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ABSTRACT

Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic
potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed
is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using
GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume
fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential
of real-time processing in this context. A combination of the processing modules will be used in detection of
arthritic finger joints from hyperspectral reflectance and transmittance data.

Keywords: tissue characterization, medical and biological imaging, tissue diagnostics, real-time diagnostics,
skin segmentation, wavelets

1. INTRODUCTION

Hyperspectral imaging has recently been adopted for imaging of human tissue.1 High spectral resolution in the
technology enables non-contact, spatially resolved skin spectroscopy. The combination of statistical methods and
physics-informed models can be used to derive objective, diagnostic information. Possible examples of clinical
application include monitoring the progression of wound healing, monitoring tissue perfusion, detecting arthritic
finger joints and diagnosing atherosclerosis.2–6

A hyperspectral imaging-based arthritis scanner for use in the clinic is currently under development in the Iacobus
project.7 Here, a combination of hyperspectral technology, optoacoustics and ultrasound will be used for early
detection of arthritic finger joints. The imaging system will be able to collect hyperspectral transmittance and
reflectance data from which inflamed finger joints can be identified. This requires processing algorithms, which
should automatically detect and diagnose each finger joint according to the spectral and spatial characteristics
of the hyperspectral images.

The high inherent data dimensionality of hyperspectral images can cause high processing times, which could
extend beyond what would be usable in the clinic. Limited patient time requires tools aiding in diagnostic
decisions to be fast. Processing times must be constrained to a bare minimum. Results, possibly down to a final
diagnosis, should be available already within the end of image acquisition.

Processing can be divided into algorithms that require only a single pass on the data, and processing algorithms
that require several passes through the data. Any algorithm that can be partially or wholly be brought into the
former category is an algorithm that has the potential to be implemented in real-time, as the algorithm can make
its single, required pass on the data simultaneously with the data acquisition (line-by-line processing). Real-time
processing proper will then depend on whether feasible processing times can be constrained by the time required
to obtain the data. This can be achieved using e.g. GPU processing,8–14 multi-core, memory-optimized CPU
processing or FPGA processing.8 Such processing algorithms will contribute to an earlier diagnostic answer after
image acquisition and reduce the total processing cost after the image has been fully obtained.
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Several necessary pre-processing steps are required. Labeling hyperspectral pixels with spectroscopic informa-
tion will require fast optical inverse modeling techniques due to the layered, scattering nature of human skin.
Typically, such models are not developed with firm timing constraints in mind. Required processing times can
be arbitrary, depending on the complexity of the models. Both a reduction in complexity and adaption of fast
iteration techniques is required.

The stability and automatic interpretability of the results from inverse modeling methods can be subject to
noise in the measurements. Noise removal techniques are necessary. Proper noise removal that can yield the
data quality required from the inverse modeling algorithms can be challenging in a line-scanning situation, since
preservation of both spatial and spectral resolution is required. However, since the inverse modeling processing
step depends on such noise-removed data to be available, and subsequent processing algorithms require the
results obtained from the inverse modeling step or noise-removed data, it is imperative to do the noise removal
during image acquisition.

Some algorithms like noise removal can require acquisition of image statistics. In these cases, more precise
answers are obtained if the statistical routines are allowed to run only on the parts of the image containing
human skin. It can also be convenient to extract structural information from the image, like location of fingers
and finger joints in human hands. This requires background segmentation. Both are solved by a general skin
masking algorithm.

Lastly, the image must be calibrated to reflectance. Optical modeling requires that influences from a varying
light source is removed from the image. Skin segmentation requires that the light source is removed from the
spectra. Thus, reflectance calibration represents a fundamental step along the processing chain. Reflectance
calibration is simple and fast given a reference spectrum, but due to unstable light sources or other influences,
should be obtained during each image acquisition using a white reference standard.

Thus, necessary pre-processing steps are calibration, skin segmentation, noise removal and optical inverse mod-
eling. In addition, wavelet processing has been identified as a possible processing technique for obtaining vessel
structures.15,16

This paper presents a preliminary real-time processing chain using the defined pre-processing steps. Real-time
performance is achieved using GPU and CPU parallelization techniques. The accumulated computing time is
fitted the time required to collect one line of data to ensure de-facto real-time processing. The results of this
study show the potential for real-time processing of clinical hyperspectral data. The presented approach allows
for determination of tissue properties while collecting data using a line-scanning camera. The processing modules
will be a part of a hyperspectral scanner built for detecting arthritic finger joints. However, the generic nature
of the processing modules allows for a variety of applications.

The line-by-line noise removal method has previously been presented in Bjorgan et al.,17 while the line-by-
line inverse modeling method has been presented in Bjorgan et al.18 Theory and performance of the wavelet
techniques were presented in Denstedt et al.15

2. PROCESSING BLOCKS

An overview over processing blocks is shown in table 1 and Fig. 1. Modules exist both as stand-alone soft-
ware libraries (see table 1), and encapsulated within processing stages in a real-time hyperspectral processing
framework developed by the Norwegian Defence Establishment.19 Description of software modules follow below.

2.1 Camera source and computer hardware

Hyperspectral data are obtained using a push-broom Hyspex VNIR-1600 camera (Norsk Elektro Optikk, Lille-
strom, Norway).20 Data was collected in the wavelength range 400-1000 nm, with a spectral resolution of 3.7 nm.
The previously mentioned arthritis scanner will be based on a similar system. The technical implementation of
this system will be published in a separate paper by the industrial partner.

The time needed to acquire one line of data was 30 ms using an integration time of 10 ms. This defines the
real-time deadline limit for the processing. All processing of each line of data should be able to finish within the



Table 1: Processing modules and corresponding source codes.

Method Implementation GitHub repository Commit
Skin masking libspectralmask http://github.com/ntnu-bioopt/spectralmask 83be811
Calibration libcalibration
Inverse model libgpudm http://github.com/ntnu-bioopt/gpu-dm 8cea95c
Noise removal libmnf http://github.com/ntnu-bioopt/mnf 0d27847
Vessel contr. enhc. libhyperwavelet http://github.com/ntnu-bioopt/hyperwavelet 3d91b5d
Vessel extraction libfrangi http://github.com/ntnu-bioopt/libfrangi 4c98545

arrival of the next. Software is designed to meet a soft real-time requirement, achieved through the use of an
NVIDIA GPU (Geforce GTX 670) and an Intel CPU (Core i7). CUDA is used to develop the GPU algorithms,
while BLAS routines are used to optimize matrix-based CPU processing whenever possible. Intel MKL was used
in the timing tests.
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Figure 1: Processing modules.

2.2 Calibration

Input is raw radiance data, output is calibrated reflectance data.

The images are converted to reflectance and corrected for uneven illumination across the field of view using a
Spectralon reflectance target (SRT-50-050 Reflectance Target, 12.7 x 12.7 cm, ACAL Bfi Nordic AB, Uppsala).
The raw spectra are converted to reflectance by dividing the reflectance value at each wavelength by the corre-
sponding value of the integrated reflectance standard. Given a reflectance standard placed in the start of the
image, its position can be detected using simple image statistics. This ensures that the image can be calibrated
in real-time using the current state of the light source.

2.3 Masking

Source code for the line-by-line masking algorithm is available on GitHub.21 Input is calibrated reflectance data,
output is human skin segmented from the background.

The spectral angle mapper (SAM)22 is suitable for measuring differences between spectra. Segmentation can be
made single-pass by assuming one or multiple reference spectra representing reflectance from human skin. The
line reflectances are compared to the reference spectra in order to segment human skin from the background.
However, due to individual variations, the library spectra must also be updated with new information as the
image is scanned. This procedure is outlined in Fig. 2. Pixels below an angle threshold are assumed to be skin,
while the rest is segmented out as non-skin. Edges are smoothed using a median filter.

2.4 Noise removal

The line-by-line denoising algorithm (MNF-LBL) is described in full in Bjorgan et al.17 The source code is
available on GitHub.23 Input is noisy reflectance data and the number of bands to keep in the inverse MNF
transform, output is denoised reflectance data. The code includes both MNF-LBL and the conventional MNF
algorithm,24 which can also output the MNF bands.

http://github.com/ntnu-bioopt/spectralmask
http://github.com/ntnu-bioopt/gpu-dm
http://github.com/ntnu-bioopt/mnf
http://github.com/ntnu-bioopt/hyperwavelet
http://github.com/ntnu-bioopt/libfrangi
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Figure 2: Masking algorithm.

Requirements for the noise removal technique include preservation of spatial and spectral resolution. In hy-
perspectral imaging, this can be achieved using the Minimum Noise Fraction transform (MNF).24 The MNF
transform is essentially a dimensionality reduction technique. The data are transformed into orthogonal eigen-
vectors based on spectral variance. A high amount of data and band-to-band correlations are used to extract
the pure signal components. The signal space is reordered in terms of SNR (signal to noise-ratio). Inverse
transforming a subset of the reordered signal space with an SNR above a defined threshold results in a noise-free
dataset. The conventional MNF algorithm requires the full image to be available as one needs to know the spatial
covariance. This is a problem when using a camera with a line-scanning geometry. However, a modification to the
MNF approach has been found to permit denoising line by line in a manner suitable for real-time applications.

The MNF transform can be expressed as a linear matrix transform A. The columns in the matrix are the
eigenvectors found by solving the eigenvalue problem

ΣN ā = λΣā. (1)

The matrices ΣN and Σ are the covariance matrices of the noise estimate and the image, respectively. Denoising
of the image Z can be summed up as a large matrix operation D defined as

Z∗ = (A−1)TRATZ (2)
= D · Z (3)
= D · [Z̄1, . . . , Z̄p]. (4)

The matrix R is the identity matrix with the last m elements of the diagonal set to zero. Given D, each Z̄i can
be denoised separately.

The proposed MNF line-by-line algorithm (MNF-LBL) denoises the image line by line by updating the statistics
with each new line of data, deriving a new Di and applying it to the new line of data for denoising. Care is
taken to update the statistics in a numerically stable way, as this can be challenging when only a single pass is
made on the data. BLAS and LAPACK is used for memory optimization in the matrix operations.

2.5 Inverse model

The inverse model (GPU-DM) is described in full in Bjorgan et al.18,25 The source code is available on GitHub.26
Input is reflectance data and inverse modeling parameters, output is extracted properties like epidermal melanin
content, superficial and deep blood volume fraction and oxygenation. The analysis can be extended to e.g. water
and fat content, and amounts of bilirubin, methemoglobin and beta-carotene.

A layered diffusion model with plane wave illumination is used to simulate the light transport in human tis-
sue.18,27,28 It is possible to obtain a closed-form, analytic expression for the diffuse reflectance from this model.27



The complexity of the expression and its analytic derivative is suitable for a self-contained GPU kernel imple-
mentation by limiting the model to a two-layered skin model (epidermis and dermis). Epidermal and dermal
absorption coefficients are fitted to the reflectance and spectrally unmixed using a non-negative least squares
algorithm. Variations in penetration depth across the input wavelength range is exploited to yield depth-resolved
properties.

Assuming pixel-independency, the model is suitable for GPU implementation using simple steps, at the cost
of some crosstalk or blurring between properties obtained from neighboring pixels. However, considering the
complex light scattering interactions, complete separation would only be possible at great computational cost
and with a higher uncertainty.

2.6 Vessel contrast enhancement (wavelets)

Source code for the hyperspectral wavelet transform is available on GitHub.29 Input is denoised reflectance data,
output is deomposed wavelet coefficients.

Wavelet methods can be used to decompose hyperspectral images into coefficients where image information is
accumulated. Symlet30 filters of length 8 were used to obtain coefficients where blood vessels had a high contrast
to the rest of the tissue. It has been shown that this can be correlated to vessels or blood content at various
depths by Denstedt et al.,15 and preliminary vessel characterization algorithms were outlined in Bjorgan et al.16
Vessels can be enhanced using the Frangi vesselness filter,31–33 before subsequent vessel characterization.

A combination of the filterbank algorithm34 and memory optimizations available in the BLAS library is used to
enable fast line processing. A GPU version of the filterbank algorithm is also available, but does not provide a
significant speed advantage due to the need to rearrange the datastream from BIL to BIP interleave.

3. RESULTS AND DISCUSSION

Clinical applicability of hyperspectral imaging puts constraints on the processing time for the data due to the
limited time the medical personnel has for each patient. Each processing step towards the final result is required to
be as fast as possible, preferably real-time. Availability of these real-time processing steps realizes the possibility
for fast hyperspectral diagnostic systems. One such system is currently under development for the automatic
detection and diagnosis of arthritic finger joints.

The time needed for each processing module was found to be within the real-time deadline limit of 30 ms per
line of data. Proper scheduling of the processing operations enabled a lag of no more than 2 lines. Scheduling
example is shown in Fig. 3. Times for line-by-line processing modules are shown in table 2.

GPU processing times include transfer to and from GPU device memory. Applying all memory transfers in
parallel with the compute stream can reduce the time of e.g. the inverse model down to 3.5 ms, though this will
also require some extra overhead in management of memory arrays. Computing times of the processing modules
were measured separately. It is assumed that these will remain approximately the same when scheduled together
in a multi-threaded environment. However, this can be subject to the availability of resources like memory, the
memory bus, cache or processing resources. Thread overhead, mutex and semaphore access can also interfere with
the time when all processing modules are combined. Additional overhead due to camera control, 3D corrections,
continuous autofocus and coregistration of images is also to be expected.

Some processing steps are from the onset difficult to implement line-by-line. Examples include processing which
would seem to require a priori knowledge of image data, like proper noise removal and skin masking. However,
this study shows that both are possible to implement in real-time in such a way that only one pass is made
on the data, or at worst, multiple passes through single, disjoint lines of data. Results from noise removal and
masking are compared against the noisy results in Fig. 4, 5 and 6. Noise removal enables variations in derived
properties to stand out against random variations due to noise.
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Figure 3: Scheduling of the processing operations for a single line of data.

Table 2: Mean computing time for processing modules as applied to a single line of data. The times were
measured separately and sequentially after being applied to an image consisting of 3958 lines, 1600 samples and
160 bands. GPU times include serial memory transfer.

Method #CPU cores Mean processing time
(ms)

Skin masking, one ref. spec. 1 7.39 ± 4.06
Calibration 1 1.48 ± 0.10
Inverse model (GPU-DM) GPU 4.23 ± 0.15
Noise removal (MNF-LBL) 4 9.98 ± 1.05
Vessel contrast enhancement 4 3.62 ± 0.19
Vessel contrast enhancement GPU 1.06 ± 0.04

3.1 Further work

Real-time processing modules have been developed, allowing for processing or preprocessing to be done at the
time of acquisition in a line-scanning setup. The system allows for modular combination of the algorithms needed
to extract the information relevant for the specific application in question. At the end of camera acquisition,
processing results are ready to be input into diagnostic algorithms or statistical post-processing algorithms.
The definition of post-processing, diagnostic algorithms will depend on the application in question. So far, this
approach has been tested on arthritis and non-healing ulcers.

The system will be extended to processing of transmittance data through hands and finger joints.5,35 Prepro-
cessing modules like calibration, masking and noise removal can mostly be used unmodified. Wavelet processing
techniques need to be fine-tuned to the spectral characteristics of transmittance data.

The combination of results obtained from reflectance and transmittance data will be used in the detection of
arthritis in finger joints. Here, the statistical post-processing will involve a comparison between results obtained
from each finger joint. Approximate locations of the finger joints will be obtained by extracting structural
information from the masked hand. The diagnostic performance of the algorithms will be evaluated in a future
medical trial. The real-time performance of the developed algorithms ensures real-time visualization of results
during scan, which will be useful during testing and further development of the system. In production, the
real-time performance ensures the necessary low response time in the system.
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Figure 4: Comparison of spectra before and after noise removal using MNF-LBL.

Figure 5: Comparison of derived oxygenation before and after noise removal using MNF-LBL.

4. CONCLUSION

The developed real-time processing modules provide a basic framework for a future, flexible real-time diagnostic
system based on hyperspectral imaging. The algorithms will be put to test in a clinical hyperspectral device
developed for early detection of arthritic finger joints.
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Figure 6: Comparison of wavelet detail 05, approximation 06 before and after noise removal using MNF-LBL.
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