. numerical integration

(a) Error as a function of time. (b) Energy error as a function of time.

Figure 4.12: A figure showing how the error and energy changes over time when an exact solver
(diag) is used. Restart is not enabled, and DM uses the trapezoidal rule.

Figure 4.12a shows how the Krylov methods compare to each other with an exact solver and

with the trapezoidal rule. diag makes it possible for the Krylov methods to be within machine

accuracy of the exact solution, thou only for a short time. After about 11 second the difference

in error between trap and diag is minimal, in this case the leading error is caused by the Krylov

method, and not the exact solver. Figure 4.12b shows that using an exact solver does not change

the energy, compared with the trapezoidal rule.
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4.5.2 Exact solver with restart

(a) Error with and without restart. (b) Energy error with and without restart.

Figure 4.13: A figure showing how restarting after using an exact solver changes the error and
energy. ir = 1 means that restart is not used, while ir > 1 means that restart is used.

Figure 4.13 shows that the difference between restarting and not is quite small when an exact

solver is used. It seems that restarting gives better results at the end of the time domain, while

not restarting gives better results at the beginning of the time domain. However, this effect is

not large enough to conclude anything definite.

4.5.3 Exact solver with windowing

(a) Error with and without restart. (b) Energy error with and without restart.

Figure 4.14: A figure showing how windowing with an exact solver changes the error and the
energy. ir = 1 means that restart is not used, while ir > 1 means that restart is used.
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Figure 4.14a shows that the error is linearly increasing, this makes windowing with an exact

solver better than just the exact solver after 10 seconds, but before this, the exact solver much

better. Figure 4.14b shows that the energy becomes poorly approximated after a few seconds,

only SLMs energy with restart is constant and near machine accuracy.

4.6 Energy in the transformations

This section will show how the energy changes when transforming from zn(t ) to un(t ). For KPM

un(t ) =Vn zn(t ), and for SLM un = Sn zn(t ). The difference is the matrix Vn and Sn , where Vn is an

orthonormal matrix, and Sn is a symplectic matrix. It is predicted that the transformation with

Sn would be energy preserving, no predictions is made regarding the energy for the transforma-

tion with Vn . For more information see Section 2.5.1 and 2.5.2.

(a) Energy error for KPM(40). (b) Energy error for SLM(40).

Figure 4.15: The figures show how the transformation between z(t ) and u(t ) changes the energy.
Restart is not enabled.

For KPM there is a huge discrepancy between the energy H2 for zn(t ), and H1 un(t ), see Section

2.2 for more information about the energy. For SLM there is no difference between the two. This

shows the transformation with Sn is symplectic. It is worth mentioning that Sn Jm̂Sn−Jn ≈ 1e−16

and V >
n Vn − In ≈ 1e −11, when m = 20 and n = 200.

4.7 Computation time

This section will compare computation time for the different methods discussed. Matrices with

the size m = 8 are far too small to show optimal computation times for the Krylov methods.
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Therefore assume that m = 20. k = 20 is still suitable. The restart variables for this size is found

using Section 4.3 with Ts = 100, this gives n = 200 when restart is not enabled, and n = 20 when

restart is enabled. An additional reason to pick n = 20 when restart is not enabled is that the

number of iterations decreases as n increases, as you will see, n ∼ m is a good rule for optimal

computation times.

4.7.1 Computation time for the numerical integration

In this case, the trapezoidal and the midpoint rule are used, without windowing. Computation

time for different m, k and n is shown.

(a) Computation time as a
function of m without restart.

(b) Computation time as a
function of k without restart.

(c) Computation time as a
function of n without restart.

(d) Computation time as a
function of m with restart.

(e) Computation time as a
function of k with restart.

(f) Computation time as a func-
tion of n with restart.

Figure 4.16: A figure of computation times with and without restart for different m, k and n.
Assume that n = 200, Ts = 100, k = 2000, and m = 20.

Figure 4.16 shows that the computation time for all methods, except KPM with restart, increases

linearly with k. KPM’s computation time seems to be increasing quadratically with k. The com-

putation time for DM increases quadratically with m. SLM is faster than DM if restart is not used,

but slower if restart is used. The difference between KPM with and without restart is minimal,

and is similar to SLM’s computation time without restart. Both KPM and SLM are fastest without
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restart. KPM can also be fast with restart if m is large, k is small, and n is well chosen. Figure 4.16f

and 4.16c show that choosing n optimal is very important for the Krylov methods to achieve

good run times. n ≈ m is a good rule when restart is enabled, thou this rule is less important for

SLM. When restart is not enabled, smaller n gives lower computation times.

4.7.2 Computation time with windowing

In this case, the trapezoidal and the midpoint rule are used, with windowing. Computation time

for different m and k is shown.

(a) Computation time as a
function of m without restart.

(b) Computation time as a
function of k without restart.

(c) Computation time as a
function of m with restart.

(d) Computation time as a
function of k with restart.

Figure 4.17: A figure of the computation times when windowing is used. Assume that n = 20,
Ts = 100, k = 20 per second, and m = 20.

Figure 4.17 shows that the computation time for all methods increase linearly with time. There

is a big difference between restarting and not for SLM, where SLM should avoid the restart, since

it then is slower than DM. For KPM the difference between restarting and not is minimal, and it is

always faster than DM.

One great thing with the computation times with windowing for KPM is that, even with restart,
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the computation times increase linearly with time, making KPM faster than DM for all values of k

and m.

4.7.3 Computation time with diag

(a) Computation time as a
function of m without restart.

(b) Computation time as a
function of k without restart.

(c) Computation time as a
function of m with restart.

(d) Computation time as a
function of k with restart.

Figure 4.18: A figure of the computation times with diag. Assume that n = 20, Ts = 100, k = 2000,
and m = 20.

Figure 4.18 shows that using an exact solver is equally as fast as using any of the other ap-

proaches discussed. This, together with the small error, makes exact solvers very desirable on

small time domains. SLM with restart has the same problem as in the other cases, where the

restart makes it very slow. KPM also has the same problem as before, where computation time

increases faster than linear when restart is enabled.

No plots of time consumption with windowing and an exact solver is shown, because the results

are very similar to the ones shown in Figure 4.17.



Chapter 5

Results for test problems with varying

energy

In this chapter we will investigate the performance of SLM and KPM when applied to non au-

tonomous Hamiltonian systems of type (1.2). The error and energy as a function of time Ts ,

together with computation time as a function of m and k, is shown. k is the number of steps

in time, and m is used to calculate the size of the matrix m̂, given by the following relation

m̂ = 2(m −2)2. We also make a numerical study to find out what the best strategy for choosing

the restart variable n is.

The exact solver in Table 2.2 does not work in this case due to the presence of the time dependent

source term in equation (1.2). When semirandom is used, the error and energy will be measured

as the difference between DM and the Krylov method used. This will be marked with errorcomp

and energycomp. This makes the error seem a lot smaller than it really is. Another approach that

could be used is to apply the midpoint rule with a very small step-size, this has not been consid-

ered here.

Since it is interesting to compare the results in this chapter to the previous chapter, all values

will remain the same, meaning: m = 8, n = 8 with restart, n = 40 without restart, and k = 20 per

second, unless stated otherwise. The tolerance ι= 1e −6 is used on all figures with restart.

44
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5.1 Convergence with m and k

(a) Convergence for wave
with trapezoidal rule without
restart.

(b) Convergence for wave with
midpoint rule without restart.

(c) Convergence for wave with
trapezoidal rule and restart.

(d) Convergence for wave with
midpoint rule and restart.

Figure 5.1: Convergence plot with different integrators, simulated over 1 second. The top pic-
tures are without restart, the bottom pictures are with restart and ι= 1e −6.

Figure 5.1 shows that without restart, the methods does not converge with n = 20, while they

converged with n = 2 with constant energy (see Figure 4.1). Clearly convergence is a lot harder

to achieve in this case, though the restart can effectively be used to ensure this. With restart, all

methods converge quadratically. The midpoint rule performs better than the trapezoidal rule,

therefore only the midpoint rule will be used further in this chapter.
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5.2 Convergence with ι

(a) Energy error for wave. (b) Error for wave. (c) Number of restarts for wave

(d) Energy error for
semirandom.

(e) Error for semirandom.
.

(f) Number of restarts for
semirandom.

Figure 5.2: These figures show how restarting changes energy and error. The pictures on the top
are for wave and the pictures on the bottom are for semirandom. The time integration is over a
time interval of 1 second.

Figure 5.2 looks very similar to Figure 4.4, one important difference is that the energy for SLM

no longer starts at 1e − 15, suggesting that SLM cannot estimate the energy precisely, without

decreasing the error. The two Krylov methods behave very similarly.

wave has no need for the restart, while semirandom can have a great decrease in error and en-

ergy. In the interest of showing how the restart can best be utilized, only semirandom is used in

the rest of this chapter.
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5.3 How to choose the restart variable n

(a) Error for KPM without
restart, for different m.
.

(b) Error for KPM with restart,
for different m.

(c) Error for KPM without
restart, for different Ts .
.

(d) Error for SLM without
restart, for different m.
.

(e) Error for SLMwith restart, for
different m.

(f) Error for SLMwithout restart,
for different Ts .
.

Figure 5.3: The pictures show which n gives convergence for different m and Ts . The size of the
interval of integration is 10 seconds.

Figure 5.3 shows that n depends linearly on both m and Ts . This explains why the divergence in

Section 5.1 occurs: m becomes too large without n increasing. If n is too small, restarting will

make the error increase.

The values chosen based on this picture will remain n = 8 when restart is not enabled, and n = 40

when restart is enabled. The reason for the large n when restart is not enabled is that Ts = 100 is

considered later.

5.4 Energy and error as a function of time

This section will show how error and energy changes as a function of time.
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5.4.1 Energy and error without windowing

(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart. (e) Number of restarts.

Figure 5.4: The pictures show the change in the error and energy as a function of time. Restart is
not enabled for the top pictures, restart is enabled for the bottom pictures.

Figure 5.4 shows that SLM preserves the energy a little longer than KPM when restart is not en-

abled. Apart from that, the methods are almost identical. These pictures look very similar to

Figure 4.12, this is because we only look at the error the Krylov methods create, and not the er-

ror made by the time integration method. The restart gives a much better estimate of the error

and energy throughout the time domain, than when restart is not enabled.

Figure 5.5 shows the divergence occurring on long time domains for the Krylov methods. Figure

5.5e shows the linear increase in the number of restarts.
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(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart. (e) Number of restarts.

Figure 5.5: The pictures show the change in error and energy over a long time domain. Restart
is not enabled for the top pictures, restart is enabled for the bottom pictures.
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5.4.2 Energy and error with windowing

(a) Error without restart.
.

(b) Energy error without
restart.

(c) Error with restart. (d) Energy error with restart.

Figure 5.6: The change in error and energy as a function of time with windowing.

Figure 5.6 shows that windowing does not work with varying energy, thus a very promising so-

lution strategy from the previous chapter has a limiting factor.

5.5 Computation time

Computation times are somewhat different in this case, compared to the case with constant

energy. Windowing is not included since the method did not give the correct answer.
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(a) Computation time as a
function of m without restart.

(b) Computation time as a
function of k without restart.

(c) Computation time as a
function of n without restart.

(d) Computation time as a
function of m with restart.

(e) Computation time as a
function of k with restart.

(f) Computation time as a func-
tion of n with restart.

Figure 5.7: A figure of the computation times with and without restart. n = 200, Ts = 100, k =
2000, and m = 20.

Figure 5.7 shows that when restart is not enabled, both KPM and SLM are slower than DM for m ≥
100. KPM is faster than DM after this, while SLM always is slower than DM. When restart is enabled,

KPM can be faster if m is large, and k is small. SLM is still slower than DM. Figure 5.7f shows that

when restart is not enabled, smaller n gives lower computation times.



Chapter 6

Conclusion

The aim with this thesis is was to study two Krylov methods and the restart, and compare them

to other popular solution methods in: global error, energy preservation, and computation time.

The energy preservation for SLM was also examined, together with derivation of the methods

and proof of convergence.

The Krylov methods have been compared to DM (see Section 2.5.5), in error, energy and compu-

tation time. Two different Hamiltonian ODEs were used, one was random (See Section 3.1.2),

and the other was a discretization of the wave equation (See Section 3.1.1). Two very different

cases were also tested: constant energy, and varying energy. These cases were handled differ-

ently. In the case with constant energy, the error was measured with an exact solver, see Table

2.2. When the energy was varying, both error and energy was measured against DM. Because of

this, the conclusion is divided into two parts, Section 6.1 and 6.2.

The wave equation gave nice results for any n, which made the restart uninteresting. To better

show how the restarts can be used to improve the solution, only the random test case was used.

If you want to use a Krylov method to solve the wave equation, this is very efficient.
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6.1 Constant energy

The restart can be effectively used to improve the error if a small restart variable (see Section

2.5.1) is preferred (see Figure 4.4d).

When restart is not enabled: The error for all methods increase linearly with time (see Fig-

ure 4.8a). SLM is energy preserving (see Figure 4.10b). KPMs energy is not preserved, but it is

bounded. Using an exact solver instead of the trapezoidal rule gives a smaller error, but does

not change the energy (see Figure 4.12). Both SLM and KPM is faster than DM (see Figure 4.16).

This makes SLM an excellent solver on linear Hamiltonian ODEs, when restart is not used.

When restart is enabled: SLM and KPM behave very similar. The error increases linearly with

time, but diverges on long time domains (see Figure 4.8 and 4.10). The energy also increases

slowly with time, and diverges on long time domains. Using windowing, the performance of

the methods is improved, see Section 2.4 and Figure 4.11. Using an exact solver instead of the

trapezoidal rule gives a smaller error, but does not change the energy (see Figure 4.12). SLM is

very slow, making it less useful (see Figure 4.16). KPM, on the other hand, is quite fast, but only

if the matrix is big, the number of steps in time is small, and the restart variable is well chosen

(see Figure 4.16f). This means that KPM often will be the better alternative of the two methods,

when restart is used.

Using windowing and/or an exact solver does not change the computation time, see Figure 4.17

and 4.18.

6.2 Varying energy

For SLM and KPM without restart, the energy and error are bounded, but not constant (see Figure

5.4). When restart is enabled, the energy and error increases slower, but diverges on long time

domains (see Figure 5.5). The divergence cannot be removed by windowing (see Figure 5.6).

Compared to DM, SLM is slow, while KPM is fast if the size of the matrix is large, the number of time

steps is small, and n is well chosen (see Figure 5.7). This makes KPM the better choice if this is
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the case, and DM better in the other cases.

6.3 Further work

It could be interesting to see how the error and energy behave with a random Hamiltonian ma-

trix with different structures (eg. full random, sparse 5-diagonal, 1-diagonal), with a known

analytical solution (eg. make an accurate eigenvalue/eigenvector decomposition of the matrix

and then take the exponential of the diagonal matrix of eigenvalues, or use the method based

on the shur decomposition). This could shed more light on when and how to best utilize the

Krylov methods.

The Krylov methods ability to create small matrices can make it possible to utilize graphics cards

as the processing unit. Graphics cards are designed to be used on small matrices [17]. They

consists of thousands of processing units, which could be used to solve non linear Hamiltonian

problems in parallel (see Section 2.5.3).
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